
Getting Started withMATLAB® 7

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Getting Started with MATLAB

© COPYRIGHT 1984–2007 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined
in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of
this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government’s
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, SimBiology,
SimHydraulics, SimEvents, and xPC TargetBox are registered trademarks and The
MathWorks, the L-shaped membrane logo, Embedded MATLAB, and PolySpace are
trademarks of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective
holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
December 1996 First printing For MATLAB 5
May 1997 Second printing For MATLAB 5.1
September 1998 Third printing For MATLAB 5.3
September 2000 Fourth printing Revised for MATLAB 6 (Release 12)
June 2001 Online only Revised for MATLAB 6.1 (Release 12.1)
July 2002 Online only Revised for MATLAB 6.5 (Release 13)
August 2002 Fifth printing Revised for MATLAB 6.5
June 2004 Sixth printing Revised for MATLAB 7.0 (Release 14)
October 2004 Online only Revised for MATLAB 7.0.1 (Release 14SP1)
March 2005 Online only Revised for MATLAB 7.0.4 (Release 14SP2)
June 2005 Seventh printing Minor revision for MATLAB 7.0.4 (Release 14SP2)
September 2005 Online only Minor revision for MATLAB 7.1 (Release 14SP3)
March 2006 Online only Minor revision for MATLAB 7.2 (Release 2006a)
September 2006 Eighth printing Minor revision for MATLAB 7.3 (Release 2006b)
March 2007 Ninth printing Minor revision for MATLAB 7.4 (Release 2007a)
September 2007 Tenth printing Minor revision for MATLAB 7.5 (Release 2007b)

Contents

Introduction

1
What Is MATLAB? . 1-2

Overview of MATLAB . 1-2
The MATLAB System . 1-3

MATLAB Documentation . 1-5

Starting and Quitting MATLAB . 1-7
Starting MATLAB . 1-7
Quitting MATLAB . 1-8

Matrices and Arrays

2
Matrices and Magic Squares . 2-2

About Matrices . 2-2
Entering Matrices . 2-4
sum, transpose, and diag . 2-5
Subscripts . 2-7
The Colon Operator . 2-8
The magic Function . 2-9

Expressions . 2-11
Variables . 2-11
Numbers . 2-12
Operators . 2-12
Functions . 2-13
Examples of Expressions . 2-14

Working with Matrices . 2-16
Generating Matrices . 2-16
The load Function . 2-17

v

M-Files . 2-17
Concatenation . 2-18
Deleting Rows and Columns . 2-19

More About Matrices and Arrays . 2-20
Linear Algebra . 2-20
Arrays . 2-24
Multivariate Data . 2-26
Scalar Expansion . 2-27
Logical Subscripting . 2-27
The find Function . 2-28

Controlling Command Window Input and Output 2-30
The format Function . 2-30
Suppressing Output . 2-31
Entering Long Statements . 2-32
Command Line Editing . 2-32

Graphics

3
Overview of MATLAB Plotting . 3-2

Plotting Process . 3-2
Graph Components . 3-5
Figure Tools . 3-6
Arranging Graphs Within a Figure 3-12
Choosing a Type of Graph to Plot . 3-13

Editing Plots . 3-17
Plot Edit Mode . 3-17
Using Functions to Edit Graphs . 3-22

Some Ways to Use MATLAB Plotting Tools 3-23
Plotting Two Variables with Plotting Tools 3-23
Changing the Appearance of Lines and Markers 3-26
Adding More Data to the Graph . 3-27
Changing the Type of Graph . 3-30
Modifying the Graph Data Source . 3-32

vi Contents

Preparing Graphs for Presentation 3-37
Annotating Graphs for Presentation 3-37
Printing the Graph . 3-42
Exporting the Graph . 3-46

Using Basic Plotting Functions . 3-49
Creating a Plot . 3-49
Plotting Multiple Data Sets in One Graph 3-50
Specifying Line Styles and Colors . 3-51
Plotting Lines and Markers . 3-52
Graphing Imaginary and Complex Data 3-53
Adding Plots to an Existing Graph 3-54
Figure Windows . 3-55
Displaying Multiple Plots in One Figure 3-56
Controlling the Axes . 3-58
Adding Axis Labels and Titles . 3-59
Saving Figures . 3-61

Creating Mesh and Surface Plots . 3-63
About Mesh and Surface Plots . 3-63
Visualizing Functions of Two Variables 3-63

Plotting Image Data . 3-69
About Plotting Image Data . 3-69
Reading and Writing Images . 3-70

Printing Graphics . 3-71
Overview of Printing . 3-71
Printing from the File Menu . 3-71
Exporting the Figure to a Graphics File 3-72
Using the Print Command . 3-72

Handle Graphics . 3-74
Using the Handle . 3-74
Graphics Objects . 3-75
Setting Object Properties . 3-77
Specifying the Axes or Figure . 3-80
Finding the Handles of Existing Objects 3-81

vii

Programming

4
Flow Control . 4-2

Conditional Control – if, else, switch 4-2
Loop Control – for, while, continue, break 4-5
Error Control – try, catch . 4-7
Program Termination – return . 4-8

Other Data Structures . 4-9
Multidimensional Arrays . 4-9
Cell Arrays . 4-11
Characters and Text . 4-13
Structures . 4-16

Scripts and Functions . 4-20
Overview . 4-20
Scripts . 4-21
Functions . 4-22
Types of Functions . 4-24
Global Variables . 4-26
Passing String Arguments to Functions 4-27
The eval Function . 4-28
Function Handles . 4-28
Function Functions . 4-29
Vectorization . 4-31
Preallocation . 4-32

Data Analysis

5
Introduction . 5-2

Preprocessing Data . 5-3
Overview . 5-3
Loading the Data . 5-3
Missing Data . 5-4
Outliers . 5-4

viii Contents

Smoothing and Filtering . 5-6

Summarizing Data . 5-10
Overview . 5-10
Measures of Location . 5-10
Measures of Scale . 5-11
Shape of a Distribution . 5-11

Visualizing Data . 5-14
Overview . 5-14
2-D Scatter Plots . 5-14
3-D Scatter Plots . 5-16
Scatter Plot Arrays . 5-18

Modeling Data . 5-19
Overview . 5-19
Polynomial Regression . 5-19
General Linear Regression . 5-20

Creating Graphical User Interfaces

6
What Is GUIDE? . 6-2

Laying Out a GUI . 6-3
Starting GUIDE . 6-3
The Layout Editor . 6-4

Programming a GUI . 6-6

Desktop Tools and Development Environment

7
Desktop Overview . 7-2

Introduction to the Desktop . 7-2

ix

Arranging the Desktop . 7-4
Start Button . 7-4

Command Window and Command History 7-6
Command Window . 7-6
Command History . 7-7

Help . 7-8
Help Browser . 7-8
Other Forms of Help . 7-11
Typographical Conventions . 7-12

Current Directory Browser and Search Path 7-14
Running Files . 7-14
Current Directory . 7-14
Search Path . 7-15

Workspace Browser and Array Editor 7-17
Workspace Browser . 7-17
Array Editor . 7-18

Editor/Debugger . 7-20

M-Lint Code Check and Profiler Reports 7-23
M-Lint Code Check Report . 7-23
Profiler . 7-26

Other Development Environment Features 7-28

External Interfaces

8
Programming Interfaces . 8-2

Call MATLAB from C and Fortran Programs 8-2
Call C and Fortran Programs from MATLAB 8-2
Call Java from MATLAB . 8-3
Call Functions in Shared Libraries 8-3
Import and Export Data . 8-3

x Contents

Component Object Model Interface 8-4

Web Services . 8-5

Serial Port Interface . 8-6

Index

xi

xii Contents

1

Introduction

What Is MATLAB? (p. 1-2) See how MATLAB® can provide
solutions for you in technical
computing, what are some of
the common applications of
MATLAB, and what types of add-on
application-specific solutions are
available in MATLAB toolboxes.

MATLAB Documentation (p. 1-5) Find out where to look for instruction
on how to use each component of
MATLAB, and where to find help
when you need it.

Starting and Quitting MATLAB
(p. 1-7)

Start a new MATLAB session,
use the desktop environment, and
terminate the session.

1 Introduction

What Is MATLAB?

In this section...

“Overview of MATLAB” on page 1-2

“The MATLAB System” on page 1-3

Overview of MATLAB
MATLAB is a high-performance language for technical computing. It
integrates computation, visualization, and programming in an easy-to-use
environment where problems and solutions are expressed in familiar
mathematical notation. Typical uses include

• Math and computation

• Algorithm development

• Data acquisition

• Modeling, simulation, and prototyping

• Data analysis, exploration, and visualization

• Scientific and engineering graphics

• Application development, including graphical user interface building

MATLAB is an interactive system whose basic data element is an array that
does not require dimensioning. This allows you to solve many technical
computing problems, especially those with matrix and vector formulations,
in a fraction of the time it would take to write a program in a scalar
noninteractive language such as C or Fortran.

The name MATLAB stands for matrix laboratory. MATLAB was originally
written to provide easy access to matrix software developed by the LINPACK
and EISPACK projects. Today, MATLAB engines incorporate the LAPACK
and BLAS libraries, embedding the state of the art in software for matrix
computation.

MATLAB has evolved over a period of years with input from many users. In
university environments, it is the standard instructional tool for introductory

1-2

What Is MATLAB?

and advanced courses in mathematics, engineering, and science. In industry,
MATLAB is the tool of choice for high-productivity research, development,
and analysis.

MATLAB features a family of add-on application-specific solutions called
toolboxes. Very important to most users of MATLAB, toolboxes allow you
to learn and apply specialized technology. Toolboxes are comprehensive
collections of MATLAB functions (M-files) that extend the MATLAB
environment to solve particular classes of problems. Areas in which toolboxes
are available include signal processing, control systems, neural networks,
fuzzy logic, wavelets, simulation, and many others.

The MATLAB System
The MATLAB system consists of these main parts:

Desktop Tools and Development Environment
This is the set of tools and facilities that help you use MATLAB functions
and files. Many of these tools are graphical user interfaces. It includes the
MATLAB desktop and Command Window, a command history, an editor and
debugger, a code analyzer and other reports, and browsers for viewing help,
the workspace, files, and the search path.

The MATLAB Mathematical Function Library
This is a vast collection of computational algorithms ranging from elementary
functions, like sum, sine, cosine, and complex arithmetic, to more sophisticated
functions like matrix inverse, matrix eigenvalues, Bessel functions, and fast
Fourier transforms.

The MATLAB Language
This is a high-level matrix/array language with control flow statements,
functions, data structures, input/output, and object-oriented programming
features. It allows both “programming in the small” to rapidly create quick
and dirty throw-away programs, and “programming in the large” to create
large and complex application programs.

1-3

1 Introduction

Graphics
MATLAB has extensive facilities for displaying vectors and matrices as
graphs, as well as annotating and printing these graphs. It includes high-level
functions for two-dimensional and three-dimensional data visualization,
image processing, animation, and presentation graphics. It also includes
low-level functions that allow you to fully customize the appearance of
graphics as well as to build complete graphical user interfaces on your
MATLAB applications.

MATLAB External Interfaces
This is a library that allows you to write C and Fortran programs that interact
with MATLAB. It includes facilities for calling routines from MATLAB
(dynamic linking), calling MATLAB as a computational engine, and for
reading and writing MAT-files.

1-4

MATLAB Documentation

MATLAB Documentation
MATLAB provides extensive documentation, in both printable and HTML
format, to help you learn about and use all of its features. If you are a new
user, start with this Getting Started book. It covers all the primary MATLAB
features at a high level, including many examples.

To view the online documentation, select MATLAB Help from the Help menu
in MATLAB. Online help appears in the Help browser, providing task-oriented
and reference information about MATLAB features. For more information
about using the Help browser, including typographical conventions used in
the documentation, see “Help” on page 7-8.

The MATLAB documentation is organized into these main topics:

• Desktop Tools and Development Environment — Startup and shutdown,
the desktop, and other tools that help you use MATLAB

• Mathematics — Mathematical operations

• Data Analysis — Data analysis, including data fitting, Fourier analysis,
and time-series tools

• Programming — The MATLAB language and how to develop MATLAB
applications

• Graphics — Tools and techniques for plotting, graph annotation, printing,
and programming with Handle Graphics®

• 3-D Visualization — Visualizing surface and volume data, transparency,
and viewing and lighting techniques

• Creating Graphical User Interfaces — GUI-building tools and how to write
callback functions

• External Interfaces — MEX-files, the MATLAB engine, and interfacing
to Java, COM, and the serial port

1-5

1 Introduction

MATLAB also includes reference documentation for all MATLAB functions:

• “Functions — By Category” — Lists all MATLAB functions grouped into
categories

• Handle Graphics Property Browser — Provides easy access to descriptions
of graphics object properties

• C and Fortran API Reference — Covers those functions used by the
MATLAB external interfaces, providing information on syntax in the
calling language, description, arguments, return values, and examples

The MATLAB online documentation also includes

• Examples — An index of examples included in the documentation

• Release Notes — New features, compatibility considerations, and bug
reports

• Printable Documentation — PDF versions of the documentation suitable
for printing

In addition to the documentation, you can access demos from the Help browser
by clicking the Demos tab. Run demos to learn about key functionality of
MathWorks products and tools.

1-6

Starting and Quitting MATLAB

Starting and Quitting MATLAB

In this section...

“Starting MATLAB” on page 1-7

“Quitting MATLAB” on page 1-8

Starting MATLAB
On Windows platforms, start MATLAB by double-clicking the MATLAB
shortcut icon on your Windows desktop.

On UNIX platforms, start MATLAB by typing matlab at the operating system
prompt.

You can customize MATLAB startup. For example, you can change the
directory in which MATLAB starts or automatically execute MATLAB
statements in a script file named startup.m.

For More Information See “Starting MATLAB on Windows Platforms”
and “Starting MATLAB on UNIX Platforms” in the Desktop Tools and
Development Environment documentation.

MATLAB Desktop
When you start MATLAB, the MATLAB desktop appears, containing tools
(graphical user interfaces) for managing files, variables, and applications
associated with MATLAB.

The following illustration shows the default desktop. You can customize the
arrangement of tools and documents to suit your needs. For more information
about the desktop tools, see Chapter 7, “Desktop Tools and Development
Environment”.

1-7

1 Introduction

��������	
�����
�
	�����������	�����

����������������
�
���������������

������������
���������������
�
�������

������	
���
�������������
�
���!��������������

Quitting MATLAB
To end your MATLAB session, select File > Exit MATLAB in the desktop,
or type quit in the Command Window. You can run a script file named

1-8

Starting and Quitting MATLAB

finish.m each time MATLAB quits that, for example, executes functions to
save the workspace.

Confirm Quitting
MATLAB can display a confirmation dialog box before quitting. To set this
option, select File > Preferences > General > Confirmation Dialogs, and
select the check box for Confirm before exiting MATLAB.

For More Information See “Quitting MATLAB” in the Desktop Tools and
Development Environment documentation.

1-9

1 Introduction

1-10

2

Matrices and Arrays

You can watch the Getting Started with MATLAB video demo for an overview
of the major functionality.

Matrices and Magic Squares (p. 2-2) Enter matrices, perform matrix
operations, and access matrix
elements.

Expressions (p. 2-11) Work with variables, numbers,
operators, functions, and
expressions.

Working with Matrices (p. 2-16) Generate matrices, load matrices,
create matrices from M-files and
concatenation, and delete matrix
rows and columns.

More About Matrices and Arrays
(p. 2-20)

Use matrices for linear algebra,
work with arrays, multivariate
data, scalar expansion, and logical
subscripting, and use the find
function.

Controlling Command Window
Input and Output (p. 2-30)

Change output format, suppress
output, enter long lines, and edit at
the command line.

2 Matrices and Arrays

Matrices and Magic Squares

In this section...

“About Matrices” on page 2-2

“Entering Matrices” on page 2-4

“sum, transpose, and diag” on page 2-5

“Subscripts” on page 2-7

“The Colon Operator” on page 2-8

“The magic Function” on page 2-9

About Matrices
In MATLAB, a matrix is a rectangular array of numbers. Special meaning
is sometimes attached to 1-by-1 matrices, which are scalars, and to matrices
with only one row or column, which are vectors. MATLAB has other ways of
storing both numeric and nonnumeric data, but in the beginning, it is usually
best to think of everything as a matrix. The operations in MATLAB are
designed to be as natural as possible. Where other programming languages
work with numbers one at a time, MATLAB allows you to work with entire
matrices quickly and easily. A good example matrix, used throughout this
book, appears in the Renaissance engraving Melencolia I by the German
artist and amateur mathematician Albrecht Dürer.

2-2

Matrices and Magic Squares

This image is filled with mathematical symbolism, and if you look carefully,
you will see a matrix in the upper right corner. This matrix is known as a
magic square and was believed by many in Dürer’s time to have genuinely
magical properties. It does turn out to have some fascinating characteristics
worth exploring.

2-3

2 Matrices and Arrays

Entering Matrices
The best way for you to get started with MATLAB is to learn how to handle
matrices. Start MATLAB and follow along with each example.

You can enter matrices into MATLAB in several different ways:

• Enter an explicit list of elements.

• Load matrices from external data files.

• Generate matrices using built-in functions.

• Create matrices with your own functions in M-files.

Start by entering Dürer’s matrix as a list of its elements. You only have to
follow a few basic conventions:

• Separate the elements of a row with blanks or commas.

• Use a semicolon, ; , to indicate the end of each row.

• Surround the entire list of elements with square brackets, [].

To enter Dürer’s matrix, simply type in the Command Window

A = [16 3 2 13; 5 10 11 8; 9 6 7 12; 4 15 14 1]

2-4

Matrices and Magic Squares

MATLAB displays the matrix you just entered:

A =
16 3 2 13
5 10 11 8
9 6 7 12
4 15 14 1

This matrix matches the numbers in the engraving. Once you have entered
the matrix, it is automatically remembered in the MATLAB workspace. You
can refer to it simply as A. Now that you have A in the workspace, take a look
at what makes it so interesting. Why is it magic?

sum, transpose, and diag
You are probably already aware that the special properties of a magic square
have to do with the various ways of summing its elements. If you take the
sum along any row or column, or along either of the two main diagonals,
you will always get the same number. Let us verify that using MATLAB.
The first statement to try is

sum(A)

MATLAB replies with

ans =
34 34 34 34

When you do not specify an output variable, MATLAB uses the variable ans,
short for answer, to store the results of a calculation. You have computed a
row vector containing the sums of the columns of A. Sure enough, each of the
columns has the same sum, the magic sum, 34.

How about the row sums? MATLAB has a preference for working with the
columns of a matrix, so one way to get the row sums is to transpose the
matrix, compute the column sums of the transpose, and then transpose the
result. For an additional way that avoids the double transpose use the
dimension argument for the sum function.

MATLAB has two transpose operators. The apostrophe operator (e.g., A')
performs a complex conjugate transposition. It flips a matrix about its main

2-5

2 Matrices and Arrays

diagonal, and also changes the sign of the imaginary component of any
complex elements of the matrix. The dot-apostrophe operator (e.g., A.'),
transposes without affecting the sign of complex elements. For matrices
containing all real elements, the two operators return the same result.

So

A'

produces

ans =
16 5 9 4
3 10 6 15
2 11 7 14

13 8 12 1

and

sum(A')'

produces a column vector containing the row sums

ans =
34
34
34
34

The sum of the elements on the main diagonal is obtained with the sum and
the diag functions:

diag(A)

produces

ans =
16
10
7
1

2-6

Matrices and Magic Squares

and

sum(diag(A))

produces

ans =
34

The other diagonal, the so-called antidiagonal, is not so important
mathematically, so MATLAB does not have a ready-made function for it.
But a function originally intended for use in graphics, fliplr, flips a matrix
from left to right:

sum(diag(fliplr(A)))
ans =

34

You have verified that the matrix in Dürer’s engraving is indeed a magic
square and, in the process, have sampled a few MATLAB matrix operations.
The following sections continue to use this matrix to illustrate additional
MATLAB capabilities.

Subscripts
The element in row i and column j of A is denoted by A(i,j). For example,
A(4,2) is the number in the fourth row and second column. For our magic
square, A(4,2) is 15. So to compute the sum of the elements in the fourth
column of A, type

A(1,4) + A(2,4) + A(3,4) + A(4,4)

This produces

ans =
34

but is not the most elegant way of summing a single column.

It is also possible to refer to the elements of a matrix with a single subscript,
A(k). This is the usual way of referencing row and column vectors. But it
can also apply to a fully two-dimensional matrix, in which case the array is

2-7

2 Matrices and Arrays

regarded as one long column vector formed from the columns of the original
matrix. So, for our magic square, A(8) is another way of referring to the
value 15 stored in A(4,2).

If you try to use the value of an element outside of the matrix, it is an error:

t = A(4,5)
Index exceeds matrix dimensions.

On the other hand, if you store a value in an element outside of the matrix,
the size increases to accommodate the newcomer:

X = A;
X(4,5) = 17

X =
16 3 2 13 0
5 10 11 8 0
9 6 7 12 0
4 15 14 1 17

The Colon Operator
The colon, :, is one of the most important MATLAB operators. It occurs in
several different forms. The expression

1:10

is a row vector containing the integers from 1 to 10:

1 2 3 4 5 6 7 8 9 10

To obtain nonunit spacing, specify an increment. For example,

100:-7:50

is

100 93 86 79 72 65 58 51

and

0:pi/4:pi

2-8

Matrices and Magic Squares

is

0 0.7854 1.5708 2.3562 3.1416

Subscript expressions involving colons refer to portions of a matrix:

A(1:k,j)

is the first k elements of the jth column of A. So

sum(A(1:4,4))

computes the sum of the fourth column. But there is a better way. The colon
by itself refers to all the elements in a row or column of a matrix and the
keyword end refers to the last row or column. So

sum(A(:,end))

computes the sum of the elements in the last column of A:

ans =
34

Why is the magic sum for a 4-by-4 square equal to 34? If the integers from 1
to 16 are sorted into four groups with equal sums, that sum must be

sum(1:16)/4

which, of course, is

ans =
34

The magic Function
MATLAB actually has a built-in function that creates magic squares of almost
any size. Not surprisingly, this function is named magic:

B = magic(4)
B =

16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1

2-9

2 Matrices and Arrays

This matrix is almost the same as the one in the Dürer engraving and has
all the same “magic” properties; the only difference is that the two middle
columns are exchanged.

To make this B into Dürer’s A, swap the two middle columns:

A = B(:,[1 3 2 4])

This says, for each of the rows of matrix B, reorder the elements in the order
1, 3, 2, 4. It produces

A =
16 3 2 13
5 10 11 8
9 6 7 12
4 15 14 1

Why would Dürer go to the trouble of rearranging the columns when he could
have used MATLAB ordering? No doubt he wanted to include the date of the
engraving, 1514, at the bottom of his magic square.

2-10

Expressions

Expressions

In this section...

“Variables” on page 2-11

“Numbers” on page 2-12

“Operators” on page 2-12

“Functions” on page 2-13

“Examples of Expressions” on page 2-14

Variables
Like most other programming languages, MATLAB provides mathematical
expressions, but unlike most programming languages, these expressions
involve entire matrices.

MATLAB does not require any type declarations or dimension statements.
When MATLAB encounters a new variable name, it automatically creates the
variable and allocates the appropriate amount of storage. If the variable
already exists, MATLAB changes its contents and, if necessary, allocates
new storage. For example,

num_students = 25

creates a 1-by-1 matrix named num_students and stores the value 25 in its
single element. To view the matrix assigned to any variable, simply enter
the variable name.

Variable names consist of a letter, followed by any number of letters, digits, or
underscores. MATLAB is case sensitive; it distinguishes between uppercase
and lowercase letters. A and a are not the same variable.

Although variable names can be of any length, MATLAB uses only the first
N characters of the name, (where N is the number returned by the function
namelengthmax), and ignores the rest. Hence, it is important to make
each variable name unique in the first N characters to enable MATLAB to
distinguish variables.

N = namelengthmax

2-11

2 Matrices and Arrays

N =
63

The genvarname function can be useful in creating variable names that are
both valid and unique.

Numbers
MATLAB uses conventional decimal notation, with an optional decimal point
and leading plus or minus sign, for numbers. Scientific notation uses the
letter e to specify a power-of-ten scale factor. Imaginary numbers use either i
or j as a suffix. Some examples of legal numbers are

3 -99 0.0001
9.6397238 1.60210e-20 6.02252e23
1i -3.14159j 3e5i

All numbers are stored internally using the long format specified by the IEEE
floating-point standard. Floating-point numbers have a finite precision of
roughly 16 significant decimal digits and a finite range of roughly 10-308

to 10+308.

The section “Avoiding Common Problems with Floating-Point Arithmetic”
gives a few of the examples showing how IEEE floating-point arithmetic
affects computations in MATLAB. For more examples and information, see
Technical Note 1108 — Common Problems with Floating-Point Arithmetic.

Operators
Expressions use familiar arithmetic operators and precedence rules.

+ Addition

- Subtraction

* Multiplication

/ Division

\ Left division (described in “Matrices and Linear Algebra”
in the MATLAB documentation)

^ Power

2-12

http://www.mathworks.com/support/tech-notes/1100/1108.html

Expressions

' Complex conjugate transpose

() Specify evaluation order

Functions
MATLAB provides a large number of standard elementary mathematical
functions, including abs, sqrt, exp, and sin. Taking the square root or
logarithm of a negative number is not an error; the appropriate complex result
is produced automatically. MATLAB also provides many more advanced
mathematical functions, including Bessel and gamma functions. Most of
these functions accept complex arguments. For a list of the elementary
mathematical functions, type

help elfun

For a list of more advanced mathematical and matrix functions, type

help specfun
help elmat

Some of the functions, like sqrt and sin, are built in. Built-in functions are
part of the MATLAB core so they are very efficient, but the computational
details are not readily accessible. Other functions, like gamma and sinh, are
implemented in M-files.

There are some differences between built-in functions and other functions. For
example, for built-in functions, you cannot see the code. For other functions,
you can see the code and even modify it if you want.

Several special functions provide values of useful constants.

pi 3.14159265...

i Imaginary unit,

j Same as i

eps Floating-point relative precision,

realmin Smallest floating-point number,

2-13

2 Matrices and Arrays

realmax
Largest floating-point number,

Inf Infinity

NaN Not-a-number

Infinity is generated by dividing a nonzero value by zero, or by evaluating
well defined mathematical expressions that overflow, i.e., exceed realmax.
Not-a-number is generated by trying to evaluate expressions like 0/0 or
Inf-Inf that do not have well defined mathematical values.

The function names are not reserved. It is possible to overwrite any of them
with a new variable, such as

eps = 1.e-6

and then use that value in subsequent calculations. The original function
can be restored with

clear eps

Examples of Expressions
You have already seen several examples of MATLAB expressions. Here are a
few more examples, and the resulting values:

rho = (1+sqrt(5))/2
rho =

1.6180

a = abs(3+4i)
a =

5

z = sqrt(besselk(4/3,rho-i))
z =

0.3730+ 0.3214i

huge = exp(log(realmax))
huge =

1.7977e+308

2-14

Expressions

toobig = pi*huge
toobig =

Inf

2-15

2 Matrices and Arrays

Working with Matrices

In this section...

“Generating Matrices” on page 2-16

“The load Function” on page 2-17

“M-Files” on page 2-17

“Concatenation” on page 2-18

“Deleting Rows and Columns” on page 2-19

Generating Matrices
MATLAB provides four functions that generate basic matrices.

zeros All zeros

ones All ones

rand Uniformly distributed random elements

randn Normally distributed random elements

Here are some examples:

Z = zeros(2,4)
Z =

0 0 0 0
0 0 0 0

F = 5*ones(3,3)
F =

5 5 5
5 5 5
5 5 5

N = fix(10*rand(1,10))
N =

9 2 6 4 8 7 4 0 8 4

2-16

Working with Matrices

R = randn(4,4)
R =

0.6353 0.0860 -0.3210 -1.2316
-0.6014 -2.0046 1.2366 1.0556
0.5512 -0.4931 -0.6313 -0.1132

-1.0998 0.4620 -2.3252 0.3792

The load Function
The load function reads binary files containing matrices generated by earlier
MATLAB sessions, or reads text files containing numeric data. The text file
should be organized as a rectangular table of numbers, separated by blanks,
with one row per line, and an equal number of elements in each row. For
example, outside of MATLAB, create a text file containing these four lines:

16.0 3.0 2.0 13.0
5.0 10.0 11.0 8.0
9.0 6.0 7.0 12.0
4.0 15.0 14.0 1.0

Save the file as magik.dat in the current directory. The statement

load magik.dat

reads the file and creates a variable, magik, containing the example matrix.

An easy way to read data into MATLAB in many text or binary formats is to
use the Import Wizard.

M-Files
You can create your own matrices using M-files, which are text files containing
MATLAB code. Use the MATLAB Editor or another text editor to create a file
containing the same statements you would type at the MATLAB command
line. Save the file under a name that ends in .m.

For example, create a file in the current directory named magik.m containing
these five lines:

A = [16.0 3.0 2.0 13.0
5.0 10.0 11.0 8.0

2-17

2 Matrices and Arrays

9.0 6.0 7.0 12.0
4.0 15.0 14.0 1.0];

The statement

magik

reads the file and creates a variable, A, containing the example matrix.

Concatenation
Concatenation is the process of joining small matrices to make bigger ones. In
fact, you made your first matrix by concatenating its individual elements. The
pair of square brackets, [], is the concatenation operator. For an example,
start with the 4-by-4 magic square, A, and form

B = [A A+32; A+48 A+16]

The result is an 8-by-8 matrix, obtained by joining the four submatrices:

B =

16 3 2 13 48 35 34 45
5 10 11 8 37 42 43 40
9 6 7 12 41 38 39 44
4 15 14 1 36 47 46 33

64 51 50 61 32 19 18 29
53 58 59 56 21 26 27 24
57 54 55 60 25 22 23 28
52 63 62 49 20 31 30 17

This matrix is halfway to being another magic square. Its elements are a
rearrangement of the integers 1:64. Its column sums are the correct value
for an 8-by-8 magic square:

sum(B)

ans =
260 260 260 260 260 260 260 260

But its row sums, sum(B')', are not all the same. Further manipulation is
necessary to make this a valid 8-by-8 magic square.

2-18

Working with Matrices

Deleting Rows and Columns
You can delete rows and columns from a matrix using just a pair of square
brackets. Start with

X = A;

Then, to delete the second column of X, use

X(:,2) = []

This changes X to

X =
16 2 13
5 11 8
9 7 12
4 14 1

If you delete a single element from a matrix, the result is not a matrix
anymore. So, expressions like

X(1,2) = []

result in an error. However, using a single subscript deletes a single element,
or sequence of elements, and reshapes the remaining elements into a row
vector. So

X(2:2:10) = []

results in

X =
16 9 2 7 13 12 1

2-19

2 Matrices and Arrays

More About Matrices and Arrays

In this section...

“Linear Algebra” on page 2-20

“Arrays” on page 2-24

“Multivariate Data” on page 2-26

“Scalar Expansion” on page 2-27

“Logical Subscripting” on page 2-27

“The find Function” on page 2-28

Linear Algebra
Informally, the terms matrix and array are often used interchangeably. More
precisely, a matrix is a two-dimensional numeric array that represents a
linear transformation. The mathematical operations defined on matrices are
the subject of linear algebra.

Dürer’s magic square

A = [16 3 2 13
5 10 11 8
9 6 7 12
4 15 14 1]

provides several examples that give a taste of MATLAB matrix operations.
You have already seen the matrix transpose, A'. Adding a matrix to its
transpose produces a symmetric matrix:

A + A'

ans =
32 8 11 17
8 20 17 23

11 17 14 26
17 23 26 2

2-20

More About Matrices and Arrays

The multiplication symbol, *, denotes the matrix multiplication involving
inner products between rows and columns. Multiplying the transpose of a
matrix by the original matrix also produces a symmetric matrix:

A'*A

ans =
378 212 206 360
212 370 368 206
206 368 370 212
360 206 212 378

The determinant of this particular matrix happens to be zero, indicating
that the matrix is singular:

d = det(A)

d =
0

The reduced row echelon form of A is not the identity:

R = rref(A)

R =
1 0 0 1
0 1 0 -3
0 0 1 3
0 0 0 0

Since the matrix is singular, it does not have an inverse. If you try to compute
the inverse with

X = inv(A)

you will get a warning message:

Warning: Matrix is close to singular or badly scaled.
Results may be inaccurate. RCOND = 9.796086e-018.

Roundoff error has prevented the matrix inversion algorithm from detecting
exact singularity. But the value of rcond, which stands for reciprocal

2-21

2 Matrices and Arrays

condition estimate, is on the order of eps, the floating-point relative precision,
so the computed inverse is unlikely to be of much use.

The eigenvalues of the magic square are interesting:

e = eig(A)

e =
34.0000
8.0000
0.0000

-8.0000

One of the eigenvalues is zero, which is another consequence of singularity.
The largest eigenvalue is 34, the magic sum. That is because the vector of all
ones is an eigenvector:

v = ones(4,1)

v =
1
1
1
1

A*v

ans =
34
34
34
34

When a magic square is scaled by its magic sum,

P = A/34

the result is a doubly stochastic matrix whose row and column sums are all 1:

P =
0.4706 0.0882 0.0588 0.3824

2-22

More About Matrices and Arrays

0.1471 0.2941 0.3235 0.2353
0.2647 0.1765 0.2059 0.3529
0.1176 0.4412 0.4118 0.0294

Such matrices represent the transition probabilities in a Markov process.
Repeated powers of the matrix represent repeated steps of the process. For
our example, the fifth power

P^5

is

0.2507 0.2495 0.2494 0.2504
0.2497 0.2501 0.2502 0.2500
0.2500 0.2498 0.2499 0.2503
0.2496 0.2506 0.2505 0.2493

This shows that as approaches infinity, all the elements in the th power,

, approach .

Finally, the coefficients in the characteristic polynomial

poly(A)

are

1 -34 -64 2176 0

This indicates that the characteristic polynomial

is

The constant term is zero, because the matrix is singular, and the coefficient
of the cubic term is -34, because the matrix is magic!

2-23

2 Matrices and Arrays

Arrays
When they are taken away from the world of linear algebra, matrices become
two-dimensional numeric arrays. Arithmetic operations on arrays are
done element by element. This means that addition and subtraction are
the same for arrays and matrices, but that multiplicative operations are
different. MATLAB uses a dot, or decimal point, as part of the notation for
multiplicative array operations.

The list of operators includes

+ Addition

- Subtraction

.* Element-by-element multiplication

./ Element-by-element division

.\ Element-by-element left division

.^ Element-by-element power

.' Unconjugated array transpose

If the Dürer magic square is multiplied by itself with array multiplication

A.*A

the result is an array containing the squares of the integers from 1 to 16,
in an unusual order:

ans =
256 9 4 169
25 100 121 64
81 36 49 144
16 225 196 1

Building Tables
Array operations are useful for building tables. Suppose n is the column vector

n = (0:9)';

2-24

More About Matrices and Arrays

Then

pows = [n n.^2 2.^n]

builds a table of squares and powers of 2:

pows =
0 0 1
1 1 2
2 4 4
3 9 8
4 16 16
5 25 32
6 36 64
7 49 128
8 64 256
9 81 512

The elementary math functions operate on arrays element by element. So

format short g
x = (1:0.1:2)';
logs = [x log10(x)]

builds a table of logarithms.

logs =
1.0 0
1.1 0.04139
1.2 0.07918
1.3 0.11394
1.4 0.14613
1.5 0.17609
1.6 0.20412
1.7 0.23045
1.8 0.25527
1.9 0.27875
2.0 0.30103

2-25

2 Matrices and Arrays

Multivariate Data
MATLAB uses column-oriented analysis for multivariate statistical data.
Each column in a data set represents a variable and each row an observation.
The (i,j)th element is the ith observation of the jth variable.

As an example, consider a data set with three variables:

• Heart rate

• Weight

• Hours of exercise per week

For five observations, the resulting array might look like

D = [72 134 3.2
81 201 3.5
69 156 7.1
82 148 2.4
75 170 1.2]

The first row contains the heart rate, weight, and exercise hours for patient
1, the second row contains the data for patient 2, and so on. Now you can
apply many MATLAB data analysis functions to this data set. For example, to
obtain the mean and standard deviation of each column, use

mu = mean(D), sigma = std(D)

mu =
75.8 161.8 3.48

sigma =
5.6303 25.499 2.2107

For a list of the data analysis functions available in MATLAB, type

help datafun

If you have access to Statistics Toolbox, type

help stats

2-26

More About Matrices and Arrays

Scalar Expansion
Matrices and scalars can be combined in several different ways. For example,
a scalar is subtracted from a matrix by subtracting it from each element. The
average value of the elements in our magic square is 8.5, so

B = A - 8.5

forms a matrix whose column sums are zero:

B =
7.5 -5.5 -6.5 4.5

-3.5 1.5 2.5 -0.5
0.5 -2.5 -1.5 3.5

-4.5 6.5 5.5 -7.5

sum(B)

ans =
0 0 0 0

With scalar expansion, MATLAB assigns a specified scalar to all indices in a
range. For example,

B(1:2,2:3) = 0

zeroes out a portion of B:

B =
7.5 0 0 4.5

-3.5 0 0 -0.5
0.5 -2.5 -1.5 3.5

-4.5 6.5 5.5 -7.5

Logical Subscripting
The logical vectors created from logical and relational operations can be used
to reference subarrays. Suppose X is an ordinary matrix and L is a matrix of
the same size that is the result of some logical operation. Then X(L) specifies
the elements of X where the elements of L are nonzero.

2-27

2 Matrices and Arrays

This kind of subscripting can be done in one step by specifying the logical
operation as the subscripting expression. Suppose you have the following
set of data:

x = [2.1 1.7 1.6 1.5 NaN 1.9 1.8 1.5 5.1 1.8 1.4 2.2 1.6 1.8];

The NaN is a marker for a missing observation, such as a failure to respond to
an item on a questionnaire. To remove the missing data with logical indexing,
use isfinite(x), which is true for all finite numerical values and false for
NaN and Inf:

x = x(isfinite(x))
x =

2.1 1.7 1.6 1.5 1.9 1.8 1.5 5.1 1.8 1.4 2.2 1.6 1.8

Now there is one observation, 5.1, which seems to be very different from the
others. It is an outlier. The following statement removes outliers, in this case
those elements more than three standard deviations from the mean:

x = x(abs(x-mean(x)) <= 3*std(x))
x =

2.1 1.7 1.6 1.5 1.9 1.8 1.5 1.8 1.4 2.2 1.6 1.8

For another example, highlight the location of the prime numbers in Dürer’s
magic square by using logical indexing and scalar expansion to set the
nonprimes to 0. (See “The magic Function” on page 2-9.)

A(~isprime(A)) = 0

A =
0 3 2 13
5 0 11 0
0 0 7 0
0 0 0 0

The find Function
The find function determines the indices of array elements that meet a given
logical condition. In its simplest form, find returns a column vector of indices.
Transpose that vector to obtain a row vector of indices. For example, start
again with Dürer’s magic square. (See “The magic Function” on page 2-9.)

2-28

More About Matrices and Arrays

k = find(isprime(A))'

picks out the locations, using one-dimensional indexing, of the primes in the
magic square:

k =
2 5 9 10 11 13

Display those primes, as a row vector in the order determined by k, with

A(k)

ans =
5 3 2 11 7 13

When you use k as a left-hand-side index in an assignment statement, the
matrix structure is preserved:

A(k) = NaN

A =
16 NaN NaN NaN

NaN 10 NaN 8
9 6 NaN 12
4 15 14 1

2-29

2 Matrices and Arrays

Controlling Command Window Input and Output

In this section...

“The format Function” on page 2-30

“Suppressing Output” on page 2-31

“Entering Long Statements” on page 2-32

“Command Line Editing” on page 2-32

The format Function
The format function controls the numeric format of the values displayed by
MATLAB. The function affects only how numbers are displayed, not how
MATLAB computes or saves them. Here are the different formats, together
with the resulting output produced from a vector x with components of
different magnitudes.

Note To ensure proper spacing, use a fixed-width font, such as Courier.

x = [4/3 1.2345e-6]

format short

1.3333 0.0000

format short e

1.3333e+000 1.2345e-006

format short g

1.3333 1.2345e-006

format long

1.33333333333333 0.00000123450000

2-30

Controlling Command Window Input and Output

format long e

1.333333333333333e+000 1.234500000000000e-006

format long g

1.33333333333333 1.2345e-006

format bank

1.33 0.00

format rat

4/3 1/810045

format hex

3ff5555555555555 3eb4b6231abfd271

If the largest element of a matrix is larger than 103 or smaller than 10-3,
MATLAB applies a common scale factor for the short and long formats.

In addition to the format functions shown above

format compact

suppresses many of the blank lines that appear in the output. This lets you
view more information on a screen or window. If you want more control over
the output format, use the sprintf and fprintf functions.

Suppressing Output
If you simply type a statement and press Return or Enter, MATLAB
automatically displays the results on screen. However, if you end the line
with a semicolon, MATLAB performs the computation but does not display
any output. This is particularly useful when you generate large matrices.
For example,

A = magic(100);

2-31

2 Matrices and Arrays

Entering Long Statements
If a statement does not fit on one line, use an ellipsis (three periods), ...,
followed by Return or Enter to indicate that the statement continues on
the next line. For example,

s = 1 -1/2 + 1/3 -1/4 + 1/5 - 1/6 + 1/7 ...
- 1/8 + 1/9 - 1/10 + 1/11 - 1/12;

Blank spaces around the =, +, and - signs are optional, but they improve
readability.

Command Line Editing
Various arrow and control keys on your keyboard allow you to recall, edit,
and reuse statements you have typed earlier. For example, suppose you
mistakenly enter

rho = (1 + sqt(5))/2

You have misspelled sqrt. MATLAB responds with

Undefined function or variable 'sqt'.

Instead of retyping the entire line, simply press the key. The statement
you typed is redisplayed. Use the key to move the cursor over and insert
the missing r. Repeated use of the key recalls earlier lines. Typing a few
characters and then the key finds a previous line that begins with those
characters. You can also copy previously executed statements from the
Command History. For more information, see “Command History” on page 7-7.

Following is the list of arrow and control keys you can use in the Command
Window. If the preference you select for “Command Window Key Bindings”
is MATLAB standard (Emacs), you can also use the Ctrl+key combinations
shown. See also general keyboard shortcuts for desktop tools in the MATLAB
Desktop Tools and Development Environment documentation.

2-32

Controlling Command Window Input and Output

Key

Control Key for
MATLAB Standard
(Emacs) Preference Operation

Ctrl+P Recall previous line. Works only at command line.

Ctrl+N Recall next line. Works only at the prompt if you
previously used the up arrow or Ctrl+P.

Ctrl+B Move back one character.

Ctrl+F Move forward one character.

Ctrl+ None Move right one word.

Ctrl+ None Move left one word.

Home Ctrl+A Move to beginning of current statement.

End Ctrl+E Move to end of current statement.

Ctrl+Home None Move to top of Command Window.

Ctrl+End None Move to end of Command Window.

Esc Ctrl+U Clear command line when cursor is at the prompt.
Otherwise, move cursor to the prompt.

Delete Ctrl+D Delete character after cursor.

Backspace Ctrl+H Delete character before cursor.

None Ctrl+K Cut contents (kill) to end of command line.

Shift+Home None Select from cursor to beginning of statement.

Shift+End None Select from cursor to end of statement.

2-33

2 Matrices and Arrays

2-34

3

Graphics

Overview of MATLAB Plotting
(p. 3-2)

Create plots, include multiple data
sets, specify property values, and
save figures.

Editing Plots (p. 3-17) Edit plots interactively and using
functions, and use the property
editor.

Some Ways to Use MATLAB Plotting
Tools (p. 3-23)

Edit plots interactively with
graphical plotting tools.

Preparing Graphs for Presentation
(p. 3-37)

Use plotting tools to modify graphs,
add explanatory information, and
print for presentation.

Using Basic Plotting Functions
(p. 3-49)

Use MATLAB plotting functions to
create and modify plots.

Creating Mesh and Surface Plots
(p. 3-63)

Visualize functions of two variables.

Plotting Image Data (p. 3-69) Work with images.

Printing Graphics (p. 3-71) Print and export figures.

Handle Graphics (p. 3-74) Visualize functions of two variables.

3 Graphics

Overview of MATLAB Plotting

In this section...

“Plotting Process” on page 3-2

“Graph Components” on page 3-5

“Figure Tools” on page 3-6

“Arranging Graphs Within a Figure” on page 3-12

“Choosing a Type of Graph to Plot” on page 3-13

For More Information MATLAB Graphics and 3-D Visualization in the
MATLAB documentation provide in-depth coverage of MATLAB graphics and
visualization tools. Access these topics from the Help browser.

Plotting Process
MATLAB provides a wide variety of techniques to display data graphically.
Interactive tools enable you to manipulate graphs to achieve results that
reveal the most information about your data. You can also annotate and print
graphs for presentations, or export graphs to standard graphics formats for
presentation in web browsers or other media.

The process of visualizing data typically involves a series of operations. This
section provides a “big picture” view of the plotting process and contains
links to sections that have examples and specific details about performing
each operation.

Creating a Graph
The type of graph you choose to create depends on the nature of your data and
what you want to reveal about the data. MATLAB predefines many graph
types, such as line, bar, histogram, and pie graphs. There are also 3-D graphs,
such as surfaces, slice planes, and streamlines.

There are two basic ways to create graphs in MATLAB:

• Use plotting tools to create graphs interactively.

3-2

Overview of MATLAB Plotting

See “Some Ways to Use MATLAB Plotting Tools” on page 3-23.

• Use the command interface to enter commands in the Command Window
or create plotting programs.

See “Using Basic Plotting Functions” on page 3-49.

You might find it useful to combine both approaches. For example, you might
issue a plotting command to create a graph and then modify the graph using
one of the interactive tools.

Exploring Data
Once you create a graph, you can extract specific information about the data,
such as the numeric value of a peak in a plot, the average value of a series of
data, or you can perform data fitting.

For More Information See “Data Exploration Tools” in the MATLAB
Graphics documentation and “Opening the Basic Fitting GUI” in the MATLAB
Data Analysis documentation.

Editing the Graph Components
Graphs are composed of objects, which have properties you can change. These
properties affect the way the various graph components look and behave.

For example, the axes used to define the coordinate system of the graph has
properties that define the limits of each axis, the scale, color, etc. The line
used to create a line graph has properties such as color, type of marker used
at each data point (if any), line style, etc.

Note that the data used to create a line graph are properties of the line. You
can, therefore, change the data without actually creating a new graph.

See “Editing Plots” on page 3-17.

Annotating Graphs
Annotations are the text, arrows, callouts, and other labels added to graphs
to help viewers see what is important about the data. You typically add

3-3

3 Graphics

annotations to graphs when you want to show them to other people or when
you want to save them for later reference.

For More Information See “Annotating Graphs” in the MATLAB Graphics
documentation or select Annotating Graphs from the figure Help menu.

Printing and Exporting Graphs
You can print your graph on any printer connected to your computer. The
print previewer enables you to view how your graph will look when printed.
It enables you to add headers, footers, a date, and so on. The print preview
dialog lets you control the size, layout, and other characteristics of the graph
(select Print Preview from the figure File menu).

Exporting a graph means creating a copy of it in a standard graphics file
format, such as TIFF, JPEG, or EPS. You can then import the file into a word
processor, include it in an HTML document, or edit it in a drawing package
(select Export Setup from the figure File menu).

Adding and Removing Figure Content
By default, when you create a new graph in the same figure window, its data
replaces that of the graph that is currently displayed, if any. You can add
new data to a graph in several ways; see “Adding More Data to the Graph”
on page 3-27 for how to do this using a GUI. You can manually remove all
data, graphics and annotations from the current figure by typing CLF in the
Command Window or by selecting Clear Figure from the figure’s Edit menu.

For More Information See the print command reference page and “Printing
and Exporting” in the MATLAB Graphics documentation or select Printing
and Exporting from the figure Help menu.

Saving Graphs to Reload into MATLAB
There are two ways to save graphs that enable you to save the work you have
invested in their preparation:

3-4

Overview of MATLAB Plotting

• Save the graph as a FIG-file (select Save from the figure File menu).

• Generate MATLAB code that can recreate the graph (select Generate
M-File from the figure File menu).

FIG-Files. FIG-files are a binary format that saves a figure in its current
state. This means that all graphics objects and property settings are stored in
the file when you create it. You can reload the file into a different MATLAB
session, even if you are running MATLAB on a different type of computer.
When you load a FIG-file, MATLAB creates a new figure in the same state
as the one you saved.

Note that the states of any figure tools (i.e., any items on the toolbars) are not
saved in a FIG-file; only the contents of the graph are saved.

Generated Code. You can use the MATLAB M-code generator to create
code that recreates the graph. Unlike a FIG-file, the generated code does not
contain any data. You must pass appropriate data to the generated function
when you run the code.

Studying the generated code for a graph is a good way to learn how to
program with MATLAB.

For More Information See the print command reference page and “Saving
Your Work” in the MATLAB Graphics documentation.

Graph Components
MATLAB displays graphs in a special window known as a figure. To create
a graph, you need to define a coordinate system. Therefore every graph is
placed within axes, which are contained by the figure.

The actual visual representation of the data is achieved with graphics objects
like lines and surfaces. These objects are drawn within the coordinate system
defined by the axes, which MATLAB automatically creates specifically to
accommodate the range of the data. The actual data is stored as properties of
the graphics objects.

3-5

3 Graphics

See “Handle Graphics” on page 3-74 for more information about graphics
object properties.

The following picture shows the basic components of a typical graph. You can
find commands for plotting this graph in “Preparing Graphs for Presentation”
on page 3-37.

"����������������!�������
��

�#�����$���
��	���������
�������$��
�
�����
�

������!��
����������
�����

Figure Tools
The figure is equipped with sets of tools that operate on graphs. The figure
Tools menu provides access to many graph tools, as this view of the Options
submenu illustrates. Many of the options shown here are also present as

3-6

Overview of MATLAB Plotting

context menu items for individual tools such as zoom and pan. The figure also
shows three figure toolbars, discussed in “Figure Toolbars” on page 3-8.

For More Information See “Plots and Plotting Tools” in the MATLAB
Graphics documentation or select Plotting Tools from the figure Help menu.

3-7

3 Graphics

Accessing the Tools
You can access or remove the figure toolbars and the plotting tools from the
View menu, as shown in the following picture. Toggle on and off the toolbars
you need. Adding a toolbar stacks it beneath the lowest one.

Figure Toolbars
Figure toolbars provide easy access to many graph modification features.
There are three toolbars. When you place the cursor over a particular tool, a
text box pops up with the tool name. The following picture shows the three
toolbars displayed with the cursor over the Data Cursor tool.

For More Information See “Anatomy of a Graph” in the MATLAB Graphics
documentation.

3-8

Overview of MATLAB Plotting

Plotting Tools
Plotting tools are attached to figures and create an environment for creating
graphs. These tools enable you to do the following:

• Select from a wide variety of graph types.

• Change the type of graph that represents a variable.

• See and set the properties of graphics objects.

• Annotate graphs with text, arrows, etc.

• Create and arrange subplots in the figure.

• Drag and drop data into graphs.

Display the plotting tools from the View menu or by clicking the Show Plot
Tools icon in the figure toolbar, as shown in the following picture.

���%!���!���������!��$���
�
������������������!%��

You can also start the plotting tools from the MATLAB prompt:

plottools

The plotting tools are made up of three independent GUI components:

• Figure Palette — Specify and arrange subplots, access workspace variables
for plotting or editing, and add annotations.

• Plot Browser — Select objects in the graphics hierarchy, control visibility,
and add data to axes.

• Property Editor — Change key properties of the selected object. Click More
Properties to access all object properties with the Property Inspector.

3-9

3 Graphics

You can also control these components from the MATLAB Command Window,
by typing the following:

figurepalette
plotbrowser
propertyeditor

See the reference pages for plottools, figurepalette, plotbrowser, and
propertyeditor for information on syntax and options.

The following picture shows a figure with all three plotting tools enabled.

3-10

Overview of MATLAB Plotting

Using Plotting Tools and MATLAB Code
You can enable the plotting tools for any graph, even one created using
MATLAB commands. For example, suppose you type the following code
to create a graph:

t = 0:pi/20:2*pi;
y = exp(sin(t));
plotyy(t,y,t,y,'plot','stem')
xlabel('X Axis')
ylabel('Plot Y Axis')
title('Two Y Axes')

This graph contains two y-axes, one for each plot type (a lineseries and a
stemseries). The plotting tools make it easy to select any of the objects that
the graph contains and modify their properties.

3-11

3 Graphics

For example, adding a label for the y-axis that corresponds to the stem plot
is easily accomplished by selecting that axes in the Plot Browser and setting
the Y Label property in the Property Editor (if you do not see that text field,
stretch the Figures window to make it taller).

Arranging Graphs Within a Figure
You can place a number of axes within a figure by selecting the layout you
want from the Figure Palette. For example, the following picture shows how
to specify four 2-D axes in the figure.

3-12

Overview of MATLAB Plotting

�!�	&�������������#������%�����
�$�	�������!�����

�!�	&�����������
��������	�$�
�#���!������

Select the axes you want to target for plotting. You can also use the subplot
function to create multiple axes.

Choosing a Type of Graph to Plot
The many kinds of 2-D and 3-D graphs that MATLAB can make are
described in “Types of Plots Available in MATLAB” in the MATLAB Graphics
documentation. Almost all plot types are itemized, described, and illustrated
by a tool called the Plot Catalog. You can use the Plot Catalog to browse
graph types, choose one to visualize your selected variables, and then create
it in the current or a new figure window. You can access the Plot Catalog by
selecting one or more variables, as follows:

3-13

3 Graphics

• In the Figure Palette, right-click a selected variable and choose More
Plots from the context menu

• In the Workspace Browser, right-click a selected variable and choose More

Plots from the context menu, or click the plot selector tool and
choose More Plots from its menu

• In the Array Editor, select the values you want to graph, click the plot

selector tool and choose More Plots from its menu

The icon on the plot selector tool represents a graph type, and changes
depending on the type and dimensionality of the data you select. It is disabled
if no data or non-numeric data is selected.

The following illustration shows how you can open the plot catalog from the
Figure Palette:

3-14

Overview of MATLAB Plotting

MATLAB displays the Plot Catalog in a new, undocked window with the
selected variables ready to plot, after you select a plot type and click Plot or
Plot in New Figure. You can override the selected variables by typing other
variable names or MATLAB expressions in the Plotted Variables edit field.

3-15

3 Graphics

'�!�	����	��������$����
�������
���	
����������	�$�	������

'��	�$�������%!�������!��� '��������	���������$���	
��!��������

3-16

Editing Plots

Editing Plots

In this section...

“Plot Edit Mode” on page 3-17

“Using Functions to Edit Graphs” on page 3-22

Plot Edit Mode
Plot edit mode lets you select specific objects in a graph and enables you to
perform point-and-click editing of most of them.

Enabling Plot Edit Mode
To enable plot edit mode, click the arrowhead in the figure toolbar:

(!����������������%!��

You can also select Edit Plot from the figure Tools menu.

Setting Object Properties
After you have enabled plot edit mode, you can select objects by clicking them
in the graph. Selection handles appear and indicate that the object is selected.
Select multiple objects using Shift+click.

Right-click with the pointer over the selected object to display the object’s
context menu:

3-17

3 Graphics

The context menu provides quick access to the most commonly used operations
and properties.

Using the Property Editor
In plot edit mode, double-clicking an object in a graph opens the Property
Editor GUI with that object’s major properties displayed. The Property Editor
provides access to the most used object properties. It is updated to display the
properties of whatever object you select.

3-18

Editing Plots

�!�	&��������!���(��������)����	���

Accessing Properties with the Property Inspector
The Property Inspector is a tool that enables you to access most of the
properties of Handle Graphics and other MATLAB objects. If you do not
find the property you want to set in the Property Editor, click the More
Properties button to display the Property Inspector. You can also use the
inspect command to start the Property Inspector. For example, to inspect the
properties of the current axes, type

inspect(gca)

3-19

3 Graphics

The following picture shows the Property Inspector displaying the properties
of a graph’s axes. It lists each property and provides a text field or other
appropriate device (such as a color picker) from which you can set the value
of the property.

As you select different objects, the Property Inspector is updated to display
the properties of the current object.

3-20

Editing Plots

The Property Inspector lists properties alphabetically by default. However,
you can group Handle Graphics objects, such as axes, by categories which you

can reveal or close in the Property Inspector. To do this, click the icon
at the upper left, then click the + next to the category you want to expand.
For example, to see the position-related properties, click the + to the left of
the Position category.

The Position category opens and the + changes to a - to indicate that you can
collapse the category by clicking it.

3-21

3 Graphics

Using Functions to Edit Graphs
If you prefer to work from the MATLAB command line, or if you are creating
an M-file, you can use MATLAB commands to edit the graphs you create. You
can use the set and get commands to change the properties of the objects in a
graph. For more information about using graphics commands, see “Handle
Graphics” on page 3-74.

3-22

Some Ways to Use MATLAB Plotting Tools

Some Ways to Use MATLAB Plotting Tools

In this section...

“Plotting Two Variables with Plotting Tools” on page 3-23

“Changing the Appearance of Lines and Markers” on page 3-26

“Adding More Data to the Graph” on page 3-27

“Changing the Type of Graph” on page 3-30

“Modifying the Graph Data Source” on page 3-32

Plotting Two Variables with Plotting Tools
Suppose you want to graph the function y = x3 over the x domain -1 to 1. The
first step is to generate the data to plot.

It is simple to evaluate a function because MATLAB can distribute arithmetic
operations over all elements of a multivalued variable.

For example, the following statement creates a variable x that contains values
ranging from -1 to 1 in increments of 0.1 (you could also use the linspace
function to generate data for x). The second statement raises each value in
x to the third power and stores these values in y:

x = -1:.1:1; % Define the range of x
y = x.^3; % Raise each element in x to the third power

Now that you have generated some data, you can plot it using the MATLAB
plotting tools. To start the plotting tools, type

plottools

MATLAB displays a figure with plotting tools attached.

3-23

3 Graphics

�����%!���������&���	� "������!����������

3-24

Some Ways to Use MATLAB Plotting Tools

Note When you invoke plottools, the set of plotting tools you see and their
relative positions depend on how they were configured the last time you used
them. Also, sometimes when you dock and undock figures with plotting tools
attached, the size or proportions of the various components can change, and
you may need to resize one or more of the tool panes.

A simple line graph is a suitable way to display x as the independent variable
and y as the dependent variable. To do this, select both variables (click to
select, and then Shift+click to select again), and then right-click to display
the context menu.

3-25

3 Graphics

Select plot(x, y) from the menu. MATLAB creates the line graph in the figure
area. The black squares indicate that the line is selected and you can edit its
properties with the Property Editor.

Changing the Appearance of Lines and Markers
Next change the line properties so that the graph displays only the data point.
Use the Property Editor to set following properties:

• Line to no line

• Marker to o (circle)

• Marker size to 4.0

• Marker fill color to red

3-26

Some Ways to Use MATLAB Plotting Tools

'�������������������

'������	��������

'������	���$�!!�	�!������	�
�

'������	��������������

Adding More Data to the Graph
You can add more data to the graph by defining more variables or by specifying
an expression that MATLAB uses to generate data for the plot. This second
approach makes it easy to explore variations of the data already plotted.

To add data to the graph, select the axes in the Plot Browser and click the
Add Data button. When you are using the plotting tools, MATLAB always
adds data to the existing graph, instead of replacing the graph, as it would

3-27

3 Graphics

if you issued repeated plotting commands. That is, the plotting tools are in
a hold on state.

To add data using the Plot Browser:

1 Click the Edit Plot tool .

2 Select the axes to which you wish to add data; handles appear around it.

3 Click the Add Data button in the Plot Browser; the Add Data to Axes
dialog box opens.

4 Select a plot type from the Plot Type drop-down menu.

5 Select a variable or type an expression for X Data Source.

6 Select a variable or type an expression for Y Data Source.

7 Click OK; a plot of the data you specified is added to the axes.

3-28

Some Ways to Use MATLAB Plotting Tools

*��'�!�	���#���

+���!�	&�
�������,���������#���������

The picture above shows how to use the Add Data to Axes dialog box to create
a line plot of y = x4, which is added to the existing plot of y = x3. The resulting
plot is shown as follows with the Plot Browser:

3-29

3 Graphics

Changing the Type of Graph
The plotting tools enable you to easily view your data with a variety of plot
types. The following picture shows the same data as above converted to stem
plots. To change the plot type,

1 Select both plotted series in the Plot Browser or Shift+click to select them
in the plot itself.

2 Select short dashes from the Line drop-down menu in the Property
Inspector; the line type of both series changes.

3 Select Stem from the Plot Type menu.

3-30

Some Ways to Use MATLAB Plotting Tools

'�!�	��%��
�������$������

'�!�	�����������
������������

3-31

3 Graphics

Modifying the Graph Data Source
You can link graph data to variables in your workspace. When you change
the values contained in the variables, you can then update the graph to use
the new data without having to create a new graph. (See also the refresh
function.)

1 Define 50 points between -3π and 3π and compute their sines and cosines:

x = linspace(-3*pi,3*pi,50);
ys = sin(x);
yc = cos(x);

2 Using the plotting tools, create a graph of ys = sin(x):

figure
plottools

3 In the Figure Palette, alternate-click to select x and ys in the Variable pane.

4 Right-click either selected variable and choose plot(x, ys) from the context
menu, as shown below.

The resulting plot looks like this.

3-32

Some Ways to Use MATLAB Plotting Tools

You can use the Property Editor to change the data that this plot displays:

1 Select the line ys vs x in the Plot Browser or by clicking it.

2 In the Property Editor, select yc in the Y Data Source drop-down menu.

3 Click the Refresh Data button; the plot will change to display a plot of
yc vs x.

3-33

3 Graphics

Providing New Values for the Data Source
MATLAB copies the data that defines the graph from variables in the base
workspace (for example, x and y) to the XData and YData properties of the
plot object (for example, a lineseries). Therefore, in addition to being able to
choose new data sources, you can assign new values to workspace variables
in the Command Window and click the Refresh Data button to update a
graph to use the new data.

x = linspace(-pi,pi,50); % Define 50 points between -π and π
y = sin(x);
area(x,y) % Make an area plot of x and y

3-34

Some Ways to Use MATLAB Plotting Tools

Now recalculate y at the command line:

y = cos(x)

Select the blue line on the plot. Select, x as the X Data Source, y as the Y
Data Source, and click Refresh Data. The graph’s XData and YData are
replaced, making the plot look like this.

3-35

3 Graphics

3-36

Preparing Graphs for Presentation

Preparing Graphs for Presentation

In this section...

“Annotating Graphs for Presentation” on page 3-37

“Printing the Graph” on page 3-42

“Exporting the Graph” on page 3-46

Annotating Graphs for Presentation
Suppose you plot the following data and want to create a graph that presents
certain information about the data:

x = -10:.005:40;
y = [1.5*cos(x)+4*exp(-.01*x).*cos(x)+exp(.07*x).*sin(3*x)];
plot(x,y)

This picture shows the graph created by the previous code.

3-37

3 Graphics

Now suppose you want to save copies of the graph by

• Printing the graph on a local printer so you have a copy for your notebook

• Exporting the graph to an Encapsulated PostScript (EPS) file to incorporate
into a word processor document

To obtain a better view, zoom in on the graph using horizontal zoom.

Enable zoom mode by clicking the Zoom tool on the figure toolbar, and
then right-click to display the context menu. Select Horizontal Zoom (2-D
Plots Only) from Zoom Options. Notice that you can reverse your zoom
direction by Shift+left-clicking, or using the context menu.

Left-click to zoom in on a region of the graph and use the Pan tool to
position the points of interest where you want them on the graph.

3-38

Preparing Graphs for Presentation

Label some key points with data tips using the Data Cursor tool . Notice
that left-clicking the line moves the last datatip you created to where you just
clicked. To create a new datatip, press Alt+click or use the tool’s context
menu. See “Data Cursor — Displaying Data Values Interactively” in the
MATLAB Graphics documentation for more information on using datatips.

Next use the Figure Palette to annotate the plot. Choose the Double arrow
tool in the Annotations section to draw a line between two datatips, as shown
below:

3-39

3 Graphics

Now add a text box, also using the Figure Palette. You may have to scroll to
see the text box icon. Drag out a box, and then type into it. You can stretch
or shrink the box with its handles, and center the text with the Property
Editor while the text box is selected. You can also use the Property Editor to
change the text font, size, style, and color, as well as the text box line and
background colors.

3-40

Preparing Graphs for Presentation

Finally, add text annotations, axis labels, and a title. You can add the title and
axis labels using the following commands:

title ('y = 1.5cos(x) + 4e^{-0.01x}cos(x) + e^{0.07x}sin(3x)')
xlabel('X Axis')
ylabel('Y Axis')

Note that the text string passed to the title command uses TEX syntax
to produce the exponents. See “Information About Using TEX” in the Text
Properties page in the MATLAB Function Reference documentation about
using TEX syntax to produce mathematical symbols.

3-41

3 Graphics

You can also add these annotations by selecting the axes and typing the above
strings into their respective fields in the Property Editor. The graph is now
ready to print and export.

Printing the Graph
Before printing the graph, select Print Preview from the figure File menu
to see and modify how the graph will be laid out on the page. The Print
Preview window opens, containing a tabbed control panel on its left side and a
page image on its right side.

• Click the Lines/Text tab, and enter a line of text in the Header Text edit
field that you want to place at the top of the page. You can change the font,
style, and size of the header by clicking the Font button beneath the text

3-42

Preparing Graphs for Presentation

field, and also use the Date Style drop-down list to specify a date format to
add the current date/time to the header.

• Notice the three black handlebars in the rulers along the left and top sides
of the preview pane. The outside handlebars let you stretch one edge of the
plot, leaving the other edges in place. The inner handlebars let you move

3-43

3 Graphics

the plot up and down or left and right without stretching it. Using them
does not affect the figure itself, only the printed version of it.

• You can also change the size and position of the plot on the page using the
buttons and edit boxes on the Layout tab. You can revert to the original
configuration by clicking the Auto (Actual Size, Centered) option button,
and correct stretching and shrinking by clicking Fix Aspect Ratio. The
following picture shows the Layout tab in Auto configuration.

3-44

Preparing Graphs for Presentation

• By default, MATLAB recalculates the locations of the axes tick marks
because a printed graph is normally larger than the one displayed on your
monitor. However, you can keep your graph’s tick marks and limits when
printing it by clicking the Advanced tab and selecting Keep screen
limits and ticks.

3-45

3 Graphics

• When you are ready to print your plot, click Print in the right pane. You
can also click Close to accept the settings and dismiss the dialog box.
Later, you can print the figure as you previewed it using Print on the
figure’s File menu. Both methods will open a standard Print dialog box,
and will produce the same printed results.

Note There is no way to cancel a print preview; any changes you make
will take effect if you print the figure. If you want to revert to a default
page layout, you can generally accomplish this by selecting either the Use
Defaults button or the Auto (Actual Size, Centered) option button on the
Layout tab, although this will not affect every setting you can make.

The Print Preview dialog box provides many other options for controlling how
printed graphs look. Click its Help button for more information.

Exporting the Graph
Exporting a graph is the process of creating a standard graphics file format
of the graph (such as EPS or TIFF), which you can then import into other
applications like word processors, drawing packages, etc.

This example exports the graph as an EPS file with the following
requirements:

• The size of the picture when imported into the word processor document
should be 4 inches wide and 3 inches high.

• All the text in the figure should have a size of 8 points.

Specifying the Size of the Graph
To set the size, use the Export Setup dialog box (select Export Setup from
the figure File menu). Then select 4 from the Width list and 3 from the
Height list.

3-46

Preparing Graphs for Presentation

'����
�����������
�	
���
�#������
�����
������$�!��

Specifying the Font Size
To set the font size of all the text in the graph, select Fonts in the Export
Setup dialog box Properties selector. Then click Use fixed font size and
enter 8 in the text box.

3-47

3 Graphics

Selecting the File Format
After you finish setting options for the exported graph, click the Export
button. MATLAB displays a standard Save As dialog box that enables you
to specify a name for the file as well as select the type of file format you
want to use.

The Save as type drop-down menu lists a number of other options for file
formats. For this example, select EPS (*.eps) from the Save as type menu.

You can import the saved file into any application that supports EPS files.

You can also use the print command to print figures on your local printer or
to export graphs to standard file types.

For More Information See the print command reference page and “Printing
and Exporting” in the MATLAB Graphics documentation or select Printing
and Exporting from the figure Help menu.

3-48

Using Basic Plotting Functions

Using Basic Plotting Functions

In this section...

“Creating a Plot” on page 3-49

“Plotting Multiple Data Sets in One Graph” on page 3-50

“Specifying Line Styles and Colors” on page 3-51

“Plotting Lines and Markers” on page 3-52

“Graphing Imaginary and Complex Data” on page 3-53

“Adding Plots to an Existing Graph” on page 3-54

“Figure Windows” on page 3-55

“Displaying Multiple Plots in One Figure” on page 3-56

“Controlling the Axes” on page 3-58

“Adding Axis Labels and Titles” on page 3-59

“Saving Figures” on page 3-61

Creating a Plot
The plot function has different forms, depending on the input arguments. If
y is a vector, plot(y) produces a piecewise linear graph of the elements of y
versus the index of the elements of y. If you specify two vectors as arguments,
plot(x,y) produces a graph of y versus x.

For example, these statements use the colon operator to create a vector of
x values ranging from 0 to 2π, compute the sine of these values, and plot
the result:

x = 0:pi/100:2*pi;
y = sin(x);
plot(x,y)

Now label the axes and add a title. The characters \pi create the symbol π.
See “text strings” in the MATLAB Reference documentation for more symbols:

xlabel('x = 0:2\pi')
ylabel('Sine of x')

3-49

3 Graphics

title('Plot of the Sine Function','FontSize',12)

Plotting Multiple Data Sets in One Graph
Multiple x-y pair arguments create multiple graphs with a single call to plot.
MATLAB automatically cycles through a predefined (but user settable) list of
colors to allow discrimination among sets of data. See the axes ColorOrder
and LineStyleOrder properties.

For example, these statements plot three related functions of x, with each
curve in a separate distinguishing color:

x = 0:pi/100:2*pi;
y = sin(x);
y2 = sin(x-.25);
y3 = sin(x-.5);
plot(x,y,x,y2,x,y3)

The legend command provides an easy way to identify the individual plots:

3-50

Using Basic Plotting Functions

legend('sin(x)','sin(x-.25)','sin(x-.5)')

For More Information See “Defining the Color of Lines for Plotting” in the
MATLAB Graphics documentation.

Specifying Line Styles and Colors
It is possible to specify color, line styles, and markers (such as plus signs or
circles) when you plot your data using the plot command:

plot(x,y,'color_style_marker')

color_style_marker is a string containing from one to four characters
(enclosed in single quotation marks) constructed from a color, a line style,
and a marker type:

• Color strings are 'c', 'm', 'y', 'r', 'g', 'b', 'w', and 'k'. These
correspond to cyan, magenta, yellow, red, green, blue, white, and black.

3-51

3 Graphics

• Line style strings are '-' for solid, '--' for dashed, ':' for dotted, and
'-.' for dash-dot. Omit the line style for no line.

• The marker types are '+', 'o', '*', and 'x', and the filled marker types
are 's' for square, 'd' for diamond, '^' for up triangle, 'v' for down
triangle, '>' for right triangle, '<' for left triangle, 'p' for pentagram, 'h'
for hexagram, and none for no marker.

You can also edit color, line style, and markers interactively. See “Editing
Plots” on page 3-17 for more information.

Plotting Lines and Markers
If you specify a marker type but not a line style, MATLAB draws only the
marker. For example,

plot(x,y,'ks')

plots black squares at each data point, but does not connect the markers
with a line.

The statement

plot(x,y,'r:+')

plots a red dotted line and places plus sign markers at each data point.

Placing Markers at Every Tenth Data Point
You might want to use fewer data points to plot the markers than you use to
plot the lines. This example plots the data twice using a different number of
points for the dotted line and marker plots:

x1 = 0:pi/100:2*pi;
x2 = 0:pi/10:2*pi;
plot(x1,sin(x1),'r:',x2,sin(x2),'r+')

3-52

Using Basic Plotting Functions

Graphing Imaginary and Complex Data
When the arguments to plot are complex, the imaginary part is ignored
except when you pass plot a single complex argument. For this special case,
the command is a shortcut for a graph of the real part versus the imaginary
part. Therefore,

plot(Z)

where Z is a complex vector or matrix, is equivalent to

plot(real(Z),imag(Z))

For example,

t = 0:pi/10:2*pi;
plot(exp(i*t),'-o')
axis equal

3-53

3 Graphics

draws a 20-sided polygon with little circles at the vertices. The axis equal
command makes the individual tick-mark increments on the x- and y-axes the
same length, which makes this plot more circular in appearance.

Adding Plots to an Existing Graph
The hold command enables you to add plots to an existing graph. When
you type

hold on

MATLAB does not replace the existing graph when you issue another plotting
command; it adds the new data to the current graph, rescaling the axes
if necessary.

For example, these statements first create a contour plot of the peaks
function, then superimpose a pseudocolor plot of the same function:

[x,y,z] = peaks;
pcolor(x,y,z)
shading interp

3-54

Using Basic Plotting Functions

hold on
contour(x,y,z,20,'k')
hold off

The hold on command combines the pcolor plot with the contour plot in
one figure.

For More Information See “Creating Specialized Plots” in the MATLAB
Graphics documentation for details about a variety of graph types.

Figure Windows
Graphing functions automatically open a new figure window if there are no
figure windows already on the screen. If a figure window exists, MATLAB
uses that window for graphics output. If there are multiple figure windows
open, MATLAB targets the one that is designated the “current figure” (the
last figure used or clicked in).

3-55

3 Graphics

To make an existing figure window the current figure, you can click the mouse
while the pointer is in that window or you can type

figure(n)

where n is the number in the figure title bar. The results of subsequent
graphics commands are displayed in this window.

To open a new figure window and make it the current figure, type

figure

Clearing the Figure for a New Plot
When a figure already exists, most plotting commands clear the axes and use
this figure to create the new plot. However, these commands do not reset
figure properties, such as the background color or the colormap. If you have
set any figure properties in the previous plot, you might want to use the clf
command with the reset option,

clf reset

before creating your new plot to restore the figure’s properties to their defaults.

For More Information See “Figure Properties” and “Graphics Windows —
the Figure” in the MATLAB Graphics documentation for details about figures.

Displaying Multiple Plots in One Figure
The subplot command enables you to display multiple plots in the same
window or print them on the same piece of paper. Typing

subplot(m,n,p)

partitions the figure window into an m-by-n matrix of small subplots and
selects the pth subplot for the current plot. The plots are numbered along the
first row of the figure window, then the second row, and so on. For example,
these statements plot data in four different subregions of the figure window:

t = 0:pi/10:2*pi;

3-56

Using Basic Plotting Functions

[X,Y,Z] = cylinder(4*cos(t));
subplot(2,2,1); mesh(X)
subplot(2,2,2); mesh(Y)
subplot(2,2,3); mesh(Z)
subplot(2,2,4); mesh(X,Y,Z)

3-57

3 Graphics

You can add subplots to GUIs as well as to figures. For details about creating
subplots in a GUIDE-generated GUI, see “Creating Subplots” in the MATLAB
Creating Graphical User Interfaces documentation.

Controlling the Axes
The axis command provides a number of options for setting the scaling,
orientation, and aspect ratio of graphs. You can also set these options
interactively. See “Editing Plots” on page 3-17 for more information.

Setting Axis Limits
By default, MATLAB finds the maxima and minima of the data and chooses
the axis limits to span this range. The axis command enables you to specify
your own limits:

axis([xmin xmax ymin ymax])

or for three-dimensional graphs,

axis([xmin xmax ymin ymax zmin zmax])

Use the command

axis auto

to reenable MATLAB automatic limit selection.

Setting the Axis Aspect Ratio
The axis command also enables you to specify a number of predefined modes.
For example,

axis square

makes the x-axis and y-axis the same length.

axis equal

makes the individual tick mark increments on the x-axes and y-axes the same
length. This means

plot(exp(i*[0:pi/10:2*pi]))

3-58

Using Basic Plotting Functions

followed by either axis square or axis equal turns the oval into a proper
circle:

axis auto normal

returns the axis scaling to its default automatic mode.

Setting Axis Visibility
You can use the axis command to make the axis visible or invisible.

axis on

makes the axes visible. This is the default.

axis off

makes the axes invisible.

Setting Grid Lines
The grid command toggles grid lines on and off. The statement

grid on

turns the grid lines on, and

grid off

turns them back off again.

For More Information See the axis and axes reference pages and “Axes
Properties” in the MATLAB Graphics documentation.

Adding Axis Labels and Titles
The xlabel, ylabel, and zlabel commands add x-, y-, and z-axis labels. The
title command adds a title at the top of the figure and the text function
inserts text anywhere in the figure.

3-59

3 Graphics

You can produce mathematical symbols using LaTeX notation in the text
string, as the following example illustrates:

t = -pi:pi/100:pi;
y = sin(t);
plot(t,y)
axis([-pi pi -1 1])
xlabel('-\pi \leq {\itt} \leq \pi')
ylabel('sin(t)')
title('Graph of the sine function')
text(1,-1/3,'{\itNote the odd symmetry.}')

You can also set these options interactively. See “Editing Plots” on page 3-17
for more information.

Note that the location of the text string is defined in axes units (i.e., the
same units as the data). See the annotation function for a way to place text
in normalized figure units.

3-60

Using Basic Plotting Functions

Saving Figures
Save a figure by selecting Save from the File menu to display a Save dialog
box. MATLAB saves the data it needs to recreate the figure and its contents
(i.e., the entire graph) in a file with a .fig extension.

To save a figure using a standard graphics format, such as TIFF, for use
with other applications, select Export Setup from the File menu. You can
also save from the command line—use the saveas command, including any
options to save the figure in a different format. The more restricted hgexport
command, which saves figures to either bitmap or metafile files, depending on
the rendering method in effect, is also available.

See “Exporting the Graph” on page 3-46 for an example.

Saving Workspace Data
You can save the variables in your workspace by selecting Save Workspace
As from the figure File menu. You can reload saved data using the Import
Data item in the figure File menu. MATLAB supports a variety of data file
formats, including MATLAB data files, which have a .mat extension.

Generating M-Code to Recreate a Figure
You can generate MATLAB code that recreates a figure and the graph it
contains by selecting Generate M-File from the figure File menu. This
option is particularly useful if you have developed a graph using plotting tools
and want to create a similar graph using the same or different data.

Saving Figures That Are Compatible with the Previous Version
of MATLAB
Create backward-compatible FIG-files by following these two steps:

1 Ensure that any plotting functions used to create the contents of the figure
are called with the 'v6' argument, where applicable.

2 Use the '-v6' option with the hgsave command.

3-61

3 Graphics

Note The v6 option enables users of Version 7.x of MATLAB to create
FIG-files that previous versions can open. It is obsolete and will be removed
in a future version of MATLAB. For more information, see “Plot Objects and
Backward Compatibility” in the MATLAB Graphics documentation.

3-62

Creating Mesh and Surface Plots

Creating Mesh and Surface Plots

In this section...

“About Mesh and Surface Plots” on page 3-63

“Visualizing Functions of Two Variables” on page 3-63

About Mesh and Surface Plots
MATLAB defines a surface by the z-coordinates of points above a grid in the
x-y plane, using straight lines to connect adjacent points. The mesh and
surf plotting functions display surfaces in three dimensions. mesh produces
wireframe surfaces that color only the lines connecting the defining points.
surf displays both the connecting lines and the faces of the surface in color.

The figure colormap and figure properties determine how MATLAB colors
the surface.

Visualizing Functions of Two Variables
To display a function of two variables, z = f (x,y),

1 Generate X and Y matrices consisting of repeated rows and columns,
respectively, over the domain of the function.

2 Use X and Y to evaluate and graph the function.

The meshgrid function transforms the domain specified by a single vector or
two vectors x and y into matrices X and Y for use in evaluating functions of
two variables. The rows of X are copies of the vector x and the columns of
Y are copies of the vector y.

Example — Graphing the sinc Function
This example evaluates and graphs the two-dimensional sinc function,
sin(r)/r, between the x and y directions. R is the distance from the origin, which
is at the center of the matrix. Adding eps (a MATLAB command that returns
a small floating-point number) avoids the indeterminate 0/0 at the origin:

[X,Y] = meshgrid(-8:.5:8);

3-63

3 Graphics

R = sqrt(X.^2 + Y.^2) + eps;
Z = sin(R)./R;
mesh(X,Y,Z,'EdgeColor','black')

By default, MATLAB colors the mesh using the current colormap. However,
this example uses a single-colored mesh by specifying the EdgeColor surface
property. See the surface reference page for a list of all surface properties.

You can create a mesh with see-through faces by disabling hidden line
removal:

hidden off

See the hidden reference page for more information on this option.

Example — Colored Surface Plots
A surface plot is similar to a mesh plot except that MATLAB colors the
rectangular faces of the surface. The color of each face is determined by the
values of Z and the colormap (a colormap is an ordered list of colors). These
statements graph the sinc function as a surface plot, specify a colormap, and
add a color bar to show the mapping of data to color:

3-64

Creating Mesh and Surface Plots

surf(X,Y,Z)
colormap hsv
colorbar

See the colormap reference page for information on colormaps.

For More Information See “Creating 3-D Graphs” in the MATLAB 3-D
Visualization documentation for more information on surface plots.

Making Surfaces Transparent
You can make the faces of a surface transparent to a varying degree.
Transparency (referred to as the alpha value) can be specified for the whole
object or can be based on an alphamap, which behaves similarly to colormaps.
For example,

surf(X,Y,Z)
colormap hsv
alpha(.4)

3-65

3 Graphics

produces a surface with a face alpha value of 0.4. Alpha values range from 0
(completely transparent) to 1 (not transparent).

For More Information See “Transparency” in the MATLAB 3-D
Visualization documentation for details about using this feature.

Illuminating Surface Plots with Lights
Lighting is the technique of illuminating an object with a directional light
source. In certain cases, this technique can make subtle differences in
surface shape easier to see. Lighting can also be used to add realism to
three-dimensional graphs.

This example uses the same surface as the previous examples, but colors it
red and removes the mesh lines. A light object is then added to the left of the
“camera” (the camera is the location in space from where you are viewing
the surface):

3-66

Creating Mesh and Surface Plots

surf(X,Y,Z,'FaceColor','red','EdgeColor','none')
camlight left; lighting phong

Manipulating the Surface
The figure toolbar and the camera toolbar provide ways to explore 3-D
graphics interactively. Display the camera toolbar by selecting Camera
Toolbar from the figure View menu.

The following picture shows both toolbars with the Rotate 3D tool selected.

3-67

3 Graphics

These tools enable you to move the camera around the surface object,
zoom, add lighting, and perform other viewing operations without issuing
commands.

The following picture shows the surface viewed by orbiting the camera toward
the bottom using Rotate 3D. A scene light has been added to illuminate the
underside of the surface, which is not lit by the light added in the previous
section.

For More Information See “Lighting as a Visualization Tool” and “View
Control with the Camera Toolbar” in the MATLAB 3-D Visualization
documentation for details about these techniques.

3-68

Plotting Image Data

Plotting Image Data

In this section...

“About Plotting Image Data” on page 3-69

“Reading and Writing Images” on page 3-70

About Plotting Image Data
Two-dimensional arrays can be displayed as images, where the array elements
determine brightness or color of the images. For example, the statements

load durer
whos
Name Size Bytes Class

X 648x509 2638656 double array
caption 2x28 112 char array
map 128x3 3072 double array

load the file durer.mat, adding three variables to the workspace. The matrix
X is a 648-by-509 matrix and map is a 128-by-3 matrix that is the colormap
for this image.

MAT-files, such as durer.mat, are binary files that can be created on one
platform and later read by MATLAB on a different platform.

The elements of X are integers between 1 and 128, which serve as indices
into the colormap, map. Then

image(X)
colormap(map)
axis image

reproduces Albrecht Dürer’s etching shown in “Matrices and Magic Squares”
on page 2-2. A high-resolution scan of the magic square in the upper-right
corner is available in another file. Type

load detail

3-69

3 Graphics

and then use the up arrow key on your keyboard to reexecute the image,
colormap, and axis commands. The statement

colormap(hot)

adds some 21st century colorization to the 16th century etching. The function
hot generates a colormap containing shades of reds, oranges, and yellows.
Typically, a given image matrix has a specific colormap associated with it. See
the colormap reference page for a list of other predefined colormaps.

Reading and Writing Images
You can read standard image files (TIFF, JPEG, BMP, etc.) into MATLAB
using the imread function. The type of data returned by imread depends on
the type of image you are reading.

You can write MATLAB data to a variety of standard image formats using
the imwrite function. See the MATLAB reference pages for these functions
for more information and examples.

For More Information See “Displaying Bit-Mapped Images” in the MATLAB
Graphics documentation for details about the image processing capabilities
of MATLAB.

3-70

Printing Graphics

Printing Graphics

In this section...

“Overview of Printing” on page 3-71

“Printing from the File Menu” on page 3-71

“Exporting the Figure to a Graphics File” on page 3-72

“Using the Print Command” on page 3-72

Overview of Printing
You can print a MATLAB figure directly on a printer connected to your
computer or you can export the figure to one of the standard graphics file
formats supported by MATLAB. There are two ways to print and export
figures:

• Use the Print, Print Preview, or Export Setup GUI options under the
File menu; see “Preparing Graphs for Presentation” on page 3-37 for an
example.

• Use the print command to print or export the figure from the command
line.

The print command provides greater control over drivers and file formats.
The Print Preview dialog box gives you greater control over figure size,
proportions, placement, and page headers. You can sometimes notice
differences in output as printed from a GUI and as printed from the command
line.

Printing from the File Menu
There are two menu options under the File menu that pertain to printing:

• The Print Preview option displays a dialog box that lets you lay out and
style figures for printing while previewing the output page, and from which
you can print the figure. It includes options that formerly were part of
the Page Setup dialog box.

3-71

3 Graphics

• The Print option displays a dialog box that lets you choose a printer, select
standard printing options, and print the figure.

Use Print Preview to determine whether the printed output is what you
want. Click the Print Preview dialog box Help button to display information
on how to set up the page.

See “Printing the Graph” on page 3-42 for an example of printing from
the Print Preview dialog. For details on printing from GUIs and from the
Command Window, see “Printing and Exporting” in the MATLAB Graphics
documentation.

Exporting the Figure to a Graphics File
The Export Setup option in the File menu opens a GUI that enables you
to set graphic characteristics, such as text size, font, and style, for figures
you save as graphics files. The Export Setup GUI lets you define and apply
templates to customize and standardize output. After setup, you can export
the figure to a number of standard graphics file formats such as EPS, PNG,
and TIFF.

See “Exporting the Graph” on page 3-46 for an example of exporting a figure
to a graphics file.

Using the Print Command
The print command provides more flexibility in the type of output sent to the
printer and allows you to control printing from M-files. The result can be sent
directly to your default printer or stored in a specified file. A wide variety of
output formats, including TIFF, JPEG, and PostScript, is available.

For example, this statement saves the contents of the current figure window
as color Encapsulated Level 2 PostScript in the file called magicsquare.eps.
It also includes a TIFF preview, which enables most word processors to
display the picture.

print -depsc2 -tiff magicsquare.eps

To save the same figure as a TIFF file with a resolution of 200 dpi, use the
following command:

3-72

Printing Graphics

print -dtiff -r200 magicsquare.tiff

If you type print on the command line,

print

MATLAB prints the current figure on your default printer.

For More Information See the print reference page and “Printing and
Exporting” in the MATLAB Graphics documentation for details about
printing.

3-73

3 Graphics

Handle Graphics

In this section...

“Using the Handle” on page 3-74

“Graphics Objects” on page 3-75

“Setting Object Properties” on page 3-77

“Specifying the Axes or Figure” on page 3-80

“Finding the Handles of Existing Objects” on page 3-81

Handle Graphics refers to a system of graphics objects that MATLAB uses to
implement graphing and visualization functions. Each object created has a
fixed set of properties. You can use these properties to control the behavior
and appearance of your graph.

When you call a plotting function, MATLAB creates the graph using various
graphics objects, such as a figure window, axes, lines, text, and so on.
MATLAB enables you to query the value of each property and set the values
of most properties.

For example, the following statement creates a figure with a white background
color and without displaying the figure toolbar:

figure('Color','white','Toolbar','none')

Using the Handle
Whenever MATLAB creates a graphics object, it assigns an identifier (called a
handle) to the object. You can use this handle to access the object’s properties
with the set and get functions. For example, the following statements create
a graph and return a handle to a lineseries object in h:

x = 1:10;
y = x.^3;
h = plot(x,y);

You can use the handle h to set the properties of the lineseries object. For
example, you can set its Color property:

3-74

Handle Graphics

set(h,'Color','red')

You can also specify properties when you call the plotting function:

h = plot(x,y,'Color','red');

When you query the lineseries properties,

get(h,'LineWidth')

MATLAB returns the answer:

ans =
0.5000

Use the handle to see what properties a particular object contains:

get(h)

Graphics Objects
Graphics objects are the basic elements used to display graphs and user
interface components. These objects are organized into a hierarchy, as shown
by the following diagram.

Key Graphics Objects
When you call a function to create a graph, MATLAB creates a hierarchy of
graphics objects. For example, calling the plot function creates the following
graphics objects:

• Lineseries plot objects — Represent the data passed to the plot function.

3-75

3 Graphics

• Axes — Provide a frame of reference and scaling for the plotted lineseries.

• Text — Label the axes tick marks and are used for titles and annotations.

• Figures — Are the windows that contain axes toolbars, menus, etc.

Different types of graphs use different objects to represent data; however, all
data objects are contained in axes and all objects (except root) are contained
in figures.

The root is an abstract object that primarily stores information about your
computer or MATLAB state. You cannot create an instance of the root object.

For More Information See “Handle Graphics Objects” in the MATLAB
Graphics documentation for details about graphics objects.

User interface objects are used to create graphical user interfaces (GUIs).
These objects include components like push buttons, editable text boxes, and
list boxes.

For More Information See Chapter 6, “Creating Graphical User Interfaces”
for details about user interface objects.

Creating Objects
Plotting functions (like plot and surf) call the appropriate low-level function
to draw their respective graph. For information about an object’s properties,
you can use the Handle Graphics Property Browser in the MATLAB online
Graphics documentation.

Functions for Working with Objects
This table lists functions commonly used when working with objects.

3-76

Handle Graphics

Function Purpose

allchild Find all children of specified objects.

ancestor Find ancestor of graphics object.

copyobj Copy graphics object.

delete Delete an object.

findall Find all graphics objects (including hidden handles).

findobj Find the handles of objects having specified property
values.

gca Return the handle of the current axes.

gcf Return the handle of the current figure.

gco Return the handle of the current object.

get Query the values of an object’s properties.

ishandle True if the value is a valid object handle.

set Set the values of an object’s properties.

Setting Object Properties
All object properties have default values. However, you might find it useful
to change the settings of some properties to customize your graph. There
are two ways to set object properties:

• Specify values for properties when you create the object.

• Set the property value on an object that already exists.

Setting Properties from Plotting Commands
You can specify object property value pairs as arguments to many plotting
functions, such as plot, mesh, and surf.

For example, plotting commands that create lineseries or surfaceplot objects
enable you to specify property name/property value pairs as arguments. The
command

3-77

3 Graphics

surf(x,y,z,'FaceColor','interp',...
'FaceLighting','gouraud')

plots the data in the variables x, y, and z using a surfaceplot object with
interpolated face color and employing the Gouraud face light technique. You
can set any of the object’s properties this way.

Setting Properties of Existing Objects
To modify the property values of existing objects, you can use the set
command or the Property Editor. This section describes how to use the set
command. See “Using the Property Editor” on page 3-18 for more information.

Most plotting functions return the handles of the objects that they create
so you can modify the objects using the set command. For example, these
statements plot a 5-by-5 matrix (creating five lineseries, one per column), and
then set the Marker property to a square and the MarkerFaceColor property
to green:

h = plot(magic(5));
set(h,'Marker','s','MarkerFaceColor','g')

In this case, h is a vector containing five handles, one for each of the
five lineseries in the graph. The set statement sets the Marker and
MarkerFaceColor properties of all lineseries to the same values.

Setting Multiple Property Values
If you want to set the properties of each lineseries to a different value, you
can use cell arrays to store all the data and pass it to the set command. For
example, create a plot and save the lineseries handles:

h = plot(magic(5));

Suppose you want to add different markers to each lineseries and color the
marker’s face color the same color as the lineseries. You need to define two
cell arrays—one containing the property names and the other containing
the desired values of the properties.

The prop_name cell array contains two elements:

prop_name(1) = {'Marker'};

3-78

Handle Graphics

prop_name(2) = {'MarkerFaceColor'};

The prop_values cell array contains 10 values: five values for the Marker
property and five values for the MarkerFaceColor property. Notice that
prop_values is a two-dimensional cell array. The first dimension indicates
which handle in h the values apply to and the second dimension indicates
which property the value is assigned to:

prop_values(1,1) = {'s'};
prop_values(1,2) = {get(h(1),'Color')};
prop_values(2,1) = {'d'};
prop_values(2,2) = {get(h(2),'Color')};
prop_values(3,1) = {'o'};
prop_values(3,2) = {get(h(3),'Color')};
prop_values(4,1) = {'p'};
prop_values(4,2) = {get(h(4),'Color')};
prop_values(5,1) = {'h'};
prop_values(5,2) = {get(h(5),'Color')};

The MarkerFaceColor is always assigned the value of the corresponding
line’s color (obtained by getting the lineseries Color property with the get
command).

After defining the cell arrays, call set to specify the new property values:

set(h,prop_name,prop_values)

3-79

3 Graphics

Specifying the Axes or Figure
MATLAB always creates an axes or figure if one does not exist when you
issue a plotting command. However, when you are creating a graphics M-file,
it is good practice to explicitly create and specify the parent axes and figure,
particularly if others will use your program. Specifying the parent prevents
the following problems:

• Your M-file overwrites the graph in the current figure. Note that a figure
becomes the current figure whenever a user clicks it.

• The current figure might be in an unexpected state and not behave as
your program expects.

The following example shows a simple M-file that plots a function and the
mean of the function over the specified range:

function myfunc(x)
% x = -10:.005:40; Here's a value you can use for x
y = [1.5*cos(x) + 6*exp(-.1*x) + exp(.07*x).*sin(3*x)];
ym = mean(y);

3-80

Handle Graphics

hfig = figure('Name','Function and Mean',...
'Pointer','fullcrosshair');

hax = axes('Parent',hfig);
plot(hax,x,y)
hold on
plot(hax,[min(x) max(x)],[ym ym],'Color','red')
hold off
ylab = get(hax,'YTick');
set(hax,'YTick',sort([ylab ym]))
title ('y = 1.5cos(x) + 6e^{-0.1x} + e^{0.07x}sin(3x)')
xlabel('X Axis'); ylabel('Y Axis')

Finding the Handles of Existing Objects
The findobj function enables you to obtain the handles of graphics objects
by searching for objects with particular property values. With findobj you
can specify the values of any combination of properties, which makes it easy
to pick one object out of many. findobj also recognizes regular expressions
(regexp).

For example, you might want to find the blue line with square marker having
blue face color. You can also specify which figures or axes to search, if there

3-81

3 Graphics

are more than one. The following four sections provide examples illustrating
how to use findobj.

Finding All Objects of a Certain Type
Because all objects have a Type property that identifies the type of object,
you can find the handles of all occurrences of a particular type of object. For
example,

h = findobj('Type','patch');

finds the handles of all patch objects.

Finding Objects with a Particular Property
You can specify multiple properties to narrow the search. For example,

h = findobj('Type','line','Color','r','LineStyle',':');

finds the handles of all red dotted lines.

Limiting the Scope of the Search
You can specify the starting point in the object hierarchy by passing the
handle of the starting figure or axes as the first argument. For example,

h = findobj(gca,'Type','text','String','\pi/2');

finds the string π/2 only within the current axes.

Using findobj as an Argument
Because findobj returns the handles it finds, you can use it in place of the
handle argument. For example,

set(findobj('Type','line','Color','red'),'LineStyle',':')

finds all red lines and sets their line style to dotted.

3-82

4

Programming

If you have an active Internet connection, you can watch the Writing a
MATLAB Program video demo for an overview of the major functionality.

Flow Control (p. 4-2) Use flow control constructs,
including if, switch and case, for,
while, continue, and break.

Other Data Structures (p. 4-9) Work with multidimensional arrays,
cell arrays, character and text data,
and structures.

Scripts and Functions (p. 4-20) Write scripts and functions, use
global variables, pass string
arguments to functions, use eval to
evaluate text expressions, vectorize
code, preallocate arrays, reference
functions using handles, and use
functions that operate on functions.

4 Programming

Flow Control

In this section...

“Conditional Control – if, else, switch” on page 4-2

“Loop Control – for, while, continue, break” on page 4-5

“Error Control – try, catch” on page 4-7

“Program Termination – return” on page 4-8

Conditional Control – if, else, switch
This section covers those MATLAB functions that provide conditional
program control.

if, else, and elseif
The if statement evaluates a logical expression and executes a group of
statements when the expression is true. The optional elseif and else
keywords provide for the execution of alternate groups of statements. An end
keyword, which matches the if, terminates the last group of statements.
The groups of statements are delineated by the four keywords—no braces or
brackets are involved.

The MATLAB algorithm for generating a magic square of order n involves
three different cases: when n is odd, when n is even but not divisible by 4,
or when n is divisible by 4. This is described by

if rem(n,2) ~= 0
M = odd_magic(n)

elseif rem(n,4) ~= 0
M = single_even_magic(n)

else
M = double_even_magic(n)

end

For most values of n in this example, the three cases are mutually exclusive.
For values that are not mutually exclusive, such as n=5, the first true
condition is executed.

4-2

Flow Control

It is important to understand how relational operators and if statements
work with matrices. When you want to check for equality between two
variables, you might use

if A == B, ...

This is valid MATLAB code, and does what you expect when A and B are
scalars. But when A and B are matrices, A == B does not test if they are
equal, it tests where they are equal; the result is another matrix of 0’s and
1’s showing element-by-element equality. (In fact, if A and B are not the same
size, then A == B is an error.)

A = magic(4); B = A; B(1,1) = 0;

A == B
ans =

0 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

The proper way to check for equality between two variables is to use the
isequal function:

if isequal(A, B), ...

isequal returns a scalar logical value of 1 (representing true) or 0 (false),
instead of a matrix, as the expression to be evaluated by the if function.
Using the A and B matrices from above, you get

isequal(A, B)
ans =

0

Here is another example to emphasize this point. If A and B are scalars, the
following program will never reach the “unexpected situation”. But for most
pairs of matrices, including our magic squares with interchanged columns,
none of the matrix conditions A > B, A < B, or A == B is true for all elements
and so the else clause is executed:

if A > B
'greater'

4-3

4 Programming

elseif A < B
'less'

elseif A == B
'equal'

else
error('Unexpected situation')

end

Several functions are helpful for reducing the results of matrix comparisons
to scalar conditions for use with if, including

isequal
isempty
all
any

switch and case
The switch statement executes groups of statements based on the value of
a variable or expression. The keywords case and otherwise delineate the
groups. Only the first matching case is executed. There must always be an
end to match the switch.

The logic of the magic squares algorithm can also be described by

switch (rem(n,4)==0) + (rem(n,2)==0)
case 0

M = odd_magic(n)
case 1

M = single_even_magic(n)
case 2

M = double_even_magic(n)
otherwise

error('This is impossible')
end

Note Unlike the C language switch statement, MATLAB switch does not
fall through. If the first case statement is true, the other case statements do
not execute. So, break statements are not required.

4-4

Flow Control

Loop Control – for, while, continue, break
This section covers those MATLAB functions that provide control over
program loops.

for
The for loop repeats a group of statements a fixed, predetermined number of
times. A matching end delineates the statements:

for n = 3:32
r(n) = rank(magic(n));

end
r

The semicolon terminating the inner statement suppresses repeated printing,
and the r after the loop displays the final result.

It is a good idea to indent the loops for readability, especially when they are
nested:

for i = 1:m
for j = 1:n

H(i,j) = 1/(i+j);
end

end

while
The while loop repeats a group of statements an indefinite number of times
under control of a logical condition. A matching end delineates the statements.

Here is a complete program, illustrating while, if, else, and end, that uses
interval bisection to find a zero of a polynomial:

a = 0; fa = -Inf;
b = 3; fb = Inf;
while b-a > eps*b

x = (a+b)/2;
fx = x^3-2*x-5;
if sign(fx) == sign(fa)

a = x; fa = fx;

4-5

4 Programming

else
b = x; fb = fx;

end
end
x

The result is a root of the polynomial x3 - 2x - 5, namely

x =
2.09455148154233

The cautions involving matrix comparisons that are discussed in the section
on the if statement also apply to the while statement.

continue
The continue statement passes control to the next iteration of the for loop
or while loop in which it appears, skipping any remaining statements in the
body of the loop. The same holds true for continue statements in nested
loops. That is, execution continues at the beginning of the loop in which the
continue statement was encountered.

The example below shows a continue loop that counts the lines of code in the
file magic.m, skipping all blank lines and comments. A continue statement is
used to advance to the next line in magic.m without incrementing the count
whenever a blank line or comment line is encountered:

fid = fopen('magic.m','r');
count = 0;
while ~feof(fid)

line = fgetl(fid);
if isempty(line) | strncmp(line,'%',1)

continue
end
count = count + 1;

end
disp(sprintf('%d lines',count));

4-6

Flow Control

break
The break statement lets you exit early from a for loop or while loop. In
nested loops, break exits from the innermost loop only.

Here is an improvement on the example from the previous section. Why is
this use of break a good idea?

a = 0; fa = -Inf;
b = 3; fb = Inf;
while b-a > eps*b

x = (a+b)/2;
fx = x^3-2*x-5;
if fx == 0

break
elseif sign(fx) == sign(fa)

a = x; fa = fx;
else

b = x; fb = fx;
end

end
x

Error Control – try, catch
This section covers those MATLAB functions that provide error handling
control.

try
The general form of a try-catch statement sequence is

try
statement
...
statement

catch
statement
...
statement

end

4-7

4 Programming

In this sequence the statements between try and catch are executed until
an error occurs. The statements between catch and end are then executed.
Use lasterr to see the cause of the error. If an error occurs between catch
and end, MATLAB terminates execution unless another try-catch sequence
has been established.

Program Termination – return
This section covers the MATLAB return function that enables you to
terminate your program before it runs to completion.

return
return terminates the current sequence of commands and returns control to
the invoking function or to the keyboard. return is also used to terminate
keyboard mode. A called function normally transfers control to the function
that invoked it when it reaches the end of the function. You can insert a
return statement within the called function to force an early termination and
to transfer control to the invoking function.

4-8

Other Data Structures

Other Data Structures

In this section...

“Multidimensional Arrays” on page 4-9

“Cell Arrays” on page 4-11

“Characters and Text” on page 4-13

“Structures” on page 4-16

Multidimensional Arrays
Multidimensional arrays in MATLAB are arrays with more than two
subscripts. One way of creating a multidimensional array is by calling zeros,
ones, rand, or randn with more than two arguments. For example,

R = randn(3,4,5);

creates a 3-by-4-by-5 array with a total of 3*4*5 = 60 normally distributed
random elements.

A three-dimensional array might represent three-dimensional physical data,
say the temperature in a room, sampled on a rectangular grid. Or it might
represent a sequence of matrices, A(k), or samples of a time-dependent matrix,
A(t). In these latter cases, the (i, j)th element of the kth matrix, or the tkth
matrix, is denoted by A(i,j,k).

MATLAB and Dürer’s versions of the magic square of order 4 differ by an
interchange of two columns. Many different magic squares can be generated
by interchanging columns. The statement

p = perms(1:4);

generates the 4! = 24 permutations of 1:4. The kth permutation is the row
vector p(k,:). Then

A = magic(4);
M = zeros(4,4,24);

for k = 1:24

4-9

4 Programming

M(:,:,k) = A(:,p(k,:));
end

stores the sequence of 24 magic squares in a three-dimensional array, M. The
size of M is

size(M)

ans =
4 4 24

Note The order of the matrices shown in this illustration might differ from
your results. The perms function always returns all permutations of the input
vector, but the order of the permutations might be different for different
MATLAB versions.

The statement

sum(M,d)

computes sums by varying the dth subscript. So

sum(M,1)

is a 1-by-4-by-24 array containing 24 copies of the row vector

4-10

Other Data Structures

34 34 34 34

and

sum(M,2)

is a 4-by-1-by-24 array containing 24 copies of the column vector

34
34
34
34

Finally,

S = sum(M,3)

adds the 24 matrices in the sequence. The result has size 4-by-4-by-1, so
it looks like a 4-by-4 array:

S =
204 204 204 204
204 204 204 204
204 204 204 204
204 204 204 204

Cell Arrays
Cell arrays in MATLAB are multidimensional arrays whose elements are
copies of other arrays. A cell array of empty matrices can be created with
the cell function. But, more often, cell arrays are created by enclosing a
miscellaneous collection of things in curly braces, {}. The curly braces are
also used with subscripts to access the contents of various cells. For example,

C = {A sum(A) prod(prod(A))}

produces a 1-by-3 cell array. The three cells contain the magic square, the
row vector of column sums, and the product of all its elements. When C
is displayed, you see

C =
[4x4 double] [1x4 double] [20922789888000]

4-11

4 Programming

This is because the first two cells are too large to print in this limited space,
but the third cell contains only a single number, 16!, so there is room to print it.

Here are two important points to remember. First, to retrieve the contents of
one of the cells, use subscripts in curly braces. For example, C{1} retrieves
the magic square and C{3} is 16!. Second, cell arrays contain copies of other
arrays, not pointers to those arrays. If you subsequently change A, nothing
happens to C.

You can use three-dimensional arrays to store a sequence of matrices of the
same size. Cell arrays can be used to store a sequence of matrices of different
sizes. For example,

M = cell(8,1);
for n = 1:8

M{n} = magic(n);
end
M

produces a sequence of magic squares of different order:

M =
[1]
[2x2 double]
[3x3 double]
[4x4 double]
[5x5 double]
[6x6 double]
[7x7 double]
[8x8 double]

4-12

Other Data Structures

You can retrieve the 4-by-4 magic square matrix with

M{4}

Characters and Text
Enter text into MATLAB using single quotes. For example,

s = 'Hello'

The result is not the same kind of numeric matrix or array you have been
dealing with up to now. It is a 1-by-5 character array.

4-13

4 Programming

Internally, the characters are stored as numbers, but not in floating-point
format. The statement

a = double(s)

converts the character array to a numeric matrix containing floating-point
representations of the ASCII codes for each character. The result is

a =
72 101 108 108 111

The statement

s = char(a)

reverses the conversion.

Converting numbers to characters makes it possible to investigate the various
fonts available on your computer. The printable characters in the basic ASCII
character set are represented by the integers 32:127. (The integers less than
32 represent nonprintable control characters.) These integers are arranged in
an appropriate 6-by-16 array with

F = reshape(32:127,16,6)';

The printable characters in the extended ASCII character set are represented
by F+128. When these integers are interpreted as characters, the result
depends on the font currently being used. Type the statements

char(F)
char(F+128)

and then vary the font being used for the Command Window. Select
Preferences from the File menu to change the font. If you include tabs in
lines of code, use a fixed-width font, such as Monospaced, to align the tab
positions on different lines.

Concatenation with square brackets joins text variables together into larger
strings. The statement

h = [s, ' world']

4-14

Other Data Structures

joins the strings horizontally and produces

h =
Hello world

The statement

v = [s; 'world']

joins the strings vertically and produces

v =
Hello
world

Note that a blank has to be inserted before the 'w' in h and that both words
in v have to have the same length. The resulting arrays are both character
arrays; h is 1-by-11 and v is 2-by-5.

To manipulate a body of text containing lines of different lengths, you have
two choices—a padded character array or a cell array of strings. When
creating a character array, you must make each row of the array the same
length. (Pad the ends of the shorter rows with spaces.) The char function does
this padding for you. For example,

S = char('A','rolling','stone','gathers','momentum.')

produces a 5-by-9 character array:

S =
A
rolling
stone
gathers
momentum.

Alternatively, you can store the text in a cell array. For example,

C = {'A';'rolling';'stone';'gathers';'momentum.'}

creates a 5-by-1 cell array that requires no padding because each row of the
array can have a different length:

4-15

4 Programming

C =
'A'
'rolling'
'stone'
'gathers'
'momentum.'

You can convert a padded character array to a cell array of strings with

C = cellstr(S)

and reverse the process with

S = char(C)

Structures
Structures are multidimensional MATLAB arrays with elements accessed by
textual field designators. For example,

S.name = 'Ed Plum';
S.score = 83;
S.grade = 'B+'

creates a scalar structure with three fields:

S =
name: 'Ed Plum'

score: 83
grade: 'B+'

Like everything else in MATLAB, structures are arrays, so you can insert
additional elements. In this case, each element of the array is a structure with
several fields. The fields can be added one at a time,

S(2).name = 'Toni Miller';
S(2).score = 91;
S(2).grade = 'A-';

or an entire element can be added with a single statement:

S(3) = struct('name','Jerry Garcia',...
'score',70,'grade','C')

4-16

Other Data Structures

Now the structure is large enough that only a summary is printed:

S =
1x3 struct array with fields:

name
score
grade

There are several ways to reassemble the various fields into other MATLAB
arrays. They are mostly based on the notation of a comma-separated list. If
you type

S.score

it is the same as typing

S(1).score, S(2).score, S(3).score

which is a comma-separated list.

If you enclose the expression that generates such a list within square
brackets, MATLAB stores each item from the list in an array. In this example,
MATLAB creates a numeric row vector containing the score field of each
element of structure array S:

scores = [S.score]
scores =

83 91 70

avg_score = sum(scores)/length(scores)
avg_score =

81.3333

To create a character array from one of the text fields (name, for example), call
the char function on the comma-separated list produced by S.name:

names = char(S.name)
names =

Ed Plum
Toni Miller
Jerry Garcia

4-17

4 Programming

Similarly, you can create a cell array from the name fields by enclosing the
list-generating expression within curly braces:

names = {S.name}
names =

'Ed Plum' 'Toni Miller' 'Jerry Garcia'

To assign the fields of each element of a structure array to separate variables
outside of the structure, specify each output to the left of the equals sign,
enclosing them all within square brackets:

[N1 N2 N3] = S.name
N1 =

Ed Plum
N2 =

Toni Miller
N3 =

Jerry Garcia

Dynamic Field Names
The most common way to access the data in a structure is by specifying the
name of the field that you want to reference. Another means of accessing
structure data is to use dynamic field names. These names express the
field as a variable expression that MATLAB evaluates at run-time. The
dot-parentheses syntax shown here makes expression a dynamic field name:

structName.(expression)

Index into this field using the standard MATLAB indexing syntax. For
example, to evaluate expression into a field name and obtain the values of
that field at columns 1 through 25 of row 7, use

structName.(expression)(7,1:25)

Dynamic Field Names Example. The avgscore function shown below
computes an average test score, retrieving information from the testscores
structure using dynamic field names:

function avg = avgscore(testscores, student, first, last)
for k = first:last

scores(k) = testscores.(student).week(k);

4-18

Other Data Structures

end
avg = sum(scores)/(last - first + 1);

You can run this function using different values for the dynamic field student.
First, initialize the structure that contains scores for a 25-week period:

testscores.Ann_Lane.week(1:25) = ...
[95 89 76 82 79 92 94 92 89 81 75 93 ...
85 84 83 86 85 90 82 82 84 79 96 88 98];

testscores.William_King.week(1:25) = ...
[87 80 91 84 99 87 93 87 97 87 82 89 ...
86 82 90 98 75 79 92 84 90 93 84 78 81];

Now run avgscore, supplying the students name fields for the testscores
structure at runtime using dynamic field names:

avgscore(testscores, 'Ann_Lane', 7, 22)
ans =

85.2500

avgscore(testscores, 'William_King', 7, 22)
ans =

87.7500

4-19

4 Programming

Scripts and Functions

In this section...

“Overview” on page 4-20

“Scripts” on page 4-21

“Functions” on page 4-22

“Types of Functions” on page 4-24

“Global Variables” on page 4-26

“Passing String Arguments to Functions” on page 4-27

“The eval Function” on page 4-28

“Function Handles” on page 4-28

“Function Functions” on page 4-29

“Vectorization” on page 4-31

“Preallocation” on page 4-32

Overview
MATLAB is a powerful programming language as well as an interactive
computational environment. Files that contain code in the MATLAB language
are called M-files. You create M-files using a text editor, then use them as you
would any other MATLAB function or command.

There are two kinds of M-files:

• Scripts, which do not accept input arguments or return output arguments.
They operate on data in the workspace.

• Functions, which can accept input arguments and return output arguments.
Internal variables are local to the function.

If you’re a new MATLAB programmer, just create the M-files that you want
to try out in the current directory. As you develop more of your own M-files,
you will want to organize them into other directories and personal toolboxes
that you can add to your MATLAB search path.

4-20

Scripts and Functions

If you duplicate function names, MATLAB executes the one that occurs first
in the search path.

To view the contents of an M-file, for example, myfunction.m, use

type myfunction

Scripts
When you invoke a script, MATLAB simply executes the commands found in
the file. Scripts can operate on existing data in the workspace, or they can
create new data on which to operate. Although scripts do not return output
arguments, any variables that they create remain in the workspace, to be
used in subsequent computations. In addition, scripts can produce graphical
output using functions like plot.

For example, create a file called magicrank.m that contains these MATLAB
commands:

% Investigate the rank of magic squares
r = zeros(1,32);
for n = 3:32

r(n) = rank(magic(n));
end
r
bar(r)

Typing the statement

magicrank

causes MATLAB to execute the commands, compute the rank of the first 30
magic squares, and plot a bar graph of the result. After execution of the file is
complete, the variables n and r remain in the workspace.

4-21

4 Programming

Functions
Functions are M-files that can accept input arguments and return output
arguments. The names of the M-file and of the function should be the same.
Functions operate on variables within their own workspace, separate from the
workspace you access at the MATLAB command prompt.

A good example is provided by rank. The M-file rank.m is available in the
directory

toolbox/matlab/matfun

You can see the file with

type rank

Here is the file:

function r = rank(A,tol)
% RANK Matrix rank.
% RANK(A) provides an estimate of the number of linearly

4-22

Scripts and Functions

% independent rows or columns of a matrix A.
% RANK(A,tol) is the number of singular values of A
% that are larger than tol.
% RANK(A) uses the default tol = max(size(A)) * norm(A) * eps.

s = svd(A);
if nargin==1

tol = max(size(A)') * max(s) * eps;
end
r = sum(s > tol);

The first line of a function M-file starts with the keyword function. It gives
the function name and order of arguments. In this case, there are up to two
input arguments and one output argument.

The next several lines, up to the first blank or executable line, are comment
lines that provide the help text. These lines are printed when you type

help rank

The first line of the help text is the H1 line, which MATLAB displays when
you use the lookfor command or request help on a directory.

The rest of the file is the executable MATLAB code defining the function. The
variable s introduced in the body of the function, as well as the variables on
the first line, r, A and tol, are all local to the function; they are separate from
any variables in the MATLAB workspace.

This example illustrates one aspect of MATLAB functions that is not
ordinarily found in other programming languages—a variable number of
arguments. The rank function can be used in several different ways:

rank(A)
r = rank(A)
r = rank(A,1.e-6)

Many M-files work this way. If no output argument is supplied, the result is
stored in ans. If the second input argument is not supplied, the function
computes a default value. Within the body of the function, two quantities
named nargin and nargout are available that tell you the number of input

4-23

4 Programming

and output arguments involved in each particular use of the function. The
rank function uses nargin, but does not need to use nargout.

Types of Functions
MATLAB offers several different types of functions to use in your
programming.

Anonymous Functions
An anonymous function is a simple form of MATLAB function that does not
require an M-file. It consists of a single MATLAB expression and any number
of input and output arguments. You can define an anonymous function right
at the MATLAB command line, or within an M-file function or script. This
gives you a quick means of creating simple functions without having to create
M-files each time.

The syntax for creating an anonymous function from an expression is

f = @(arglist)expression

The statement below creates an anonymous function that finds the square of
a number. When you call this function, MATLAB assigns the value you pass
in to variable x, and then uses x in the equation x.^2:

sqr = @(x) x.^2;

To execute the sqr function defined above, type

a = sqr(5)
a =

25

Primary and Subfunctions
All functions that are not anonymous must be defined within an M-file. Each
M-file has a required primary function that appears first in the file, and any
number of subfunctions that follow the primary. Primary functions have a
wider scope than subfunctions. That is, primary functions can be invoked from
outside of their M-file (from the MATLAB command line or from functions in

4-24

Scripts and Functions

other M-files) while subfunctions cannot. Subfunctions are visible only to the
primary function and other subfunctions within their own M-file.

The rank function shown in the section on “Functions” on page 4-22 is an
example of a primary function.

Private Functions
A private function is a type of primary M-file function. Its unique
characteristic is that it is visible only to a limited group of other functions.
This type of function can be useful if you want to limit access to a function, or
when you choose not to expose the implementation of a function.

Private functions reside in subdirectories with the special name private.
They are visible only to functions in the parent directory. For example,
assume the directory newmath is on the MATLAB search path. A subdirectory
of newmath called private can contain functions that only the functions in
newmath can call.

Because private functions are invisible outside the parent directory, they can
use the same names as functions in other directories. This is useful if you
want to create your own version of a particular function while retaining the
original in another directory. Because MATLAB looks for private functions
before standard M-file functions, it will find a private function named test.m
before a nonprivate M-file named test.m.

Nested Functions
You can define functions within the body of any MATLAB M-file function.
These are said to be nested within the outer function. A nested function
contains any or all of the components of any other M-file function. In this
example, function B is nested in function A:

function x = A(p1, p2)
...
B(p2)

function y = B(p3)
...
end

...
end

4-25

4 Programming

Like other functions, a nested function has its own workspace where variables
used by the function are stored. But it also has access to the workspaces
of all functions in which it is nested. So, for example, a variable that has
a value assigned to it by the primary function can be read or overwritten
by a function nested at any level within the primary. Similarly, a variable
that is assigned in a nested function can be read or overwritten by any of the
functions containing that function.

Function Overloading
Overloaded functions act the same way as overloaded functions in most
computer languages. Overloaded functions are useful when you need to create
a function that responds to different types of inputs accordingly. For instance,
you might want one of your functions to accept both double-precision and
integer input, but to handle each type somewhat differently. You can make
this difference invisible to the user by creating two separate functions having
the same name, and designating one to handle double types and one to
handle integers. When you call the function, MATLAB chooses which M-file
to dispatch to based on the type of the input arguments.

Global Variables
If you want more than one function to share a single copy of a variable, simply
declare the variable as global in all the functions. Do the same thing at
the command line if you want the base workspace to access the variable.
The global declaration must occur before the variable is actually used in a
function. Although it is not required, using capital letters for the names of
global variables helps distinguish them from other variables. For example,
create an M-file called falling.m:

function h = falling(t)
global GRAVITY
h = 1/2*GRAVITY*t.^2;

Then interactively enter the statements

global GRAVITY
GRAVITY = 32;
y = falling((0:.1:5)');

4-26

Scripts and Functions

The two global statements make the value assigned to GRAVITY at the
command prompt available inside the function. You can then modify GRAVITY
interactively and obtain new solutions without editing any files.

Passing String Arguments to Functions
You can write MATLAB functions that accept string arguments without the
parentheses and quotes. That is, MATLAB interprets

foo a b c

as

foo('a','b','c')

However, when you use the unquoted form, MATLAB cannot return output
arguments. For example,

legend apples oranges

creates a legend on a plot using the strings apples and oranges as labels. If
you want the legend command to return its output arguments, then you
must use the quoted form:

[legh,objh] = legend('apples','oranges');

In addition, you must use the quoted form if any of the arguments is not
a string.

Caution While the unquoted syntax is convenient, in some cases it can be
used incorrectly without causing MATLAB to generate an error.

Constructing String Arguments in Code
The quoted form enables you to construct string arguments within the
code. The following example processes multiple data files, August1.dat,
August2.dat, and so on. It uses the function int2str, which converts an
integer to a character, to build the filename:

for d = 1:31

4-27

4 Programming

s = ['August' int2str(d) '.dat'];
load(s)
% Code to process the contents of the d-th file

end

The eval Function
The eval function works with text variables to implement a powerful text
macro facility. The expression or statement

eval(s)

uses the MATLAB interpreter to evaluate the expression or execute the
statement contained in the text string s.

The example of the previous section could also be done with the following
code, although this would be somewhat less efficient because it involves the
full interpreter, not just a function call:

for d = 1:31
s = ['load August' int2str(d) '.dat'];
eval(s)
% Process the contents of the d-th file

end

Function Handles
You can create a handle to any MATLAB function and then use that handle
as a means of referencing the function. A function handle is typically passed
in an argument list to other functions, which can then execute, or evaluate,
the function using the handle.

Construct a function handle in MATLAB using the at sign, @, before the
function name. The following example creates a function handle for the sin
function and assigns it to the variable fhandle:

fhandle = @sin;

You can call a function by means of its handle in the same way that you would
call the function using its name. The syntax is

fhandle(arg1, arg2, ...);

4-28

Scripts and Functions

The function plot_fhandle, shown below, receives a function handle and
data, generates y-axis data using the function handle, and plots it:

function x = plot_fhandle(fhandle, data)
plot(data, fhandle(data))

When you call plot_fhandle with a handle to the sin function and the
argument shown below, the resulting evaluation produces a sine wave plot:

plot_fhandle(@sin, -pi:0.01:pi)

Function Functions
A class of functions called “function functions” works with nonlinear functions
of a scalar variable. That is, one function works on another function. The
function functions include

• Zero finding

• Optimization

• Quadrature

• Ordinary differential equations

MATLAB represents the nonlinear function by a function M-file. For example,
here is a simplified version of the function humps from the matlab/demos
directory:

function y = humps(x)
y = 1./((x-.3).^2 + .01) + 1./((x-.9).^2 + .04) - 6;

Evaluate this function at a set of points in the interval 0 ≤ x ≤ 1 with

x = 0:.002:1;
y = humps(x);

Then plot the function with

plot(x,y)

4-29

4 Programming

The graph shows that the function has a local minimum near x = 0.6. The
function fminsearch finds the minimizer, the value of x where the function
takes on this minimum. The first argument to fminsearch is a function
handle to the function being minimized and the second argument is a rough
guess at the location of the minimum:

p = fminsearch(@humps,.5)
p =

0.6370

To evaluate the function at the minimizer,

humps(p)

ans =
11.2528

Numerical analysts use the terms quadrature and integration to distinguish
between numerical approximation of definite integrals and numerical
integration of ordinary differential equations. MATLAB quadrature routines
are quad and quadl. The statement

4-30

Scripts and Functions

Q = quadl(@humps,0,1)

computes the area under the curve in the graph and produces

Q =
29.8583

Finally, the graph shows that the function is never zero on this interval. So,
if you search for a zero with

z = fzero(@humps,.5)

you will find one outside the interval

z =
-0.1316

Vectorization
One way to make your MATLAB programs run faster is to vectorize the
algorithms you use in constructing the programs. Where other programming
languages might use for loops or DO loops, MATLAB can use vector or matrix
operations. A simple example involves creating a table of logarithms:

x = .01;
for k = 1:1001

y(k) = log10(x);
x = x + .01;

end

A vectorized version of the same code is

x = .01:.01:10;
y = log10(x);

For more complicated code, vectorization options are not always so obvious.

For More Information See “Improving Performance and Memory Usage”
in the MATLAB Programming documentation for other techniques that you
can use.

4-31

4 Programming

Preallocation
If you cannot vectorize a piece of code, you can make your for loops go faster
by preallocating any vectors or arrays in which output results are stored. For
example, this code uses the function zeros to preallocate the vector created in
the for loop. This makes the for loop execute significantly faster:

r = zeros(32,1);
for n = 1:32

r(n) = rank(magic(n));
end

Without the preallocation in the previous example, the MATLAB interpreter
enlarges the r vector by one element each time through the loop. Vector
preallocation eliminates this step and results in faster execution.

4-32

5

Data Analysis

Introduction (p. 5-2) Components of a data analysis

Preprocessing Data (p. 5-3) Preparing data for analysis

Summarizing Data (p. 5-10) Computing basic statistics

Visualizing Data (p. 5-14) Looking for patterns and trends

Modeling Data (p. 5-19) Descriptions and predictions

5 Data Analysis

Introduction
Every data analysis has some standard components:

• Preprocessing — Consider outliers and missing values, and smooth data
to identify possible models.

• Summarizing — Compute basic statistics to describe the overall location,
scale, and shape of the data.

• Visualizing — Plot data to identify patterns and trends.

• Modeling — Give data trends fuller descriptions, suitable for predicting
new values.

Data analysis moves among these components with two basic goals in mind:

1 Describe the patterns in the data with simple models that lead to accurate
predictions.

2 Understand the relationships among variables that lead to the model.

This section of the Getting Started guide explains how to use MATLAB to
carry out a basic data analysis.

5-2

Preprocessing Data

Preprocessing Data

In this section...

“Overview” on page 5-3

“Loading the Data” on page 5-3

“Missing Data” on page 5-4

“Outliers” on page 5-4

“Smoothing and Filtering” on page 5-6

Overview
Begin a data analysis by loading data into suitable MATLAB container
variables and sorting out the “good” data from the “bad.” This is a preliminary
step that assures meaningful conclusions in subsequent parts of the analysis.

Note This section begins a data analysis that is continued in “Summarizing
Data” on page 5-10, “Visualizing Data” on page 5-14, and “Modeling Data”
on page 5-19.

Loading the Data
Begin by loading the data in count.dat:

load count.dat

The 24-by-3 array count contains hourly traffic counts (the rows) at three
intersections (the columns) for a single day.

See “MATLAB for Data Analysis” and “Importing and Exporting Data” in the
MATLAB Data Analysis documentation for more information on storing data
in MATLAB variables for analysis.

5-3

5 Data Analysis

Missing Data
In MATLAB, NaN (Not a Number) values represent missing data. NaN values
allow variables with missing data to maintain their structure—in this case,
24-by-1 vectors with consistent indexing across all three intersections.

Check the data at the third intersection for NaN values using the MATLAB
isnan function:

c3 = count(:,3); % Data at intersection 3
c3NaNCount = sum(isnan(c3))
c3NaNCount =

0

isnan returns a logical vector the same size as c3, with entries indicating the
presence (1) or absence (0) of NaN values for each of the 24 elements in the
data. In this case, the logical values sum to 0, so there are no NaN values
in the data.

NaN values are introduced into the data in the section on “Outliers” on page
5-4.

See “Removing and Interpolating Missing Values” in the MATLAB Data
Analysis documentation for more information on handling missing data in
MATLAB.

Outliers
Outliers are data values that are dramatically different from patterns in
the rest of the data. They may be due to measurement error, or they may
represent significant features in the data. Identifying outliers, and deciding
what to do with them, depends on an understanding of the data and its source.

One common method for identifying outliers is to look for values more than
a certain number of standard deviations σ from the mean μ. The following
code plots a histogram of the data at the third intersection together with
lines at μ and μ + nσ, for n = 1, 2:

bin_counts = hist(c3); % Histogram bin counts
N = max(bin_counts); % Maximum bin count
mu3 = mean(c3); % Data mean

5-4

Preprocessing Data

sigma3 = std(c3); % Data standard deviation

hist(c3) % Plot histogram
hold on
plot([mu3 mu3],[0 N],'r','LineWidth',2) % Mean
X = repmat(mu3+(1:2)*sigma3,2,1);
Y = repmat([0;N],1,2);
plot(X,Y,'g','LineWidth',2) % Standard deviations
legend('Data','Mean','Stds')
hold off

The plot shows that some of the data are more than two standard deviations
above the mean. If you identify these data as errors (not features), replace
them with NaN values as follows:

outliers = (c3 - mu3) > 2*sigma3;
c3m = c3; % Copy c3 to c3m

5-5

5 Data Analysis

c3m(outliers) = NaN; % Add NaN values

See “Removing Outliers” in the MATLAB Data Analysis documentation for
more information on handling outliers in MATLAB.

Smoothing and Filtering
A time-series plot of the data at the third intersection (with the outlier
removed in “Outliers” on page 5-4) looks like this:

plot(c3m,'o-')
hold on

The NaN value at hour 20 appears as a gap in the plot. This handling of NaN
values is typical of MATLAB plotting functions.

5-6

Preprocessing Data

Noisy data shows random variations about expected values. You may want
to smooth the data to reveal its main features before building a model. Two
basic assumptions underlie smoothing:

• The relationship between the predictor (time) and the response (traffic
volume) is smooth.

• The smoothing algorithm results in values that are better estimates of
expected values because the noise has been reduced.

Apply a simple moving average smoother to the data using the MATLAB
convn function:

span = 3; % Size of the averaging window
window = ones(span,1)/span;
smoothed_c3m = convn(c3m,window,'same');

h = plot(smoothed_c3m,'ro-');
legend('Data','Smoothed Data')

5-7

5 Data Analysis

The extent of the smoothing is controlled with the variable span. The
averaging calculation returns NaN values whenever the smoothing window
includes the NaN value in the data, thus increasing the size of the gap in the
smoothed data.

The MATLAB filter function is also used for smoothing data:

smoothed2_c3m = filter(window,1,c3m);

delete(h)
plot(smoothed2_c3m,'ro-');

5-8

Preprocessing Data

The smoothed data are shifted from the previous plot. convn with the 'same'
parameter returns the central part of the convolution, the same length as the
data. filter returns the initial part of the convolution, the same length as
the data. Otherwise, the algorithms are identical.

Smoothing estimates the center of the distribution of response values at each
value of the predictor. It invalidates a basic assumption of many fitting
algorithms, namely, that the errors at each value of the predictor are normally
distributed. Accordingly, smoothed data should not be used to fit a model. Use
smoothed data to identify a model.

See “Filtering Data” in the MATLAB Data Analysis documentation for more
information on smoothing and filtering.

5-9

5 Data Analysis

Summarizing Data

In this section...

“Overview” on page 5-10

“Measures of Location” on page 5-10

“Measures of Scale” on page 5-11

“Shape of a Distribution” on page 5-11

Overview
MATLAB includes many functions for summarizing the overall location, scale,
and shape of a data sample.

One of the advantages of working in MATLAB is that functions operate on
entire arrays of data, not just on single scalar values. The functions are said
to be vectorized. Vectorization allows for both efficient problem formulation,
using array-based data, and efficient computation, using vectorized statistical
functions.

Note This section continues the data analysis from “Preprocessing Data”
on page 5-3.

Measures of Location
Summarize the location of a data sample by finding a “typical” value. Common
measures of location or “central tendency” are computed by the MATLAB
functions mean, median, and mode:

x1 = mean(count)
x1 =

32.0000 46.5417 65.5833

x2 = median(count)
x2 =

23.5000 36.0000 39.0000

5-10

Summarizing Data

x3 = mode(count)
x3 =

11 9 9

Like all of the statistical functions in MATLAB, the functions above
summarize data across observations (rows) while preserving variables
(columns). The functions compute the location of the data at each of the three
intersections in a single call.

Measures of Scale
There are many ways to measure the scale or “dispersion” of a data sample.
The MATLAB functions max, min, std, and var compute some common
measures:

dx1 = max(count)-min(count)
dx1 =

107 136 250

dx2 = std(count)
dx2 =

25.3703 41.4057 68.0281

dx3 = var(count)
dx3 =

1.0e+003 *
0.6437 1.7144 4.6278

Like all of the statistical functions in MATLAB, the functions above
summarize data across observations (rows) while preserving variables
(columns). The functions compute the scale of the data at each of the three
intersections in a single call.

Shape of a Distribution
The shape of a distribution is harder to summarize than its location or
scale. The MATLAB hist function plots a histogram that provides a visual
summary:

figure
hist(count)

5-11

5 Data Analysis

legend('Intersection 1',...
'Intersection 2',...
'Intersection 3')

Parametric models give analytic summaries of distribution shapes.
Exponential distributions, with parameter mu given by the data mean, are a
good choice for the traffic data:

c1 = count(:,1); % Data at intersection 1
[bin_counts,bin_locations] = hist(c1);
bin_width = bin_locations(2) - bin_locations(1);
hist_area = (bin_width)*(sum(bin_counts));

figure
hist(c1)
hold on

5-12

Summarizing Data

mu1 = mean(c1);
exp_pdf = @(t)(1/mu1)*exp(-t/mu1); % Integrates

% to 1
t = 0:150;
y = exp_pdf(t);
plot(t,(hist_area)*y,'r','LineWidth',2)
legend('Distribution','Exponential Fit')

Methods for fitting general parametric models to data distributions are
beyond the scope of this Getting Started guide. Functions for computing
maximum likelihood estimates of distribution parameters are available in
Statistics Toolbox.

See “Descriptive Statistics” in the MATLAB Data Analysis documentation for
more information on summarizing data samples.

5-13

5 Data Analysis

Visualizing Data

In this section...

“Overview” on page 5-14

“2-D Scatter Plots” on page 5-14

“3-D Scatter Plots” on page 5-16

“Scatter Plot Arrays” on page 5-18

Overview
MATLAB provides many plots for visualizing data patterns and trends.
Histograms and time-series plots of the traffic data are described in the
sections on “Preprocessing Data” on page 5-3 and “Summarizing Data”
on page 5-10. Scatter plots, described in this section, help to visualize
relationships among the traffic data at different intersections.

Note This section continues the data analysis from “Summarizing Data”
on page 5-10.

2-D Scatter Plots
A 2-D scatter plot, created with the MATLAB scatter function, shows the
relationship between the traffic volume at the first two intersections:

c1 = count(:,1); % Data at intersection 1
c2 = count(:,2); % Data at intersection 2

figure
scatter(c1,c2,'filled')
xlabel('Intersection 1')
ylabel('Intersection 2')

5-14

Visualizing Data

The strength of the linear relationship between the two variables (how tightly
the data lies along a least-squares line through the scatter) is measured by
the covariance, computed by the MATLAB cov function:

C12 = cov([c1 c2])
C12 =

1.0e+003 *
0.6437 0.9802
0.9802 1.7144

The results are displayed in a symmetric square matrix, with the covariance
of the i th and j th variables in the (i, j)th position. The i th diagonal element
is the variance of the i th variable.

Covariances have the disadvantage of depending on the units used to measure
the individual variables. They are often divided by the standard deviations

5-15

5 Data Analysis

of the variables to normalize values between +1 and –1. The results are
correlation coefficients, computed by the MATLAB corrcoef function:

R12 = corrcoef([c1 c2])
R12 =

1.0000 0.9331
0.9331 1.0000

r12 = R12(1,2) % Correlation coefficient
r12 =

0.9331

r12sq = r12^2 % Coefficient of determination
r12sq =

0.8707

Because it is normalized, the value of the correlation coefficient is readily
comparable to values for other pairs of intersections. Its square, the coefficient
of determination, is the variance about the least-squares line divided by the
variance about the mean. That is, it is the proportion of variation in the
response (in this case, the traffic volume at intersection 2) that is eliminated
or non-causally “explained” by a least-squares line through the scatter.

3-D Scatter Plots
A 3-D scatter plot, created with the MATLAB scatter3 function, shows the
relationship between the traffic volume at all three intersections:

figure
scatter3(c1,c2,c3,'filled')
xlabel('Intersection 1')
ylabel('Intersection 2')
zlabel('Intersection 3')

5-16

Visualizing Data

The strength of the linear relationship among the variables in the 3-D scatter
is measured by computing eigenvalues of the covariance matrix with the
MATLAB eig function:

vars = eig(cov([c1 c2 c3]))
vars =

1.0e+003 *
0.0442
0.1118
6.8300

explained = max(vars)/sum(vars)
explained =

0.9777

The eigenvalues are the variances along the principal components of the data.
The variable explained measures the proportion of variation “explained” by

5-17

5 Data Analysis

the first principal component, along the axis of the data. Unlike the coefficient
of determination for 2-D scatters, this measure does distinguish predictor
and response variables.

Scatter Plot Arrays
Use the MATLAB plotmatrix function to make comparisons of the
relationships between multiple pairs of intersections:

figure
plotmatrix(count)

The plot in the (i, j)th position of the array is a scatter with the i th variable
on the vertical axis and the j th variable on the horizontal axis. The plot in
the i th diagonal position is a histogram of the i th variable.

See “Plotting Data” in the MATLAB Data Analysis documentation for more
information on statistical visualization.

5-18

Modeling Data

Modeling Data

In this section...

“Overview” on page 5-19

“Polynomial Regression” on page 5-19

“General Linear Regression” on page 5-20

Overview
Parametric models translate an understanding of data relationships into
analytic tools with predictive power. Polynomial and sinusoidal models are
simple choices for the up and down trends in the traffic data.

Note This section continues the data analysis from “Visualizing Data” on
page 5-14.

Polynomial Regression
Use the MATLAB polyfit function to estimate coefficients of polynomial
models, then use the MATLAB polyval function to evaluate the model at
arbitrary values of the predictor.

The following code fits the traffic data at the third intersection with a
polynomial model of degree six:

c3 = count(:,3); % Data at intersection 3
tdata = (1:24)';
p_coeffs = polyfit(tdata,c3,6);

figure
plot(c3,'o-')
hold on
tfit = (1:0.01:24)';
yfit = polyval(p_coeffs,tfit);
plot(tfit,yfit,'r-','LineWidth',2)
legend('Data','Polynomial Fit','Location','NW')

5-19

5 Data Analysis

The model has the advantage of being simple while following the up-and-down
trend. The accuracy of its predictive power, however, is questionable,
especially at the ends of the data.

General Linear Regression
Assuming that the data are periodic with a 12-hour period and a peak around
hour 7, it is reasonable to fit a sinusoidal model of the form:

y a b t= + −cos((/)())2 12 7π

The coefficients a and b appear linearly. Use the MATLAB mldivide
(backslash) operator to fit general linear models:

c3 = count(:,3); % Data at intersection 3
tdata = (1:24)';

5-20

Modeling Data

X = [ones(size(tdata)) cos((2*pi/12)*(tdata-7))];
s_coeffs = X\c3;

figure
plot(c3,'o-')
hold on
tfit = (1:0.01:24)';
yfit = [ones(size(tfit)) cos((2*pi/12)*(tfit-7))]*s_coeffs;
plot(tfit,yfit,'r-','LineWidth',2)
legend('Data','Sinusoidal Fit','Location','NW')

Use the MATLAB lscov function to compute statistics on the fit, such as
estimated standard errors of the coefficients and the mean squared error:

[s_coeffs,stdx,mse] = lscov(X,c3)
s_coeffs =

65.5833

5-21

5 Data Analysis

73.2819
stdx =

8.9185
12.6127

mse =
1.9090e+003

Check the assumption of a 12-hour period in the data with a periodogram,
computed using the MATLAB fft function:

Fs = 1; % Sample frequency (per hour)
n = length(c3); % Window length
Y = fft(c3); % DFT of data
f = (0:n-1)*(Fs/n); % Frequency range
P = Y.*conj(Y)/n; % Power of the DFT

figure
plot(f,P)
xlabel('Frequency')
ylabel('Power')

predicted_f = 1/12
predicted_f =

0.0833

5-22

Modeling Data

The peak near 0.0833 supports the assumption, although it occurs at a
slightly higher frequency. The model can be adjusted accordingly.

See “Linear Regression Analysis” and “Fourier Analysis” in the MATLAB
Data Analysis documentation for more information on data modeling.

5-23

5 Data Analysis

5-24

6

Creating Graphical User
Interfaces

What Is GUIDE? (p. 6-2) Introduces GUIDE, the MATLAB
graphical user interface design
environment

Laying Out a GUI (p. 6-3) Briefly describes the GUIDE Layout
Editor

Programming a GUI (p. 6-6) Introduces callbacks to define
behavior of the GUI components.

6 Creating Graphical User Interfaces

What Is GUIDE?
GUIDE, the MATLAB graphical user interface development environment,
provides a set of tools for creating graphical user interfaces (GUIs). These
tools greatly simplify the process of designing and building GUIs. You can
use the GUIDE tools to

• Lay out the GUI.

Using the GUIDE Layout Editor, you can lay out a GUI easily by clicking
and dragging GUI components—such as panels, buttons, text fields, sliders,
menus, and so on—into the layout area. GUIDE stores the GUI layout
in a FIG-file.

• Program the GUI.

GUIDE automatically generates an M-file that controls how the GUI
operates. The M-file initializes the GUI and contains a framework for the
most commonly used callbacks for each component—the commands that
execute when a user clicks a GUI component. Using the M-file editor, you
can add code to the callbacks to perform the functions you want.

Note You can also create GUIs programmatically. For information on how to
get started, see “Creating a Simple GUI Programmatically” in the MATLAB
Creating Graphical User interfaces documentation.

6-2

Laying Out a GUI

Laying Out a GUI

In this section...

“Starting GUIDE” on page 6-3

“The Layout Editor” on page 6-4

Starting GUIDE
Start GUIDE by typing guide at the MATLAB command prompt. This
displays the GUIDE Quick Start dialog box, as shown in the following figure.

From the GUIDE Quick Start dialog box, you can

• Create a new GUI from one of the GUIDE templates—prebuilt GUIs that
you can modify for your own purposes.

• Open an existing GUI.

6-3

6 Creating Graphical User Interfaces

The Layout Editor
When you open a GUI in GUIDE, it is displayed in the Layout Editor, which is
the control panel for all of the GUIDE tools. The following figure shows the
Layout Editor with a blank GUI template.

���������
��!����

�����������

You can lay out your GUI by dragging components, such as panels, push
buttons, pop-up menus, or axes, from the component palette, at the left side
of the Layout Editor, into the layout area. For example, if you drag a push
button into the layout area, it appears as in the following figure.

6-4

Laying Out a GUI

You can also use the Layout Editor (along with the Toolbar Editor and Icon
Editor) to create menus and toolbars, create and modify tool icons, and set
basic properties of the GUI components.

To get started using the Layout Editor and setting property values, see
“Creating a Simple GUI with GUIDE” in the MATLAB Creating Graphical
User Interfaces documentation. “Examples of GUIDE GUIs” in the same
documentation illustrates the variety of GUIs that you can create with
GUIDE.

6-5

6 Creating Graphical User Interfaces

Programming a GUI
After laying out the GUI and setting component properties, the next step is to
program the GUI. You program the GUI by coding one or more callbacks for
each of its components. Callbacks are functions that execute in response to
some action by the user. A typical action is clicking a push button.

A GUI’s callbacks are found in an M-file that GUIDE generates automatically.
GUIDE adds templates for the most commonly used callbacks to this M-file,
but you may want to add others. Use the M-file Editor to edit this file.

The following figure shows the Callback template for a push button.

To learn more about programming a GUI, see “Creating a Simple GUI with
GUIDE” in the MATLAB Creating GUIs documentation.

6-6

7

Desktop Tools and
Development Environment

If you have an active Internet connection, you can watch the Working in
The Development Environment video demo for an overview of the major
functionality.

Desktop Overview (p. 7-2) Access tools, arrange the desktop,
and set preferences.

Command Window and Command
History (p. 7-6)

Run functions and enter variables.

Help (p. 7-8) Find and view documentation and
demos.

Current Directory Browser and
Search Path (p. 7-14)

Manage and use M-files with
MATLAB.

Workspace Browser and Array
Editor (p. 7-17)

Work with variables in MATLAB.

Editor/Debugger (p. 7-20) Create and debug M-files (MATLAB
programs).

M-Lint Code Check and Profiler
Reports (p. 7-23)

Improve and tune your M-files.

Other Development Environment
Features (p. 7-28)

Interface with source control
systems, and publish M-file results.

7 Desktop Tools and Development Environment

Desktop Overview

In this section...

“Introduction to the Desktop” on page 7-2

“Arranging the Desktop” on page 7-4

“Start Button” on page 7-4

Introduction to the Desktop
Use desktop tools to manage your work in MATLAB. You can also use
MATLAB functions to perform the equivalent of most of the features found
in the desktop tools.

The following illustration shows the default configuration of the MATLAB
desktop. You can modify the setup to meet your needs.

7-2

Desktop Overview

��������	
�����
�
	�����������	�����

����������������
�
���������������

������������
���������������
�
�������

������	
���
�������������
�
���!��������������

7-3

7 Desktop Tools and Development Environment

For More Information For an overview of the desktop tools, watch the
video tutorials, accessible by typing demo matlab desktop (requires an
Internet connection). For complete details, see the MATLAB Desktop Tools
and Development Environment documentation.

Arranging the Desktop
These are some common ways to customize the desktop:

• Show or hide desktop tools via the Desktop menu.

• Resize any tool by dragging one of its edges.

• Move a tool outside of the desktop by clicking the undock button in the
tool’s title bar.

• Reposition a tool within the desktop by dragging its title bar to the new
location. Tools can occupy the same position, as shown for the Current
Directory and Workspace browser in the preceding illustration, in which
case, you access a tool via its name in the title bar.

• Maximize or minimize (temporarily hide) a tool within the desktop via
the Desktop menu.

• Change fonts and other options by using File > Preferences.

Start Button
The MATLAB Start button provides easy access to tools, demos, shortcuts,
and documentation. Click the Start button to see the options.

7-4

Desktop Overview

For More Information See “Desktop” in the MATLAB Desktop Tools and
Development Environment documentation.

7-5

7 Desktop Tools and Development Environment

Command Window and Command History

In this section...

“Command Window” on page 7-6

“Command History” on page 7-7

Command Window
Use the Command Window to enter variables and to run functions and M-file
scripts.

-���$��	���������
�����������%!�����
�
����������������

�����������!���
�
������!���

Press the up arrow key to recall a statement you previously typed. Edit the
statement as needed and then press Enter to run it. For more information
about entering statements in the Command Window, see “Controlling
Command Window Input and Output” on page 2-30.

7-6

Command Window and Command History

For More Information See “Running Functions — Command Window and
History” in the MATLAB Desktop Tools and Development Environment
documentation for complete details.

Command History
Statements you enter in the Command Window are logged in the Command
History. From the Command History, you can view and search for previously
run statements, as well as copy and execute selected statements. You can also
create an M-file from selected statements.

���������
���&���
�������
�$���	
���������

'�!�	��������
������������
������
�.	!�	&
���	��� ����!����
���	����������.$�!�
$�����
����!�	�����

To save the input and output from a MATLAB session to a file, use the diary
function.

For More Information See “Command History Window” in the MATLAB
Desktop Tools and Development Environment documentation, and the
reference page for the diary function.

7-7

7 Desktop Tools and Development Environment

Help

In this section...

“Help Browser” on page 7-8

“Other Forms of Help” on page 7-11

“Typographical Conventions” on page 7-12

Help Browser
Use the Help browser to search for and view documentation and demos for all
your MathWorks products. The Help browser is an HTML viewer integrated
into the MATLAB desktop.

To open the Help browser, click the Help button in the desktop toolbar.

The Help browser consists of two panes, the Help Navigator, which you use
to find information, and the display pane, where you view the information.

7-8

Help

��%������
�����������������������������
��$$��������������$������$���������

�!�	&��
���!����%�#
���
�����
������� �������	����������

����
������!��������
/����
������������%�����
��0�����
������
��$��
��������

7-9

7 Desktop Tools and Development Environment

These are the key features:

• Search for field — Look for specific words in the documentation and
demos. You can

- Specify an exact phrase by enclosing words in double quotation marks,
such as "word1 word2"

- Use a wildcard symbol (*) in place of letters, such as wo*d1

- Include Boolean operators between words, such as word1 NOT word2

• Contents tab — View the titles and tables of contents of the documentation.
By default, the contents synchronizes to the displayed page. If you get to
a page from a search or by following a link, click the Contents tab if you
want to see the context within the overall documentation for the page you
are viewing.

• Index tab — Find specific index entries (selected keywords) in the
documentation.

• Search Results tab — Displays results from Search for, separating the
results in Documentation from the results in Demos.

• Demos tab — View and run demonstrations for your MathWorks products.
Demos include code that you can use as a basis for creating your own
M-files.

While viewing the documentation, you can

• Browse to other pages — Use the arrows at the tops and bottoms of the
pages to move through the document, or use the back and forward buttons
in the toolbar to go to previously viewed pages.

• Bookmark pages — Use the Favorites menu.

• Print a page — Click the print button in the toolbar.

• Find a term in the page — Click the find icon in the toolbar.

• Copy or evaluate a selection — Select text, such as code from an example,
then right-click and use a context menu item to copy the selection or
evaluate (run) it.

7-10

Help

Other Forms of Help
In addition to the Help browser, you can use help functions. To get help for
a specific function, use the doc function. For example, doc format displays
documentation for the format function in the Help browser.

To see a briefer form of the documentation for a function, type help followed
by the function name. The resulting help text appears in the Command
Window. It shows function names in all capital letters to distinguish them
from the surrounding text. When you use the function names, type them
in lowercase or they will not run. Some functions actually consist of both
uppercase and lowercase letters, and the help text clearly indicates that. For
those functions, match the case used in the help function.

7-11

7 Desktop Tools and Development Environment

Other means for getting help include contacting Technical Support
(www.mathworks.com/support) and participating in the Usenet newsgroup
for MATLAB users, comp.soft-sys.matlab.

Typographical Conventions
These conventions are used in the Help browser and PDF documentation.

Item Convention Example

Buttons and keys Boldface Press the Enter key.

Example code Monospace font To assign the value 5 to
A, enter

A = 5

Function names,
syntax, filenames,
directory/folder names,
user input, items in
drop-down lists

Monospace font The cos function finds
the cosine of each array
element.

Literal strings (in
syntax descriptions in
reference chapters)

Monospace bold font f =
freqspace(n,'whole')

Mathematical
expressions

Italics for variables
Standard text font for
functions, operators,
and constants

This vector represents
the polynomial p = x2 +
2x + 3.

MATLAB output Monospace font MATLAB responds with

A =
5

Menu titles and items Boldface Select File > Save.

7-12

http://www.mathworks.com/support

Help

Item Convention Example

New terms and for
emphasis

Italics In MATLAB, a matrix is
a rectangular array of
numbers.

Omitted input
arguments

(...) ellipsis denotes
all of the input/output
arguments from
preceding syntaxes

[c, ia, ib] =
union(...)

String variables (from
a finite list)

Monospace italics format('type')

For More Information See “Help for Using MATLAB” in the MATLAB
Desktop Tools and Development Environment documentation, and the
reference pages for the doc and help functions.

7-13

7 Desktop Tools and Development Environment

Current Directory Browser and Search Path

In this section...

“Running Files” on page 7-14

“Current Directory” on page 7-14

“Search Path” on page 7-15

Running Files
MATLAB file operations use the current directory and the search path as
reference points. Any file you want to run must either be in the current
directory or on the search path.

Current Directory
A quick way to view or change the current directory is by using the current
directory field in the desktop toolbar, shown here.

To search for, view, open, and make changes to MATLAB related directories
and files, use the MATLAB Current Directory browser. Alternatively, you can
use the functions dir, cd, and delete. Use “Directory Reports in Current
Directory Browser” to help you tune and manage M-files.

7-14

Current Directory Browser and Search Path

/��%!�.	!�	&���$�!�
����������������
���������������!�

�
�����
������	�����
����
�
���$��!����!����������
�����
��
�
����������/���	�����%���������
����	&���$�����
�����&����

'���	
�$���$�!��
����	������
���
�����#��$�!���

�		��������	����
��������

For More Information See “File Management Operations” in the MATLAB
Desktop Tools and Development Environment documentation, and the
reference pages for the dir, cd, and delete functions.

Search Path
MATLAB uses a search path to find M-files and other MATLAB related files,
which are organized in directories on your file system. Any file you want to
run in MATLAB must reside in the current directory or in a directory that is
on the search path. When you create M-files and related files for MATLAB,
add the directories in which they are located to the MATLAB search path. By
default, the files supplied with MATLAB and other MathWorks products are
included in the search path.

7-15

7 Desktop Tools and Development Environment

To see which directories are on the search path or to change the search
path, select File > Set Path and use the resulting Set Path dialog box.
Alternatively, you can use the path function to view the search path, addpath
to add directories to the path, and rmpath to remove directories from the path.

For More Information See “Search Path” in the MATLAB Desktop Tools
and Development Environment documentation, and the reference pages for
the path, addpath, and rmpath functions.

7-16

Workspace Browser and Array Editor

Workspace Browser and Array Editor

In this section...

“Workspace Browser” on page 7-17

“Array Editor” on page 7-18

Workspace Browser
The MATLAB workspace consists of the set of variables (named arrays) built
up during a MATLAB session and stored in memory. You add variables to the
workspace by using functions, running M-files, and loading saved workspaces.

To view the workspace and information about each variable, use the
Workspace browser, or use the functions who and whos.

To delete variables from the workspace, select the variables and select
Edit > Delete. Alternatively, use the clear function.

The workspace is not maintained after you end the MATLAB session. To save
the workspace to a file that can be read during a later MATLAB session,
select File > Save, or use the save function. This saves the workspace to a
binary file called a MAT-file, which has a .mat extension. You can use options

7-17

7 Desktop Tools and Development Environment

to save to different formats. To read in a MAT-file, select File > Import
Data, or use the load function.

For More Information See “MATLAB Workspace” in the MATLAB Desktop
Tools and Development Environment documentation, and the reference pages
for the who, clear, save, and load functions.

Array Editor
Double-click a variable in the Workspace browser, or use openvar
variablename, to see it in the Array Editor. Use the Array Editor to view and
edit a visual representation of variables in the workspace.

1����
����	������%�������������
��������%!��
����
�������������
���������������

���������	
������!���
�$��������!�������

��������
������!����$
��������	�������

7-18

Workspace Browser and Array Editor

For More Information See “Viewing and Editing Workspace Variables
with the Array Editor” in the MATLAB Desktop Tools and Development
Environment documentation, and the reference page for the openvar function.

7-19

7 Desktop Tools and Development Environment

Editor/Debugger
Use the Editor/Debugger to create and debug M-files, which are programs you
write to run MATLAB functions. The Editor/Debugger provides a graphical
user interface for text editing, as well as for M-file debugging. To create or
edit an M-file use File > New or File > Open, or use the edit function.

7-20

Editor/Debugger

1����
����	������%��������		������
��
��	����������������
��������2/�%����

����������!�	����!����
�������	�$���
��������������!�
������
������������

3�!���
��	������������������%!�
��������	���������!����������
4&������������������5�

�.!������������	
	�������!�����

'���%���&������
�
������������
�#�	��������������
�������	����#�����
�
�������%!��� "�����������!�	����#��

��������
������!����$���	������
����
��������2/�%����

You can use any text editor to create M-files, such as Emacs. Use preferences
(accessible from the desktop File menu) to specify that editor as the default.

7-21

7 Desktop Tools and Development Environment

If you use another editor, you can still use the MATLAB Editor/Debugger for
debugging, or you can use debugging functions, such as dbstop, which sets a
breakpoint.

If you just need to view the contents of an M-file, you can display the contents
in the Command Window using the type function.

Use the M-Lint automatic code analyzer to help you identify problems and
potential improvements in your code. For details, see “M-Lint Code Check
and Profiler Reports” on page 7-23.

You can evaluate your code in sections, called cells, and can publish your code,
including results, to popular output formats like HTML. For more information,
see “Using Cells for Rapid Code Iteration and Publishing Results” in the
MATLAB Desktop Tools and Development Environment documentation.

For More Information See “Editing and Debugging M-Files” in the
MATLAB Desktop Tools and Development Environment documentation, and
the function reference pages for edit, type, and debug.

7-22

M-Lint Code Check and Profiler Reports

M-Lint Code Check and Profiler Reports

In this section...

“M-Lint Code Check Report” on page 7-23

“Profiler” on page 7-26

M-Lint Code Check Report
The M-Lint Code Check Report displays potential errors and problems, as
well as opportunities for improvement in your M-files. The term lint is used
by similar tools in other programming languages such as C.

Access the M-Lint Code Check Report and other directory reports from the
Current Directory browser. You run a report for all files in the current
directory.

/���	������������

7-23

7 Desktop Tools and Development Environment

In MATLAB, the M-Lint Code Check Report displays a message for each line
of an M-file it determines might be improved. For example, a common M-Lint
message is that a variable is defined but never used in the M-file.

7-24

M-Lint Code Check and Profiler Reports

�!�	&���!�������%������������
���.$�!�
����
��������2/�%��������
���!����

�
�������������!������!�������%��������������$��
��	
���������!����%!������������������������������

7-25

7 Desktop Tools and Development Environment

Alternatively, you can use automatic M-Lint code checking to view M-Lint
messages while you work on a file in the Editor/Debugger. You can also use
the mlint function to get results for a single M-file.

For More Information See “Tuning and Managing M-Files” and “M-Lint
Code Analyzer” in the MATLAB Desktop Tools and Development Environment
documentation, and the reference page for the mlint function.

Profiler
MATLAB includes the Profiler to help you improve the performance of
your M-files. Run a MATLAB statement or an M-file in the Profiler and it
produces a report of where the time is being spent. Access the Profiler from
the Desktop menu, or use the profile function.

7-26

M-Lint Code Check and Profiler Reports

For More Information See “Tuning and Managing M-Files” in the MATLAB
Desktop Tools and Development Environment documentation, and the
reference page for the profile function.

7-27

7 Desktop Tools and Development Environment

Other Development Environment Features
Additional development environment features include

• Source Control — Access your source control system from within MATLAB.

• Publishing Results — Use the Editor/Debugger’s cell features to publish
M-files and results to popular output formats including HTML and
Microsoft Word. You can also use MATLAB Notebook to access MATLAB
functions from within Microsoft Word.

For More Information See “Source Control Interface” and “Publishing
Results” in the MATLAB Desktop Tools and Development Environment
documentation.

7-28

8

External Interfaces

Use MATLAB External Interfaces to connect MATLAB to programs, devices
and data. Application developers use external interfaces to integrate
MATLAB functionality with their applications. External interfaces also
facilitate data collection, such as from peripheral devices like an oscilloscope
or a remote network server.

Programming Interfaces (p. 8-2) Write C and Fortran programs to
integrate with MATLAB. Use Java
classes and objects or functions in
dynamic link libraries (DLLs) in
MATLAB. Learn techniques for
importing data to and exporting data
from the MATLAB environment.

Component Object Model Interface
(p. 8-4)

Use COM on the Microsoft
Windows platform to integrate
application-specific components from
different vendors into MATLAB.

Web Services (p. 8-5) Build MATLAB applications using
Simple Object Access Protocol
(SOAP) or Web Services Description
Language (WSDL) Web service
technologies.

Serial Port Interface (p. 8-6) Communicate directly with
peripheral devices.

8 External Interfaces

Programming Interfaces

In this section...

“Call MATLAB from C and Fortran Programs” on page 8-2

“Call C and Fortran Programs from MATLAB” on page 8-2

“Call Java from MATLAB” on page 8-3

“Call Functions in Shared Libraries” on page 8-3

“Import and Export Data” on page 8-3

Call MATLAB from C and Fortran Programs
Use the MATLAB engine library to call MATLAB from C and Fortran
programs. When you call MATLAB from your own programs, MATLAB acts
as a computation engine. For example, you can:

• Use MATLAB as a programmable mathematical subroutine library.

• Build an application with a front end (GUI) programmed in C and a back
end (analysis) programmed in MATLAB.

Call C and Fortran Programs from MATLAB
Use MEX-files to call your own C or Fortran subroutines from MATLAB as if
they were built-in functions. For example, you can:

• Call preexisting C and Fortran programs from MATLAB without having
to rewrite them as M-files.

• Code bottleneck computations that do not run fast enough in MATLAB in
C or Fortran for efficiency.

The mxArray access library creates and manipulates MATLAB arrays. The
mex library performs operations in the MATLAB environment.

8-2

Programming Interfaces

Call Java from MATLAB
MATLAB includes a Java Virtual Machine (JVM). This allows you to use the
Java interpreter with MATLAB commands and to create and access Java
objects. For example, you can:

• Access Java API class packages that support I/O and networking.

• Access third-party Java classes.

• Construct Java objects in MATLAB.

• Call Java methods, using either Java or MATLAB syntax.

• Pass data between MATLAB variables and Java objects.

Call Functions in Shared Libraries
Use the MATLAB interface to generic DLLs to interact with functions in a
dynamic link library (.dll) on Windows, a shared object file (.so) on UNIX
and Linux, or a dynamic shared library (.dylib) on Intel-based Macintosh
platforms.

MATLAB supports any shared library written in C, or in any language that
can provide a C interface.

Import and Export Data
MAT-files and the MAT-file access library provide a convenient mechanism
for moving MATLAB binary data between platforms, and for importing and
exporting data to stand-alone MATLAB applications.

8-3

8 External Interfaces

Component Object Model Interface
With Component Object Model (COM) tools and technologies, you can
integrate application-specific components from different vendors into your
own applications. With COM, MATLAB can include ActiveX controls or OLE
server processes, or you can configure MATLAB as a computational server
controlled by your client application programs.

For example, you can:

• Include ActiveX components, like a calendar, in your MATLAB program.

• Access existing applications that expose objects via Automation, like
Microsoft Excel.

• Access MATLAB as an Automation server from an application written
in Visual Basic or C.

COM support in MATLAB is only available on the Microsoft Windows
platform.

8-4

Web Services

Web Services
Web services are XML-based technologies for making remote procedure calls
over a network. They enable communication between applications running
on disparate operating systems and development platforms. Web service
technologies available in MATLAB are:

• Simple Object Access Protocol (SOAP)

• Web Services Description Language (WSDL)

8-5

8 External Interfaces

Serial Port Interface
The MATLAB serial port interface provides direct access to peripheral devices
that you connect to your computer’s serial port, such as modems, printers, and
scientific instruments. For example, you can:

• Configure serial port communications.

• Use serial port control pins.

• Write and read data.

• Use events and callbacks.

• Record information to disk.

8-6

Index

Index: operator 2-8
2-D scatter plots

getting started 5-14
3-D scatter plots

getting started 5-16

A
algorithms

vectorizing 4-31
annotating plots 3-17
ans function 2-5
application program interface (API) 1-4
Array Editor 7-18
array operators 2-24
arrays

and matrices 2-24
cell 4-11
character 4-13
columnwise organization 2-26
creating in M-files 2-17
deleting rows and columns 2-19
elements 2-12
generating with functions and operators 2-16
listing contents 2-11
loading from external data files 2-17
multidimensional 4-9
notation for elements 2-12
preallocating 4-32
structure 4-16
variable names 2-11

arrow keys for editing commands 2-32
aspect ratio of axes 3-58
axes

managing 3-58
visibility 3-59

axis
labels 3-59
titles 3-59

axis function 3-58

B
bit map 3-70
break function 4-7
built-in functions

defined 2-13

C
callbacks 6-6
case function 4-4
catch function 4-7
cell arrays 4-11
char function 4-15
character arrays 4-13
characteristic polynomial 2-23
coefficient of determination 5-16
colon operator 2-8
colormap 3-65
colors

lines for plotting 3-51
Command History 7-7
command line

editing 2-32
Command Window 7-6
complex numbers

plotting 3-53
concatenation

defined 2-18
of strings 4-14

constants
special 2-13

continue function 4-6
continuing statements on multiple lines 2-32
control keys for editing commands 2-32
correlation coefficient 5-16
covariance 5-15
current directory 7-14
Current Directory browser 7-14

Index-1

Index

D
data analysis

getting started 5-1
data source

for graphs 3-32
debugging M-files 7-20
deleting array elements 2-19
demos

running from the Start button 7-4
desktop for MATLAB 1-7
desktop tools 7-1
determinant of matrix 2-21
diag function 2-5
distribution modeling

getting started 5-11
documentation 7-8

E
editing command lines 2-32
Editor/Debugger 7-20
eigenvalue 2-22
eigenvector 2-22
elements of arrays 2-12
entering matrices 2-4
eval function 4-28
executing MATLAB 1-7
exiting MATLAB 1-8
exporting graphs 3-46
expressions

evaluating 4-28
examples 2-14
using in MATLAB 2-11

F
figure function 3-55
figure tools 3-6
figure windows 3-55

with multiple plots 3-56

figures
adding and removing graphs 3-4

filtering data
getting started 5-6

find function 2-28
finding object handles 3-81
fliplr function 2-7
floating-point numbers 2-12
flow control 4-2
for loop 4-5
format

of output display 2-30
format function 2-30
function functions 4-29
function handles

defined 4-28
using 4-30

function keyword 4-23
function M-files 4-20

naming 4-22
function of two variables 3-63
functions

built-in, defined 2-13
defined 4-22
how to find 2-13
running 7-6
variable number of arguments 4-23

G
global variables 4-26
graphical user interface

creating 6-1
laying out 6-3
programming 6-6

graphics
files 3-72
Handle Graphics 3-74
objects 3-75
printing 3-71

Index-2

Index

grids 3-59
GUIDE 6-1

H
Handle Graphics 3-74

defined 1-4
finding handles 3-81

Help browser 7-8
help functions 7-11
hold function 3-54

I
if function 4-2
images 3-69
imaginary numbers 2-12

K
keys for editing in Command Window 2-32

L
legend

adding to plot 3-50
legend function 3-50
library

mathematical function 1-3
lighting 3-66
limits

axes 3-58
line continuation 2-32
line styles of plots 3-51
linear regression

getting started 5-20
load function 2-17
loading arrays 2-17
local variables 4-23
log of functions used 7-7
logical vectors 2-27

M
M-files

and toolboxes 1-3
creating 4-20
editing 7-20
for creating arrays 2-17
function 4-20
script 4-20

magic function 2-9
magic square 2-5
markers 3-52
MAT-file 3-69
mathematical function library 1-3
mathematical functions

listing advanced 2-13
listing elementary 2-13
listing matrix 2-13

MATLAB
application program interface 1-4
desktop 1-7
executing 1-7
exiting 1-8
history 1-2
language 1-3
mathematical function library 1-3
overview 1-2
quitting 1-8
running 1-7
shutting down 1-8
starting 1-7
user newsgroup 7-11

matrices 2-20
creating 2-16
entering 2-4

matrix 2-2
antidiagonal 2-7
determinant 2-21
main diagonal 2-6
multiplication 2-21
singular 2-21

Index-3

Index

swapping columns 2-10
symmetric 2-20
transpose 2-5

measures of location
getting started 5-10

measures of scale
getting started 5-11

mesh plot 3-63
Microsoft Word and access to MATLAB 7-28
missing data

getting started 5-4
modeling data

getting started 5-19
multidimensional arrays 4-9
multiple data sets

plotting 3-50
multiple plots per figure 3-56
multivariate data

organizing 2-26

N
newsgroup for MATLAB users 7-11
Notebook 7-28
numbers 2-12

floating-point 2-12

O
object properties 3-77
objects

finding handles 3-81
graphics 3-75

online help
viewing 7-8

operators 2-12
colon 2-8

outliers
getting started 5-4

output

controlling format 2-30
suppressing 2-31

overlaying plots 3-54

P
path 7-15
periodogram 5-22
plot edit mode

description 3-17
plot function 3-49
plots

editing 3-17
plotting

adding legend 3-50
adding plots 3-54
basic 3-49
complex data 3-53
complex numbers 3-53
contours 3-54
editing 3-17
functions 3-49
line colors 3-51
line styles 3-51
lines and markers 3-52
mesh and surface 3-63
multiple data sets 3-50
multiple plots 3-56
overview 3-2
tools 3-9

polynomial regression
getting started 5-19

PostScript 3-72
preallocation 4-32
preprocessing data

getting started 5-3
presentation graphics 3-37
principal components 5-17
print function 3-71
print preview

Index-4

Index

using 3-42
printing

example 3-42
graphics 3-71

Profiler 7-26
Property Editor

interface 3-22
Property Inspector 3-19

using 3-19

Q
quitting MATLAB 1-8

R
return function 4-8
revision control systems

interfacing to MATLAB 7-28
running functions 7-6
running MATLAB 1-7

S
scalar expansion 2-27
scatter plot arrays

getting started 5-18
scientific notation 2-12
script M-files 4-20
scripts 4-21
search path 7-15
semicolon to suppress output 2-31
shutting down MATLAB 1-8
singular matrix 2-21
smoothing data

getting started 5-6
source control systems

interfacing to MATLAB 7-28
special constants

infinity 2-14
not-a-number 2-14

specialized graphs 3-55
Start button 7-4
starting MATLAB 1-7
statements

continuing on multiple lines 2-32
executing 4-28

strings
concatenating 4-14

structures 4-16
subplot function 3-56
subscripting

with logical vectors 2-27
subscripts 2-7
sum function 2-5
summarizing data

getting started 5-10
suppressing output 2-31
surface plot 3-63
switch function 4-4
symmetric matrix 2-20

T
text

entering in MATLAB 4-13
TIFF 3-72
title

figure 3-59
toolboxes 1-3
tools in the desktop 7-1
transpose function 2-5
try function 4-7

V
variables 2-11

global 4-26
local 4-23

vectorization 4-31
vectors 2-2

Index-5

Index

logical 2-27
preallocating 4-32

version control systems
interfacing to MATLAB 7-28

visibility of axes 3-59
visualizing data

getting started 5-14

W
while loop 4-5

windows for plotting 3-55
windows in MATLAB 1-7
wireframe

surface 3-63
Word and access to MATLAB 7-28
word processing access to MATLAB 7-28
workspace 7-17
Workspace browser 7-17

Index-6

MATLAB® 7
Programming

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

MATLAB Programming

© COPYRIGHT 1984–2007 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined
in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of
this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government’s
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, SimBiology,
SimHydraulics, SimEvents, and xPC TargetBox are registered trademarks and The
MathWorks, the L-shaped membrane logo, Embedded MATLAB, and PolySpace are
trademarks of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective
holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
June 2004 First printing New for MATLAB 7.0 (Release 14)
October 2004 Online only Revised for MATLAB 7.0.1 (Release 14SP1)
March 2005 Online only Revised for MATLAB 7.0.4 (Release 14SP2)
June 2005 Second printing Minor revision for MATLAB 7.0.4
September 2005 Online only Revised for MATLAB 7.1 (Release 14SP3)
March 2006 Online only Revised for MATLAB 7.2 (Release R2006a)
September 2006 Online only Revised for MATLAB 7.3 (Release R2006b)
March 2007 Online only Revised for MATLAB 7.4 (Release R2007a)
September 2007 Online only Revised for MATLAB 7.5 (Release R2007b)

Contents

Data Structures

1
Creating and Concatenating Matrices 1-3

Overview . 1-3
Constructing a Simple Matrix . 1-4
Specialized Matrix Functions . 1-5
Concatenating Matrices . 1-8
Matrix Concatenation Functions . 1-9
Generating a Numeric Sequence . 1-11
Combining Unlike Data Types . 1-13

Matrix Indexing . 1-18
Accessing Single Elements . 1-18
Linear Indexing . 1-19
Functions That Control Indexing Style 1-19
Accessing Multiple Elements . 1-20
Using Logicals in Array Indexing . 1-22
Single-Colon Indexing with Different Array Types 1-26
Indexing on Assignment . 1-26

Getting Information About a Matrix 1-28
Dimensions of the Matrix . 1-28
Data Types Used in the Matrix . 1-29
Data Structures Used in the Matrix 1-30

Resizing and Reshaping Matrices 1-31
Expanding the Size of a Matrix . 1-31
Diminishing the Size of a Matrix . 1-35
Reshaping a Matrix . 1-36
Preallocating Memory . 1-38

Shifting and Sorting Matrices . 1-41
Shift and Sort Functions . 1-41
Shifting the Location of Matrix Elements 1-41
Sorting the Data in Each Column . 1-43
Sorting the Data in Each Row . 1-43

v

Sorting Row Vectors . 1-44

Operating on Diagonal Matrices . 1-46
Diagonal Matrix Functions . 1-46
Constructing a Matrix from a Diagonal Vector 1-46
Returning a Triangular Portion of a Matrix 1-47
Concatenating Matrices Diagonally 1-47

Empty Matrices, Scalars, and Vectors 1-48
Overview . 1-48
The Empty Matrix . 1-49
Scalars . 1-51
Vectors . 1-52

Full and Sparse Matrices . 1-54
Overview . 1-54
Sparse Matrix Functions . 1-54

Multidimensional Arrays . 1-56
Overview . 1-56
Creating Multidimensional Arrays 1-58
Accessing Multidimensional Array Properties 1-62
Indexing Multidimensional Arrays 1-62
Reshaping Multidimensional Arrays 1-66
Permuting Array Dimensions . 1-68
Computing with Multidimensional Arrays 1-70
Organizing Data in Multidimensional Arrays 1-71
Multidimensional Cell Arrays . 1-73
Multidimensional Structure Arrays 1-74

Summary of Matrix and Array Functions 1-76

Data Types

2
Overview of MATLAB Data Types 2-3

Fundamental Data Types . 2-3
How to Use the Different Types . 2-4

vi Contents

Numeric Types . 2-6
Overview . 2-6
Integers . 2-6
Floating-Point Numbers . 2-14
Complex Numbers . 2-24
Infinity and NaN . 2-25
Identifying Numeric Types . 2-27
Display Format for Numeric Values 2-27
Function Summary . 2-29

Logical Types . 2-33
Overview . 2-33
Creating a Logical Array . 2-33
How Logical Arrays Are Used . 2-35
Identifying Logical Arrays . 2-36

Characters and Strings . 2-37
Overview . 2-37
Creating Character Arrays . 2-37
Cell Arrays of Strings . 2-39
Formatting Strings . 2-42
String Comparisons . 2-55
Searching and Replacing . 2-58
Converting from Numeric to String 2-59
Converting from String to Numeric 2-61
Function Summary . 2-63

Dates and Times . 2-66
Overview . 2-66
Types of Date Formats . 2-66
Conversions Between Date Formats 2-68
Date String Formats . 2-69
Output Formats . 2-70
Current Date and Time . 2-71
Function Summary . 2-72

Structures . 2-74
Overview . 2-74
Building Structure Arrays . 2-75
Accessing Data in Structure Arrays 2-78
Using Dynamic Field Names . 2-80
Finding the Size of Structure Arrays 2-81

vii

Adding Fields to Structures . 2-82
Deleting Fields from Structures . 2-83
Applying Functions and Operators 2-83
Writing Functions to Operate on Structures 2-84
Organizing Data in Structure Arrays 2-85
Nesting Structures . 2-91
Function Summary . 2-92

Cell Arrays . 2-93
Overview . 2-93
Cell Array Operators . 2-94
Creating a Cell Array . 2-95
Referencing Cells of a Cell Array . 2-99
Deleting Cells . 2-106
Reshaping Cell Arrays . 2-106
Replacing Lists of Variables with Cell Arrays 2-107
Applying Functions and Operators 2-108
Organizing Data in Cell Arrays . 2-109
Nesting Cell Arrays . 2-110
Converting Between Cell and Numeric Arrays 2-112
Cell Arrays of Structures . 2-113
Function Summary . 2-114

Function Handles . 2-115
Overview . 2-115
Constructing and Invoking a Function Handle 2-115
Calling a Function Using Its Handle 2-116
Simple Function Handle Example . 2-116

MATLAB Classes . 2-117

Java Classes . 2-118

Basic Program Components

3
Variables . 3-2

Types of Variables . 3-2
Naming Variables . 3-6

viii Contents

Guidelines to Using Variables . 3-10
Scope of a Variable . 3-10
Lifetime of a Variable . 3-12

Keywords . 3-13

Special Values . 3-14

Operators . 3-16
Arithmetic Operators . 3-16
Relational Operators . 3-17
Logical Operators . 3-19
Operator Precedence . 3-25

MATLAB Expressions . 3-27
String Evaluation . 3-27
Shell Escape Functions . 3-28

Regular Expressions . 3-30
Overview . 3-30
MATLAB Regular Expression Functions 3-31
Elements of an Expression . 3-32
Character Classes . 3-33
Character Representation . 3-36
Grouping Operators . 3-37
Nonmatching Operators . 3-39
Positional Operators . 3-39
Lookaround Operators . 3-40
Quantifiers . 3-45
Tokens . 3-48
Named Capture . 3-53
Conditional Expressions . 3-55
Dynamic Regular Expressions . 3-57
String Replacement . 3-66
Handling Multiple Strings . 3-68
Operator Summary . 3-71

Comma-Separated Lists . 3-79
What Is a Comma-Separated List? 3-79
Generating a Comma-Separated List 3-79
Assigning Output from a Comma-Separated List 3-81

ix

Assigning to a Comma-Separated List 3-82
How to Use the Comma-Separated Lists 3-83
Fast Fourier Transform Example . 3-85

Program Control Statements . 3-87
Conditional Control — if, switch . 3-87
Loop Control — for, while, continue, break 3-91
Error Control — try, catch . 3-94
Program Termination — return . 3-95

Symbol Reference . 3-96
Asterisk — * . 3-96
At — @ . 3-97
Colon — : . 3-98
Comma — , . 3-99
Curly Braces — { } . 3-100
Dot — . 3-100
Dot-Dot — .. 3-101
Dot-Dot-Dot (Ellipsis) — ... 3-101
Dot-Parentheses — .() . 3-102
Exclamation Point — ! . 3-103
Parentheses — () . 3-103
Percent — % . 3-103
Percent-Brace — %{ %} . 3-104
Semicolon — ; . 3-104
Single Quotes — ’ ’ . 3-105
Space Character . 3-106
Slash and Backslash — / \ . 3-106
Square Brackets — [] . 3-107

Internal MATLAB Functions . 3-108
Overview . 3-108
M-File Functions . 3-108
Built-In Functions . 3-109
Overloaded MATLAB Functions . 3-110

x Contents

M-File Programming

4
Program Development . 4-2

Overview . 4-2
Creating a Program . 4-2
Getting the Bugs Out . 4-3
Cleaning Up the Program . 4-4
Improving Performance . 4-5
Checking It In . 4-6

Working with M-Files . 4-7
Overview . 4-7
Types of M-Files . 4-7
Basic Parts of an M-File . 4-8
Creating a Simple M-File . 4-12
Providing Help for Your Program . 4-15
Creating P-Code Files . 4-15

M-File Scripts and Functions . 4-17
M-File Scripts . 4-17
M-File Functions . 4-18
Types of Functions . 4-19
Identifying Dependencies . 4-20

Function Handles . 4-22
Constructing a Function Handle . 4-22
Calling a Function Using Its Handle 4-23
Functions That Operate on Function Handles 4-25
Comparing Function Handles . 4-25
Additional Information on Function Handles 4-30

Function Arguments . 4-32
Overview . 4-32
Checking the Number of Input Arguments 4-32
Passing Variable Numbers of Arguments 4-34
Parsing Inputs with inputParser . 4-36
Passing Optional Arguments to Nested Functions 4-47
Returning Modified Input Arguments 4-50

Calling Functions . 4-52

xi

What Happens When You Call a Function 4-52
Determining Which Function Is Called 4-53
MATLAB Calling Syntax . 4-56
Passing Certain Argument Types . 4-60
Passing Arguments in Structures or Cell Arrays 4-62
Assigning Output Arguments . 4-64
Calling External Functions . 4-66
Running External Programs . 4-67

Types of Functions

5
Overview of MATLAB Function Types 5-2

Anonymous Functions . 5-3
Constructing an Anonymous Function 5-3
Arrays of Anonymous Functions . 5-6
Outputs from Anonymous Functions 5-7
Variables Used in the Expression . 5-8
Examples of Anonymous Functions 5-11

Primary M-File Functions . 5-15

Nested Functions . 5-16
Writing Nested Functions . 5-16
Calling Nested Functions . 5-17
Variable Scope in Nested Functions 5-19
Using Function Handles with Nested Functions 5-21
Restrictions on Assigning to Variables 5-26
Examples of Nested Functions . 5-27

Subfunctions . 5-33
Overview . 5-33
Calling Subfunctions . 5-34
Accessing Help for a Subfunction . 5-34

Private Functions . 5-35
Overview . 5-35

xii Contents

Private Directories . 5-35
Accessing Help for a Private Function 5-36

Overloaded Functions . 5-37

Data Import and Export

6
Overview . 6-3

File Types Supported by MATLAB 6-3
Other MATLAB I/O Capabilities . 6-5
Functions Used in File Management 6-7

Supported File Formats . 6-9

Using the Import Wizard . 6-11
Overview . 6-11
Starting the Import Wizard . 6-11
Previewing Contents of the File or Clipboard [Text only] . . 6-13
Specifying Delimiters and Header Format [Text only] 6-14
Determining Assignment to Variables 6-15
Automated M-Code Generation . 6-18
Writing Data to the Workspace . 6-21

Accessing Files with Memory-Mapping 6-23
Overview of Memory-Mapping in MATLAB 6-23
The memmapfile Class . 6-27
Constructing a memmapfile Object 6-29
Reading a Mapped File . 6-43
Writing to a Mapped File . 6-48
Methods of the memmapfile Class . 6-56
Deleting a Memory Map . 6-58
Memory-Mapping Demo . 6-58

Exporting Data to MAT-Files . 6-64
MAT-Files . 6-64
Using the save Function . 6-64
Saving Structures . 6-65

xiii

Appending to an Existing File . 6-66
Data Compression . 6-66
Unicode Character Encoding . 6-68
Optional Output Formats . 6-69
Storage Requirements . 6-70
Saving From External Programs . 6-71

Importing Data From MAT-Files . 6-72
Using the load Function . 6-72
Previewing MAT-File Contents . 6-72
Loading Into a Structure . 6-73
Loading Binary Data . 6-73
Loading ASCII Data . 6-74

Importing Text Data . 6-75
The MATLAB Import Wizard . 6-75
Using Import Functions with Text Data 6-75
Importing Numeric Text Data . 6-78
Importing Delimited ASCII Data Files 6-79
Importing Numeric Data with Text Headers 6-80
Importing Mixed Alphabetic and Numeric Data 6-81
Importing from XML Documents . 6-83

Exporting Text Data . 6-84
Overview . 6-84
Exporting Delimited ASCII Data Files 6-86
Using the diary Function to Export Data 6-87
Exporting to XML Documents . 6-88

Working with Graphics Files . 6-90
Getting Information About Graphics Files 6-90
Importing Graphics Data . 6-91
Exporting Graphics Data . 6-91

Working with Audio and Video Data 6-93
Getting Information About Audio/Video Files 6-93
Importing Audio/Video Data . 6-94
Exporting Audio/Video Data . 6-95

Working with Spreadsheets . 6-98
Microsoft Excel Spreadsheets . 6-98

xiv Contents

Lotus 123 Spreadsheets . 6-101

Using Low-Level File I/O Functions 6-104
Overview . 6-104
Opening Files . 6-105
Reading Binary Data . 6-107
Writing Binary Data . 6-109
Controlling Position in a File . 6-109
Reading Strings Line by Line from Text Files 6-112
Reading Formatted ASCII Data . 6-113
Writing Formatted Text Files . 6-114
Closing a File . 6-115

Exchanging Files over the Internet 6-117
Overview . 6-117
Downloading Web Content and Files 6-117
Creating and Decompressing Zip Archives 6-119
Sending E-Mail . 6-120
Performing FTP File Operations . 6-122

Working with Scientific Data Formats

7
Common Data Format (CDF) Files 7-2

Getting Information About CDF Files 7-2
Importing Data from a CDF File . 7-3
Exporting Data to a CDF File . 7-6

Flexible Image Transport System (FITS) Files 7-8
Getting Information About FITS Files 7-8
Importing Data from a FITS File . 7-9

Hierarchical Data Format (HDF5) Files 7-11
Using the MATLAB High-Level HDF5 Functions 7-11
Using the MATLAB Low-Level HDF5 Functions 7-26

Hierarchical Data Format (HDF4) Files 7-36
Using the HDF Import Tool . 7-36

xv

Using the HDF Import Tool Subsetting Options 7-41
Using the MATLAB HDF4 High-Level Functions 7-53
Using the HDF4 Low-Level Functions 7-56

Error Handling

8
Error Reporting in MATLAB . 8-2

Overview . 8-2
Getting an Exception at the Command Line 8-2
Getting an Exception in Your Program Code 8-3
Generating a New Exception . 8-4

Capturing Information About the Error 8-5
Overview . 8-5
The MException Class . 8-5
Properties of the MException Class 8-7
Methods of the MException Class . 8-14

Throwing an Exception . 8-16

Responding to an Exception . 8-17
Overview . 8-17
The try-catch Statement . 8-17
Suggestions on How to Handle an Exception 8-19

Warnings . 8-22
Reporting a Warning . 8-22
Identifying the Cause . 8-23

Warning Control . 8-24
Overview . 8-24
Warning Statements . 8-25
Warning Control Statements . 8-26
Output from Control Statements . 8-28
Saving and Restoring State . 8-30
Backtrace and Verbose Modes . 8-31

xvi Contents

Debugging Errors and Warnings . 8-34

Classes and Objects

9
Classes and Objects: An Overview 9-2

Overview . 9-2
Features of Object-Oriented Programming 9-3
MATLAB Data Class Hierarchy . 9-3
Creating Objects . 9-4
Invoking Methods on Objects . 9-4
Private Methods . 9-5
Helper Functions . 9-6
Debugging Class Methods . 9-6
Setting Up Class Directories . 9-6
Data Structure . 9-7
Tips for C++ and Java Programmers 9-8

Designing User Classes in MATLAB 9-9
The MATLAB Canonical Class . 9-9
The Class Constructor Method . 9-10
Examples of Constructor Methods . 9-12
Identifying Objects Outside the Class Directory 9-12
The display Method . 9-13
Accessing Object Data . 9-13
The set and get Methods . 9-14
Indexed Reference Using subsref and subsasgn 9-15
Handling Subscripted Reference . 9-16
Handling Subscripted Assignment . 9-19
Object Indexing Within Methods . 9-20
Defining end Indexing for an Object 9-20
Indexing an Object with Another Object 9-21
Converter Methods . 9-22

Overloading Operators and Functions 9-23
Overloading Operators . 9-23
Overloading Functions . 9-25

Example — A Polynomial Class . 9-26

xvii

Polynom Data Structure . 9-26
Polynom Methods . 9-26
The Polynom Constructor Method . 9-27
Converter Methods for the Polynom Class 9-28
The Polynom display Method . 9-30
The Polynom subsref Method . 9-31
Overloading Arithmetic Operators for polynom 9-32
Overloading Functions for the Polynom Class 9-34
Listing Class Methods . 9-36

Building on Other Classes . 9-38
Overview . 9-38
Simple Inheritance . 9-38
Multiple Inheritance . 9-40
Aggregation . 9-40

Example — Assets and Asset Subclasses 9-41
Inheritance Model for the Asset Class 9-41
Asset Class Design . 9-42
Other Asset Methods . 9-43
The Asset Constructor Method . 9-43
The Asset get Method . 9-44
The Asset set Method . 9-45
The Asset subsref Method . 9-46
The Asset subsasgn Method . 9-47
The Asset display Method . 9-48
The Asset fieldcount Method . 9-49
Designing the Stock Class . 9-49
The Stock Constructor Method . 9-50
The Stock get Method . 9-52
The Stock set Method . 9-53
The Stock subsref Method . 9-54
The Stock subsasgn Method . 9-55
The Stock display Method . 9-57

Example — The Portfolio Container 9-58
Overview . 9-58
Designing the Portfolio Class . 9-58
The Portfolio Constructor Method . 9-59
The Portfolio display Method . 9-61
The Portfolio pie3 Method . 9-61
Creating a Portfolio . 9-62

xviii Contents

Saving and Loading Objects . 9-64

Example — Defining saveobj and loadobj for
Portfolio . 9-65
Methods Executed by Save and Load 9-65
Summary of Code Changes . 9-65
The saveobj Method . 9-66
The loadobj Method . 9-66
Changing the Portfolio Constructor 9-67
The Portfolio subsref Method . 9-68

Object Precedence . 9-70
How MATLAB Determines Precedence 9-70
Specifying Precedence of User-Defined Classes 9-71

How MATLAB Determines Which Method to Call 9-72
Overview . 9-72
Selecting a Method . 9-72
Querying Which Method MATLAB Will Call 9-75

Scheduling Program Execution with Timers

10
Using a MATLAB Timer Object . 10-2

Overview . 10-2
Example: Displaying a Message . 10-3

Creating Timer Objects . 10-5
Creating the Object . 10-5
Naming the Object . 10-6

Working with Timer Object Properties 10-7
Retrieving the Value of Timer Object Properties 10-7
Setting the Value of Timer Object Properties 10-8

Starting and Stopping Timers . 10-10
Starting a Timer . 10-10
Starting a Timer at a Specified Time 10-10

xix

Stopping Timer Objects . 10-11
Blocking the MATLAB Command Line 10-12

Creating and Executing Callback Functions 10-14
Associating Commands with Timer Object Events 10-14
Creating Callback Functions . 10-15
Specifying the Value of Callback Function Properties 10-17

Timer Object Execution Modes . 10-19
Executing a Timer Callback Function Once 10-19
Executing a Timer Callback Function Multiple Times 10-20
Handling Callback Function Queuing Conflicts 10-21

Deleting Timer Objects from Memory 10-23
Deleting One or More Timer Objects 10-23
Testing the Validity of a Timer Object 10-23

Finding Timer Objects in Memory 10-24
Finding All Timer Objects . 10-24
Finding Invisible Timer Objects . 10-24

Improving Performance and Memory Usage

11
Analyzing Your Program’s Performance 11-2

Overview . 11-2
The M-File Profiler Utility . 11-2
Stopwatch Timer Functions . 11-2

Techniques for Improving Performance 11-4
Vectorizing Loops . 11-4
Preallocating Arrays . 11-7
Use Distributed Arrays for Large Datasets 11-9
When Possible, Replace for with parfor (Parallel for) 11-9
Multithreading Capabilities in MATLAB 11-9
Limiting M-File Size and Complexity 11-9
Coding Loops in a MEX-File . 11-10
Assigning to Variables . 11-10

xx Contents

Operating on Real Data . 11-11
Using Appropriate Logical Operators 11-11
Overloading Built-In Functions . 11-12
Functions Are Generally Faster Than Scripts 11-12
Load and Save Are Faster Than File I/O Functions 11-12
Avoid Large Background Processes 11-12

Multiprocessing in MATLAB . 11-13
Overview . 11-13
Implicit Multiprocessing . 11-14
Explicit Multiprocessing . 11-17

Memory Allocation in MATLAB . 11-18
Memory Allocation for Arrays . 11-18
Data Structures and Memory . 11-22

Memory Management Functions . 11-24

Strategies for Efficient Use of Memory 11-25
Preallocating Arrays to Reduce Fragmentation 11-25
Allocating Large Matrices Earlier . 11-26
Working with Large Amounts of Data 11-26

Resolving “Out of Memory” Errors 11-27
General Suggestions for Reclaiming Memory 11-27
Compressing Data in Memory . 11-28
Increasing System Swap Space . 11-28
Freeing Up System Resources on Windows Systems 11-29
Reloading Variables on UNIX Systems 11-30

Programming Tips

12
Introduction . 12-3

Command and Function Syntax . 12-4
Syntax Help . 12-4
Command and Function Syntaxes . 12-4

xxi

Command Line Continuation . 12-4
Completing Commands Using the Tab Key 12-5
Recalling Commands . 12-5
Clearing Commands . 12-6
Suppressing Output to the Screen . 12-6

Help . 12-7
Using the Help Browser . 12-7
Help on Functions from the Help Browser 12-8
Help on Functions from the Command Window 12-8
Topical Help . 12-8
Paged Output . 12-9
Writing Your Own Help . 12-10
Help for Subfunctions and Private Functions 12-10
Help for Methods and Overloaded Functions 12-10

Development Environment . 12-12
Workspace Browser . 12-12
Using the Find and Replace Utility 12-12
Commenting Out a Block of Code . 12-13
Creating M-Files from Command History 12-13
Editing M-Files in EMACS . 12-13

M-File Functions . 12-14
M-File Structure . 12-14
Using Lowercase for Function Names 12-14
Getting a Function’s Name and Path 12-15
What M-Files Does a Function Use? 12-15
Dependent Functions, Built-Ins, Classes 12-16

Function Arguments . 12-17
Getting the Input and Output Arguments 12-17
Variable Numbers of Arguments . 12-17
String or Numeric Arguments . 12-18
Passing Arguments in a Structure . 12-18
Passing Arguments in a Cell Array 12-19

Program Development . 12-20
Planning the Program . 12-20
Using Pseudo-Code . 12-20
Selecting the Right Data Structures 12-20
General Coding Practices . 12-21

xxii Contents

Naming a Function Uniquely . 12-21
The Importance of Comments . 12-21
Coding in Steps . 12-22
Making Modifications in Steps . 12-22
Functions with One Calling Function 12-22
Testing the Final Program . 12-22

Debugging . 12-23
The MATLAB Debug Functions . 12-23
More Debug Functions . 12-23
The MATLAB Graphical Debugger 12-24
A Quick Way to Examine Variables 12-24
Setting Breakpoints from the Command Line 12-25
Finding Line Numbers to Set Breakpoints 12-25
Stopping Execution on an Error or Warning 12-25
Locating an Error from the Error Message 12-25
Using Warnings to Help Debug . 12-26
Making Code Execution Visible . 12-26
Debugging Scripts . 12-26

Variables . 12-27
Rules for Variable Names . 12-27
Making Sure Variable Names Are Valid 12-27
Do Not Use Function Names for Variables 12-28
Checking for Reserved Keywords . 12-28
Avoid Using i and j for Variables . 12-29
Avoid Overwriting Variables in Scripts 12-29
Persistent Variables . 12-29
Protecting Persistent Variables . 12-29
Global Variables . 12-30

Strings . 12-31
Creating Strings with Concatenation 12-31
Comparing Methods of Concatenation 12-31
Store Arrays of Strings in a Cell Array 12-32
Converting Between Strings and Cell Arrays 12-32
Search and Replace Using Regular Expressions 12-33

Evaluating Expressions . 12-34
Find Alternatives to Using eval . 12-34
Assigning to a Series of Variables . 12-34
Short-Circuit Logical Operators . 12-35

xxiii

Changing the Counter Variable within a for Loop 12-35

MATLAB Path . 12-36
Precedence Rules . 12-36
File Precedence . 12-37
Adding a Directory to the Search Path 12-37
Handles to Functions Not on the Path 12-37
Making Toolbox File Changes Visible to MATLAB 12-38
Making Nontoolbox File Changes Visible to MATLAB 12-39
Change Notification on Windows . 12-39

Program Control . 12-40
Using break, continue, and return . 12-40
Using switch Versus if . 12-41
MATLAB case Evaluates Strings . 12-41
Multiple Conditions in a case Statement 12-41
Implicit Break in switch-case . 12-41
Variable Scope in a switch . 12-42
Catching Errors with try-catch . 12-42
Nested try-catch Blocks . 12-43
Forcing an Early Return from a Function 12-43

Save and Load . 12-44
Saving Data from the Workspace . 12-44
Loading Data into the Workspace . 12-44
Viewing Variables in a MAT-File . 12-45
Appending to a MAT-File . 12-45
Save and Load on Startup or Quit . 12-46
Saving to an ASCII File . 12-46

Files and Filenames . 12-47
Naming M-files . 12-47
Naming Other Files . 12-47
Passing Filenames as Arguments . 12-48
Passing Filenames to ASCII Files . 12-48
Determining Filenames at Run-Time 12-48
Returning the Size of a File . 12-48

Input/Output . 12-50
File I/O Function Overview . 12-50
Common I/O Functions . 12-50
Readable File Formats . 12-51

xxiv Contents

Using the Import Wizard . 12-51
Loading Mixed Format Data . 12-51
Reading Files with Different Formats 12-52
Reading ASCII Data into a Cell Array 12-52
Interactive Input into Your Program 12-52

Starting MATLAB . 12-53
Getting MATLAB to Start Up Faster 12-53

Operating System Compatibility . 12-54
Executing O/S Commands from MATLAB 12-54
Searching Text with grep . 12-54
Constructing Paths and Filenames 12-54
Finding the MATLAB Root Directory 12-55
Temporary Directories and Filenames 12-55

Demos . 12-56
Demos Available with MATLAB . 12-56

For More Information . 12-57
Current CSSM . 12-57
Archived CSSM . 12-57
MATLAB Technical Support . 12-57
Tech Notes . 12-57
MATLAB Central . 12-57
MATLAB Newsletters (Digest, News & Notes) 12-57
MATLAB Documentation . 12-58
MATLAB Index of Examples . 12-58

Index

xxv

xxvi Contents

1

Data Structures

Creating and Concatenating
Matrices (p. 1-3)

Create a matrix or construct one
from other matrices.

Matrix Indexing (p. 1-18) Access or assign to elements of a
matrix using methods of row and
column indexing.

Getting Information About a Matrix
(p. 1-28)

Retrieve information about the
structure or contents of a matrix.

Resizing and Reshaping Matrices
(p. 1-31)

Change the size, shape, or
arrangement of elements in an
existing matrix.

Shifting and Sorting Matrices
(p. 1-41)

Shift matrix elements along one or
more dimensions, or sort them into
an ascending or descending order.

Operating on Diagonal Matrices
(p. 1-46)

Construct and manipulate matrices
along a diagonal of the rectangular
shape.

Empty Matrices, Scalars, and
Vectors (p. 1-48)

Work with matrices that have one
or more dimensions equal to zero or
one.

Full and Sparse Matrices (p. 1-54) Conserve memory and get optimal
performance with more efficient
storage of matrices that contain a
large number of zero values.

1 Data Structures

Multidimensional Arrays (p. 1-56) Create and work with arrays that
have more than two dimensions.

Summary of Matrix and Array
Functions (p. 1-76)

Quick reference to the functions
commonly used in working with
matrices.

1-2

Creating and Concatenating Matrices

Creating and Concatenating Matrices

In this section...

“Overview” on page 1-3

“Constructing a Simple Matrix” on page 1-4

“Specialized Matrix Functions” on page 1-5

“Concatenating Matrices” on page 1-8

“Matrix Concatenation Functions” on page 1-9

“Generating a Numeric Sequence” on page 1-11

“Combining Unlike Data Types” on page 1-13

Overview
The most basic data structure in MATLAB® is the matrix: a two-dimensional,
rectangularly shaped data structure capable of storing multiple elements of
data in an easily accessible format. These data elements can be numbers,
characters, logical states of true or false, or even other MATLAB structure
types. MATLAB uses these two-dimensional matrices to store single numbers
and linear series of numbers as well. In these cases, the dimensions are 1-by-1
and 1-by-n respectively, where n is the length of the numeric series. MATLAB
also supports data structures that have more than two dimensions. These
data structures are referred to as arrays in the MATLAB documentation.

MATLAB is a matrix-based computing environment. All of the data that you
enter into MATLAB is stored in the form of a matrix or a multidimensional
array. Even a single numeric value like 100 is stored as a matrix (in this case,
a matrix having dimensions 1-by-1):

A = 100;

whos A
Name Size Bytes Class

A 1x1 8 double array

1-3

1 Data Structures

Regardless of the data type being used, whether it is numeric, character, or
logical true or false data, MATLAB stores this data in matrix (or array)
form. For example, the string 'Hello World' is a 1-by-11 matrix of individual
character elements in MATLAB. You can also build matrices composed of
more complex data types, such as MATLAB structures and cell arrays.

To create a matrix of basic data elements such as numbers or characters, see

• “Constructing a Simple Matrix” on page 1-4

• “Specialized Matrix Functions” on page 1-5

To build a matrix composed of other matrices, see

• “Concatenating Matrices” on page 1-8

• “Matrix Concatenation Functions” on page 1-9

This section also describes

• “Generating a Numeric Sequence” on page 1-11

• “Combining Unlike Data Types” on page 1-13

Constructing a Simple Matrix
The simplest way to create a matrix in MATLAB is to use the matrix
constructor operator, []. Create a row in the matrix by entering elements
(shown as E below) within the brackets. Separate each element with a comma
or space:

row = [E1, E2, ..., Em] row = [E1 E2 ... Em]

For example, to create a one row matrix of five elements, type

A = [12 62 93 -8 22];

To start a new row, terminate the current row with a semicolon:

A = [row1; row2; ...; rown]

1-4

Creating and Concatenating Matrices

This example constructs a 3 row, 5 column (or 3-by-5) matrix of numbers.
Note that all rows must have the same number of elements:

A = [12 62 93 -8 22; 16 2 87 43 91; -4 17 -72 95 6]
A =

12 62 93 -8 22
16 2 87 43 91
-4 17 -72 95 6

The square brackets operator constructs two-dimensional matrices only,
(including 0-by-0, 1-by-1, and 1-by-n matrices). To construct arrays of more
than two dimensions, see “Creating Multidimensional Arrays” on page 1-58.

For instructions on how to read or overwrite any matrix element, see “Matrix
Indexing” on page 1-18.

Entering Signed Numbers
When entering signed numbers into a matrix, make sure that the sign
immediately precedes the numeric value. Note that while the following two
expressions are equivalent,

7 -2 +5 7 - 2 + 5
ans = ans =

10 10

the next two are not:

[7 -2 +5] [7 - 2 + 5]
ans = ans =

7 -2 5 10

Specialized Matrix Functions
MATLAB has a number of functions that create different kinds of matrices.
Some create specialized matrices like the Hankel or Vandermonde matrix.
The functions shown in the table below create matrices for more general use.

1-5

1 Data Structures

Function Description

ones Create a matrix or array of all ones.

zeros Create a matrix or array of all zeros.

eye Create a matrix with ones on the diagonal and zeros
elsewhere.

accumarray Distribute elements of an input matrix to specified
locations in an output matrix, also allowing for
accumulation.

diag Create a diagonal matrix from a vector.

magic Create a square matrix with rows, columns, and diagonals
that add up to the same number.

rand Create a matrix or array of uniformly distributed random
numbers.

randn Create a matrix or array of normally distributed random
numbers and arrays.

randperm Create a vector (1-by-n matrix) containing a random
permutation of the specified integers.

Most of these functions return matrices of type double (double-precision
floating point). However, you can easily build basic arrays of any numeric type
using the ones, zeros, and eye functions.

To do this, specify the MATLAB class name as the last argument:

A = zeros(4, 6, 'uint32')
A =

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

Examples
Here are some examples of how you can use these functions.

1-6

Creating and Concatenating Matrices

Creating a Magic Square Matrix. A magic square is a matrix in which
the sum of the elements in each column, or each row, or each main diagonal
is the same. To create a 5-by-5 magic square matrix, use the magic function
as shown.

A = magic(5)
A =

17 24 1 8 15
23 5 7 14 16
4 6 13 20 22

10 12 19 21 3
11 18 25 2 9

Note that the elements of each row, each column, and each main diagonal
add up to the same value: 65.

Creating a Random Matrix. The rand function creates a matrix or array
with elements uniformly distributed between zero and one. This example
multiplies each element by 20:

A = rand(5) * 20
A =

19.0026 15.2419 12.3086 8.1141 1.1578
4.6228 9.1294 15.8387 18.7094 7.0574

12.1369 0.3701 18.4363 18.3381 16.2633
9.7196 16.4281 14.7641 8.2054 0.1972

17.8260 8.8941 3.5253 17.8730 2.7778

The sequence of numbers produced by rand is determined by the internal
state of the generator. Setting the generator to the same fixed state enables
you to repeat computations. Examples in this documentation that use the
rand function are initialized to a state of 0 to make the output consistent
each time they are run:

rand('state', 0);

Creating a Diagonal Matrix. Use diag to create a diagonal matrix from a
vector. You can place the vector along the main diagonal of the matrix, or on a
diagonal that is above or below the main one, as shown here. The -1 input
places the vector one row below the main diagonal:

1-7

1 Data Structures

A = [12 62 93 -8 22];

B = diag(A, -1)
B =

0 0 0 0 0 0
12 0 0 0 0 0
0 62 0 0 0 0
0 0 93 0 0 0
0 0 0 -8 0 0
0 0 0 0 22 0

Concatenating Matrices
Matrix concatenation is the process of joining one or more matrices to make a
new matrix. The brackets [] operator discussed earlier in this section serves
not only as a matrix constructor, but also as the MATLAB concatenation
operator. The expression C = [A B] horizontally concatenates matrices A and
B. The expression C = [A; B] vertically concatenates them.

This example constructs a new matrix C by concatenating matrices A and B
in a vertical direction:

A = ones(2, 5) * 6; % 2-by-5 matrix of 6's
B = rand(3, 5); % 3-by-5 matrix of random values

C = [A; B] % Vertically concatenate A and B
C =

6.0000 6.0000 6.0000 6.0000 6.0000
6.0000 6.0000 6.0000 6.0000 6.0000
0.9501 0.4860 0.4565 0.4447 0.9218
0.2311 0.8913 0.0185 0.6154 0.7382
0.6068 0.7621 0.8214 0.7919 0.1763

Keeping Matrices Rectangular
You can construct matrices, or even multidimensional arrays, using
concatenation as long as the resulting matrix does not have an irregular
shape (as in the second illustration shown below). If you are building a matrix
horizontally, then each component matrix must have the same number of

1-8

Creating and Concatenating Matrices

rows. When building vertically, each component must have the same number
of columns.

This diagram shows two matrices of the same height (i.e., same number of
rows) being combined horizontally to form a new matrix.

The next diagram illustrates an attempt to horizontally combine two matrices
of unequal height. MATLAB does not allow this.

Matrix Concatenation Functions
The following functions combine existing matrices to form a new matrix.

Function Description

cat Concatenate matrices along the specified dimension

horzcat Horizontally concatenate matrices

vertcat Vertically concatenate matrices

repmat Create a new matrix by replicating and tiling existing
matrices

blkdiag Create a block diagonal matrix from existing matrices

Examples
Here are some examples of how you can use these functions.

1-9

1 Data Structures

Concatenating Matrices and Arrays. An alternative to using the []
operator for concatenation are the three functions cat, horzcat, and vertcat.
With these functions, you can construct matrices (or multidimensional arrays)
along a specified dimension. Either of the following commands accomplish the
same task as the command C = [A; B] used in the section on “Concatenating
Matrices” on page 1-8:

C = cat(1, A, B); % Concatenate along the first dimension
C = vertcat(A, B); % Concatenate vertically

Replicating a Matrix. Use the repmat function to create a matrix composed
of copies of an existing matrix. When you enter

repmat(M, v, h)

MATLAB replicates input matrix M v times vertically and h times horizontally.
For example, to replicate existing matrix A into a new matrix B, use

A = [8 1 6; 3 5 7; 4 9 2]
A =

8 1 6
3 5 7
4 9 2

B = repmat(A, 2, 4)
B =

8 1 6 8 1 6 8 1 6 8 1 6
3 5 7 3 5 7 3 5 7 3 5 7
4 9 2 4 9 2 4 9 2 4 9 2
8 1 6 8 1 6 8 1 6 8 1 6
3 5 7 3 5 7 3 5 7 3 5 7
4 9 2 4 9 2 4 9 2 4 9 2

Creating a Block Diagonal Matrix. The blkdiag function combines
matrices in a diagonal direction, creating what is called a block diagonal
matrix. All other elements of the newly created matrix are set to zero:

A = magic(3);
B = [-5 -6 -9; -4 -4 -2];
C = eye(2) * 8;

1-10

Creating and Concatenating Matrices

D = blkdiag(A, B, C)
D =

8 1 6 0 0 0 0 0
3 5 7 0 0 0 0 0
4 9 2 0 0 0 0 0
0 0 0 -5 -6 -9 0 0
0 0 0 -4 -4 -2 0 0
0 0 0 0 0 0 8 0
0 0 0 0 0 0 0 8

Generating a Numeric Sequence
Because numeric sequences can often be useful in constructing and indexing
into matrices and arrays, MATLAB provides a special operator to assist in
creating them.

This section covers

• “The Colon Operator” on page 1-11

• “Using the Colon Operator with a Step Value” on page 1-12

The Colon Operator
The colon operator (first:last) generates a 1-by-n matrix (or vector) of
sequential numbers from the first value to the last. The default sequence is
made up of incremental values, each 1 greater than the previous one:

A = 10:15
A =

10 11 12 13 14 15

The numeric sequence does not have to be made up of positive integers. It can
include negative numbers and fractional numbers as well:

A = -2.5:2.5
A =

-2.5000 -1.5000 -0.5000 0.5000 1.5000 2.5000

By default, MATLAB always increments by exactly 1 when creating the
sequence, even if the ending value is not an integral distance from the start:

1-11

1 Data Structures

A = 1:6.3
A =

1 2 3 4 5 6

Also, the default series generated by the colon operator always increments
rather than decrementing. The operation shown in this example attempts to
increment from 9 to 1 and thus MATLAB returns an empty matrix:

A = 9:1
A =

Empty matrix: 1-by-0

The next section explains how to generate a nondefault numeric series.

Using the Colon Operator with a Step Value
To generate a series that does not use the default of incrementing by 1,
specify an additional value with the colon operator (first:step:last). In
between the starting and ending value is a step value that tells MATLAB
how much to increment (or decrement, if step is negative) between each
number it generates.

To generate a series of numbers from 10 to 50, incrementing by 5, use

A = 10:5:50
A =

10 15 20 25 30 35 40 45 50

You can increment by noninteger values. This example increments by 0.2:

A = 3:0.2:3.8
A =

3.0000 3.2000 3.4000 3.6000 3.8000

To create a sequence with a decrementing interval, specify a negative step
value:

A = 9:-1:1
A =

9 8 7 6 5 4 3 2 1

1-12

Creating and Concatenating Matrices

Combining Unlike Data Types
Matrices and arrays can be composed of elements of most any MATLAB data
type as long as all elements in the matrix are of the same type. If you do
include elements of unlike data types when constructing a matrix, MATLAB
converts some elements so that all elements of the resulting matrix are of
the same type. (See Chapter 2, “Data Types” for information on any of the
MATLAB data types discussed here.)

Data type conversion is done with respect to a preset precedence of data
types. The following table shows the five data types you can concatenate with
an unlike type without generating an error (that is, with the exception of
character and logical).

TYPE character integer single double logical

character character character character character invalid

integer character integer integer integer integer

single character integer single single single

double character integer single double double

logical invalid integer single double logical

For example, concatenating a double and single matrix always yields a
matrix of type single. MATLAB converts the double element to single to
accomplish this.

Combining Unlike Integer Types
If you combine different integer types in a matrix (e.g., signed with unsigned,
or 8-bit integers with 16-bit integers), MATLAB returns a matrix in which all
elements are of one common type. MATLAB sets all elements of the resulting
matrix to the data type of the left-most element in the input matrix. For
example, the result of the following concatenation is a vector of three 16-bit
signed integers:

A = [int16(450) uint8(250) int32(1000000)]

MATLAB also displays a warning to inform you that the result may not be
what you had expected:

1-13

1 Data Structures

A = [int16(450) uint8(250) int32(1000000)];
Warning: Concatenation with dominant (left-most) integer class
may overflow other operands on conversion to return class.

You can disable this warning by entering the following two commands directly
after the operation that caused the warning. The first command retrieves
the message identifier associated with the most recent warning issued by
MATLAB. The second command uses this identifier to disable any further
warnings of that type from being issued:

[msg, intcat_msgid] = lastwarn;
warning('off', intcat_msgid);

To reenable the warning so that it will now be displayed, use

warning('on', intcat_msgid);

You can use these commands to disable or enable the display of any MATLAB
warning.

Example of Combining Unlike Integer Sizes. After disabling the integer
concatenation warnings as shown above, concatenate the following two
numbers once, and then switch their order. The return value depends on the
order in which the integers are concatenated. The left-most type determines
the data type for all elements in the vector:

A = [int16(5000) int8(50)]
A =

5000 50

B = [int8(50) int16(5000)]
B =

50 127

The first operation returns a vector of 16-bit integers. The second returns a
vector of 8-bit integers. The element int16(5000) is set to 127, the maximum
value for an 8-bit signed integer.

The same rules apply to vertical concatenation:

C = [int8(50); int16(5000)]

1-14

Creating and Concatenating Matrices

C =
50

127

Note You can find the maximum or minimum values for any MATLAB
integer type using the intmax and intmin functions. For floating-point types,
use realmax and realmin.

Example of Combining Signed with Unsigned. Now do the same exercise
with signed and unsigned integers. Again, the left-most element determines
the data type for all elements in the resulting matrix:

A = [int8(-100) uint8(100)]
A =

-100 100

B = [uint8(100) int8(-100)]
B =

100 0

The element int8(-100) is set to zero because it is no longer signed.

MATLAB evaluates each element prior to concatenating them into a combined
array. In other words, the following statement evaluates to an 8-bit signed
integer (equal to 50) and an 8-bit unsigned integer (unsigned -50 is set to
zero) before the two elements are combined. Following the concatenation, the
second element retains its zero value but takes on the unsigned int8 type:

A = [int8(50), uint8(-50)]
A =

50 0

Combining Integer and Noninteger Data
If you combine integers with double, single, or logical data types, all
elements of the resulting matrix are given the data type of the left-most
integer. For example, all elements of the following vector are set to int32:

A = [true pi int32(1000000) single(17.32) uint8(250)]

1-15

1 Data Structures

Empty Matrices
If you construct a matrix using empty matrix elements, the empty matrices
are ignored in the resulting matrix:

A = [5.36; 7.01; []; 9.44]
A =

5.3600
7.0100
9.4400

Concatenation Examples
Here are some examples of data type conversion during matrix construction.

Combining Single and Double Types. Combining single values with
double values yields a single matrix. Note that 5.73*10^300 is too big to
be stored as a single, thus the conversion from double to single sets it
to infinity. (The class function used in this example returns the data type
for the input value):

x = [single(4.5) single(-2.8) pi 5.73*10^300]
x =

4.5000 -2.8000 3.1416 Inf

class(x) % Display the data type of x
ans =

single

Combining Integer and Double Types. Combining integer values with
double values yields an integer matrix. Note that the fractional part of pi
is rounded to the nearest integer. (The int8 function used in this example
converts its numeric argument to an 8-bit integer):

x = [int8(21) int8(-22) int8(23) pi 45/6]
x =

21 -22 23 3 7

1-16

Creating and Concatenating Matrices

class(x)
ans =

int8

Combining Character and Double Types. Combining character values
with double values yields a character matrix. MATLAB converts the double
elements in this example to their character equivalents:

x = ['A' 'B' 'C' 68 69 70]
x =

ABCDEF

class(x)
ans =

char

Combining Logical and Double Types. Combining logical values with
double values yields a double matrix. MATLAB converts the logical true
and false elements in this example to double:

x = [true false false pi sqrt(7)]
x =

1.0000 0 0 3.1416 2.6458

class(x)
ans =

double

1-17

1 Data Structures

Matrix Indexing

In this section...

“Accessing Single Elements” on page 1-18

“Linear Indexing” on page 1-19

“Functions That Control Indexing Style” on page 1-19

“Accessing Multiple Elements” on page 1-20

“Using Logicals in Array Indexing” on page 1-22

“Single-Colon Indexing with Different Array Types” on page 1-26

“Indexing on Assignment” on page 1-26

Accessing Single Elements
To reference a particular element in a matrix, specify its row and column
number using the following syntax, where A is the matrix variable. Always
specify the row first and column second:

A(row, column)

For example, for a 4-by-4 magic square A,

A = magic(4)
A =

16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1

you would access the element at row 4, column 2 with

A(4, 2)
ans =

14

For arrays with more than two dimensions, specify additional indices
following the row and column indices. See the section on “Multidimensional
Arrays” on page 1-56.

1-18

Matrix Indexing

Linear Indexing
With MATLAB, you can refer to the elements of a matrix with a single
subscript, A(k). MATLAB stores matrices and arrays not in the shape that
they appear when displayed in the MATLAB Command Window, but as
a single column of elements. This single column is composed of all of the
columns from the matrix, each appended to the last.

So, matrix A

A = [2 6 9; 4 2 8; 3 5 1]
A =

2 6 9
4 2 8
3 5 1

is actually stored in memory as the sequence

2, 4, 3, 6, 2, 5, 9, 8, 1

The element at row 3, column 2 of matrix A (value = 5) can also be identified
as element 6 in the actual storage sequence. To access this element, you have
a choice of using the standard A(3,2) syntax, or you can use A(6), which is
referred to as linear indexing.

If you supply more subscripts, MATLAB calculates an index into the storage
column based on the dimensions you assigned to the array. For example,
assume a two-dimensional array like A has size [d1 d2], where d1 is the
number of rows in the array and d2 is the number of columns. If you supply
two subscripts (i, j) representing row-column indices, the offset is

(j-1) * d1 + i

Given the expression A(3,2), MATLAB calculates the offset into A’s storage
column as (2-1) * 3 + 3, or 6. Counting down six elements in the column
accesses the value 5.

Functions That Control Indexing Style
If you have row-column subscripts but want to use linear indexing instead,
you can convert to the latter using the sub2ind function. In the 3-by-3 matrix

1-19

1 Data Structures

A used in the previous section, sub2ind changes a standard row-column index
of (3,2) to a linear index of 6:

A = [2 6 9; 4 2 8; 3 5 1];

linearindex = sub2ind(size(A), 3, 2)
linearindex =

6

To get the row-column equivalent of a linear index, use the ind2sub function:

[row col] = ind2sub(size(A), 6)
row =

3
col =

2

Accessing Multiple Elements
For the 4-by-4 matrix A shown below, it is possible to compute the sum of the
elements in the fourth column of A by typing

A = magic(4);
A(1,4) + A(2,4) + A(3,4) + A(4,4)

You can reduce the size of this expression using the colon operator. Subscript
expressions involving colons refer to portions of a matrix. The expression

A(1:m, n)

refers to the elements in rows 1 through m of column n of matrix A. Using this
notation, you can compute the sum of the fourth column of A more succinctly:

sum(A(1:4, 4))

Nonconsecutive Elements
To refer to nonconsecutive elements in a matrix, use the colon operator with
a step value. The m:3:n in this expression means to make the assignment
to every third element in the matrix. Note that this example uses linear
indexing:

1-20

Matrix Indexing

B = A;

B(1:3:16) = -10
B =

-10 2 3 -10
5 11 -10 8
9 -10 6 12

-10 14 15 -10

MATLAB supports a type of array indexing that uses one array as the index
into another array. You can base this type of indexing on either the values
or the positions of elements in the indexing array.

Here is an example of value-based indexing where array B indexes into
elements 1, 3, 6, 7, and 10 of array A. In this case, the numeric values of array
B designate the intended elements of A:

A = 5:5:50
A =

5 10 15 20 25 30 35 40 45 50
B = [1 3 6 7 10];

A(B)
ans =

5 15 30 35 50

The end Keyword
MATLAB provides the keyword end to designate the last element in a
particular dimension of an array. This keyword can be useful in instances
where your program does not know how many rows or columns there are in a
matrix. You can replace the expression in the previous example with

B(1:3:end) = -10

Note The keyword end has several meanings in MATLAB. It can be used as
explained above, or to terminate a conditional block of code such as if and
for blocks, or to terminate a nested function.

1-21

1 Data Structures

Specifying All Elements of a Row or Column
The colon by itself refers to all the elements in a row or column of a matrix.
Using the following syntax, you can compute the sum of all elements in the
second column of a 4-by-4 magic square A:

sum(A(:, 2))
ans =

34

By using the colon with linear indexing, you can refer to all elements in the
entire matrix. This example displays all the elements of matrix A, returning
them in a column-wise order:

A(:)
ans =

16
5
9
4
.
.
.

12
1

Using Logicals in Array Indexing
A logical array index designates the elements of an array A based on their
position in the indexing array, B, not their value. In this masking type of
operation, every true element in the indexing array is treated as a positional
index into the array being accessed.

In the following example, B is a matrix of logical ones and zeros. The position
of these elements in B determines which elements of A are designated by
the expression A(B):

A = [1 2 3; 4 5 6; 7 8 9]
A =

1 2 3
4 5 6
7 8 9

1-22

Matrix Indexing

B = logical([0 1 0; 1 0 1; 0 0 1]);
B =

0 1 0
1 0 1
0 0 1

A(B)
ans =

4
2
6
9

The find function can be useful with logical arrays as it returns the linear
indices of nonzero elements in B, and thus helps to interpret A(B):

find(B)
ans =

2
4
8
9

Logical Indexing – Example 1
This example creates logical array B that satisfies the condition A > 0.5, and
uses the positions of ones in B to index into A:

rand('twister', 5489); % Initialize the state of the
% random number generator.

A = rand(5);
B = A > 0.5;

A(B) = 0
A =

0 0.0975 0.1576 0.1419 0
0 0.2785 0 0.4218 0.0357

0.1270 0 0 0 0
0 0 0.4854 0 0
0 0 0 0 0

1-23

1 Data Structures

A simpler way to express this is

A(A > 0.5) = 0

Logical Indexing – Example 2
The next example highlights the location of the prime numbers in a magic
square using logical indexing to set the nonprimes to 0:

A = magic(4)
A =

16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1

B = isprime(A)
B =

0 1 1 1
1 1 0 0
0 1 0 0
0 0 0 0

A(~B) = 0; % Logical indexing

A
A =

0 2 3 13
5 11 0 0
0 7 0 0
0 0 0 0

find(B)
ans =

2
5
6
7
9

13

1-24

Matrix Indexing

Logical Indexing with a Smaller Array
In most cases, the logical indexing array should have the same number of
elements as the array being indexed into, but this is not a requirement. The
indexing array may have smaller (but not larger) dimensions:

A = [1 2 3;4 5 6;7 8 9]
A =

1 2 3
4 5 6
7 8 9

B = logical([0 1 0; 1 0 1])
B =

0 1 0
1 0 1

isequal(numel(A), numel(B))
ans =

0

A(B)
ans =

4
7
8

MATLAB treats the missing elements of the indexing array as if they were
present and set to zero, as in array C below:

% Add zeros to indexing array C to give it the same number of
% elements as A.
C = logical([B(:);0;0;0]);

isequal(numel(A), numel(C))
ans =

1

A(C)
ans =

4

1-25

1 Data Structures

7
8

Single-Colon Indexing with Different Array Types
When you index into a standard MATLAB array using a single colon,
MATLAB returns a column vector (see variable n, below). When you index
into a structure or cell array using a single colon, you get a comma-separated
list “Comma-Separated Lists” on page 3-79 (see variables c and s, below).

Create three types of arrays:

n = [1 2 3; 4 5 6];
c = {1 2; 3 4};
s = cell2struct(c, {'a', 'b'}, 1); s(:,2)=s(:,1);

Use single-colon indexing on each:

n(:) c{:} s(:).a
ans = ans = ans =

1 1 1
4 ans = ans =
2 3 2
5 ans = ans =
3 2 1
6 ans = ans =

4 2

Indexing on Assignment
When assigning values from one matrix to another matrix, you can use any of
the styles of indexing covered in this section. Matrix assignment statements
also have the following requirement.

In the assignment A(J,K,...) = B(M,N,...), subscripts J, K, M, N, etc. may
be scalar, vector, or array, provided that all of the following are true:

• The number of subscripts specified for B, not including trailing subscripts
equal to 1, does not exceed ndims(B).

• The number of nonscalar subscripts specified for A equals the number
of nonscalar subscripts specified for B. For example, A(5, 1:4, 1, 2)

1-26

Matrix Indexing

= B(5:8) is valid because both sides of the equation use one nonscalar
subscript.

• The order and length of all nonscalar subscripts specified for A matches
the order and length of nonscalar subscripts specified for B. For example,
A(1:4, 3, 3:9) = B(5:8, 1:7) is valid because both sides of the
equation (ignoring the one scalar subscript 3) use a 4-element subscript
followed by a 7-element subscript.

1-27

1 Data Structures

Getting Information About a Matrix

In this section...

“Dimensions of the Matrix” on page 1-28

“Data Types Used in the Matrix” on page 1-29

“Data Structures Used in the Matrix” on page 1-30

Dimensions of the Matrix
These functions return information about the shape and size of a matrix.

Function Description

length Return the length of the longest dimension. (The length of a
matrix or array with any zero dimension is zero.)

ndims Return the number of dimensions.

numel Return the number of elements.

size Return the length of each dimension.

The following examples show some simple ways to use these functions. Both
use the 3-by-5 matrix A shown here:

rand('state', 0); % Initialize random number generator
A = rand(5) * 10;
A(4:5, :) = []
A =

9.5013 7.6210 6.1543 4.0571 0.5789
2.3114 4.5647 7.9194 9.3547 3.5287
6.0684 0.1850 9.2181 9.1690 8.1317

Example Using numel
Using the numel function, find the average of all values in matrix A:

sum(A(:))/numel(A)
ans =

1-28

Getting Information About a Matrix

5.8909

Example Using ndims, numel, and size
Using ndims and size, go through the matrix and find those values that are
between 5 and 7, inclusive:

if ndims(A) ~= 2
return

end

[rows cols] = size(A);
for m = 1:rows

for n = 1:cols
x = A(m, n);
if x >= 5 && x <= 7

disp(sprintf('A(%d, %d) = %5.2f', m, n, A(m,n)))
end

end
end

The code returns the following:

A(1, 3) = 6.15
A(3, 1) = 6.07

Data Types Used in the Matrix
These functions test elements of a matrix for a specific data type.

Function Description

isa Detect if input is of a given data type.

iscell Determine if input is a cell array.

iscellstr Determine if input is a cell array of strings.

ischar Determine if input is a character array.

isfloat Determine if input is a floating-point array.

isinteger Determine if input is an integer array.

1-29

1 Data Structures

Function Description

islogical Determine if input is a logical array.

isnumeric Determine if input is a numeric array.

isreal Determine if input is an array of real numbers.

isstruct Determine if input is a MATLAB structure array.

Example Using isnumeric and isreal
Pick out the real numeric elements from this vector:

A = [5+7i 8/7 4.23 39j pi 9-2i];

for m = 1:numel(A)
if isnumeric(A(m)) && isreal(A(m))

disp(A(m))
end

end

The values returned are

1.1429
4.2300
3.1416

Data Structures Used in the Matrix
These functions test elements of a matrix for a specific data structure.

Function Description

isempty Determine if input has any dimension with size zero.

isscalar Determine if input is a 1-by-1 matrix.

issparse Determine if input is a sparse matrix.

isvector Determine if input is a 1-by-n or n-by-1 matrix.

1-30

Resizing and Reshaping Matrices

Resizing and Reshaping Matrices

In this section...

“Expanding the Size of a Matrix” on page 1-31

“Diminishing the Size of a Matrix” on page 1-35

“Reshaping a Matrix” on page 1-36

“Preallocating Memory” on page 1-38

Expanding the Size of a Matrix
You can expand the size of any existing matrix as long as doing so does
not give the resulting matrix an irregular shape. (See “Keeping Matrices
Rectangular” on page 1-8). For example, you can vertically combine a 4-by-3
matrix and 7-by-3 matrix because all rows of the resulting matrix have the
same number of columns (3).

Two ways of expanding the size of an existing matrix are

• Concatenating new elements onto the matrix

• Storing to a location outside the bounds of the matrix

Note If you intend to expand the size of a matrix repeatedly over time
as it requires more room (usually done in a programming loop), it is
advisable to preallocate space for the matrix when you initially create it. See
“Preallocating Memory” on page 1-38.

Concatenating Onto the Matrix
Concatenation is most useful when you want to expand a matrix by adding
new elements or blocks that are compatible in size with the original matrix.
This means that the size of all matrices being joined along a specific dimension
must be equal along that dimension. See “Concatenating Matrices” on page
1-8.

1-31

1 Data Structures

This example runs a user-defined function compareResults on the data in
matrices stats04 and stats03. Each time through the loop, it concatenates
the results of this function onto the end of the data stored in comp04:

col = 10;
comp04 = [];

for k = 1:50
t = compareResults(stats04(k,1:col), stats03(k,1:col));
comp04 = [comp04; t];

end

Concatenating to a Structure or Cell Array. You can add on to arrays of
structures or cells in the same way as you do with ordinary matrices. This
example creates a 3-by-8 matrix of structures S, each having 3 fields: x, y, and
z, and then concatenates a second structure matrix S2 onto the original:

Create a 3-by-8 structure array S:

for k = 1:24
S(k) = struct('x', 10*k, 'y', 10*k+1, 'z', 10*k+2);

end
S = reshape(S, 3, 8);

Create a second array that is 3-by-2 and uses the same field names:

for k = 25:30
S2(k-24) = struct('x', 10*k, 'y', 10*k+1, 'z', 10*k+2);

end
S2= reshape(S2, 3, 2);

Concatenate S2 onto S along the horizontal dimension:

S = [S S2]
S =
3x10 struct array with fields:

x
y
z

1-32

Resizing and Reshaping Matrices

Adding Smaller Blocks to a Matrix
To add one or more elements to a matrix where the sizes are not compatible,
you can often just store the new elements outside the boundaries of the
original matrix. MATLAB automatically pads the matrix with zeros to keep it
rectangular.

Construct a 3-by-5 matrix, and attempt to add a new element to it using
concatenation. The operation fails because you are attempting to join a
one-column matrix with one that has five columns:

A = [10 20 30 40 50; ...
60 70 80 90 100; ...

110 120 130 140 150];

A = [A; 160]
??? Error using ==> vertcat
All rows in the bracketed expression must have the same
number of columns.

Try this again, but this time do it in such a way that enables MATLAB to
make adjustments to the size of the matrix. Store the new element in row 4, a
row that does not yet exist in this matrix. MATLAB expands matrix A by an
entire new row by padding columns 2 through 5 with zeros:

A(4,1) = 160
A =

10 20 30 40 50
60 70 80 90 100

110 120 130 140 150
160 0 0 0 0

Note Attempting to read from nonexistent matrix locations generates an
error. You can only write to these locations.

You can also expand the matrix by adding a matrix instead of just a single
element:

A(4:6,1:3) = magic(3)+100

1-33

1 Data Structures

A =
10 20 30 40 50
60 70 80 90 100

110 120 130 140 150
108 101 106 0 0
103 105 107 0 0
104 109 102 0 0

You do not have to add new elements sequentially. Wherever you store
the new elements, MATLAB pads with zeros to make the resulting matrix
rectangular in shape:

A(4,8) = 300
A =

10 20 30 40 50 0 0 0
60 70 80 90 100 0 0 0

110 120 130 140 150 0 0 0
0 0 0 0 0 0 0 300

Expanding a Structure or Cell Array. You can expand a structure or cell
array in the same way that you can a matrix. This example adds an additional
cell to a cell array by storing it beyond the bounds of the original array.
MATLAB pads the data structure with empty cells ([]) to keep it rectangular.

The original array is 2-by-3:

C = {'Madison', 'G', [5 28 1967]; ...
46, '325 Maple Dr', 3015.28}

Add a cell to C{3,1} and MATLAB appends an entire row:

C{3, 1} = ...
struct('Fund_A', .45, 'Fund_E', .35, 'Fund_G', 20);
C =

'Madison' 'G' [1x3 double]
[46] '325 Maple Dr' [3.0153e+003]
[1x1 struct] [] []

1-34

Resizing and Reshaping Matrices

Expanding a Character Array. You can expand character arrays in the
same manner as other MATLAB arrays, but it is generally not recommended.
MATLAB expands any array by padding uninitialized elements with zeros.
Because zero is interpreted by MATLAB and some other programming
languages as a string terminator, you may find that some functions treat the
expanded string as if it were less than its full length.

Expand a 1-by-5 character array to twelve characters. The result appears
at first to be a typical string:

greeting = 'Hello'; greeting(1,8:12) = 'World'
greeting =

Hello World

Closer inspection however reveals string terminators at the point of expansion:

uint8(greeting)
ans =

72 101 108 108 111 0 0 87 111 114 108 100

This causes some functions, like strcmp, to return what might be considered
an unexpected result:

strcmp(greeting, 'Hello World')
ans =

0

Diminishing the Size of a Matrix
You can delete rows and columns from a matrix by assigning the empty array
[] to those rows or columns. Start with

A = magic(4)
A =

16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1

Then, delete the second column of A using

A(:, 2) = []

1-35

1 Data Structures

This changes matrix A to

A =
16 3 13
5 10 8
9 6 12
4 15 1

If you delete a single element from a matrix, the result is not a matrix
anymore. So expressions like

A(1,2) = []

result in an error. However, you can use linear indexing to delete a single
element, or a sequence of elements. This reshapes the remaining elements
into a row vector:

A(2:2:10) = []

results in

A =
16 9 3 6 13 12 1

Reshaping a Matrix
The following functions change the shape of a matrix.

Function Description

reshape Modify the shape of a matrix.

rot90 Rotate the matrix by 90 degrees.

fliplr Flip the matrix about a vertical axis.

flipud Flip the matrix about a horizontal axis.

flipdim Flip the matrix along the specified direction.

1-36

Resizing and Reshaping Matrices

Function Description

transpose Flip a matrix about its main diagonal, turning row
vectors into column vectors and vice versa.

ctranspose Transpose a matrix and replace each element with its
complex conjugate.

Examples
Here are a few examples to illustrate some of the ways you can reshape
matrices.

Reshaping a Matrix. Reshape 3-by-4 matrix A to have dimensions 2-by-6:

A = [1 4 7 10; 2 5 8 11; 3 6 9 12]
A =

1 4 7 10
2 5 8 11
3 6 9 12

B = reshape(A, 2, 6)
B =

1 3 5 7 9 11
2 4 6 8 10 12

Transposing a Matrix. Transpose A so that the row elements become
columns. You can use either the transpose function or the transpose operator
(.') to do this:

B = A.'
B =

1 2 3
4 5 6
7 8 9

10 11 12

There is a separate function called ctransposethat performs a complex
conjugate transpose of a matrix. The equivalent operator for ctranpose on
a matrix A is A':

1-37

1 Data Structures

A = [1+9i 2-8i 3+7i; 4-6i 5+5i 6-4i]
A =

1.0000 + 9.0000i 2.0000 -8.0000i 3.0000 + 7.0000i
4.0000 -6.0000i 5.0000 + 5.0000i 6.0000 -4.0000i

B = A'
B =

1.0000 -9.0000i 4.0000 + 6.0000i
2.0000 + 8.0000i 5.0000 -5.0000i
3.0000 -7.0000i 6.0000 + 4.0000i

Rotating a Matrix. Rotate the matrix by 90 degrees:

B = rot90(A)
B =

10 11 12
7 8 9
4 5 6
1 2 3

Flipping a Matrix. Flip A in a left-to-right direction:

B = fliplr(A)
B =

10 7 4 1
11 8 5 2
12 9 6 3

Preallocating Memory
Repeatedly expanding the size of an array over time, (for example, adding
more elements to it each time through a programming loop), can adversely
affect the performance of your program. This is because

• MATLAB has to spend time allocating more memory each time you increase
the size of the array.

• This newly allocated memory is likely to be noncontiguous, thus slowing
down any operations that MATLAB needs to perform on the array.

1-38

Resizing and Reshaping Matrices

The preferred method for sizing an array that is expected to grow over time
is to estimate the maximum possible size for the array, and preallocate this
amount of memory for it at the time the array is created. In this way, your
program performs one memory allocation that reserves one contiguous block.

The following command preallocates enough space for a 25,000 by 10,000
matrix, and initializes each element to zero:

A = zeros(25000, 10000);

Building a Preallocated Array
Once memory has been preallocated for the maximum estimated size of the
array, you can store your data in the array as you need it, each time appending
to the existing data. This example preallocates a large array, and then reads
blocks of data from a file into the array until it gets to the end of the file:

blocksize = 5000;
maxrows = 2500000; cols = 20;
rp = 1; % row pointer

% Preallocate A to its maximum possible size
A = zeros(maxrows, cols);

% Open the data file, saving the file pointer.
fid = fopen('statfile.dat', 'r');

while true
% Read from file into a cell array. Stop at EOF.
block = textscan(fid, '%n', blocksize*cols);
if isempty(block{1}) break, end;

% Convert cell array to matrix, reshape, place into A.
A(rp:rp+blocksize-1, 1:cols) = ...

reshape(cell2mat(block), blocksize, cols);

% Process the data in A.
evaluate_stats(A); % User-defined function

% Update row pointer

1-39

1 Data Structures

rp = rp + blocksize;
end

Note If you eventually need more room in a matrix than you had preallocated,
you can preallocate additional storage in the same manner, and concatenate
this additional storage onto the original array.

1-40

Shifting and Sorting Matrices

Shifting and Sorting Matrices

In this section...

“Shift and Sort Functions” on page 1-41

“Shifting the Location of Matrix Elements” on page 1-41

“Sorting the Data in Each Column” on page 1-43

“Sorting the Data in Each Row” on page 1-43

“Sorting Row Vectors” on page 1-44

Shift and Sort Functions
Use these functions to shift or sort the elements of a matrix.

Function Description

circshift Circularly shift matrix contents.

sort Sort array elements in ascending or descending order.

sortrows Sort rows in ascending order.

issorted Determine if matrix elements are in sorted order.

You can sort matrices, multidimensional arrays, and cell arrays of strings
along any dimension and in ascending or descending order of the elements.
The sort functions also return an optional array of indices showing the order
in which elements were rearranged during the sorting operation.

Shifting the Location of Matrix Elements
The circshift function shifts the elements of a matrix in a circular manner
along one or more dimensions. Rows or columns that are shifted out of the
matrix circulate back into the opposite end. For example, shifting a 4-by-7
matrix one place to the left moves the elements in columns 2 through 7 to
columns 1 through 6, and moves column 1 to column 7.

Create a 5-by-8 matrix named A and shift it to the right along the second
(horizontal) dimension by three places. (You would use [0, -3] to shift to the
left by three places):

1-41

1 Data Structures

A = [1:8; 11:18; 21:28; 31:38; 41:48]
A =

1 2 3 4 5 6 7 8
11 12 13 14 15 16 17 18
21 22 23 24 25 26 27 28
31 32 33 34 35 36 37 38
41 42 43 44 45 46 47 48

B = circshift(A, [0, 3])
B =

6 7 8 1 2 3 4 5
16 17 18 11 12 13 14 15
26 27 28 21 22 23 24 25
36 37 38 31 32 33 34 35
46 47 48 41 42 43 44 45

Now take A and shift it along both dimensions: three columns to the right
and two rows up:

A = [1:8; 11:18; 21:28; 31:38; 41:48];

B = circshift(A, [-2, 3])
B =

26 27 28 21 22 23 24 25
36 37 38 31 32 33 34 35
46 47 48 41 42 43 44 45
6 7 8 1 2 3 4 5

16 17 18 11 12 13 14 15

Since circshift circulates shifted rows and columns around to the other end
of a matrix, shifting by the exact size of A returns all rows and columns to
their original location:

B = circshift(A, size(A));

all(B(:) == A(:)) % Do all elements of B equal A?
ans =

1 % Yes

1-42

Shifting and Sorting Matrices

Sorting the Data in Each Column
The sort function sorts matrix elements along a specified dimension. The
syntax for the function is

sort(matrix, dimension)

To sort the columns of a matrix, specify 1 as the dimension argument. To sort
along rows, specify dimension as 2.

This example first constructs a 6-by-7 random matrix:

rand('state', 0); % Initialize random number generator
A = floor(rand(6,7) * 100);
A =

95 45 92 41 13 1 84
23 1 73 89 20 74 52
60 82 17 5 19 44 20
48 44 40 35 60 93 67
89 61 93 81 27 46 83
76 79 91 0 19 41 1

Sort each column of A in ascending order:

c = sort(A, 1)
c =

23 1 17 0 13 1 1
48 44 40 5 19 41 20
60 45 73 35 19 44 52
76 61 91 41 20 46 67
89 79 92 81 27 74 83
95 82 93 89 60 93 84

issorted(c(:, 1))
ans =

1

Sorting the Data in Each Row
Use issorted to sort data in each row. Using the example above, if you sort
each row of A in descending order, issorted tests for an ascending sequence.
You can flip the vector to test for a sorted descending sequence:

1-43

1 Data Structures

rand('state', 0); A = floor(rand(6,7) * 100);

r = sort(A, 2, 'descend')
r =

95 92 84 45 41 13 1
89 74 73 52 23 20 1
82 60 44 20 19 17 5
93 67 60 48 44 40 35
93 89 83 81 61 46 27
91 79 76 41 19 1 0

issorted(fliplr(r(1, :)))
ans =

1

When you specify a second output, sort returns the indices of the original
matrix A positioned in the order they appear in the output matrix. In this next
example, the second row of index contains the sequence 4 3 2 5 1, which
means that the sorted elements in output matrix r were taken from A(2,4),
A(2,3), A(2,2), A(2,5), and A(2,1):

[r index] = sort(A, 2, 'descend');
index
index =

1 3 7 2 4 5 6
4 6 3 7 1 5 2
2 1 6 7 5 3 4
6 7 5 1 2 3 4
3 1 7 4 2 6 5
3 2 1 6 5 7 4

Sorting Row Vectors
The sortrows function keeps the elements of each row in its original order,
but sorts the entire row of vectors according to the order of the elements in
the specified column.

The next example creates a random matrix A:

1-44

Shifting and Sorting Matrices

rand('state', 0); % Initialize random number generator
A = floor(rand(6,7) * 100);
A =

95 45 92 41 13 1 84
23 1 73 89 20 74 52
60 82 17 5 19 44 20
48 44 40 35 60 93 67
89 61 93 81 27 46 83
76 79 91 0 19 41 1

To sort in ascending order based on the values in column 1, you can call
sortrows with just the one input argument:

sortrows(A)
r =

23 1 73 89 20 74 52
48 44 40 35 60 93 67
60 82 17 5 19 44 20
76 79 91 0 19 41 1
89 61 93 81 27 46 83
95 45 92 41 13 1 84

To base the sort on a column other than the first, call sortrows with a second
input argument that indicates the column number, column 4 in this case:

r = sortrows(A, 4)
r =

76 79 91 0 19 41 1
60 82 17 5 19 44 20
48 44 40 35 60 93 67
95 45 92 41 13 1 84
89 61 93 81 27 46 83
23 1 73 89 20 74 52

1-45

1 Data Structures

Operating on Diagonal Matrices

In this section...

“Diagonal Matrix Functions” on page 1-46

“Constructing a Matrix from a Diagonal Vector” on page 1-46

“Returning a Triangular Portion of a Matrix” on page 1-47

“Concatenating Matrices Diagonally” on page 1-47

Diagonal Matrix Functions
There are several MATLAB functions that work specifically on diagonal
matrices.

Function Description

blkdiag Construct a block diagonal matrix from input arguments.

diag Return a diagonal matrix or the diagonals of a matrix.

trace Compute the sum of the elements on the main diagonal.

tril Return the lower triangular part of a matrix.

triu Return the upper triangular part of a matrix.

Constructing a Matrix from a Diagonal Vector
The diag function has two operations that it can perform. You can use it to
generate a diagonal matrix:

A = diag([12:4:32])
A =

12 0 0 0 0 0
0 16 0 0 0 0
0 0 20 0 0 0
0 0 0 24 0 0
0 0 0 0 28 0
0 0 0 0 0 32

1-46

Operating on Diagonal Matrices

You can also use the diag function to scan an existing matrix and return the
values found along one of the diagonals:

A = magic(5)
A =

17 24 1 8 15
23 5 7 14 16
4 6 13 20 22

10 12 19 21 3
11 18 25 2 9

diag(A, 2) % Return contents of second diagonal of A
ans =

1
14
22

Returning a Triangular Portion of a Matrix
The tril and triu functions return a triangular portion of a matrix, the
former returning the piece from the lower left and the latter from the upper
right. By default, the main diagonal of the matrix divides these two segments.
You can use an alternate diagonal by specifying an offset from the main
diagonal as a second input argument:

A = magic(6);

B = tril(A, -1)
B =

0 0 0 0 0 0
3 0 0 0 0 0

31 9 0 0 0 0
8 28 33 0 0 0

30 5 34 12 0 0
4 36 29 13 18 0

Concatenating Matrices Diagonally
You can diagonally concatenate matrices to form a composite matrix using the
blkdiag function. See “Creating a Block Diagonal Matrix” on page 1-10 for
more information on how this works.

1-47

1 Data Structures

Empty Matrices, Scalars, and Vectors

In this section...

“Overview” on page 1-48

“The Empty Matrix” on page 1-49

“Scalars” on page 1-51

“Vectors” on page 1-52

Overview
Although matrices are two dimensional, they do not always appear to have a
rectangular shape. A 1-by-8 matrix, for example, has two dimensions yet is
linear. These matrices are described in the following sections:

• “The Empty Matrix” on page 1-49

An empty matrix has one of more dimensions that are equal to zero. A
two-dimensional matrix with both dimensions equal to zero appears in
MATLAB as []. The expression A = [] assigns a 0-by-0 empty matrix to A.

• “Scalars” on page 1-51

A scalar is 1-by-1 and appears in MATLAB as a single real or complex
number (e.g., 7, 583.62, -3.51, 5.46097e-14, 83+4i).

• “Vectors” on page 1-52

A vector is 1-by-n or n-by-1, and appears in MATLAB as a row or column
of real or complex numbers:

Column Vector Row Vector

53.2 53.2 87.39 4-12i 43.9
87.39
4-12i
43.9

1-48

Empty Matrices, Scalars, and Vectors

The Empty Matrix
A matrix having at least one dimension equal to zero is called an empty
matrix. The simplest empty matrix is 0-by-0 in size. Examples of more
complex matrices are those of dimension 0-by-5 or 10-by-0.

To create a 0-by-0 matrix, use the square bracket operators with no value
specified:

A = [];

whos A
Name Size Bytes Class

A 0x0 0 double array

You can create empty matrices (and arrays) of other sizes using the zeros,
ones, rand, or eye functions. To create a 0-by-5 matrix, for example, use

A = zeros(0,5)

Operating on an Empty Matrix
The basic model for empty matrices is that any operation that is defined for
m-by-n matrices, and that produces a result whose dimension is some function
of m and n, should still be allowed when m or n is zero. The size of the result of
this operation is consistent with the size of the result generated when working
with nonempty values, but instead is evaluated at zero.

For example, horizontal concatenation

C = [A B]

requires that A and B have the same number of rows. So if A is m-by-n and B is
m-by-p, then C is m-by-(n+p). This is still true if m or n or p is zero.

As with all matrices in MATLAB, you must follow the rules concerning
compatible dimensions. In the following example, an attempt to add a 1-by-3
matrix to a 0-by-3 empty matrix results in an error:

1-49

1 Data Structures

[1 2 3] + ones(0,3)
??? Error using ==> +
Matrix dimensions must agree.

Common Operations. The following operations on an empty scalar array
return zero:

A = [];
size(A), length(A), numel(A), any(A), sum(A)

These operations on an empty scalar array return a nonzero value:

A = [];
ndims(A), isnumeric(A), isreal(A), isfloat(A), isempty(A), ...

all(A), prod(A)

Using Empty Matrices in Relational Operations
You can use empty matrices in relational operations such as “equal to” (==) or
“greater than” (>) as long as both operands have the same dimensions, or the
nonempty operand is scalar. The result of any relational operation involving
an empty matrix is the empty matrix. Even comparing an empty matrix for
equality to itself does not return true, but instead yields an empty matrix:

x = ones(0,3);
y = x;

y == x
ans =

Empty matrix: 0-by-3

Using Empty Matrices in Logical Operations
MATLAB has two distinct types of logical operators:

• Short-circuit (&&, ||) — Used in testing multiple logical conditions (e.g.,
x >= 50 && x < 100) where each condition evaluates to a scalar true
or false.

• Element-wise (&, |) — Performs a logical AND, OR, or NOT on each
element of a matrix or array.

1-50

Empty Matrices, Scalars, and Vectors

Short-circuit Operations. The rule for operands used in short-circuit
operations is that each operand must be convertible to a logical scalar value.
Because of this rule, empty matrices cannot be used in short-circuit logical
operations. Such operations return an error.

The only exception is in the case where MATLAB can determine the result of
a logical statement without having to evaluate the entire expression. This
is true for the following two statements because the result of the entire
statements are known by considering just the first term:

true || []
ans =

1

false && []
ans =

0

Elementwise Operations. Unlike the short-circuit operators, all
elementwise operations on empty matrices are considered valid as long as
the dimensions of the operands agree, or the nonempty operand is scalar.
Element-wise operations on empty matrices always return an empty matrix:

true | []
ans =

[]

Note This behavior is consistent with the way MATLAB does scalar
expansion with binary operators, wherein the nonscalar operand determines
the size of the result.

.

Scalars
Any individual real or complex number is represented in MATLAB as a 1-by-1
matrix called a scalar value:

1-51

1 Data Structures

A = 5;

ndims(A) % Check number of dimensions in A
ans =

2

size(A) % Check value of row and column dimensions
ans =

1 1

Use the isscalar function to tell if a variable holds a scalar value:

isscalar(A)
ans =

1

Vectors
Matrices with one dimension equal to one and the other greater than one are
called vectors. Here is an example of a numeric vector:

A = [5.73 2-4i 9/7 25e3 .046 sqrt(32) 8j];

size(A) % Check value of row and column dimensions
ans =

1 7

You can construct a vector out of other vectors, as long as the critical
dimensions agree. All components of a row vector must be scalars or other
row vectors. Similarly, all components of a column vector must be scalars or
other column vectors:

A = [29 43 77 9 21];
B = [0 46 11];

C = [A 5 ones(1,3) B]
C =

29 43 77 9 21 5 1 1 1 0 46 11

Concatenating an empty matrix to a vector has no effect on the resulting
vector. The empty matrix is ignored in this case:

1-52

Empty Matrices, Scalars, and Vectors

A = [5.36; 7.01; []; 9.44]
A =

5.3600
7.0100
9.4400

Use the isvector function to tell if a variable holds a vector:

isvector(A)
ans =

1

1-53

1 Data Structures

Full and Sparse Matrices

In this section...

“Overview” on page 1-54

“Sparse Matrix Functions” on page 1-54

Overview
It is not uncommon to have matrices with a large number of zero-valued
elements and, because MATLAB stores zeros in the same way it stores any
other numeric value, these elements can use memory space unnecessarily and
can sometimes require extra computing time.

Sparse matrices provide a way to store data that has a large percentage of
zero elements more efficiently. While full matrices internally store every
element in memory regardless of value, sparse matrices store only the nonzero
elements and their row indices. Using sparse matrices can significantly
reduce the amount of memory required for data storage.

You can create sparse matrices for the double and logical data types. All
MATLAB built-in arithmetic, logical, and indexing operations can be applied
to sparse matrices, or to mixtures of sparse and full matrices. Operations
on sparse matrices return sparse matrices and operations on full matrices
return full matrices.

See the section on Sparse Matrices in the MATLAB Mathematics
documentation for more information on working with sparse matrices.

Sparse Matrix Functions
This table shows some of the functions most commonly used when working
with sparse matrices.

Function Description

full Convert a sparse matrix to a full matrix.

issparse Determine if a matrix is sparse.

1-54

Full and Sparse Matrices

Function Description

nnz Return the number of nonzero matrix elements.

nonzeros Return the nonzero elements of a matrix.

nzmax Return the amount of storage allocated for nonzero
elements.

spalloc Allocate space for a sparse matrix.

sparse Create a sparse matrix or convert full to sparse.

speye Create a sparse identity matrix.

sprand Create a sparse uniformly distributed random matrix.

1-55

1 Data Structures

Multidimensional Arrays

In this section...

“Overview” on page 1-56

“Creating Multidimensional Arrays” on page 1-58

“Accessing Multidimensional Array Properties” on page 1-62

“Indexing Multidimensional Arrays” on page 1-62

“Reshaping Multidimensional Arrays” on page 1-66

“Permuting Array Dimensions” on page 1-68

“Computing with Multidimensional Arrays” on page 1-70

“Organizing Data in Multidimensional Arrays” on page 1-71

“Multidimensional Cell Arrays” on page 1-73

“Multidimensional Structure Arrays” on page 1-74

Overview
An array having more than two dimensions is called a multidimensional
array in MATLAB. Multidimensional arrays in MATLAB are an extension of
the normal two-dimensional matrix. Matrices have two dimensions: the row
dimension and the column dimension.

You can access a two-dimensional matrix element with two subscripts: the
first representing the row index, and the second representing the column
index.

1-56

Multidimensional Arrays

Multidimensional arrays use additional subscripts for indexing. A
three-dimensional array, for example, uses three subscripts:

• The first references array dimension 1, the row.

• The second references dimension 2, the column.

• The third references dimension 3. This illustration uses the concept of a
page to represent dimensions 3 and higher.

To access the element in the second row, third column of page 2, for example,
you use the subscripts (2,3,2).

1-57

1 Data Structures

As you add dimensions to an array, you also add subscripts. A four-dimensional
array, for example, has four subscripts. The first two reference a row-column
pair; the second two access the third and fourth dimensions of data.

Most of the operations that you can perform on matrices (i.e., two-dimensional
arrays) can also be done on multidimensional arrays.

Note The general multidimensional array functions reside in the datatypes
directory.

Creating Multidimensional Arrays
You can use the same techniques to create multidimensional arrays that you
use for two-dimensional matrices. In addition, MATLAB provides a special
concatenation function that is useful for building multidimensional arrays.

This section discusses

• “Generating Arrays Using Indexing” on page 1-58

• “Extending Multidimensional Arrays” on page 1-59

• “Generating Arrays Using MATLAB Functions” on page 1-60

• “Building Multidimensional Arrays with the cat Function” on page 1-60

Generating Arrays Using Indexing
One way to create a multidimensional array is to create a two-dimensional
array and extend it. For example, begin with a simple two-dimensional array
A.

A = [5 7 8; 0 1 9; 4 3 6];

A is a 3-by-3 array, that is, its row dimension is 3 and its column dimension
is 3. To add a third dimension to A,

A(:,:,2) = [1 0 4; 3 5 6; 9 8 7]

MATLAB responds with

1-58

Multidimensional Arrays

A(:,:,1) =
5 7 8
0 1 9
4 3 6

A(:,:,2) =
1 0 4
3 5 6
9 8 7

You can continue to add rows, columns, or pages to the array using similar
assignment statements.

Extending Multidimensional Arrays
To extend A in any dimension:

• Increment or add the appropriate subscript and assign the desired values.

• Assign the same number of elements to corresponding array dimensions.
For numeric arrays, all rows must have the same number of elements, all
pages must have the same number of rows and columns, and so on.

You can take advantage of the MATLAB scalar expansion capabilities,
together with the colon operator, to fill an entire dimension with a single value:

A(:,:,3) = 5;

A(:,:,3)
ans =

5 5 5
5 5 5
5 5 5

To turn A into a 3-by-3-by-3-by-2, four-dimensional array, enter

A(:,:,1,2) = [1 2 3; 4 5 6; 7 8 9];
A(:,:,2,2) = [9 8 7; 6 5 4; 3 2 1];
A(:,:,3,2) = [1 0 1; 1 1 0; 0 1 1];

1-59

1 Data Structures

Note that after the first two assignments MATLAB pads A with zeros, as
needed, to maintain the corresponding sizes of dimensions.

Generating Arrays Using MATLAB Functions
You can use MATLAB functions such as randn, ones, and zeros to generate
multidimensional arrays in the same way you use them for two-dimensional
arrays. Each argument you supply represents the size of the corresponding
dimension in the resulting array. For example, to create a 4-by-3-by-2 array of
normally distributed random numbers:

B = randn(4,3,2)

To generate an array filled with a single constant value, use the repmat
function. repmat replicates an array (in this case, a 1-by-1 array) through a
vector of array dimensions.

B = repmat(5, [3 4 2])

B(:,:,1) =
5 5 5 5
5 5 5 5
5 5 5 5

B(:,:,2) =
5 5 5 5
5 5 5 5
5 5 5 5

Note Any dimension of an array can have size zero, making it a form of empty
array. For example, 10-by-0-by-20 is a valid size for a multidimensional array.

Building Multidimensional Arrays with the cat Function
The cat function is a simple way to build multidimensional arrays; it
concatenates a list of arrays along a specified dimension:

B = cat(dim, A1, A2...)

1-60

Multidimensional Arrays

where A1, A2, and so on are the arrays to concatenate, and dim is the
dimension along which to concatenate the arrays.

For example, to create a new array with cat:

B = cat(3, [2 8; 0 5], [1 3; 7 9])

B(:,:,1) =
2 8
0 5

B(:,:,2) =
1 3
7 9

The cat function accepts any combination of existing and new data. In
addition, you can nest calls to cat. The lines below, for example, create a
four-dimensional array.

A = cat(3, [9 2; 6 5], [7 1; 8 4])
B = cat(3, [3 5; 0 1], [5 6; 2 1])
D = cat(4, A, B, cat(3, [1 2; 3 4], [4 3;2 1]))

cat automatically adds subscripts of 1 between dimensions, if necessary. For
example, to create a 2-by-2-by-1-by-2 array, enter

C = cat(4, [1 2; 4 5], [7 8; 3 2])

In the previous case, cat inserts as many singleton dimensions as needed
to create a four-dimensional array whose last dimension is not a singleton
dimension. If the dim argument had been 5, the previous statement
would have produced a 2-by-2-by-1-by-1-by-2 array. This adds additional
1s to indexing expressions for the array. To access the value 8 in the
four-dimensional case, use

1-61

1 Data Structures

Accessing Multidimensional Array Properties
You can use the following MATLAB functions to get information about
multidimensional arrays you have created.

• size — Returns the size of each array dimension.

size(C)
ans =

2 2 1 2
rows columns dim3 dim4

• ndims — Returns the number of dimensions in the array.

ndims(C)
ans =

4

• whos — Provides information on the format and storage of the array.

whos
Name Size Bytes Class

A 2x2x2 64 double array
B 2x2x2 64 double array
C 4-D 64 double array
D 4-D 192 double array

Grand total is 48 elements using 384 bytes

Indexing Multidimensional Arrays
Many of the concepts that apply to two-dimensional matrices extend to
multidimensional arrays as well.

To access a single element of a multidimensional array, use integer subscripts.
Each subscript indexes a dimension—the first indexes the row dimension,
the second indexes the column dimension, the third indexes the first page
dimension, and so on.

Consider a 10-by-5-by-3 array nddata of random integers:

nddata = fix(8 * randn(10,5,3));

1-62

Multidimensional Arrays

To access element (3,2) on page 2 of nddata, for example, use nddata(3,2,2).

You can use vectors as array subscripts. In this case, each vector element must
be a valid subscript, that is, within the bounds defined by the dimensions of
the array. To access elements (2,1), (2,3), and (2,4) on page 3 of nddata,
use

nddata(2,[1 3 4],3);

The Colon and Multidimensional Array Indexing
The MATLAB colon indexing extends to multidimensional arrays. For
example, to access the entire third column on page 2 of nddata, use
nddata(:,3,2).

The colon operator is also useful for accessing other subsets of data. For
example, nddata(2:3,2:3,1) results in a 2-by-2 array, a subset of the data on
page 1 of nddata. This matrix consists of the data in rows 2 and 3, columns 2
and 3, on the first page of the array.

The colon operator can appear as an array subscript on both sides of an
assignment statement. For example, to create a 4-by-4 array of zeros:

C = zeros(4, 4)

Now assign a 2-by-2 subset of array nddata to the four elements in the center
of C.

C(2:3,2:3) = nddata(2:3,1:2,2)

Linear Indexing with Multidimensional Arrays
MATLAB linear indexing also extends to multidimensional arrays. In this
case, MATLAB operates on a page-by-page basis to create the storage column,
again appending elements columnwise. See “Linear Indexing” on page 1-19
for an introduction to this topic.

1-63

1 Data Structures

For example, consider a 5-by-4-by-3-by-2 array C.

1-64

Multidimensional Arrays

Again, a single subscript indexes directly into this column. For example,
C(4) produces the result

ans =
0

If you specify two subscripts (i,j) indicating row-column indices, MATLAB
calculates the offset as described above. Two subscripts always access the
first page of a multidimensional array, provided they are within the range of
the original array dimensions.

If more than one subscript is present, all subscripts must conform to the
original array dimensions. For example, C(6,2) is invalid because all pages of
C have only five rows.

If you specify more than two subscripts, MATLAB extends its indexing
scheme accordingly. For example, consider four subscripts (i,j,k,l) into a
four-dimensional array with size [d1 d2 d3 d4]. MATLAB calculates the
offset into the storage column by

(l-1)(d3)(d2)(d1)+(k-1)(d2)(d1)+(j-1)(d1)+i

For example, if you index the array C using subscripts (3, 4, 2, 1), MATLAB
returns the value 5 (index 38 in the storage column).

In general, the offset formula for an array with dimensions [d1 d2 d3 ...
dn] using any subscripts (s1 s2 s3 ... sn) is

(s
n
-1)(d

n-1
)(d

n-2
)...(d

1
)+(s

n-1
-1)(d

n-2
)...(d

1
)+...+(s

2
-1)(d

1
)+s

1

Because of this scheme, you can index an array using any number of
subscripts. You can append any number of 1s to the subscript list because
these terms become zero. For example,

C(3,2,1,1,1,1,1,1)

is equivalent to

C(3,2)

1-65

1 Data Structures

Avoiding Ambiguity in Multidimensional Indexing
Some assignment statements, such as

A(:,:,2) = 1:10

are ambiguous because they do not provide enough information about the
shape of the dimension to receive the data. In the case above, the statement
tries to assign a one-dimensional vector to a two-dimensional destination.
MATLAB produces an error for such cases. To resolve the ambiguity, be sure
you provide enough information about the destination for the assigned data,
and that both data and destination have the same shape. For example:

A(1,:,2) = 1:10;

Reshaping Multidimensional Arrays
Unless you change its shape or size, a MATLAB array retains the dimensions
specified at its creation. You change array size by adding or deleting
elements. You change array shape by respecifying the array’s row, column, or
page dimensions while retaining the same elements. The reshape function
performs the latter operation. For multidimensional arrays, its form is

B = reshape(A,[s1 s2 s3 ...])

s1, s2, and so on represent the desired size for each dimension of the reshaped
matrix. Note that a reshaped array must have the same number of elements
as the original array (that is, the product of the dimension sizes is constant).

M reshape(M, [6 5])

The reshape function operates in a columnwise manner. It creates the
reshaped matrix by taking consecutive elements down each column of the
original data construct.

1-66

Multidimensional Arrays

C reshape(C, [6 2])

Here are several new arrays from reshaping nddata:

B = reshape(nddata, [6 25])
C = reshape(nddata, [5 3 10])
D = reshape(nddata, [5 3 2 5])

Removing Singleton Dimensions
MATLAB creates singleton dimensions if you explicitly specify them when
you create or reshape an array, or if you perform a calculation that results in
an array dimension of one:

B = repmat(5, [2 3 1 4]);

size(B)
ans =

2 3 1 4

The squeeze function removes singleton dimensions from an array:

C = squeeze(B);

size(C)
ans =

2 3 4

The squeeze function does not affect two-dimensional arrays; row vectors
remain rows.

1-67

1 Data Structures

Permuting Array Dimensions
The permute function reorders the dimensions of an array:

B = permute(A, dims);

dims is a vector specifying the new order for the dimensions of A, where
1 corresponds to the first dimension (rows), 2 corresponds to the second
dimension (columns), 3 corresponds to pages, and so on.

For a more detailed look at the permute function, consider a four-dimensional
array A of size 5-by-4-by-3-by-2. Rearrange the dimensions, placing the
column dimension first, followed by the second page dimension, the first page
dimension, then the row dimension. The result is a 4-by-2-by-3-by-5 array.

1-68

Multidimensional Arrays

You can think of permute’s operation as an extension of the transpose
function, which switches the row and column dimensions of a matrix. For
permute, the order of the input dimension list determines the reordering
of the subscripts. In the example above, element (4,2,1,2) of A becomes
element (2,2,1,4) of B, element (5,4,3,2) of A becomes element (4,2,3,5)
of B, and so on.

Inverse Permutation
The ipermute function is the inverse of permute. Given an input array
A and a vector of dimensions v, ipermute produces an array B such that
permute(B,v) returns A.

For example, these statements create an array E that is equal to the input
array C:

D = ipermute(C, [1 4 2 3]);
E = permute(D, [1 4 2 3])

You can obtain the original array after permuting it by calling ipermute with
the same vector of dimensions.

1-69

1 Data Structures

Computing with Multidimensional Arrays
Many of the MATLAB computational and mathematical functions accept
multidimensional arrays as arguments. These functions operate on specific
dimensions of multidimensional arrays; that is, they operate on individual
elements, on vectors, or on matrices.

Operating on Vectors
Functions that operate on vectors, like sum, mean, and so on, by default
typically work on the first nonsingleton dimension of a multidimensional
array. Most of these functions optionally let you specify a particular dimension
on which to operate. There are exceptions, however. For example, the cross
function, which finds the cross product of two vectors, works on the first
nonsingleton dimension having length 3.

Note In many cases, these functions have other restrictions on the input
arguments — for example, some functions that accept multiple arrays require
that the arrays be the same size. Refer to the online help for details on
function arguments.

Operating Element-by-Element
MATLAB functions that operate element-by-element on two-dimensional
arrays, like the trigonometric and exponential functions in the elfun
directory, work in exactly the same way for multidimensional cases. For
example, the sin function returns an array the same size as the function’s
input argument. Each element of the output array is the sine of the
corresponding element of the input array.

Similarly, the arithmetic, logical, and relational operators all work with
corresponding elements of multidimensional arrays that are the same size in
every dimension. If one operand is a scalar and one an array, the operator
applies the scalar to each element of the array.

Operating on Planes and Matrices
Functions that operate on planes or matrices, such as the linear algebra and
matrix functions in the matfun directory, do not accept multidimensional

1-70

Multidimensional Arrays

arrays as arguments. That is, you cannot use the functions in the matfun
directory, or the array operators *, ^, \, or /, with multidimensional
arguments. Supplying multidimensional arguments or operands in these
cases results in an error.

You can use indexing to apply a matrix function or operator to matrices within
a multidimensional array. For example, create a three-dimensional array A:

A = cat(3, [1 2 3; 9 8 7; 4 6 5], [0 3 2; 8 8 4; 5 3 5], ...
[6 4 7; 6 8 5; 5 4 3]);

Applying the eig function to the entire multidimensional array results in
an error:

eig(A)
??? Error using ==> eig
Input arguments must be 2-D.

You can, however, apply eig to planes within the array. For example, use
colon notation to index just one page (in this case, the second) of the array:

eig(A(:,:,2))
ans =

12.9129
-2.6260
2.7131

Note In the first case, subscripts are not colons; you must use squeeze to
avoid an error. For example, eig(A(2,:,:)) results in an error because
the size of the input is [1 3 3]. The expression eig(squeeze(A(2,:,:))),
however, passes a valid two-dimensional matrix to eig.

Organizing Data in Multidimensional Arrays
You can use multidimensional arrays to represent data in two ways:

• As planes or pages of two-dimensional data. You can then treat these pages
as matrices.

1-71

1 Data Structures

• As multivariate or multidimensional data. For example, you might have
a four-dimensional array where each element corresponds to either a
temperature or air pressure measurement taken at one of a set of equally
spaced points in a room.

For example, consider an RGB image. For a single image, a multidimensional
array is probably the easiest way to store and access data.

To access an entire plane of the image, use

redPlane = RGB(:,:,1);

To access a subimage, use

subimage = RGB(20:40,50:85,:);

1-72

Multidimensional Arrays

The RGB image is a good example of data that needs to be accessed in planes
for operations like display or filtering. In other instances, however, the data
itself might be multidimensional. For example, consider a set of temperature
measurements taken at equally spaced points in a room. Here the location
of each value is an integral part of the data set—the physical placement in
three-space of each element is an aspect of the information. Such data also
lends itself to representation as a multidimensional array.

Now to find the average of all the measurements, use

mean(mean(mean(TEMP)));

To obtain a vector of the “middle” values (element (2,2)) in the room on each
page, use

B = TEMP(2,2,:);

Multidimensional Cell Arrays
Like numeric arrays, the framework for multidimensional cell arrays in
MATLAB is an extension of the two-dimensional cell array model. You can
use the cat function to build multidimensional cell arrays, just as you use
it for numeric arrays.

For example, create a simple three-dimensional cell array C:

A{1,1} = [1 2;4 5];
A{1,2} = 'Name';
A{2,1} = 2-4i;

1-73

1 Data Structures

A{2,2} = 7;
B{1,1} = 'Name2';
B{1,2} = 3;
B{2,1} = 0:1:3;
B{2,2} = [4 5]';
C = cat(3, A, B);

The subscripts for the cells of C look like

Multidimensional Structure Arrays
Multidimensional structure arrays are extensions of rectangular structure
arrays. Like other types of multidimensional arrays, you can build them using
direct assignment or the cat function:

patient(1,1,1).name = 'John Doe';
patient(1,1,1).billing = 127.00;
patient(1,1,1).test = [79 75 73; 180 178 177.5; 220 210 205];
patient(1,2,1).name = 'Ann Lane';
patient(1,2,1).billing = 28.50;
patient(1,2,1).test = [68 70 68; 118 118 119; 172 170 169];
patient(1,1,2).name = 'Al Smith';
patient(1,1,2).billing = 504.70;
patient(1,1,2).test = [80 80 80; 153 153 154; 181 190 182];
patient(1,2,2).name = 'Dora Jones';

1-74

Multidimensional Arrays

patient(1,2,2).billing = 1173.90;
patient(1,2,2).test = [73 73 75; 103 103 102; 201 198 200];

Applying Functions to Multidimensional Structure Arrays
To apply functions to multidimensional structure arrays, operate on fields and
field elements using indexing. For example, find the sum of the columns of
the test array in patient(1,1,2):

sum((patient(1,1,2).test));

Similarly, add all the billing fields in the patient array:

total = sum([patient.billing]);

1-75

1 Data Structures

Summary of Matrix and Array Functions
This section summarizes the principal functions used in creating and handling
matrices. Most of these functions work on multidimensional arrays as well.

Functions to Create a Matrix

Function Description

[a,b] or [a;b] Create a matrix from specified elements, or concatenate
matrices together.

accumarray Construct a matrix using accumulation.

blkdiag Construct a block diagonal matrix.

cat Concatenate matrices along the specified dimension.

diag Create a diagonal matrix from a vector.

horzcat Concatenate matrices horizontally.

magic Create a square matrix with rows, columns, and
diagonals that add up to the same number.

ones Create a matrix of all ones.

rand Create a matrix of uniformly distributed random
numbers.

repmat Create a new matrix by replicating or tiling another.

vertcat Concatenate two or more matrices vertically.

zeros Create a matrix of all zeros.

Functions to Modify the Shape of a Matrix

Function Description

ctranspose Flip a matrix about the main diagonal and replace each
element with its complex conjugate.

flipdim Flip a matrix along the specified dimension.

fliplr Flip a matrix about a vertical axis.

1-76

Summary of Matrix and Array Functions

Functions to Modify the Shape of a Matrix (Continued)

Function Description

flipud Flip a matrix about a horizontal axis.

reshape Change the dimensions of a matrix.

rot90 Rotate a matrix by 90 degrees.

transpose Flip a matrix about the main diagonal.

Functions to Find the Structure or Shape of a Matrix

Function Description

isempty Return true for 0-by-0 or 0-by-n matrices.

isscalar Return true for 1-by-1 matrices.

issparse Return true for sparse matrices.

isvector Return true for 1-by-n matrices.

length Return the length of a vector.

ndims Return the number of dimensions in a matrix.

numel Return the number of elements in a matrix.

size Return the size of each dimension.

Functions to Determine Data Type

Function Description

iscell Return true if the matrix is a cell array.

ischar Return true if matrix elements are characters or
strings.

isfloat Determine if input is a floating point array.

isinteger Determine if input is an integer array.

islogical Return true if matrix elements are logicals.

isnumeric Return true if matrix elements are numeric.

1-77

1 Data Structures

Functions to Determine Data Type (Continued)

Function Description

isreal Return true if matrix elements are real numbers.

isstruct Return true if matrix elements are MATLAB
structures.

Functions to Sort and Shift Matrix Elements

Function Description

circshift Circularly shift matrix contents.

issorted Return true if the matrix elements are sorted.

sort Sort elements in ascending or descending order.

sortrows Sort rows in ascending order.

Functions That Work on Diagonals of a Matrix

Function Description

blkdiag Construct a block diagonal matrix.

diag Return the diagonals of a matrix.

trace Compute the sum of the elements on the main diagonal.

1-78

Summary of Matrix and Array Functions

Functions That Work on Diagonals of a Matrix (Continued)

Function Description

tril Return the lower triangular part of a matrix.

triu Return the upper triangular part of a matrix.

Functions to Change the Indexing Style

Function Description

ind2sub Convert a linear index to a row-column index.

sub2ind Convert a row-column index to a linear index.

Functions for Working with Multidimensional Arrays

Function Description

cat Concatenate arrays.

circshift Shift array circularly.

ipermute Inverse permute array dimensions.

ndgrid Generate arrays for n-dimensional functions and
interpolation.

ndims Return the number of array dimensions.

permute Permute array dimensions.

shiftdim Shift array dimensions.

squeeze Remove singleton dimensions.

1-79

1 Data Structures

1-80

2

Data Types

Overview of MATLAB Data Types
(p. 2-3)

Brief description of all MATLAB
data types

Numeric Types (p. 2-6) Integer and floating-point data
types, complex numbers, NaN,
infinity, and numeric display format

Logical Types (p. 2-33) States of true and false, use of
logicals in conditional statements
and logical indexing, logical/numeric
conversion

Characters and Strings (p. 2-37) Characters, strings, cell arrays of
strings, string comparison, search
and replace, character/numeric
conversion

Dates and Times (p. 2-66) Date strings, serial date numbers,
date vectors, date type conversion,
output display format

Structures (p. 2-74) C-like structures with named fields,
dynamic field names, adding and
removing fields

Cell Arrays (p. 2-93) Arrays of cells containing different
data types and shapes, using
cell arrays in argument lists,
numeric/cell conversion

Function Handles (p. 2-115) Passing function access data to other
functions, extending function scope,
extending the lifetime of variables

2 Data Types

MATLAB Classes (p. 2-117) Object-oriented classes and methods
using MATLAB classes, creating
your own MATLAB data types

Java Classes (p. 2-118) Working with Java classes within
MATLAB using the MATLAB
interface to the Java programming
language

2-2

Overview of MATLAB Data Types

Overview of MATLAB Data Types

In this section...

“Fundamental Data Types” on page 2-3

“How to Use the Different Types” on page 2-4

Fundamental Data Types
There are many different types of data that you can work with in MATLAB.
You can build matrices and arrays of floating-point and integer data,
characters and strings, logical true and false states, etc. Two of the
MATLAB data types, structures and cell arrays, provide a way to store
dissimilar types of data in the same array. You can also develop your own
data types using MATLAB classes.

There are 15 fundamental data types in MATLAB. Each of these data types is
in the form of a matrix or array. This matrix or array is a minimum of 0-by-0
in size and can grow to an n-dimensional array of any size.

All of the fundamental data types are shown in lowercase, plain nonitalic text
in the diagram below.

2-3

2 Data Types

The two data types shown in italic text are user-defined, object-oriented
user classes and Java classes. You can use the latter with the MATLAB
interface to Java (see “Calling Java from MATLAB” in the MATLAB External
Interfaces documentation).

You can create two-dimensional double and logical matrices using one of
two storage formats: full or sparse. For matrices with mostly zero-valued
elements, a sparse matrix requires a fraction of the storage space required
for an equivalent full matrix. Sparse matrices invoke methods especially
tailored to solve sparse problems

These data types require different amounts of storage, the smallest being a
logical value or 8–bit integer which requires only 1 byte. It is important to
keep this minimum size in mind if you work on data in files that were written
using a precision smaller than 8 bits.

How to Use the Different Types
The following table describes these data types in more detail.

Data Type Example Description

int8, uint8,
int16, uint16,
int32, uint32,
int64, uint64

uint16(65000) Array of signed (int) and unsigned (uint)
integers. Some integer types require less
storage space than single or double. All
integer types except for int64 and uint64
can be used in mathematical operations.

single single(3 * 10^38) Array of single-precision numbers.
Requires less storage space than double,
but has less precision and a smaller
range.

double 3 * 10^300

5 + 6i

Array of double-precision numbers. Two-
dimensional arrays can be sparse. The
default numeric type in MATLAB.

logical magic(4) > 10 Array of logical values of 1 or 0 to
represent true and false respectively.
Two-dimensional arrays can be sparse.

2-4

Overview of MATLAB Data Types

Data Type Example Description

char 'Hello' Array of characters. Strings are
represented as vectors of characters. For
arrays containing more than one string,
it is best to use cell arrays.

cell array a{1,1} = 12; a{1,2}
= 'Red'; a{1,3} =
magic(4);

Array of indexed cells, each capable of
storing an array of a different dimension
and data type.

structure a.day = 12; a.color
= 'Red'; a.mat =
magic(3);

Array of C-like structures, each structure
having named fields capable of storing an
array of a different dimension and data
type.

function handle @sin Pointer to a function. You can pass
function handles to other functions.

user class polynom([0 -2 -5]) Objects constructed from a user-defined
class. See “MATLAB Classes” on page
2-117

Java class java.awt.Frame Objects constructed from a Java class.
See “Java Classes” on page 2-118.

2-5

2 Data Types

Numeric Types

In this section...

“Overview” on page 2-6

“Integers” on page 2-6

“Floating-Point Numbers” on page 2-14

“Complex Numbers” on page 2-24

“Infinity and NaN” on page 2-25

“Identifying Numeric Types” on page 2-27

“Display Format for Numeric Values” on page 2-27

“Function Summary” on page 2-29

Overview
Numeric data types in MATLAB include signed and unsigned integers,
and single- and double-precision floating-point numbers. By default,
MATLAB stores all numeric values as double-precision floating point. (You
cannot change the default type and precision.) You can choose to store any
number, or array of numbers, as integers or as single-precision. Integer
and single-precision arrays offer more memory-efficient storage than
double-precision.

All numeric types support basic array operations, such as subscripting and
reshaping. All numeric types except for int64 and uint64 can be used in
mathematical operations.

Integers
MATLAB has four signed and four unsigned integer data types. Signed types
enable you to work with negative integers as well as positive, but cannot
represent as wide a range of numbers as the unsigned types because one bit
is used to designate a positive or negative sign for the number. Unsigned
types give you a wider range of numbers, but these numbers can only be
zero or positive.

This section covers:

2-6

Numeric Types

• “Creating Integer Data” on page 2-7

• “Arithmetic Operations on Integer Data Types” on page 2-9

• “Largest and Smallest Values for Integer Data Types” on page 2-9

• “Warnings for Integer Data Types” on page 2-10

• “Integer Functions” on page 2-13

MATLAB supports 1-, 2-, 4-, and 8-byte storage for integer data. You can
save memory and execution time for your programs if you use the smallest
integer type that accommodates your data. For example, you don’t need a
32-bit integer to store the value 100.

Here are the eight integer data types, the range of values you can store with
each type, and the MATLAB conversion function required to create that type:

Data Type Range of Values Conversion Function

Signed 8-bit integer -27 to 27-1 int8

Signed 16-bit integer -215 to 215-1 int16

Signed 32-bit integer -231 to 231-1 int32

Signed 64-bit integer -263 to 263-1 int64

Unsigned 8-bit integer 0 to 28-1 uint8

Unsigned 16-bit integer 0 to 216-1 uint16

Unsigned 32-bit integer 0 to 232-1 uint32

Unsigned 64-bit integer 0 to 264-1 uint64

Creating Integer Data
MATLAB stores numeric data as double-precision floating point (double)
by default. To store data as an integer, you need to convert from double to
the desired integer type. Use one of the conversion functions shown in the
table above.

For example, to store 325 as a 16-bit signed integer assigned to variable x, type

x = int16(325);

2-7

2 Data Types

If the number being converted to an integer has a fractional part, MATLAB
rounds to the nearest integer. If the fractional part is exactly 0.5, then from
the two equally nearby integers, MATLAB chooses the one for which the
absolute value is larger in magnitude:

x = 325.499; x = x + .001;

int16(x) int16(x)
ans = ans =

325 326

If you need to round a number using a rounding scheme other than the
default, MATLAB provides four rounding functions: round, fix, floor, and
ceil. In this example, the fix function enables you to override the default
and round towards zero when the fractional part of a number is .5:

x = 325.5;

int16(fix(x))
ans =

325

Arithmetic operations that involve both integers and floating-point always
result in an integer data type. MATLAB rounds the result, when necessary,
according to the default rounding algorithm. The example below yields an
exact answer of 1426.75 which MATLAB then rounds to the next highest
integer:

int16(325) * 4.39
ans =

1427

The integer conversion functions are also useful when converting other data
types, such as strings, to integers:

str = 'Hello World';

int8(str)
ans =

72 101 108 108 111 32 87 111 114 108 100

2-8

Numeric Types

Arithmetic Operations on Integer Data Types
MATLAB can perform integer arithmetic on the following types of data:

• Integers or integer arrays of the same integer data type. This yields a
result that has the same data type as the operands:

x = uint32([132 347 528]) .* uint32(75);

• Integers or integer arrays and scalar double-precision floating-point
numbers. This yields a result that has the same data type as the integer
operands:

x = uint32([132 347 528]) .* 75.49;

For all binary operations in which one operand is an array of integer data
type and the other is a scalar double, MATLAB computes the operation using
elementwise double-precision arithmetic, and then converts the result back to
the original integer data type.

For a list of the operations that support integer data types, see Nondouble
Data Type Support in the arithmetic operators reference page.

Largest and Smallest Values for Integer Data Types
For each integer data type, there is a largest and smallest number that you
can represent with that type. The table shown under “Integers” on page 2-6
lists the largest and smallest values for each integer data type in the “Range
of Values” column.

You can also obtain these values with the intmax and intmin functions:

intmax('int8') intmin('int8')
ans = ans =

127 -128

If you convert a number that is larger than the maximum value of an integer
data type to that type, MATLAB sets it to the maximum value. Similarly, if

2-9

2 Data Types

you convert a number that is smaller than the minimum value of the integer
data type, MATLAB sets it to the minimum value. For example,

x = int8(300) x = int8(-300)
x = x =

127 -128

Also, when the result of an arithmetic operation involving integers exceeds
the maximum (or minimum) value of the data type, MATLAB sets it to the
maximum (or minimum) value:

x = int8(100) * 3 x = int8(-100) * 3
x = x =

127 -128

You can make MATLAB return a warning when your input is outside the
range an integer data type. This is described in the next section.

Warnings for Integer Data Types
Use the intwarning function to make MATLAB return a warning message
when it converts a number outside the range of an integer data type to that
type, or when the result of an arithmetic operation overflows. There are four
possible warning messages that you can turn on using intwarning:

Message Identifier Reason for Warning

MATLAB:intConvertOverflow Overflow when attempting to convert from
a numeric class to an integer class

MATLAB:intMathOverflow Overflow when attempting an integer
arithmetic operation

MATLAB:intConvertNonIntVal Attempt to convert a noninteger value to
an integer

MATLAB:intConvertNaN Attempt to convert NaN (Not a Number)
to an integer

Querying the Present Warning State. Use the following command to
display the state of all integer warnings:

2-10

Numeric Types

intwarning('query')
The state of warning 'MATLAB:intConvertNaN' is 'off'.
The state of warning 'MATLAB:intConvertNonIntVal' is 'off'.
The state of warning 'MATLAB:intConvertOverflow' is 'off'.
The state of warning 'MATLAB:intMathOverflow' is 'off'.

To display the state of one or more selected warnings, index into the structure
returned by intwarning. This example shows the current state of the
intConvertOverflow warning:

iwState = intwarning('query');
iwState(3)
ans =

identifier: 'MATLAB:intConvertOverflow'
state: 'off'

Turning the Warning On. To enable all four integer warnings, use
intwarning with the string 'on':

intwarning('on');
intwarning('query')

The state of warning 'MATLAB:intConvertNaN' is 'on'.
The state of warning 'MATLAB:intConvertNonIntVal' is 'on'.
The state of warning 'MATLAB:intConvertOverflow' is 'on'.
The state of warning 'MATLAB:intMathOverflow' is 'on'.

To enable one or more selected integer warnings, first make sure that all
integer warnings are disabled:

intwarning('off');

Note that, in this state, the following conversion to a 16-bit integer overflows,
but does not issue a warning:

x = int16(50000)
x =

32767

Find which of the four warnings covers integer conversion. In this case, it
is the third in the structure array:

2-11

2 Data Types

iwState = intwarning('query');
iwState(3).identifier
ans =

MATLAB:intConvertOverflow

Set the warning state to 'on' in the structure, and then call intwarning
using the structure as input:

iwState(3).state = 'on';
intwarning(iwState);

With the warning enabled, the overflow on conversion does issue the warning
message:

x = int16(50000)
Warning: Out of range value converted to intmin('int16') or
intmax('int16').
x =

32767

You can also use the following for loop to enable integer warnings selectively:

maxintwarn = 4;

for k = 1:maxintwarn
if strcmp(iwState(k).identifier, 'MATLAB:intConvertOverflow')

iwState(k).state = 'on';
intwarning(iwState);

end
end

Turning the Warning Off. To turn all integer warnings off (their default
state when you start MATLAB), enter

intwarning('off')

To disable selected integer warnings, follow the steps shown for enabling
warnings, but with the state field of the structure set to 'off':

iwState(3).identifier
ans =

2-12

Numeric Types

MATLAB:intConvertOverflow

iwState(3).state = 'off';
intwarning(iwState);

Turning Warnings On or Off Temporarily. When writing M-files that
contain integer data types, it is sometimes convenient to temporarily turn
integer warnings on, and then return the states of the warnings ('on' or
'off') to their previous settings. The following commands illustrate how to
do this:

oldState = intwarning('on');

int8(200);
Warning: Out of range value converted to intmin('int8') or
intmax('int8').

intwarning(oldState)

To temporarily turn the warnings off, change the first line of the preceding
code to

oldState = intwarning('off');

Recommended Usage of Math Overflow Warning. Enabling the
MATLAB:intMathOverflow warning slows down integer arithmetic. It is
recommended that you enable this particular warning only when you need
to diagnose unusual behavior in your code, and disable it during normal
program operation. The other integer warnings listed above do not affect
program performance.

Note that calling intwarning('on') enables all four integer warnings,
including the intMathOverflow warning that can have an effect on integer
arithmetic.

Integer Functions
See Integer Functions on page 2-30 for a list of functions most commonly used
with integers in MATLAB.

2-13

2 Data Types

Floating-Point Numbers
MATLAB represents floating-point numbers in either double-precision or
single-precision format. The default is double precision, but you can make
any number single precision with a simple conversion function.

This section covers:

• “Double-Precision Floating Point” on page 2-14

• “Single-Precision Floating Point” on page 2-15

• “Creating Floating-Point Data” on page 2-15

• “Arithmetic Operations on Floating-Point Numbers” on page 2-17

• “Largest and Smallest Values for Floating-Point Data Types” on page 2-18

• “Accuracy of Floating-Point Data” on page 2-19

• “Avoiding Common Problems with Floating-Point Arithmetic” on page 2-21

• “Floating-Point Functions” on page 2-23

• “References” on page 2-23

Double-Precision Floating Point
MATLAB constructs the double-precision (or double) data type according
to IEEE Standard 754 for double precision. Any value stored as a double
requires 64 bits, formatted as shown in the table below:

Bits Usage

63 Sign (0 = positive, 1 = negative)

62 to 52 Exponent, biased by 1023

51 to 0 Fraction f of the number 1.f

2-14

Numeric Types

Single-Precision Floating Point
MATLAB constructs the single-precision (or single) data type according
to IEEE Standard 754 for single precision. Any value stored as a single
requires 32 bits, formatted as shown in the table below:

Bits Usage

31 Sign (0 = positive, 1 = negative)

30 to 23 Exponent, biased by 127

22 to 0 Fraction f of the number 1.f

Because MATLAB stores numbers of type single using 32 bits, they require
less memory than numbers of type double, which use 64 bits. However,
because they are stored with fewer bits, numbers of type single are
represented to less precision than numbers of type double.

Creating Floating-Point Data
Use double-precision to store values greater than approximately 3.4 x 1038

or less than approximately -3.4 x 1038. For numbers that lie between these
two limits, you can use either double- or single-precision, but single requires
less memory.

Double-Precision. Because the default numeric type for MATLAB is double,
you can create a double with a simple assignment statement:

x = 25.783;

The whos function shows that MATLAB has created a 1-by-1 array of type
double for the value you just stored in x:

whos(x)
Name Size Bytes Class

x 1x1 8 double

Use isfloat if you just want to verify that x is a floating-point number. This
function returns logical 1 (true) if the input is a floating-point number, and
logical 0 (false) otherwise:

2-15

2 Data Types

isfloat(x)
ans =

1

You can convert other numeric data, characters or strings, and logical data to
double precision using the MATLAB function, double. This example converts
a signed integer to double-precision floating point:

y = int64(-589324077574); % Create a 64-bit integer

x = double(y) % Convert to double
x =

-5.8932e+011

Single-Precision. Because MATLAB stores numeric data as a double
by default, you need to use the single conversion function to create a
single-precision number:

x = single(25.783);

The whos function returns the attributes of variable x in a structure. The
bytes field of this structure shows that when x is stored as a single, it requires
just 4 bytes compared with the 8 bytes to store it as a double:

xAttrib = whos('x');
xAttrib.bytes
ans =

4

You can convert other numeric data, characters or strings, and logical data to
single precision using the single function. This example converts a signed
integer to single-precision floating point:

y = int64(-589324077574); % Create a 64-bit integer

x = single(y) % Convert to single
x =

-5.8932e+011

2-16

Numeric Types

Arithmetic Operations on Floating-Point Numbers
This section describes which data types you can use in arithmetic operations
with floating-point numbers.

Double-Precision. You can perform basic arithmetic operations with double
and any of the following other data types. When one or more operands is an
integer (scalar or array), the double operand must be a scalar. The result is of
type double, except where noted otherwise:

• single — The result is of type single

• double

• int* or uint* — The result has the same data type as the integer operand

• char

• logical

This example performs arithmetic on data of types char and double. The
result is of type double:

c = 'uppercase' - 32;

class(c)
ans =

double

char(c)
ans =

UPPERCASE

Single-Precision. You can perform basic arithmetic operations with single
and any of the following other data types. The result is always single:

• single

• double

• char

• logical

2-17

2 Data Types

In this example, 7.5 defaults to type double, and the result is of type single:

x = single([1.32 3.47 5.28]) .* 7.5;

class(x)
ans =

single

Largest and Smallest Values for Floating-Point Data Types
For the double and single data types, there is a largest and smallest number
that you can represent with that type.

Double-Precision. The MATLAB functions realmax and realmin return
the maximum and minimum values that you can represent with the double
data type:

str = 'The range for double is:\n\t%g to %g and\n\t %g to %g';
sprintf(str, -realmax, -realmin, realmin, realmax)

ans =
The range for double is:

-1.79769e+308 to -2.22507e-308 and
2.22507e-308 to 1.79769e+308

Numbers larger than realmax or smaller than -realmax are assigned the
values of positive and negative infinity, respectively:

realmax + .0001e+308
ans =

Inf

-realmax - .0001e+308
ans =

-Inf

Single-Precision. The MATLAB functions realmax and realmin, when
called with the argument 'single', return the maximum and minimum
values that you can represent with the single data type:

2-18

Numeric Types

str = 'The range for single is:\n\t%g to %g and\n\t %g to %g';
sprintf(str, -realmax('single'), -realmin('single'), ...

realmin('single'), realmax('single'))

ans =
The range for single is:

-3.40282e+038 to -1.17549e-038 and
1.17549e-038 to 3.40282e+038

Numbers larger than realmax(’single’) or smaller than -realmax (’single’) are
assigned the values of positive and negative infinity, respectively:

realmax('single') + .0001e+038
ans =

Inf

-realmax('single') - .0001e+038
ans =

-Inf

Accuracy of Floating-Point Data
If the result of a floating-point arithmetic computation is not as precise as
you had expected, it is likely caused by the limitations of your computer’s
hardware. Probably, your result was a little less exact because the hardware
had insufficient bits to represent the result with perfect accuracy; therefore, it
truncated the resulting value.

Double-Precision. Because there are only a finite number of double-precision
numbers, you cannot represent all numbers in double-precision storage. On
any computer, there is a small gap between each double-precision number and
the next larger double-precision number. You can determine the size of this
gap, which limits the precision of your results, using the eps function. For
example, to find the distance between 5 and the next larger double-precision
number, enter

format long

eps(5)
ans =

2-19

2 Data Types

8.881784197001252e-016

This tells you that there are no double-precision numbers between 5 and
5 + eps(5). If a double-precision computation returns the answer 5, the
result is only accurate to within eps(5).

The value of eps(x) depends on x. This example shows that, as x gets larger,
so does eps(x):

eps(50)
ans =

7.105427357601002e-015

If you enter eps with no input argument, MATLAB returns the value of
eps(1), the distance from 1 to the next larger double-precision number.

Single-Precision. Similarly, there are gaps between any two single-precision
numbers. If x has type single, eps(x) returns the distance between x and
the next larger single-precision number. For example,

x = single(5);
eps(x)

returns

ans =
4.7684e-007

Note that this result is larger than eps(5). Because there are fewer
single-precision numbers than double-precision numbers, the gaps
between the single-precision numbers are larger than the gaps between
double-precision numbers. This means that results in single-precision
arithmetic are less precise than in double-precision arithmetic.

For a number x of type double, eps(single(x)) gives you an upper bound
for the amount that x is rounded when you convert it from double to single.
For example, when you convert the double-precision number 3.14 to single,
it is rounded by

double(single(3.14) - 3.14)
ans =

2-20

Numeric Types

1.0490e-007

The amount that 3.14 is rounded is less than

eps(single(3.14))
ans =

2.3842e-007

Avoiding Common Problems with Floating-Point Arithmetic
Almost all operations in MATLAB are performed in double-precision
arithmetic conforming to the IEEE standard 754. Because computers only
represent numbers to a finite precision (double precision calls for 52 mantissa
bits), computations sometimes yield mathematically nonintuitive results. It is
important to note that these results are not bugs in MATLAB.

Use the following examples to help you identify these cases:

Example 1 — Round-Off or What You Get Is Not What You Expect.
The decimal number 4/3 is not exactly representable as a binary fraction. For
this reason, the following calculation does not give zero, but rather reveals
the quantity eps.

e = 1 - 3*(4/3 - 1)

e =
2.2204e-016

Similarly, 0.1 is not exactly representable as a binary number. Thus, you get
the following nonintuitive behavior:

a = 0.0;
for i = 1:10

a = a + 0.1;
end
a == 1

ans =
0

2-21

2 Data Types

Note that the order of operations can matter in the computation:

b = 1e-16 + 1 - 1e-16;
c = 1e-16 - 1e-16 + 1;
b == c

ans =
0

There are gaps between floating-point numbers. As the numbers get larger, so
do the gaps, as evidenced by:

(2^53 + 1) - 2^53

ans =
0

Since pi is not really pi, it is not surprising that sin(pi) is not exactly zero:

sin(pi)

ans =
1.224646799147353e-016

Example 2 — Catastrophic Cancellation. When subtractions are
performed with nearly equal operands, sometimes cancellation can occur
unexpectedly. The following is an example of a cancellation caused by
swamping (loss of precision that makes the addition insignificant):

sqrt(1e-16 + 1) - 1

ans =
0

Some functions in MATLAB, such as expm1 and log1p, may be used to
compensate for the effects of catastrophic cancellation.

2-22

Numeric Types

Example 3 — Floating-Point Operations and Linear Algebra.
Round-off, cancellation, and other traits of floating-point arithmetic combine
to produce startling computations when solving the problems of linear
algebra. MATLAB warns that the following matrix A is ill-conditioned,
and therefore the system Ax = b may be sensitive to small perturbations.
Although the computation differs from what you expect in exact arithmetic,
the result is correct.

A = [2 eps -eps; eps 1 1; -eps 1 1];
b = [2; eps + 2; -eps + 2];
x = A\b

x =
1.0e+015 *
0.000000000000001
2.251799813685249

-2.251799813685247

These are only a few of the examples showing how IEEE floating-point
arithmetic affects computations in MATLAB. Note that all computations
performed in IEEE 754 arithmetic are affected, this includes applications
written in C or FORTRAN, as well as MATLAB. For more examples
and information, see Technical Note 1108 Common Problems with
Floating-Point Arithmetic.

Floating-Point Functions
See Floating-Point Functions on page 2-30 for a list of functions most
commonly used with floating-point numbers in MATLAB.

References
The following references provide more information about floating-point
arithmetic.

[1] Moler, Cleve, “Floating Points,” MATLAB News
and Notes, Fall, 1996. A PDF version is available on the MathWorks Web site at
http://www.mathworks.com/company/newsletters/news_notes/pdf/Fall96Cleve.pdf

[2] Moler, Cleve, Numerical Computing with MATLAB, S.I.A.M. A PDF version
is available on the MathWorks Web site at http://www.mathworks.com/moler/.

2-23

http://www.mathworks.com/support/tech-notes/1100/1108.html

2 Data Types

Complex Numbers
Complex numbers consist of two separate parts: a real part and an imaginary
part. The basic imaginary unit is equal to the square root of -1. This is
represented in MATLAB by either of two letters: i or j.

Creating Complex Numbers
The following statement shows one way of creating a complex value in
MATLAB. The variable x is assigned a complex number with a real part of 2
and an imaginary part of 3:

x = 2 + 3i;

Another way to create a complex number is using the complex function. This
function combines two numeric inputs into a complex output, making the first
input real and the second imaginary:

x = rand(3) * 5;
y = rand(3) * -8;

z = complex(x, y)
z =

4.7842 -1.0921i 0.8648 -1.5931i 1.2616 -2.2753i
2.6130 -0.0941i 4.8987 -2.3898i 4.3787 -3.7538i
4.4007 -7.1512i 1.3572 -5.2915i 3.6865 -0.5182i

You can separate a complex number into its real and imaginary parts using
the real and imag functions:

zr = real(z)
zr =

4.7842 0.8648 1.2616
2.6130 4.8987 4.3787
4.4007 1.3572 3.6865

zi = imag(z)
zi =

-1.0921 -1.5931 -2.2753
-0.0941 -2.3898 -3.7538
-7.1512 -5.2915 -0.5182

2-24

Numeric Types

Complex Number Functions
See Complex Number Functions on page 2-31 for a list of functions most
commonly used with MATLAB complex numbers in MATLAB.

Infinity and NaN
MATLAB uses the special values inf, -inf, and NaN to represent values that
are positive and negative infinity, and not a number respectively.

Infinity
MATLAB represents infinity by the special value inf. Infinity results from
operations like division by zero and overflow, which lead to results too large
to represent as conventional floating-point values. MATLAB also provides
a function called inf that returns the IEEE arithmetic representation for
positive infinity as a double scalar value.

Several examples of statements that return positive or negative infinity in
MATLAB are shown here.

x = 1/0
x =
Inf

x = 1.e1000
x =

Inf

x = exp(1000)
x =

Inf

x = log(0)
x =

-Inf

Use the isinf function to verify that x is positive or negative infinity:

x = log(0);

isinf(x)
ans =

1

2-25

2 Data Types

NaN
MATLAB represents values that are not real or complex numbers with a
special value called NaN, which stands for Not a Number. Expressions like 0/0
and inf/inf result in NaN, as do any arithmetic operations involving a NaN.

For example, the statement n/0, where n is complex, returns NaN for the real
part of the result:

x = 7i/0
x =

NaN + Infi

Use the isnan function to verify that the real part of x is NaN:

isnan(real(x))
ans =

1

MATLAB also provides a function called NaN that returns the IEEE arithmetic
representation for NaN as a double scalar value:

x = NaN;

whos x
Name Size Bytes Class

x 1x1 8 double

Logical Operations on NaN. Because two NaNs are not equal to each
other, logical operations involving NaN always return false, except for a test
for inequality, (NaN ~= NaN):

NaN > NaN
ans =

0

NaN ~= NaN
ans =

1

2-26

Numeric Types

Infinity and NaN Functions
See Infinity and NaN Functions on page 2-31 for a list of functions most
commonly used with inf and NaN in MATLAB.

Identifying Numeric Types
You can check the data type of a variable x using any of these commands.

Command Operation

whos x Display the data type of x.

xType = class(x); Assign the data type of x to a variable.

isnumeric(x) Determine if x is a numeric type.

isa(x, 'integer')
isa(x, 'uint64')
isa(x, 'float')
isa(x, 'double')
isa(x, 'single')

Determine if x is the specified numeric type.
(Examples for any integer, unsigned 64-bit integer,
any floating point, double precision, and single
precision are shown here).

isreal(x) Determine if x is real or complex.

isnan(x) Determine if x is Not a Number (NaN).

isinf(x) Determine if x is infinite.

isfinite(x) Determine if x is finite.

Display Format for Numeric Values
By default, MATLAB displays numeric output as 5-digit scaled, fixed-point
values. You can change the way numeric values are displayed to any of the
following:

• 5-digit scaled fixed point, floating point, or the best of the two

• 15-digit scaled fixed point, floating point, or the best of the two

• A ratio of small integers

• Hexadecimal (base 16)

• Bank notation

2-27

2 Data Types

All available formats are listed on the format reference page.

To change the numeric display setting, use either the format function or
the Preferences dialog box (accessible from the MATLAB File menu). The
format function changes the display of numeric values for the duration of a
single MATLAB session, while your Preferences settings remain active from
one session to the next. These settings affect only how numbers are displayed,
not how MATLAB computes or saves them.

Display Format Examples
Here are a few examples of the various formats and the output produced from
the following two-element vector x, with components of different magnitudes.

Check the current format setting:

get(0, 'format')
ans =

short

Set the value for x and display in 5-digit scaled fixed point:

x = [4/3 1.2345e-6]
x =

1.3333 0.0000

Set the format to 5-digit floating point:

format short e
x
x =

1.3333e+000 1.2345e-006

Set the format to 15-digit scaled fixed point:

format long
x
x =

1.33333333333333 0.00000123450000

Set the format to 'rational' for small integer ratio output:

2-28

Numeric Types

format rational
x
x =

4/3 1/810045

Set an integer value for x and display it in hexadecimal (base 16) format:

format hex
x = uint32(876543210)
x =

343efcea

Setting Numeric Format in a Program
To temporarily change the numeric format inside a program, get the original
format using the get function and save it in a variable. When you finish
working with the new format, you can restore the original format setting
using the set function as shown here:

origFormat = get(0, 'format');
format('rational');

-- Work in rational format --

set(0,'format', origFormat);

Function Summary
MATLAB provides these functions for working with numeric data types:

• Integer Functions on page 2-30

• Floating-Point Functions on page 2-30

• Complex Number Functions on page 2-31

• Infinity and NaN Functions on page 2-31

• Type Identification Functions on page 2-32

• Output Formatting Functions on page 2-32

2-29

2 Data Types

Integer Functions

Function Description

int8, int16,
int32, int64

Convert to signed 1-, 2-, 4-, or 8-byte integer.

uint8, uint16,
uint32, uint64

Convert to unsigned 1-, 2-, 4-, or 8-byte integer.

ceil Round towards plus infinity to nearest integer

class Return the data type of an object.

fix Round towards zero to nearest integer

floor Round towards minus infinity to nearest integer

isa Determine if input value has the specified data type.

isinteger Determine if input value is an integer array.

isnumeric Determine if input value is a numeric array.

round Round towards the nearest integer

Floating-Point Functions

Function Description

double Convert to double precision.

single Convert to single precision.

class Return the data type of an object.

isa Determine if input value has the specified data type.

isfloat Determine if input value is a floating-point array.

isnumeric Determine if input value is a numeric array.

eps Return the floating-point relative accuracy. This value
is the tolerance MATLAB uses in its calculations.

2-30

Numeric Types

Floating-Point Functions (Continued)

Function Description

realmax Return the largest floating-point number your computer
can represent.

realmin Return the smallest floating-point number your
computer can represent.

Complex Number Functions

Function Description

complex Construct complex data from real and imaginary
components.

i or j Return the imaginary unit used in constructing complex
data.

real Return the real part of a complex number.

imag Return the imaginary part of a complex number.

isreal Determine if a number is real or imaginary.

Infinity and NaN Functions

Function Description

inf Return the IEEE value for infinity.

isnan Detect NaN elements of an array.

isinf Detect infinite elements of an array.

2-31

2 Data Types

Infinity and NaN Functions (Continued)

Function Description

isfinite Detect finite elements of an array.

nan Return the IEEE value for Not a Number.

Type Identification Functions

Function Description

class Return data type (or class).

isa Determine if input value is of the specified data type.

isfloat Determine if input value is a floating-point array.

isinteger Determine if input value is an integer array.

isnumeric Determine if input value is a numeric array.

isreal Determine if input value is real.

whos Display the data type of input.

Output Formatting Functions

Function Description

format Control display format for output.

2-32

Logical Types

Logical Types

In this section...

“Overview” on page 2-33

“Creating a Logical Array” on page 2-33

“How Logical Arrays Are Used” on page 2-35

“Identifying Logical Arrays” on page 2-36

Overview
The logical data type represents a logical true or false state using the
numbers 1 and 0, respectively. Certain MATLAB functions and operators
return logical true or false to indicate whether a certain condition was found
to be true or not. For example, the statement (5 * 10) > 40 returns a logical
true value.

Logical data does not have to be scalar; MATLAB supports arrays of logical
values as well. For example, the following statement returns a vector of
logicals indicating false for the first two elements and true for the last three:

[30 40 50 60 70] > 40
ans =

0 0 1 1 1

Creating a Logical Array
One way of creating an array of logicals is to just enter a true or false value
for each element. The true function returns logical one; the false function
returns logical zero:

x = [true, true, false, true, false];

Logical Operations on an Array
You can also perform some logical operation on an array that yields an array
of logicals:

x = magic(4) >= 9

2-33

2 Data Types

x =
1 0 0 1
0 1 1 0
1 0 0 1
0 1 1 0

The MATLAB functions that have names beginning with is (e.g., ischar,
issparse) also return a logical value or array:

a = [2.5 6.7 9.2 inf 4.8];

isfinite(a)
ans =

1 1 1 0 1

This table shows some of the MATLAB operations that return a logical true
or false.

Function Operation

true, false Setting value to true or false

logical Numeric to logical conversion

& (and), | (or), ~ (not), xor, any, all Logical operations

&&, || Short-circuit AND and OR

== (eq), ~= (ne), < (lt), > (gt), <= (le),
>= (ge)

Relational operations

All is* functions, cellfun Test operations

strcmp, strncmp, strcmpi, strncmpi String comparisons

Sparse Logical Arrays
Logical arrays can also be sparse as long as they have no more than two
dimensions:

x = sparse(magic(20) > 395)
x =

(1,1) 1
(1,4) 1

2-34

Logical Types

(1,5) 1
(20,18) 1
(20,19) 1

How Logical Arrays Are Used
MATLAB has two primary uses for logical arrays:

• “Using Logicals in Conditional Statements” on page 2-35

• “Logical Indexing” on page 2-35

Most mathematics operations are not supported on logical values.

Using Logicals in Conditional Statements
Conditional statements are useful when you want to execute a block of code
only when a certain condition is met. For example, the sprintf command
shown below is valid only if str is a nonempty string. The statement

if ~isempty(str) && ischar(str)

checks for this condition and allows the sprintf to execute only if it is true:

str = 'Hello';

if ~isempty(str) && ischar(str)
sprintf('Input string is ''%s''', str)
end

ans =
Input string is 'Hello'

Logical Indexing
A logical matrix provides a different type of array indexing in MATLAB. While
most indices are numeric, indicating a certain row or column number, logical
indices are positional. That is, it is the position of each 1 in the logical matrix
that determines which array element is being referred to.

2-35

2 Data Types

See “Using Logicals in Array Indexing” on page 1-22 for more information on
this subject.

Identifying Logical Arrays
This table shows the commands you can use to determine whether or not an
array x is logical. The last function listed, cellfun, operates on cell arrays,
which you can read about in the section “Cell Arrays” on page 2-93.

Command Operation

whos(x) Display value and data type for x.

islogical(x) Return true if array is logical.

isa(x, 'logical') Return true if array is logical.

class(x) Return string with data type name.

cellfun('islogical', x) Check each cell array element for logical.

2-36

Characters and Strings

Characters and Strings

In this section...

“Overview” on page 2-37

“Creating Character Arrays” on page 2-37

“Cell Arrays of Strings” on page 2-39

“Formatting Strings” on page 2-42

“String Comparisons” on page 2-55

“Searching and Replacing” on page 2-58

“Converting from Numeric to String” on page 2-59

“Converting from String to Numeric” on page 2-61

“Function Summary” on page 2-63

Overview
In MATLAB, the term string refers to an array of Unicode characters.
MATLAB represents each character internally as its corresponding numeric
value. Unless you want to access these values, you can simply work with the
characters as they display on screen.

You can use char to hold an m-by-n array of strings as long as each string in
the array has the same length. (This is because MATLAB arrays must be
rectangular.) To hold an array of strings of unequal length, use a cell array.

The string is actually a vector whose components are the numeric codes for
the characters. The actual characters displayed depend on the character
set encoding for a given font.

Creating Character Arrays
Specify character data by placing characters inside a pair of single quotes. For
example, this line creates a 1-by-13 character array called name:

name = 'Thomas R. Lee';

2-37

2 Data Types

In the workspace, the output of whos shows

Name Size Bytes Class

name 1x13 26 char

You can see that each character uses 2 bytes of storage internally.

The class and ischar functions show that name is a character array:

class(name)
ans =

char

ischar(name)
ans =

1

You also can join two or more character arrays together to create a new
character array. To do this, use either the string concatenation function,
strcat, or the MATLAB concatenation operator, []. The latter preserves any
trailing spaces found in the input arrays:

name = 'Thomas R. Lee';
title = ' Sr. Developer';

strcat(name,',',title)
ans =

Thomas R. Lee, Sr. Developer

To concatenate strings vertically, use strvcat.

Creating Two-Dimensional Character Arrays
When creating a two-dimensional character array, be sure that each row
has the same length. For example, this line is legal because both input rows
have exactly 13 characters:

name = ['Thomas R. Lee' ; 'Sr. Developer']
name =

Thomas R. Lee

2-38

Characters and Strings

Sr. Developer

When creating character arrays from strings of different lengths, you can pad
the shorter strings with blanks to force rows of equal length:

name = ['Thomas R. Lee '; 'Senior Developer'];

A simpler way to create string arrays is to use the char function. char
automatically pads all strings to the length of the longest input string. In the
following example, char pads the 13-character input string 'Thomas R. Lee'
with three trailing blanks so that it will be as long as the second string:

name = char('Thomas R. Lee','Senior Developer')
name =

Thomas R. Lee
Senior Developer

When extracting strings from an array, use the deblank function to remove
any trailing blanks:

trimname = deblank(name(1,:))
trimname =

Thomas R. Lee

size(trimname)
ans =

1 13

Expanding Character Arrays
Expanding the size of an existing character array by assigning additional
characters to indices beyond the bounds of the array such that part of the
array becomes padded with zeros, is generally not recommended. See the
documentation on “Expanding a Character Array” on page 1-35 in the
MATLAB Programming documentation.

Cell Arrays of Strings
Creating strings in a regular MATLAB array requires that all strings in the
array be of the same length. This often means that you have to pad blanks at

2-39

2 Data Types

the end of strings to equalize their length. However, another type of MATLAB
array, the cell array, can hold different sizes and types of data in an array
without padding. Cell arrays provide a more flexible way to store strings of
varying length.

For details on cell arrays, see “Cell Arrays” on page 2-93.

Converting to a Cell Array of Strings
The cellstr function converts a character array into a cell array of strings.
Consider the character array

data = ['Allison Jones';'Development ';'Phoenix '];

Each row of the matrix is padded so that all have equal length (in this case,
13 characters).

Now use cellstr to create a column vector of cells, each cell containing one
of the strings from the data array:

celldata = cellstr(data)
celldata =

'Allison Jones'
'Development'
'Phoenix'

Note that the cellstr function strips off the blanks that pad the rows of the
input string matrix:

length(celldata{3})
ans =

7

The iscellstr function determines if the input argument is a cell array of
strings. It returns a logical 1 (true) in the case of celldata:

iscellstr(celldata)
ans =

1

Use char to convert back to a standard padded character array:

2-40

Characters and Strings

strings = char(celldata)
strings =

Allison Jones
Development
Phoenix

length(strings(3,:))
ans =

13

Functions for Cell Arrays of Strings
This table describes the MATLAB functions for working with cell arrays.

Function Description

cellstr Convert a character array to a cell array of strings.

char Convert a cell array of strings to a character array.

deblank Remove trailing blanks from a string.

iscellstr Return true for a cell array of strings.

sort Sort elements in ascending or descending order.

strcat Concatenate strings.

strcmp Compare strings.

strmatch Find possible matches for a string.

You can also use the following set functions with cell arrays of strings.

Function Description

intersect Set the intersection of two vectors.

ismember Detect members of a set.

setdiff Return the set difference of two vectors.

setxor Set the exclusive OR of two vectors.

2-41

2 Data Types

Function Description

union Set the union of two vectors.

unique Set the unique elements of a vector.

Formatting Strings
The following MATLAB functions offer the capability to compose a string that
includes ordinary text and data formatted to your specification:

• sprintf — Write formatted data to an output string

• fprintf — Write formatted data to an output file or the command window

• warning — Display formatted data in a warning message

• error — Display formatted data in an error message and abort

• assert — Generate an error when a condition is violated

The syntax of each of these functions includes formatting operators similar
to those used by the printf function in the C programming language. For
example, %s tells MATLAB to interpret an input value as a string, and %d
means to format an integer using decimal notation.

The general formatting syntax for these functions is

functionname(..., format_string, value1, value2, ..., valueN)

where the format_string argument expresses the basic content and
formatting of the final output string, and the value arguments that follow
supply data values to be inserted into the string.

Here is a sample sprintf statement, also showing the resulting output string:

sprintf('The price of %s on %d/%d/%d was $%.2f.', ...
'bread', 7, 1, 2006, 2.49)

ans =
The price of bread on 7/1/2006 was $2.49.

The following sections cover

2-42

Characters and Strings

• “The Format String” on page 2-43

• “Input Value Arguments” on page 2-44

• “The Formatting Operator” on page 2-45

• “Constructing the Formatting Operator” on page 2-46

• “Setting Field Width and Precision” on page 2-51

• “Restrictions for Using Identifiers” on page 2-54

Note The examples in this section of the documentation use only the sprintf
function to demonstrate how string formatting works. However, you can run
the examples using the fprintf, warning, and error functions as well.

The Format String
The first input argument in the sprintf statement shown above is the format
string:

'The price of %s on %d/%d/%d was $%.2f.'

The string argument can include ordinary text, formatting operators and, in
some cases, special characters. The formatting operators for this particular
string are: %s, %d, %d, %d, and %.2f.

Following the string argument are five additional input arguments, one for
each of the formatting operators in the string:

'bread', 7, 1, 2006, 2.49

When MATLAB processes the format string, it replaces each operator with
one of these input values.

Special Characters. Special characters are a part of the text in the string.
But, because they cannot be entered as ordinary text, they require a unique
character sequence to represent them. Use any of the following character
sequences to insert special characters into the output string.

2-43

2 Data Types

To Insert . . . Use . . .

Backspace \b

Form feed \f

New line \n

Carriage return \r

Horizontal tab \t

Backslash \\

Percent character %%

Input Value Arguments
In the syntax

functionname(..., format_string, value1, value2, ..., valueN)

The value arguments must immediately follow string in the argument
list. In most instances, you supply one of these value arguments for each
formatting operator used in string. Scalars, vectors, and numeric and
character arrays are valid value arguments. You cannot use cell arrays or
structures.

If you include fewer formatting operators than there are values to insert,
MATLAB reuses the operators on the additional values. This example shows
two formatting operators and six values to insert into the string:

sprintf('%s = %d\n', 'A', 479, 'B', 352, 'C', 651)
ans =

A = 479
B = 352
C = 651

Sequential and Numbered Argument Specification.

You can place value arguments in the argument list either sequentially (that
is, in the same order in which their formatting operators appear in the string),
or by identifier (adding a number to each operator that identifies which value
argument to replace it with). By default, MATLAB uses sequential ordering.

2-44

Characters and Strings

To specify arguments by a numeric identifier, add a positive integer followed
by a $ sign immediately after the % sign in the operator. Numbered argument
specification is explained in more detail under the topic “Value Identifiers”
on page 2-51.

Ordered Sequentially Ordered By Identifier

sprintf('%s %s %s', ...
'1st', '2nd', '3rd')

ans =
1st 2nd 3rd

sprintf('%3$s %2$s %1$s', ...
'1st', '2nd', '3rd')

ans =
3rd 2nd 1st

Vectorizing. Instead of using individual value arguments, you can use a
vector or matrix as the source of data input values, as shown here:

sprintf('%d ', magic(4))
ans =

16 5 9 4 2 11 7 14 3 10 6 15 13 8 12 1

When using the %s operator, MATLAB interprets integers as characters:

mvec = [77 65 84 76 65 66];

sprintf('%s ', mvec)
ans =

MATLAB

The Formatting Operator
Formatting operators tell MATLAB how to format the numeric or character
value arguments and where to insert them into the string. These operators
control the notation, alignment, significant digits, field width, and other
aspects of the output string.

A formatting operator begins with a % character, which may be followed by a
series of one or more numbers, characters, or symbols, each playing a role in
further defining the format of the insertion value. The final entry in this series
is a single conversion character that MATLAB uses to define the notation style
for the inserted data. Conversion characters used in MATLAB are based on
those used by the printf function in the C programming language.

2-45

2 Data Types

Here is a simple example showing five formatting variations for a common
value:

A = pi*100*ones(1,5);

sprintf(' %f \n %.2f \n %+.2f \n %12.2f \n %012.2f \n', A)
ans =

314.159265 % Display in fixed-point notation (%f)
314.16 % Display 2 decimal digits (%.2f)
+314.16 % Display + for positive numbers (%+.2f)

314.16 % Set width to 12 characters (%12.2f)
000000314.16 % Replace leading spaces with 0 (%012.2f)

Constructing the Formatting Operator
The fields that make up a formatting operator in MATLAB are as shown here,
in the order they appear from right to left in the operator. The rightmost field,
the conversion character, is required; the five to the left of that are optional.
Each of these fields is explained in a section below:

• Conversion Character — Specifies the notation of the output.

• Subtype — Further specifies any nonstandard types.

• Precision — Sets the number of digits to display to the right of the decimal
point.

• Field Width — Sets the minimum number of digits to display.

• Flags — Controls the alignment, padding, and inclusion of plus or minus
signs.

• Value Identifiers — Map formatting operators to value input arguments.
Use the identifier field when value arguments are not in a sequential order
in the argument list.

Here is an example of a formatting operator that uses all six fields. (Space
characters are not allowed in the operator. They are shown here only to
improve readability of the figure).

2-46

Characters and Strings

���������	�
����

������������������������������

�����
 ��������������!����

"��#$�

An alternate syntax, that enables you to supply values for the field width and
precision fields from values in the argument list, is shown below. See the
section “Specifying Field Width and Precision Outside the format String” on
page 2-52 for information on when and how to use this syntax. (Again, space
characters are shown only to improve readability of the figure.)

Each field of the formatting operator is described in the following sections.
These fields are covered as they appear going from right to left in the
formatting operator, starting with the Conversion Character and ending
with the Identifier field.

Conversion Character. The conversion character specifies the notation of
the output. It consists of a single character and appears last in the format
specifier. It is the only required field of the format specifier other than the
leading % character.

Specifier Description

c Single character

d Decimal notation (signed)

e Exponential notation (using a lowercase e as in 3.1415e+00)

E Exponential notation (using an uppercase E as in 3.1415E+00)

f Fixed-point notation

2-47

2 Data Types

Specifier Description

g The more compact of %e or %f. (Insignificant zeros do not
print.)

G Same as %g, but using an uppercase E

o Octal notation (unsigned)

s String of characters

u Decimal notation (unsigned)

x Hexadecimal notation (using lowercase letters a–f)

X Hexadecimal notation (using uppercase letters A–F)

This example uses conversion characters to display the number 46 in decimal,
fixed-point, exponential, and hexadecimal formats:

A = 46*ones(1,4);

sprintf('%d %f %e %X', A)
ans =

46 46.000000 4.600000e+001 2E

Subtype. The subtype field is a single alphabetic character that immediately
precedes the conversion character. The following nonstandard subtype
specifiers are supported for the conversion characters %o, %u, %x, and %X.

b The underlying C data type is a double rather than an unsigned
integer. For example, to print a double-precision value in
hexadecimal, use a format like '%bx'.

t The underlying C data type is a float rather than an unsigned integer.

Precision. precision in a formatting operator is a nonnegative integer that
tells MATLAB how many digits to the right of the decimal point to use when
formatting the corresponding input value. The precision field consists of a
nonnegative integer that immediately follows a period and extends to the
first alphabetic character after that period. For example, the specifier %7.3f,
has a precision of 3.

2-48

Characters and Strings

Here are some examples of how the precision field affects different types
of notation:

sprintf('%g %.2g %f %.2f', pi*50*ones(1,4))
ans =

157.08 1.6e+002 157.079633 157.08

Precision is not usually used in format specifiers for strings (i.e., %s). If you
do use it on a string and if the value p in the precision field is less than the
number of characters in the string, MATLAB displays only p characters of the
string and truncates the rest.

You can also supply the value for a precision field from outside of the format
specifier. See the section “Specifying Field Width and Precision Outside the
format String” on page 2-52 for more information on this.

For more information on the use of precision in formatting, see “Setting
Field Width and Precision” on page 2-51.

Field Width. Field width in a formatting operator is a nonnegative integer
that tells MATLAB the minimum number of digits or characters to use when
formatting the corresponding input value. For example, the specifier %7.3f,
has a width of 7.

Here are some examples of how the width field affects different types of
notation:

sprintf('|%e|%15e|%f|%15f|', pi*50*ones(1,4))
ans =

|1.570796e+002| 1.570796e+002|157.079633| 157.079633|

When used on a string, the field width can determine whether MATLAB
pads the string with spaces. If width is less than or equal to the number of
characters in the string, it has no effect.

sprintf('%30s', 'Pad left with spaces')
ans =

Pad left with spaces

2-49

2 Data Types

You can also supply a value for field width from outside of the format
specifier. See the section “Specifying Field Width and Precision Outside the
format String” on page 2-52 for more information on this.

For more information on the use of field width in formatting, see “Setting
Field Width and Precision” on page 2-51.

Flags. You can control the alignment of the output using any of these
optional flags:

Character Description Example

A minus sign (-) Left-justifies the
converted argument
in its field

%-5.2d

A plus sign (+) Always prints a sign
character (+ or –)

%+5.2d

Zero (0) Pad with zeros rather
than spaces.

%05.2f

Right- and left-justify the output. The default is to right-justify:

sprintf('right-justify: %12.2f\nleft-justify: %-12.2f', ...
12.3, 12.3)

ans =
right-justify: 12.30
left-justify: 12.30

Display a + sign for positive numbers. The default is to omit the + sign:

sprintf('no sign: %12.2f\nsign: %+12.2f', ...
12.3, 12.3)

ans =
no sign: 12.30
sign: +12.30

Pad to the left with spaces or zeros. The default is to use space-padding:

sprintf('space-padded: %12.2f\nzero-padded: %012.2f', ...

2-50

Characters and Strings

5.2, 5.2)
ans =

space-padded: 5.20
zero-padded: 000000005.20

Note You can specify more than one flag in a formatting operator.

Value Identifiers. By default, MATLAB inserts data values from the
argument list into the string in a sequential order. If you have a need to use
the value arguments in a nonsequential order, you can override the default
by using a numeric identifier in each format specifier. Specify nonsequential
arguments with an integer immediately following the % sign, followed by
a $ sign.

Ordered Sequentially Ordered By Identifier

sprintf('%s %s %s', ...
'1st', '2nd', '3rd')

ans =
1st 2nd 3rd

sprintf('%3$s %2$s %1$s', ...
'1st', '2nd', '3rd')

ans =
3rd 2nd 1st

Setting Field Width and Precision
This section provides further information on the use of the field width and
precision fields of the formatting operator:

• “Effect on the Output String” on page 2-51

• “Specifying Field Width and Precision Outside the format String” on page
2-52

• “Using Identifiers In the Width and Precision Fields” on page 2-53

Effect on the Output String. The figure below illustrates the way in
which the field width and precision settings affect the output of the string
formatting functions. In this figure, the zero following the % sign in the
formatting operator means to add leading zeros to the output string rather
than space characters:

2-51

2 Data Types

�	�
%�&'(��)
�� ���	�
%�'

��*�����$���������$�
���������������������

�����������$���������$�
��������������������

������!����+�!�,�)
$��������+���$�,�� �����������$����������

������������$�������
�����������������

���-����$������

.���������!�������/
���0��������������
���������!����1����

General rules for formatting

• If precision is not specified, it defaults to 6.

• If precision (p) is less than the number of digits in the fractional part of the
input value (f), then only p digits are shown to the right of the decimal
point in the output, and that fractional value is rounded.

• If precision (p) is greater than the number of digits in the fractional part of
the input value (f), then p digits are shown to the right of the decimal point
in the output, and the fractional part is extended to the right with p-f zeros.

• If field width is not specified, it defaults to precision + 1 + the number of
digits in the whole part of the input value.

• If field width (w) is greater than p+1 plus the number of digits in the whole
part of the input value (n), then the whole part of the output value is
extended to the left with w-(n+1+p) space characters or zeros, depending
on whether or not the zero flag is set in the Flags field. The default is to
extend the whole part of the output with space characters.

Specifying Field Width and Precision Outside the format String. To
specify field width or precision using values from a sequential argument list,
use an asterisk (*) in place of the field width or precision field of the
formatting operator.

This example formats and displays three numbers. The formatting operator
for the first, %*f, has an asterisk in the field width location of the formatting

2-52

Characters and Strings

operator, specifying that just the field width, 15, is to be taken from the
argument list. The second operator, %.*f puts the asterisk after the decimal
point meaning, that it is the precision that is to take its value from the
argument list. And the third operator, %*.*f, specifies both field width and
precision in the argument list:

sprintf('%*f %.*f %*.*f', ...
15, 123.45678, ... % Width for 123.45678 is 15
3, 16.42837, ... % Precision for rand*20 is .3
6, 4, pi) % Width & Precision for pi is 6.4

ans =
123.456780 16.428 3.1416

You can mix the two styles. For example, this statement gets the field width
from the argument list and the precision from the format string:

sprintf('%*.2f', 5, 123.45678)
ans =

123.46

Using Identifiers In the Width and Precision Fields. You can also
derive field width and precision values from a nonsequential (i.e., numbered)
argument list. Inside the formatting operator, specify field width and/or
precision with an asterisk followed by an identifier number, followed by
a $ sign.

This example from the previous section shows how to obtain field width and
precision from a sequential argument list:

sprintf('%*f %.*f %*.*f', ...
15, 123.45678, ...
3, 16.42837, ...
6, 4, pi)

ans =
123.456780 16.428 3.1416

Here is an example of how to do the same thing using numbered ordering.
Field width for the first output value is 15, precision for the second value is
3, and field width and precision for the third value is 6 and 4, respectively.

2-53

2 Data Types

If you specify field width or precision with identifiers, then you must specify
the value with an identifier as well:

sprintf('%1$*4$f %2$.*5$f %3$*6$.*7$f', ...
123.45678, 16.42837, pi, 15, 3, 6, 4)

ans =
123.456780 16.428 3.1416

Restrictions for Using Identifiers
If any of the formatting operators in a string include an identifier field, then
all of the operators in that string must do the same; you cannot use both
sequential and nonsequential ordering in the same function call.

Valid Syntax Invalid Syntax

sprintf('%d %d %d %d', ...
1, 2, 3, 4)

ans =
1 2 3 4

sprintf('%d %3$d %d %d', ...
1, 2, 3, 4)

ans =
1

If your command provides more value arguments than there are formatting
operators in the format string, MATLAB reuses the operators. However,
MATLAB allows this only for commands that use sequential ordering.
You cannot reuse formatting operators when making a function call with
numbered ordering of the value arguments.

Valid Syntax Invalid Syntax

sprintf('%d', 1, 2, 3, 4)
ans =

1234

sprintf('%1$d', 1, 2, 3, 4)
ans =

1

Also, do not use identifiers when the value arguments are in the form of a
vector or array:

2-54

Characters and Strings

Valid Syntax Invalid Syntax

v = [1.4 2.7 3.1];

sprintf('%.4f %.4f %.4f', v)
ans =

1.4000 2.7000 3.1000

v = [1.4 2.7 3.1];

sprintf('%3$.4f %1$.4f %2$.4f', v)
ans =

Empty string: 1-by-0

String Comparisons
There are several ways to compare strings and substrings:

• You can compare two strings, or parts of two strings, for equality.

• You can compare individual characters in two strings for equality.

• You can categorize every element within a string, determining whether
each element is a character or white space.

These functions work for both character arrays and cell arrays of strings.

Comparing Strings for Equality
You can use any of four functions to determine if two input strings are
identical:

• strcmp determines if two strings are identical.

• strncmp determines if the first n characters of two strings are identical.

• strcmpi and strncmpi are the same as strcmp and strncmp, except that
they ignore case.

Consider the two strings

str1 = 'hello';
str2 = 'help';

Strings str1 and str2 are not identical, so invoking strcmp returns logical 0
(false). For example,

C = strcmp(str1,str2)

2-55

2 Data Types

C =
0

Note For C programmers, this is an important difference between the
MATLAB strcmp and C strcmp()functions, where the latter returns 0 if
the two strings are the same.

The first three characters of str1 and str2 are identical, so invoking strncmp
with any value up to 3 returns 1:

C = strncmp(str1, str2, 2)
C =

1

These functions work cell-by-cell on a cell array of strings. Consider the two
cell arrays of strings

A = {'pizza'; 'chips'; 'candy'};
B = {'pizza'; 'chocolate'; 'pretzels'};

Now apply the string comparison functions:

strcmp(A,B)
ans =

1
0
0

strncmp(A,B,1)
ans =

1
1
0

Comparing for Equality Using Operators
You can use MATLAB relational operators on character arrays, as long as
the arrays you are comparing have equal dimensions, or one is a scalar. For
example, you can use the equality operator (==) to determine where the
matching characters are in two strings:

2-56

Characters and Strings

A = 'fate';
B = 'cake';

A == B
ans =

0 1 0 1

All of the relational operators (>, >=, <, <=, ==, ~=) compare the values of
corresponding characters.

Categorizing Characters Within a String
There are three functions for categorizing characters inside a string:

1 isletter determines if a character is a letter.

2 isspace determines if a character is white space (blank, tab, or new line).

3 isstrprop checks characters in a string to see if they match a category
you specify, such as

• Alphabetic

• Alphanumeric

• Lowercase or uppercase

• Decimal digits

• Hexadecimal digits

• Control characters

• Graphic characters

• Punctuation characters

• White-space characters

For example, create a string named mystring:

mystring = 'Room 401';

isletter examines each character in the string, producing an output vector
of the same length as mystring:

2-57

2 Data Types

A = isletter(mystring)
A =

1 1 1 1 0 0 0 0

The first four elements in A are logical 1 (true) because the first four
characters of mystring are letters.

Searching and Replacing
MATLAB provides several functions for searching and replacing characters in
a string. (MATLAB also supports search and replace operations using regular
expressions. See “Regular Expressions” on page 3-30.)

Consider a string named label:

label = 'Sample 1, 10/28/95';

The strrep function performs the standard search-and-replace operation.
Use strrep to change the date from '10/28' to '10/30':

newlabel = strrep(label, '28', '30')
newlabel =

Sample 1, 10/30/95

findstr returns the starting position of a substring within a longer string. To
find all occurrences of the string 'amp' inside label, use

position = findstr('amp', label)
position =

2

The position within label where the only occurrence of 'amp' begins is the
second character.

The strtok function returns the characters before the first occurrence of a
delimiting character in an input string. The default delimiting characters are
the set of white-space characters. You can use the strtok function to parse a
sentence into words. For example,

function allWords = words(inputString)
remainder = inputString;
allWords = '';

2-58

Characters and Strings

while (any(remainder))
[chopped,remainder] = strtok(remainder);
allWords = strvcat(allWords, chopped);

end

The strmatch function looks through the rows of a character array or cell
array of strings to find strings that begin with a given series of characters. It
returns the indices of the rows that begin with these characters:

maxstrings = strvcat('max', 'minimax', 'maximum')
maxstrings =

max
minimax
maximum

strmatch('max', maxstrings)
ans =

1
3

Converting from Numeric to String
The functions listed in this table provide a number of ways to convert numeric
data to character strings.

Function Description Example

char Convert a positive integer to an equivalent
character. (Truncates any fractional parts.)

[72 105] → 'Hi'

int2str Convert a positive or negative integer to a
character type. (Rounds any fractional parts.)

[72 105] → '72 105'

num2str Convert a numeric type to a character type of the
specified precision and format.

[72 105] →
'72/105/' (format
set to %1d/)

mat2str Convert a numeric type to a character type of the
specified precision, returning a string MATLAB
can evaluate.

[72 105] → '[72
105]'

2-59

2 Data Types

Function Description Example

dec2hex Convert a positive integer to a character type of
hexadecimal base.

[72 105] → '48 69'

dec2bin Convert a positive integer to a character type of
binary base.

[72 105] → '1001000
1101001'

dec2base Convert a positive integer to a character type of
any base from 2 through 36.

[72 105] → '110
151' (base set to 8)

Converting to a Character Equivalent
The char function converts integers to Unicode character codes and returns a
string composed of the equivalent characters:

x = [77 65 84 76 65 66];
char(x)
ans =

MATLAB

Converting to a String of Numbers
The int2str, num2str, and mat2str functions convert numeric values to
strings where each character represents a separate digit of the input value.
The int2str and num2str functions are often useful for labeling plots. For
example, the following lines use num2str to prepare automated labels for the
x-axis of a plot:

function plotlabel(x, y)
plot(x, y)
str1 = num2str(min(x));
str2 = num2str(max(x));
out = ['Value of f from ' str1 ' to ' str2];
xlabel(out);

Converting to a Specific Radix
Another class of conversion functions changes numeric values into strings
representing a decimal value in another base, such as binary or hexadecimal
representation. This includes dec2hex, dec2bin, and dec2base.

2-60

Characters and Strings

Converting from String to Numeric
The functions listed in this table provide a number of ways to convert
character strings to numeric data.

Function Description Example

uintN (e.g., uint8) Convert a character to an integer code that
represents that character.

'Hi' → 72 105

str2num Convert a character type to a numeric type. '72 105' → [72 105]

str2double Similar to str2num, but offers better
performance and works with cell arrays of
strings.

{'72' '105'} → [72
105]

hex2num Convert a numeric type to a character type
of specified precision, returning a string that
MATLAB can evaluate.

'A' →
'-1.4917e-154'

hex2dec Convert a character type of hexadecimal base
to a positive integer.

'A' → 10

bin2dec Convert a positive integer to a character type
of binary base.

'1010' → 10

base2dec Convert a positive integer to a character type
of any base from 2 through 36.

'12' → 10 (if base ==
8)

Converting from a Character Equivalent
Character arrays store each character as a 16-bit numeric value. Use one of
the integer conversion functions (e.g., uint8) or the double function to convert
strings to their numeric values, and char to revert to character representation:

name = 'Thomas R. Lee';

name = double(name)
name =

84 104 111 109 97 115 32 82 46 32 76 101 101

name = char(name)
name =

Thomas R. Lee

2-61

2 Data Types

Converting from a Numeric String
Use str2num to convert a character array to the numeric value represented by
that string:

str = '37.294e-1';

val = str2num(str)
val =

3.7294

The str2double function converts a cell array of strings to the
double-precision values represented by the strings:

c = {'37.294e-1'; '-58.375'; '13.796'};

d = str2double(c)
d =

3.7294
-58.3750
13.7960

whos
Name Size Bytes Class

c 3x1 224 cell
d 3x1 24 double

Converting from a Specific Radix
To convert from a character representation of a nondecimal number to the
value of that number, use one of these functions: hex2num, hex2dec, bin2dec,
or base2dec.

The hex2num and hex2dec functions both take hexadecimal (base 16) inputs,
but hex2num returns the IEEE double-precision floating-point number it
represents, while hex2dec converts to a decimal integer.

2-62

Characters and Strings

Function Summary
MATLAB provides these functions for working with character arrays:

• Functions to Create Character Arrays on page 2-63

• Functions to Modify Character Arrays on page 2-63

• Functions to Read and Operate on Character Arrays on page 2-64

• Functions to Search or Compare Character Arrays on page 2-64

• Functions to Determine Data Type or Content on page 2-64

• Functions to Convert Between Numeric and String Data Types on page 2-65

• Functions to Work with Cell Arrays of Strings as Sets on page 2-65

Functions to Create Character Arrays

Function Description

'str' Create the string specified between quotes.

blanks Create a string of blanks.

sprintf Write formatted data to a string.

strcat Concatenate strings.

strvcat Concatenate strings vertically.

Functions to Modify Character Arrays

Function Description

deblank Remove trailing blanks.

lower Make all letters lowercase.

sort Sort elements in ascending or descending order.

strjust Justify a string.

strrep Replace one string with another.

2-63

2 Data Types

Functions to Modify Character Arrays (Continued)

Function Description

strtrim Remove leading and trailing white space.

upper Make all letters uppercase.

Functions to Read and Operate on Character Arrays

Function Description

eval Execute a string with MATLAB expression.

sscanf Read a string under format control.

Functions to Search or Compare Character Arrays

Function Description

findstr Find one string within another.

strcmp Compare strings.

strcmpi Compare strings, ignoring case.

strmatch Find matches for a string.

strncmp Compare the first N characters of strings.

strncmpi Compare the first N characters, ignoring case.

strtok Find a token in a string.

Functions to Determine Data Type or Content

Function Description

iscellstr Return true for a cell array of strings.

ischar Return true for a character array.

isletter Return true for letters of the alphabet.

2-64

Characters and Strings

Functions to Determine Data Type or Content (Continued)

Function Description

isstrprop Determine if a string is of the specified category.

isspace Return true for white-space characters.

Functions to Convert Between Numeric and String Data Types

Function Description

char Convert to a character or string.

cellstr Convert a character array to a cell array of strings.

double Convert a string to numeric codes.

int2str Convert an integer to a string.

mat2str Convert a matrix to a string you can run eval on.

num2str Convert a number to a string.

str2num Convert a string to a number.

str2double Convert a string to a double-precision value.

Functions to Work with Cell Arrays of Strings as Sets

Function Description

intersect Set the intersection of two vectors.

ismember Detect members of a set.

setdiff Return the set difference of two vectors.

setxor Set the exclusive OR of two vectors.

union Set the union of two vectors.

unique Set the unique elements of a vector.

2-65

2 Data Types

Dates and Times

In this section...

“Overview” on page 2-66

“Types of Date Formats” on page 2-66

“Conversions Between Date Formats” on page 2-68

“Date String Formats” on page 2-69

“Output Formats” on page 2-70

“Current Date and Time” on page 2-71

“Function Summary” on page 2-72

Overview
MATLAB represents date and time information in either of three formats:
date strings, serial date numbers, or date vectors. You have the choice of using
any of these formats. If you work with more than one date and time format,
MATLAB provides functions to help you easily convert from one format to
another, (e.g., from a string to a serial date number).

When using date strings, you have an additional option of choosing from 19
different string styles to express date and/or time information.

Types of Date Formats
The three MATLAB date and time formats are

• “Date Strings” on page 2-67

• “Serial Date Numbers” on page 2-67

• “Date Vectors” on page 2-68

This table shows examples of the three formats.

2-66

Dates and Times

Date Format Example

Date string 02-Oct-1996

Serial date number 729300

Date vector 1996 10 2 0 0 0

Date Strings
There are a number of different styles in which to express date and time
information as a date string. For example, several possibilities for October 31,
2003 at 3:45:17 in the afternoon are

31-Oct-2003 15:45:17
10/31/03
15:45:17
03:45:17 PM

If you are working with a small number of dates at the MATLAB command
line, then date strings are often the most convenient format to use.

Note The MATLAB date function returns the current date as a string.

Serial Date Numbers
A serial date number represents a calendar date as the number of days that
has passed since a fixed base date. In MATLAB, serial date number 1 is
January 1, 0000. MATLAB also uses serial time to represent fractions of days
beginning at midnight; for example, 6 p.m. equals 0.75 serial days. So the
string ’31-Oct-2003, 6:00 pm’ in MATLAB is date number 731885.75.

MATLAB works internally with serial date numbers. If you are using
functions that handle large numbers of dates or doing extensive calculations
with dates, you get better performance if you use date numbers.

Note The MATLAB now function returns the current date and time as a
serial date number.

2-67

2 Data Types

Date Vectors
Date vectors are an internal format for some MATLAB functions; you do not
typically use them in calculations. A date vector contains the elements [year
month day hour minute second].

Note The MATLAB clock function returns the current date and time as a
serial vector.

Conversions Between Date Formats
Functions that convert between date formats are shown below.

Function Description

datenum Convert a date string to a serial date number.

datestr Convert a serial date number to a date string.

datevec Split a date number or date string into individual
date elements.

Here are some examples of conversions from one date format to another:

d1 = datenum('02-Oct-1996')
d1 =

729300

d2 = datestr(d1 + 10)
d2 =

12-Oct-1996

dv1 = datevec(d1)
dv1 =

1996 10 2 0 0 0

dv2 = datevec(d2)
dv2 =

1996 10 12 0 0 0

2-68

Dates and Times

Date String Formats
The datenum function is important for doing date calculations efficiently.
datenum takes an input string in any of several formats, with 'dd-mmm-yyyy',
'mm/dd/yyyy', or 'dd-mmm-yyyy, hh:mm:ss.ss' most common. You can
form up to six fields from letters and digits separated by any other characters:

• The day field is an integer from 1 to 31.

• The month field is either an integer from 1 to 12 or an alphabetic string
with at least three characters.

• The year field is a nonnegative integer: if only two digits are specified,
then a year 19yy is assumed; if the year is omitted, then the current year
is used as a default.

• The hours, minutes, and seconds fields are optional. They are integers
separated by colons or followed by 'AM' or 'PM'.

For example, if the current year is 1996, then these are all equivalent:

'17-May-1996'
'17-May-96'
'17-May'
'May 17, 1996'
'5/17/96'
'5/17'

and both of these represent the same time:

'17-May-1996, 18:30'
'5/17/96/6:30 pm'

Note that the default format for numbers-only input follows the American
convention. Thus 3/6 is March 6, not June 3.

If you create a vector of input date strings, use a column vector and be sure all
strings are the same length. Fill in with spaces or zeros.

2-69

2 Data Types

Output Formats
The command datestr(D, dateform) converts a serial date D to one of 19
different date string output formats showing date, time, or both. The default
output for dates is a day-month-year string: 01-Mar-1996. You select an
alternative output format by using the optional integer argument dateform.

This table shows the date string formats that correspond to each dateform
value.

dateform Format Description

0 01-Mar-1996 15:45:17 day-month-year
hour:minute:second

1 01-Mar-1996 day-month-year

2 03/01/96 month/day/year

3 Mar month, three letters

4 M month, single letter

5 3 month

6 03/01 month/day

7 1 day of month

8 Wed day of week, three letters

9 W day of week, single letter

10 1996 year, four digits

11 96 year, two digits

12 Mar96 month year

13 15:45:17 hour:minute:second

14 03:45:17 PM hour:minute:second AM or PM

15 15:45 hour:minute

16 03:45 PM hour:minute AM or PM

17 Q1-96 calendar quarter-year

18 Q1 calendar quarter

2-70

Dates and Times

Converting Output Format with datestr
Here are some examples of converting the date March 1, 1996 to various
forms using the datestr function:

d = '01-Mar-1999'
d =

01-Mar-1999

datestr(d)
ans =

01-Mar-1999

datestr(d, 2)
ans =

03/01/99

datestr(d, 17)
ans =

Q1-99

Current Date and Time
The function date returns a string for today’s date:

date
ans =

02-Oct-1996

The function now returns the serial date number for the current date and time:

now
ans =

729300.71

datestr(now)
ans =

02-Oct-1996 16:56:16

datestr(floor(now))
ans =

02-Oct-1996

2-71

2 Data Types

Function Summary
MATLAB provides the following functions for time and date handling:

• Current Date and Time Functions on page 2-72

• Conversion Functions on page 2-72

• Utility Functions on page 2-72

• Timing Measurement Functions on page 2-73

Current Date and Time Functions

Function Description

clock Return the current date and time as a date vector.

date Return the current date as date string.

now Return the current date and time as serial date number.

Conversion Functions

Function Description

datenum Convert to a serial date number.

datestr Convert to a string representation of the date.

datevec Convert to a date vector.

Utility Functions

Function Description

addtodate Modify a date number by field.

calendar Return a matrix representing a calendar.

datetick Label axis tick lines with dates.

2-72

Dates and Times

Utility Functions (Continued)

Function Description

eomday Return the last day of a year and month.

weekday Return the current day of the week.

Timing Measurement Functions

Function Description

cputime Return the total CPU time used by MATLAB since it
was started.

etime Return the time elapsed between two date vectors.

tic, toc Measure the time elapsed between invoking tic and toc.

2-73

2 Data Types

Structures

In this section...

“Overview” on page 2-74

“Building Structure Arrays” on page 2-75

“Accessing Data in Structure Arrays” on page 2-78

“Using Dynamic Field Names” on page 2-80

“Finding the Size of Structure Arrays” on page 2-81

“Adding Fields to Structures” on page 2-82

“Deleting Fields from Structures” on page 2-83

“Applying Functions and Operators” on page 2-83

“Writing Functions to Operate on Structures” on page 2-84

“Organizing Data in Structure Arrays” on page 2-85

“Nesting Structures” on page 2-91

“Function Summary” on page 2-92

Overview
Structures are MATLAB arrays with named “data containers” called fields.
The fields of a structure can contain any kind of data. For example, one field
might contain a text string representing a name, another might contain a
scalar representing a billing amount, a third might hold a matrix of medical
test results, and so on.

2-74

Structures

Like standard arrays, structures are inherently array oriented. A single
structure is a 1-by-1 structure array, just as the value 5 is a 1-by-1 numeric
array. You can build structure arrays with any valid size or shape, including
multidimensional structure arrays.

Note The examples in this section focus on two-dimensional structure arrays.
For examples of higher-dimension structure arrays, see “Multidimensional
Arrays” on page 1-56.

Building Structure Arrays
You can build structures in two ways:

• Using assignment statements

• Using the struct function

Building Structure Arrays Using Assignment Statements
You can build a simple 1-by-1 structure array by assigning data to individual
fields. MATLAB automatically builds the structure as you go along. For
example, create the 1-by-1 patient structure array shown at the beginning of
this section:

patient.name = 'John Doe';
patient.billing = 127.00;
patient.test = [79 75 73; 180 178 177.5; 220 210 205];

Now entering

patient

at the command line results in

name: 'John Doe'
billing: 127
test: [3x3 double]

patient is an array containing a structure with three fields. To expand the
structure array, add subscripts after the structure name:

2-75

2 Data Types

patient(2).name = 'Ann Lane';
patient(2).billing = 28.50;
patient(2).test = [68 70 68; 118 118 119; 172 170 169];

The patient structure array now has size [1 2]. Note that once a structure
array contains more than a single element, MATLAB does not display
individual field contents when you type the array name. Instead, it shows a
summary of the kind of information the structure contains:

patient
patient =
1x2 struct array with fields:

name
billing
test

You can also use the fieldnames function to obtain this information.
fieldnames returns a cell array of strings containing field names.

As you expand the structure, MATLAB fills in unspecified fields with empty
matrices so that

• All structures in the array have the same number of fields.

• All fields have the same field names.

For example, entering patient(3).name = 'Alan Johnson' expands
the patient array to size [1 3]. Now both patient(3).billing and
patient(3).test contain empty matrices.

Note Field sizes do not have to conform for every element in an array. In the
patient example, the name fields can have different lengths, the test fields
can be arrays of different sizes, and so on.

Building Structure Arrays Using the struct Function
You can preallocate an array of structures with the struct function. Its basic
form is

2-76

Structures

strArray = struct('field1',val1,'field2',val2, ...)

where the arguments are field names and their corresponding values. A field
value can be a single value, represented by any MATLAB data construct, or
a cell array of values. All field values in the argument list must be of the
same scale (single value or cell array).

You can use different methods for preallocating structure arrays. These
methods differ in the way in which the structure fields are initialized. As an
example, consider the allocation of a 1-by-3 structure array, weather, with the
structure fields temp and rainfall. Three different methods for allocating
such an array are shown in this table.

Method Syntax Initialization

struct weather(3) = struct('temp', 72, ...
'rainfall', 0.0);

weather(3) is initialized with
the field values shown. The
fields for the other structures
in the array, weather(1) and
weather(2), are initialized to
the empty matrix.

struct with
repmat

weather = repmat(struct('temp', ...
72, 'rainfall', 0.0), 1, 3);

All structures in the weather
array are initialized using one
set of field values.

struct with cell
array syntax

weather = ...

struct('temp', {68, 80, 72}, ...
'rainfall', {0.2, 0.4, 0.0});

The structures in the weather
array are initialized with
distinct field values specified
with cell arrays.

Naming conventions for Structure Field Names
MATLAB structure field names are required to follow the same rules as
standard MATLAB variables:

1 Field names must begin with a letter, which may be followed by any
combination of letters, digits, and underscores. The following statements
are all invalid:

w = setfield(w, 'My.Score', 3);

2-77

2 Data Types

w = setfield(w, '1stScore', 3);
w = setfield(w, '1+1=3', 3);
w = setfield(w, '@MyScore', 3);

2 Although field names can be of any length, MATLAB uses only the first
N characters of the field name, (where N is the number returned by the
function namelengthmax), and ignores the rest.

N= namelengthmax
N=

63

3 MATLAB distinguishes between uppercase and lowercase characters. Field
name length is not the same as field name Length.

4 In most cases, you should refrain from using the names of functions and
variables as field names.

See “Adding Fields to Structures” on page 2-82 and “Deleting Fields from
Structures” on page 2-83 for more information on working with field names.

Memory Requirements for Structures
You do not necessarily need a contiguous block of memory to store a structure.
The memory for each field in the structure needs to be contiguous, but not the
entire structure itself.

Accessing Data in Structure Arrays
Using structure array indexing, you can access the value of any field or field
element in a structure array. Likewise, you can assign a value to any field
or field element. You can also access the fields of an array of structures in
the form of a comma-separated list.

For the examples in this section, consider this structure array.

2-78

Structures

You can access subarrays by appending standard subscripts to a structure
array name. For example, the line below results in a 1-by-2 structure array:

mypatients = patient(1:2)
1x2 struct array with fields:

name
billing
test

The first structure in the mypatients array is the same as the first structure
in the patient array:

mypatients(1)
ans =

name: 'John Doe'
billing: 127

test: [3x3 double]

To access a field of a particular structure, include a period (.) after the
structure name followed by the field name:

str = patient(2).name
str =

Ann Lane

2-79

2 Data Types

To access elements within fields, append the appropriate indexing mechanism
to the field name. That is, if the field contains an array, use array subscripting;
if the field contains a cell array, use cell array subscripting, and so on:

test2b = patient(3).test(2,2)
test2b =

153

Use the same notations to assign values to structure fields, for example,

patient(3).test(2,2) = 7;

You can extract field values for multiple structures at a time. For example,
the line below creates a 1-by-3 vector containing all of the billing fields:

bills = [patient.billing]
bills =

127.0000 28.5000 504.7000

Similarly, you can create a cell array containing the test data for the first
two structures:

tests = {patient(1:2).test}
tests =

[3x3 double] [3x3 double]

Using Dynamic Field Names
The most common way to access the data in a structure is by specifying the
name of the field that you want to reference. Another means of accessing
structure data is to use dynamic field names. These names express the
field as a variable expression that MATLAB evaluates at run-time. The
dot-parentheses syntax shown here makes expression a dynamic field name:

structName.(expression)

Index into this field using the standard MATLAB indexing syntax. For
example, to evaluate expression into a field name and obtain the values of
that field at columns 1 through 25 of row 7, use

structName.(expression)(7,1:25)

2-80

Structures

Dynamic Field Names Example
The avgscore function shown below computes an average test score, retrieving
information from the testscores structure using dynamic field names:

function avg = avgscore(student, first, last)
for k = first:last

scores(k) = testscores.(student).week(k);
end
avg = sum(scores)/(last - first + 1);

You can run this function using different values for the dynamic field student.
First, initialize the structure that contains scores for a 25 week period:

testscores.Ann_Lane.week(1:25) = ...
[95 89 76 82 79 92 94 92 89 81 75 93 ...
85 84 83 86 85 90 82 82 84 79 96 88 98];

testscores.William_King.week(1:25) = ...
[87 80 91 84 99 87 93 87 97 87 82 89 ...
86 82 90 98 75 79 92 84 90 93 84 78 81];

Now run avgscore, supplying the students name fields for the testscores
structure at runtime using dynamic field names:

avgscore(testscores, 'Ann_Lane', 7, 22)
ans =

85.2500

avgscore(testscores, 'William_King', 7, 22)
ans =

87.7500

Finding the Size of Structure Arrays
Use the size function to obtain the size of a structure array, or of any
structure field. Given a structure array name as an argument, size returns a
vector of array dimensions. Given an argument in the form array(n).field,
the size function returns a vector containing the size of the field contents.

2-81

2 Data Types

For example, for the 1-by-3 structure array patient, size(patient) returns
the vector [1 3]. The statement size(patient(1,2).name) returns the
length of the name string for element (1,2) of patient.

Adding Fields to Structures
You can add a field to every structure in an array by adding the field to a
single structure. For example, to add a social security number field to the
patient array, use an assignment like

patient(2).ssn = '000-00-0000';

Now patient(2).ssn has the assigned value. Every other structure in the
array also has the ssn field, but these fields contain the empty matrix until
you explicitly assign a value to them.

See “Naming conventions for Structure Field Names” on page 2-77 for
guidelines to creating valid field names.

Adding or Modifying Fields With the setfield Function
The setfield function offers another way to add or modify fields of a
structure. Given the structure

mystr(1,1).name = 'alice';
mystr(1,1).ID = 0;
mystr(2,1).name = 'gertrude';
mystr(2,1).ID = 1;

You can change the name field of mystr(2,1) using

mystr = setfield(mystr, {2,1}, 'name', 'ted');

mystr(2,1).name
ans =

ted

Adding New Fields Dynamically
To add new fields to a structure, specifying the names for these fields at
run-time, see the section on “Using Dynamic Field Names” on page 2-80.

2-82

Structures

Deleting Fields from Structures
You can remove a given field from every structure within a structure array
using the rmfield function. Its most basic form is

struc2 = rmfield(array, 'field')

where array is a structure array and 'field' is the name of a field to remove
from it. To remove the name field from the patient array, for example, enter

patient = rmfield(patient, 'name');

Applying Functions and Operators
Operate on fields and field elements the same way you operate on any other
MATLAB array. Use indexing to access the data on which to operate.

For example, this statement finds the mean across the rows of the test
array in patient(2):

mean((patient(2).test)');

There are sometimes multiple ways to apply functions or operators across
fields in a structure array. One way to add all the billing fields in the
patient array is

total = 0;
for k = 1:length(patient)

total = total + patient(k).billing;
end

To simplify operations like this, MATLAB enables you to operate on all
like-named fields in a structure array. Simply enclose the array.field
expression in square brackets within the function call. For example, you can
sum all the billing fields in the patient array using

total = sum ([patient.billing]);

This is equivalent to using the comma-separated list:

total = sum ([patient(1).billing, patient(2).billing, ...]);

2-83

2 Data Types

This syntax is most useful in cases where the operand field is a scalar field:

Writing Functions to Operate on Structures
You can write functions that work on structures with specific field
architectures. Such functions can access structure fields and elements for
processing.

Note When writing M-file functions to operate on structures, you must
perform your own error checking. That is, you must ensure that the code
checks for the expected fields.

As an example, consider a collection of data that describes measurements, at
different times, of the levels of various toxins in a water source. The data
consists of fifteen separate observations, where each observation contains
three separate measurements.

You can organize this data into an array of 15 structures, where each structure
has three fields, one for each of the three measurements taken.

The function concen, shown below, operates on an array of structures with
specific characteristics. Its arguments must contain the fields lead, mercury,
and chromium:

function [r1, r2] = concen(toxtest);
% Create two vectors:
% r1 contains the ratio of mercury to lead at each observation.
% r2 contains the ratio of lead to chromium.
r1 = [toxtest.mercury] ./ [toxtest.lead];
r2 = [toxtest.lead] ./ [toxtest.chromium];

% Plot the concentrations of lead, mercury, and chromium
% on the same plot, using different colors for each.
lead = [toxtest.lead];
mercury = [toxtest.mercury];
chromium = [toxtest.chromium];

plot(lead, 'r'); hold on

2-84

Structures

plot(mercury, 'b')
plot(chromium, 'y'); hold off

Try this function with a sample structure array like test:

test(1).lead = .007;
test(2).lead = .031;
test(3).lead = .019;

test(1).mercury = .0021;
test(2).mercury = .0009;
test(3).mercury = .0013;

test(1).chromium = .025;
test(2).chromium = .017;
test(3).chromium = .10;

Organizing Data in Structure Arrays
The key to organizing structure arrays is to decide how you want to access
subsets of the information. This, in turn, determines how you build the array
that holds the structures, and how you break up the structure fields.

For example, consider a 128-by-128 RGB image stored in three separate
arrays; RED, GREEN, and BLUE.

2-85

2 Data Types

2-86

Structures

There are at least two ways you can organize such data into a structure array.

Plane Organization
In the plane organization, shown to the left in the figure above, each field of
the structure is an entire plane of the image. You can create this structure
using

A.r = RED;
A.g = GREEN;
A.b = BLUE;

This approach allows you to easily extract entire image planes for display,
filtering, or other tasks that work on the entire image at once. To access
the entire red plane, for example, use

redPlane = A.r;

2-87

2 Data Types

Plane organization has the additional advantage of being extensible to
multiple images in this case. If you have a number of images, you can store
them as A(2), A(3), and so on, each containing an entire image.

The disadvantage of plane organization is evident when you need to access
subsets of the planes. To access a subimage, for example, you need to access
each field separately:

redSub = A.r(2:12,13:30);
greenSub = A.g(2:12,13:30);
blueSub = A.b(2:12,13:30);

Element-by-Element Organization
The element-by-element organization, shown to the right in the figure above,
has the advantage of allowing easy access to subsets of data. To set up the
data in this organization, use

for m = 1:size(RED,1)
for n = 1:size(RED,2)

B(m,n).r = RED(m,n);
B(m,n).g = GREEN(m,n);
B(m,n).b = BLUE(m,n);

end
end

With element-by-element organization, you can access a subset of data with a
single statement:

Bsub = B(1:10,1:10);

To access an entire plane of the image using the element-by-element method,
however, requires a loop:

redPlane = zeros(128, 128);
for k = 1:(128 * 128)

redPlane(k) = B(k).r;
end

2-88

Structures

Element-by-element organization is not the best structure array choice for
most image processing applications; however, it can be the best for other
applications wherein you will routinely need to access corresponding subsets
of structure fields. The example in the following section demonstrates this
type of application.

Example — A Simple Database
Consider organizing a simple database.

Each of the possible organizations has advantages depending on how you
want to access the data:

• Plane organization makes it easier to operate on all field values at once.
For example, to find the average of all the values in the amount field,

- Using plane organization

2-89

2 Data Types

avg = mean(A.amount);

- Using element-by-element organization

avg = mean([B.amount]);

• Element-by-element organization makes it easier to access all the
information related to a single client. Consider an M-file, client.m, which
displays the name and address of a given client on screen.

Using plane organization, pass individual fields.

function client(name,address)
disp(name)
disp(address)

To call the client function,

client(A.name(2,:),A.address(2,:))

Using element-by-element organization, pass an entire structure.

function client(B)
disp(B)

To call the client function,

client(B(2))

• Element-by-element organization makes it easier to expand the string
array fields. If you do not know the maximum string length ahead of time
for plane organization, you may need to frequently recreate the name or
address field to accommodate longer strings.

Typically, your data does not dictate the organization scheme you choose.
Rather, you must consider how you want to access and operate on the data.

2-90

Structures

Nesting Structures
A structure field can contain another structure, or even an array of structures.
Once you have created a structure, you can use the struct function or direct
assignment statements to nest structures within existing structure fields.

Building Nested Structures with the struct Function
To build nested structures, you can nest calls to the struct function. For
example, create a 1-by-1 structure array:

A = struct('data', [3 4 7; 8 0 1], 'nest',...
struct('testnum', 'Test 1', 'xdata', [4 2 8],...
'ydata', [7 1 6]));

You can build nested structure arrays using direct assignment statements.
These statements add a second element to the array:

A(2).data = [9 3 2; 7 6 5];
A(2).nest.testnum = 'Test 2';
A(2).nest.xdata = [3 4 2];
A(2).nest.ydata = [5 0 9];

Indexing Nested Structures
To index nested structures, append nested field names using dot notation.
The first text string in the indexing expression identifies the structure array,
and subsequent expressions access field names that contain other structures.

2-91

2 Data Types

For example, the array A created earlier has three levels of nesting:

• To access the nested structure inside A(1), use A(1).nest.

• To access the xdata field in the nested structure in A(2), use
A(2).nest.xdata.

• To access element 2 of the ydata field in A(1), use A(1).nest.ydata(2).

Function Summary
This table describes the MATLAB functions for working with structures.

Function Description

deal Deal inputs to outputs.

fieldnames Get structure field names.

isfield Return true if the field is in a structure array.

isstruct Return true for structures.

rmfield Remove a structure field.

struct Create or convert to a structure array.

struct2cell Convert a structure array into a cell array.

2-92

Cell Arrays

Cell Arrays

In this section...

“Overview” on page 2-93

“Cell Array Operators” on page 2-94

“Creating a Cell Array” on page 2-95

“Referencing Cells of a Cell Array” on page 2-99

“Deleting Cells” on page 2-106

“Reshaping Cell Arrays” on page 2-106

“Replacing Lists of Variables with Cell Arrays” on page 2-107

“Applying Functions and Operators” on page 2-108

“Organizing Data in Cell Arrays” on page 2-109

“Nesting Cell Arrays” on page 2-110

“Converting Between Cell and Numeric Arrays” on page 2-112

“Cell Arrays of Structures” on page 2-113

“Function Summary” on page 2-114

Overview
A cell array provides a storage mechanism for dissimilar kinds of data. You
can store arrays of different types and/or sizes within the cells of a cell array.
For example, you can store a 1-by-50 char array, a 7-by-13 double array, and a
1-by-1 uint32 in cells of the same cell array.

This illustration shows a cell array A that contains arrays of unsigned integers
in A{1,1}, strings in A{1,2}, complex numbers in A{1,3}, floating-point
numbers in A{2,1}, signed integers in A{2,2}, and another cell array in
A{2,3}.

2-93

2 Data Types

To access data in a cell array, you use the same type of matrix indexing as
with other MATLAB matrices and arrays. However, with cell array indexing,
you use curly braces, {}, instead of square brackets or parentheses around
the array indices. For example, A{2,3} accesses the cell in row 2 and column
3 of cell array A.

Note The examples in this section focus on two-dimensional cell arrays. For
examples of higher-dimension cell arrays, see “Multidimensional Arrays”
on page 1-56.

Cell Array Operators
This table shows the operators used in constructing, concatenating, and
indexing into the cells of a cell array.

2-94

Cell Arrays

Operation Syntax Description

Constructing C = {A B D
E}

Builds a cell array C that can contain data
of unlike types in A, B, D, and E

C3 = {C1 C2} Concatenates cell arrays C1 and C2 into a
2–element cell array C3 such that C3{1} =
C1 and C3{2} = C2

Concatenating

C3 = [C1 C2] Concatenates the contents of cell arrays
C1 and C2

X = C(s) Returns the cells of array C that are
specified by subscripts s

X = C{s} Returns the contents of the cells of C that
are specified by subscripts s

Indexing

X = C{s}(t) References one or more elements of an
array that resides within a cell. Subscript
s selects the cell, and subscript t selects
the array element(s).

Creating a Cell Array
Creating cell arrays in MATLAB is similar to creating arrays of other
MATLAB data types like double, character, etc. The main difference is that,
when constructing a cell array, you enclose the array contents or indices with
curly braces { } instead of square brackets []. The curly braces are cell
array constructors, just as square brackets are numeric array constructors.
Use commas or spaces to separate elements and semicolons to terminate
each row.

For example, to create a 2-by-2 cell array A, type

A = {[1 4 3; 0 5 8; 7 2 9], 'Anne Smith'; 3+7i, -pi:pi/4:pi};

This results in the array shown below:

2-95

2 Data Types

Note The notation {} denotes the empty cell array, just as [] denotes the
empty matrix for numeric arrays. You can use the empty cell array in any
cell array assignments.

For more information on cell arrays, refer to these topics:

• “Creating Cell Arrays Using Multiple Assignment Statements” on page 2-96

• “Building Cell Arrays with Concatenation” on page 2-98

• “Preallocating Cell Arrays with the cell Function” on page 2-99

• “Memory Requirements for Cell Arrays” on page 2-99

Creating Cell Arrays Using Multiple Assignment Statements
You also can create a cell array one cell at a time. MATLAB expands the size
of the cell array with each assignment statement:

A(1,1) = {[1 4 3; 0 5 8; 7 2 9]};
A(1,2) = {'Anne Smith'};
A(2,1) = {3+7i};
A(2,2) = {-pi:pi/4:pi};

If you assign data to a cell that is outside the dimensions of the current array,
MATLAB automatically expands the array to include the subscripts you
specify. It fills any intervening cells with empty matrices. For example, the
assignment below turns the 2-by-2 cell array A into a 3-by-3 cell array.

A(3,3) = {5};

2-96

Cell Arrays

3–by-3 Cell Array

Note If you already have a numeric array of a given name, don’t try to
create a cell array of the same name by assignment without first clearing
the numeric array. If you do not clear the numeric array, MATLAB assumes
that you are trying to “mix” cell and numeric syntaxes, and generates an
error. Similarly, MATLAB does not clear a cell array when you make a single
assignment to it. If any of the examples in this section give unexpected
results, clear the cell array from the workspace and try again.

Alternative Assignment Syntax. When assigning values to a cell array,
either of the syntaxes shown below is valid. You can use the braces on the
right side of the equation, enclosing the value being assigned as shown here:

A(1,1) = {[1 4 3; 0 5 8; 7 2 9]};
A(1,2) = {'Anne Smith'};

Or use them on the left side, enclosing the array subscripts:

A{1,1} = [1 4 3; 0 5 8; 7 2 9];
A{1,2} = 'Anne Smith';

2-97

2 Data Types

Building Cell Arrays with Concatenation
There are two ways that you can construct a new cell array from existing
cell arrays:

• Concatenate entire cell arrays to individual cells of the new array. For
example, join three cell arrays together to build a new cell array having
three elements, each containing a cell array. This method uses the curly
brace { } operator.

• Concatenate the contents of the cells into a new array. For example, join
cell arrays of size m-by-n1, m-by-n2, and m-by-n3 together to yield a new
cell array that is m-by-(n1+n2+n3) in size. This method uses the square
bracket [] operator.

Here is an example. First, create three 3–row cell arrays of different widths.

C1 = {'Jan' 'Feb'; '10' '17'; uint16(2004) uint16(2001)};
C2 = {'Mar' 'Apr' 'May'; '31' '2' '10'; ...

uint16(2006) uint16(2005) uint16(1994)};
C3 = {'Jun'; '23'; uint16(2002)};

This creates arrays C1, C2, and C3:

C1 C2 C3
'Jan' 'Feb' 'Mar' 'Apr' 'May' 'Jun'
'10' '17' '31' '2' '10' '23'
[2004] [2001] [2006] [2005] [1994] [2002]

Use the curly brace operator to concatenate entire cell arrays, thus building
a 1-by-3 cell array from the three initial arrays. Each cell of this new array
holds its own cell array:

C4 = {C1 C2 C3}
C4 =

{3x2 cell} {3x3 cell} {3x1 cell}

Now use the square bracket operator on the same combination of cell arrays.
This time MATLAB concatenates the contents of the cells together and
produces a 3-by-6 cell array:

C5 = [C1 C2 C3]

2-98

Cell Arrays

C5 =
'Jan' 'Feb' 'Mar' 'Apr' 'May' 'Jun'
'10' '17' '31' '2' '10' '23'
[2004] [2001] [2006] [2005] [1994] [2002]

Preallocating Cell Arrays with the cell Function
The cell function enables you to preallocate empty cell arrays of the specified
size. For example, this statement creates an empty 20-by-30 cell array:

B = cell(20, 30);

Use assignment statements to fill the cells of B.

It is more efficient to preallocate a cell array of a required size using the cell
function and then assign data into it, than to grow a cell array as you go along
using individual data assignments. The cell function, therefore, offers the
most memory-efficient way of preallocating a cell array.

Memory Requirements for Cell Arrays
You do not necessarily need a contiguous block of memory to store a cell array.
The memory for each cell needs to be contiguous, but not the entire array
of cells.

Referencing Cells of a Cell Array
Because a cell array can contain different types of data stored in various
array sizes, cell array indexing is a little more complex than indexing into a
numeric or character array.

This section covers the following topics on constructing a cell array:

• “Manipulating Cells and the Contents of Cells” on page 2-100

• “Working With Arrays Within Cells” on page 2-103

• “Working With Structures Within Cells” on page 2-103

• “Working With Cell Arrays Within Cells” on page 2-104

• “Plotting the Cell Array” on page 2-105

2-99

2 Data Types

The examples in this section illustrate how to access the different components
of a cell array. All of the examples use the following six-cell array which
consists of different data types.

First, build the individual components of the example array:

rand('state', 0); numArray = rand(3,5)*20;
chArray = ['Ann Lane'; 'John Doe'; 'Al Smith'];
cellArray = {1 4 3 9; 0 5 8 2; 7 2 9 2; 3 3 1 4};
logArray = numArray > 10;

stArray(1).name = chArray(1,:);
stArray(2).name = chArray(2,:);
stArray(1).billing = 28.50;
stArray(2).billing = 139.72;
stArray(1).test = numArray(1,:);
stArray(2).test = numArray(2,:);

and then construct the cell array from these components using the { }
operator:

A = {numArray, pi, stArray; chArray, cellArray, logArray};

To see what size and type of array occupies each cell in A, type the variable
name alone:

A
A =

[3x5 double] [3.1416] [1x2 struct]
[3x8 char] {4x4 cell} [3x5 logical]

Manipulating Cells and the Contents of Cells
When working with cell arrays, you have a choice of selecting entire cells of an
array to work with, or the contents of those cells. The first method is called
cell indexing; the second is content indexing:

• Cell indexing enables you to work with whole cells of an array. You can
access single or multiple cells within the array, but you cannot select
anything less than the complete cell. If you want to manipulate the cells

2-100

Cell Arrays

of an array without regard to the contents of those cells, use cell indexing.
This type of indexing is denoted by the parentheses operator ().

Use cell indexing to assign any set of cells to another variable, creating
a new cell array.

Creating a New Cell Array from an Existing One

• Content indexing gives you access to the contents of a cell. You can work
with individual elements of an array within a cell, but you can only do so
for one cell at a time. This indexing uses the curly brace operator { }.

Displaying Parts of the Cell Array. Using the example cell array A, you
can display information on the first row of cells using cell indexing. (The
MATLAB colon operator functions the same when used with cell arrays as it
does with numeric arrays):

A(1,:)
ans =

[3x5 double] [3.1416] [1x2 struct]

To display the contents of these cells, use content indexing:

A{1,:}
ans =

19.0026 9.7196 9.1294 8.8941 18.4363
4.6228 17.8260 0.3701 12.3086 14.7641

12.1369 15.2419 16.4281 15.8387 3.5253
ans =

3.1416
ans =
1x2 struct array with fields:

name

2-101

2 Data Types

billing
test

In assignments, you can use content indexing to access only a single cell, not a
subset of cells. For example, the statements A{1,:} = value and B = A{1,:}
are both invalid. However, you can use a subset of cells any place you would
normally use a comma-separated list of variables (for example, as function
inputs or when building an array). See “Replacing Lists of Variables with
Cell Arrays” on page 2-107 for details.

Assigning Cells. For cell indexing, assign the double array cell to X:

X = A(1,1)
X =

[3x5 double]

X is a 1-by-1 cell array:

whos X
Name Size Bytes Class

X 1x1 180 cell

For content indexing, assign the contents of the first cell of row 1 to Y:

Y = A{1,1}
Y =

19.0026 9.7196 9.1294 8.8941 18.4363
4.6228 17.8260 0.3701 12.3086 14.7641

12.1369 15.2419 16.4281 15.8387 3.5253

Y is a 3-by-5 double array

whos Y
Name Size Bytes Class

Y 3x5 120 double

Assigning Multiple Cells. Assigning multiple cells with cell indexing is
similar to assigning a single cell. MATLAB creates a new cell array, each cell
of which contains a cell array.

2-102

Cell Arrays

Create a 1-by-2 array with cells from A(1,2) and A(1,3):

X = A(1,2:3)
X =

[3.1416] [1x2 struct]

whos X
Name Size Bytes Class

X 1x2 808 cell

But assigning the contents of multiple cells returns a comma-separated list.
In this case, you need one output variable on the left side of the assignment
statement for each cell on the right side:

[Y1 Y2] = A{1,2:3}
Y1 =

3.1416
Y2 =
1x2 struct array with fields:

name
billing
test

Working With Arrays Within Cells
Append the parentheses operator to the cell designator A{1,1} to select
specific elements of a cell. This example displays specific row and columns of
the numeric array stored in cell {1,1} of A:

A{1,1}(2,3:end)
ans =

0.3701 12.3086 14.7641

Working With Structures Within Cells
Use a combination of indexing operators to access the components of a
structure array that resides in a cell of a cell array. The syntax for indexing
into field F of a structure array that resides in a cell of array C is

X = C{CellArrayIndex}(StructArrayIndex).F(FieldArrayIndex);

2-103

2 Data Types

For example, row 1, column 3 of cell array A contains a structure array. Use
A{1,3} to select this cell, and .name to display the field name for all elements
of the structure array:

A{1,3}.name
ans =

Ann Lane
ans =

John Doe

To display all fields of a particular element of the structure array, type

A{1,3}(2)
ans =

name: 'John Doe'
billing: 139.7200

test: [4.6228 17.8260 0.3701 12.3086 14.7641]

The test field of this structure array contains a 1-by-5 numeric array. Access
the odd numbered elements of this field in the second element of the structure
array:

A{1,3}(2).test(1:2:end)
ans =

4.6228 0.3701 14.7641

Working With Cell Arrays Within Cells
The syntax for indexing into a cell array that resides in a cell of array C
using content indexing is shown below. To use cell indexing on the inner cell
array, replace the curly brace operator enclosing the InnerCellArrayIndes
with parentheses.

The syntax for content indexing is

X = C{OuterCellArrayIndex}{InnerCellArrayIndex}

In the example cell array created at the start of this section, A{2,2} is a cell
array that resides in a cell of the outer array A. To get the third row of the
inner cell array, type

A{2,2}{3,:}

2-104

Cell Arrays

ans =
7

ans =
2

ans =
9

ans =
2

Note that MATLAB returns a comma-separated list. To have MATLAB return
the list of elements as a vector instead, surround the previous expression
with square brackets:

[A{2,2}{3,:}]
ans =

7 2 9 2

Plotting the Cell Array
For a high-level graphical display of cell architecture, use the cellplot
function. Consider a 2-by-2 cell array containing two text strings, a matrix,
and a vector:

c{1,1} = '2-by-2';
c{1,2} = 'eigenvalues of eye(2)';
c{2,1} = eye(2);
c{2,2} = eig(eye(2));

The command cellplot(c) produces this figure:

2-105

2 Data Types

Deleting Cells
You can delete an entire dimension of cells using a single statement. Like
standard array deletion, use vector subscripting when deleting a row or
column of cells and assign the empty matrix to the dimension:

A(cell_subscripts) = []

When deleting cells, curly braces do not appear in the assignment statement
at all.

Reshaping Cell Arrays
Like other arrays, you can reshape cell arrays using the reshape function.
The number of cells must remain the same after reshaping; you cannot use
reshape to add or remove cells:

A = cell(3, 4);

size(A)
ans =

2-106

Cell Arrays

3 4

B = reshape(A, 6, 2);

size(B)
ans =

6 2

Replacing Lists of Variables with Cell Arrays
Cell arrays can replace comma-separated lists of MATLAB variables in

• Function input lists

• Function output lists

• Display operations

• Array constructions (square brackets and curly braces)

If you use the colon to index multiple cells in conjunction with the curly brace
notation, MATLAB treats the contents of each cell as a separate variable. For
example, assume you have a cell array T where each cell contains a separate
vector. The expression T{1:5} is equivalent to a comma-separated list of
the vectors in the first five cells of T.

Consider the cell array C:

C(1) = {[1 2 3]};
C(2) = {[1 0 1]};
C(3) = {1:10};
C(4) = {[9 8 7]};
C(5) = {3};

To convolve the vectors in C(1) and C(2) using conv,

d = conv(C{1:2})
d =

1 2 4 2 3

Display vectors two, three, and four with

2-107

2 Data Types

C{2:4}
ans =

1 0 1

ans =
1 2 3 4 5 6 7 8 9 10

ans =
9 8 7

Similarly, you can create a new numeric array using the statement

B = [C{1}; C{2}; C{4}]
B =

1 2 3
1 0 1
9 8 7

You can also use content indexing on the left side of an assignment to create a
new cell array where each cell represents a separate output argument:

[D{1:2}] = eig(B)
D =

[3x3 double] [3x3 double]

You can display the actual eigenvectors and eigenvalues using D{1} and D{2}.

Note The varargin and varargout arguments allow you to specify variable
numbers of input and output arguments for MATLAB functions that you
create. Both varargin and varargout are cell arrays, allowing them to hold
various sizes and kinds of MATLAB data. See “Passing Variable Numbers of
Arguments” on page 4-34 in the MATLAB Programming documentation for
details.

Applying Functions and Operators
Use indexing to apply functions and operators to the contents of cells. For
example, use content indexing to call a function with the contents of a single
cell as an argument:

2-108

Cell Arrays

A{1,1} = [1 2; 3 4];
A{1,2} = randn(3, 3);
A{1,3} = 1:5;

B = sum(A{1,1})
B =

4 6

To apply a function to several cells of an unnested cell array, use a loop:

for k = 1:length(A)
M{k} = sum(A{1,k});

end

Organizing Data in Cell Arrays
Cell arrays are useful for organizing data that consists of different sizes or
kinds of data. Cell arrays are better than structures for applications where

• You need to access multiple fields of data with one statement.

• You want to access subsets of the data as comma-separated variable lists.

• You don’t have a fixed set of field names.

• You routinely remove fields from the structure.

As an example of accessing multiple fields with one statement, assume that
your data consists of

• A 3-by-4 array consisting of measurements taken for an experiment.

• A 15-character string containing a technician’s name.

• A 3-by-4-by-5 array containing a record of measurements taken for the
past five experiments.

For many applications, the best data construct for this data is a structure.
However, if you routinely access only the first two fields of information, then a
cell array might be more convenient for indexing purposes.

This example shows how to access the first and second elements of the cell
array TEST:

2-109

2 Data Types

[newdata,name] = deal(TEST{1:2})

This example shows how to access the first and second elements of the
structure TEST:

newdata = TEST.measure
name = TEST.name

The varargin and varargout arguments are examples of the utility of cell
arrays as substitutes for comma-separated lists. Create a 3-by-3 numeric
array A:

A = [0 1 2; 4 0 7; 3 1 2];

Now apply the normest (2-norm estimate) function to A, and assign the
function output to individual cells of B:

[B{1:2}] = normest(A)
B =

[8.8826] [4]

All of the output values from the function are stored in separate cells of B.
B(1) contains the norm estimate; B(2) contains the iteration count.

Nesting Cell Arrays
A cell can contain another cell array, or even an array of cell arrays. (Cells
that contain noncell data are called leaf cells.) You can use nested curly
braces, the cell function, or direct assignment statements to create nested
cell arrays. You can then access and manipulate individual cells, subarrays of
cells, or cell elements.

Building Nested Arrays with Nested Curly Braces
You can nest pairs of curly braces to create a nested cell array. For example,

clear A
A(1,1) = {magic(5)};

A(1,2) = {{[5 2 8; 7 3 0; 6 7 3] 'Test 1'; [2-4i 5+7i] {17 []}}}
A =

2-110

Cell Arrays

[5x5 double] {2x2 cell}

Note that the right side of the assignment is enclosed in two sets of curly
braces. The first set represents cell (1,2) of cell array A. The second
“packages“ the 2-by-2 cell array inside the outer cell.

Building Nested Arrays with the cell Function
To nest cell arrays with the cell function, assign the output of cell to an
existing cell:

1 Create an empty 1-by-2 cell array.

A = cell(1,2);

2 Create a 2-by-2 cell array inside A(1,2).

A(1,2) = {cell(2,2)};

3 Fill A, including the nested array, using assignments.

A(1,1) = {magic(5)};
A{1,2}(1,1) = {[5 2 8; 7 3 0; 6 7 3]};
A{1,2}(1,2) = {'Test 1'};
A{1,2}(2,1) = {[2-4i 5+7i]};
A{1,2}(2,2) = {cell(1, 2)}
A{1,2}{2,2}(1) = {17};

Note the use of curly braces until the final level of nested subscripts. This is
required because you need to access cell contents to access cells within cells.

You can also build nested cell arrays with direct assignments using the
statements shown in step 3 above.

Indexing Nested Cell Arrays
To index nested cells, concatenate indexing expressions. The first set of
subscripts accesses the top layer of cells, and subsequent sets of parentheses
access successively deeper layers.

2-111

2 Data Types

For example, array A has three levels of nesting:

• To access the 5-by-5 array in cell (1,1), use A{1,1}.

• To access the 3-by-3 array in position (1,1) of cell (1,2), use A{1,2}{1,1}.

• To access the 2-by-2 cell array in cell (1,2), use A{1,2}.

• To access the empty cell in position (2,2) of cell (1,2), use
A{1,2}{2,2}{1,2}.

Converting Between Cell and Numeric Arrays
Use for loops to convert between cell and numeric formats. For example,
create a cell array F:

F{1,1} = [1 2; 3 4];
F{1,2} = [-1 0; 0 1];
F{2,1} = [7 8; 4 1];
F{2,2} = [4i 3+2i; 1-8i 5];

Now use three for loops to copy the contents of F into a numeric array NUM:

for k = 1:4
for m = 1:2

for n = 1:2
NUM(m,n,k) = F{k}(m,n);

end
end

end

Similarly, you must use for loops to assign each value of a numeric array to
a single cell of a cell array:

2-112

Cell Arrays

G = cell(1,16);
for m = 1:16

G{m} = NUM(m);
end

Cell Arrays of Structures
Use cell arrays to store groups of structures with different field architectures:

cStr = cell(1,2);
cStr{1}.label = '12/2/94 - 12/5/94';
cStr{1}.obs = [47 52 55 48; 17 22 35 11];
cStr{2}.xdata = [-0.03 0.41 1.98 2.12 17.11];
cStr{2}.ydata = [-3 5 18 0 9];
cStr{2}.zdata = [0.6 0.8 1 2.2 3.4];

Cell 1 of the cStr array contains a structure with two fields, one a string and
the other a vector. Cell 2 contains a structure with three vector fields.

When building cell arrays of structures, you must use content indexing.
Similarly, you must use content indexing to obtain the contents of structures
within cells. The syntax for content indexing is

cellArray{index}.field

For example, to access the label field of the structure in cell 1, use
cStr{1}.label.

2-113

2 Data Types

Function Summary
This table describes the MATLAB functions for working with cell arrays.

Function Description

cell Create a cell array.

cell2struct Convert a cell array into a structure array.

celldisp Display cell array contents.

cellfun Apply a cell function to a cell array.

cellplot Display a graphical depiction of a cell array.

deal Copy input to separate outputs.

iscell Return true for a cell array.

num2cell Convert a numeric array into a cell array.

2-114

Function Handles

Function Handles

In this section...

“Overview” on page 2-115

“Constructing and Invoking a Function Handle” on page 2-115

“Calling a Function Using Its Handle” on page 2-116

“Simple Function Handle Example” on page 2-116

Overview
A function handle is a MATLAB value and data type that provides a means of
calling a function indirectly. You can pass function handles in calls to other
functions (often called function functions). You can also store function handles
in data structures for later use (for example, as Handle Graphics® callbacks).

Read more about function handles in the section, “Function Handles” on page
4-22.

Constructing and Invoking a Function Handle
You construct a handle for a specific function by preceding the function name
with an @ sign. Use only the function name (with no path information) after
the @ sign:

fhandle = @functionname

Handles to Anonymous Functions
Another way to construct a function handle is to create an anonymous
function. For example,

sqr = @(x) x.^2;

creates an anonymous function that computes the square of its input
argument x. The variable sqr contains a handle to the anonymous function.
See “Anonymous Functions” on page 5-3 for more information.

2-115

2 Data Types

Calling a Function Using Its Handle
To execute a function associated with a function handle, use the syntax shown
here, treating the function handle fhandle as if it were a function name:

fhandle(arg1, arg2, ..., argn)

If the function being called takes no input arguments, then use empty
parentheses after the function handle name:

fhandle()

Simple Function Handle Example
The following example calls a function plotFHandle, passing it a handle
for the MATLAB sin function. plotFHandle then calls the plot function,
passing it some data and the function handle to sin. The plot function calls
the function associated with the handle to compute its y-axis values:

function x = plotFHandle(fhandle, data)
plot(data, fhandle(data))

Call plotFhandle with a handle to the sin function and the value shown
below:

plotFHandle(@sin, -pi:0.01:pi)

2-116

MATLAB Classes

MATLAB Classes
All MATLAB data types are implemented as object-oriented classes. You
can add data types of your own to your MATLAB environment by creating
additional classes. These user-defined classes define the structure of your new
data type, and the M-file functions, or methods, that you write for each class
define the behavior for that data type.

These methods can also define the way various MATLAB operators, including
arithmetic operations, subscript referencing, and concatenation, apply to the
new data types. For example, a class called polynomial might redefine the
addition operator (+) so that it correctly performs the operation of addition
on polynomials.

With MATLAB classes you can

• Create methods that override existing MATLAB functionality

• Restrict the operations that are allowed on an object of a class

• Enforce common behavior among related classes by inheriting from the
same parent class

• Significantly increase the reuse of your code

Read more about MATLAB classes in Chapter 9, “Classes and Objects”.

2-117

2 Data Types

Java Classes
MATLAB provides an interface to the Java programming language that
enables you to create objects from Java classes and call Java methods on
these objects. A Java class is a MATLAB data type. Native and third-party
classes are already available through the MATLAB interface. You can also
create your own Java class definitions and bring them into MATLAB.

The MATLAB Java interface enables you to

• Access Java API (application programming interface) class packages that
support essential activities such as I/O and networking

• Access third-party Java classes

• Easily construct Java objects in MATLAB

• Call Java object methods, using either Java or MATLAB syntax

• Pass data between MATLAB variables and Java objects

Read more about Java classes in MATLAB in “Calling Java from MATLAB” in
the MATLAB External Interfaces documentation.

2-118

3

Basic Program Components

Variables (p. 3-2) Guidelines for creating variables;
global and persistent variables;
variable scope and lifetime

Keywords (p. 3-13) Reserved words that you should
avoid using

Special Values (p. 3-14) Functions that return constant
values, like pi or inf

Operators (p. 3-16) Arithmetic, relational, and logical
operators

MATLAB Expressions (p. 3-27) Executing user-supplied strings;
constructing executable strings,
shell escape functions

Regular Expressions (p. 3-30) A versatile way to search and replace
character strings

Comma-Separated Lists (p. 3-79) Using lists with structures and cell
arrays to simplify your code

Program Control Statements
(p. 3-87)

Using statements such as if, for,
and try-catch to control the code
path your program follows

Symbol Reference (p. 3-96) Using statements such as if, for,
and try-catch to control the code
path your program follows

Internal MATLAB Functions
(p. 3-108)

Description of the M-file, built-in,
and overloaded function types
supplied with MATLAB

3 Basic Program Components

Variables

In this section...

“Types of Variables” on page 3-2

“Naming Variables” on page 3-6

“Guidelines to Using Variables” on page 3-10

“Scope of a Variable” on page 3-10

“Lifetime of a Variable” on page 3-12

Types of Variables
A MATLAB variable is essentially a tag that you assign to a value while that
value remains in memory. The tag gives you a way to reference the value in
memory so that your programs can read it, operate on it with other data,
and save it back to memory.

MATLAB provides three basic types of variables:

• “Local Variables” on page 3-2

• “Global Variables” on page 3-3

• “Persistent Variables” on page 3-5

Local Variables
Each MATLAB function has its own local variables. These are separate from
those of other functions (except for nested functions), and from those of the
base workspace. Variables defined in a function do not remain in memory from
one function call to the next, unless they are defined as global or persistent.

Scripts, on the other hand, do not have a separate workspace. They store their
variables in a workspace that is shared with the caller of the script. When
called from the command line, they share the base workspace. When called
from a function, they share that function’s workspace.

3-2

Variables

Note If you run a script that alters a variable that already exists in the
caller’s workspace, that variable is overwritten by the script.

Global Variables
If several functions, and possibly the base workspace, all declare a particular
name as global, then they all share a single copy of that variable. Any
assignment to that variable, in any function, is available to all the other
functions declaring it global.

Suppose, for example, you want to study the effect of the interaction
coefficients, α and β, in the Lotka-Volterra predator-prey model.

Create an M-file, lotka.m.

function yp = lotka(t,y)
%LOTKA Lotka-Volterra predator-prey model.
global ALPHA BETA
yp = [y(1) - ALPHA*y(1)*y(2); -y(2) + BETA*y(1)*y(2)];

Then interactively enter the statements

global ALPHA BETA
ALPHA = 0.01
BETA = 0.02
[t,y] = ode23(@lotka,[0,10],[1; 1]);
plot(t,y)

The two global statements make the values assigned to ALPHA and BETA at
the command prompt available inside the function defined by lotka.m. They
can be modified interactively and new solutions obtained without editing
any files.

3-3

3 Basic Program Components

Creating Global Variables. Each function that uses a global variable
must first declare the variable as global. It is usually best to put global
declarations toward the beginning of the function. You would declare global
variable MAXLEN as follows:

global MAXLEN

If the M-file contains subfunctions as well, then each subfunction requiring
access to the global variable must declare it as global. To access the variable
from the MATLAB command line, you must declare it as global at the
command line.

MATLAB global variable names are typically longer and more descriptive
than local variable names, and often consist of all uppercase characters. These
are not requirements, but guidelines to increase the readability of MATLAB
code, and to reduce the chance of accidentally redefining a global variable.

Displaying Global Variables. To see only those variables you have declared
as global, use the who or whos functions with the literal, global.

global MAXLEN MAXWID
MAXLEN = 36; MAXWID = 78;
len = 5; wid = 21;

whos global
Name Size Bytes Class

MAXLEN 1x1 8 double array (global)
MAXWID 1x1 8 double array (global)

Grand total is 2 elements using 16 bytes

Suggestions for Using Global Variables. A certain amount of risk is
associated with using global variables and, because of this, it is recommended
that you use them sparingly. You might, for example, unintentionally give
a global variable in one function a name that is already used for a global
variable in another function. When you run your application, one function
may overwrite the variable used by the other. This error can be difficult to
track down.

3-4

Variables

Another problem comes when you want to change the variable name. To
make a change without introducing an error into the application, you must
find every occurrence of that name in your code (and other people’s code, if
you share functions).

Alternatives to Using Global Variables. Instead of using a global
variable, you may be able to

• Pass the variable to other functions as an additional argument. In this way,
you make sure that any shared access to the variable is intentional.

If this means that you have to pass a number of additional variables,
you can put them into a structure or cell array and just pass it as one
additional argument.

• Use a persistent variable (described in the next section), if you only need to
make the variable persist in memory from one function call to the next.

Persistent Variables
Characteristics of persistent variables are

• You can declare and use them within M-file functions only.

• Only the function in which the variables are declared is allowed access to it.

• MATLAB does not clear them from memory when the function exits, so
their value is retained from one function call to the next.

You must declare persistent variables before you can use them in a function.
It is usually best to put your persistent declarations toward the beginning of
the function. You would declare persistent variable SUM_X as follows:

persistent SUM_X

If you clear a function that defines a persistent variable (i.e., using clear
functionname or clear all), or if you edit the M-file for that function,
MATLAB clears all persistent variables used in that function.

You can use the mlock function to keep an M-file from being cleared from
memory, thus keeping persistent variables in the M-file from being cleared
as well.

3-5

3 Basic Program Components

Initializing Persistent Variables. When you declare a persistent variable,
MATLAB initializes its value to an empty matrix, []. After the declaration
statement, you can assign your own value to it. This is often done using an
isempty statement, as shown here:

function findSum(inputvalue)
persistent SUM_X

if isempty(SUM_X)
SUM_X = 0;

end
SUM_X = SUM_X + inputvalue

This initializes the variable to 0 the first time you execute the function, and
then it accumulates the value on each iteration.

Naming Variables
MATLAB variable names must begin with a letter, which may be followed by
any combination of letters, digits, and underscores. MATLAB distinguishes
between uppercase and lowercase characters, so A and a are not the same
variable.

Although variable names can be of any length, MATLAB uses only the first
N characters of the name, (where N is the number returned by the function
namelengthmax), and ignores the rest. Hence, it is important to make
each variable name unique in the first N characters to enable MATLAB to
distinguish variables.

N = namelengthmax
N =

63

The genvarname function can be useful in creating variable names that are
both valid and unique. See the genvarname reference page to find out how to
do this.

3-6

Variables

Verifying a Variable Name
You can use the isvarname function to make sure a name is valid before you
use it. isvarname returns 1 if the name is valid, and 0 otherwise.

isvarname 8th_column
ans =

0 % Not valid - begins with a number

Avoid Using Function Names for Variables
When naming a variable, make sure you are not using a name that is already
used as a function name, either one of your own M-file functions or one of the
functions in the MATLAB language. If you define a variable with a function
name, you will not be able to call that function until you either remove the
variable from memory with the clear function, or invoke the function using
builtin.

For example, if you enter the following command, you will not be able to use
the MATLAB disp function until you clear the variable with clear disp.

disp = 50;

To test whether a proposed variable name is already used as a function name,
use

which -all variable_name

Potential Conflict with Function Names
There are some MATLAB functions that have names that are commonly used
as variable names in programming code. A few examples of such functions
are i, j, mode, char, size, and path.

If you need to use a variable that is also the name of a MATLAB function,
and have determined that you have no need to call the function, you should
be aware that there is still a possibility for conflict. See the following two
examples:

• “Variables Loaded From a MAT-File” on page 3-8

• “Variables In Evaluation Statements” on page 3-9

3-7

3 Basic Program Components

Variables Loaded From a MAT-File. The function shown below loads
previously saved data from MAT-file settings.mat. It is supposed to display
the value of one of the loaded variables, mode. However, mode is also the name
of a MATLAB function and, in this case, MATLAB interprets it as the function
and not the variable loaded from the MAT-file:

function show_mode
load settings;
whos mode
fprintf('Mode is set to %s\n', mode)

Assume that mode already exists in the MAT-file. Execution of the function
shows that, even though mode is successfully loaded into the function
workspace as a variable, when MATLAB attempts to operate on it in the last
line, it interprets mode as a function. This results in an error:

show_mode
Name Size Bytes Class

mode 1x6 12 char array

Grand total is 6 elements using 12 bytes

??? Error using ==> mode
Not enough input arguments.

Error in ==> show_mode at 4
fprintf('Mode is set to %s\n', mode)

Because MATLAB parses function M-files before they are run, it needs to
determine before runtime which identifiers in the code are variables and
which are functions. The function in this example does not establish mode as
a variable name and, as a result, MATLAB interprets it as a function name
instead.

There are several ways to make this function work as intended without
having to change the variable name. Both indicate to MATLAB that the name
represents a variable, and not a function:

• Name the variable explicitly in the load statement:

3-8

Variables

function show_mode
load settings mode;
whos mode
fprintf('Mode is set to %s\n', mode)

• Initialize the variable (e.g., set it to an empty matrix or empty string) at
the start of the function:

function show_mode
mode = '';
load settings;
whos mode
fprintf('Mode is set to %s\n', mode)

Variables In Evaluation Statements. Variables used in evaluation
statements such as eval, evalc, and evalin can also be mistaken for function
names. The following M-file defines a variable named length that conflicts
with MATLAB length function:

function find_area
eval('length = 12; width = 36;');
fprintf('The area is %d\n', length .* width)

The second line of this code would seem to establish length as a variable
name that would be valid when used in the statement on the third line.
However, when MATLAB parses this line, it does not consider the contents of
the string that is to be evaluated. As a result, MATLAB has no way of knowing
that length was meant to be used as a variable name in this program, and
the name defaults to a function name instead, yielding the following error:

find_area
??? Error using ==> length
Not enough input arguments.

To force MATLAB to interpret length as a variable name, use it in an explicit
assignment statement first:

function find_area
length = [];
eval('length = 12; width = 36;');
fprintf('The area is %d\n', length .* width)

3-9

3 Basic Program Components

Guidelines to Using Variables
The same guidelines that apply to MATLAB variables at the command line
also apply to variables in M-files:

• You do not need to type or declare variables used in M-files (with the
possible exception of designating them as global or persistent).

• Before assigning one variable to another, you must be sure that the variable
on the right-hand side of the assignment has a value.

• Any operation that assigns a value to a variable creates the variable, if
needed, or overwrites its current value, if it already exists.

Scope of a Variable
MATLAB stores variables in a part of memory called a workspace. The base
workspace holds variables created during your interactive MATLAB session
and also any variables created by running M-file scripts. Variables created at
the MATLAB command prompt can also be used by scripts without having to
declare them as global.

Functions do not use the base workspace. Every function has its own
function workspace. Each function workspace is kept separate from the base
workspace and all other workspaces to protect the integrity of the data used
by that function. Even subfunctions that are defined in the same M-file have
a separate function workspace.

Extending Variable Scope
In most cases, variables created within a function are known only within that
function. These variables are not available at the MATLAB command prompt
or to any other function or subfunction.

Passing Variables from Another Workspace. The most secure way to
extend the scope of a function variable is to pass it to other functions as an
argument in the function call. Since MATLAB passes data only by value,
you also need to add the variable to the return values of any function that
modifies its value.

3-10

Variables

Evaluating in Another Workspace Using evalin. Functions can also
obtain variables from either the base or the caller’s workspace using the
evalin function. The example below, compareAB_1, evaluates a command in
the context of the MATLAB command line, taking the values of variables A
and B from the base workspace.

Define A and B in the base workspace:

A = [13 25 82 68 9 15 77]; B = [63 21 71 42 30 15 22];

Use evalin to evaluate the command A(find(A<=B)) in the context of the
MATLAB base workspace:

function C = compareAB_1
C = evalin('base', 'A(find(A<=B))');

Call the function. You do not have to pass the variables because they are
made available to the function via the evalin function:

C = compareAB_1
C =

13 9 15

You can also evaluate in the context of the caller’s workspace by specifying
'caller' (instead of 'base') as the first input argument to evalin.

Using Global Variables. A third way to extend variable scope is to declare
the variable as global within every function that needs access to it. If you
do this, you need make sure that no functions with access to the variable
overwrite its value unintentionally. For this reason, it is recommended that
you limit the use of global variables.

Create global vectors A and B in the base workspace:

global A
global B
A = [13 25 82 68 9 15 77]; B = [63 21 71 42 30 15 22];

Also declare them in the function to be called:

function C = compareAB_2
global A

3-11

3 Basic Program Components

global B

C = A(find(A<=B));

Call the function. Again, you do not have to pass A and B as arguments to the
called function:

C = compareAB_2
C =

13 9 15

Scope in Nested Functions
Variables within nested functions are accessible to more than just their
immediate function. As a general rule, the scope of a local variable is the
largest containing function body in which the variable appears, and all
functions nested within that function. For more information on nested
functions, see “Variable Scope in Nested Functions” on page 5-19.

Lifetime of a Variable
Variables created at the MATLAB command prompt or in an M-file script exist
until you clear them or end your MATLAB session. Variables in functions
exist only until the function completes unless they have been declared as
global or persistent.

3-12

Keywords

Keywords
MATLAB reserves certain words for its own use as keywords of the language.
To list the keywords, type

iskeyword
ans =

'break'
'case'
'catch'
'continue'
'else'
'elseif'
'end'
'for'
'function'
'global'
'if'
'otherwise'
'persistent'
'return'
'switch'
'try'
'while'

See the online function reference pages to learn how to use these keywords.

You should not use MATLAB keywords other than for their intended purpose.
For example, a keyword should not be used as follows:

while = 5;
??? while = 5;

|
Error: Expected a variable, function, or constant, found "=".

3-13

3 Basic Program Components

Special Values
Several functions return important special values that you can use in your
M-files.

Function Return Value

ans Most recent answer (variable). If you do not assign
an output variable to an expression, MATLAB
automatically stores the result in ans.

eps Floating-point relative accuracy. This is the
tolerance MATLAB uses in its calculations.

intmax Largest 8-, 16-, 32-, or 64-bit integer your computer
can represent.

intmin Smallest 8-, 16-, 32-, or 64-bit integer your
computer can represent.

realmax Largest floating-point number your computer can
represent.

realmin Smallest positive floating-point number your
computer can represent.

pi 3.1415926535897...

i, j Imaginary unit.

inf Infinity. Calculations like n/0, where n is any
nonzero real value, result in inf.

NaN Not a Number, an invalid numeric value.
Expressions like 0/0 and inf/inf result in a NaN,
as do arithmetic operations involving a NaN. Also, if
n is complex with a zero real part, then n/0 returns
a value with a NaN real part.

computer Computer type.

version MATLAB version string.

3-14

Special Values

Here are some examples that use these values in MATLAB expressions.

x = 2 * pi
x =

6.2832

A = [3+2i 7-8i]
A =

3.0000 + 2.0000i 7.0000 - 8.0000i

tol = 3 * eps
tol =

6.6613e-016

intmax('uint64')
ans =

18446744073709551615

3-15

3 Basic Program Components

Operators

In this section...

“Arithmetic Operators” on page 3-16

“Relational Operators” on page 3-17

“Logical Operators” on page 3-19

“Operator Precedence” on page 3-25

Arithmetic Operators
Arithmetic operators perform numeric computations, for example, adding two
numbers or raising the elements of an array to a given power. The following
table provides a summary. For more information, see the arithmetic operators
reference page.

Operator Description

+ Addition

- Subtraction

.* Multiplication

./ Right division

.\ Left division

+ Unary plus

- Unary minus

: Colon operator

.^ Power

.' Transpose

' Complex conjugate transpose

* Matrix multiplication

/ Matrix right division

3-16

Operators

Operator Description

\ Matrix left division

^ Matrix power

Arithmetic Operators and Arrays
Except for some matrix operators, MATLAB arithmetic operators work on
corresponding elements of arrays with equal dimensions. For vectors and
rectangular arrays, both operands must be the same size unless one is a
scalar. If one operand is a scalar and the other is not, MATLAB applies
the scalar to every element of the other operand—this property is known
as scalar expansion.

This example uses scalar expansion to compute the product of a scalar
operand and a matrix.

A = magic(3)
A =

8 1 6
3 5 7
4 9 2

3 * A
ans =

24 3 18
9 15 21

12 27 6

Relational Operators
Relational operators compare operands quantitatively, using operators like
“less than” and “not equal to.” The following table provides a summary. For
more information, see the relational operators reference page.

Operator Description

< Less than

<= Less than or equal to

3-17

3 Basic Program Components

Operator Description

> Greater than

>= Greater than or equal to

== Equal to

~= Not equal to

Relational Operators and Arrays
The MATLAB relational operators compare corresponding elements
of arrays with equal dimensions. Relational operators always operate
element-by-element. In this example, the resulting matrix shows where an
element of A is equal to the corresponding element of B.

A = [2 7 6;9 0 5;3 0.5 6];
B = [8 7 0;3 2 5;4 -1 7];

A == B
ans =

0 1 0
0 0 1
0 0 0

For vectors and rectangular arrays, both operands must be the same size
unless one is a scalar. For the case where one operand is a scalar and the
other is not, MATLAB tests the scalar against every element of the other
operand. Locations where the specified relation is true receive logical 1.
Locations where the relation is false receive logical 0.

Relational Operators and Empty Arrays
The relational operators work with arrays for which any dimension has size
zero, as long as both arrays are the same size or one is a scalar. However,
expressions such as

A == []

return an error if A is not 0-by-0 or 1-by-1. This behavior is consistent with
that of all other binary operators, such as +, -, >, <, &, |, etc.

3-18

Operators

To test for empty arrays, use the function

isempty(A)

Logical Operators
MATLAB offers three types of logical operators and functions:

• Element-wise — operate on corresponding elements of logical arrays.

• Bit-wise — operate on corresponding bits of integer values or arrays.

• Short-circuit — operate on scalar, logical expressions.

The values returned by MATLAB logical operators and functions, with the
exception of bit-wise functions, are of type logical and are suitable for use
with logical indexing.

Element-Wise Operators and Functions
The following logical operators and functions perform elementwise logical
operations on their inputs to produce a like-sized output array.

The examples shown in the following table use vector inputs A and B, where

A = [0 1 1 0 1];
B = [1 1 0 0 1];

Operator Description Example

& Returns 1 for every element location that is
true (nonzero) in both arrays, and 0 for all other
elements.

A & B =
01001

| Returns 1 for every element location that is
true (nonzero) in either one or the other, or both
arrays, and 0 for all other elements.

A | B =
11101

~ Complements each element of the input array, A. ~A =
10010

xor Returns 1 for every element location that is true
(nonzero) in only one array, and 0 for all other
elements.

xor(A,B)
= 10100

3-19

3 Basic Program Components

For operators and functions that take two array operands, (&, |, and xor),
both arrays must have equal dimensions, with each dimension being the same
size. The one exception to this is where one operand is a scalar and the other
is not. In this case, MATLAB tests the scalar against every element of the
other operand.

Note MATLAB converts any finite nonzero, numeric values used as inputs to
logical expressions to logical 1, or true.

Operator Overloading. You can overload the &, |, and ~ operators to make
their behavior dependent upon the data type on which they are being used.
Each of these operators has a representative function that is called whenever
that operator is used. These are shown in the table below.

Logical
Operation Equivalent Function

A & B and(A, B)

A | B or(A, B)

~A not(A)

Other Array Functions. Two other MATLAB functions that operate
logically on arrays, but not in an elementwise fashion, are any and all. These
functions show whether any or all elements of a vector, or a vector within a
matrix or an array, are nonzero.

When used on a matrix, any and all operate on the columns of the matrix.
When used on an N-dimensional array, they operate on the first nonsingleton
dimension of the array. Or, you can specify an additional dimension input to
operate on a specific dimension of the array.

The examples shown in the following table use array input A, where

A = [0 1 2;
0 -3 8;
0 5 0];

3-20

Operators

Function Description Example

any(A) Returns 1 for a vector where any element
of the vector is true (nonzero), and 0 if no
elements are true.

any(A) ans = 0
1 1

all(A) Returns 1 for a vector where all elements of
the vector are true (nonzero), and 0 if all
elements are not true.

all(A) ans = 0
1 0

Note The all and any functions ignore any NaN values in the input arrays.

Short-Circuiting in Elementwise Operators. When used in the context of
an if or while expression, and only in this context, the elementwise | and &
operators use short-circuiting in evaluating their expressions. That is, A|B
and A&B ignore the second operand, B, if the first operand, A, is sufficient to
determine the result.

So, although the statement 1|[] evaluates to false, the same statement
evaluates to true when used in either an if or while expression:

A = 1; B = [];
if(A|B) disp 'The statement is true', end;

The statement is true

while the reverse logical expression, which does not short-circuit, evaluates
to false

if(B|A) disp 'The statement is true', end;

Another example of short-circuiting with elementwise operators shows that a
logical expression such as the following, which under most circumstances is
invalid due to a size mismatch between A and B,

A = [1 1]; B = [2 0 1];
A|B % This generates an error.

works within the context of an if or while expression:

if (A|B) disp 'The statement is true', end;

3-21

3 Basic Program Components

The statement is true

Logical Expressions Using the find Function. The find function
determines the indices of array elements that meet a given logical condition.
The function is useful for creating masks and index matrices. In its most
general form, find returns a single vector of indices. This vector can be used
to index into arrays of any size or shape.

For example,

A = magic(4)
A =

16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1

i = find(A > 8);
A(i) = 100
A =

100 2 3 100
5 100 100 8

100 7 6 100
4 100 100 1

Note An alternative to using find in this context is to index into the matrix
using the logical expression itself. See the example below.

The last two statements of the previous example can be replaced with this
one statement:

A(A > 8) = 100;

You can also use find to obtain both the row and column indices of a
rectangular matrix for the array values that meet the logical condition:

A = magic(4)
A =

16 2 3 13

3-22

Operators

5 11 10 8
9 7 6 12
4 14 15 1

[row, col] = find(A > 12)
row =

1
4
4
1

col =
1
2
3
4

Bit-Wise Functions
The following functions perform bit-wise logical operations on nonnegative
integer inputs. Inputs may be scalar or in arrays. If in arrays, these functions
produce a like-sized output array.

The examples shown in the following table use scalar inputs A and B, where

A = 28; % binary 11100
B = 21; % binary 10101

Function Description Example

bitand Returns the bit-wise AND
of two nonnegative integer
arguments.

bitand(A,B) = 20 (binary
10100)

bitor Returns the bit-wise OR
of two nonnegative integer
arguments.

bitor(A,B) = 29 (binary
11101)

3-23

3 Basic Program Components

Function Description Example

bitcmp Returns the bit-wise
complement as an n-bit
number, where n is the
second input argument to
bitcmp.

bitcmp(A,5) = 3 (binary
00011)

bitxor Returns the bit-wise exclusive
OR of two nonnegative integer
arguments.

bitxor(A,B) = 9 (binary
01001)

Short-Circuit Operators
The following operators perform AND and OR operations on logical
expressions containing scalar values. They are short-circuit operators in
that they evaluate their second operand only when the result is not fully
determined by the first operand.

Operator Description

&& Returns logical 1 (true) if both inputs evaluate to true, and
logical 0 (false) if they do not.

|| Returns logical 1 (true) if either input, or both, evaluate to
true, and logical 0 (false) if they do not.

The statement shown here performs an AND of two logical terms, A and B:

A && B

If A equals zero, then the entire expression will evaluate to logical 0 (false),
regardless of the value of B. Under these circumstances, there is no need
to evaluate B because the result is already known. In this case, MATLAB
short-circuits the statement by evaluating only the first term.

A similar case is when you OR two terms and the first term is true. Again,
regardless of the value of B, the statement will evaluate to true. There is no
need to evaluate the second term, and MATLAB does not do so.

3-24

Operators

Advantage of Short-Circuiting. You can use the short-circuit operators
to evaluate an expression only when certain conditions are satisfied. For
example, you want to execute an M-file function only if the M-file resides on
the current MATLAB path.

Short-circuiting keeps the following code from generating an error when the
file, myfun.m, cannot be found:

comp = (exist('myfun.m') == 2) && (myfun(x) >= y)

Similarly, this statement avoids divide-by-zero errors when b equals zero:

x = (b ~= 0) && (a/b > 18.5)

You can also use the && and || operators in if and while statements to take
advantage of their short-circuiting behavior:

if (nargin >= 3) && (ischar(varargin{3}))

Operator Precedence
You can build expressions that use any combination of arithmetic, relational,
and logical operators. Precedence levels determine the order in which
MATLAB evaluates an expression. Within each precedence level, operators
have equal precedence and are evaluated from left to right. The precedence
rules for MATLAB operators are shown in this list, ordered from highest
precedence level to lowest precedence level:

1 Parentheses ()

2 Transpose (.'), power (.^), complex conjugate transpose (’), matrix power
(^)

3 Unary plus (+), unary minus (-), logical negation (~)

4 Multiplication (.*), right division (./), left division (.\), matrix
multiplication (*), matrix right division (/), matrix left division (\)

5 Addition (+), subtraction (-)

6 Colon operator (:)

3-25

3 Basic Program Components

7 Less than (<), less than or equal to (<=), greater than (>), greater than or
equal to (>=), equal to (==), not equal to (~=)

8 Element-wise AND (&)

9 Element-wise OR (|)

10 Short-circuit AND (&&)

11 Short-circuit OR (||)

Precedence of AND and OR Operators
MATLAB always gives the & operator precedence over the | operator.
Although MATLAB typically evaluates expressions from left to right, the
expression a|b&c is evaluated as a|(b&c). It is a good idea to use parentheses
to explicitly specify the intended precedence of statements containing
combinations of & and |.

The same precedence rule holds true for the && and || operators.

Overriding Default Precedence
The default precedence can be overridden using parentheses, as shown in
this example:

A = [3 9 5];
B = [2 1 5];
C = A./B.^2
C =

0.7500 9.0000 0.2000

C = (A./B).^2
C =

2.2500 81.0000 1.0000

3-26

MATLAB Expressions

MATLAB Expressions

In this section...

“String Evaluation” on page 3-27

“Shell Escape Functions” on page 3-28

String Evaluation
String evaluation adds power and flexibility to the MATLAB language, letting
you perform operations like executing user-supplied strings and constructing
executable strings through concatenation of strings stored in variables.

eval
The eval function evaluates a string that contains a MATLAB expression,
statement, or function call. In its simplest form, the eval syntax is

eval('string')

For example, this code uses eval on an expression to generate a Hilbert
matrix of order n.

t = '1/(m + n - 1)';
for m = 1:k

for n = 1:k
a(m,n) = eval(t);

end
end

Here is an example that uses eval on a statement.

eval('t = clock');

Constructing Strings for Evaluation. You can concatenate strings to create
a complete expression for input to eval. This code shows how eval can create
10 variables named P1, P2, ..., P10, and set each of them to a different value.

for n = 1:10
eval(['P', int2str(n), '= n .^ 2'])

3-27

3 Basic Program Components

end

feval
The feval function differs from eval in that it executes a function rather than
a MATLAB expression. The function to be executed is specified in the first
argument by either a function handle or a string containing the function name.

You can use feval and the input function to choose one of several tasks
defined by M-files. This example uses function handles for the sin, cos, and
log functions.

fun = {@sin; @cos; @log};
k = input('Choose function number: ');
x = input('Enter value: ');
feval(fun{k}, x)

Shell Escape Functions
It is sometimes useful to access your own C or Fortran programs using shell
escape functions. Shell escape functions use the shell escape command ! to
make external stand-alone programs act like new MATLAB functions. A shell
escape M-function is an M-file that

1 Saves the appropriate variables on disk.

2 Runs an external program (which reads the data file, processes the data,
and writes the results back out to disk).

3 Loads the processed file back into the workspace.

For example, look at the code for garfield.m, below. This function uses an
external function, gareqn, to find the solution to Garfield’s equation.

function y = garfield(a,b,q,r)
save gardata a b q r
!gareqn
load gardata

3-28

MATLAB Expressions

This M-file

1 Saves the input arguments a, b, q, and r to a MAT-file in the workspace
using the save command.

2 Uses the shell escape operator to access a C or Fortran program called
gareqn that uses the workspace variables to perform its computation.
gareqn writes its results to the gardata MAT-file.

3 Loads the gardata MAT-file described in “Using MAT-Files” to obtain the
results.

3-29

3 Basic Program Components

Regular Expressions

In this section...

“Overview” on page 3-30

“MATLAB Regular Expression Functions” on page 3-31

“Elements of an Expression” on page 3-32

“Character Classes” on page 3-33

“Character Representation” on page 3-36

“Grouping Operators” on page 3-37

“Nonmatching Operators” on page 3-39

“Positional Operators” on page 3-39

“Lookaround Operators” on page 3-40

“Quantifiers” on page 3-45

“Tokens” on page 3-48

“Named Capture” on page 3-53

“Conditional Expressions” on page 3-55

“Dynamic Regular Expressions” on page 3-57

“String Replacement” on page 3-66

“Handling Multiple Strings” on page 3-68

“Operator Summary” on page 3-71

Overview
A regular expression is a string of characters that defines a certain pattern.
You would normally use a regular expression in searching through text for
a group of words that matches this pattern, perhaps while parsing program
input, or while processing a block of text.

The string 'Joh?n\w*' is an example of a regular expression. It defines a
pattern that starts with the letters Jo, is optionally followed by the letter
h (indicated by 'h?'), is then followed by the letter n, and ends with any

3-30

Regular Expressions

number of non-whitespace characters (indicated by '\w*'). This pattern
matches any of the following:

Jon, John, Jonathan, Johnny

MATLAB supports most of the special characters, or metacharacters,
commonly used with regular expressions and provides several functions to
use in searching and replacing text with these expressions.

MATLAB Regular Expression Functions
Several MATLAB functions support searching and replacing characters using
regular expressions:

Function Description

regexp Match regular expression.

regexpi Match regular expression, ignoring case.

regexprep Replace string using regular expression.

regexptranslate Translate string into regular expression.

See the function reference pages to obtain more information on these
functions. For more information on how to use regular expressions in general,
consult a reference on that subject.

The regexp and regexpi functions return up to six outputs in the order shown
in the reference page for regexp. You can select specific outputs to be returned
by using one or more of the following qualifiers with these commands:

Qualifier Value Returned

'start' Starting index of each substring matching the
expression

'end' Ending index of each substring matching the expression

'tokenExtents' Starting and ending indices of each substring matching
a token in the expression

'match' Text of each substring matching the expression

3-31

3 Basic Program Components

Qualifier Value Returned

'tokens' Text of each token captured

'names' Name and text of each named token captured

'split' Treating each match as a delimiter, the text of each
substring between such delimiters.

There is an additional qualifier named 'once' that you can use to return
only the first match found.

Elements of an Expression
Tables and examples in the sections that follow show the metacharacters
and syntax supported by the regexp, regexpi, and regexprep functions in
MATLAB. Expressions shown in the left column have special meaning and
match one or more characters according to the usage described in the right
column. Any character not having a special meaning, for example, any
alphabetic character, matches that same character literally. To force one of
the regular expression functions to interpret a sequence of characters literally
(rather than as an operator) use the regexptranslate function.

These elements are presented under these categories:

• “Character Classes” on page 3-33

• “Character Representation” on page 3-36

• “Grouping Operators” on page 3-37

• “Nonmatching Operators” on page 3-39

• “Positional Operators” on page 3-39

• MATLAB Programming on page 1

• “Quantifiers” on page 3-45

• “Tokens” on page 3-48

• “Named Capture” on page 3-53

• “Conditional Expressions” on page 3-55

• “Dynamic Regular Expressions” on page 3-57

3-32

Regular Expressions

Each table is followed by a set of examples that show how to use the syntax
presented in that table.

Character Classes
Character classes represent either a specific set of characters (e.g., uppercase)
or a certain type of character (e.g., non-whitespace).

Operator Usage

. Any single character, including white space

[c1c2c3] Any character contained within the brackets: c1 or c2
or c3

[^c1c2c3] Any character not contained within the brackets:
anything but c1 or c2 or c3

[c1-c2] Any character in the range of c1 through c2

\s Any white-space character; equivalent to [
\f\n\r\t\v]

\S Any non-whitespace character; equivalent to [^
\f\n\r\t\v]

\w Any alphabetic, numeric, or underscore character;
equivalent to [a-zA-Z_0-9]. (This does not apply to
non-English character sets).

\W Any character that is not alphabetic, numeric, or
underscore; equivalent to [^a-zA-Z_0-9]. (True only
for English character sets).

\d Any numeric digit; equivalent to [0-9]

\D Any nondigit character; equivalent to [^0-9]

The following examples demonstrate how to use the character classes listed
above. See the regexp reference page for help with syntax. Most of these
examples use the following string:

str = 'The rain in Spain falls mainly on the plain.';

3-33

3 Basic Program Components

Any Character — .
Use '..ain' in an expression to match a sequence of five characters ending
in 'ain'. Note that . matches white-space characters as well:

regexp(str, '..ain')
ans =

4 13 24 39

Matches ' rain', 'Spain', ' main', and 'plain'.

Returning Strings Rather than Indices. Here is the same example, this
time specifying the command qualifier 'match'. In this case, regexp returns
the text of the matching strings rather than the starting index:

regexp(str, '..ain', 'match')
ans =

' rain' 'Spain' ' main' 'plain'

Selected Characters — [c1c2c3]
Use [c1c2c3] in an expression to match selected characters r, p, or m followed
by 'ain'. Specify two qualifiers this time, 'match' and 'start', along with
an output argument for each, mat and idx. This returns the matching strings
and the starting indices of those strings:

[mat idx] = regexp(str, '[rpm]ain', 'match', 'start')
mat =

'rain' 'pain' 'main'
idx =

5 14 25

3-34

Regular Expressions

Range of Characters — [c1 - c2]
Use [c1-c2] in an expression to find words that begin with a letter in the
range of A through Z:

[mat idx] = regexp(str, '[A-Z]\w*', 'match', 'start')
mat =

'The' 'Spain'
idx =

1 13

Word and White-Space Characters — \w, \s
Use \w and \s in an expression to find words that end with the letter n
followed by a white-space character. Add a new qualifier, 'end', to return the
str index that marks the end of each match:

[mat ix1 ix2] = regexp(str, '\w*n\s', 'match', 'start', 'end')
mat =

'rain ' 'in ' 'Spain ' 'on '
ix1 =

5 10 13 32
ix2 =

9 12 18 34

Numeric Digits — \d
Use \d to find numeric digits in the following string:

numstr = 'Easy as 1, 2, 3';

[mat idx] = regexp(numstr, '\d', 'match', 'start')
mat =

'1' '2' '3'
idx =

9 12 15

3-35

3 Basic Program Components

Character Representation
The following character combinations represent specific character and
numeric values.

Operator Usage

\a Alarm (beep)

\\ Backslash

\$ Dollar sign

\b Backspace

\f Form feed

\n New line

\r Carriage return

\t Horizontal tab

\v Vertical tab

\oN or \o{N} Character of octal value N

\xN or \x{N} Character of hexadecimal value N

\char If a character has special meaning in a regular expression,
precede it with backslash (\) to match it literally.

Octal and Hexadecimal — \o, \x
Use \x and \o in an expression to find a comma (hex 2C) followed by a space
(octal 40) followed by the character 2:

numstr = 'Easy as 1, 2, 3';

[mat idx] = regexp(numstr, '\x2C\o{40}2', 'match', 'start')
mat =

', 2'
idx =

10

3-36

Regular Expressions

Grouping Operators
When you need to use one of the regular expression operators on a number of
consecutive elements in an expression, group these elements together with
one of the grouping operators and apply the operation to the entire group. For
example, this command matches a capital letter followed by a numeral and
then an optional space character. These elements have to occur at least two
times in succession for there to be a match. To apply the {2,} multiplier to
all three consecutive characters, you can first make a group of the characters
and then apply the (?:) quantifier to this group:

regexp('B5 A2 6F 63 R6 P4 B2 BC', '(?:[A-Z]\d\s?){2,}', 'match')
ans =

'B5 A2 ' 'R6 P4 B2 '

There are three types of explicit grouping operators that you can use when you
need to apply an operation to more than just one element in an expression.
Also in the grouping category is the alternative match (logical OR) operator, |.
This creates two or more groups of elements in the expression and applies an
operation to one of the groups.

Operator Usage

(expr) Group regular expressions and capture tokens.

(?:expr) Group regular expressions, but do not capture tokens.

(?>expr) Group atomically.

expr1|expr2 Match expression expr1 or expression expr2.

Grouping and Capture — (expr)
When you enclose an expression in parentheses, MATLAB not only treats all
of the enclosed elements as a group, but also captures a token from these
elements whenever a match with the input string is found. For an example of
how to use this, see “Using Tokens — Example 1” on page 3-50.

Grouping Only — (?:expr)
Use (?:expr) to group a nonvowel (consonant, numeric, whitespace,
punctuation, etc.) followed by a vowel in the palindrome pstr. Specify at least

3-37

3 Basic Program Components

two consecutive occurrences ({2,}) of this group. Return the starting and
ending indices of the matched substrings:

pstr = 'Marge lets Norah see Sharon''s telegram';
expr = '(?:[^aeiou][aeiou]){2,}';

[mat ix1 ix2] = regexp(pstr, expr, 'match', 'start', 'end')
mat =

'Nora' 'haro' 'tele'
ix1 =

12 23 31
ix2 =

15 26 34

Remove the grouping, and the {2,} now applies only to [aeiou]. The
command is entirely different now as it looks for a nonvowel followed by at
least two consecutive vowels:

expr = '[^aeiou][aeiou]{2,}';

[mat ix1 ix2] = regexp(pstr, expr, 'match', 'start', 'end')
mat =

'see'
ix1 =

18
ix2 =

20

Alternative Match — expr1|expr2
Use p1|p2 to pick out words in the string that start with let or tel:

regexpi(pstr, '(let|tel)\w+', 'match')
ans =

'lets' 'telegram'

3-38

Regular Expressions

Nonmatching Operators
The comment operator enables you to insert comments into your code to make
it more maintainable. The text of the comment is ignored by MATLAB when
matching against the input string.

Operator Usage

(?#comment) Insert a comment into the expression. Comments are
ignored in matching.

Including Comments — (?#expr)
Use (?#expr) to add a comment to this expression that matches capitalized
words in pstr. Comments are ignored in the process of finding a match:

regexp(pstr, '(?# Match words in caps)[A-Z]\w+', 'match')
ans =

'Marge' 'Norah' 'Sharon'

Positional Operators
Positional operators in an expression match parts of the input string not by
content, but by where they occur in the string (e.g., the first N characters in
the string).

Operator Usage

^expr Match expr if it occurs at the beginning of the input
string.

expr$ Match expr if it occurs at the end of the input string.

\<expr Match expr when it occurs at the beginning of a word.

expr\> Match expr when it occurs at the end of a word.

\<expr\> Match expr when it represents the entire word.

Start and End of String Match — ^expr, expr$
Use ^expr to match words starting with the letter m or M only when it begins
the string, and expr$ to match words ending with m or M only when it ends
the string:

3-39

3 Basic Program Components

regexpi(pstr, '^m\w*|\w*m$', 'match')
ans =

'Marge' 'telegram'

Start and End of Word Match — \<expr, expr\>
Use \<expr to match any words starting with n or N, or ending with e or E:

regexpi(pstr, '\<n\w*|\w*e\>', 'match')
ans =

'Marge' 'Norah' 'see'

Exact Word Match — \<expr\>
Use \<expr\> to match a word starting with an n or N and ending with an h
or H:

regexpi(pstr, '\<n\w*h\>', 'match')
ans =

'Norah'

Lookaround Operators
Lookaround operators tell MATLAB to look either ahead or behind the
current location in the string for a specified expression. If the expression is
found, MATLAB attempts to match a given pattern.

This table shows the four lookaround expressions: lookahead, negative
lookahead, lookbehind, and negative lookbehind.

Operator Usage

(?=expr) Look ahead from current position and test if expr
is found.

(?!expr) Look ahead from current position and test if expr
is not found

3-40

Regular Expressions

Operator Usage

(?<=expr) Look behind from current position and test if expr
is found.

(?<!expr) Look behind from current position and test if expr
is not found.

Lookaround operators do not change the current parsing location in the input
string. They are more of a condition that must be satisfied for a match to occur.

For example, the following command uses an expression that matches
alphabetic, numeric, or underscore characters (\w*) that meet the condition
that they look ahead to (i.e., are immediately followed by) the letters vision.
The resulting match includes only that part of the string that matches the
\w* operator; it does not include those characters that match the lookahead
expression (?=vision):

[s e] = regexp('telegraph television telephone', ...
'\w*(?=vision)', 'start', 'end')

s =
11

e =
14

If you repeat this command and match one character beyond the lookahead
expression, you can see that parsing of the input string resumes at the
letter v, thus demonstrating that matching the lookahead operator has not
consumed any characters in the string:

regexp('telegraph television telephone', ...
'\w*(?=vision).', 'match')

ans =
'telev'

Note You can also use lookaround operators to perform a logical AND of two
elements. See “Using Lookaround as a Logical Operator” on page 3-44.

3-41

3 Basic Program Components

Lookahead — expr(?=test)
Look ahead to the location of each of these national parks to identify those
situated in Tanzania:

AfricanParks = {'Arusha, Tanzania', 'Limpopo, Mozambique', ...
'Chobe, Botswana', 'Amboseli, Kenya', 'Mikumi, Tanzania', ...
'Kabelaga, Uganda', 'Gonarezhou, Zimbabwe', ...
'Uangudi, Ethiopia', 'Akagera, Rwanda', ...
'Etosha, Namibia', 'Kilimanjaro, Tanzania', ...
'Kasanga, Zambia', 'Udzungwa, Tanzania', 'Omo, Ethiopia'};

T = regexp(AfricanParks, '.*(?=, Tanzania)', 'match');

The result T is a cell array of empty and full character strings. Display the
results:

for k=1:numel(AfricanParks)
if k==1, disp 'Parks in Tanzania:', end
if ~isempty(T{k})

fprintf(' %s\n', char(T{k}))
end

end

Parks in Tanzania:
Arusha
Mikumi
Kilimanjaro
Udzungwa

Negative Lookahead — expr(?!test)
Generate a series of sequential numbers:

n = num2str(5:15)
n =

5 6 7 8 9 10 11 12 13 14 15

Use both the negative lookbehind and negative lookahead operators together
to precede only the single-digit numbers with zero:

regexprep(n, '(?<!\d)(\d)(?!\d)', '0$1')

3-42

Regular Expressions

ans =
05 06 07 08 09 10 11 12 13 14 15

Lookbehind — (?<=test)expr
This example uses the lookbehind operator to extract different types of
currency from a string. Start by identifying the euro, British pound, Japanese
yen, and American dollar symbols using their hexadecimal Unicode values:

euro = char(hex2dec('20AC'))
euro =

€

pound = char(hex2dec('00A3'))
pound =

£

yen = char(hex2dec('00A5'))
yen =

¥

dollar = char(hex2dec('0024'))
dollar =

$

Compose a string of monetary values:

str = [euro '10.50 ' pound '6.94 ' yen '1649.40 ' dollar ...
'13.67']

str =
€10.50 £6.94 ¥1649.40 $13.67

Using regexp, match numeric and decimal point characters, but only if you
can look behind and find the desired currency symbol immediately preceding
those characters:

regexp(str, '(?<=\x{20AC})[\d\.]+', 'match')
ans =

'10.50'

3-43

3 Basic Program Components

regexp(str, '(?<=\x{00A3})[\d\.]+', 'match')
ans =

'6.94'

regexp(str, '(?<=\x{00A5})[\d\.]+', 'match')
ans =

'1649.40'

regexp(str, '(?<=\x{0024})[\d\.]+', 'match')
ans =

'13.67'

Negative Lookbehind — (?<!test)expr
Use (?<!test)expr to find all words that do not follow a comma and zero
or more spaces:

poestr = ['While I nodded, nearly napping, ' ...
'suddenly there came a tapping,'];

[mat idx] = regexp(poestr, '(?<!,\s*\w*)\w*', 'match', 'start')
mat =

'While' 'I' 'nodded' 'napping' 'there' 'came' 'a' 'tapping'
idx =

1 7 9 24 42 48 53 55

Using Lookaround as a Logical Operator
You can use lookaround operators to perform a logical AND, as shown in this
example. The expression used here finds all words that contain a sequence
of two letters under the condition that the two letters are identical and are
in the range a through m. (The expression '(?=[a-m])' is a lookahead test
for the range a through m, and the expression '(.)\1’ tests for identical
characters using a token):

[mat idx] = regexp(poestr, '\<\w*(?=[a-m])(.)\1\w*\>', ...
'match', 'start')

mat =
'nodded' 'suddenly'

idx =

3-44

Regular Expressions

9 33

Note that when using a lookahead operator to perform an AND, you need to
place the match expression expr after the test expression test:

(?=test)expr or (?!test)expr

Quantifiers
With the quantifiers shown below, you can specify how many instances of an
element are to be matched. The basic quantifying operators are listed in
the first six rows of the table.

By default, MATLAB matches as much of an expression as possible. Using
the operators shown in the last two rows of the table, you can override this
default behavior. Specify these options by appending a + or ? immediately
following one of the six basic quantifying operators.

Operator Usage

expr{m,n} Must occur at least m times but no more than n times.

expr{m,} Must occur at least m times.

expr{n} Must match exactly n times. Equivalent to {n,n}.

expr? Match the preceding element 0 times or 1 time. Equivalent
to {0,1}.

expr* Match the preceding element 0 or more times. Equivalent
to {0,}.

expr+ Match the preceding element 1 or more times. Equivalent
to {1,}.

q_expr+ Match as much of the quantified expression as possible, but
do not rescan any portions of the string if the initial match
fails. The term q_expr represents any of the expressions
shown in the top six rows of this table.

q_expr? Match only as much of the quantified expression as
necessary. The term q_expr represents any of the
expressions shown in the top six rows of this table. For an
example, see “Lazy Quantifiers — expr*?” on page 3-47,
below.

3-45

3 Basic Program Components

Zero or One — expr?
Use ? to make the HTML <code> and </code> tags optional in the string. The
first string, hstr1, contains one occurrence of each tag. Since the expression
uses ()? around the tags, one occurrence is a match:

hstr1 = '<td><code>%%</code>
</td>';
expr = '(<code>)?..(</code>)?
';

regexp(hstr1, expr, 'match')
ans =

'<code>%%</code>
'

The second string, hstr2, does not contain the code tags at all. Just the same,
the expression matches because ()? allows for zero occurrences of the tags:

hstr2 = '<td>%%
</td>';
expr = '(<code>)?..(</code>)?
';

regexp(hstr2, expr, 'match')
ans =

'%%
'

Zero or More — expr*
The first regexp command looks for at least one occurrence of
 and finds
it. The second command parses a different string for at least one
 and
fails. The third command uses * to parse the same line for zero or more line
breaks and this time succeeds.

hstr1 = '<p>This string has

line breaks</p>';
regexp(hstr1, '<p>.*(
).*</p>', 'match')
ans =

'<p>This string has

line breaks</p>';

hstr2 = '<p>This string has no line breaks</p>';
regexp(hstr2, '<p>.*(
).*</p>', 'match')
ans =

{}

regexp(hstr2, '<p>.*(
)*.*</p>', 'match')

3-46

Regular Expressions

ans =
'<p>This string has no line breaks</p>';

One or More — expr+
Use + to verify that the HTML image source is not empty. This looks for one
or more characters in the gif filename:

hstr = '';
expr = '<img src="\w+.gif';

regexp(hstr, expr, 'match')
ans =

'<img src="b_prev.gif'

Exact, Minimum, and Maximum Quantities — {min,max}
Use {m}, {m,}, and {m,n} to verify the href syntax used in HTML. This
statement requires the href to have at least one non-whitespace character,
followed by exactly one occurrence of .html, optionally followed by # and
five to eight digits:

hstr = '';
expr = '<a href="\w{1,}(\.html){1}(\#\d{5,8}){0,1}"';

regexp(hstr, expr, 'match')
ans =

'<a href="s13.html#18760"'

Lazy Quantifiers — expr*?
This example shows the difference between the default (greedy) quantifier
and the lazy quantifier (?). The first part of the example uses the default
quantifier to match all characters from the opening <tr to the ending </td:

hstr = '<tr valign=top><td>
</td>';
regexp(hstr, '</?t.*>', 'match')
ans =

3-47

3 Basic Program Components

'<tr valign=top><td>
</td>'

The second part uses the lazy quantifier to match the minimum number of
characters between <tr, <td, or </td tags:

regexp(hstr, '</?t.*?>', 'match')
ans =

'<tr valign=top>' '<td>' '</td>'

Tokens
Parentheses used in a regular expression not only group elements of that
expression together, but also designate any matches found for that group as
tokens. You can use tokens to match other parts of the same string. One
advantage of using tokens is that they remember what they matched, so you
can recall and reuse matched text in the process of searching or replacing.

This section covers

• “Operators Used with Tokens” on page 3-48

• “Introduction to Using Tokens” on page 3-49

• “Using Tokens — Example 1” on page 3-50

• “Using Tokens — Example 2” on page 3-50

• “Tokens That Are Not Matched” on page 3-51

• “Using Tokens in a Replacement String” on page 3-53

Operators Used with Tokens
Here are the operators you can use with tokens in MATLAB.

Operator Usage

(expr) Capture in a token all characters matched by the
expression within the parentheses.

\N Match the Nth token generated by this command. That is,
use \1 to match the first token, \2 to match the second,
and so on.

3-48

Regular Expressions

Operator Usage

$N Insert the match for the Nth token in the replacement
string. Used only by the regexprep function. If N
is equal to zero, then insert the entire match in the
replacement string.

(?(N)s1|s2) If Nth token is found, then match s1, else match s2

Introduction to Using Tokens
You can turn any pattern being matched into a token by enclosing the
pattern in parentheses within the expression. For example, to create a token
for a dollar amount, you could use ’(\$\d+)’. Each token in the expression
is assigned a number, starting from 1, going from left to right. To make a
reference to a token later in the expression, refer to it using a backslash
followed by the token number. For example, when referencing a token
generated by the third set of parentheses in the expression, use \3.

As a simple example, if you wanted to search for identical sequential letters
in a string, you could capture the first letter as a token and then search for
a matching character immediately afterwards. In the expression shown
below, the (\S) phrase creates a token whenever regexp matches any
non-whitespace character in the string. The second part of the expression,
'\1', looks for a second instance of the same character immediately following
the first:

poestr = ['While I nodded, nearly napping, ' ...
'suddenly there came a tapping,'];

[mat tok ext] = regexp(poestr, '(\S)\1', 'match', ...
'tokens', 'tokenExtents');

mat
mat =

'dd' 'pp' 'dd' 'pp'

The tokens returned in cell array tok are:

'd', 'p', 'd', 'p'

Starting and ending indices for each token in the input string poestr are:

3-49

3 Basic Program Components

11 11, 26 26, 35 35, 57 57

Using Tokens — Example 1
Here is an example of how tokens are assigned values. Suppose that you
are going to search the following text:

andy ted bob jim andrew andy ted mark

You choose to search the above text with the following search pattern:

and(y|rew)|(t)e(d)

This pattern has three parenthetical expressions that generate tokens. When
you finally perform the search, the following tokens are generated for each
match.

Match Token 1 Token 2

andy y

ted t d

andrew rew

andy y

ted t d

Only the highest level parentheses are used. For example, if the search
pattern and(y|rew) finds the text andrew, token 1 is assigned the value rew.
However, if the search pattern (and(y|rew)) is used, token 1 is assigned
the value andrew.

Using Tokens — Example 2
Use (expr) and \N to capture pairs of matching HTML tags (e.g., <a> and
<\a>) and the text between them. The expression used for this example is

expr = '<(\w+).*?>.*?</\1>';

3-50

Regular Expressions

The first part of the expression, ’<(\w+)’, matches an opening bracket (<)
followed by one or more alphabetic, numeric, or underscore characters. The
enclosing parentheses capture token characters following the opening bracket.

The second part of the expression, ’.*?>.*?’, matches the remainder of this
HTML tag (characters up to the >), and any characters that may precede the
next opening bracket.

The last part, '</\1>', matches all characters in the ending HTML tag. This
tag is composed of the sequence </tag>, where tag is whatever characters
were captured as a token.

hstr = '<!comment>Default
';
expr = '<(\w+).*?>.*?</\1>';

[mat tok] = regexp(hstr, expr, 'match', 'tokens');
mat{:}
ans =

ans =

Default

tok{:}
ans =

'a'
ans =

'b'

Tokens That Are Not Matched
For those tokens specified in the regular expression that have no match in the
string being evaluated, regexp and regexpi return an empty string ('') as
the token output, and an extent that marks the position in the string where
the token was expected.

The example shown here executes regexp on the path string str returned
from the MATLAB tempdir function. The regular expression expr includes
six token specifiers, one for each piece of the path string. The third specifier

3-51

3 Basic Program Components

[a-z]+ has no match in the string because this part of the path, Profiles,
begins with an uppercase letter:

str = tempdir
str =

C:\WINNT\Profiles\bpascal\LOCALS~1\Temp\

expr = ['([A-Z]:)\\(WINNT)\\([a-z]+)?.*\\' ...
'([a-z]+)\\([A-Z]+~\d)\\(Temp)\\'];

[tok ext] = regexp(str, expr, 'tokens', 'tokenExtents');

When a token is not found in a string, MATLAB still returns a token string
and token extent. The returned token string is an empty character string
(''). The first number of the extent is the string index that marks where the
token was expected, and the second number of the extent is equal to one
less than the first.

In the case of this example, the empty token is the third specified in the
expression, so the third token string returned is empty:

tok{:}
ans =

'C:' 'WINNT' '' 'bpascal' 'LOCALS~1' 'Temp'

The third token extent returned in the variable ext has the starting index
set to 10, which is where the nonmatching substring, Profiles, begins in the
string. The ending extent index is set to one less than the starting index, or 9:

ext{:}
ans =

1 2
4 8

10 9
19 25
27 34
36 39

3-52

Regular Expressions

Using Tokens in a Replacement String
When using tokens in a replacement string, reference them using $1, $2, etc.
instead of \1, \2, etc. This example captures two tokens and reverses their
order. The first, $1, is 'Norma Jean' and the second, $2, is 'Baker'. Note
that regexprep returns the modified string, not a vector of starting indices.

regexprep('Norma Jean Baker', '(\w+\s\w+)\s(\w+)', '$2, $1')
ans =

Baker, Norma Jean

Named Capture
If you use a lot of tokens in your expressions, it may be helpful to assign them
names rather than having to keep track of which token number is assigned
to which token. Use the following operator to assign a name to a token that
finds a match.

Operator Usage

(?<name>expr) Capture in a token all characters matched by the
expression within the parentheses. Assign a name to
the token.

\k<name> Match the token referred to by name.

$<name> Insert the match for named token in a replacement
string. Used only with the regexprep function.

(?(name)s1|s2) If named token is found, then match s1; otherwise,
match s2

When referencing a named token within the expression, use the syntax
\k<name> instead of the numeric \1, \2, etc.:

poestr = ['While I nodded, nearly napping, ' ...
'suddenly there came a tapping,'];

regexp(poestr, '(?<anychar>.)\k<anychar>', 'match')
ans =

'dd' 'pp' 'dd' 'pp'

3-53

3 Basic Program Components

Labeling Your Output
Named tokens can also be useful in labeling the output from the MATLAB
regular expression functions. This is especially true when you are processing
numerous strings.

This example parses different pieces of street addresses from several strings.
A short name is assigned to each token in the expression string:

str1 = '134 Main Street, Boulder, CO, 14923';
str2 = '26 Walnut Road, Topeka, KA, 25384';
str3 = '847 Industrial Drive, Elizabeth, NJ, 73548';

p1 = '(?<adrs>\d+\s\S+\s(Road|Street|Avenue|Drive))';
p2 = '(?<city>[A-Z][a-z]+)';
p3 = '(?<state>[A-Z]{2})';
p4 = '(?<zip>\d{5})';

expr = [p1 ', ' p2 ', ' p3 ', ' p4];

As the following results demonstrate, you can make your output easier to
work with by using named tokens:

loc1 = regexp(str1, expr, 'names')
loc1 =

adrs: '134 Main Street'
city: 'Boulder'

state: 'CO'
zip: '14923'

loc2 = regexp(str2, expr, 'names')
loc2 =

adrs: '26 Walnut Road'
city: 'Topeka'

state: 'KA'
zip: '25384'

loc3 = regexp(str3, expr, 'names')
loc3 =

adrs: '847 Industrial Drive'
city: 'Elizabeth'

3-54

Regular Expressions

state: 'NJ'
zip: '73548'

Conditional Expressions
With conditional expressions, you can tell MATLAB to match an expression
only if a certain condition is true. A conditional expression is similar to an
if-then or an if-then-else clause in programming. MATLAB first tests the
state of a given condition, and the outcome of this tests determines what, if
anything, is to be matched next. The following table shows the two conditional
syntaxes you can use with MATLAB.

Operator Usage

(?(cond)expr) If condition cond is true, then match expression
expr

(?(cond)expr1|expr2) If condition cond is true, then match expression
expr1. Otherwise match expression expr2

The first entry in this table is the same as an if-then statement. MATLAB
tests the state of condition cond and then matches expression expr only if
the condition was found to be true. In the form of an if-then statement, it
would look like this:

if cond then expr

The second entry in the table is the same as an if-then-else statement.
If the condition is true, MATLAB matches expr1; if false, it matches expr2
instead. This syntax is equivalent to the following programming statement:

if cond then expr1 else expr2

The condition cond in either of these syntaxes can be any one of the following:

• A specific token, identified by either number or name, is located in the
input string. See “Conditions Based on Tokens” on page 3-56, below.

• A lookaround operation results in a match. See “Conditions Based on a
Lookaround Match” on page 3-57, below.

• A dynamic expression of the form (?@cmd) returns a nonzero numeric
value. See “Conditions Based on Return Values” on page 3-57, below.

3-55

3 Basic Program Components

Conditions Based on Tokens
In a conditional expression, MATLAB matches the expression only if the
condition associated with it is met. If the condition is based on a token,
then the condition is met if MATLAB matches more than one character for
the token in the input string.

To specify a token in a condition, use either the token number or, for tokens
that you have assigned a name to, its name. Token numbers are determined
by the order in which they appear in an expression. For example, if you
specify three tokens in an expression (that is, if you enclose three parts of
the expression in parentheses), then you would refer to these tokens in a
condition statement as 1, 2, and 3.

The following example uses the conditional statement (?(1)her|his) to
match the string regardless of the gender used. You could translate this into
the phrase, “if token 1 is found (i.e., Mr is followed by the letter s), then
match her, else match his.”

expr = 'Mr(s?)\..*?(?(1)her|his) son';

[mat tok] = regexp('Mr. Clark went to see his son', ...
expr, 'match', 'tokens')

mat =
'Mr. Clark went to see his son'

tok =
{1x2 cell}

tok{:}
ans =

'' 'his'

In the second part of the example, the token s is found and MATLAB matches
the word her:

[mat tok] = regexp('Mrs. Clark went to see her son', ...
expr, 'match', 'tokens')
mat =

'Mrs. Clark went to see her son'
tok =

{1x2 cell}

3-56

Regular Expressions

tok{:}
ans =

's' 'her'

Note When referring to a token within a condition, use just the number of
the token. For example, refer to token 2 by using the number 2 alone, and
not \2 or $2.

Conditions Based on a Lookaround Match
Lookaround statements look for text that either precedes or follows an
expression. If this lookaround text is located, then MATLAB proceeds to
match the expression. You can also use lookarounds in conditional statements.
In this case, if the lookaround text is located, then MATLAB considers the
condition to be met and matches the associated expression. If the condition is
not met, then MATLAB matches the else part of the expression.

Conditions Based on Return Values
MATLAB supports different types of dynamic expressions. One type of
dynamic expression, having the form (?@cmd), enables you to execute a
MATLAB command (shown here as cmd) while matching an expression.
You can use this type of dynamic expression in a conditional statement if
the command in the expression returns a numeric value. The condition is
considered to be met if the return value is nonzero.

Dynamic Regular Expressions
In a dynamic expression, you can make the pattern that you want regexp to
match dependent on the content of the input string. In this way, you can
more closely match varying input patterns in the string being parsed. You
can also use dynamic expressions in replacement strings for use with the
regexprep function. This gives you the ability to adapt the replacement text
to the parsed input.

You can include any number of dynamic expressions in the match_expr or
replace_expr arguments of these commands:

3-57

3 Basic Program Components

regexp(string, match_expr)
regexpi(string, match_expr)
regexprep(string, match_expr, replace_expr)

MATLAB supports three types of dynamic operators for use in a match
expression. See “Dynamic Operators for the Match Expression” on page 3-59
for more information.

Operator Usage

(??expr) Parse expr as a separate regular expression, and include the
resulting string in the match expression. This gives you the
same results as if you called regexprep inside of a regexp
match expression.

(?@cmd) Execute the MATLAB command cmd, discarding any output
that may be returned. This is often used for diagnosing a
regular expression.

(??@cmd) Execute the MATLAB command cmd, and include the string
returned by cmd in the match expression. This is a combination
of the two dynamic syntaxes shown above: (??expr) and
(?@cmd).

MATLAB supports one type of dynamic expression for use in the replacement
expression of a regexprep command. See “Dynamic Operators for the
Replacement Expression” on page 3-64 for more information.

Operator Usage

${cmd} Execute the MATLAB command cmd, and include the string
returned by cmd in the replacement expression.

Example of a Dynamic Expression
As an example of a dynamic expression, the following regexprep command
correctly replaces the term internationalization with its abbreviated form,
i18n. However, to use it on a different term such as globalization, you have
to use a different replacement expression:

match_expr = '(^\w)(\w*)(\w$)';

3-58

Regular Expressions

replace_expr1 = '$118$3';
regexprep('internationalization', match_expr, replace_expr1)
ans =

i18n

replace_expr2 = '$111$3';
regexprep('globalization', match_expr, replace_expr2)
ans =

g11n

Using a dynamic expression ${num2str(length($2))} enables you to base
the replacement expression on the input string so that you do not have to
change the expression each time. This example uses the dynamic syntax
${cmd} from the second table shown above:

match_expr = '(^\w)(\w*)(\w$)';
replace_expr = '1{num2str(length($2))}$3';

regexprep('internationalization', match_expr, replace_expr)
ans =

i18n

regexprep('globalization', match_expr, replace_expr)
ans =

g11n

Dynamic Operators for the Match Expression
There are three types of dynamic expressions you can use when composing a
match expression:

• “Dynamic Expressions that Modify the Match Expression — (??expr)” on
page 3-60

“Dynamic Commands that Modify the Match Expression — (??@cmd)” on
page 3-61

“Dynamic Commands that Serve a Functional Purpose — (?@cmd)” on
page 3-62

The first two of these actually modify the match expression itself so that it can
be made specific to changes in the contents of the input string. When MATLAB

3-59

3 Basic Program Components

evaluates one of these dynamic statements, the results of that evaluation are
included in the same location within the overall match expression.

The third operator listed here does not modify the overall expression, but
instead enables you to run MATLAB commands during the parsing of a
regular expression. This functionality can be useful in diagnosing your
regular expressions.

Dynamic Expressions that Modify the Match Expression — (??expr).
The (??expr) operator parses expression expr, and inserts the results back
into the match expression. MATLAB then evaluates the modified match
expression.

Here is an example of the type of expression that you can use with this
operator:

str = {'5XXXXX', '8XXXXXXXX', '1X'};
regexp(str, '^(\d+)(??X{$1})$', 'match', 'once')

The purpose of this particular command is to locate a series of X characters
in each of the strings stored in the input cell array. Note however that the
number of Xs varies in each string. If the count did not vary, you could use the
expression X{n} to indicate that you want to match n of these characters. But,
a constant value of n does not work in this case.

The solution used here is to capture the leading count number (e.g., the 5 in
the first string of the cell array) in a token, and then to use that count in a
dynamic expression. The dynamic expression in this example is (??X{$1}),
where $1 is the value captured by the token \d+. The metacharacter {$1}
makes a quantifier of that token value. Because the expression is dynamic,
the same pattern works on all three of the input strings in the cell array. With
the first input string, regexp looks for five X characters; with the second, it
looks for eight, and with the third, it looks for just one:

regexp(str, '^(\d+)(??X{$1})$', 'match', 'once')
ans =

'5XXXXX' '8XXXXXXXX' '1X'

3-60

Regular Expressions

Dynamic Commands that Modify the Match Expression — (??@cmd).
MATLAB uses the (??@function) operator to include the results of a
MATLAB command in the match expression. This command must return a
string that can be used within the match expression.

The regexp command below uses the dynamic expression (??@flilplr($1))
to locate a palindrome string, “Never Odd or Even”, that has been embedded
into a larger string:

regexp(pstr, '(.{3,}).?(??@fliplr($1))', 'match')

The dynamic expression reverses the order of the letters that make up the
string, and then attempts to match as much of the reversed-order string as
possible. This requires a dynamic expression because the value for $1 relies
on the value of the token (.{3,}):

% Put the string in lowercase.
str = lower(...

'Find the palindrome Never Odd or Even in this string');

% Remove all nonword characters.
str = regexprep(str, '\W*', '')
str =

findthepalindromeneveroddoreveninthisstring

% Now locate the palindrome within the string.
palstr = regexp(str, '(.{3,}).?(??@fliplr($1))', 'match')
str =

'neveroddoreven'

Dynamic expressions in MATLAB have access to the currently active
workspace. This means that you can change any of the functions or variables
used in a dynamic expression just by changing variables in the workspace.
Repeat the last command of the example above, but this time define the
function to be called within the expression using a function handle stored in
the base workspace:

fun = @fliplr;

palstr = regexp(str, '(.{3,}).?(??@fun($1))', 'match')
palstr =

3-61

3 Basic Program Components

'neveroddoreven'

Dynamic Commands that Serve a Functional Purpose — (?@cmd). The
(?@cmd) operator specifies a MATLAB command that regexp or regexprep
is to run while parsing the overall match expression. Unlike the other
dynamic expressions in MATLAB, this operator does not alter the contents
of the expression it is used in. Instead, you can use this functionality to get
MATLAB to report just what steps it’s taking as it parses the contents of one
of your regular expressions.

The following example parses a word for zero or more characters followed by
two identical characters followed again by zero or more characters:

regexp('mississippi', '\w*(\w)\1\w*', 'match')
ans =

'mississippi'

To track the exact steps that MATLAB takes in determining the match, the
example inserts a short script (?@disp($1)) in the expression to display the
characters that finally constitute the match. Because the example uses greedy
quantifiers, MATLAB attempts to match as much of the string as possible.
So, even though MATLAB finds a match toward the beginning of the string,
it continues to look for more matches until it arrives at the very end of the
string. From there, it backs up through the letters i then p and the next p,
stopping at that point because the match is finally satisfied:

regexp('mississippi', '\w*(\w)(?@disp($1))\1\w*');
i
p
p

Now try the same example again, this time making the first quantifier lazy
(*?). Again, MATLAB makes the same match:

regexp('mississippi', '\w*?(\w)\1\w*', 'match')
ans =

'mississippi'

But by inserting a dynamic script, you can see that this time, MATLAB has
matched the string quite differently. In this case, MATLAB uses the very first
match it can find, and does not even consider the rest of the string:

3-62

Regular Expressions

regexp('mississippi', '\w*?(\w)(?@disp($1))\1\w*';)
m
i
s

To demonstrate how versatile this type of dynamic expression can be, consider
the next example that progressively assembles a cell array as MATLAB
iteratively parses the input string. The (?!) metacharacter found at the end
of the expression is actually an empty lookahead operator, and forces a failure
at each iteration. This forced failure is necessary if you want to trace the steps
that MATLAB is taking to resolve the expression.

MATLAB makes a number of passes through the input string, each time
trying another combination of letters to see if a fit better than last match can
be found. On any passes in which no matches are found, the test results in
an empty string. The dynamic script (?@if(~isempty($&))) serves to omit
these strings from the matches cell array:

matches = {};
expr = ['(Euler\s)?(Cauchy\s)?(Boole)?(?@if(~isempty($&)),' ...

'matches{end+1}=$&;end)(?!)'];

regexp('Euler Cauchy Boole', expr);

matches
matches =

'Euler Cauchy Boole' 'Euler Cauchy ' 'Euler '
'Cauchy Boole' 'Cauchy ' 'Boole'

The metacharacters $& (or the equivalent $0), $`, and $' refer to that part
of the input string that is currently a match, all characters that precede the
current match, and all characters to follow the current match, respectively.
These metacharacters are sometimes useful when working with dynamic
expressions, particularly those that employ the (?@cmd) operator.

This example parses the input string looking for the letter g. At each iteration
through the string, regexp compares the current character with g, and not
finding it, advances to the next character. The example tracks the progress of
scan through the string by marking the current location being parsed with a
^ character.

3-63

3 Basic Program Components

(The $` and $· metacharacters capture that part of the string that precedes
and follows the current parsing location. You need two single-quotation marks
($'') to express the sequence $· when it appears within a string.)

str = 'abcdefghij';
expr = '(?@disp(sprintf(''starting match: [%s^%s]'',$`,$'')))g';

regexp(str, expr, 'once');
starting match: [^abcdefghij]
starting match: [a^bcdefghij]
starting match: [ab^cdefghij]
starting match: [abc^defghij]
starting match: [abcd^efghij]
starting match: [abcde^fghij]
starting match: [abcdef^ghij]

Dynamic Operators for the Replacement Expression
The three types of dynamic expressions discussed above can be used only
in the match expression (second input) argument of the regular expression
functions. MATLAB provides one more type of dynamic expression; this one
is for use in a replacement string (third input) argument of the regexprep
function.

Dynamic Commands that Modify the Replacement Expression —
${cmd}. The ${cmd} operator modifies the contents of a regular expression
replacement string, making this string adaptable to parameters in the
input string that might vary from one use to the next. As with the other
dynamic expressions used in MATLAB, you can include any number of these
expressions within the overall replacement expression.

In the regexprep call shown here, the replacement string is
'${convert($1,$2)}'. In this case, the entire replacement string is a
dynamic expression:

regexprep('This highway is 125 miles long', ...
'(\d+\.?\d*)\W(\w+)', '${convert($1,$2)}')

The dynamic expression tells MATLAB to execute an M-file function named
convert using the two tokens (\d+\.?\d*) and (\w+), derived from the

3-64

Regular Expressions

string being matched, as input arguments in the call to convert. The
replacement string requires a dynamic expression because the values of $1
and $2 are generated at runtime.

The following example defines the M-file named convert that converts
measurements from imperial units to metric. To convert values from the
string being parsed, regexprep calls the convert function, passing in values
for the quantity to be converted and name of the imperial unit:

function valout = convert(valin, units)
switch(units)

case 'inches'
fun = @(in)in .* 2.54; uout = 'centimeters';

case 'miles'
fun = @(mi)mi .* 1.6093; uout = 'kilometers';

case 'pounds'
fun = @(lb)lb .* 0.4536; uout = 'kilograms';

case 'pints'
fun = @(pt)pt .* 0.4731; uout = 'litres';

case 'ounces'
fun = @(oz)oz .* 28.35; uout = 'grams';

end
val = fun(str2num(valin));
valout = [num2str(val) ' ' uout];

regexprep('This highway is 125 miles long', ...
'(\d+\.?\d*)\W(\w+)', '${convert($1,$2)}')

ans =
This highway is 201.1625 kilometers long

regexprep('This pitcher holds 2.5 pints of water', ...
'(\d+\.?\d*)\W(\w+)', '${convert($1,$2)}')

ans =
This pitcher holds 1.1828 litres of water

regexprep('This stone weighs about 10 pounds', ...
'(\d+\.?\d*)\W(\w+)', '${convert($1,$2)}')

3-65

3 Basic Program Components

ans =
This stone weighs about 4.536 kilograms

As with the (??@) operator discussed in an earlier section, the ${ } operator
has access to variables in the currently active workspace. The following
regexprep command uses the array A defined in the base workspace:

A = magic(3)
A =

8 1 6
3 5 7
4 9 2

regexprep('The columns of matrix _nam are _val', ...
{'_nam', '_val'}, ...
{'A', '${sprintf(''%d%d%d '', A)}'})

ans =
The columns of matrix A are 834 159 672

String Replacement
The regexprep function enables you to replace a string that is identified
by a regular expression with another string. The following syntax replaces
all occurrences of the regular expression expr in string str with the string
repstr. The new string is returned in s. If no matches are found, return
string s is the same as input string str.

s = regexprep('str', 'expr', 'repstr')

The replacement string can include any ordinary characters and also any of
the metacharacters shown in the following table:

Operator Usage

Operators from Character
Representation on page 3-73
table

The character represented by the
metacharacter sequence

$` That part of the input string that
precedes the current match

3-66

Regular Expressions

Operator Usage

$& or $0 That part of the input string that is
currently a match

$· That part of the input string that
follows the current match. In
MATLAB, use $'' to represent the
character sequence $·.

$N The string represented by the token
identified by name

$<name> The string represented by the token
identified by name

${cmd} The string returned when MATLAB
executes the command cmd

You can capture parts of the input string as tokens and then reuse them in
the replacement string. Specify the parts of the string to capture using the
token capture operator (...). Specify the tokens to use in the replacement
string using the operators $1, $2, $N to reference the first, second, and Nth
tokens captured. (See the section on “Tokens” on page 3-48 and the example
“Using Tokens in a Replacement String” on page 3-53 in this documentation
for information on using tokens.)

Note When referring to a token within a replacement string, use the number
of the token preceded by a dollar sign. For example, refer to token 2 by using
$2, and not 2 or \2.

The following example uses both the ${cmd} and $N operators in the
replacement strings of nested regexprep commands to capitalize the first
letter of each sentence. The inner regexprep looks for the start of the entire
string and capitalizes the single instance; the outer regexprep looks for the
first letter following a period and capitalizes the two instances:

s1 = 'here are a few sentences.';

s2 = 'none are capitalized.';

s3 = 'let''s change that.';

3-67

3 Basic Program Components

str = [s1 ' ' s2 ' ' s3]

regexprep(regexprep(str, '(^.)', '${upper($1)}'), ...

'(?<=\.\s*)([a-z])','${upper($1)}')

ans =

Here are a few sentences. None are capitalized. Let's change that.

Make regexprep more specific to your needs by specifying any of a number
of options with the command. See the regexprep reference page for more
information on these options.

Handling Multiple Strings
You can use any of the MATLAB regular expression functions with cell arrays
of strings as well as with single strings. Any or all of the input parameters
(the string, expression, or replacement string) can be a cell array of strings.
The regexp function requires that the string and expression arrays have
the same number of elements. The regexprep function requires that the
expression and replacement arrays have the same number of elements. (The
cell arrays do not have to have the same shape.)

Whenever either input argument in a call to regexp, or the first input
argument in a call to regexprep function is a cell array, all output values are
cell arrays of the same size.

This section covers the following topics:

• “Finding a Single Pattern in Multiple Strings” on page 3-68

• “Finding Multiple Patterns in Multiple Strings” on page 3-70

• “Replacing Multiple Strings” on page 3-70

Finding a Single Pattern in Multiple Strings
The example shown here uses the regexp function on a cell array of strings
cstr. It searches each string of the cell array for consecutive matching letters
(e.g., 'oo'). The function returns a cell array of the same size as the input
array. Each row of the return array contains the indices for which there was a
match against the input cell array.

3-68

Regular Expressions

Here is the input cell array:

cstr = { ...
'Whose woods these are I think I know.' ; ...
'His house is in the village though;' ; ...
'He will not see me stopping here' ; ...
'To watch his woods fill up with snow.'};

Find consecutive matching letters by capturing a letter as a token (.) and
then repeating that letter as a token reference, \1:

idx = regexp(cstr, '(.)\1');

whos idx
Name Size Bytes Class

idx 4x1 296 cell array

idx{:}
ans = % 'Whose woods these are I think I know.'

8 % |8

ans = % 'His house is in the village though;'
23 % |23

ans = % 'He will not see me stopping here'
6 14 23 % |6 |14 |23

ans = % 'To watch his woods fill up with snow.'
15 22 % |15 |22

To return substrings instead of indices, use the 'match' parameter:

mat = regexp(cstr, '(.)\1', 'match');
mat{3}
ans =

'll' 'ee' 'pp'

3-69

3 Basic Program Components

Finding Multiple Patterns in Multiple Strings
This example uses a cell array of strings in both the input string and the
expression. The two cell arrays are of different shapes: cstr is 4-by-1 while
expr is 1-by-4. The command is valid as long as they both have the same
number of cells.

Find uppercase or lowercase 'i' followed by a white-space character in
str{1}, the sequence 'hou' in str{2}, two consecutive matching letters in
str{3}, and words beginning with 'w' followed by a vowel in str{4}.

expr = {'i\s', 'hou', '(.)\1', '\<w[aeiou]'};
idx = regexpi(cstr, expr);

idx{:}
ans = % 'Whose woods these are I think I know.'

23 31 % |23 |31

ans = % 'His house is in the village though;'
5 30 % |5 |30

ans = % 'He will not see me stopping here'
6 14 23 % |6 |14 |23

ans = % 'To watch his woods fill up with snow.'
4 14 28 % |4 |14 |28

Note that the returned cell array has the dimensions of the input string,
cstr. The dimensions of the return value are always derived from the input
string, whenever the input string is a cell array. If the input string is not
a cell array, then it is the dimensions of the expression that determine the
shape of the return array.

Replacing Multiple Strings
When replacing multiple strings with regexprep, use a single replacement
string if the expression consists of a single string. This example uses a
common replacement value ('--') for all matches found in the multiple string
input cstr. The function returns a cell array of strings having the same
dimensions as the input cell array:

s = regexprep(cstr, '(.)\1', '--', 'ignorecase')

3-70

Regular Expressions

s =
'Whose w--ds these are I think I know.'
'His house is in the vi--age though;'
'He wi-- not s-- me sto--ing here'
'To watch his w--ds fi-- up with snow.'

You can use multiple replacement strings if the expression consists of multiple
strings. In this example, the input string and replacement string are both
4-by-1 cell arrays, and the expression is a 1-by-4 cell array. As long as the
expression and replacement arrays contain the same number of elements, the
statement is valid. The dimensions of the return value match the dimensions
of the input string:

expr = {'i\s', 'hou', '(.)\1', '\<w[aeiou]'};
repl = {'-1-'; '-2-'; '-3-'; '-4-'};

s = regexprep(cstr, expr, repl, 'ignorecase')
s =

'Whose w-3-ds these are -1-think -1-know.'
'His -2-se is in the vi-3-age t-2-gh;'
'He -4--3- not s-3- me sto-3-ing here'
'To -4-tch his w-3-ds fi-3- up -4-th snow.'

Operator Summary
MATLAB provides these operators for working with regular expressions:

• Character Classes on page 3-72

• Character Representation on page 3-73

• “Grouping Operators” on page 3-37

• “Nonmatching Operators” on page 3-39

• “Positional Operators” on page 3-39

• Lookaround Operators on page 3-74

• Quantifiers on page 3-75

• Ordinal Token Operators on page 3-76

• Named Token Operators on page 3-76

3-71

3 Basic Program Components

• Conditional Expression Operators on page 3-77

• Dynamic Expression Operators on page 3-77

• Replacement String Operators on page 3-78

Character Classes

Operator Usage

. Any single character, including white space

[c1c2c3] Any character contained within the brackets: c1 or c2
or c3

[^c1c2c3] Any character not contained within the brackets:
anything but c1 or c2 or c3

[c1-c2] Any character in the range of c1 through c2

\s Any white-space character; equivalent to [
\f\n\r\t\v]

\S Any non-whitespace character; equivalent to
[^ \f\n\r\t\v]

\w Any alphabetic, numeric, or underscore character;
equivalent to [a-zA-Z_0-9]. (True only for English
character sets).

\W Any character that is not alphabetic, numeric, or
underscore; equivalent to [^a-zA-Z_0-9]. (True only
for English character sets).

\d Any numeric digit; equivalent to [0-9]

\D Any nondigit character; equivalent to [^0-9]

3-72

Regular Expressions

Character Classes (Continued)

Operator Usage

\oN or \o{N} Character of octal value N

\xN or \x{N} Character of hexadecimal value N

Character Representation

Operator Usage

\\ Backslash

\$ Dollar sign

\a Alarm (beep)

\b Backspace

\f Form feed

\n New line

\r Carriage return

\t Horizontal tab

\v Vertical tab

\char If a character has special meaning in a regular
expression, precede it with backslash (\) to match it
literally.

Grouping Operators

Operator Usage

(expr) Group regular expressions and capture tokens.

(?:expr) Group regular expressions, but do not capture tokens.

3-73

3 Basic Program Components

Grouping Operators (Continued)

Operator Usage

(?>expr) Group atomically.

expr1|expr2 Match expression expr1 or expression expr2.

Nonmatching Operators

Operator Usage

(?#comment) Insert a comment into the expression. Comments are
ignored in matching.

Positional Operators

Operator Usage

^expr Match expr if it occurs at the beginning of the input
string.

expr$ Match expr if it occurs at the end of the input string.

\<expr Match expr when it occurs at the beginning of a word.

expr\> Match expr when it occurs at the end of a word.

\<expr\> Match expr when it represents the entire word.

Lookaround Operators

Operator Usage

(?=expr) Look ahead from current position and test if expr
is found.

(?!expr) Look ahead from current position and test if expr
is not found

3-74

Regular Expressions

Lookaround Operators (Continued)

Operator Usage

(?<=expr) Look behind from current position and test if expr
is found.

(?<!expr) Look behind from current position and test if expr
is not found.

Quantifiers

Operator Usage

expr{m,n} Match expr when it occurs at least m times but no more
than n times consecutively.

expr{m,} Match expr when it occurs at least m times consecutively.

expr{n} Match expr when it occurs exactly n times consecutively.
Equivalent to {n,n}.

expr? Match expr when it occurs 0 times or 1 time. Equivalent
to {0,1}.

expr* Match expr when it occurs 0 or more times
consecutively. Equivalent to {0,}.

expr+ Match expr when it occurs 1 or more times
consecutively. Equivalent to {1,}.

q_expr* Match as much of the quantified expression as possible,
where q_expr represents any of the expressions shown
in the first six rows of this table.

3-75

3 Basic Program Components

Quantifiers (Continued)

Operator Usage

q_expr+ Match as much of the quantified expression as possible,
but do not rescan any portions of the string if the initial
match fails.

q_expr? Match only as much of the quantified expression as
necessary.

Ordinal Token Operators

Operator Usage

(expr) Capture in a token all characters matched by the
expression within the parentheses.

\N Match the Nth token generated by this command. That is,
use \1 to match the first token, \2 to match the second,
and so on.

$N Insert the match for the Nth token in the replacement
string. Used only by the regexprep function. If N
is equal to zero, then insert the entire match in the
replacement string.

(?(N)s1|s2) If Nth token is found, then match s1, else match s2

Named Token Operators

Operator Usage

(?<name>expr) Capture in a token all characters matched by the
expression within the parentheses. Assign a name to
the token.

\k<name> Match the token referred to by name.

3-76

Regular Expressions

Named Token Operators (Continued)

Operator Usage

$<name> Insert the match for named token in a replacement
string. Used only with the regexprep function.

(?(name)s1|s2) If named token is found, then match s1; otherwise,
match s2

Conditional Expression Operators

Operator Usage

(?(cond)expr) If condition cond is true, then match expression
expr

(?(cond)expr1|expr2) If condition cond is true, then match expression
expr1. Otherwise match expression expr2

Dynamic Expression Operators

Operator Usage

(??expr) Parse expr as a separate regular expression, and
include the resulting string in the match expression.
This gives you the same results as if you called
regexprep inside of a regexp match expression.

(??@cmd) Execute the MATLAB command cmd, discarding any
output that may be returned. This is often used for
diagnosing a regular expression.

3-77

3 Basic Program Components

Dynamic Expression Operators (Continued)

Operator Usage

(?@cmd) Execute the MATLAB command cmd, and include the
string returned by cmd in the match expression. This
is a combination of the two dynamic syntaxes shown
above: (??expr) and (?@cmd).

${cmd} Execute the MATLAB command cmd, and include the
string returned by cmd in the replacement expression.

Replacement String Operators

Operator Usage

Operators from Character
Representation on page 3-73
table

The character represented by the
metacharacter sequence

$` That part of the input string that
precedes the current match

$& or $0 That part of the input string that is
currently a match

$· That part of the input string that
follows the current match. In
MATLAB, use $'' to represent the
character sequence $·.

$N The string represented by the token
identified by name

$<name> The string represented by the token
identified by name

${cmd} The string returned when MATLAB
executes the command cmd

3-78

Comma-Separated Lists

Comma-Separated Lists

In this section...

“What Is a Comma-Separated List?” on page 3-79

“Generating a Comma-Separated List” on page 3-79

“Assigning Output from a Comma-Separated List” on page 3-81

“Assigning to a Comma-Separated List” on page 3-82

“How to Use the Comma-Separated Lists” on page 3-83

“Fast Fourier Transform Example” on page 3-85

What Is a Comma-Separated List?
Typing in a series of numbers separated by commas gives you what is called a
comma-separated list. MATLAB returns each value individually:

1, 2, 3
ans =

1
ans =

2
ans =

3

Such a list, by itself, is not very useful. But when used with large and
more complex data structures like MATLAB structures and cell arrays, the
comma-separated list can enable you to simplify your MATLAB code.

Generating a Comma-Separated List
This section describes how to generate a comma-separated list from either a
cell array or a MATLAB structure.

Generating a List from a Cell Array
Extracting multiple elements from a cell array yields a comma-separated list.
Given a 4-by-6 cell array as shown here

3-79

3 Basic Program Components

C = cell(4, 6);
for k = 1:24, C{k} = k * 2; end

C
C =

[2] [10] [18] [26] [34] [42]
[4] [12] [20] [28] [36] [44]
[6] [14] [22] [30] [38] [46]
[8] [16] [24] [32] [40] [48]

extracting the fifth column generates the following comma-separated list:

C{:, 5}
ans =

34
ans =

36
ans =

38
ans =

40

This is the same as explicitly typing

C{1, 5}, C{2, 5}, C{3, 5}, C{4, 5}

Generating a List from a Structure
For structures, extracting a field of the structure that exists across one of its
dimensions yields a comma-separated list.

Start by converting the cell array used above into a 4-by-1 MATLAB structure
with six fields: f1 through f6. Read field f5 for all rows and MATLAB returns
a comma-separated list:

S = cell2struct(C, {'f1', 'f2', 'f3', 'f4', 'f5', 'f6'}, 2);

S.f5
ans =

34
ans =

3-80

Comma-Separated Lists

36
ans =

38
ans =

40

This is the same as explicitly typing

S(1).f5, S(2).f5, S(3).f5, S(4).f5

Assigning Output from a Comma-Separated List
You can assign any or all consecutive elements of a comma-separated list to
variables with a simple assignment statement. Using the cell array C from
the previous section, assign the first row to variables c1 through c6:

C = cell(4, 6);
for k = 1:24, C{k} = k * 2; end

[c1 c2 c3 c4 c5 c6] = C{1,1:6};

c5
c5 =

34

If you specify fewer output variables than the number of outputs returned by
the expression, MATLAB assigns the first N outputs to those N variables, and
then discards any remaining outputs. In this next example, MATLAB assigns
C{1,1:3} to the variables c1, c2, and c3, and then discards C{1,4:6}:

[c1 c2 c3] = C{1,1:6};

You can assign structure outputs in the same manner:

S = cell2struct(C, {'f1', 'f2', 'f3', 'f4', 'f5', 'f6'}, 2);

[sf1 sf2 sf3] = S.f5;

sf3
sf3 =

38

3-81

3 Basic Program Components

You also can use the deal function for this purpose.

Assigning to a Comma-Separated List
The simplest way to assign multiple values to a comma-separated list is to use
the deal function. This function distributes all of its input arguments to the
elements of a comma-separated list.

This example initializes a comma-separated list to a set of vectors in a cell
array, and then uses deal to overwrite each element in the list:

c{1} = [31 07]; c{2} = [03 78];

c{:}
ans =

31 7
ans =

3 78

[c{:}] = deal([10 20],[14 12]);

c{:}
ans =

10 20
ans =

14 12

This example does the same as the one above, but with a comma-separated
list of vectors in a structure field:

s(1).field1 = [31 07]; s(2).field1 = [03 78];

s.field1
ans =

31 7
ans =

3 78

3-82

Comma-Separated Lists

[s.field1] = deal([10 20],[14 12]);

s.field1
ans =

10 20
ans =

14 12

How to Use the Comma-Separated Lists
Common uses for comma-separated lists are

• “Constructing Arrays” on page 3-83

• “Displaying Arrays” on page 3-84

• “Concatenation” on page 3-84

• “Function Call Arguments” on page 3-84

• “Function Return Values” on page 3-85

The following sections provide examples of using comma-separated lists with
cell arrays. Each of these examples applies to MATLAB structures as well.

Constructing Arrays
You can use a comma-separated list to enter a series of elements when
constructing a matrix or array. Note what happens when you insert a list of
elements as opposed to adding the cell itself.

When you specify a list of elements with C{:, 5}, MATLAB inserts the four
individual elements:

A = {'Hello', C{:, 5}, magic(4)}
A =

'Hello' [34] [36] [38] [40] [4x4 double]

When you specify the C cell itself, MATLAB inserts the entire cell array:

A = {'Hello', C, magic(4)}
A =

'Hello' {4x6 cell} [4x4 double]

3-83

3 Basic Program Components

Displaying Arrays
Use a list to display all or part of a structure or cell array:

A{:}
ans =

Hello
ans =

34
ans =

36
ans =

38
.
.
.

Concatenation
Putting a comma-separated list inside square brackets extracts the specified
elements from the list and concatenates them:

A = [C{:, 5:6}]
A =

34 36 38 40 42 44 46 48

whos A
Name Size Bytes Class

A 1x8 64 double array

Function Call Arguments
When writing the code for a function call, you enter the input arguments as a
list with each argument separated by a comma. If you have these arguments
stored in a structure or cell array, then you can generate all or part of the
argument list from the structure or cell array instead. This can be especially
useful when passing in variable numbers of arguments.

3-84

Comma-Separated Lists

This example passes several attribute-value arguments to the plot function:

X = -pi:pi/10:pi;
Y = tan(sin(X)) - sin(tan(X));

C{1,1} = 'LineWidth'; C{2,1} = 2;
C{1,2} = 'MarkerEdgeColor'; C{2,2} = 'k';
C{1,3} = 'MarkerFaceColor'; C{2,3} = 'g';

plot(X, Y, '--rs', C{:})

Function Return Values
MATLAB functions can also return more than one value to the caller. These
values are returned in a list with each value separated by a comma. Instead
of listing each return value, you can use a comma-separated list with a
structure or cell array. This becomes more useful for those functions that have
variable numbers of return values.

This example returns four values to a cell array:

C = cell(1, 4);
[C{:}] = fileparts('work/mytests/strArrays.mat')
C =

'work/mytests' 'strArrays' '.mat' ''

Fast Fourier Transform Example
The fftshift function swaps the left and right halves of each dimension
of an array. For a simple vector such as [0 2 4 6 8 10] the output would
be [6 8 10 0 2 4]. For a multidimensional array, fftshift performs this
swap along each dimension.

fftshift uses vectors of indices to perform the swap. For the vector shown
above, the index [1 2 3 4 5 6] is rearranged to form a new index [4 5 6 1
2 3]. The function then uses this index vector to reposition the elements. For
a multidimensional array, fftshift must construct an index vector for each
dimension. A comma-separated list makes this task much simpler.

Here is the fftshift function:

function y = fftshift(x)

3-85

3 Basic Program Components

numDims = ndims(x);
idx = cell(1, numDims);

for k = 1:numDims
m = size(x, k);
p = ceil(m/2);
idx{k} = [p+1:m 1:p];
end

y = x(idx{:});

The function stores the index vectors in cell array idx. Building this cell array
is relatively simple. For each of the N dimensions, determine the size of that
dimension and find the integer index nearest the midpoint. Then, construct a
vector that swaps the two halves of that dimension.

By using a cell array to store the index vectors and a comma-separated list
for the indexing operation, fftshift shifts arrays of any dimension using
just a single operation: y = x(idx{:}). If you were to use explicit indexing,
you would need to write one if statement for each dimension you want the
function to handle:

if ndims(x) == 1
y = x(index1);

else if ndims(x) == 2
y = x(index1, index2);

end

Another way to handle this without a comma-separated list would be to loop
over each dimension, converting one dimension at a time and moving data
each time. With a comma-separated list, you move the data just once. A
comma-separated list makes it very easy to generalize the swapping operation
to an arbitrary number of dimensions.

3-86

Program Control Statements

Program Control Statements

In this section...

“Conditional Control — if, switch” on page 3-87

“Loop Control — for, while, continue, break” on page 3-91

“Error Control — try, catch” on page 3-94

“Program Termination — return” on page 3-95

Conditional Control — if, switch
This group of control statements enables you to select at run-time which block
of code is executed. To make this selection based on whether a condition is true
or false, use the if statement (which may include else or elseif). To select
from a number of possible options depending on the value of an expression,
use the switch and case statements (which may include otherwise).

if, else, and elseif
if evaluates a logical expression and executes a group of statements based on
the value of the expression. In its simplest form, its syntax is

if logical_expression
statements

end

If the logical expression is true (that is, if it evaluates to logical 1), MATLAB
executes all the statements between the if and end lines. It resumes
execution at the line following the end statement. If the condition is false
(evaluates to logical 0), MATLAB skips all the statements between the if and
end lines, and resumes execution at the line following the end statement.

For example,

if rem(a, 2) == 0
disp('a is even')
b = a/2;

end

3-87

3 Basic Program Components

You can nest any number of if statements.

If the logical expression evaluates to a nonscalar value, all the elements of
the argument must be nonzero. For example, assume X is a matrix. Then
the statement

if X
statements

end

is equivalent to

if all(X(:))
statements

end

The else and elseif statements further conditionalize the if statement:

• The else statement has no logical condition. The statements associated
with it execute if the preceding if (and possibly elseif condition)
evaluates to logical 0 (false).

• The elseif statement has a logical condition that it evaluates if the
preceding if (and possibly elseif condition) is false. The statements
associated with it execute if its logical condition evaluates to logical 1
(true). You can have multiple elseif statements within an if block.

if n < 0 % If n negative, display error message.

disp('Input must be positive');

elseif rem(n,2) == 0 % If n positive and even, divide by 2.

A = n/2;

else

A = (n+1)/2; % If n positive and odd, increment and divide.

end

if Statements and Empty Arrays. An if condition that reduces to an
empty array represents a false condition. That is,

if A
S1

else
S0

3-88

Program Control Statements

end

executes statement S0 when A is an empty array.

switch, case, and otherwise
switch executes certain statements based on the value of a variable or
expression. Its basic form is

switch expression (scalar or string)
case value1

statements % Executes if expression is value1
case value2

statements % Executes if expression is value2
.
.
.

otherwise
statements % Executes if expression does not

% match any case
end

This block consists of

• The word switch followed by an expression to evaluate.

• Any number of case groups. These groups consist of the word case followed
by a possible value for the expression, all on a single line. Subsequent lines
contain the statements to execute for the given value of the expression.
These can be any valid MATLAB statement including another switch
block. Execution of a case group ends when MATLAB encounters the next
case statement or the otherwise statement. Only the first matching case
is executed.

• An optional otherwise group. This consists of the word otherwise,
followed by the statements to execute if the expression’s value is not
handled by any of the preceding case groups. Execution of the otherwise
group ends at the end statement.

• An end statement.

3-89

3 Basic Program Components

switch works by comparing the input expression to each case value. For
numeric expressions, a case statement is true if (value==expression). For
string expressions, a case statement is true if strcmp(value,expression).

The code below shows a simple example of the switch statement. It checks
the variable input_num for certain values. If input_num is -1, 0, or 1, the case
statements display the value as text. If input_num is none of these values,
execution drops to the otherwise statement and the code displays the text
'other value'.

switch input_num
case -1

disp('negative one');
case 0

disp('zero');
case 1

disp('positive one');
otherwise

disp('other value');
end

Note For C programmers, unlike the C language switch construct, the
MATLAB switch does not “fall through.” That is, if the first case statement
is true, other case statements do not execute. Therefore, break statements
are not used.

switch can handle multiple conditions in a single case statement by enclosing
the case expression in a cell array.

switch var
case 1

disp('1')
case {2,3,4}

disp('2 or 3 or 4')
case 5

disp('5')
otherwise

disp('something else')
end

3-90

Program Control Statements

Loop Control — for, while, continue, break
With loop control statements, you can repeatedly execute a block of code,
looping back through the block while keeping track of each iteration with an
incrementing index variable. Use the for statement to loop a specific number
of times. The while statement is more suitable for basing the loop execution
on how long a condition continues to be true or false. The continue and break
statements give you more control on exiting the loop.

Note You can often speed up the execution of MATLAB code by replacing
for and while loops with vectorized code. See “Techniques for Improving
Performance” on page 11-4 for more information on this.

for
The for loop executes a statement or group of statements a predetermined
number of times. Its syntax is

for index = start:increment:end
statements

end

The default increment is 1. You can specify any increment, including a
negative one. For positive indices, execution terminates when the value of the
index exceeds the end value; for negative increments, it terminates when
the index is less than the end value.

For example, this loop executes five times.

for n = 2:6
x(n) = 2 * x(n - 1);

end

You can nest multiple for loops.

for m = 1:5
for n = 1:100

A(m, n) = 1/(m + n - 1);
end

3-91

3 Basic Program Components

end

Note You can often speed up the execution of MATLAB code by replacing
for and while loops with vectorized code. See “Vectorizing Loops” on page
11-4 for details.

Using Arrays as Indices. The index of a for loop can be an array. For
example, consider an m-by-n array A. The statement

for k = A
statements

end

sets k equal to the vector A(:,i), where i is the iteration number of the loop.
For the first loop iteration, k is equal to A(:,1); for the second, k is equal
to A(:,2); and so on until k equals A(:,n). That is, the loop iterates for a
number of times equal to the number of columns in A. For each iteration, k is
a vector containing one of the columns of A.

while
The while loop executes a statement or group of statements repeatedly as
long as the controlling expression is true (1). Its syntax is

while expression
statements

end

If the expression evaluates to a matrix, all its elements must be 1 for
execution to continue. To reduce a matrix to a scalar value, use the all and
any functions.

For example, this while loop finds the first integer n for which n! (n factorial)
is a 100-digit number.

n = 1;
while prod(1:n) < 1e100

n = n + 1;
end

3-92

Program Control Statements

Exit a while loop at any time using the break statement.

while Statements and Empty Arrays. A while condition that reduces to
an empty array represents a false condition. That is,

while A, S1, end

never executes statement S1 when A is an empty array.

continue
The continue statement passes control to the next iteration of the for or
while loop in which it appears, skipping any remaining statements in the
body of the loop. The same holds true for continue statements in nested
loops. That is, execution continues at the beginning of the loop in which the
continue statement was encountered.

The example below shows a continue loop that counts the lines of code in the
file, magic.m, skipping all blank lines and comments. A continue statement
is used to advance to the next line in magic.m without incrementing the count
whenever a blank line or comment line is encountered.

fid = fopen('magic.m', 'r');
count = 0;
while ~feof(fid)

line = fgetl(fid);
if isempty(line) | strncmp(line, '%', 1)

continue
end
count = count + 1;

end
disp(sprintf('%d lines', count));

break
The break statement terminates the execution of a for loop or while loop.
When a break statement is encountered, execution continues with the next
statement outside of the loop. In nested loops, break exits from the innermost
loop only.

3-93

3 Basic Program Components

The example below shows a while loop that reads the contents of the file
fft.m into a MATLAB character array. A break statement is used to exit the
while loop when the first empty line is encountered. The resulting character
array contains the M-file help for the fft program.

fid = fopen('fft.m', 'r');
s = '';
while ~feof(fid)

line = fgetl(fid);
if isempty(line)

break
end
s = strvcat(s, line);

end
disp(s)

Error Control — try, catch
Error control statements provide a way for you to take certain actions in the
event of an error. Use the try statement to test whether a certain command
in your code generates an error. If an error does occur within the try block,
MATLAB immediately jumps to the corresponding catch block. The catch
part of the statement needs to respond in some way to the error.

try and catch
The general form of a try-catch statement sequence is

try
statement
...
statement

catch
statement
...
statement

end

In this sequence, the statements between try and catch are executed until
an error occurs. The statements between catch and end are then executed.
Use lasterr to see the cause of the error. If an error occurs between catch

3-94

Program Control Statements

and end, MATLAB terminates execution unless another try-catch sequence
has been established.

Program Termination — return
Program termination control enables you to exit from your program at some
point prior to its normal termination point.

return
After a MATLAB function runs to completion, it terminates and returns
control either to the function that called it, or to the keyboard. If you need to
exit a function prior to the point of normal completion, you can force an early
termination using the return function. return immediately terminates the
current sequence of commands and exits the currently running function.

return is also used to terminate keyboard mode.

3-95

3 Basic Program Components

Symbol Reference

In this section...

“Asterisk — *” on page 3-96

“At — @” on page 3-97

“Colon — :” on page 3-98

“Comma — ,” on page 3-99

“Curly Braces — { }” on page 3-100

“Dot — .” on page 3-100

“Dot-Dot — ..” on page 3-101

“Dot-Dot-Dot (Ellipsis) — ...” on page 3-101

“Dot-Parentheses — .()” on page 3-102

“Exclamation Point — !” on page 3-103

“Parentheses — ()” on page 3-103

“Percent — %” on page 3-103

“Percent-Brace — %{ %}” on page 3-104

“Semicolon — ;” on page 3-104

“Single Quotes — ’ ’” on page 3-105

“Space Character” on page 3-106

“Slash and Backslash — / \” on page 3-106

“Square Brackets — []” on page 3-107

This section does not include symbols used in arithmetic, relational, and
logical operations. For a description of these symbols, see the top of the list.
“Functions — Alphabetical List“ in the MATLAB Help browser.

Asterisk — *
An asterisk in a filename specification is used as a wildcard specifier, as
described below.

3-96

Symbol Reference

Filename Wildcard
Wildcards are generally used in file operations that act on multiple files or
directories. They usually appear in the string containing the file or directory
specification. MATLAB matches all characters in the name exactly except for
the wildcard character *, which can match any one or more characters.

To locate all files with names that start with 'january_' and have a mat
file extension, use

dir('january_*.mat')

You can also use wildcards with the who and whos functions. To get
information on all variables with names starting with 'image' and ending
with 'Offset', use

whos image*Offset

At — @
The @ sign signifies either a function handle constructor or a directory that
supports a MATLAB class.

Function Handle Constructor
The @ operator forms a handle to either the named function that follows the @
sign, or to the anonymous function that follows the @ sign.

Function Handles in General. Function handles are commonly used in
passing functions as arguments to other functions. Construct a function
handle by preceding the function name with an @ sign:

fhandle = @myfun

You can read more about function handles in “Function Handles” on page 4-22.

Handles to Anonymous Functions. Anonymous functions give you a quick
means of creating simple functions without having to create M-files each
time. You can construct an anonymous function and a handle to that function
using the syntax

fhandle = @(arglist) body

3-97

3 Basic Program Components

where body defines the body of the function and arglist is the list of
arguments you can pass to the function.

See “Anonymous Functions” on page 5-3 for more information.

Class Directory Designator
A MATLAB class directory contains source files that define the methods and
properties of a class. All MATLAB class directory names must begin with
an @ sign:

\@myclass\get.m

See “MATLAB Classes” on page 2-117 for more information.

Colon — :
The colon operator generates a sequence of numbers that you can use in
creating or indexing into arrays. See “Generating a Numeric Sequence” on
page 1-11 for more information on using the colon operator.

Numeric Sequence Range
Generate a sequential series of regularly spaced numbers from first to last
using the syntax first:last. For an incremental sequence from 6 to 17, use

N = 6:17

Numeric Sequence Step
Generate a sequential series of numbers, each number separated by a step
value, using the syntax first:step:last. For a sequence from 2 through 38,
stepping by 4 between each entry, use

N = 2:4:38

3-98

Symbol Reference

Indexing Range Specifier
Index into multiple rows or columns of a matrix using the colon operator
to specify a range of indices:

B = A(7, 1:5); % Read columns 1-5 of row 7.
B = A(4:2:8, 1:5); % Read columns 1-5 of rows 4, 6, and 8.
B = A(:, 1:5); % Read columns 1-5 of all rows.

Conversion to Column Vector
Convert a matrix or array to a column vector using the colon operator as a
single index:

A = rand(3,4);
B = A(:);

Preserving Array Shape on Assignment
Using the colon operator on the left side of an assignment statement, you can
assign new values to array elements without changing the shape of the array:

A = rand(3,4);
A(:) = 1:12;

Comma — ,
A comma is used to separate the following types of elements.

Row Element Separator
When constructing an array, use a comma to separate elements that belong
in the same row:

A = [5.92, 8.13, 3.53]

Array Index Separator
When indexing into an array, use a comma to separate the indices into each
dimension:

3-99

3 Basic Program Components

X = A(2, 7, 4)

Function Input and Output Separator
When calling a function, use a comma to separate output and input
arguments:

function [data, text] = xlsread(file, sheet, range, mode)

Command or Statement Separator
To enter more than one MATLAB command or statement on the same line,
separate each command or statement with a comma:

for k = 1:10, sum(A(k)), end

Curly Braces — { }
Use curly braces to construct or get the contents of cell arrays.

Cell Array Constructor
To construct a cell array, enclose all elements of the array in curly braces:

C = {[2.6 4.7 3.9], rand(8)*6, 'C. Coolidge'}

Cell Array Indexing
Index to a specific cell array element by enclosing all indices in curly braces:

A = C{4,7,2}

See “Cell Arrays” on page 2-93 for more information.

Dot — .
The single dot operator has the following different uses in MATLAB.

3-100

Symbol Reference

Structure Field Definition
Add fields to a MATLAB structure by following the structure name with a
dot and then a field name:

funds(5,2).bondtype = 'Corporate';

See “Structures” on page 2-74 for more information.

Object Method Specifier
Specify the properties of an instance of a MATLAB class using the object
name followed by a dot, and then the property name:

val = asset.current_value

See “MATLAB Classes” on page 2-117 for more information.

Dot-Dot — ..
Two dots in sequence refer to the parent of the current directory.

Parent Directory
Specify the directory immediately above your current directory using two
dots. For example, to go up two levels in the directory tree and down into the
testdir directory, use

cd ..\..\testdir

Dot-Dot-Dot (Ellipsis) — ...
A series of three consecutive periods (...) is the line continuation operator in
MATLAB. This is often referred to as an ellipsis, but it should be noted that
the line continuation operator is a three-character operator and is different
from the single-character ellipsis represented in ASCII by the hexadecimal
number 2026.

Line Continuation
Continue any MATLAB command or expression by placing an ellipsis at the
end of the line to be continued:

3-101

3 Basic Program Components

sprintf('The current value of %s is %d', ...
vname, value)

Entering Long Strings. You cannot use an ellipsis within single quotes
to continue a string to the next line:

string = 'This is not allowed and will generate an ...
error in MATLAB.'

To enter a string that extends beyond a single line, piece together shorter
strings using either the concatenation operator ([]) or the sprintf function.

Here are two examples:

quote1 = [
'Tiger, tiger, burning bright in the forests of the night,' ...
'what immortal hand or eye could frame thy fearful symmetry?'];

quote2 = sprintf('%s%s%s', ...
'In Xanadu did Kubla Khan a stately pleasure-dome decree,', ...
'where Alph, the sacred river, ran ', ...
'through caverns measureless to man down to a sunless sea.');

Dot-Parentheses — .()
Use dot-parentheses to specify the name of a dynamic structure field.

Dynamic Structure Fields
Sometimes it is useful to reference structures with field names that can
vary. For example, the referenced field might be passed as an argument to a
function. Dynamic field names specify a variable name for a structure field.

The variable fundtype shown here is a dynamic field name:

type = funds(5,2).(fundtype);

See “Using Dynamic Field Names” on page 2-80 for more information.

3-102

Symbol Reference

Exclamation Point — !
The exclamation point precedes operating system commands that you want to
execute from within MATLAB.

Shell Escape
The exclamation point initiates a shell escape function. Such a function is to
be performed directly by the operating system:

!rmdir oldtests

See “Shell Escape Functions” on page 3-28 for more information.

Parentheses — ()
Parentheses are used mostly for indexing into elements of an array or for
specifying arguments passed to a called function.

Array Indexing
When parentheses appear to the right of a variable name, they are indices
into the array stored in that variable:

A(2, 7, 4)

Function Input Arguments
When parentheses follow a function name in a function declaration or call, the
enclosed list contains input arguments used by the function:

function sendmail(to, subject, message, attachments)

Percent — %
The percent sign is most commonly used to indicate nonexecutable text within
the body of a program. This text is normally used to include comments in your
code. Some functions also interpret the percent sign as a conversion specifier.

See “Help Text” on page 4-11 for more information.

3-103

3 Basic Program Components

Single Line Comments
Precede any one-line comments in your code with a percent sign. MATLAB
does not execute anything that follows a percent sign (that is, unless the
sign is quoted, '%'):

% The purpose of this routine is to compute
% the value of ...

Conversion Specifiers
Some functions, like sscanf and sprintf, precede conversion specifiers with
the percent sign:

sprintf('%s = %d', name, value)

Percent-Brace — %{ %}
The %{ and %} symbols enclose a block of comments that extend beyond one
line.

Block Comments
Enclose any multiline comments with percent followed by an opening or
closing brace.

%{
The purpose of this routine is to compute
the value of ...
%}

Note With the exception of whitespace characters, the %{ and %} operators
must appear alone on the lines that immediately precede and follow the block
of help text. Do not include any other text on these lines.

Semicolon — ;
The semicolon can be used to construct arrays, suppress output from a
MATLAB command, or to separate commands entered on the same line.

3-104

Symbol Reference

Array Row Separator
When used within square brackets to create a new array or concatenate
existing arrays, the semicolon creates a new row in the array:

A = [5, 8; 3, 4]
A =

5 8
3 4

Output Suppression
When placed at the end of a command, the semicolon tells MATLAB not to
display any output from that command. In this example, MATLAB does not
display the resulting 100-by-100 matrix:

A = ones(100, 100);

Command or Statement Separator
Like the comma operator, you can enter more than one MATLAB command on
a line by separating each command with a semicolon. MATLAB suppresses
output for those commands terminated with a semicolon, and displays the
output for commands terminated with a comma.

In this example, assignments to variables A and C are terminated with
a semicolon, and thus do not display. Because the assignment to B is
comma-terminated, the output of this one command is displayed:

A = 12.5; B = 42.7, C = 1.25;
B =

42.7000

Single Quotes — ’ ’
Single quotes are the constructor symbol for MATLAB character arrays.

3-105

3 Basic Program Components

Character and String Constructor
MATLAB constructs a character array from all characters enclosed in single
quotes. If only one character is in quotes, then MATLAB constructs a 1-by-1
array:

S = 'Hello World'

See “Characters and Strings” on page 2-37 for more information.

Space Character
The space character serves a purpose similar to the comma in that it can be
used to separate row elements in an array constructor, or the values returned
by a function.

Row Element Separator
You have the option of using either commas or spaces to delimit the row
elements of an array when constructing the array. To create a 1-by-3 array, use

A = [5.92 8.13 3.53]
A =

5.9200 8.1300 3.5300

When indexing into an array, you must always use commas to reference each
dimension of the array.

Function Output Separator
Spaces are allowed when specifying a list of values to be returned by a
function. You can use spaces to separate return values in both function
declarations and function calls:

function [data text] = xlsread(file, sheet, range, mode)

Slash and Backslash — / \
The slash (/) and backslash (\) characters separate the elements of a path or
directory string. On Windows-based systems, both slash and backslash have
the same effect. On UNIX-based systems, you must use slash only.

3-106

Symbol Reference

On a Windows system, you can use either backslash or slash:

dir([matlabroot '\toolbox\matlab\elmat\shiftdim.m'])
dir([matlabroot '/toolbox/matlab/elmat/shiftdim.m'])

On a UNIX system, use only the forward slash:

dir([matlabroot '/toolbox/matlab/elmat/shiftdim.m'])

Square Brackets — []
Square brackets are used in array construction and concatenation, and also in
declaring and capturing values returned by a function.

Array Constructor
To construct a matrix or array, enclose all elements of the array in square
brackets:

A = [5.7, 9.8, 7.3; 9.2, 4.5, 6.4]

Concatenation
To combine two or more arrays into a new array through concatenation,
enclose all array elements in square brackets:

A = [B, eye(6), diag([0:2:10])]

Function Declarations and Calls
When declaring or calling a function that returns more than one output,
enclose each return value that you need in square brackets:

[data, text] = xlsread(file, sheet, range, mode)

3-107

3 Basic Program Components

Internal MATLAB Functions

In this section...

“Overview” on page 3-108

“M-File Functions” on page 3-108

“Built-In Functions” on page 3-109

“Overloaded MATLAB Functions” on page 3-110

Overview
Many of the functions provided with MATLAB are implemented as M-files
just like the M-files that you will create with MATLAB. Other MATLAB
functions are precompiled executable programs called built-ins that run much
more efficiently. Many of the MATLAB functions are also overloaded so that
they handle different data types appropriately.

M-File Functions
If you look in the subdirectories of the toolbox\matlab directory, you can find
the M-file sources to many of the functions supplied with MATLAB. You can
locate your toolbox\matlab directory by typing

dir([matlabroot '\toolbox\matlab\'])

MATLAB functions with an M-file source are just like any other functions
coded with MATLAB. When one of these M-file functions is called, MATLAB
parses and executes each line of code in the M-file. It saves the parsed version
of the function in memory, eliminating parsing time on any further calls to
this function.

Identifying M-File Functions
To find out if a function is implemented with an M-file, use the exist function.
The exist function searches for the name you enter on the MATLAB path and
returns a number identifying the source. If the source is an M-file, then exist
returns the number 2. This example identifies the source for the repmat
function as an M-file:

3-108

Internal MATLAB Functions

exist repmat
ans =

2

The exist function also returns 2 for files that have a file type unknown to
MATLAB. However, if you invoke exist on a MATLAB function name, the file
type will be known to MATLAB and will return 2 only on M-files.

Viewing the Source Code
One advantage of functions implemented as M-files is that you can look at the
source code. This may help when you need to understand why the function
returns a value you did not expect, if you need to figure out how to code
something in MATLAB that is already coded in a function, or perhaps to help
you create a function that overloads one of the MATLAB functions.

To find the source code for any MATLAB M-file function, use which:

which repmat
D:\matlabR14\toolbox\matlab\elmat\repmat.m

Built-In Functions
Functions that are frequently used or that can take more time to execute are
often implemented as executable files. These functions are called built-ins.

Unlike M-file functions, you cannot see the source code for built-ins. Although
most built-in functions do have an M-file associated with them, this file is
there mainly to supply the help documentation for the function. Take the
reshape function, for example, and find it on the MATLAB path:

which reshape
D:\matlabR14\toolbox\matlab\elmat\reshape.m

If you type this M-file out, you will see that it consists almost entirely of help
text. At the bottom is a call to the built-in executable image.

3-109

3 Basic Program Components

Identifying Built-In Functions
As with M-file functions, you can identify which functions are built-ins using
the exist function. This function identifies built-ins by returning the number
5:

exist reshape
ans =

5

Forcing a Built-In Call
If you overload any of the MATLAB built-in functions to handle a specific data
type, then MATLAB will always call the overloaded function on that type. If,
for some reason, you need to call the built-in version, you can override the
usual calling mechanism using a function called builtin. The expression

builtin('reshape', arg1, arg2, ..., argN);

forces a call to MATLAB built-in reshape, passing the arguments shown even
though an overload exists for the data types in this argument list.

Overloaded MATLAB Functions
An overloaded function is an additional implementation of an existing
function that has been designed specifically to handle a certain data type.
When you pass an argument of this type in a call to the function, MATLAB
looks for the function implementation that handles that type and executes
that function code.

Each overloaded MATLAB function has an M-file on the MATLAB path. The
M-files for a certain data type (or class) are placed in a directory named with
an @ sign followed by the class name. For example, to overload the MATLAB
plot function to plot expressions of a class named polynom differently than
other data types, you would create a directory called @polynom and store your
own version of plot.m in that directory.

You can add your own overloads to any function by creating a class directory
for the data type you wish to support for that function, and creating an M-file
that handles that type in a manner different from the default. See “Setting

3-110

Internal MATLAB Functions

Up Class Directories” on page 9-6 and “Designing User Classes in MATLAB”
on page 9-9.

When you use the which command with the -all option, MATLAB returns
all occurrences of the file you are looking for. This is an easy way to find
functions that are overloaded:

which -all set % Show all implementations for 'set'

3-111

3 Basic Program Components

3-112

4

M-File Programming

Program Development (p. 4-2) Procedures and tools used in
creating, debugging, optimizing, and
checking in a program

Working with M-Files (p. 4-7) Introduction to the basic MATLAB
program file

M-File Scripts and Functions
(p. 4-17)

Overview of scripts, simple programs
that require no input or output, and
functions, more complex programs
that exchange input and output data
with the caller

Function Handles (p. 4-22) Packaging the access to a function
into a function handle, and passing
that handle to other functions

Function Arguments (p. 4-32) Handling the data passed into and
out of an M-file function, checking
input data, passing variable
numbers of arguments

Calling Functions (p. 4-52) Calling syntax, determining which
function will be called, passing
different types of arguments,
passing arguments in structures
and cell arrays, identifying function
dependencies

4 M-File Programming

Program Development

In this section...

“Overview” on page 4-2

“Creating a Program” on page 4-2

“Getting the Bugs Out” on page 4-3

“Cleaning Up the Program” on page 4-4

“Improving Performance” on page 4-5

“Checking It In” on page 4-6

Overview
When you write a program in MATLAB, you save it to a file called an M-file
(named after its .m file extension). There are two types of M-files that you can
write: scripts and functions. This section covers basic program development,
describes how to write and call scripts and functions, and shows how to pass
different types of data in a function call. Associated with each step of this
process are certain MATLAB tools and utilities that are fully documented in
the Desktop Tools and Development Environment documentation.

For more ideas on good programming style, see “Program Development”
on page 12-20 in the MATLAB Programming Tips documentation. The
Programming Tips section is a compilation of useful pieces of information that
can show you alternate and often more efficient ways to accomplish common
programming tasks while also expanding your knowledge of MATLAB.

Creating a Program
You can type in your program code using any text editor. This section focuses
on using the MATLAB Editor/Debugger for this purpose. The Editor/Debugger
is fully documented in Ways to Edit and Debug Files in the Desktop Tools and
Development Environment documentation.

The first step in creating a program is to open an editing window. To create a
new M-file, type the word edit at the MATLAB command prompt. To edit an
existing M-file, type edit followed by the filename:

4-2

Program Development

edit drawPlot.m

MATLAB opens a new window for entering your program code. As you type in
your program, MATLAB keeps track of the line numbers in the left column.

Saving the Program
It is usually a good idea to save your program periodically while you are in the
development process. To do this, click File > Save in the Editor/Debugger.
Enter a filename with a .m extension in the Save file as dialog box that
appears and click OK. It is customary and less confusing if you give the M-file
the same name as the first function in the M-file.

Running the Program
Before trying to run your program, make sure that its M-file is on the
MATLAB path. The MATLAB path defines those directories that you want
MATLAB to know about when executing M-files. The path includes all the
directories that contain functions provided with MATLAB. It should also
include any directories that you use for your own functions.

Use the which function to see if your program is on the path:

which drawPlot
D:\matlabR14\work\drawPlot.m

If not, add its directory to the path using the addpath function:

addpath('D:\matlabR14\work')

Now you can run the program just by typing the name of the M-file at the
MATLAB command prompt:

drawPlot(xdata, ydata)

Getting the Bugs Out
In all but the simplest programs, you are likely to encounter some type of
unexpected behavior when you run the program for the first time. Program
defects can show up in the form of warning or error messages displayed in the
command window, programs that hang (never terminate), inaccurate results,

4-3

4 M-File Programming

or some number of other symptoms. This is where the second functionality
of the MATLAB Editor/Debugger becomes useful.

The MATLAB Debugger enables you to examine the inner workings of your
program while you run it. You can stop the execution of your program at any
point and then continue from that point, stepping through the code line by
line and examining the results of each operation performed. You have the
choice of operating the debugger from the Editor window that displays your
program, from the MATLAB command line, or both.

The Debugging Process
You can step through the program right from the start if you want. For longer
programs, you will probably save time by stopping the program somewhere in
the middle and stepping through from there. You can do this by approximating
where the program code breaks and setting a stopping point (or breakpoint)
at that line. Once a breakpoint has been set, start your program from the
MATLAB command prompt. MATLAB opens an Editor/Debugger window (if it
is not already open) showing a green arrow pointing to the next line to execute.

From this point, you can examine any values passed into the program, or the
results of each operation performed. You can step through the program line
by line to see which path is taken and why. You can step into any functions
that your program calls, or choose to step over them and just see the end
results. You can also modify the values assigned to a variable and see how
that affects the outcome.

To learn about using the MATLAB Debugger, see Debugging and Improving
M-Files in the Desktop Tools and Development Environment documentation.
Type help debug for a listing of all MATLAB debug functions.

For programming tips on how to debug, see “Debugging” on page 12-23.

Cleaning Up the Program
Even after your program is bug-free, there are still some steps you can take
to improve its performance and readability. The MATLAB M-Lint utility
generates a report that can highlight potential problems in your code. For
example, you may be using the elementwise AND operator (&) where the

4-4

Program Development

short-circuit AND (&&) is more appropriate. You may be using the find
function in a context where logical subscripting would be faster.

MATLAB offers M-Lint and several other reporting utilities to help you
make the finishing touches to your program code. These tools are described
under Tuning and Refining M-Files in the Desktop Tools and Development
Environment documentation.

Improving Performance
The MATLAB Profiler generates a report that shows how your program
spends its processing time. For details about using the MATLAB Profiler,
see Profiling for Improving Performance in the MATLAB Desktop Tools and
Development Environment documentation. For tips on other ways to improve
the performance of your programs, see Chapter 11, “Improving Performance
and Memory Usage”.

Three types of reports are available:

• “Summary Report” on page 4-5

• “Detail Report” on page 4-5

• “File Listing” on page 4-6

Summary Report
The summary report provides performance information on your main program
and on every function it calls. This includes how many times each function is
called, the total time spent in that function, along with a bar graph showing
the relative time spent by each function.

Detail Report
When you click a function name in the summary report, MATLAB displays a
detailed report on that function. This report shows the lines of that function
that take up the most time, the time spent executing that line, the percentage
of total time for that function that is spent on that line, and a bar graph
showing the relative time spent on the line.

4-5

4 M-File Programming

File Listing
The detail report for a function also displays the entire M-file code for that
function. This listing enables you to view the time-consuming code in the
context of the entire function body. For every line of code that takes any
significant time, additional performance information is provided by the
statistics and by the color and degree of highlighting of the program code.

Checking It In
Source control systems offer a way to manage large numbers of files while
they are under development. They keep track of the work done on these files
as your project progresses, and also ensure that changes are made in a secure
and orderly fashion.

If you have a source control system available to you, you will probably want to
check your M-files into the system once they are complete. If further work is
required on one of those files, you just check it back out, make the necessary
modifications, and then check it back in again.

MATLAB provides an interface to external source control systems so that you
can check files in and out directly from your MATLAB session. See Revision
Control in the Desktop Tools and Development Environment documentation
for instructions on how to use this interface.

4-6

Working with M-Files

Working with M-Files

In this section...

“Overview” on page 4-7

“Types of M-Files” on page 4-7

“Basic Parts of an M-File” on page 4-8

“Creating a Simple M-File” on page 4-12

“Providing Help for Your Program” on page 4-15

“Creating P-Code Files” on page 4-15

Overview
MATLAB provides a full programming language that enables you to write a
series of MATLAB statements into a file and then execute them with a single
command. You write your program in an ordinary text file, giving the file
a name of filename.m. The term you use for filename becomes the new
command that MATLAB associates with the program. The file extension
of .m makes this a MATLAB M-file.

Types of M-Files
M-files can be scripts that simply execute a series of MATLAB statements, or
they can be functions that also accept input arguments and produce output.

MATLAB scripts:

• Are useful for automating a series of steps you need to perform many times.

• Do not accept input arguments or return output arguments.

• Store variables in a workspace that is shared with other scripts and with
the MATLAB command line interface.

MATLAB functions:

• Are useful for extending the MATLAB language for your application.

• Can accept input arguments and return output arguments.

4-7

4 M-File Programming

• Store variables in a workspace internal to the function.

Basic Parts of an M-File
This simple function shows the basic parts of an M-file. Note that any line
that begins with % is not executable:

function f = fact(n) Function
definition line
% Compute a factorial value. H1 line
% FACT(N) returns the factorial of N, Help text
% usually denoted by N!

% Put simply, FACT(N) is PROD(1:N). Comment
f = prod(1:n); Function body

The table below briefly describes each of these M-file parts. Both functions
and scripts can have all of these parts, except for the function definition line
which applies to functions only. These parts are described in greater detail
following the table.

M-File Element Description

Function definition line
(functions only)

Defines the function name, and the number and
order of input and output arguments

H1 line A one line summary description of the program,
displayed when you request help on an entire
directory, or when you use lookfor

Help text A more detailed description of the program,
displayed together with the H1 line when you
request help on a specific function

Function or script body Program code that performs the actual
computations and assigns values to any output
arguments

Comments Text in the body of the program that explains
the internal workings of the program

4-8

Working with M-Files

Function Definition Line
The function definition line informs MATLAB that the M-file contains a
function, and specifies the argument calling sequence of the function. The
function definition line for the fact function is

All MATLAB functions have a function definition line that follows this
pattern.

Function Name. Function names must begin with a letter, may contain any
alphanumeric characters or underscores, and must be no longer than the
maximum allowed length (returned by the function namelengthmax). Because
variables must obey similar rules, you can use the isvarname function to
check whether a function name is valid:

isvarname myfun

Although function names can be of any length, MATLAB uses only the first
N characters of the name (where N is the number returned by the function
namelengthmax) and ignores the rest. Hence, it is important to make each
function name unique in the first N characters:

N = namelengthmax
N =

63

Note Some operating systems may restrict file names to shorter lengths.

The name of the text file that contains a MATLAB function consists of the
function name with the extension .m appended. For example,

average.m

If the filename and the function definition line name are different, the
internal (function) name is ignored. Thus, if average.m is the file that defines
a function named computeAverage, you would invoke the function by typing

average

4-9

4 M-File Programming

Note While the function name specified on the function definition line does
not have to be the same as the filename, it is best to use the same name for
both to avoid confusion.

Function Arguments. If the function has multiple output values, enclose
the output argument list in square brackets. Input arguments, if present, are
enclosed in parentheses following the function name. Use commas to separate
multiple input or output arguments. Here is the declaration for a function
named sphere that has three inputs and three outputs:

function [x, y, z] = sphere(theta, phi, rho)

If there is no output, leave the output blank

function printresults(x)

or use empty square brackets:

function [] = printresults(x)

The variables that you pass to the function do not need to have the same
name as those in the function definition line.

The H1 Line
The H1 line, so named because it is the first help text line, is a comment
line immediately following the function definition line. Because it consists
of comment text, the H1 line begins with a percent sign, %. For the average
function, the H1 line is

% AVERAGE Mean of vector elements.

This is the first line of text that appears when a user types help functionname
at the MATLAB prompt. Further, the lookfor function searches on and
displays only the H1 line. Because this line provides important summary
information about the M-file, it is important to make it as descriptive as
possible.

4-10

Working with M-Files

Help Text
You can create online help for your M-files by entering help text on one or
more consecutive comment lines at the start of your M-file program. MATLAB
considers the first group of consecutive lines immediately following the H1
line that begin with % to be the online help text for the function. The first line
without % as the left-most character ends the help.

The help text for the average function is

% AVERAGE(X), where X is a vector, is the mean of vector
% elements. Nonvector input results in an error.

When you type help functionname at the command prompt, MATLAB
displays the H1 line followed by the online help text for that function. The
help system ignores any comment lines that appear after this help block.

Note Help text in an M-file can be viewed at the MATLAB command prompt
only (using help functionname). You cannot display this text using the
MATLAB Help browser. You can, however, use the Help browser to get help
on MATLAB functions and also to read the documentation on any MathWorks
products.

The Function or Script Body
The function body contains all the MATLAB code that performs computations
and assigns values to output arguments. The statements in the function body
can consist of function calls, programming constructs like flow control and
interactive input/output, calculations, assignments, comments, and blank
lines.

For example, the body of the average function contains a number of simple
programming statements:

[m,n] = size(x);
if (~((m == 1) | (n == 1)) | (m == 1 & n == 1)) % Flow control

error('Input must be a vector') % Error message display
end
y = sum(x)/length(x); % Computation and assignment

4-11

4 M-File Programming

Comments
As mentioned earlier, comment lines begin with a percent sign (%). Comment
lines can appear anywhere in an M-file, and you can append comments to the
end of a line of code. For example,

% Add up all the vector elements.
y = sum(x) % Use the sum function.

In addition to comment lines, you can insert blank lines anywhere in an
M-file. Blank lines are ignored. However, a blank line can indicate the end
of the help text entry for an M-file.

Block Comments. To write comments that require more than one line, use
the block comment operators, %{ and %}:

%{
This next block of code checks the number of inputs
passed in, makes sure that each input is a valid data
type, and then branches to start processing the data.
%}

Note The %{ and %} operators must appear alone on the lines that
immediately precede and follow the block of help text. Do not include any
other text on these lines.

Creating a Simple M-File
You create M-files using a text editor. MATLAB provides a built-in editor, but
you can use any text editor you like. Once you have written and saved the
M-file, you can run the program as you would any other MATLAB function
or command.

The process looks like this:

4-12

Working with M-Files

Using Text Editors
M-files are ordinary text files that you create using a text editor. If you use
the MATLAB Editor/Debugger, open a new file by selecting New > M-File
from the File menu at the top of the MATLAB Command Window.

Another way to edit an M-file is from the MATLAB command line using the
edit function. For example,

edit foo

opens the editor on the file foo.m. Omitting a filename opens the editor on
an untitled file.

You can create the fact function shown in “Basic Parts of an M-File” on page
4-8 by opening your text editor, entering the lines shown, and saving the text
in a file called fact.m in your current directory.

4-13

4 M-File Programming

Once you have created this file, here are some things you can:

• List the names of the files in your current directory:

what

• List the contents of M-file fact.m:

type fact

• Call the fact function:

fact(5)
ans =

120

A Word of Caution on Saving M-Files
Save any M-files you create and any MathWorks supplied M-files that you
edit in directories outside of the directory tree in which the MATLAB software
is installed. If you keep your files in any of the installed directories, your files
may be overwritten when you install a new version of MATLAB.

MATLAB installs its software into directories under matlabroot/toolbox. To
see what matlabroot is on your system, type matlabroot at the MATLAB
command prompt.

Also note that locations of files in the matlabroot/toolbox directory tree are
loaded and cached in memory at the beginning of each MATLAB session to
improve performance. If you save files to matlabroot/toolbox directories
using an external editor, or if you add or remove files from these directories
using file system operations, enter the commands clear functionname and
rehash toolbox before you use the files in the current session.

For more information, see the rehash function reference page or the section
Toolbox Path Caching in the Desktop Tools and Development Environment
documentation.

4-14

Working with M-Files

Providing Help for Your Program
You can provide user information for the programs you write by including a
help text section at the beginning of your M-file. (See “Help Text” on page
4-11).

You can also make help entries for an entire directory by creating a file with
the special name Contents.m that resides in the directory. This file must
contain only comment lines; that is, every line must begin with a percent sign.
MATLAB displays the lines in a Contents.m file whenever you type

help directoryname

Contents.m files are optional. You might have directories of your own with
M-files that you don’t necessarily want public. For this or other reasons, you
might choose not to provide this type of help listing for these directories. If
you have a directory that is on the path that does not have a Contents.m
file, MATLAB displays (No table of contents file) for that directory
in response to the help command. If you do not want to see this displayed,
creating an empty Contents.m file will disable this message for that directory.

Also, if a directory does not contain a Contents.m file, typing

help directoryname

displays the first help line (the H1 line) for each M-file in the directory.

There is a tool in the Current Directory browser, called the Contents Report,
that you can use to help create and validate your Contents.m files. See
Contents File Report in the MATLAB Desktop Tools and Development
Environment documentation for more information.

Creating P-Code Files
You can save a preparsed version of a function or script, called P-code files, for
later MATLAB sessions using the pcode function. For example,

pcode average

4-15

4 M-File Programming

parses average.m and saves the resulting pseudocode to the file named
average.p. This saves MATLAB from reparsing average.m the first time you
call it in each session.

MATLAB is very fast at parsing so the pcode function rarely makes much
of a speed difference.

One situation where pcode does provide a speed benefit is for large GUI
applications. In this case, many M-files must be parsed before the application
becomes visible.

You can also use pcode to hide algorithms you have created in your M-file, if
you need to do this for proprietary reasons.

4-16

M-File Scripts and Functions

M-File Scripts and Functions

In this section...

“M-File Scripts” on page 4-17

“M-File Functions” on page 4-18

“Types of Functions” on page 4-19

“Identifying Dependencies” on page 4-20

M-File Scripts
Scripts are the simplest kind of M-file because they have no input or output
arguments. They are useful for automating series of MATLAB commands,
such as computations that you have to perform repeatedly from the command
line.

The Base Workspace
Scripts share the base workspace with your interactive MATLAB session and
with other scripts. They operate on existing data in the workspace, or they
can create new data on which to operate. Any variables that scripts create
remain in the workspace after the script finishes so you can use them for
further computations. You should be aware, though, that running a script can
unintentionally overwrite data stored in the base workspace by commands
entered at the MATLAB command prompt.

Simple Script Example
These statements calculate rho for several trigonometric functions of theta,
then create a series of polar plots:

% An M-file script to produce % Comment lines
% "flower petal" plots
theta = -pi:0.01:pi; % Computations
rho(1,:) = 2 * sin(5 * theta) .^ 2;
rho(2,:) = cos(10 * theta) .^ 3;
rho(3,:) = sin(theta) .^ 2;
rho(4,:) = 5 * cos(3.5 * theta) .^ 3;
for k = 1:4

4-17

4 M-File Programming

polar(theta, rho(k,:)) % Graphics output
pause

end

Try entering these commands in an M-file called petals.m. This file is now
a MATLAB script. Typing petals at the MATLAB command line executes
the statements in the script.

After the script displays a plot, press Enter or Return to move to the next
plot. There are no input or output arguments; petals creates the variables it
needs in the MATLAB workspace. When execution completes, the variables
(i, theta, and rho) remain in the workspace. To see a listing of them, enter
whos at the command prompt.

M-File Functions
Functions are program routines, usually implemented in M-files, that accept
input arguments and return output arguments. They operate on variables
within their own workspace. This workspace is separate from the workspace
you access at the MATLAB command prompt.

The Function Workspace
Each M-file function has an area of memory, separate from the MATLAB base
workspace, in which it operates. This area, called the function workspace,
gives each function its own workspace context.

While using MATLAB, the only variables you can access are those in the
calling context, be it the base workspace or that of another function. The
variables that you pass to a function must be in the calling context, and the
function returns its output arguments to the calling workspace context.
You can, however, define variables as global variables explicitly, allowing
more than one workspace context to access them. You can also evaluate any
MATLAB statement using variables from either the base workspace or the
workspace of the calling function using the evalin function. See “Extending
Variable Scope” on page 3-10 for more information.

4-18

M-File Scripts and Functions

Simple Function Example
The average function is a simple M-file that calculates the average of the
elements in a vector:

function y = average(x)
% AVERAGE Mean of vector elements.
% AVERAGE(X), where X is a vector, is the mean of vector
% elements. Nonvector input results in an error.
[m,n] = size(x);
if (~((m == 1) | (n == 1)) | (m == 1 & n == 1))

error('Input must be a vector')
end
y = sum(x)/length(x); % Actual computation

Try entering these commands in an M-file called average.m. The average
function accepts a single input argument and returns a single output
argument. To call the average function, enter

z = 1:99;

average(z)
ans =

50

Types of Functions
MATLAB provides the following types of functions. Each function type is
described in more detail in a later section of this documentation:

• The “Primary M-File Functions” on page 5-15 is the first function in an
M-file and typically contains the main program.

• “Subfunctions” on page 5-33 act as subroutines to the main function. You
can also use them to define multiple functions within a single M-file.

• “Nested Functions” on page 5-16 are functions defined within another
function. They can help to improve the readability of your program and
also give you more flexible access to variables in the M-file.

• “Anonymous Functions” on page 5-3 provide a quick way of making a
function from any MATLAB expression. You can compose anonymous

4-19

4 M-File Programming

functions either from within another function or at the MATLAB command
prompt.

• “Overloaded Functions” on page 5-37 are useful when you need to create a
function that responds to different types of inputs accordingly. They are
similar to overloaded functions in any object-oriented language.

• “Private Functions” on page 5-35 give you a way to restrict access to a
function. You can call them only from an M-file function in the parent
directory.

You might also see the term function functions in the documentation. This is
not really a separate function type. The term function functions refers to any
functions that accept another function as an input argument. You can pass a
function to another function using a function handle.

Identifying Dependencies
Most any program you write will make calls to other functions and scripts. If
you need to know what other functions and scripts your program is dependent
upon, use one of the techniques described below.

Simple Display of M-File Dependencies
For a simple display of all M-files referenced by a particular function, follow
these steps:

1 Type clear functions to clear all functions from memory (see Note below).

Note clear functions does not clear functions locked by mlock. If you
have locked functions (which you can check using inmem) unlock them with
munlock, and then repeat step 1.

2 Execute the function you want to check. Note that the function arguments
you choose to use in this step are important, because you can get different
results when calling the same function with different arguments.

4-20

M-File Scripts and Functions

3 Type inmem to display all M-files that were used when the function ran. If
you want to see what MEX-files were used as well, specify an additional
output:

[mfiles, mexfiles] = inmem

Detailed Display of M-File Dependencies
For a much more detailed display of dependent function information, use the
depfun function. In addition to M-files, depfun shows which built-ins and
classes a particular function depends on:

[list, builtins, classes] = depfun('strtok.m');

list
list =

'D:\matlabR14\toolbox\matlab\strfun\strtok.m'
'D:\matlabR14\toolbox\distcomp\toChar.m'
'D:\matlabR14\toolbox\matlab\datafun\prod.m'
'D:\matlabR14\toolbox\matlab\datatypes\@opaque\char.m'

.

.

.

4-21

4 M-File Programming

Function Handles

In this section...

“Constructing a Function Handle” on page 4-22

“Calling a Function Using Its Handle” on page 4-23

“Functions That Operate on Function Handles” on page 4-25

“Comparing Function Handles” on page 4-25

“Additional Information on Function Handles” on page 4-30

Constructing a Function Handle
A function handle is a MATLAB value that provides a means of calling a
function indirectly. You can pass function handles in calls to other functions
(often called function functions). You can also store function handles in data
structures for later use (for example, as Handle Graphics callbacks).

Use the following syntax to construct a function handle, preceding the name
of the function with an @ sign. Use only the function name, with no path
information, after the @ sign:

fhandle = @functionname

MATLAB maps the handle to the function you specify and saves this mapping
information in the handle. If there is more than one function with this name,
MATLAB maps to the one function source it would dispatch to if you were
actually calling the function.

A function handle retains that same mapping even if its corresponding
function goes out of scope. For example, if, after creating the handle, you
change the MATLAB path so that a different function of the same name now
takes precedence, invoking the function handle still executes the code to
which the handle was originally mapped.

Handles to Anonymous Functions
Another way to construct a function handle is to create an anonymous
function. For example,

4-22

Function Handles

sqr = @(x) x.^2;

creates an anonymous function that computes the square of its input
argument x. The variable sqr contains a handle to the anonymous function.
See “Anonymous Functions” on page 5-3 for more information.

Arrays of Function Handles
To store function handles in an array, use a cell array:

trigFun = {@sin, @cos, @tan};

plot(trigFun{2}(-pi:0.01:pi))

Invalid or Obsolete Function Handles
If you create a handle to a function that is not on the MATLAB path, or if you
load a handle to a function that is no longer on the path, MATLAB catches
the error only when the handle is invoked. You can assign an invalid handle
and use it in such operations as func2str. MATLAB catches and reports an
error only when you attempt to use it in a runtime operation.

Calling a Function Using Its Handle
To execute a function associated with a function handle, use the syntax shown
here, treating the function handle fhandle as if it were a function name:

fhandle(arg1, arg2, ..., argn)

If the function being called takes no input arguments, then use empty
parentheses after the function handle name:

fhandle()

Handling Return Values
When you invoke a function by means of its handle, you can capture any
or all values returned from the call in the same way you would if you were
calling the function directly. Just list the output variable to the left of the

4-23

4 M-File Programming

equals sign. When assigning to multiple outputs, enclose the output variables
within square brackets:

[out1 out2 ...] = fhandle(arg1, arg2, arg3, ...)

This example returns multiple values from a call to an anonymous function.
Create anonymous function f that locates the nonzero elements of an array,
and returns the row, column, and value of each element in variables row,
col, and val:

f = @(X)find(X);

Call the function on matrix m using the function handle f. Because the
function uses the MATLAB find function which returns up to 3 outputs, you
can specify from 0 to 3 outputs in the call:

m = [3 2 0; -5 0 7; 0 0 1]
m =

3 2 0
-5 0 7
0 0 1

[row col val] = f(m);

val
val =

3
-5
2
7
1

Simple Function Handle Example
The following example calls a function plotFHandle, passing it a handle
for the MATLAB sin function. plotFHandle then calls the plot function,
passing it some data and the function handle to sin. The plot function calls
the function associated with the handle to compute its y-axis values:

function x = plotFHandle(fhandle, data)
plot(data, fhandle(data))

4-24

Function Handles

Call plotFhandle with a handle to the sin function and the value shown
below:

plotFHandle(@sin, -pi:0.01:pi)

Functions That Operate on Function Handles
MATLAB provides the following functions for working with function handles.
See the reference pages for these functions for more information.

Function Description

functions Return information describing a function handle.

func2str Construct a function name string from a function
handle.

str2func Construct a function handle from a function name
string.

save Save a function handle from the current workspace to
a MAT-file.

load Load a function handle from a MAT-file into the current
workspace.

isa Determine if a variable contains a function handle.

isequal Determine if two function handles are handles to the
same function.

Comparing Function Handles
This section describes how MATLAB determines whether or not separate
function handles are equal to each other:

• “Handles Constructed from a Named Function” on page 4-26

• “Handles to Anonymous Functions” on page 4-26

• “Handles to Nested Functions” on page 4-27

• “Handles Saved to a MAT-File” on page 4-28

4-25

4 M-File Programming

Handles Constructed from a Named Function
Function handles that you construct from the same named function, e.g.,
handle = @sin, are considered by MATLAB to be equal. The isequal
function returns a value of true when comparing these types of handles:

func1 = @sin;
func2 = @sin;
isequal(func1, func2)
ans =

1

If you save these handles to a MAT-file and then load them back into the
workspace later on, they are still equal:

save temp1 func1
save temp2 func2
clear

load temp1
load temp2
isequal(func1, func2)
ans =

1

Handles to Anonymous Functions
Unlike handles to named functions, any two function handles that represent
the same anonymous function (i.e., handles to anonymous functions that
contain the same text) are not equal. This is because MATLAB cannot
guarantee that the frozen values of non-argument variables are the same.

q = 1;
a1 = @(x)q * x.^2;

q = 2;
a2 = @(x)q * x.^2;

isequal(a1, a2)
ans =

0

4-26

Function Handles

This false result is accurate because a1 and a2 do indeed behave differently.

Note In general, MATLAB may underestimate the equality of function
handles. That is, a test for equality may return false even when the functions
happen to behave the same. But in cases where MATLAB does indicate
equality, the functions are guaranteed to behave in an identical manner.

On the other hand, if you make a copy of an anonymous function handle,
the copy and the original are equal:

h1 = @(x)sin(x);
h2 = h1;

isequal(h1, h2)
ans =

1

In this case, function handles h1 and h2 are guaranteed to behave identically.

Handles to Nested Functions
Function handles to the same nested function are considered equal only if
your code constructs these handles on the same call to the function containing
the nested functions. Given this function that constructs two handles to the
same nested function,

function [h1, h2] = test_eq(a, b, c)
h1 = @findZ;
h2 = @findZ;

function z = findZ
z = a.^3 + b.^2 + c';
end

end

any two function handles constructed from the same nested function and on
the same call to the parent function are equal:

[h1 h2] = test_eq(4, 19, -7);

4-27

4 M-File Programming

isequal(h1, h2)
ans =

1

[q1 q2] = test_eq(3, -1, 2);
isequal(q1, q2)
ans =

1

The answer makes sense because h1 and h2 will always produce the same
answer:

x = h1(), y = h2()
x =

418
y =

418

However, handles constructed on different calls to the parent function are
not equal:

isequal(h1, q1)
ans =

0

In this case, h1 and q1 behave differently:

x = h1(), y = q1()
x =

418
y =

30

Handles Saved to a MAT-File
If you save equivalent anonymous or nested function handles to separate
MAT-files and then load them back into the MATLAB workspace, they are no
longer equal. This is because saving the function handle in effect loses track
of the original circumstances under which the function handle was created,
and reloading it results in a function handle that compares as being unequal
to the original function handle.

4-28

Function Handles

Create two equivalent anonymous function handles:

h1 = @(x) sin(x);
h2 = h1;

isequal(h1, h2)
ans =

1

Save each to a different MAT-file:

save fname1 h1;
save fname2 h2;

Clear the MATLAB workspace and then load the function handles back into
the workspace:

clear all
load fname1
load fname2

The function handles are no longer equal:

isequal(h1, h2)
ans =

0

Note however that equal anonymous and nested function handles that you
save to the same MAT-file are equal when loaded back into MATLAB:

h1 = @(x) sin(x);
h2 = h1;

isequal(h1, h2)
ans =

1

save fname h1 h2;

clear all
load fname

4-29

4 M-File Programming

isequal(h1, h2)
ans =

1

Additional Information on Function Handles
This section covers the following topics:

• “Maximum Length of a Function Name” on page 4-30

• “How MATLAB Constructs a Function Handle” on page 4-30

• “Saving and Loading Function Handles” on page 4-31

Maximum Length of a Function Name
Function names used in handles are unique up to N characters, where N is
the number returned by the function namelengthmax. If the function name
exceeds that length, MATLAB truncates the latter part of the name.

For function handles created for Java constructors, the length of any
segment of the package name or class name must not exceed namelengthmax
characters. (The term segment refers to any portion of the name that lies
before, between, or after a dot. For example, java.lang.String has three
segments). The overall length of the string specifying the package and class
has no limit.

How MATLAB Constructs a Function Handle
At the time you create a function handle, MATLAB maps the handle to one or
more implementations of the function specified in the constructor statement:

fhandle = @functionname

In selecting which function(s) to map to, MATLAB considers

• Scope — The function named must be on the MATLAB path at the time
the handle is constructed.

• Precedence — MATLAB selects which function(s) to map to according to
the function precedence rules described under “How MATLAB Determines
Which Method to Call” on page 9-72.

4-30

Function Handles

• Overloading — If additional M-files on the path overload the function for
any of the standard MATLAB data types, such as double or char, then
MATLAB maps the handle to these M-files as well.

M-files that overload a function for classes outside of the standard MATLAB
data types are not mapped to the function handle at the time it is constructed.
Function handles do operate on these types of overloaded functions, but
MATLAB determines which implementation to call at the time of evaluation
in this case.

Saving and Loading Function Handles
You can save and load function handles in a MAT-file using the MATLAB save
and load functions. If you load a function handle that you saved in an earlier
MATLAB session, the following conditions could cause unexpected behavior:

• Any of the M-files that define the function have been moved, and thus no
longer exist on the path stored in the handle.

• You load the function handle into an environment different from that in
which it was saved. For example, the source for the function either doesn’t
exist or is located in a different directory than on the system on which
the handle was saved.

In both of these cases, the function handle is now invalid because it no longer
maps to any existing function code. Although the handle is invalid, MATLAB
still performs the load successfully and without displaying a warning.
Attempting to invoke the handle, however, results in an error.

4-31

4 M-File Programming

Function Arguments

In this section...

“Overview” on page 4-32

“Checking the Number of Input Arguments” on page 4-32

“Passing Variable Numbers of Arguments” on page 4-34

“Parsing Inputs with inputParser” on page 4-36

“Passing Optional Arguments to Nested Functions” on page 4-47

“Returning Modified Input Arguments” on page 4-50

Overview
When calling a function, the caller provides the function with any data it
needs by passing the data in an argument list. Data that needs to be returned
to the caller is passed back in a list of return values.

Semantically speaking, MATLAB always passes argument data by value.
(Internally, MATLAB optimizes away any unnecessary copy operations.)

If you pass data to a function that then modifies this data, you will need to
update your own copy of the data. You can do this by having the function
return the updated value as an output argument.

Checking the Number of Input Arguments
The nargin and nargout functions enable you to determine how many input
and output arguments a function is called with. You can then use conditional
statements to perform different tasks depending on the number of arguments.
For example,

function c = testarg1(a, b)
if (nargin == 1)

c = a .^ 2;
elseif (nargin == 2)

c = a + b;
end

4-32

Function Arguments

Given a single input argument, this function squares the input value. Given
two inputs, it adds them together.

Here is a more advanced example that finds the first token in a character
string. A token is a set of characters delimited by white space or some other
character. Given one input, the function assumes a default delimiter of white
space; given two, it lets you specify another delimiter if desired. It also allows
for two possible output argument lists:

function [token, remainder] = strtok(string, delimiters)
% Function requires at least one input argument
if nargin < 1

error('Not enough input arguments.');
end
token = []; remainder = [];
len = length(string);
if len == 0

return
end

% If one input, use white space delimiter
if (nargin == 1)

delimiters = [9:13 32]; % White space characters
end
i = 1;

% Determine where nondelimiter characters begin
while (any(string(i) == delimiters))

i = i + 1;
if (i > len), return, end

end

% Find where token ends
start = i;
while (~any(string(i) == delimiters))

i = i + 1;
if (i > len), break, end

end
finish = i - 1;
token = string(start:finish);

4-33

4 M-File Programming

% For two output arguments, count characters after
% first delimiter (remainder)
if (nargout == 2)

remainder = string(finish+1:end);
end

The strtok function is a MATLAB M-file in the strfun directory.

Note The order in which output arguments appear in the function declaration
line is important. The argument that the function returns in most cases
appears first in the list. Additional, optional arguments are appended to
the list.

Passing Variable Numbers of Arguments
The varargin and varargout functions let you pass any number of inputs
or return any number of outputs to a function. This section describes how to
use these functions and also covers

• “Unpacking varargin Contents” on page 4-35

• “Packing varargout Contents” on page 4-35

• “varargin and varargout in Argument Lists” on page 4-36

MATLAB packs all specified input arguments into a cell array, a special kind
of MATLAB array that consists of cells instead of array elements. Each cell
can hold any size or kind of data — one might hold a vector of numeric data,
another in the same array might hold an array of string data, and so on. For
output arguments, your function code must pack them into a cell array so that
MATLAB can return the arguments to the caller.

Here is an example function that accepts any number of two-element vectors
and draws a line to connect them:

function testvar(varargin)
for k = 1:length(varargin)

x(k) = varargin{k}(1); % Cell array indexing
y(k) = varargin{k}(2);

4-34

Function Arguments

end
xmin = min(0,min(x));
ymin = min(0,min(y));
axis([xmin fix(max(x))+3 ymin fix(max(y))+3])
plot(x,y)

Coded this way, the testvar function works with various input lists; for
example,

testvar([2 3],[1 5],[4 8],[6 5],[4 2],[2 3])
testvar([-1 0],[3 -5],[4 2],[1 1])

Unpacking varargin Contents
Because varargin contains all the input arguments in a cell array, it’s
necessary to use cell array indexing to extract the data. For example,

y(n) = varargin{n}(2);

Cell array indexing has two subscript components:

• The indices within curly braces {} specify which cell to get the contents of.

• The indices within parentheses () specify a particular element of that cell.

In the preceding code, the indexing expression {i} accesses the nth cell of
varargin. The expression (2) represents the second element of the cell
contents.

Packing varargout Contents
When allowing a variable number of output arguments, you must pack all of
the output into the varargout cell array. Use nargout to determine how
many output arguments the function is called with. For example, this code
accepts a two-column input array, where the first column represents a set of x
coordinates and the second represents y coordinates. It breaks the array into
separate [xi yi] vectors that you can pass into the testvar function shown
at the beginning of the section on “Passing Variable Numbers of Arguments”
on page 4-34:

function [varargout] = testvar2(arrayin)

4-35

4 M-File Programming

for k = 1:nargout
varargout{k} = arrayin(k,:); % Cell array assignment

end

The assignment statement inside the for loop uses cell array assignment
syntax. The left side of the statement, the cell array, is indexed using curly
braces to indicate that the data goes inside a cell. For complete information
on cell array assignment, see “Cell Arrays” on page 2-93.

To call testvar2, type

a = [1 2; 3 4; 5 6; 7 8; 9 0];

[p1, p2, p3, p4, p5] = testvar2(a)
p1 =

1 2
p2 =

3 4
p3 =

5 6
p4 =

7 8
p5 =

9 0

varargin and varargout in Argument Lists
varargin or varargout must appear last in the argument list, following any
required input or output variables. That is, the function call must specify the
required arguments first. For example, these function declaration lines show
the correct placement of varargin and varargout:

function [out1,out2] = example1(a,b,varargin)
function [i,j,varargout] = example2(x1,y1,x2,y2,flag)

Parsing Inputs with inputParser
MATLAB provides a class called inputParser to handle the different types
of arguments passed into an M-file function. Using inputParser, you create
a schema that both represents and verifies the content of the entire list of

4-36

Function Arguments

input arguments passed on a call to the function. When used in all of your
code development, this schema offers a consistent and thorough means of
managing and validating the input information.

This section covers the following topics

• “Defining a Specification for Each Input Parameter” on page 4-37

• “Parsing Parameter Values on the Function Call” on page 4-40

• “Packaging Arguments in a Structure” on page 4-41

• “Arguments That Default” on page 4-43

• “Validating the Input Arguments” on page 4-43

• “Making a Copy of the Schema” on page 4-46

• “Summary of inputParser Methods” on page 4-46

• “Summary of inputParser Properties that Control Parsing” on page 4-46

• “Summary of inputParser Properties that Provide Information” on page
4-47

To illustrate how to use the inputParser class, the documentation in this
section develops a new M-file program called publish_ip, (based on the
MATLAB publish function). There are three calling syntaxes for this
function:

publish_ip('script')
publish_ip('script', 'format')
publish_ip('script', options)

There is one required argument (script), one optional argument (format),
and a number of optional arguments that are specified as parameter-value
pairs (options).

Defining a Specification for Each Input Parameter
Most programs have a block of code toward the beginning that parses the
values in the input argument list and checks these values against what is
expected. The inputParser class provides the following methods with which
you can specify what the inputs are and whether they are required, optional,
or to be specified using the parameter-value syntax:

4-37

4 M-File Programming

• addRequired — Add a required parameter to the schema

• addOptional — Add an optional parameter to the schema

• addParamValue — Add an optional parameter-value pair to the schema

Creating the inputParser Object. Call the class constructor for
inputParser to create an instance of the class. This class instance, or object,
gives you access to all of the methods and properties of the class.

Begin writing the example publish_ip M-file by entering the following two
statements:

function x = publish_ip(script, varargin)
p = inputParser; % Create an instance of the class.

After calling the constructor, use the addRequired, addOptional, and
addParamValue methods to add arguments to the schema.

Note The constructor and all methods and properties of the inputParser
class are case sensitive.

Adding Arguments to the Schema. Add any required arguments to the
schema using the addRequired method. This method takes two inputs: the
name of the required parameter, and an optional handle to a function that
validates the parameter:

addRequired(name, validator);

Put an addRequired statement at the end of your publish_ip code. The two
arguments for addRequired in this case are the filename input, script, and a
handle to a function that will validate the filename, ischar. After adding the
addRequired statement, your publish_ip function should now look like this:

function x = publish_ip(script, varargin)
p = inputParser; % Create an instance of the class.

p.addRequired('script', @ischar);

4-38

Function Arguments

Use the addOptional method to add any arguments that are not required.
The syntax for addOptional is similar to that of addRequired except that
you also need to specify a default value to be used whenever the optional
argument is not passed:

addOptional(name, default, validator);

In this case, the validator input is a handle to an anonymous function:

p.addOptional('format', 'html', ...
@(x)any(strcmpi(x,{'html','ppt','xml','latex'})));

Use addParamValue to specify any arguments that use a parameter-value
format. The syntax is

addParamValue(name, default, validator);

For example,

p.addParamValue('outputDir', pwd, @ischar);
p.addParamValue('maxHeight', [], @(x)x>0 && mod(x,1)==0);
p.addParamValue('maxWidth', [], @(x)x>0 && mod(x,1)==0);

Listing the Arguments. At this point, the schema is complete. Here is the
file publish_ip.m:

function x = publish_ip(script, varargin)
p = inputParser; % Create an instance of the class.

p.addRequired('script', @ischar);

p.addOptional('format', 'html', ...
@(x)any(strcmpi(x,{'html','ppt','xml','latex'})));p.

p.addParamValue('outputDir', pwd, @ischar);
p.addParamValue('maxHeight', [], @(x)x>0 && mod(x,1)==0);
p.addParamValue('maxWidth', [], @(x)x>0 && mod(x,1)==0);

When you call the program, MATLAB stores the name of each argument
in the Parameters property of object p. Add the following two lines to your
publish_ip M-file to display p.Parameters:

4-39

4 M-File Programming

sprintf('%s\n %s\n %s\n %s\n %s\n %s', ...
'The input parameters for this program are:', ...
p.Parameters{:})

Save the M-file, and then run it as shown here:

publish_ip('ipscript.m', 'ppt', 'outputDir', ...
'C:/matlab/test', 'maxWidth', 500, 'maxHeight', 300);

The output is

The input parameters for this program are:
format
maxHeight
maxWidth
outputDir
script

Parsing Parameter Values on the Function Call
Once you have constructed a schema that represents all possible inputs
to the function, the next task is to write the code that parses and verifies
these arguments whenever the function is called. The parse method of the
inputParser class reads and validates the required script argument and
any optional arguments that follow it in the argument list:

p.parse(script, varargin{:});

Execution of the parse method validates each argument and also builds a
structure from the input arguments. The name of the structure is Results,
which is accessible as a property of the object. To get the value of all
arguments, type

p.Results

To get the value of any single input argument, type

p.Results.argname

where argname is the name of the argument. Continue with the publish_ip
exercise started earlier in this section by removing the sprintf statement
that was inserted in the last section, and then adding the following lines:

4-40

Function Arguments

% Parse and validate all input arguments.
p.parse(script, varargin{:});

% Display the value of a specific argument.
disp(' ')
disp(sprintf('\nThe maximum height is %d.', ...

p.Results.maxHeight))

% Display all arguments.
disp(' ')
disp 'List of all arguments:'
disp(p.Results)

Now save and execute the M-file, passing the required script argument, the
optional format argument, as well as several parameter-value arguments.
MATLAB assigns those values you pass in the argument list to the
appropriate fields of the Results structure:

publish_ip('ipscript.m', 'ppt', 'outputDir', ...
'C:/matlab/test', 'maxWidth', 500, 'maxHeight', 300);

The maximum height is 300.

List of all arguments:
format: 'ppt'

maxHeight: 300
maxWidth: 500

outputDir: 'C:/matlab/test'
script: 'ipscript.m'

Packaging Arguments in a Structure
By setting the StructExpand property of the inputParser object to true, you
can pass arguments to your function in the form of a structure instead of
individually in the argument list. This property must be set prior to calling
the parse method.

StructExpand defaults to the true state, so you don’t have to make any
changes to your test program to run this example.

4-41

4 M-File Programming

Put all of the input arguments into a structure:

s.format = 'xml';
s.outputDir = 'C:/matlab/test';
s.maxWidth = 200;
s.maxHeight = 150;

Now call the function, passing the filename and input structure:

publish_ip('ipscript.m', s);

The maximum height is 150.

List of all arguments:
format: 'xml'

maxHeight: 150
maxWidth: 200

outputDir: 'C:/matlab/test'
script: 'ipscript.m'

To disable struct expansion, include the following statement somewhere in
your program code before the p.parse statement:

p.StructExpand = false;

Overriding the Input Structure. If you want to pass your argument list
in a structure, as described in the previous section, but you also want to
alter the value of one or more of these arguments without having to modify
the structure, you can do so by passing both the structure and the modified
argument:

publish_ip('ipscript.m', s, ...
'outputDir', 'C:/matlab/R2007a/temp');

List of all arguments:
format: 'xml'

maxHeight: 150
maxWidth: 200

outputDir: 'C:/matlab/R2007a/temp'
script: 'ipscript.m'

4-42

Function Arguments

Arguments That Default
Any arguments that you do not include in a call to your function are given
their default values by MATLAB. You defined these default values when you
created your schema using the addOptional and addParamValue methods.
The UsingDefaults property is actually a structure that contains the names
of any arguments that were not passed in the function call, and thus were
assigned default values.

Add the following to your M-file:

% Show which arguments were not specified in the call.
disp(' ')
disp 'List of arguments given default values:'
for k=1:numel(p.UsingDefaults)

field = char(p.UsingDefaults(k));
value = p.Results.(field);
if isempty(value), value = '[]'; end
disp(sprintf(' ''%s'' defaults to %s', field, value))

end

Save the M-file and run it without specifying the format, outputDir, or
maxHeight arguments:

publish_ip('ipscript.m', 'maxWidth', 500);

List of arguments given default values:
'format' defaults to html
'outputDir' defaults to D:\work_r14
'maxHeight' defaults to []

Validating the Input Arguments
When you call your function, MATLAB checks any arguments for which you
have specified a validator function. If the validator finds an error, MATLAB
displays an error message and aborts the function. In the publish function
example, the outputDir argument validates the value passed in using
@ischar.

Pass a number instead of a string for the outputDir argument:

4-43

4 M-File Programming

publish_ip('ipscript.m', 'outputDir', 5);
??? Argument 'outputDir' failed validation ischar.

Error in ==> publish_ip at 14
p.parse(varargin{:});

Handling Unmatched Arguments. MATLAB throws an error if you call
your function with any arguments that are not part of the inputParser
schema. You can disable this error by setting the KeepUnmatched property to
true. When KeepUnmatched is in the true state, MATLAB does not throw
an error, but instead stores any arguments that are not in the schema in a
cell array of strings accessible through the Unmatched property of the object.
KeepUnmatched defaults to false.

At some point in your publish_ip M-file before executing the parse method,
set the KeepUnmatched property to true, and following the parse statement,
examine the Unmatched property:

p.KeepUnmatched = true;

% Parse and validate all input arguments.
p.parse(script, varargin{:});

disp(' ')
disp 'List of unmatched arguments:'
p.Unmatched

Save and run the function, passing two arguments that are not defined in
the schema:

publish_ip('ipscript.m', s, ...
'outputDir', 'C:/matlab/R2007a/temp', ...
'colorSpace', 'CMYK', 'density', 200);

List of unmatched arguments:
colorSpace: 'CMYK'

density: 200

4-44

Function Arguments

Enabling Case-Sensitive Matching. When you pass optional arguments
in the function call, MATLAB compares these arguments with the names of
parameter-value argument names in the schema. By default, MATLAB does
not use case sensitivity in this comparison. So, an argument name entered
into the schema (using addParamValue) as maxHeight will match an argument
passed as MAXHeight in the function call. You can override the default and
make these comparisons case sensitive by setting the CaseSensitive property
of the object to true. MATLAB does not error on a case mismatch, however,
unless the KeepUnmatched property is set to false: its default state.

At some point in your publish_ip M-file before executing the parse method,
set KeepUnmatched to false and CaseSensitive to true, and then execute
the publish_ip function using MAXHeight as the name of the argument for
specifying maximum height:

p.KeepUnmatched = false;
p.CaseSensitive = true;

% Parse and validate all input arguments.
p.parse(script, varargin{:});

Save and run the function, using MAXHeight as the name of the argument for
specifying maximum height:

publish_ip('ipscript.m', 'ppt', 'outputDir', ...
'C:/matlab/test', 'maxWidth', 500, 'MAXHeight', 300);

??? Argument 'MAXHeight' did not match any valid parameter of
the parser.

Error in ==> publish_ip at 17

Adding the Function Name to Error Messages. Use the FunctionName
property to include the name of your function in error messages thrown by
the validating function:

At some point in your publish_ip M-file before executing the parse method,
set the FunctionName property to PUBLISH_IP, and then run the function:

p.FunctionName = 'PUBLISH_IP';

% Parse and validate all input arguments.

4-45

4 M-File Programming

p.parse(script, varargin{:});

Save and run the function and observe text of the error message:

publish_ip('ipscript.m', 'ppt', 'outputDir', 5, ...
'maxWidth', 500, 'maxHeight', 300);

??? Argument 'outputDir' failed validation ischar in PUBLISH_IP.

Making a Copy of the Schema
The createCopy method enables you to make a copy of an existing schema.
Because the inputParser class uses handle semantics, you cannot make a
copy of the object using an assignment statement.

The following statement creates an inputParser object s that is a copy of p:

s = p.createCopy

Summary of inputParser Methods

Method Description

addOptional Add an optional argument to the schema

addParamValue Add a parameter-value pair argument to the
schema

addRequired Add a required argument to the schema

createCopy Create a copy of the inputParser object

parse Parse and validate the named inputs

Summary of inputParser Properties that Control Parsing

Property Description

CaseSensitivity Enable or disable case-sensitive matching of
argument names. Defaults to false.

4-46

Function Arguments

Property Description

FunctionName Function name to be included in error messages.
Defaults to an empty string.

KeepUnmatched Enable or disable errors on unmatched
arguments. Defaults to false.

StructExpand Enable or disable passing arguments in a
structure. Defaults to true.

Summary of inputParser Properties that Provide Information

Property Description

Parameters Names of arguments defined in inputParser
schema.

Results Names and values of arguments passed in
function call that are in the schema for this
function.

Unmatched Names and values of arguments passed in
function call that are not in the schema for this
function.

UsingDefaults Names of arguments not passed in function call
that are given default values.

Passing Optional Arguments to Nested Functions
You can use optional input and output arguments with nested functions,
but you should be aware of how MATLAB interprets varargin, varargout,
nargin, and nargout under those circumstances.

varargin and varargout are variables and, as such, they follow exactly the
same scoping rules as any other MATLAB variable. Because nested functions
share the workspaces of all outer functions, varargin and varargout used in
a nested function can refer to optional arguments passed to or from the nested
function, or passed to or from one of its outer functions.

4-47

4 M-File Programming

nargin and nargout, on the other hand, are functions and when called within
a nested function, always return the number of arguments passed to or from
the nested function itself.

Using varargin and varargout
varargin or varargout used in a nested function can refer to optional
arguments passed to or from that function, or to optional arguments passed
to or from an outer function.

• If a nested function includes varargin or varargout in its function
declaration line, then the use of varargin or varargout within that
function returns optional arguments passed to or from that function.

• If varargin or varargout are not in the nested function declaration but
are in the declaration of an outer function, then the use of varargin or
varargout within the nested function returns optional arguments passed
to the outer function.

In the example below, function C is nested within function B, and function B is
nested within function A. The term varargin{1} in function B refers to the
second input passed to the primary function A, while varargin{1} in function
C refers to the first argument, z, passed from function B:

function x = A(y, varargin) % Primary function A
B(nargin, y * rand(4))

function B(argsIn, z) % Nested function B
if argsIn >= 2

C(z, varargin{1}, 4.512, 1.729)
end

function C(varargin) % Nested function C
if nargin >= 2

x = varargin{1}
end
end % End nested function C

end % End nested function B
end % End primary function A

4-48

Function Arguments

Using nargin and nargout
When nargin or nargout appears in a nested function, it refers to the number
of inputs or outputs passed to that particular function, regardless of whether
or not it is nested.

In the example shown above, nargin in function A is the number of inputs
passed to A, and nargin in function C is the number of inputs passed to C. If a
nested function needs the value of nargin or nargout from an outer function,
you can pass this value in as a separate argument, as done in function B.

Example of Passing Optional Arguments to Nested Functions
This example references the primary function’s varargin cell array from
each of two nested functions. (Because the workspace of an outer function is
shared with all functions nested within it, there is no need to pass varargin
to the nested functions.)

Both nested functions make use of the nargin value that applies to the
primary function. Calling nargin from the nested function would return the
number of inputs passed to that nested function, and not those that had been
passed to the primary. For this reason, the primary function must pass its
nargin value to the nested functions.

function meters = convert2meters(miles, varargin)
% Converts MILES (plus optional FEET and INCHES input)
% values to METERS.

if nargin < 1 || nargin > 3
error('1 to 3 input arguments are required');

end

function feet = convert2Feet(argsIn)
% Nested function that converts miles to feet and adds in
% optional FEET argument.

feet = miles .* 5280;

if argsIn >= 2
feet = feet + varargin{1};

end

4-49

4 M-File Programming

end % End nested function convert2Feet

function inches = convert2Inches(argsIn)
% Nested function that converts feet to inches and adds in
% optional INCHES argument.

inches = feet .* 12;

if argsIn == 3
inches = inches + varargin{2};

end
end % End nested function convert2Inches

feet = convert2Feet(nargin);
inches = convert2Inches(nargin);

meters = inches .* 2.54 ./ 100;
end % End primary function convert2meters

convert2meters(5)
ans =

8.0467e+003

convert2meters(5, 2000, 4.7)
ans =

8.6564e+003

Returning Modified Input Arguments
If you pass any input variables that the function can modify, you will need to
include the same variables as output arguments so that the caller receives
the updated value.

For example, if the function readText, shown below, reads one line of a file
each time is it called, then it must keep track of the offset into the file. But
when readText terminates, its copy of the offset variable is cleared from
memory. To keep the offset value from being lost, readText must return this
value to the caller:

function [text, offset] = readText(filestart, offset)

4-50

4 M-File Programming

4-51

4 M-File Programming

Calling Functions

In this section...

“What Happens When You Call a Function” on page 4-52

“Determining Which Function Is Called” on page 4-53

“MATLAB Calling Syntax” on page 4-56

“Passing Certain Argument Types” on page 4-60

“Passing Arguments in Structures or Cell Arrays” on page 4-62

“Assigning Output Arguments” on page 4-64

“Calling External Functions” on page 4-66

“Running External Programs” on page 4-67

What Happens When You Call a Function
When you call a function M-file from either the command line or from within
another M-file, MATLAB parses the function into pseudocode and stores it
in memory. This prevents MATLAB from having to reparse a function each
time you call it during a session. The pseudocode remains in memory until
you clear it using the clear function, or until you quit MATLAB.

Clearing Functions from Memory
You can use clear in any of the following ways to remove functions from the
MATLAB workspace.

Syntax Description

clear functionname Remove specified function from workspace.

clear functions Remove all compiled M-functions.

clear all Remove all variables and functions.

4-52

Calling Functions

Determining Which Function Is Called
When more than one function has the same name, which one does MATLAB
call? This section explains the process that MATLAB uses to make this
decision. It covers the following topics:

• “Function Scope” on page 4-53

• “Precedence Order” on page 4-53

• “Multiple Implementation Types” on page 4-55

• “Querying Which Function MATLAB Will Call” on page 4-55

Also keep in mind that there are certain situations in which function names
can conflict with variables of the same name. See “Potential Conflict with
Function Names” on page 3-7for more information.

Function Scope
Any functions you call must first be within the scope of (i.e., visible to) the
calling function or your MATLAB session. MATLAB determines if a function
is in scope by searching for the function’s executable file according to a certain
order (see “Precedence Order” on page 4-53).

One key part of this search order is the MATLAB path. The path is an
ordered list of directories that MATLAB defines on startup. You can add or
remove any directories you want from the path. MATLAB searches the path
for the given function name, starting at the first directory in the path string
and continuing until either the function file is found or the list of directories
is exhausted. If no function of that name is found, then the function is
considered to be out of scope and MATLAB issues an error.

Precedence Order
The function precedence order determines the precedence of one function
over another based on the type of function and its location on the MATLAB
path. MATLAB selects the correct function for a given context by applying the
following function precedence rules in the order given here.

For items 3 through 7 in this list, the file MATLAB searches for can be any
of four types: an M- or built-in file, preparsed M-file (P-Code), compiled

4-53

4 M-File Programming

C or Fortran file (MEX-file), or Simulink® model (MDL-file). See “Multiple
Implementation Types” on page 4-55 for more on this.

1 Variable

Before assuming that a name should match a function, MATLAB checks
the current workspace to see if it matches a variable name. If MATLAB
finds a match, it stops the search.

2 Subfunction

Subfunctions take precedence over all other M-file functions and overloaded
methods that are on the path and have the same name. Even if the function
is called with an argument of type matching that of an overloaded method,
MATLAB uses the subfunction and ignores the overloaded method.

3 Private function

Private functions are called if there is no subfunction of the same name
within the current scope. As with subfunctions, even if the function is
called with an argument of type matching that of an overloaded method,
MATLAB uses the private function and ignores the overloaded method.

4 Class constructor

Constructor functions (functions having names that are the same as the @
directory, for example @polynom/polynom.m) take precedence over other
MATLAB functions. Therefore, if you create an M-file called polynom.m and
put it on your path before the constructor @polynom/polynom.m version,
MATLAB will always call the constructor version.

5 Overloaded method

MATLAB calls an overloaded method if it is not superseded by a
subfunction or private function. Which overloaded method gets called
depends on the classes of the objects passed in the argument list.

6 Function in the current directory

A function in the current working directory is selected before one elsewhere
on the path.

4-54

Calling Functions

7 Function elsewhere on the path

Finally, a function elsewhere on the path is selected. A function in a
directory that is toward the beginning of the path string is given higher
precedence.

Note Because variables have the highest precedence, if you have created a
variable of the same name as a function, MATLAB will not be able to run that
function until you clear the variable from memory.

Multiple Implementation Types
There are five file precedence types. MATLAB uses file precedence to select
between identically named functions in the same directory. The order of
precedence for file types is

1 Built-in file

2 MEX-files

3 MDL (Simulink® model) file

4 P-code file

5 M-file

For example, if MATLAB finds a P-code and an M-file version of a method in a
class directory, then the P-code version is used. It is, therefore, important to
regenerate the P-code version whenever you edit the M-file.

Querying Which Function MATLAB Will Call
You can determine which function MATLAB will call using the which
command. For example,

which pie3
matlabroot/toolbox/matlab/specgraph/pie3.m

However, if p is a portfolio object,

4-55

4 M-File Programming

which pie3(p)
dir_on_your_path/@portfolio/pie3.m % portfolio method

The which command determines which version of pie3 MATLAB will call
if you passed a portfolio object as the input argument. To see a list of all
versions of a particular function that are on your MATLAB path, use the -all
option. See the which reference page for more information on this command.

MATLAB Calling Syntax
This section explains how to use the MATLAB command and function syntax:

• “MATLAB Command Syntax” on page 4-56

• “MATLAB Function Syntax” on page 4-57

• “Passing Arguments with Command and Function Syntax” on page 4-57

• “How MATLAB Recognizes Function Calls That Use Command Syntax”
on page 4-59

You can call function M-files from either the MATLAB command line or from
within other M-files. Be sure to include all necessary arguments, enclosing
input arguments in parentheses and output arguments in square brackets.

Note Function names are sensitive to case. When you call a function, use
the correct combination of upper and lowercase letters so that the name is
an exact match. Otherwise, you risk calling a different function that does
match but is elsewhere on the path.

You often have the choice of using one of two syntaxes for a function call. You
can use either a command or a function type of syntax. This is referred to in
MATLAB as command/function duality.

MATLAB Command Syntax
A function call made in command syntax consists of the function name
followed by one or more arguments separated by spaces:

functionname in1 in2 ... inN

4-56

Calling Functions

While the command syntax is simpler to write, it has the restriction that you
may not assign any return values the function might generate. Attempting
to do so generates an error.

Two examples of command syntax are

save mydata.mat x y z
clear length width depth

In the command syntax, MATLAB treats all arguments as string literals.

MATLAB Function Syntax
Function calls written in the function syntax look essentially the same as
those in many other programming languages. One difference is that, in
MATLAB, functions can return more than one output value.

A function call with a single return value looks like this:

out = functionname(in1, in2, ..., inN)

If the function returns more than one value, separate the output variables
with commas or spaces, and enclose them all in square brackets ([]):

[out1, out2, ..., outN] = functionname(in1, in2, ..., inN)

Here are two examples:

copyfile(srcfile, '..\mytests', 'writable')
[x1, x2, x3, x4] = deal(A{:})

In the function syntax, MATLAB passes arguments to the function by value.
See the examples under “Passing Arguments with Command and Function
Syntax” on page 4-57.

Passing Arguments with Command and Function Syntax
When you call a function using function syntax, MATLAB passes the values
assigned to each variable in the argument list. For example, this expression
passes the values assigned to A0, A1, and A2 to the polyeig function:

4-57

4 M-File Programming

e = polyeig(A0, A1, A2)

Function calls written in command syntax pass all arguments as string
literals. This expression passes the strings 'mydata.mat', 'x', 'y', and 'z'
to the save function:

save mydata.mat x y z

The following examples show the difference between passing arguments in
the two syntaxes.

Passing Arguments — Example 1. Calling disp with the function syntax,
disp(A), passes the value of variable A to the disp function:

A = pi;

disp(A) % Function syntax
3.1416

Calling it with the command syntax, disp A, passes the string 'A':

A = pi;

disp A % Command syntax
A

Passing Arguments — Example 2. Passing two variables representing
equal strings to the strcmp function using function and command syntaxes
gives different results. The function syntax passes the values of the
arguments. strcmp returns a 1, which means they are equal:

str1 = 'one'; str2 = 'one';

strcmp(str1, str2) % Function syntax
ans =

1 (equal)

The command syntax passes the names of the variables, 'str1' and 'str2',
which are unequal:

str1 = 'one'; str2 = 'one';

4-58

Calling Functions

strcmp str1 str2 % Command syntax
ans =

0 (unequal)

How MATLAB Recognizes Function Calls That Use Command
Syntax
It can be difficult to tell whether a MATLAB expression is a function call
using command syntax or another kind of expression, such as an operation on
one or more variables. Consider the following example:

ls ./d

Is this a call to the ls function with the directory ./d as its argument? Or is it
a request to perform elementwise division on the array that is the value of the
ls variable, using the value of the d variable as the divisor?

This example might appear unambiguous because MATLAB can determine
whether ls and d are functions or variables. But that is not always true.
Some MATLAB components, such as M-Lint and the Editor/Debugger, must
operate without reference to the MATLAB path or workspace. MATLAB
therefore uses syntactic rules to determine when an expression is a function
call using command syntax.

The rules are complicated and have exceptions. In general, when MATLAB
recognizes an identifier (which might name a function or a variable), it
analyzes the characters that follow the identifier to determine what kind of
expression exists. The expression is usually a function call using command
syntax when all of the following are true:

1 The identifier is followed immediately by white space.

2 The characters following the white space are not parentheses or an
assignment operator.

3 The characters following the white space are not an operator that is
itself followed by additional white space and then by characters that can
legitimately follow an operator.

4-59

4 M-File Programming

The example above meets all three criteria and is therefore a function call
using command syntax:

ls ./d

The following examples are not function calls using command syntax:

% No white space following the ls identifier
% Interpretation: elementwise division
ls./d

% Parenthesis following white space
% Interpretation: function call using function syntax
ls ('./d')

% Assignment operator following white space
% Interpretation: assignment to a variable
ls =d

% Operator following white space, followed in turn by
% more white space and a variable
% Interpretation: elementwise division
ls ./ d

Passing Certain Argument Types
This section explains how to pass the following types of data in a function call:

• “Passing Strings” on page 4-60

• “Passing Filenames” on page 4-61

• “Passing Function Handles” on page 4-62

Passing Strings
When using the function syntax to pass a string literal to a function, you
must enclose the string in single quotes, ('string'). For example, to create a
new directory called myapptests, use

mkdir('myapptests')

4-60

Calling Functions

On the other hand, variables that contain strings do not need to be enclosed
in quotes:

dirname = 'myapptests';
mkdir(dirname)

Passing Filenames
You can specify a filename argument using the MATLAB command or function
syntax. For example, either of the following are acceptable. (The .mat file
extension is optional for save and load):

load mydata.mat % Command syntax
load('mydata.mat') % Function syntax

If you assign the output to a variable, you must use the function syntax:

savedData = load('mydata.mat')

Specify ASCII files as shown here. In this case, the file extension is required:

load mydata.dat -ascii % Command syntax
load('mydata.dat','-ascii') % Function syntax

Determining Filenames at Run-Time. There are several ways that your
function code can work on specific files without your having to hardcode their
filenames into the program. You can

• Pass the filename as an argument:

function myfun(datafile)

• Prompt for the filename using the input function:

filename = input('Enter name of file: ', 's');

• Browse for the file using the uigetfile function:

[filename, pathname] = uigetfile('*.mat', 'Select MAT-file');

4-61

4 M-File Programming

Passing Function Handles
The MATLAB function handle has several uses, the most common being
a means of immediate access to the function it represents. You can pass
function handles in argument lists to other functions, enabling the receiving
function to make calls by means of the handle.

To pass a function handle, include its variable name in the argument list of
the call:

fhandle = @humps;
x = fminbnd(fhandle, 0.3, 1);

The receiving function invokes the function being passed using the usual
MATLAB calling syntax:

function [xf, fval, exitflag, output] = ...
fminbnd(fhandle, ax, bx, options, varargin)

.

.

.
113 fx = fhandle(x, varargin{:});

Passing Arguments in Structures or Cell Arrays
Instead of requiring an additional argument for every value you want to pass
in a function call, you can package them in a MATLAB structure or cell array.

Passing Arguments in a Structure
Make each input you want to pass a separate field in the structure argument,
using descriptive names for the fields. Structures allow you to change the
number, contents, or order of the arguments without having to modify the
function. They can also be useful when you have a number of functions that
need similar information.

This example updates weather statistics from information in the following
chart.

4-62

Calling Functions

City Temp. Heat Index Wind Speed Wind Chill

Boston 43 32 8 37

Chicago 34 27 3 30

Lincoln 25 17 11 16

Denver 15 -5 9 0

Las Vegas 31 22 4 35

San Francisco 52 47 18 42

The information is stored in structure W. The structure has one field for each
column of data:

W = struct('city', {'Bos','Chi','Lin','Dnv','Vgs','SFr'}, ...
'temp', {43, 34, 25, 15, 31, 52}, ...
'heatix', {32, 27, 17, -5, 22, 47}, ...
'wspeed', {8, 3, 11, 9, 4, 18}, ...
'wchill', {37, 30, 16, 0, 35, 42});

To update the data base, you can pass the entire structure, or just one
field with its associated data. In the call shown here, W.wchill is a
comma-separated list:

updateStats(W.wchill);

Passing Arguments in a Cell Array
You can also group arguments into cell arrays. The advantage over structures
is that cell arrays are referenced by index, allowing you to loop through a
cell array and access each argument passed in or out of the function. The
disadvantage is that you don’t have field names to describe each variable.

This example passes several attribute-value arguments to the plot function:

X = -pi:pi/10:pi;
Y = tan(sin(X)) - sin(tan(X));

C{1,1} = 'LineWidth'; C{2,1} = 2;
C{1,2} = 'MarkerEdgeColor'; C{2,2} = 'k';

4-63

4 M-File Programming

C{1,3} = 'MarkerFaceColor'; C{2,3} = 'g';

plot(X, Y, '--rs', C{:})

Assigning Output Arguments
Use the syntax shown here to store any values that are returned by the
function you are calling. To store one output, put the variable that is to hold
that output to the left of the equal sign:

vout = myfun(vin1, vin2, ...);

To store more than one output, list the output variables inside square brackets
and separate them with commas or spaces:

[vout1 vout2 ...] = myfun(vin1, vin2, ...);

The number of output variables in your function call statement does not have
to match the number of return values declared in the function being called.
For a function that declares N return values, you can specify anywhere from
zero to N output variables in the call statement. Any return values that you
do not have an output variable for are discarded.

Functions return output values in the order in which the corresponding
output variables appear in the function definition line within the M-file. This
function returns 100 first, then x * y, and lastly x.^2:

function [a b c] = myfun(x, y)
b = x * y; a = 100; c = x.^2;

If called with only one output variable in the call statement, the function
returns only 100 and discards the values of b and c. If called with no outputs,
the functions returns 100 in the MATLAB default variable ans.

Assigning Optional Return Values
The section “Passing Variable Numbers of Arguments” on page 4-34 describes
the method of returning optional outputs in a cell array called varargout.
A function that uses varargout to return optional values has a function
definition line that looks like one of the following:

function varargout = myfun(vin1, vin2, ...)

4-64

Calling Functions

function [vout1 vout2 ... varargout] = myfun(vin1, vin2, ...)

The code within the function builds the varargout cell array. The content and
order of elements in the cell array determines how MATLAB assigns optional
return values to output variables in the function call.

In the case where varargout is the only variable shown to the left of the
equal sign in the function definition line, MATLAB assigns varargout{1} to
the first output variable, varargout{2} to the second, and so on. If there are
other outputs declared in the function definition line, then MATLAB assigns
those outputs to the leftmost output variables in the call statement, and then
assigns outputs taken from the varargout array to the remaining output
variables in the order just described.

This function builds the varargout array using descending rows of a 5-by-5
matrix. The function is capable of returning up to six outputs:

function varargout = byRow(a)
varargout{1} = ' With VARARGOUT constructed by row ...';
for k = 1:5

row = 5 - (k-1); % Reverse row order
varargout{k+1} = a(row,:);

end

Call the function, assigning outputs to four variables. MATLAB returns
varargout{1:4}, with rows of the matrix in varargout{2:4} and in the order
in which they were stored by the function:

[text r1 r2 r3] = byRow(magic(5))
text =

With VARARGOUT constructed by row ...
r1 =

11 18 25 2 9
r2 =

10 12 19 21 3
r3 =

4 6 13 20 22

A similar function builds the varargout array using diagonals of a 5-by-5
matrix:

4-65

4 M-File Programming

function varargout = byDiag(a)
varargout{1} = ' With VARARGOUT constructed by diagonal ...';
for k = -4:4

varargout{k + 6} = diag(a, k);
end

Call the function with five output variables. Again, MATLAB assigns
elements of varargout according to the manner in which it was constructed
within the function:

[text d1 d2 d3 d4] = byDiag(magic(5))
text =

With VARARGOUT constructed by diagonal ...
d1 =

11
d2 =

10
18

d3 =
4

12
25

d4 =
23
6

19
2

Calling External Functions
The MATLAB external interface offers a number of ways to run external
functions from MATLAB. This includes programs written in C or Fortran,
methods invoked on Java or COM (Component Object Model) objects,
functions that interface with serial port hardware, and functions stored in
shared libraries. The MATLAB External Interfaces documentation describes
these various interfaces and how to call these external functions.

4-66

Calling Functions

Running External Programs
For information on how to invoke operating systems commands or execute
programs that are external to MATLAB, see Running External Programs in
the MATLAB Desktop Tools and Development documentation.

4-67

4 M-File Programming

4-68

5

Types of Functions

Overview of MATLAB Function
Types (p. 5-2)

An introduction to the basic types of
functions available with MATLAB

Anonymous Functions (p. 5-3) Functions defined from a MATLAB
expression and without requiring an
M-file

Primary M-File Functions (p. 5-15) The first, and often the main,
function in an M-file

Nested Functions (p. 5-16) Functions defined within the body of
another function

Subfunctions (p. 5-33) Any functions that follow the
primary function in an M-file

Private Functions (p. 5-35) Functions with restricted access,
callable only from an M-file function
in the parent directory

Overloaded Functions (p. 5-37) Functions with multiple
implementations that respond to
different types of inputs accordingly

5 Types of Functions

Overview of MATLAB Function Types
There are essentially two ways to create a new function in MATLAB: in a
command entered at run-time, or in a file saved to permanent storage.

The command-oriented function, called an anonymous function, is relatively
brief in its content. It consists of a single MATLAB statement that can
interact with multiple input and output arguments. The benefit of using
anonymous functions is that you do not have to edit and maintain a file for
functions that require only a brief definition.

There are several types of functions that are stored in files (called M-files).
The most basic of these are primary functions and subfunctions. Primary
functions are visible to other functions outside of their M-file, while
subfunctions, generally speaking, are not. That is, you can call a primary
function from an anonymous function or from a function defined in a separate
M-file, whereas you can call a subfunction only from functions within the
same M-file. (See the Description section of the function_handle reference
page for information on making a subfunction externally visible.)

Two specific types of primary M-file functions are the private and overloaded
function. Private functions are visible only to a limited group of other
functions. This type of function can be useful if you want to limit access to a
function, or when you choose not to expose the implementation of a function.
Overloaded functions act the same way as overloaded functions in most
computer languages. You can create multiple implementations of a function
so that each responds accordingly to different types of inputs.

The last type of MATLAB function is the nested function. Nested functions
are not an independent function type; they exist within the body of one of the
other types of functions discussed here (with the exception of anonymous
functions), and also within other nested functions.

One type of function that is not discussed in this chapter is the MATLAB
built-in function. Built-ins are defined only as executables internal to
MATLAB. See “Built-In Functions” on page 3-109 for more information.

5-2

Anonymous Functions

Anonymous Functions

In this section...

“Constructing an Anonymous Function” on page 5-3

“Arrays of Anonymous Functions” on page 5-6

“Outputs from Anonymous Functions” on page 5-7

“Variables Used in the Expression” on page 5-8

“Examples of Anonymous Functions” on page 5-11

Constructing an Anonymous Function
Anonymous functions give you a quick means of creating simple functions
without having to create M-files each time. You can construct an anonymous
function either at the MATLAB command line or in any M-file function or
script.

The syntax for creating an anonymous function from an expression is

fhandle = @(arglist) expr

Starting from the right of this syntax statement, the term expr represents the
body of the function: the code that performs the main task your function is to
accomplish. This consists of any single, valid MATLAB expression. Next is
arglist, which is a comma-separated list of input arguments to be passed to
the function. These two components are similar to the body and argument list
components of any function.

Leading off the entire right side of this statement is an @ sign. The @ sign is
the MATLAB operator that constructs a function handle. Creating a function
handle for an anonymous function gives you a means of invoking the function.
It is also useful when you want to pass your anonymous function in a call to
some other function. The @ sign is a required part of an anonymous function
definition.

5-3

5 Types of Functions

Note Function handles not only provide access to anonymous functions. You
can create a function handle to any MATLAB function. The constructor uses a
different syntax: fhandle = @functionname (e.g., fhandle = @sin). To find
out more about function handles, see “Function Handles” on page 4-22.

The syntax statement shown above constructs the anonymous function,
returns a handle to this function, and stores the value of the handle in
variable fhandle. You can use this function handle in the same way as any
other MATLAB function handle.

Simple Example
The statement below creates an anonymous function that finds the square of
a number. When you call this function, MATLAB assigns the value you pass
in to variable x, and then uses x in the equation x.^2:

sqr = @(x) x.^2;

The @ operator constructs a function handle for this function, and assigns the
handle to the output variable sqr. As with any function handle, you execute
the function associated with it by specifying the variable that contains the
handle, followed by a comma-separated argument list in parentheses. The
syntax is

fhandle(arg1, arg2, ..., argN)

To execute the sqr function defined above, type

a = sqr(5)
a =

25

Because sqr is a function handle, you can pass it in an argument list to other
functions. The code shown here passes the sqr anonymous function to the
MATLAB quad function to compute its integral from zero to one:

quad(sqr, 0, 1)
ans =

0.3333

5-4

Anonymous Functions

A Two-Input Example
As another example, you could create the following anonymous function that
uses two input arguments, x and y. (The example assumes that variables A
and B are already defined):

sumAxBy = @(x, y) (A*x + B*y);

whos sumAxBy
Name Size Bytes Class

sumAxBy 1x1 16 function_handle

To call this function, assigning 5 to x and 7 to y, type

sumAxBy(5, 7)

Evaluating With No Input Arguments
For anonymous functions that do not take any input arguments, construct the
function using empty parentheses for the input argument list:

t = @() datestr(now);

Also use empty parentheses when invoking the function:

t()

ans =
04-Sep-2003 10:17:59

You must include the parentheses. If you type the function handle name
with no parentheses, MATLAB just identifies the handle; it does not execute
the related function:

t

t =
@() datestr(now)

5-5

5 Types of Functions

Arrays of Anonymous Functions
To store multiple anonymous functions in an array, use a cell array. The
example shown here stores three simple anonymous functions in cell array A:

A = {@(x)x.^2, @(y)y+10, @(x,y)x.^2+y+10}
A =

[@(x)x.^2] [@(y)y+10] [@(x,y)x.^2+y+10]

Execute the first two functions in the cell array by referring to them with the
usual cell array syntax, A{1} and A{2}:

A{1}(4) + A{2}(7)
ans =

33

Do the same with the third anonymous function that takes two input
arguments:

A{3}(4, 7)
ans =

33

Space Characters in Anonymous Function Elements
Note that while using space characters in the definition of any function can
make your code easier to read, spaces in the body of an anonymous function
that is defined in a cell array can sometimes be ambiguous to MATLAB. To
ensure accurate interpretation of anonymous functions in cell arrays, you
can do any of the following:

• Remove all spaces from at least the body (not necessarily the argument
list) of each anonymous function:

A = {@(x)x.^2, @(y)y+10, @(x, y)x.^2+y+10};

• Enclose in parentheses any anonymous functions that include spaces:

A = {(@(x)x .^ 2), (@(y) y +10), (@(x, y) x.^2 + y+10)};

• Assign each anonymous function to a variable, and use these variable
names in creating the cell array:

5-6

Anonymous Functions

A1 = @(x)x .^ 2; A2 = @(y) y +10; A3 = @(x, y)x.^2 + y+10;
A = {A1, A2, A3};

Outputs from Anonymous Functions
As with other MATLAB functions, the number of outputs returned by an
anonymous function depends mainly on how many variables you specify to
the left of the equals (=) sign when you call the function.

For example, consider an anonymous function getPersInfo that returns a
person’s address, home phone, business phone, and date of birth, in that order.
To get someone’s address, you can call the function specifying just one output:

address = getPersInfo(name);

To get more information, specify more outputs:

[address, homePhone, busPhone] = getPersInfo(name);

Of course, you cannot specify more outputs than the maximum number
generated by the function, which is four in this case.

Example
The anonymous getXLSData function shown here calls the MATLAB xlsread
function with a preset spreadsheet filename (records.xls) and a variable
worksheet name (worksheet):

getXLSData = @(worksheet) xlsread('records.xls', worksheet);

The records.xls worksheet used in this example contains both numeric and
text data. The numeric data is taken from instrument readings, and the text
data describes the category that each numeric reading belongs to.

Because the MATLAB xlsread function is defined to return up to three
values (numeric, text, and raw data), getXLSData can also return this same
number of values, depending on how many output variables you specify to the
left of the equals sign in the call. Call getXLSData a first time, specifying
only a single (numeric) output, dNum:

dNum = getXLSData('Week 12');

5-7

5 Types of Functions

Display the data that is returned using a for loop. You have to use generic
names (v1, v2, v3) for the categories, due to the fact that the text of the real
category names was not returned in the call:

for k = 1:length(dNum)
disp(sprintf('%s v1: %2.2f v2: %d v3: %d', ...

datestr(clock, 'HH:MM'), dNum(k,1), dNum(k,2), ...
dNum(k,3)));

end

Here is the output from the first call:

12:55 v1: 78.42 v2: 32 v3: 37
13:41 v1: 69.73 v2: 27 v3: 30
14:26 v1: 77.65 v2: 17 v3: 16
15:10 v1: 68.19 v2: 22 v3: 35

Now try this again, but this time specifying two outputs, numeric (dNum)
and text (dTxt):

[dNum, dTxt] = getXLSData('Week 12');

for k = 1:length(dNum)
disp(sprintf('%s %s: %2.2f %s: %d %s: %d', ...

datestr(clock, 'HH:MM'), dTxt{1}, dNum(k,1), ...
dTxt{2}, dNum(k,2), dTxt{3}, dNum(k,3)));

end

This time, you can display the category names returned from the spreadsheet:

12:55 Temp: 78.42 HeatIndex: 32 WindChill: 37
13:41 Temp: 69.73 HeatIndex: 27 WindChill: 30
14:26 Temp: 77.65 HeatIndex: 17 WindChill: 16
15:10 Temp: 68.19 HeatIndex: 22 WindChill: 35

Variables Used in the Expression
Anonymous functions commonly include two types of variables:

• Variables specified in the argument list. These often vary with each
function call.

5-8

Anonymous Functions

• Variables specified in the body of the expression. MATLAB captures these
variables and holds them constant throughout the lifetime of the function
handle.

The latter variables must have a value assigned to them at the time you
construct an anonymous function that uses them. Upon construction,
MATLAB captures the current value for each variable specified in the body
of that function. The function will continue to associate this value with the
variable even if the value should change in the workspace or go out of scope.

The fact that MATLAB captures the values of these variables when the
handle to the anonymous function is constructed enables you to execute an
anonymous function from anywhere in the MATLAB environment, even
outside the scope in which its variables were originally defined. But it also
means that to supply new values for any variables specified within the
expression, you must reconstruct the function handle.

Changing Variables Used in an Anonymous Function
The second statement shown below constructs a function handle for an
anonymous function called parabola that uses variables a, b, and c in the
expression. Passing the function handle to the MATLAB fplot function plots
it out using the initial values for these variables:

a = 1.3; b = .2; c = 30;
parabola = @(x) a*x.^2 + b*x + c;
fplot(parabola, [-25 25])

5-9

5 Types of Functions

If you change the three variables in the workspace and replot the figure, the
parabola remains unchanged because the parabola function is still using the
initial values of a, b, and c:

a = -3.9; b = 52; c = 0;
fplot(parabola, [-25 25])

5-10

Anonymous Functions

To get the function to use the new values, you need to reconstruct the function
handle, causing MATLAB to capture the updated variables. Replot using the
new construct, and this time the parabola takes on the new values:

a = -3.9; b = 52; c = 0;
parabola = @(x) a*x.^2 + b*x + c;
fplot(parabola, [-25 25])

For the purposes of this example, there is no need to store the handle to the
anonymous function in a variable (parabola, in this case). You can just
construct and pass the handle right within the call to fplot. In this way, you
update the values of a, b, and c on each call:

fplot(@(x) a*x.^2 + b*x + c, [-25 25])

Examples of Anonymous Functions
This section shows a few examples of how you can use anonymous functions.
These examples are intended to show you how to program with this type
of function. For more mathematically oriented examples, see the MATLAB
Mathematics documentation.

The examples in this section include

5-11

5 Types of Functions

• “Example 1 — Passing a Function to quad” on page 5-12

• “Example 2 — Multiple Anonymous Functions” on page 5-13

Example 1 — Passing a Function to quad
The equation shown here has one variable t that can vary each time you call
the function, and two additional variables, g and omega. Leaving these two
variables flexible allows you to avoid having to hardcode values for them in
the function definition:

x = g * cos(omega * t)

One way to program this equation is to write an M-file function, and then
create a function handle for it so that you can pass the function to other
functions, such as the MATLAB quad function as shown here. However, this
requires creating and maintaining a new M-file for a purpose that is likely to
be temporary, using a more complex calling syntax when calling quad, and
passing the g and omega parameters on every call. Here is the function M-file:

function f = vOut(t, g, omega)
f = g * cos(omega * t);

This code has to specify g and omega on each call:

g = 2.5; omega = 10;

quad(@vOut, 0, 7, [], [], g, omega)
ans =

0.1935

quad(@vOut, -5, 5, [], [], g, omega)
ans =

-0.1312

You can simplify this procedure by setting the values for g and omega just
once at the start, constructing a function handle to an anonymous function
that only lasts the duration of your MATLAB session, and using a simpler
syntax when calling quad:

g = 2.5; omega = 10;

5-12

Anonymous Functions

quad(@(t) (g * cos(omega * t)), 0, 7)
ans =

0.1935

quad(@(t) (g * cos(omega * t)), -5, 5)
ans =

-0.1312

To preserve an anonymous function from one MATLAB session to the next,
save the function handle to a MAT-file

save anon.mat f

and then load it into the MATLAB workspace in a later session:

load anon.mat f

Example 2 — Multiple Anonymous Functions
This example solves the following equation by combining two anonymous
functions:

The equivalent anonymous function for this expression is

g = @(c) (quad(@(x) (x.^2 + c*x + 1), 0, 1));

This was derived as follows. Take the parenthesized part of the equation (the
integrand) and write it as an anonymous function. You don’t need to assign
the output to a variable as it will only be passed as input to the quad function:

@(x) (x.^2 + c*x + 1)

Next, evaluate this function from zero to one by passing the function handle,
shown here as the entire anonymous function, to quad:

quad(@(x) (x.^2 + c*x + 1), 0, 1)

5-13

5 Types of Functions

Supply the value for c by constructing an anonymous function for the entire
equation and you are done:

g = @(c) (quad(@(x) (x.^2 + c*x + 1), 0, 1));

g(2)
ans =

2.3333

5-14

Primary M-File Functions

Primary M-File Functions
The first function in any M-file is called the primary function. Following the
primary function can be any number of subfunctions, which can serve as
subroutines to the primary function.

Under most circumstances, the primary function is the only function in an
M-file that you can call from the MATLAB command line or from another
M-file function. You invoke this function using the name of the M-file in
which it is defined.

For example, the average function shown here resides in the file average.m:

function y = average(x)
% AVERAGE Mean of vector elements.

y = sum(x)/length(x); % Actual computation

You can invoke this function from the MATLAB command line with this
command to find the average of three numbers:

average([12 60 42])

Note that it is customary to give the primary function the same name as the
M-file in which it resides. If the function name differs from the filename, then
you must use the filename to invoke the function.

5-15

5 Types of Functions

Nested Functions

In this section...

“Writing Nested Functions” on page 5-16

“Calling Nested Functions” on page 5-17

“Variable Scope in Nested Functions” on page 5-19

“Using Function Handles with Nested Functions” on page 5-21

“Restrictions on Assigning to Variables” on page 5-26

“Examples of Nested Functions” on page 5-27

Writing Nested Functions
You can define one or more functions within another function in MATLAB.
These inner functions are said to be nested within the function that contains
them. You can also nest functions within other nested functions.

To write a nested function, simply define one function within the body of
another function in an M-file. Like any M-file function, a nested function
contains any or all of the components described in “Basic Parts of an M-File”
on page 4-8. In addition, you must always terminate a nested function with
an end statement:

function x = A(p1, p2)
...

function y = B(p3)
...
end

...
end

Note M-file functions don’t normally require a terminating end statement.
This rule does not hold, however, when you nest functions. If an M-file
contains one or more nested functions, you must terminate all functions
(including subfunctions) in the M-file with end, whether or not they contain
nested functions.

5-16

Nested Functions

Example — More Than One Nested Function
This example shows function A and two additional functions nested inside A
at the same level:

function x = A(p1, p2)
...

function y = B(p3)
...
end

function z = C(p4)
...
end

...
end

Example — Multiply Nested Functions
This example shows multiply nested functions, C nested inside B, and B in A:

function x = A(p1, p2)
...

function y = B(p3)
...

function z = C(p4)
...
end

...
end

...
end

Calling Nested Functions
You can call a nested function

• From the level immediately above it. (In the following code, function A can
call B or D, but not C or E.)

• From a function nested at the same level within the same parent function.
(Function B can call D, and D can call B.)

5-17

5 Types of Functions

• From a function at any lower level. (Function C can call B or D, but not E.)

function A(x, y) % Primary function
B(x, y);
D(y);

function B(x, y) % Nested in A
C(x);
D(y);

function C(x) % Nested in B
D(x);
end

end

function D(x) % Nested in A
E(x);

function E(x) % Nested in D
...
end

end
end

You can also call a subfunction from any nested function in the same M-file.

You can pass variable numbers of arguments to and from nested
functions, but you should be aware of how MATLAB interprets varargin,
varargout, nargin, and nargout under those circumstances. See "Passing
Optional Arguments to Nested Functions" in the MATLAB Programming
documentation for more information on this.

Note If you construct a function handle for a nested function, you can call the
nested function from any MATLAB function that has access to the handle.
See “Using Function Handles with Nested Functions” on page 5-21.

5-18

Nested Functions

Variable Scope in Nested Functions
The scope of a variable is the range of functions that have direct access to the
variable to set, modify, or acquire its value. When you define a local (i.e.,
nonglobal) variable within a function, its scope is normally restricted to that
function alone. For example, subfunctions do not share variables with the
primary function or with other subfunctions. This is because each function
and subfunction stores its variables in its own separate workspace.

Like other functions, a nested function has its own workspace. But it also has
access to the workspaces of all functions in which it is nested. So, for example,
a variable that has a value assigned to it by the primary function can be read
or overwritten by a function nested at any level within the primary. Similarly,
a variable that is assigned in a nested function can be read or overwritten by
any of the functions containing that function.

In the following two examples, variable x is stored in the workspace of the
outer varScope function and can be read or written to by all functions nested
within it.

function varScope1
x = 5;
nestfun1

function nestfun1
nestfun2

function nestfun2
x = x + 1

end
end

end

function varScope2
nestfun1

function nestfun1
nestfun2

function nestfun2
x = 5;

end
end

x = x + 1
end

As a rule, a variable used or defined within a nested function resides in the
workspace of the outermost function that both contains the nested function
and accesses that variable. The scope of this variable is then the function to
which this workspace belongs, and all functions nested to any level within
that function.

In the next example, the outer function, varScope3, does not access variable x.
Following the rule just stated, x is unknown to the outer function and thus is

5-19

5 Types of Functions

not shared between the two nested functions. In fact, there are two separate x
variables in this example: one in the function workspace of nestfun1 and one
in the function workspace of nestfun2. When nestfun2 attempts to update x,
it fails because x does not yet exist in this workspace:

function varScope3
nestfun1
nestfun2

function nestfun1
x = 5;

end

function nestfun2
x = x + 1

end
end

The Scope of Output Variables
Variables containing values returned by a nested function are not in the scope
of outer functions. In the two examples shown here, the one on the left fails
in the second to last line because, although the value of y is returned by the
nested function, the variable y is local to the nested function, and unknown to
the outer function. The example on the right assigns the return value to a
variable, z, and then displays the value of z correctly.

Incorrect Correct

function varScope4
x = 5; nestfun;

function y = nestfun
y = x + 1;

end

y
end

function varScope5
x = 5;
z = nestfun;

function y = nestfun
y = x + 1;

end

z
end

5-20

Nested Functions

Using Function Handles with Nested Functions
Every function has a certain scope, that is, a certain range of other functions
to which it is visible. A function’s scope determines which other functions can
call it. You can call a function that is out of scope by providing an alternative
means of access to it in the form of a function handle. (The function handle,
however, must be within the scope of its related function when you construct
the handle.) Any function that has access to a function handle can call the
function with which the handle is associated.

Note Although you can call an out of scope function by means of a function
handle, the handle itself must be within the scope of its related function at
the time it is constructed.

The section on “Calling Nested Functions” on page 5-17 defines the scope of
a nested function. As with other types of functions, you can make a nested
function visible beyond its normal scope with a function handle. The following
function getCubeHandle constructs a handle for nested function findCube
and returns its handle, h, to the caller. The @ sign placed before a function
name (e.g., @findCube) is the MATLAB operator that constructs a handle
for that function:

function h = getCubeHandle
h = @findCube; % Function handle constructor

function cube = findCube(X) % Nested function
cube = X .^ 3;

end
end

Call getCubeHandle to obtain the function handle to the nested function
findCube. Assign the function handle value returned by getCubeHandle to an
output variable, cubeIt in this case:

cubeIt = getCubeHandle;

5-21

5 Types of Functions

You can now use this variable as a means of calling findCube from outside
of its M-file:

cubeIt(8)
ans =

512

Note When calling a function by means of its handle, use the same syntax
as if you were calling a function directly. But instead of calling the function
by its name (e.g., strcmp(S1, S2)), use the variable that holds the function
handle (e.g., fhandle(S1, S2)).

Function Handles and Nested Function Variables
One characteristic of nested functions that makes them different from
other MATLAB functions is that they can share nonglobal variables with
certain other functions within the same M-file. A nested function nFun can
share variables with any outer function that contains nFun, and with any
function nested within nFun. This characteristic has an impact on how certain
variables are stored when you construct a handle for a nested function.

Defining Variables When Calling Via Function Handle. The example
below shows a primary function getHandle that returns a function handle for
the nested function nestFun. The nestFun function uses three different types
of variables. The VLoc variable is local to the nested function, VInp is passed in
when the nested function is called, and VExt is defined by the outer function:

function h = getHandle(X)
h = @nestFun;
VExt = someFun(X);

function nestFun(VInp)
VLoc = 173.5;
doSomeTask(VInp, VLoc, VExt);
end

end

As with any function, when you call nestFun, you must ensure that you
supply the values for any variables it uses. This is a straightforward matter

5-22

Nested Functions

when calling the nested function directly (that is, calling it from getHandle).
VLoc has a value assigned to it within nestFun, VInp has its value passed in,
and VExt acquires its value from the workspace it shares with getHandle.

However, when you call nestFun using a function handle, only the nested
function executes; the outer function, getHandle, does not. It might seem at
first that the variable VExt, otherwise given a value by getHandle, has no
value assigned to it in the case. What in fact happens though is that MATLAB
stores variables such as VExt inside the function handle itself when it is being
constructed. These variables are available for as long as the handle exists.

The VExt variable in this example is considered to be externally scoped with
respect to the nested function. Externally scoped variables that are used in
nested functions for which a function handle exists are stored within the
function handle. So, function handles not only contain information about
accessing a function. For nested functions, a function handle also stores the
values of any externally scoped variables required to execute the function.

Example Using Externally Scoped Variables
The sCountFun and nCountFun functions shown below return function handles
for subfunction subCount and nested function nestCount, respectively.

These two inner functions store a persistent value in memory (the value is
retained in memory between function calls), and then increment this value
on every subsequent call. subCount makes its count value persistent with
an explicit persistent declaration. In nestCount, the count variable is
externally scoped and thus is maintained in the function handle:

5-23

5 Types of Functions

Using a Subfunction Using a Nested Function

function h = sCountFun(X)
h = @subCount;
count = X
subCount(0, count);
function subCount(incr, ini)
persistent count;
initializing = nargin > 1;
if initializing

count = ini; else
count = count + incr

end

function h = nCountFun(X)
h = @nestCount;
count = X

function nestCount(incr)
count = count + incr

end
end

When sCountFun executes, it passes the initial value for count to the
subCount subfunction. Keep in mind that the count variable in sCountFun is
not the same as the count variable in subCount; they are entirely independent
of each other. Whenever subCount is called via its function handle, the value
for count comes from its persistent place in memory.

In nestCount, the count variable again gets its value from the primary
function when called from within the M-file. However, in this case the count
variable in the primary and nested functions are one and the same. When
nestCount is called by means of its function handle, the value for count is
assigned from its storage within the function handle.

Running the Example. The subCount and nestCount functions increment a
value in memory by another value that you pass as an input argument. Both
of these functions give the same results.

Get the function handle to nestCount, and initialize the count value to a
four-element vector:

h = nCountFun([100 200 300 400])
count =

100 200 300 400

Increment the persistent vector by 25, and then by 42:

h(25)

5-24

Nested Functions

count =
125 225 325 425

h(42)
count =

167 267 367 467

Now do the same using sCountFun and subCount, and verify that the results
are the same.

Note If you construct a new function handle to subCount or nestCount, the
former value for count is no longer retained in memory. It is replaced by
the new value.

Separate Instances of Externally Scoped Variables
The code shown below constructs two separate function handles to the same
nested function, nestCount, that was used in the last example. It assigns
the handles to fields counter1 and counter2 of structure s. These handles
reference different instances of the nestCount function. Each handle also
maintains its own separate value for the externally scoped count variable.

Call nCountFun twice to get two separate function handles to nestCount.
Initialize the two instances of count to two different vectors:

s.counter1 = nCountFun([100 200 300 400]);
count =

100 200 300 400

s.counter2 = nCountFun([-100 -200 -300 -400]);
count =

-100 -200 -300 -400

Now call nestCount by means of each function handle to demonstrate that
MATLAB increments the two count variables individually.

Increment the first counter:

s.counter1(25)

5-25

5 Types of Functions

count =
125 225 325 425

s.counter1(25)
count =

150 250 350 450

Now increment the second counter:

s.counter2(25)
count =

-75 -175 -275 -375
s.counter2(25)
count =

-50 -150 -250 -350

Go back to the first counter and you can see that it keeps its own value for
count:

s.counter1(25)
count =

175 275 375 475

Restrictions on Assigning to Variables
The scoping rules for nested, and in some cases anonymous, functions require
that all variables used within the function be present in the text of the M-file
code. Adding variables to the workspace of this type of function at run time is
not allowed.

MATLAB issues an error if you attempt to dynamically add a variable to the
workspace of an anonymous function, a nested function, or a function that
contains a nested function. Examples of operations that might use dynamic
assignment in this way are shown in the table below.

5-26

Nested Functions

Type of Operation
How to Avoid Using Dynamic
Assignment

Evaluating an expression using
eval or evalin, or assigning a
variable with assignin

As a general suggestion, it is best to avoid
using the eval, evalin, and assignin
functions altogether.

Loading variables from a
MAT-file with the load function

Use the form of load that returns a
MATLAB structure.

Assigning to a variable in a
MATLAB script

Convert the script to a function, where
argument- and result-passing can often
clarify the code as well.

Assigning to a variable in the
MATLAB debugger

You can declare the variable to be
global. For example, to create a variable
X for temporary use in debugging, use

K>> global X; X = value

One way to avoid this error in the other cases is to pre-declare the variable in
the desired function.

Examples of Nested Functions
This section shows a few examples of how you can use nested functions. These
examples are intended to show you how to program with this type of function.
For more mathematically oriented examples, see the MATLAB Mathematics
documentation.

The examples in this section include

• “Example 1 — Creating a Function Handle for a Nested Function” on page
5-27

• “Example 2 — Function-Generating Functions” on page 5-29

Example 1 — Creating a Function Handle for a Nested Function
The following example constructs a function handle for a nested function and
then passes the handle to the MATLAB fplot function to plot the parabola

5-27

5 Types of Functions

shape. The makeParabola function shown here constructs and returns a
function handle fhandle for the nested parabola function. This handle gets
passed to fplot:

function fhandle = makeParabola(a, b, c)
% MAKEPARABOLA returns a function handle with parabola
% coefficients.

fhandle = @parabola; % @ is the function handle constructor

function y = parabola(x)
y = a*x.^2 + b*x + c;
end

end

Assign the function handle returned from the call to a variable (h) and
evaluate the function at points 0 and 25:

h = makeParabola(1.3, .2, 30)
h =

@makeParabola/parabola

h(0)
ans =

30

h(25)
ans =

847.5000

5-28

Nested Functions

Now pass the function handle h to the fplot function, evaluating the
parabolic equation from x = -25 to x = +25:

fplot(h, [-25 25])

Example 2 — Function-Generating Functions
The fact that a function handle separately maintains a unique instance
of the function from which it is constructed means that you can generate
multiple handles for a function, each operating independently from the others.
The function in this example makes IIR filtering functions by constructing
function handles from nested functions. Each of these handles maintains its
own internal state independent of the others.

The function makeFilter takes IIR filter coefficient vectors a and b and
returns a filtering function in the form of a function handle. Each time a new
input value xn is available, you can call the filtering function to get the new
output value yn. Each filtering function created by makeFilter keeps its own
private a and b vectors, in addition to its own private state vector, in the form
of a transposed direct form II delay line:

function [filtfcn, statefcn] = makeFilter(b, a)
% FILTFCN = MAKEFILTER(B, A) creates an IIR filtering
% function and returns it in the form of a function handle,

5-29

5 Types of Functions

% FILTFCN. Each time you call FILTFCN with a new filter
% input value, it computes the corresponding new filter
% output value, updating its internal state vector at the
% same time.
%
% [FILTFCN, STATEFCN] = MAKEFILTER(B, A) also returns a
% function (in the form of a function handle, STATEFCN)
% that can return the filter's internal state. The internal
% state vector is in the form of a transposed direct form
% II delay line.

% Initialize state vector. To keep this example a bit
% simpler, assume that a and b have the same length.
% Also assume that a(1) is 1.

v = zeros(size(a));

filtfcn = @iirFilter;
statefcn = @getState;

function yn = iirFilter(xn)
% Update the state vector
v(1) = v(2) + b(1) * xn;
v(2:end-1) = v(3:end) + b(2:end-1) * xn - ...

a(2:end-1) * v(1);
v(end) = b(end) * xn - a(end) * v(1);

% Output is the first element of the state vector.
yn = v(1);

end

function vOut = getState
vOut = v;

end
end

This sample session shows how makeFilter works. Make a filter that has
a decaying exponential impulse response and then call it a few times in
succession to see the output values change:

5-30

Nested Functions

[filt1, state1] = makeFilter([1 0], [1 -.5]);

% First input to the filter is 1.
filt1(1)
ans =

1

% Second input to the filter is 0.
filt1(0)
ans =

0.5000

filt1(0)
ans =

0.2500

% Show the filter's internal state.
state1()
ans =

0.2500 0.1250

% Hit the filter with another impulse.
filt1(1)
ans =

1.1250

% How did the state change?
state1()
ans =

1.1250 0.5625

% Make an averaging filter.
filt2 = makeFilter([1 1 1]/3, [1 0 0]);

% Put a step input into filt2.
filt2(1)
ans =

0.3333

filt2(1)

5-31

5 Types of Functions

ans =
0.6667

filt2(1)
ans =

1

% The two filter functions can be used independently.
filt1(0)
ans =

0.5625

As an extension of this example, suppose you were looking for a way to develop
simulations of different filtering structures and compare them. This might
be useful if you were interested in obtaining the range of values taken on by
elements of the state vector, and how those values compare with a different
filter structure. Here is one way you could capture the filter state at each
step and save it for later analysis:

Call makeFilter with inputs v1 and v2 to construct function handles to the
iirFilter and getState subfunctions:

[filtfcn, statefcn] = makeFilter(v1, v2);

Call the iirFilter and getState functions by means of their handles,
passing in random values:

x = rand(1, 20);
for k = 1:20

y(k) = filtfcn(x(k));
states{k} = statefcn(); % Save the state at each step.

end

5-32

Subfunctions

Subfunctions

In this section...

“Overview” on page 5-33

“Calling Subfunctions” on page 5-34

“Accessing Help for a Subfunction” on page 5-34

Overview
M-files can contain code for more than one function. Additional functions
within the file are called subfunctions, and these are only visible to the
primary function or to other subfunctions in the same file.

Each subfunction begins with its own function definition line. The functions
immediately follow each other. The various subfunctions can occur in any
order, as long as the primary function appears first:

function [avg, med] = newstats(u) % Primary function
% NEWSTATS Find mean and median with internal functions.
n = length(u);
avg = mean(u, n);
med = median(u, n);

function a = mean(v, n) % Subfunction
% Calculate average.
a = sum(v)/n;

function m = median(v, n) % Subfunction
% Calculate median.
w = sort(v);
if rem(n, 2) == 1

m = w((n+1) / 2);
else

m = (w(n/2) + w(n/2+1)) / 2;
end

5-33

5 Types of Functions

The subfunctions mean and median calculate the average and median of the
input list. The primary function newstats determines the length of the list
and calls the subfunctions, passing to them the list length n.

Subfunctions cannot access variables used by other subfunctions, even within
the same M-file, or variables used by the primary function of that M-file,
unless you declare them as global within the pertinent functions, or pass
them as arguments.

Calling Subfunctions
When you call a function from within an M-file, MATLAB first checks the file
to see if the function is a subfunction. It then checks for a private function
(described in the following section) with that name, and then for a standard
M-file or built-in function on your search path. Because it checks for a
subfunction first, you can override existing M-files using subfunctions with
the same name.

Accessing Help for a Subfunction
You can write help for subfunctions using the same rules that apply to primary
functions. To display the help for a subfunction, precede the subfunction
name with the name of the M-file that contains the subfunction (minus file
extension) and a > character.

For example, to get help on subfunction mysubfun in file myfun.m, type

help myfun>mysubfun

5-34

Private Functions

Private Functions

In this section...

“Overview” on page 5-35

“Private Directories” on page 5-35

“Accessing Help for a Private Function” on page 5-36

Overview
Private functions are functions that reside in subdirectories with the special
name private. These functions are called private because they are visible
only to M-file functions and M-file scripts that meet these conditions:

• A function that calls a private function must be defined in an M-file that
resides in the directory immediately above that private subdirectory.

• A script that calls a private function must itself be called from an M-file
function that has access to the private function according to the above rule.

For example, assume the directory newmath is on the MATLAB search path. A
subdirectory of newmath called private can contain functions that only the
functions in newmath can call.

Because private functions are invisible outside the parent directory, they can
use the same names as functions in other directories. This is useful if you
want to create your own version of a particular function while retaining the
original in another directory. Because MATLAB looks for private functions
before standard M-file functions, it will find a private function named test.m
before a nonprivate M-file named test.m.

Primary functions and subfunctions can also be implemented as private
functions.

Private Directories
You can create your own private directories simply by creating subdirectories
called private using the standard procedures for creating directories or
folders on your computer. Do not place these private directories on your path.

5-35

5 Types of Functions

Accessing Help for a Private Function
You can write help for private functions using the same rules that apply to
primary functions. To display the help for a private function, precede the
private function name with private/.

For example, to get help on private function myprivfun, type

help private/myprivfun

5-36

Overloaded Functions

Overloaded Functions
Overloaded functions are useful when you need to create a function that
responds to different types of inputs accordingly. For instance, you might want
one of your functions to accept both double-precision and integer input, but to
handle each type somewhat differently. You can make this difference invisible
to the user by creating two separate functions having the same name, and
designating one to handle double types and one to handle integers.

MATLAB overloaded functions reside in subdirectories having a name
starting with the symbol @ and followed by the name of a recognized MATLAB
data type. For example, functions in the \@double directory execute when
invoked with arguments of MATLAB type double. Those in an \@int32
directory execute when invoked with arguments of MATLAB type int32.

See “Classes and Objects: An Overview” on page 9-2 for more information on
overloading functions in MATLAB.

5-37

5 Types of Functions

5-38

6

Data Import and Export

Overview (p. 6-3) See what MATLAB offers in the way
of import and export facilities for
various data formats.

Supported File Formats (p. 6-9) View the list of file formats and file
extensions supported for MATLAB
import and export along with the
functions used with each type.

Using the Import Wizard (p. 6-11) Import many types of binary data
using this GUI-based interface.

Accessing Files with
Memory-Mapping (p. 6-23)

Get faster, more efficient file I/O for
very large files by accessing files on
disk via pointers in memory.

Exporting Data to MAT-Files
(p. 6-64)

Save data from your MATLAB
session in a MAT-file, a binary
data file designed specifically for
MATLAB data.

Importing Data From MAT-Files
(p. 6-72)

Load data that was saved to a
MAT-file back into your MATLAB
session.

Importing Text Data (p. 6-75) Import ASCII text data into
MATLAB using the Import Wizard
and import functions.

Exporting Text Data (p. 6-84) Export ASCII text data to MAT-files.

Working with Graphics Files (p. 6-90) Import and export images stored
in many different types of graphics
files.

6 Data Import and Export

Working with Audio and Video Data
(p. 6-93)

Import and export audio and video
data.

Working with Spreadsheets (p. 6-98) Interact with Microsoft Excel and
Lotus 123 spreadsheets.

Using Low-Level File I/O Functions
(p. 6-104)

Use the MATLAB low-level file I/O
functions, such as fopen, fread, and
fwrite.

Exchanging Files over the Internet
(p. 6-117)

Exchange files over the Internet
with MATLAB URL, zip, and e-mail
functions.

6-2

Overview

Overview

In this section...

“File Types Supported by MATLAB” on page 6-3

“Other MATLAB I/O Capabilities” on page 6-5

“Functions Used in File Management” on page 6-7

For more information and examples on importing and exporting data, see
Technical Note 1602:

http://www.mathworks.com/support/tech-notes/1600/1602.html

File Types Supported by MATLAB
MATLAB provides many ways to load data from disk files or the clipboard
into the workspace, a process called importing data. Also there are many
ways to save workspace variables to a disk file, a process called exporting
data. Your choice of which import or export mechanism to use depends mainly
on the format of the data being transferred: text, binary, or a standard format
such as JPEG.

Note For unsupported high-level function data formats, you can use the
MATLAB low-level file I/O functions if you know how the binary data is
formatted in the file. See “Using Low-Level File I/O Functions” on page 6-104
for more information.

MATLAB has built-in capabilities to import and export the following types
of data files:

• “Binary Data from a MATLAB Session” on page 6-4

• “Text Data” on page 6-4

• “Graphics Files” on page 6-4

• “Audio and Audio/Video Data” on page 6-4

• “Spreadsheets” on page 6-5

6-3

http://www.mathworks.com/support/tech-notes/1600/1602.html

6 Data Import and Export

• “Data from the System Clipboard” on page 6-5

• “Information from the Internet” on page 6-5

Binary Data from a MATLAB Session
Using the MATLAB save and load functions, you can store all or part of the
data in your MATLAB workspaces to disk, and then read that data back
into MATLAB at a later time.

Text Data
In text format, the data values are American Standard Code for Information
Interchange (ASCII) codes that represent alphabetic and numeric characters.
ASCII text data can be viewed in a text editor. For more information about
working with text data in MATLAB, see

• “Importing Text Data” on page 6-75

• “Exporting Text Data” on page 6-84

These sections also describe how to import and export to XML documents.

Graphics Files
MATLAB imports and exports images from many standard graphics
file formats, including the Tagged Image File Format (TIFF), Graphics
Interchange Format (GIF), Joint Photographic Experts Group (JPEG), and
Portable Network Graphics (PNG) formats.

Audio and Audio/Video Data
MATLAB provides functions to enable you to interact with the following types
of audio and audio/video files:

• NeXT/SUN SPARCstation sound

• Microsoft WAVE sound

• Audio/Video Interleaved (AVI)

• Windows-compatible sound devices

• Audio player and recorder objects

6-4

Overview

• Linear audio signals

Spreadsheets
You can use MATLAB to import and export data to the following types of
spreadsheets:

• Microsoft Excel spreadsheets

• Lotus 123 spreadsheets

Data from the System Clipboard
Using the Import Wizard or the clipboard function, you can temporarily hold
string data on your system’s clipboard, and then paste it back into MATLAB.

Information from the Internet
From your MATLAB session, you can

• Send e-mail

• Download from the Internet

• Compress (zip) and decompress (unzip) files

• Connect to an FTP server to perform remote file operations

Other MATLAB I/O Capabilities

• “Using the Import Wizard” on page 6-5

• “Mapping Files to Memory” on page 6-6

• “Reading Files with Large Data Sets” on page 6-6

• “Low-Level File I/O” on page 6-6

• “Importing Data with Toolboxes” on page 6-7

Using the Import Wizard
The Import Wizard is a graphical user interface that simplified the process
of locating and loading various types of data files into MATLAB. You do not
need to know the format of the data to use this tool. You simply specify the

6-5

6 Data Import and Export

file that contains the data and the Import Wizard processes the file contents
automatically. See the section on “Using the Import Wizard” on page 6-11.

Mapping Files to Memory
Memory—mapping enables you to read and write data in a file as if were
stored in the computer’s dynamic memory. The contents of the mapped file
appear as if they were an array in the currently active workspace. You simply
index into this array to read or write the desired data from the file. See the
section on “Accessing Files with Memory-Mapping” on page 6-23.

Reading Files with Large Data Sets
An efficient way to read files with large data sets is to read the file in
segments and process the data as you go. This method requires significantly
less memory than if you were to try reading in the entire file at once. Using
the textscan function, you can read a specified amount of data from a
file, and maintain a pointer to the location in the file where your last read
operation ended and your next read is to begin.

This example opens a large data file and reads the file a segment at a time in
a for loop. The code calls textscan to read a particular pattern of data (as
specified by format) 10,000 times for each segment. Following each read, the
subfunction process_data processes the data collected in cell array segarray:

format = '%s %n %s %8.2f %8.2f %8.2f %8.2f %u8';
file_id = fopen('largefile.dat', 'r');

for k = 1:segcount
segarray = textscan(file_id, format, 10000);
process_data(segarray);

end

fclose(file_id);

Low-Level File I/O
MATLAB also supports C-style, low-level I/O functions that you can use
with any data format. For more information, see “Using Low-Level File I/O
Functions” on page 6-104.

6-6

Overview

Importing Data with Toolboxes
In addition to MATLAB import functions, you can perform specialized import
features using toolboxes. For example, use Database Toolbox for importing
data from relational databases. Refer to the documentation on the specific
toolbox to see what import features are offered.

Functions Used in File Management
The following functions are available in MATLAB to help you to create,
manage, and locate the files and directories you work with. For more
information on these and other file management functions, see “File
Management Operations” in the Desktop Tools and Development Environment
documentation:

Function Description

cd Switch your current working directory to another directory

clipboard Copy and paste strings to and from the system clipboard

copyfile Copy a file or directory to another location

delete Delete the specified files

dir List the files that reside in the specified directory

edit Create a new M-file or edit an existing one

exist Check the existence of a file or directory

fileattrib Set or get attributes of a file or directory

filebrowser Start the Current Directory Browser

fileparts Show the components of a file name and its place on the
path

fullfile Build a full file name from its components

ls List the contents of a specific directory

mkdir Create a new directory

movefile Move a file or directory to a new location

open Open files based on extension

pwd Identify the directory you are currently working in

6-7

6 Data Import and Export

Function Description

recycle Set an option to move deleted files to recycle folder

rmdir Delete a specific directory

what List the MATLAB files in a specific directory

which Locate functions and files

6-8

Supported File Formats

Supported File Formats
The table below shows the file formats that you can read or write from
MATLAB along with the functions that support each format.

File Format File Content Extension Functions

MATLAB
formatted

Saved MATLAB
workspace

.mat load, save

Text any textscan

Text any textread

Delimited text any dlmread,
dlmwrite

Text

Comma-separated
numbers

.csv csvread,
csvwrite

Extended
Markup
Language

XML-formatted text .xml xmlread,
xmlwrite

NeXT/SUN sound .au auread,
auwrite

Audio

Microsoft WAVE sound .wav wavread,
wavwrite

Movie Audio/video .avi aviread

Data in Common Data
Format

.cdf cdfread,
cdfwrite

Flexible Image Transport
System data

.fits fitsread

Scientific data

Data in Hierarchical Data
Format

.hdf hdfread

Excel worksheet .xls xlsread,
xlswrite

Spreadsheet

Lotus 123 worksheet .wk1 wk1read,
wk1write

6-9

6 Data Import and Export

File Format File Content Extension Functions

TIFF image .tiff imread,
imwrite

PNG image .png same

HDF image .hdf same

BMP image .bmp same

JPEG image .jpeg same

GIF image .gif same

PCX image .pcx same

XWD image .xwd same

Cursor image .cur same

Graphics

Icon image .ico same

6-10

Using the Import Wizard

Using the Import Wizard

In this section...

“Overview” on page 6-11

“Starting the Import Wizard” on page 6-11

“Previewing Contents of the File or Clipboard [Text only]” on page 6-13

“Specifying Delimiters and Header Format [Text only]” on page 6-14

“Determining Assignment to Variables” on page 6-15

“Automated M-Code Generation” on page 6-18

“Writing Data to the Workspace” on page 6-21

Overview
The easiest way to import data into MATLAB is to use the Import Wizard.
You do not need to know the format of the data to use this tool. You simply
specify the file that contains the data and the Import Wizard processes the
file contents automatically. You can also use the Import Wizard to import
HDF data. See “Using the HDF Import Tool” on page 7-36“Using the HDF
Import Tool” on page 7-36 for more information.

The sections on Previewing Contents of the File or Clipboard and Specifying
Delimiters and Header Format apply only to text files and the clipboard.

Starting the Import Wizard
To start the Import Wizard and select the source to import, see

• “Importing from a File” on page 6-12

• “Importing from the Clipboard” on page 6-12

If you use the uiimport function to start the Wizard, you can choose to have
the imported data written to a MATLAB structure. See “Importing to a
Structure” on page 6-12.

6-11

6 Data Import and Export

Importing from a File
To start the Wizard and use a file browser to locate the file to import, use one
of the menu options or MATLAB commands shown here:

• Select Import Data from the File menu

• Type uiimport -file

• Type uiimport, and then click Browse

If you already know the name of the file to import, use one of the following
means to initiate the operation:

• In the Current Directory browser, right-click the filename and select
Import Data

• Type uiimport filename, where filename is an unquoted string
containing the name of the file to import.

Importing from the Clipboard
To import from the system clipboard, use one of the menu options or MATLAB
commands shown here:

• Select Paste to Workspace from the Edit menu

• Type uiimport -pastespecial

• Type uiimport, and then click Clipboard

Importing to a Structure
Specifying an output argument with the uiimport command tells MATLAB
to return the imported data in the fields of a single structure rather than
as separate variables.

The command

S = uiimport('filename')

imports the file filename to the fields of structure S. The filename argument
is a single-quoted string containing the name of the file to import.

6-12

Using the Import Wizard

If you are importing from a binary file, skip ahead to step 4: Determine
Assignment to Variables.

Previewing Contents of the File or Clipboard [Text
only]
When the Import Wizard imports text data from a file or the clipboard, it
opens the dialog box shown here and displays a portion of the raw data in
the preview pane on the left. You can use this display to verify that the file
contains the data you expect.

 �����!������������
�����������

2���-���������
�������

3-���������������
���������0���������

����4��������0����������������56������������
���$�����-�������-$��������������#$�

The pane on the right side of the dialog box shows how MATLAB has assigned
the imported data to a default set of variables. The variable names appear
in the tabs above the display pane. Click any of these tabs to see the values
assigned to that variable. The variable names are derived from categories into
which the Import Wizard has sorted the data. These are

6-13

6 Data Import and Export

• rowheaders—Column vector containing the names of all row headers.

• colheaders—Row vector containing the names of all column headers.

• textdata—Matrix containing all imported text data. Empty elements
are set to ''.

• data—Matrix containing all imported numeric data. Empty elements are
set to NaN.

If the imported file or clipboard contains only numeric or only text data, then
the Import Wizard does not use the variable names shown above. Instead, it
assigns all of the data to just one variable:

• For data imported from a text file, the name of the variable is the same as
the filename, minus the file extension.

• For data imported from the clipboard, the name of the variable is
A_pastespecial.

Specifying Delimiters and Header Format [Text only]
Using the options shown at the top of the Import Wizard dialog box, you can
specify a delimiter character for separating data items, and also the number
of lines you want to use for column headers.

Delimiters
Most text files use a unique character called a delimiter or column separator
to mark the separation between items of data. For example, data in a
comma-separated value (CSV) file is, of course, separated by commas. Data in
some other file might be separated by tab or space characters.

When the Import Wizard imports from a text file or the clipboard, it makes its
best guess as to which character was intended as the delimiter and displays
the data accordingly. If this is not correct, you will need to set the correct
delimiter from the choices shown under Select Column Separator(s)
in the upper left of the dialog box. When you do this, the Import Wizard
immediately reformats the data, displaying new values for the data shown
in the preview pane.

6-14

Using the Import Wizard

Header Format
When reading in data from a text file or the clipboard, the Wizard looks for
any lines at the top that have no numeric characters, and assigns these lines
to the variable textdata. MATLAB counts these lines and displays the count
in the value field of Number of text header lines in the upper right of the
Import Wizard window. You can adjust this count if it does not accurately
represent the header format within the file.

Note The Number of text header lines selector applies only to column
headers. It has no effect on row headers.

MATLAB creates a row vector from the bottommost of these lines and assigns
it to the variable colheaders.

Generate M-Code Checkbox
The Generate M-code checkbox at the bottom of the Import Wizard dialog
box applies to both text and binary data, and thus is described in “Automated
M-Code Generation” on page 6-18.

To continue, click Next at the bottom of the dialog box.

Determining Assignment to Variables
At this point, the Import Wizard displays the dialog box shown below. This
dialog displays data for both text and binary files.

6-15

6 Data Import and Export

7������������������������-$�����

���������������������������������������
���������-$�����������������-

The left pane of the dialog box displays a list of the variables MATLAB
created for your data. For text files, MATLAB derives the variable names as
described in step 2: Preview Contents of the File. For binary files, the variable
names are taken directly from the file.

Click any variable name and MATLAB displays the contents of that variable
in the pane to the right. MATLAB highlights the name of the variable that is
currently displayed in the right pane.

Structuring the Output Data
The top portion of this dialog box offers three options for organizing the file’s
data:

• Create variables matching preview

• Create vectors from each column using column names

• Create vectors from each row using row names

6-16

Using the Import Wizard

Note For data imported from a binary file, only the top option is active.
Variable names and assignment are taken directly from the imported file. For
text data, you can use any of the three options, however, the bottom two are
active only if the file or clipboard contains row or column headers.

While importing from the example text file grades.txt, select the third
option to create vectors from row names. Observe that the display replaces
the default variable assignments with new variables derived from the row
headers. Click any of these variable names, and the Wizard displays the
contents of the corresponding row vector.

"������������$����
�����������������
���-���!�������

7������������
�����������#
��!�������

Selecting Which Variables to Write to the Workspace
The checkboxes to the left of each variable name enable you to include or
exclude individual variables from those that will be written to the workspace.
By default, all variables are selected. Select the checkbox of any variable you
do not want written to the workspace. The check mark is removed from any
variables that you deselect.

6-17

6 Data Import and Export

Example of Selecting Variables to Load. Use the Import Wizard to
import this sample binary MAT-file, my_data.mat,

C =
1 2 3 4 5
6 7 8 9 10

D =
a test string

The Import Wizard displays two variables, as listed in the preview pane. To
select a variable to import, select the check box next to its name. All variables
are preselected by default.

 �����!�����������������
�����������

 �����!������������
����������������

Automated M-Code Generation
To perform additional imports from this or a similar type of file, you can
automate this process by creating a MATLAB function that performs all of the
steps you just went through. To have the Import Wizard write this function

6-18

Using the Import Wizard

for you, select the Generate M-code checkbox in the lower right corner of
the Wizard dialog.

Once you click Finish to complete the import, MATLAB opens an Editor
window displaying the generated M-file function. The function is called
importfile.m. If this name is already taken, then MATLAB names the file
importfileN.m, where N is a number that is one greater than the highest
existing importfile.m file.

The generated function has the following input and output arguments:

• Input: fileToRead1—Name of the file to import from. This argument
exists only when importing from a file.

• Output: newData1—Structure to assign all imported data to. This
argument exists only if you have specified an output argument with the
call to uiimport when starting the Import Wizard. Otherwise, variables
retain the same naming as assigned within the Wizard.

The newData1 output is a structure that has one field for each output of the
import operation.

The workspace variables created by this generated M-code are the same as
those created by running the Import Wizard. For example, if you elect to
format the output in column vectors when running the Import Wizard, the
generated M-file does the same. However, unlike the Import Wizard, you
cannot mark any variables to be excluded from the output.

Make any necessary modifications to the generated M-file function in the
Editor window. To save the M-file, select Save from the File menu at the top.

Caution You must save the file yourself; MATLAB does not automatically
save it for you.

Example of M-Code Generation
The M-file shown below was generated by MATLAB during an import of the
file grades.txt, shown earlier in this section. During the import that created
this file, the option to Create vectors from each row using row names

6-19

6 Data Import and Export

was selected, thus generating four row vectors for output: Ann, John, Martin,
and Rob. Also, the row vector for John was deselected by clearing the checkbox
next to that name in the Wizard.

If you run the function, you find that the workspace now holds the four row
vectors Ann, John, Martin, and Rob, instead of the default variables created by
the Import Wizard (data, textdata, and rowheaders). Also, note that the
vector for John is written to the workspace along with the others, even though
this one variable had been deselected from the Import Wizard interface.

importfile grades.txt

whos
Name Size Bytes Class Attributes

Ann 1x3 24 double

6-20

Using the Import Wizard

John 1x3 24 double
Martin 1x3 24 double
Rob 1x3 24 double

Writing Data to the Workspace
To complete the import operation, click Finish to bring the data into the
MATLAB workspace. This button also dismisses the Import Wizard.

Variables written to the workspace are in one of the following formats. The
first three apply only to data read from text files or the clipboard, the fourth
applies only to binary files, and the last applies to both:

Variable Name Output

data, textdata, rowheaders,
colheaders

Separate matrices for numeric, text, and
header data.

Variables named after row or
column headers

One vector for each row or column.

Single variable named after the
filename, or A_pastespecial

One matrix for all data named after the
filename

Variable names taken from
binary file

Data assigned to each variable stored in
a binary file.

Output variable assigned during
call to uiimport

A single structure having fields that
match one of the formats described
above.

Examples
Here are a few examples of how to use the Import Wizard.

Example 1—Text Data. Start by creating the text file grades.txt using
the MATLAB editor. The file contains the following:

John 85 90 95
Ann 90 92 98
Martin 100 95 97
Rob 77 86 93

6-21

6 Data Import and Export

Import from text file grades.txt, using default variables to store the data:

uiimport grades.txt
whos

Name Size Bytes Class Attributes

data 4x3 96 double
rowheaders 4x1 272 cell
textdata 4x1 272 cell

Example 2—Partial Text File with Row Vectors. Import from the same
file as in the above example, but this time select Create vectors from each
row using row names. Also, clear the checkbox next to variable John so that
this one vector does not get written to the workspace:

whos
Name Size Bytes Class Attributes

Ann 1x3 24 double
Martin 1x3 24 double
Rob 1x3 24 double

Example 3—Binary Data Assigned to a Structure. Save numeric and
text data in binary format in file importtest.mat and use the Import Wizard
to import the binary file into the workspace.

C = [1 2 3 4 5;6 7 8 9 10];
D = 'a test string';
save importtest C D

clear
s = uiimport('importtest.mat')
s =

C: [2x5 double]
D: 'a test string'

6-22

Accessing Files with Memory-Mapping

Accessing Files with Memory-Mapping

In this section...

“Overview of Memory-Mapping in MATLAB” on page 6-23

“The memmapfile Class” on page 6-27

“Constructing a memmapfile Object” on page 6-29

“Reading a Mapped File” on page 6-43

“Writing to a Mapped File” on page 6-48

“Methods of the memmapfile Class” on page 6-56

“Deleting a Memory Map” on page 6-58

“Memory-Mapping Demo” on page 6-58

Overview of Memory-Mapping in MATLAB
Memory-mapping is a mechanism that maps a portion of a file, or an entire
file, on disk to a range of addresses within an application’s address space. The
application can then access files on disk in the same way it accesses dynamic
memory. This makes file reads and writes faster in comparison with using
functions such as fread and fwrite.

Another advantage of using memory-mapping in MATLAB is that it enables
you to access file data using standard MATLAB indexing operations. Once
you have mapped a file to memory, you can read the contents of that file
using the same type of MATLAB statements used to read variables from the
MATLAB workspace. The contents of the mapped file appear as if they were
an array in the currently active workspace. You simply index into this array
to read or write the desired data from the file.

This section describes the benefits and limitations of memory-mapping
in MATLAB. The last part of this section gives details on which types of
applications derive the greatest advantage from using memory-mapping:

• “Benefits of Memory-Mapping” on page 6-24

• “Limitations of Memory-Mapping in MATLAB” on page 6-25

• “When to Use Memory-Mapping” on page 6-26

6-23

6 Data Import and Export

Benefits of Memory-Mapping
The principal benefits of memory-mapping are efficiency, faster file access, the
ability to share memory between applications, and more efficient coding.

Faster File Access. Accessing files via memory map is faster than using I/O
functions such as fread and fwrite. Data is read and written using the
virtual memory capabilities that are built in to the operating system rather
than having to allocate, copy into, and then deallocate data buffers owned by
the process.

MATLAB does not access data from the disk when the map is first constructed.
It only reads or writes the file on disk when a specified part of the memory
map is accessed, and then it only reads that specific part. This provides faster
random access to the mapped data.

Efficiency. Mapping a file into memory allows access to data in the file as
if that data had been read into an array in the application’s address space.
Initially, MATLAB only allocates address space for the array; it does not
actually read data from the file until you access the mapped region. As a
result, memory-mapped files provide a mechanism by which applications can
access data segments in an extremely large file without having to read the
entire file into memory first.

Efficient Coding Style. Memory-mapping eliminates the need for explicit
calls to the fread and fwrite functions. In MATLAB, if x is a memory-mapped
variable, and y is the data to be written to a file, then writing to the file is
as simple as

x.Data = y;

6-24

Accessing Files with Memory-Mapping

Sharing Memory Between Applications. Memory-mapped files also
provide a mechanism for sharing data between applications, as shown in the
figure below. This is achieved by having each application map sections of
the same file. This feature can be used to transfer large data sets between
MATLAB and other applications.

Also, within a single application, you can map the same segment of a file
more than once.

Limitations of Memory-Mapping in MATLAB
MATLAB restricts the size of a memory map to 2 gigabytes, and on some
platforms, requires that you set up your memory-mapping so that all data
access is aligned properly. See the following section, “Maximum Size of a
Memory Map”, for more information.

6-25

6 Data Import and Export

Maximum Size of a Memory Map. Due to limits set by the operating
system, the maximum amount of data you can map with a single instance of a
memory map is 231 - 1 (or 2 GB). If you need to map more than 2 GB, you can
either create separate maps for different regions of the file, or you can move
the 2 GB window of one map to different locations in the file.

The 2 GB limit also applies to 64-bit platforms. However, because 64-bit
platforms have a much larger address space, they can support having many
more map instances in memory at any given time.

Aligned Access on Sol64. The Sol64 platform only supports aligned data
access. This means that numeric values of type double that are to be read
from a memory-mapped file must start at some multiple of 8 bytes from the
start of the file. (Note that this is from the start of the file, and not the start
of the mapped region.) Furthermore, numeric values of type single and
also 32-bit integers must start at multiples of 4 bytes, and 16-bit integers at
2-byte multiples.

If you attempt to map a file on Sol64 that does not take into account these
alignment considerations, MATLAB generates an error.

Byte Ordering
Memory-mapping works only with data that has the same byte ordering
scheme as the native byte ordering of your operating system. For example,
because both Linux and Windows use little-endian byte ordering, data created
on a Linux system can be read on Windows. You can use the computer
function to determine the native byte ordering of your current system.

When to Use Memory-Mapping
Just how much advantage you get from mapping a file to memory depends
mostly on the size and format of the file, the way in which data in the file is
used, and the computer platform you are using.

When Memory-Mapping Is Most Useful. Memory-mapping works best
with binary files, and in the following scenarios:

• For large files that you want to access randomly one or more times

6-26

Accessing Files with Memory-Mapping

• For small files that you want to read into memory once and access
frequently

• For data that you want to share between applications

• When you want to work with data in a file as if it were a MATLAB array

When the Advantage Is Less Significant. The following types of files do
not fully utilize the benefits of memory-mapping:

• Formatted binary files like HDF or TIFF that require customized readers
are not good for memory-mapping. For one thing, describing the data
contained in these files can be a very complex task. Also, you cannot access
data directly from the mapped segment, but must instead create arrays
to hold the data.

• Text or ASCII files require that you convert the text in the mapped region
to an appropriate type for the data to be meaningful. This takes up
additional address space.

• Files that are larger than several hundred megabytes in size consume a
significant amount of the virtual address space needed by MATLAB to
process your program. Mapping files of this size may result in MATLAB
reporting out-of-memory errors more often. This is more likely if MATLAB
has been running for some time, or if the memory used by MATLAB
becomes fragmented.

The memmapfile Class
MATLAB implements memory-mapping using an object-oriented class called
memmapfile. The memmapfile class has the properties and methods you need
to map to a file, read and write the file via the map, and remove the map from
memory when you are done.

Properties of the memmapfile Class
There are six properties defined for the memmapfile class. These are shown in
the table below. These properties control which file is being mapped, where in
the file the mapping is to begin and end, how the contents of the file are to
be formatted, and whether or not the file is writable. One property of the file
contains the file data itself.

6-27

6 Data Import and Export

Property Description Data Type Default

Data Contains the data read from the file or to be written
to the file. (See “Reading a Mapped File” on page
6-43 and “Writing to a Mapped File” on page 6-48)

Any of the
numeric
types

None

Filename Path and name of the file to map into memory. (See
“Selecting the File to Map” on page 6-32)

char array None

Format Format of the contents of the mapped region,
including data type, array shape, and variable
or field name by which to access the data. (See
“Identifying the Contents of the Mapped Region” on
page 6-34)

char array
or N-by-3
cell array

uint8

Offset Number of bytes from the start of the file to the start
of the mapped region. This number is zero-based.
That is, offset 0 represents the start of the file. Must
be a nonnegative integer value. (See “Setting the
Start of the Mapped Region” on page 6-34)

double 0

Repeat Number of times to apply the specified format to the
mapped region of the file. Must be a positive integer
value or Inf. (See “Repeating a Format Scheme” on
page 6-41)

double Inf

Writable Type of access allowed to the mapped region. Must
be logical 1 or logical 0. (See “Setting the Type of
Access” on page 6-42)

logical false

You can set the values for any property except for Data at the time you call
the memmapfile constructor, or at any time after that while the map is still
valid. Any properties that are not explicitly set when you construct the object
are given their default values as shown in the table above. For information on
calling the constructor, see “Constructing a memmapfile Object” on page 6-29.

Once a memmapfile object has been constructed, you can change the value of
any of its properties. Use the objname.property syntax in assigning the new
value. For example, to set a new Offset value for memory map object m, type

m.Offset = 2048;

6-28

Accessing Files with Memory-Mapping

Note Property names are not case sensitive. For example, MATLAB considers
m.offset to be the same as m.Offset.

To display the value of all properties of a memmapfile object, simply type the
object name. For a memmapfile object m, typing the variable name m displays
the following. Note that this example requires the file records.dat which
you will create at the beginning of the next section.

m =
Filename: 'records.dat'
Writable: true

Offset: 1024
Format: 'uint32'
Repeat: Inf

Data: 4778x1 uint32 array

To display the value of any individual property, for example the Writable
property of object m, type

m.Writable
ans =

true

Constructing a memmapfile Object
The first step in mapping to any file is to construct an instance of the
memmapfile class using the class constructor function. You can have MATLAB
assign default values to each of the new object’s properties, or you can specify
property values yourself in the call to the memmapfile constructor.

For information on how to set these values, see the sections that cover

• “Constructing the Object with Default Property Values” on page 6-30

• “Changing Property Values” on page 6-31

• “Selecting the File to Map” on page 6-32

• “Setting the Start of the Mapped Region” on page 6-34

• “Identifying the Contents of the Mapped Region” on page 6-34

6-29

6 Data Import and Export

• “Mapping of the Example File” on page 6-39

• “Repeating a Format Scheme” on page 6-41

• “Setting the Type of Access” on page 6-42

All the examples in this section use a file named records.dat that contains
a 5000-by-1 matrix of double-precision floating point numbers. Use the
following code to generate this file before going on to the next sections of this
documentation.

First, save this function in your current working directory:

function gendatafile(filename, count)
dmax32 = double(intmax('uint32'));
rand('state', 0)

fid = fopen(filename,'w');
fwrite(fid, rand(count,1)*dmax32, 'double');
fclose(fid);

Now execute the gendatafile function to generate the records.dat file
that is referenced in this section. You can use this function at any time to
regenerate the file:

gendatafile('records.dat', 5000);

Constructing the Object with Default Property Values
The simplest and most general way to call the constructor is with one input
argument that specifies the name of the file you want to map. All other
properties are optional and are given their default values. Use the syntax
shown here:

objname = memmapfile(filename)

To construct a map for the file records.dat that resides in your current
working directory, type the following:

m = memmapfile('records.dat')
m =

Filename: 'd:\matlab\mfiles\records.dat'

6-30

Accessing Files with Memory-Mapping

Writable: false
Offset: 0
Format: 'uint8'
Repeat: Inf

Data: 40000x1 uint8 array

MATLAB constructs an instance of the memmapfile class, assigns it to the
variable m, and maps the entire records.dat file to memory, setting all
properties of the object to their default values. In this example, the command
maps the entire file as a sequence of unsigned 8-bit integers, and gives the
caller read-only access to its contents.

Changing Property Values
You can make the memory map more specific to your needs by including
more information when calling the constructor. In addition to the filename
argument, there are four other parameters that you can pass to the
constructor. Each of these parameters represents a property of the object, and
each requires an accompanying value to be passed as well:

objname = memmapfile(filename, prop1, value1, prop2, value2, ...)

For example, to construct a map using nondefault values for the Offset,
Format, and Writable properties, type the following, enclosing all property
names and string parameter values in quotes:

m = memmapfile('records.dat', ...
'Offset', 1024, ...
'Format', 'double', ...
'Writable', true);

Type the object name to see the current settings for all properties:

m

m =
Filename: 'd:\matlab\mfiles\records.dat'
Writable: true

Offset: 1024
Format: 'double'
Repeat: Inf

6-31

6 Data Import and Export

Data: 4872x1 double array

You can also change the value of any property after the object has been
constructed. Use the syntax

objname.property = newvalue;

For example, to set the format to uint16, type the following. (Property names,
like Format, are not case sensitive.)

m.format = 'uint16'
m =

Filename: 'd:\matlab\mfiles\records.dat'
Writable: true

Offset: 1024
Format: 'uint16'
Repeat: Inf

Data: 19488x1 uint16 array

Further read and write operations to the region mapped by m will now treat
the data in the file as a sequence of unsigned 16-bit integers. Whenever you
change the value of a memmapfile property, MATLAB remaps the file to
memory.

Selecting the File to Map
filename is the only required argument when you call the memmapfile
constructor. When you call the memmapfile constructor, MATLAB assigns the
filename that you specify to the Filename property of the new object instance.

Specify the filename as a quoted string, (e.g., 'records.dat'). It must be first
in the argument list and not specified as a parameter-value pair. filename
must include a filename extension if the name of the file being mapped has an
extension. The filename argument cannot include any wildcard characters
(e.g., * or ?), and is not case sensitive.

Note Unlike the other memmapfile constructor arguments, you must specify
filename as a single string, and not as a parameter-value pair.

6-32

Accessing Files with Memory-Mapping

If the file to be mapped resides somewhere on the MATLAB path, you can use
a partial pathname. If the path to the file is not fully specified, MATLAB
searches for the file in your current working directory first, and then on the
MATLAB path.

Once memmapfile locates the file, MATLAB stores the absolute pathname for
the file internally, and then uses this stored path to locate the file from that
point on. This enables you to work in other directories outside your current
work directory and retain access to the mapped file.

You can change the value of the Filename property at any time after
constructing the memmapfile object. You might want to do this if

• You want to use the same memmapfile object on more than one file.

• You save your memmapfile object to a MAT-file, and then later load it back
into MATLAB in an environment where the mapped file has been moved to
a different location. This requires that you modify the path segment of the
Filename string to represent the new location.

For example, save memmapfile object m to file mymap.mat:

disp(m.Filename)
d:\matlab\mfiles\records.dat

save mymat m

Now move the file to another location, load the object back into MATLAB, and
update the path in the Filename property:

load mymat m
m.Filename = 'f:\testfiles\oct1\records.dat'

Note You can only map an existing file. You cannot create a new file and map
that file to memory in one operation. Use the MATLAB file I/O functions to
create the file before attempting to map it to memory.

6-33

6 Data Import and Export

Setting the Start of the Mapped Region
By default, MATLAB begins a memory map at the start of the file. To begin
the mapped region at some point beyond the start of the file, specify an Offset
parameter in the call to the memmapfile constructor:

objname = memmapfile(filename, 'Offset', bytecount)

The bytecount value is the number of bytes from the beginning of the file to
the point in the file where you want the memory map to start (a zero-based
offset). To map the file records.dat from a point 1024 bytes from the start
and extending to the end of the file, type

m = memmapfile('records.dat', 'Offset', 1024);

You can change the starting position of an existing memory map by setting
the Offset property for the associated object to a new value. The following
command sets the offset of memmapfile object m to be 2,048 bytes from the
start of the mapped file:

m.Offset = 2048;

Note The Sol64 platform supports aligned data access only. If you attempt to
use a memmapfile offset on Sol64 that does not take the necessary alignment
considerations into account, MATLAB generates an error. (See “Aligned
Access on Sol64” on page 6-26).

Identifying the Contents of the Mapped Region
By default, MATLAB considers all the data in a mapped file to be a sequence
of unsigned 8-bit integers. To have the data interpreted otherwise as it is read
or written to in the mapped file, specify a Format parameter and value in
your call to the constructor:

objname = memmapfile(filename, 'Format', formatspec)

The formatspec argument can either be a character string that identifies a
single data type used throughout the mapped region, or a cell array that
specifies more than one data type.

6-34

Accessing Files with Memory-Mapping

For example, say that you map a file that is 12K bytes in length. Data read
from this file could be treated as a sequence of 6,000 16-bit (2-byte) integers,
or as 1,500 8-byte double-precision floating-point numbers, to name just a
couple of possibilities. Or you could read this data in as a combination of
different types: for example, as 4,000 8-bit (1-byte) integers followed by 1,000
64-bit (8-byte) integers. You determine how MATLAB will interpret the
mapped data by setting the Format property of the memmapfile object when
you call its constructor.

Note MATLAB arrays are stored on disk in column-major order. (The
sequence of array elements is column 1, row 1; column 1, row 2; column 1, last
row; column 2, row 1, and so on.) You might need to transpose or rearrange
the order of array elements when reading or writing via a memory map.

Note The Sol64 platform supports aligned data access only. If you attempt to
use a memmapfile format on Sol64 that does not take the necessary alignment
considerations into account, MATLAB generates an error. (See “Aligned
Access on Sol64” on page 6-26).

Data types supported for the Format property are shown at the end of this
section. See “Supported Data Types for the Format Property” on page 6-40.

For more information on format options see

• “Mapping a Single Data Type” on page 6-35

• “Formatting the Mapped Data to an Array” on page 6-36

• “Mapping Multiple Data Types and Arrays” on page 6-38

Mapping a Single Data Type. If the file region being mapped contains data
of only one type, specify the Format value as a character string identifying
that type:

objname = memmapfile(filename, 'Format', datatype)

6-35

6 Data Import and Export

The following command constructs a memmapfile object for the entire file
records.dat, and sets the Format property for that object to uint64. Any
read or write operations made via the memory map will read and write the
file contents as a sequence of unsigned 64-bit integers:

m = memmapfile('records.dat', 'Format', 'uint64')
Filename: 'd:\matlab\mfiles\records.dat'
Writable: false

Offset: 0
Format: 'uint64'
Repeat: Inf

Data: 5000x1 uint64 array

You can change the value of the Format property at any time after the
memmapfile object is constructed. Use the object.property syntax shown
here in assigning the new value:

m.Format = 'int32';

Further read and write operations to the region mapped by m will now treat
the data in the file as a sequence of signed 32-bit integers.

Property names, like Format, are not case sensitive.

Formatting the Mapped Data to an Array. You can also specify an
array shape to be applied to the data read or written to the mapped file,
and a field name to be used in referencing this array. Use a cell array to
hold these values either when calling the memmapfile constructor or when
modifying m.Format after the object has been constructed. The cell array
contains three elements: the data type to be applied to the mapped region,
the dimensions of the array shape that is applied to the region, and a field
name to use in referencing the data:

objname = memmapfile(filename, ...
'Format', {datatype, dimensions, varname})

The command below constructs a memmapfile object for a region of
records.dat such that the contents of the region are handled by MATLAB as
a 4-by-10-by-18 array of unsigned 32-bit integers, and can be referenced in the
structure of the returned object using the field name x:

6-36

Accessing Files with Memory-Mapping

m = memmapfile('records.dat', ...
'Offset', 1024, ...
'Format', {'uint32' [4 10 18] 'x'})

m =
Filename: 'd:\matlab\mfiles\records.dat'
Writable: false

Offset: 1024
Format: {'uint32' [4 10 18] 'x'}
Repeat: Inf

Data: 13x1 struct array with fields:
x

A = m.Data(1).x;

whos A
Name Size Bytes Class

A 4x10x18 2880 uint32 array

Grand total is 720 elements using 2880 bytes

You can change the data type, array shape, or field name that MATLAB
applies to the mapped region at any time by setting a new value for the
Format property of the object:

m.Format = {'uint64' [30 4 10] 'x'};
A = m.Data(1).x;

whos A
Name Size Bytes Class

A 30x4x10 9600 uint64 array

Grand total is 1200 elements using 9600 bytes

6-37

6 Data Import and Export

Mapping Multiple Data Types and Arrays. If the region being mapped is
composed of segments of varying data types or array shapes, you can specify
an individual format for each segment using an N-by-3 cell array, where N
is the number of segments. The cells of each cell array row identify the data
type for that segment, the array dimensions to map the data to, and a field
name by which to reference that segment:

objname = memmapfile(filename, ...
'Format', { ...

datatype1, dimensions1, fieldname1; ...
datatype2, dimensions2, fieldname2; ...

: : : ...
datatypeN, dimensionsN, fieldnameN})

The following command maps a 24 kilobyte file containing data of three
different data types: int16, uint32, and single. The int16 data is mapped
as a 2-by-2 matrix that can be accessed using the field name model. The
uint32 data is a scalar value accessed as field serialno. The single data
is a 1-by-3 matrix named expenses.

Each of these fields belongs to the 800-by-1 structure array m.Data:

m = memmapfile('records.dat', ...
'Offset', 2048, ...
'Format', { ...

'int16' [2 2] 'model'; ...
'uint32' [1 1] 'serialno'; ...
'single' [1 3] 'expenses'});

6-38

Accessing Files with Memory-Mapping

Mapping of the Example File

The figure below shows the ordering of the array elements more closely.
In particular, it illustrates that MATLAB arrays are stored on the disk in
column-major order. The sequence of array elements in the mapped file is row
1, column 1; row 2, column 1; row 1, column 2; and row 2, column 2.

6-39

6 Data Import and Export

If the data in your file is not stored in this order, you might need to transpose
or rearrange the order of array elements when reading or writing via a
memory map.

Supported Data Types for the Format Property. Any of the following
data types can be used when you specify a Format value. The default type
is uint8.

Format String Data Type Description

'int8' Signed 8-bit integers

'int16' Signed 16-bit integers

'int32' Signed 32-bit integers

'int64' Signed 64-bit integers

'uint8' Unsigned 8-bit integers

'uint16' Unsigned 16-bit integers

'uint32' Unsigned 32-bit integers

'uint64' Unsigned 64-bit integers

'single' 32-bit floating-point

'double' 64-bit floating-point

6-40

Accessing Files with Memory-Mapping

Repeating a Format Scheme
Once you have set a Format value for the memmapfile object, you can have
MATLAB apply that format to the file data multiple times by specifying a
Repeat value when you call the memmapfile constructor:

objname = memmapfile(filename, ...
'Format', formatspec, ...
'Repeat', count)

The Repeat value applies to the whole format specifier, whether that specifier
describes just a single data type that repeats, or a more complex format that
includes various data types and array shapes. The default Repeat value is
infinity (inf), which means that the full extent of the Format specifier repeats
as many times as possible within the mapped region.

The next example maps a file region identical to that of the previous example,
except the pattern of int16, uint32, and single data types is repeated only
three times within the mapped region of the file:

m = memmapfile('records.dat', ...
'Offset', 2048, ...
'Format', { ...

'int16' [2 2] 'model'; ...
'uint32' [1 1] 'serialno'; ...
'single' [1 3] 'expenses'}, ...

'Repeat', 3);

You can change the value of the Repeat property at any time. To change
the repeat value to 5, type

m.Repeat = 5;

Property names, like Repeat, are not case sensitive.

Keeping the Repeated Format Within the Mapped Region. MATLAB
maps only the full pattern specified by the Format property. If you repeat a
format such that it would cause the map to extend beyond the end of the file,
then either of two things can happen:

• If you specify a repeat value of Inf, then only those repeated segments that
fit within the file in their entirety are applied to the map.

6-41

6 Data Import and Export

• If you specify a repeat value other than Inf, and that value would cause the
map to extend beyond the end of the file, then MATLAB generates an error.

Considering the last example, if the part of the file from m.Offset to the end
were 70 bytes (instead of the 72 bytes required to repeat m.Format three
times) and you used a Repeat value of Inf, then only two full repetitions of
the specified format would have been mapped. The end result would be as if
you had constructed the map with this command:

m = memmapfile('records.dat', ...
'Offset', 2048, ...
'Format', { ...

'int16' [2 2] 'model'; ...
'uint32' [1 1] 'serialno'; ...
'single' [1 3] 'expenses'}, ...

'Repeat', 2);

If Repeat were set to 3 and you had only 70 bytes to the end of the file, you
would get an error.

Note memmapfile does not expand or append to a mapped file. Use standard
file I/O functions like fopen and fwrite to do this.

Setting the Type of Access
You can map a file region to allow either read-only or read and write access
to its contents. Pass a Writable parameter and value in the memmapfile
constructor, or set m.Writable on an existing object to set the type of access
allowed:

objname = memmapfile(filename, 'Writable', trueorfalse)

The value passed can be either true (equal to logical(1)) or false (equal
to logical(0)). By default, it is false, meaning that the mapped region
is read only.

To map a read and write region of the file records.dat in memory, type

m = memmapfile('records.dat', 'Writable', true);

6-42

Accessing Files with Memory-Mapping

Note To successfully modify the file you are mapping to, you must have write
permission for that file. If you do not have write permission, you can still set
the Writable property to true, but attempting to write to the file generates
an error.

You can change the value of the Writable property at any time. To make the
memory map to records.dat read only, type

m.Writable = false;

Property names, like Writable, are not case sensitive.

Reading a Mapped File
The most commonly used property of the memmapfile class is the Data
property. It is through this property of the memory-map object that MATLAB
provides all read and write access to the contents of the mapped file.

The actual mapping of a file to the MATLAB address space does not take
place when you construct a memmapfile object. A memory map, based on the
information currently stored in the mapped object, is generated the first time
you reference or modify the Data property for that object.

Once you have mapped a file to memory, you can read the contents of that
file using the same MATLAB statements used to read variables from the
MATLAB workspace. By accessing the Data property of the memory map
object, the contents of the mapped file appear as if they were an array in
the currently active workspace. You simply index into this array to read the
desired data from the file.

This section covers the following topics:

• “Improving Performance” on page 6-44

• “Example 1 — Reading a Single Data Type” on page 6-44

• “Example 2 — Formatting File Data as a Matrix” on page 6-45

• “Example 3 — Reading Multiple Data Types” on page 6-46

6-43

6 Data Import and Export

• “Example 4 — Modifying Map Parameters” on page 6-47

Improving Performance
MATLAB accesses data in structures more efficiently than it does data
contained in objects. The main reason is that structures do not require the
extra overhead of a subsref routine. Instead of reading directly from the
memmapfile object, as shown here

for k = 1 : N
y(k) = m.Data(k);

end

you will get better performance when you assign the Data field to a variable
and then read or write the mapped file through this variable, as shown in
this second example:

dataRef = m.Data;
for k = 1 : N

y(k) = dataRef(k);
end

Example 1 — Reading a Single Data Type
This example maps a file of 100 double-precision floating-point numbers to
memory. The map begins 1024 bytes from the start of the file, and ends 800
bytes (8 bytes per double times a Repeat value of 100) from that point.

If you haven’t done so already, generate a test data file for use in the following
examples by executing the gendatafile function defined under “Constructing
a memmapfile Object” on page 6-29:

gendatafile('records.dat', 5000);

Now, construct the memmapfile object m, and show the format of its Data
property:

m = memmapfile('records.dat', 'Format', 'double', ...
'Offset', 1024, 'Repeat', 100);

6-44

Accessing Files with Memory-Mapping

d = m.Data;

whos d
Name Size Bytes Class

d 100x1 800 double array

Grand total is 100 elements using 800 bytes

Read a selected set of numbers from the file by indexing into the
single-precision array m.Data:

d(15:20)
ans =

1.0e+009 *
3.6045
2.7006
0.5745
0.8896
2.6079
2.7053

Example 2 — Formatting File Data as a Matrix
This example is similar to the last, except that the constructor of the
memmapfile object now specifies an array shape of 4-by-6 to be applied to the
data as it is read from the mapped file. MATLAB maps the file contents into a
structure array rather than a numeric array, as in the previous example:

m = memmapfile('records.dat', ...
'Format', {'double', [4 6], 'x'}, ...
'Offset', 1024, 'Repeat', 100);

d = m.Data;

whos d
Name Size Bytes Class

d 100x1 25264 struct array

Grand total is 2500 elements using 25264 bytes

6-45

6 Data Import and Export

When you read an element of the structure array, MATLAB presents the
data in the form of a 4-by-6 array:

d(5).x
ans =

1.0e+009 *
3.1564 0.6684 2.1056 1.9357 1.2773 4.2219
2.9520 0.8208 3.5044 1.7705 0.2112 2.3737
1.4865 1.8144 1.9790 3.8724 2.9772 1.7183
0.7131 3.6764 1.9643 0.0240 2.7922 0.8538

To index into the structure array field, use

d(5).x(3,2:6)
ans =

1.0e+009 *
1.8144 1.9790 3.8724 2.9772 1.7183

Example 3 — Reading Multiple Data Types
This example maps a file containing more than one data type. The different
data types contained in the file are mapped as fields of the returned structure
array m.Data.

The Format parameter passed in the constructor specifies that the first 80
bytes of the file are to be treated as a 5-by-8 matrix of uint16, and the 160
bytes after that as a 4-by-5 matrix of double. This pattern repeats until the
end of the file is reached. The example shows different ways of reading the
Data property of the object.

Start by calling the memmapfile constructor to create a memory map object, m:

m = memmapfile('records.dat', ...
'Format', { ...

'uint16' [5 8] 'x'; ...
'double' [4 5] 'y' });

If you examine the Data property, MATLAB shows a 166-element structure
array with two fields, one for each format specifier in the constructor:

d = m.Data

6-46

Accessing Files with Memory-Mapping

ans =
166x1 struct array with fields:

x
y

Examine one structure in the array to show the format of each field:

d(3)
ans =

x: [5x8 uint16]
y: [4x5 double]

Now read the x and y fields of that structure from the file. MATLAB formats
the first block of data as a 5-by-8 matrix of uint16, as specified in the Format
property, and the second block as a 4-by-5 matrix of double:

d(3).x
ans =

34432 47500 19145 16868 38165 47956 35550 16853
60654 51944 16874 47166 35397 58072 16850 56576
51075 16876 12471 34369 8341 16853 44509 57652
16863 16453 6666 11480 16869 58695 36217 5932
57883 15551 41755 16874 37774 31693 54813 16865

d(3).y
ans =

1.0e+009 *
3.1229 1.5909 2.9831 2.2445 1.1659
1.3284 3.0182 2.6685 3.7802 1.0837
3.6013 2.3475 3.4137 0.7428 3.7613
2.4399 1.9107 4.1096 4.2080 3.1667

Example 4 — Modifying Map Parameters
This example plots the Fourier transform output of data read from a file via a
memory map. It then modifies several parameters of the existing map, reads
from a different part of the data file, and plots a histogram from that data.

Create a memory-mapped object, mapping 1,000 elements of type double
starting at the 1025th byte:

6-47

6 Data Import and Export

m = memmapfile('mybinary.bin', 'Offset', 1024, ...
'Format', 'double', 'Repeat', 1000);

Get data associated with the map and plot the FFT of the first 1000 values of
the map. This is when the map is actually created, because no data has been
referenced until this point:

plot(abs(fft(m.Data(1:1000))));

Get information about the memory map:

mapStruct = get(m)

mapStruct =
Filename: 'd:\matlab\mfiles\mybinary.bin'
Writable: 0

Offset: 1024
Format: 'double'
Repeat: 1000

Data: [1000x1 double]

Change the map, but continue using the same file:

m.Offset = 4096;
m.Format = 'single';
m.Repeat = 800;

Read from a different area of the file, and plot a histogram of the data. This
maps a new region and unmaps the previous region:

hist(m.Data)

Writing to a Mapped File
Writing to a mapped file is done with standard MATLAB subscripted
assignment commands. To write to a particular location in the file mapped
to memmapfile object m, assign the value to the m.Data structure array index
and field that map to that location.

6-48

Accessing Files with Memory-Mapping

If you haven’t done so already, generate a test data file for use in the following
examples by executing the gendatafile function defined under “Constructing
a memmapfile Object” on page 6-29:

gendatafile('records.dat', 5000);

Now call the memmapfile constructor to create the object:

m = memmapfile('records.dat', ...
'Format', { ...

'uint16' [5 8] 'x'; ...
'double' [4 5] 'y' });

If you are going to modify the mapped file, be sure that you have write
permission, and that you set the Writable property of the memmapfile object
to true (logical 1):

m.Writable = true;

(You do not have to set Writable as a separate command, as done here.
You can include a Writable parameter-value argument in the call to the
memmapfile constructor.)

Read from the 5-by-8 matrix x at m.Data(2):

d = m.Data;

d(2).x
ans =

35330 4902 31861 16877 23791 61500 52748 16841
51314 58795 16860 43523 8957 5182 16864 60110
18415 16871 59373 61001 52007 16875 26374 28570
16783 4356 52847 53977 16858 38427 16067 33318
65372 48883 53612 16861 18882 39824 61529 16869

Update all values in that matrix using a standard MATLAB assignment
statement:

d(2).x = d(2).x * 1.5;

Verify the results:

6-49

6 Data Import and Export

d(2).x
ans =

52995 7353 47792 25316 35687 65535 65535 25262
65535 65535 25290 65285 13436 7773 25296 65535
27623 25307 65535 65535 65535 25313 39561 42855
25175 6534 65535 65535 25287 57641 24101 49977
65535 65535 65535 25292 28323 59736 65535 25304

This section covers the following topics:

• “Dimensions of the Data Field” on page 6-50

• “Writing Matrices to a Mapped File” on page 6-51

• “Selecting Appropriate Data Types” on page 6-54

• “Working with Copies of the Mapped Data” on page 6-54

• “Invalid Syntax for Writing to Mapped Memory” on page 6-55

Dimensions of the Data Field
The dimensions of a memmapfile object’s Data field are set at the time you
construct the object and cannot be changed. This differs from other MATLAB
arrays that have dimensions you can modify using subscripted assignment.

For example, you can add a new column to the field of a MATLAB structure:

A.s = ones(4,5);

A.s(:,6) = [1 2 3 4]; % Add new column to A.s
size(A.s)
ans =

4 6

But not to a similar field of a structure that represents data mapped from a
file. The following assignment to m.Data(60).y does not expand the size
of y, but instead generates an error:

m.Data(60)
ans =

x: [5x8 uint16]
y: [4x5 double]

6-50

Accessing Files with Memory-Mapping

m.Data(60).y(:,6) = [1 2 3 4]; % Generates an error.

Thus, if you map an entire file and then append to that file after constructing
the map, the appended data is not included in the mapped region. If you need
to modify the dimensions of data that you have mapped to a memmapfile
object, you must either modify the Format or Repeat properties for the object,
or reconstruct the object.

Examples. Two examples of statements that attempt to modify the
dimensions of a mapped Data field are shown here. These statements result
in an error.

The first example attempts to diminish the size of the array by removing a
row from the mapped array m.Data.

m.Data(5) = [];

The second example attempts to expand the size of a 50-row mapped array x
by adding another row to it:

m.Data(2).x(1:51,31) = 1:51;

Writing Matrices to a Mapped File
The syntax to use when writing to mapped memory can depend on what
format was used when you mapped memory to the file.

When Memory Is Mapped in Nonstructure Format. When you map a
file as a sequence of a single data type (e.g., a sequence of uint16), you can
use the following syntax to write matrix X to the file:

m.Data = X;

This statement is valid only if all of the following conditions are true:

• The file is mapped as a sequence of elements of the same data type, making
m.Data an array of a nonstructure type.

• The class of X is the same as the class of m.Data.

• The number of elements in X equals the number of elements in m.Data.

6-51

6 Data Import and Export

This example maps a file as a sequence of 16-bit unsigned integers, and then
uses the syntax shown above to write a matrix to the file. Map only a small
part of the file, using a uint16 format for this segment:

m = memmapfile('records.dat', 'Writable', true', ...
'Offset', 2000, 'Format', 'uint16', 'Repeat', 15);

Create a matrix X of the same size and write it to the mapped part of the file:

X = uint16(5:5:75); % Sequence of 5 to 75, counting by fives.
m.data = X;

Verify that new values were written to the file:

m.offset = 1980; m.repeat = 35;
reshape(m.data,5,7)'
ans =

29158 16841 32915 37696 421 % <== At offset 1980
16868 51434 17455 30645 16871

5 10 15 20 25 % <== At offset 2000
30 35 40 45 50
55 60 65 70 75

16872 50155 51100 26469 16873
56776 6257 28746 16877 34374

When Memory Is Mapped in Scalar Structure Format. When you map a
file as a sequence of a single data type (e.g., a sequence of uint16), you can
use the following syntax to write matrix X to the file:

m.Data.f = X;

This statement is valid only if all of the following conditions are true:

• The file is mapped as containing multiple data types that do not repeat,
making m.Data a scalar structure.

• The class of X is the same as the class of m.Data.f.

• The number of elements in X equals that of m.Data.f.

This example maps a file as a 300-by-8 matrix of type uint16 followed by
a 200-by-5 matrix of type double, and then uses the syntax shown above
to write a matrix to the file.

6-52

Accessing Files with Memory-Mapping

m = memmapfile('records.dat', ...
'Format', { ...

'uint16' [300 8] 'x'; ...
'double' [200 5] 'y' }, ...

'Repeat', 1, 'Writable', true);

m.Data.x = ones(300, 8, 'uint16');

When Memory Is Mapped in Nonscalar Structure Format. When you
map a file as a repeating sequence of multiple data types, you can use the
following syntax to write matrix X to the file, providing that k is a scalar index:

m.Data(k).field = X;

To do this, the following conditions must be true:

• The file is mapped as containing multiple data types that can repeat,
making m.Data a nonscalar structure.

• k is a scalar index.

• The class of X is the same as the class of m.Data(k).field.

• The number of elements in X equals that of m.Data(k).field.

This example maps a file as a matrix of type uint16 followed by a matrix of
type double that repeat 20 times, and then uses the syntax shown above
to write a matrix to the file.

m = memmapfile('records.dat', ...
'Format', { ...

'uint16' [25 8] 'x'; ...
'double' [15 5] 'y' }, ...

'Repeat', 20, 'Writable', true);

d = m.Data;

d(12).x = ones(25,8,'uint16');

You can write to specific elements of field x as shown here:

d(12).x(3:5,1:end) = uint16(500);
d(12).x(3:5,1:end)

6-53

6 Data Import and Export

ans =
500 500 500 500 500 500 500 500
500 500 500 500 500 500 500 500
500 500 500 500 500 500 500 500

Selecting Appropriate Data Types
All of the usual MATLAB indexing and data type rules apply when assigning
values to data via a memory map. The data type that you assign to must be
big enough to hold the value being assigned. For example,

m = memmapfile('records.dat', 'Format', 'uint8', ...
'Writable', true);

d = m.Data;
d(5) = 300;

saturates the x variable because x is defined as an 8-bit integer:

d(5)
ans =

255

Working with Copies of the Mapped Data
In the following code, the data in variable block2 is a copy of the file data
mapped by m.Data(2). Because it is a copy, modifying array data in block2
does not modify the data contained in the file:

First, destroy the memmapfile object and restore the test file records.dat,
since it has been modified by running the previous examples:

clear m
gendatafile('records.dat',50000);

Map the file as a series of uint16 and double matrices and make a copy of
m.Data(2) in block2:

m = memmapfile('records.dat', ...
'Format', { ...

'uint16' [5 8] 'x'; ...
'double' [4 5] 'y' });

6-54

Accessing Files with Memory-Mapping

d = m.Data;

Write all zeros to the copy:

d(2).x(1:5,1:8) = 0;

d(2).x
ans =

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

Verify that the data in the mapped file has not changed even though the copy
of m.Data(2).x has been written with zeros:

m.Data(2).x
ans =

35330 4902 31861 16877 23791 61500 52748 16841
51314 58795 16860 43523 8957 5182 16864 60110
18415 16871 59373 61001 52007 16875 26374 28570
16783 4356 52847 53977 16858 38427 16067 33318
65372 48883 53612 16861 18882 39824 61529 16869

Invalid Syntax for Writing to Mapped Memory
Although you can expand the dimensions of a typical MATLAB array by
assigning outside its current dimensions, this does not apply to the Data
property of a memmapfile object. The following operation is invalid if m.Data
has only 100 elements:

m.Data(120) = x;

If you need to expand the size of the mapped data region, first extend the map
by updating the Format or Repeat property of the memmapfile object to reflect
the new structure of the data in the mapped file.

6-55

6 Data Import and Export

Methods of the memmapfile Class
You can use the following methods on objects constructed from the memmapfile
class.

Syntax Description

disp Displays properties of the object. The display does
not include the object’s name.

get(obj) Returns the values of all properties of the
memmapfile object in a structure array.

get(obj, property) Returns the value of the specified property.
property can be a string or cell array of strings,
each containing a property name.

Using the disp Method
Use the disp method to display all properties of a memmapfile object. The
text displayed includes only the property value, and not the object name or
the MATLAB response string, ans =.

Construct object m:

m = memmapfile('records.dat', ...
'Offset', 2048, ...
'Format', { ...

'int16' [2 2] 'model'; ...
'uint32' [1 1] 'serialno'; ...
'single' [1 3] 'expenses'});

and display all of its properties:

disp(m)
Filename: 'd:\matlab\mfiles\records.dat'
Writable: false

Offset: 2048
Format: {'int16' [2 2] 'model'

'uint32' [1 1] 'serialno'
'single' [1 3] 'expenses'}

Repeat: Inf

6-56

Accessing Files with Memory-Mapping

Data: 16581x1 struct array with fields:
model

serialno
expenses

Using the get Method
You can use the get method of the memmapfile class to return information on
any or all of the object’s properties. Specify one or more property names to
get the values of specific properties.

This example returns the values of the Offset, Repeat, and Format properties
for a memmapfile object. Use the get method to return the specified property
values in a 1-by-3 cell array, m_props:

m_props = get(m, {'Offset', 'Repeat', 'Format'})
m_props =

[2048] [Inf] {3x3 cell}

m_props{3}
ans =

'int16' [1x2 double] 'model'
'uint32' [1x2 double] 'serialno'
'single' [1x2 double] 'expenses'

You can also choose to use the objname.property syntax:

m_props = {m.Offset, m.Repeat, m.Format}
m_props =

[2048] [Inf] {3x3 cell}

To return the values for all properties with get, pass just the object name:

get(m)
Filename: 'd:\matlab\mfiles\records.dat'
Writable: 0

Offset: 2048
Format: {3x3 cell}
Repeat: Inf

Data: [16581x1 struct]

6-57

6 Data Import and Export

Deleting a Memory Map
It is not necessary to explicitly call a destructor method to clear a memmapfile
object from memory when you no longer need it. MATLAB calls the destructor
for you whenever you do any of the following:

• Reassign another value to the memmapfile object’s variable

• Clear the object’s variable from memory

• Exit the function scope in which the object was created

The Effect of Shared Data Copies On Performance
When you assign the Data field of the memmapfile object to a variable,
MATLAB makes a shared data copy of the mapped data. This is very efficient
as no memory actually gets copied. In the following statement, memdat is a
shared data copy of the data mapped from the file:

memdat = m.Data;

When you finish using the mapped data, make sure to clear any variables
that shared data with the mapped file before clearing the object itself. If you
clear the object first, then the sharing of data between the file and dependent
variables is broken, and the data assigned to such variables must be copied
into memory before the object is destroyed. If access to the mapped file was
over a network, then copying this data to local memory can take considerable
time. So, if the statement shown above assigns data to the variable memdat,
you should be sure to clear memdat before clearing m when you are finished
with the object.

Note Keep in mind that the memmapfile object can be cleared in any of the
three ways described under “Deleting a Memory Map” on page 6-58.

Memory-Mapping Demo
In this demonstration, two separate MATLAB processes communicate with
each other by writing and reading from a shared file. They share the file by
mapping part of their memory space to a common location in the file. A write
operation to the memory map belonging to the first process can be read from
the map belonging to the second, and vice versa.

6-58

Accessing Files with Memory-Mapping

One MATLAB process (running send.m) writes a message to the file via its
memory map. It also writes the length of the message to byte 1 in the file,
which serves as a means of notifying the other process that a message is
available. The second process (running answer.m) monitors byte 1 and, upon
seeing it set, displays the received message, puts it into uppercase, and echoes
the message back to the sender.

The send Function
This function prompts you to enter a string and then, using memory-mapping,
passes the string to another instance of MATLAB that is running the answer
function.

Copy the send and answer functions to files send.m and answer.m in your
current working directory. Begin the demonstration by calling send with no
inputs. Next, start a second MATLAB session on the same machine, and call
the answer function in this session. To exit, press Enter.

function send
% Interactively send a message to ANSWER using memmapfile class.

filename = fullfile(tempdir, 'talk_answer.dat');

% Create the communications file if it is not already there.
if ~exist(filename, 'file')

[f, msg] = fopen(filename, 'wb');
if f ~= -1

fwrite(f, zeros(1,256), 'uint8');
fclose(f);

else
error('MATLAB:demo:send:cannotOpenFile', ...

'Cannot open file "%s": %s.', filename, msg);
end

end

% Memory map the file.
m = memmapfile(filename, 'Writable', true, 'Format', 'uint8');

while true
% Set first byte to zero, indicating a message is not

6-59

6 Data Import and Export

% yet ready.
m.Data(1) = 0;

str = input('Enter send string (or RETURN to end): ', 's');

len = length(str);
if (len == 0)

disp('Terminating SEND function.')
break;

end

str = str(1:min(len, 255)); % Message limited to 255 chars.

% Update the file via the memory map.
m.Data(2:len+1) = str;
m.Data(1)=len;

% Wait until the first byte is set back to zero,
% indicating that a response is available.
while (m.Data(1) ~= 0)

pause(.25);
end

% Display the response.
disp('response from ANSWER is:')
disp(char(m.Data(2:len+1))')

end

The answer Function
The answer function starts a server that, using memory-mapping, watches
for a message from send. When the message is received, answer replaces the
message with an uppercase version of it, and sends this new message back
to send.

To use answer, call it with no inputs.

function answer
% Respond to SEND using memmapfile class.

6-60

Accessing Files with Memory-Mapping

disp('ANSWER server is awaiting message');

filename = fullfile(tempdir, 'talk_answer.dat');

% Create the communications file if it is not already there.
if ~exist(filename, 'file')

[f, msg] = fopen(filename, 'wb');
if f ~= -1

fwrite(f, zeros(1,256), 'uint8');
fclose(f);

else
error('MATLAB:demo:answer:cannotOpenFile', ...

'Cannot open file "%s": %s.', filename, msg);
end

end

% Memory map the file.
m = memmapfile(filename, 'Writable', true, 'Format', 'uint8');

while true
% Wait till first byte is not zero.
while m.Data(1) == 0

pause(.25);
end

% The first byte now contains the length of the message.
% Get it from m.
msg = char(m.Data(2:1+m.Data(1)))';

% Display the message.
disp('Received message from SEND:')
disp(msg)

% Transform the message to all uppercase.
m.Data(2:1+m.Data(1)) = upper(msg);

% Signal to SEND that the response is ready.
m.Data(1) = 0;

end

6-61

6 Data Import and Export

Running the Demo
Here is what the demonstration looks like when it is run. First, start two
separate MATLAB sessions on the same computer system. Call the send
function in one and the answer function in the other to create a map in each of
the processes’ memory to the common file:

% Run SEND in the first MATLAB session.
send
Enter send string (or RETURN to end):

% Run ANSWER in the second MATLAB session.
answer
ANSWER server is awaiting message

Next, enter a message at the prompt displayed by the send function. MATLAB
writes the message to the shared file. The second MATLAB session, running
the answer function, loops on byte 1 of the shared file and, when the byte is
written by send, answer reads the message from the file via its memory map.
The answer function then puts the message into uppercase and writes it back
to the file, and send (waiting for a reply) reads the message and displays it:

% SEND writes a message and reads the uppercase reply.
Hello. Is there anybody out there?
response from ANSWER is:
HELLO. IS THERE ANYBODY OUT THERE?
Enter send string (or RETURN to end):

% ANSWER reads the message from SEND.
Received message from SEND:
Hello. Is there anybody out there?

send writes a second message to the file. answer reads it, put it into
uppercase, and then writes the message to the file:

% SEND writes a second message to the shared file.
I received your reply.
response from ANSWER is:
I RECEIVED YOUR REPLY.
Enter send string (or RETURN to end): <Enter>

6-62

Accessing Files with Memory-Mapping

Terminating SEND function.

% ANSWER reads the second message.
Received message from SEND:
I received your reply.

6-63

6 Data Import and Export

Exporting Data to MAT-Files

In this section...

“MAT-Files” on page 6-64

“Using the save Function” on page 6-64

“Saving Structures” on page 6-65

“Appending to an Existing File” on page 6-66

“Data Compression” on page 6-66

“Unicode Character Encoding” on page 6-68

“Optional Output Formats” on page 6-69

“Storage Requirements” on page 6-70

“Saving From External Programs” on page 6-71

MAT-Files
MAT-files are double-precision, binary, MATLAB format files. They can be
created on one machine and later read by MATLAB on another machine with
a different floating-point format, retaining as much accuracy and range as
the different formats allow. They can also be manipulated by other programs
external to MATLAB.

This section explains how to save the variables in your MATLAB session to
a binary file called a MAT-file. The next section explains how to load them
back into your MATLAB workspace.

Using the save Function
To export workspace variables to a binary or ASCII file, use the save function.
You can save all variables from the workspace in a single operation (if you
omit the filename, MATLAB uses the name matlab.mat):

save filename

or save just those variables that you specify:

6-64

Exporting Data to MAT-Files

save filename var1 var2 ... varN

Use the wildcard character (*) in the variable name to save those variables
that match a specific pattern. For example, the following command saves all
variables that start with str.

save strinfo str*

Use whos -file to examine what has been written to the MAT-file:

whos -file strinfo
Name Size Bytes Class

str2 1x15 30 char array
strarray 2x5 678 cell array
strlen 1x1 8 double array

Saving Structures
When saving a MATLAB structure, you have the option of saving the entire
structure, saving each structure field as an individual variable in the
MAT-file, or saving specific fields as individual variables.

For structure S,

S.a = 12.7; S.b = {'abc', [4 5; 6 7]}; S.c = 'Hello!';

Save the entire structure to newstruct.mat with the usual syntax:

save newstruct.mat S;

whos -file newstruct
Name Size Bytes Class

S 1x1 550 struct array

Save the fields individually with the -struct option:

save newstruct.mat -struct S;

whos -file newstruct

6-65

6 Data Import and Export

Name Size Bytes Class

a 1x1 8 double array
b 1x2 158 cell array
c 1x6 12 char array

Or save only selected fields using -struct and specifying each field name:

save newstruct.mat -struct S a c;

whos -file newstruct
Name Size Bytes Class

a 1x1 8 double array
c 1x6 12 char array

Appending to an Existing File
You can add new variables to those already stored in an existing MAT-file by
using save -append. When you append to a MAT-file, MATLAB first looks
in the designated file for each variable name specified in the argument list,
or for all variables if no specific variable names are specified. Based on that
information, MATLAB does both of the following:

• For each variable that already exists in the MAT-file, MATLAB overwrites
its saved value with the new value taken from the workspace.

• For each variable not found in the MAT-file, MATLAB adds that variable to
the file and stores its value from the workspace.

Note Saving with the -append option does not append additional elements to
any arrays that are already saved in the MAT-file.

Data Compression
MATLAB compresses the data that you save to a MAT-file. Data compression
can save you a significant amount of storage space when you are working with
large files or working over a network.

6-66

Exporting Data to MAT-Files

Data compression is optional, however, and you can disable it either for an
individual save operation, or for all of your MATLAB sessions. Use the -v6
option with the save function to turn off compression on a per-command basis:

save filename -v6

To disable data compression for all of your MATLAB sessions, open the
Preferences dialog, select General and then MAT-Files, and click the option
that is equivalent to the command save -v6. See General Preferences for
MATLAB in the Desktop Tools and Development Environment documentation
for more information.

Note You cannot read a compressed MAT-file with MATLAB versions earlier
than Version 7. To write a MAT-file that you will be able to read with one of
these versions, save to the file with data compression disabled.

Information returned by the command whos -file is independent of whether
the variables in that file are compressed or not. The byte counts returned by
this command represent the number of bytes data occupies in the MATLAB
workspace, and not in the file the data was saved to.

Evaluating When to Compress
You should consider both data set size and the type of data being saved when
deciding whether or not to compress the data you save to a file. The benefits of
data compression are greater when saving large data sets (over 3 MB), and are
usually negligible with smaller data sets. Data that has repeating patterns or
more consistent values compresses better than random data. Compressing
data that has a random pattern is not recommended as it slows down the
performance of save and load significantly, and offers little benefit in return.

In general, data compression and decompression slows down all save and
some load operations to some extent. In most cases, however, the resulting
reduction in file size is worth the additional time spent compressing or
decompressing. Because loading is typically done more frequently than
saving, load is considered to be the most critical of the two operations. Up to a
certain threshold (relative to the size of the uncompressed MAT-file), loading
a compressed MAT-File is slightly slower than loading an uncompressed

6-67

6 Data Import and Export

file containing the same data. Beyond that threshold, however, loading the
compressed file is faster.

For example, say that you have a block of data that takes up 100 MB in
memory, and this data has been saved to both a 10 MB compressed file and a
100 MB uncompressed file. When you load each of these files back into the
MATLAB workspace, the first 10 MB of data takes the same amount of time
to load for each file. Loading the remaining 90 MB from the uncompressed
file will take 9 times as long as the first 10 MB, while all that remains to be
done with the compressed file is to decompress the data, and this takes a
relatively short amount of time.

The loading size threshold is lower for network files, and also varies depending
on the type of computer being used. Network users loading compressed
MAT-files generally see faster load times than when loading uncompressed
files, and at smaller data sizes than users loading the same files locally.

Note Compression and decompression during save and load is done
transparently without the use of temporary files on disk. This is of
significance to large dataset users in particular.

Unicode Character Encoding
MATLAB saves character data to a MAT-file using Unicode character
encoding. As with data compression, Unicode character encoding is optional.
If you disable it, MATLAB writes the MAT-file using the default encoding for
your system. To disable Unicode character encoding on a per-command basis,
use the -v6 option with the save function:

save filename -v6

To disable Unicode character encoding for all of your MATLAB sessions,
open the Preferences dialog, select General and then MAT-Files, and
click the option that is equivalent to the command save -v6. See General
Preferences for MATLAB in the Desktop Tools and Development Environment
documentation for more information.

When writing character data to a non-HDF5-based MAT-file using Unicode
encoding (the default), MATLAB checks if the data is 7-bit ASCII. If it is,

6-68

Exporting Data to MAT-Files

MATLAB writes the 7-bit ASCII character data to the MAT-file using 8 bits
per character (UTF-8 format), thus minimizing the size of the resulting file.
Any character data that is not 7-bit ASCII is written in 16-bit Unicode form
(UTF-16). This algorithm operates on a per-string basis.

Note You cannot read a Unicode encoded MAT-file with MATLAB versions
earlier than Version 7. To write a MAT-file that you will be able to read
with one of these versions, save to the file with Unicode character encoding
disabled.

For more information on how MATLAB saves specific ASCII data formats,
and on preventing loss or corruption of character data, see “Writing Character
Data” in the MATLAB External Interfaces documentation.

Optional Output Formats
You can choose from any of the following formats for your output file. If you do
not specify a format, MATLAB uses the binary MAT-file format.

Output File Format Command

Binary MAT-file (default) save filename

8-digit ASCII save filename -ascii

8-digit ASCII, tab delimited save filename -ascii -tabs

16-digit ASCII save filename -ascii -double

16-digit ASCII, tab delimited save filename -ascii -double -tabs

MATLAB Version 4 compatible save filename -v4

Saving in ASCII Format
When saving in any of the ASCII formats, consider the following:

• Each variable to be saved must be either a two-dimensional double array
or a two-dimensional character array. Saving a complex double array
causes the imaginary part of the data to be lost, as MATLAB cannot load
nonnumeric data ('i').

6-69

6 Data Import and Export

• To read the file with the MATLAB load function, make sure all the
variables have the same number of columns. If you are using a program
other than MATLAB to read the saved data, this restriction can be relaxed.

• Each MATLAB character in a character array is converted to a
floating-point number equal to its internal ASCII code and written out as a
floating-point number string. There is no information in the saved file that
indicates whether the value was originally a number or a character.

• The values of all variables saved merge into a single variable that takes
the name of the ASCII file (minus any extension). Therefore, it is advisable
to save only one variable at a time.

Saving in Version 4 Format
With the -v4 option, you can save only those data constructs that are
compatible with MATLAB Version 4. Therefore, you cannot save structures,
cell arrays, multidimensional arrays, or objects. Variable names cannot
exceed 19 characters in length. In addition, you must use filenames that
are supported by MATLAB Version 4.

Storage Requirements
The binary formats used by save depend on the size and type of each array.
Arrays with any noninteger entries and arrays with 10,000 or fewer elements
are saved in floating-point formats requiring 8 bytes per real element. Arrays
with all integer entries and more than 10,000 elements are saved in the
formats shown, requiring fewer bytes per element.

Element Range Bytes per Element

0 to 255 1

0 to 65535 2

-32767 to 32767 2

-231 to 231-1 4

Other 8

6-70

Exporting Data to MAT-Files

Saving From External Programs
The MATLAB External Interfaces documentation provides details on reading
and writing MAT-files from external C or Fortran programs. It is important to
use recommended access methods, rather than rely upon the specific MAT-file
format, which is likely to change in the future.

6-71

6 Data Import and Export

Importing Data From MAT-Files

In this section...

“Using the load Function” on page 6-72

“Previewing MAT-File Contents” on page 6-72

“Loading Into a Structure” on page 6-73

“Loading Binary Data” on page 6-73

“Loading ASCII Data” on page 6-74

Using the load Function
To import variables from a binary or ASCII file on your disk to your
workspace, use the load function. You can load all variables from the
workspace in a single operation (if you omit the filename, MATLAB loads
from file matlab.mat):

load filename

or load just those variables that you specify:

load filename var1 var2 ... varN

Use the wildcard character (*) in the variable name to load those variables
that match a specific pattern. (This works for MAT-files only.) For example,
the following command loads all variables that start with str from file
strinfo.mat:

load strinfo str*

Caution When you import data into the MATLAB workspace, it overwrites
any existing variable in the workspace with the same name.

Previewing MAT-File Contents
To see what variables are stored in a MAT-file before actually loading the file
into your workspace, use whos -file filename. This command returns the
name, dimensions, size, and data type of all variables in the specified MAT-file.

6-72

Importing Data From MAT-Files

You can use whos -file on binary MAT-files only:

whos -file mydata.mat
Name Size Bytes Class

javArray 10x1 java.lang.Double[][]
spArray 5x5 84 double array (sparse)
strArray 2x5 678 cell array
x 3x2x2 96 double array
y 4x5 1230 cell array

Loading Into a Structure
To load MAT-file data into a MATLAB structure, specify an output variable
in your load command. This example reads the data in mydata.mat into the
fields of structure S:

S = load('mydata.mat')
S =

x: [3x2x2 double]
y: {4x5 cell}

spArray: [5x5 double]
strArray: {2x5 cell}
javArray: [10x1 java.lang.Double[][]]

whos S
Name Size Bytes Class

S 1x1 2840 struct array

Loading Binary Data
MAT-files are double-precision binary MATLAB format files created by the
save function and readable by the load function. They can be created on one
machine and later read by MATLAB on another machine with a different
floating-point format, retaining as much accuracy and range as the different
formats allow. They can also be manipulated by other programs, external
to MATLAB.

MAT-files can contain data in an uncompressed or a compressed form, or both.
MATLAB knows which variables in the file have been compressed by looking
at a tag that it attaches to each variable during the save operation. When

6-73

6 Data Import and Export

loading data from a MAT-file into the workspace, MATLAB automatically
handles the decompression of the appropriate data.

The External Interface libraries contain C- and Fortran-callable routines to
read and write MAT-files from external programs.

Loading ASCII Data
ASCII files must be organized as a rectangular table of numbers, with each
number in a row separated by a blank, comma, or tab character, and with
an equal number of elements in each row. MATLAB generates an error if
the number of values differs between any two rows. ASCII files can contain
MATLAB comments (lines that begin with %).

MATLAB returns all the data in the file as a single two-dimensional array
of type double. The number of rows in the array is equal to the number of
lines in the file, and the number of columns is equal to the number of values
on a line.

In the workspace, MATLAB assigns the array to a variable named after the
file being loaded (minus any file extension). For example, the command

load mydata.dat

reads all of the data from mydata.dat into the MATLAB workspace as a single
array, and assigns it to a variable called mydata. In naming the variable, load
precedes any leading underscores or digits in filename with an X and replaces
any other nonalphabetic characters with underscores.

For example, the command

load 10-May-data.dat

assigns the data in file 10-May-data.dat to a new workspace variable called
X10_May_data.

6-74

Importing Text Data

Importing Text Data

In this section...

“The MATLAB Import Wizard” on page 6-75

“Using Import Functions with Text Data” on page 6-75

“Importing Numeric Text Data” on page 6-78

“Importing Delimited ASCII Data Files” on page 6-79

“Importing Numeric Data with Text Headers” on page 6-80

“Importing Mixed Alphabetic and Numeric Data” on page 6-81

“Importing from XML Documents” on page 6-83

Caution When you import data into the MATLAB workspace, you overwrite
any existing variable in the workspace with the same name.

The MATLAB Import Wizard
The easiest way to import data into MATLAB is to use the Import Wizard.
You do not need to know the format of the data to use this tool. You simply
specify the file that contains the data and the Import Wizard processes the
file contents automatically.

For more information, see “Using the Import Wizard” on page 6-11.

Using Import Functions with Text Data
To import text data from the command line or in an M-file, you must use one
of the MATLAB import functions. Your choice of function depends on how
the data in the text file is formatted.

The text data must be formatted in a uniform pattern of rows and columns,
using a text character, called a delimiter or column separator, to separate each
data item. The delimiter can be a space, comma, semicolon, tab, or any other
character. The individual data items can be alphabetic or numeric characters
or a mix of both.

6-75

6 Data Import and Export

The text file can also contain one or more lines of text, called header lines, or
can use text headers to label each column or row. The following example
illustrates a tab-delimited text file with header text and row and column
headers.

To find out how your data is formatted, view it in a text editor. After you
determine the format, find the sample in the table below that most closely
resembles the format of your data. Then read the topic referred to in the table
for information on how to import that format.

Table 6-1 ASCII Data File Formats

Data Format Sample
File
Extension Description

1 2 3 4 5
6 7 8 9 10

.txt

.dat
or other

See “Importing Numeric Text
Data” on page 6-78 or “Using
the Import Wizard” on page
6-11 for information.

1; 2; 3; 4; 5
6; 7; 8; 9; 10
or
1, 2, 3, 4, 5
6, 7, 8, 9, 10

.txt

.dat

.csv
or other

See “Importing Delimited
ASCII Data Files” on page
6-79 or “Using the Import
Wizard” on page 6-11 for
information.

6-76

Importing Text Data

Table 6-1 ASCII Data File Formats (Continued)

Data Format Sample
File
Extension Description

Ann Type1 12.34 45 Yes
Joe Type2 45.67 67 No

.txt

.dat
or other

See “Importing Mixed
Alphabetic and Numeric Data”
on page 6-81 for information.

Grade1 Grade2 Grade3
91.5 89.2 77.3
88.0 67.8 91.0
67.3 78.1 92.5

.txt

.dat
or other

See “Importing Numeric Data
with Text Headers” on page
6-80 or “Using the Import
Wizard” on page 6-11 for
information.

If you are familiar with MATLAB import functions but are not sure when
to use them, see the following table, which compares the features of each
function.

Table 6-2 ASCII Data Import Function Features

Function Data Type Delimiters

Number
of Return
Values Notes

csvread Numeric data Commas
only

One Primarily used
with spreadsheet
data. See
“Working with
Spreadsheets” on
page 6-98.

dlmread Numeric data Any
character

One Flexible and easy
to use.

6-77

6 Data Import and Export

Table 6-2 ASCII Data Import Function Features (Continued)

Function Data Type Delimiters

Number
of Return
Values Notes

fscanf Alphabetic
and numeric;
however,
both types
returned in a
single return
variable

Any
character

One Part of low-level
file I/O routines.
Requires use of
fopen to obtain
file identifier and
fclose after read.

load Numeric data Spaces
only

One Easy to use. Use
the functional
form of load to
specify the name
of the output
variable.

textread Alphabetic
and numeric

Any
character

Multiple
values in
cell arrays

Flexible, powerful,
and easy to
use. Use format
string to specify
conversions.

textscan Alphabetic
and numeric

Any
character

Multiple
values
returned
to one cell
array

More flexible
than textread.
Also more format
options.

Importing Numeric Text Data
If your data file contains only numeric data, you can use many of the
MATLAB import functions (listed in ASCII Data Import Function Features on
page 6-77), depending on how the data is delimited. If the data is rectangular,
that is, each row has the same number of elements, the simplest command
to use is the load command. (The load function can also be used to import
MAT-files, the MATLAB binary format for saving the workspace.)

6-78

Importing Text Data

For example, the file named my_data.txt contains two rows of numbers
delimited by space characters:

1 2 3 4 5
6 7 8 9 10

When you use load as a command, it imports the data and creates a variable
in the workspace with the same name as the filename, minus the file
extension:

load my_data.txt;
whos

Name Size Bytes Class

my_data 2x5 80 double array

my_data

my_data =
1 2 3 4 5
6 7 8 9 10

If you want to name the workspace variable something other than the
filename, use the functional form of load. In the following example, the data
from my_data.txt is loaded into the workspace variable A:

A = load('my_data.txt');

Importing Delimited ASCII Data Files
If your data file uses a character other than a space as a delimiter, you have
a choice of several import functions you can use. (See ASCII Data Import
Function Features on page 6-77 for a complete list.) The simplest to use is
the dlmread function.

For example, consider a file named ph.dat whose contents are separated by
semicolons:

7.2;8.5;6.2;6.6
5.4;9.2;8.1;7.2

To read the entire contents of this file into an array named A, enter

6-79

6 Data Import and Export

A = dlmread('ph.dat', ';');

You specify the delimiter used in the data file as the second argument to
dlmread. Note that, even though the last items in each row are not followed
by a delimiter, dlmread can still process the file correctly. dlmread ignores
space characters between data elements. So, the preceding dlmread command
works even if the contents of ph.dat are

7.2; 8.5; 6.2;6.6
5.4; 9.2 ;8.1;7.2

Importing Numeric Data with Text Headers
To import an ASCII data file that contains text headers, use the textscan
function, specifying the headerlines parameter. textscan accepts a set of
predefined parameters that control various aspects of the conversion. (For a
complete list of these parameters, see the textscan reference page.) Using
the headerlines parameter, you can specify the number of lines at the head
of the file that textscan should ignore.

For example, the file grades.dat contains formatted numeric data with a
one-line text header:

Grade1 Grade2 Grade3
78.8 55.9 45.9
99.5 66.8 78.0
89.5 77.0 56.7

To import this data, first open the file and then use this textscan command
to read the contents:

fid = fopen('grades.dat', 'r');
grades = textscan(fid, '%f %f %f', 3, 'headerlines', 1);

grades{:}
ans =

78.8000
99.5000
89.5000

ans =
55.9000

6-80

Importing Text Data

66.8000
77.0000

ans =
45.9000
78.0000
56.7000

fclose(fid);

Importing Mixed Alphabetic and Numeric Data
If your data file contains a mix of alphabetic and numeric ASCII data, use
the textscan or textread function to import the data. textscan returns its
output in a single cell array, while textread returns its output in separate
variables and you can specify the data type of each variable. The textscan
function offers better performance than textread, making it a better choice
when reading large files.

This example uses textread to import the file mydata.dat that contains a
mix of alphabetic and numeric data:

Sally Type1 12.34 45 Yes
Larry Type2 34.56 54 Yes
Tommy Type1 67.89 23 No

Note To read an ASCII data file that contains numeric data with text column
headers, see “Importing Numeric Data with Text Headers” on page 6-80.

To read the entire contents of the file mydata.dat into the workspace, specify
the name of the data file and the format string as arguments to textread. In
the format string, you include conversion specifiers that define how you want
each data item to be interpreted. For example, specify %s for string data, %f
for floating-point data, and so on. (For a complete list of format specifiers, see
the textread reference page.)

For each conversion specifier in your format string, you must specify a
separate output variable. textread processes each data item in the file as
specified in the format string and puts the value in the output variable. The

6-81

6 Data Import and Export

number of output variables must match the number of conversion specifiers
in the format string.

In this example, textread reads the file mydata.dat, applying the format
string to each line in the file until the end of the file:

[names, types, x, y, answer] = ...
textread('mydata.dat', '%s %s %f %d %s', 3)

names =
'Sally'
'Larry'
'Tommy'

types =
'Type1'
'Type2'
'Type1'

x =
12.3400
34.5600
67.8900

y =
45
54
23

answer =
'Yes'
'Yes'
'No'

If your data uses a character other than a space as a delimiter, you must use
the textread parameter 'delimiter' to specify the delimiter. For example,
if the file mydata.dat used a semicolon as a delimiter, you would use this
command:

[names, types, x, y, answer]= ...
textread('mydata.dat', '%s %s %f %d %s', 'delimiter', ';')

6-82

Importing Text Data

See the textread reference page for more information about these optional
parameters.

Importing from XML Documents
With the xmlread function, you can read from a given URL or file, generating
a Document Object Model (DOM) node to represent the parsed document.

MATLAB also provides these other XML functions:

• xmlwrite — Serializes a Document Object Model node to a file

• xslt — Transforms an XML document using an XSLT engine

See the reference pages for these functions for more information.

6-83

6 Data Import and Export

Exporting Text Data

In this section...

“Overview” on page 6-84

“Exporting Delimited ASCII Data Files” on page 6-86

“Using the diary Function to Export Data” on page 6-87

“Exporting to XML Documents” on page 6-88

Overview
This section describes how to use MATLAB functions to export data in several
common ASCII formats. For example, you can use these functions to export a
MATLAB matrix as a text file where the rows and columns are represented
as space-separated, numeric values. The function you use depends on the
amount of data you want to export and its format. Topics covered include

If you are not sure which section describes your data, find the sample in the
table below that most nearly matches the data format you want to create.
Then read the section referred to in the table.

If you are familiar with MATLAB export functions but are not sure when to
use them, see ASCII Data Export Function Features on page 6-85, which
compares the features of each function.

Note If C or Fortran routines for writing data files in the form needed by
other applications exist, create a MEX-file to write the data. See the MATLAB
External Interfaces documentation for more information.

6-84

Exporting Text Data

Table 6-3 ASCII Data File Formats

Data Format
Sample MATLAB Export Function

1 2 3 4 5 6
7 8 9 10

See “Exporting Delimited ASCII Data Files” on page 6-86
and “Using the diary Function to Export Data” on page
6-87 for information about these options.

1; 2; 3; 4;
5; 6; 7; 8;
9; 10;

See “Exporting Delimited ASCII Data Files” on page 6-86
for information. The example shows a semicolon-delimited
file, but you can specify another character as the delimiter.

Table 6-4 ASCII Data Export Function Features

Function Use With Delimiters Notes

csvwrite Numeric
data

Commas only Primarily used with
spreadsheet data.
See “Working with
Spreadsheets” on page
6-98.

diary Numeric
data or cell
array

Spaces only Can be used for small
arrays. Requires editing
of data file to remove
extraneous text.

dlmwrite Numeric
data

Any character Easy to use, flexible.

6-85

6 Data Import and Export

Table 6-4 ASCII Data Export Function Features (Continued)

Function Use With Delimiters Notes

fprintf Alphabetic
and numeric
data

Any character Part of low-level file I/O
routines. This function
is the most flexible but
also the most difficult to
use. You must use fopen
to obtain a file identifier
before writing the data
and fclose to close the file
after writing the data.

save Numeric
data

Tabs or spaces Easy to use; output values
are high precision.

Exporting Delimited ASCII Data Files
To export an array as a delimited ASCII data file, you can use either the
save function, specifying the -ASCII qualifier, or the dlmwrite function. The
save function is easy to use; however, the dlmwrite function provides more
flexibility, allowing you to specify any character as a delimiter and to export
subsets of an array by specifying a range of values.

Using the save Function
To export the array A,

A = [1 2 3 4 ; 5 6 7 8];

use the save function, as follows:

save my_data.out A -ASCII

If you view the created file in a text editor, it looks like this:

1.0000000e+000 2.0000000e+000 3.0000000e+000 4.0000000e+000
5.0000000e+000 6.0000000e+000 7.0000000e+000 8.0000000e+000

By default, save uses spaces as delimiters but you can use tabs instead of
spaces by specifying the -tabs option.

6-86

Exporting Text Data

When you use save to write a character array to an ASCII file, it writes the
ASCII equivalent of the characters to the file. If you write the character string
'hello' to a file, save writes the values

104 101 108 108 111

Using the dlmwrite Function
To export an array in ASCII format and specify the delimiter used in the file,
use the dlmwrite function.

For example, to export the array A,

A = [1 2 3 4 ; 5 6 7 8];

as an ASCII data file that uses semicolons as a delimiter, use this command:

dlmwrite('my_data.out',A, ';')

If you view the created file in a text editor, it looks like this:

1;2;3;4
5;6;7;8

Note that dlmwrite does not insert delimiters at the end of rows.

By default, if you do not specify a delimiter, dlmwrite uses a comma as a
delimiter. You can specify a space (' ') as a delimiter or, if you specify empty
quotes (''), no delimiter.

Using the diary Function to Export Data
To export small numeric arrays or cell arrays, you can use the diary function.
diary creates a verbatim copy of your MATLAB session in a disk file
(excluding graphics).

For example, if you have the array A in your workspace,

A = [1 2 3 4; 5 6 7 8];

6-87

6 Data Import and Export

execute these commands at the MATLAB prompt to export this array using
diary:

1 Turn on the diary function. You can optionally name the output file diary
creates.

diary my_data.out

2 Display the contents of the array you want to export. This example displays
the array A. You could also display a cell array or other MATLAB data type.

A =
1 2 3 4
5 6 7 8

3 Turn off the diary function.

diary off

diary creates the file my_data.out and records all the commands executed
in the MATLAB session until it is turned off.

A =

1 2 3 4
5 6 7 8

diary off

4 Open the diary file my_data.out in a text editor and remove all the
extraneous text.

Exporting to XML Documents
With the xmlwrite function, you can serialize a Document Object Model
(DOM) node to an XML file.

MATLAB also provides these other XML functions:

• xmlread — Imports from a given URL or file to a Document Object Model
node

6-88

Exporting Text Data

• xslt — Transforms an XML document using an XSLT engine

See the reference pages for these functions for more information.

6-89

6 Data Import and Export

Working with Graphics Files

In this section...

“Getting Information About Graphics Files” on page 6-90

“Importing Graphics Data” on page 6-91

“Exporting Graphics Data” on page 6-91

Getting Information About Graphics Files
If you have a file in a standard graphics format, use the imfinfo function to
get information about its contents. The imfinfo function returns a structure
containing information about the file. The fields in the structure vary with
the file format but imfinfo always returns some basic information including
filename, last modification date, file size, and format.

This example returns information about a file in Joint Photographic Experts
Group (JPEG) format:

info = imfinfo('ngc6543a.jpg')

info =

Filename: [1x57 char]
FileModDate: '01-Oct-1996 16:19:44'

FileSize: 27387
Format: 'jpg'

FormatVersion: ''
Width: 600

Height: 650
BitDepth: 24

ColorType: 'truecolor'
FormatSignature: ''
NumberOfSamples: 3

CodingMethod: 'Huffman'
CodingProcess: 'Sequential'

Comment: {[1x69 char]}

6-90

Working with Graphics Files

Importing Graphics Data
To import data into the MATLAB workspace from a graphics file, use the
imread function. Using this function, you can import data from files in
many standard file formats, including the Tagged Image File Format (TIFF),
Graphics Interchange Format (GIF), Joint Photographic Experts Group
(JPEG), and Portable Network Graphics (PNG) formats. For a complete list of
supported formats, see the imread reference page.

This example reads the image data stored in a file in JPEG format into the
MATLAB workspace as the array I:

I = imread('ngc6543a.jpg');

imread represents the image in the workspace as a multidimensional array of
class uint8. The dimensions of the array depend on the format of the data.
For example, imread uses three dimensions to represent RGB color images:

whos I
Name Size Bytes Class

I 650x600x3 1170000 uint8 array

Grand total is 1170000 elements using 1170000 bytes

Exporting Graphics Data
To export data from the MATLAB workspace using one of the standard
graphics file formats, use the imwrite function. Using this function, you can
export data in formats such as the Tagged Image File Format (TIFF), Joint
Photographic Experts Group (JPEG), and Portable Network Graphics (PNG).
For a complete list of supported formats, see the imwrite reference page.

The following example writes a multidimensional array of uint8 data I from
the MATLAB workspace into a file in TIFF format. The class of the output
image written to the file depends on the format specified. For most formats, if
the input array is of class uint8, imwrite outputs the data as 8-bit values.
See the imwrite reference page for details.

whos I
Name Size Bytes Class

6-91

6 Data Import and Export

I 650x600x3 1170000 uint8 array

Grand total is 1170000 elements using 1170000 bytes
imwrite(I, 'my_graphics_file.tif','tif');

Note imwrite supports different syntaxes for several of the standard formats.
For example, with TIFF file format, you can specify the type of compression
used to store the image. See the imwrite reference page for details.

6-92

Working with Audio and Video Data

Working with Audio and Video Data

In this section...

“Getting Information About Audio/Video Files” on page 6-93

“Importing Audio/Video Data” on page 6-94

“Exporting Audio/Video Data” on page 6-95

Getting Information About Audio/Video Files
MATLAB includes several functions that you can use to get information
about files that contain audio data, video data, or both. Some work only with
specific file formats. One function, the mmfileinfo function, can retrieve
information about many file formats.

Format-Specific Functions
MATLAB includes several functions that return information about files that
contain audio and video data in specific formats.

• aufinfo — Returns a text description of the contents of a sound (AU) file

• aviinfo — Returns a structure containing information about the contents
of an Audio/Video Interleaved (AVI) file

• wavfinfo — Returns a text description of the contents of a sound (WAV) file

Using the General Multimedia Information Function
MATLAB also includes a general-purpose, audio/video file information
function named mmfileinfo. The mmfileinfo function returns information
about both the audio data in a file as well as the video data in the file, if
present.

Note mmfileinfo can be used only on Windows systems.

6-93

6 Data Import and Export

Importing Audio/Video Data
MATLAB includes several functions that you can use to bring audio or video
data into the MATLAB workspace. Some of these functions read audio or
video data from files. Another way to import audio data into the MATLAB
workspace is to record it using an audio input device, such as a microphone.
The following sections describe

• “Reading Audio and Video Data from a File” on page 6-94

• “Recording Audio Data” on page 6-94

Reading Audio and Video Data from a File
MATLAB includes several functions for reading audio or video data from a
file. These files are format-specific.

• auread — Returns sound data from a sound (AU) file

• aviread — Returns AVI data as a MATLAB movie

• mmreader — Returns AVI, MPG, or WMV video data

• wavread — Returns sound data from a sound (WAV) file

Note mmreader can be used only on Windows systems.

Recording Audio Data
To bring sound data into the MATLAB workspace by recording it from an
audio input device, use the audio recorder object. This object represents
the connection between MATLAB and an audio input device, such as a
microphone, that is connected to your system. You use the audiorecorder
function to create this object and then use methods and properties of the
object to record the audio data.

On PCs running Windows, you can also use the wavrecord function to bring
live audio data in WAV format into the MATLAB workspace.

6-94

Working with Audio and Video Data

Once you import audio data, MATLAB supports several ways to listen to the
data. You can use an audio player object to play the audio data. Use the
audioplayer function to create an audio player object.

You can also use the sound or soundsc function.

On PCs running Windows, you can use the wavplay function to listen to .wav
files.

Exporting Audio/Video Data
MATLAB includes several functions that you can use to export audio or video
data from the MATLAB workspace. These functions write audio data to a file
using specific file formats. The following sections describe

• “Exporting Audio Data” on page 6-95

• “Exporting Video Data in AVI Format” on page 6-95

This section also provides an example of writing video data to a file in
“Example: Creating an AVI file” on page 6-96.

Exporting Audio Data
In MATLAB, audio data is simply numeric data that you can export using
standard MATLAB data export functions, such as save.

MATLAB also includes several functions that write audio data to files in
specific file formats:

• auwrite — Exports sound data in AU file format

• wavwrite — Exports sound data in WAV file format

Exporting Video Data in AVI Format
You can export MATLAB video data as an Audio/Video Interleaved (AVI) file.
To do this, you use the avifile function to create an avifile object. Once
you have the object, you can use AVI file object methods and properties to
control various aspects of the data export process.

6-95

6 Data Import and Export

For example, in MATLAB, you can save a sequence of graphs as a movie
that can then be played back using the movie function. You can export a
MATLAB movie by saving it in MAT-file format, like any other MATLAB
workspace variable. However, anyone who wants to view your movie must
have MATLAB. (For more information about MATLAB movies, see the
Animation section in the MATLAB Graphics documentation.)

To export a sequence of MATLAB graphs in a format that does not require
MATLAB for viewing, save the figures in Audio/Video Interleaved (AVI)
format. AVI is a file format that allows animation and video clips to be played
on a PC running Windows or on UNIX systems.

Note To convert an existing MATLAB movie into an AVI file, use the
movie2avi function.

Example: Creating an AVI file
To export a sequence of MATLAB graphs as an AVI format movie, perform
these steps:

1 Create an AVI file object, using the avifile function.

aviobj = avifile('mymovie.avi','fps',5);

AVI file objects support properties that let you control various
characteristics of the AVI movie, such as colormap, compression, and
quality. (See the avifile reference page for a complete list.) avifile uses
default values for all properties, unless you specify a value. The example
sets the value of the frames per second (fps) property.

2 Capture the sequence of graphs and put them into the AVI file, using the
addframe function.

for k=1:25
h = plot(fft(eye(k+16)));
set(h,'EraseMode','xor');
axis equal;
frame = getframe(gca);
aviobj = addframe(aviobj,frame);

6-96

Working with Audio and Video Data

end

The example uses a for loop to capture the series of graphs to be included
in the movie. You typically use addframe to capture a sequence of graphs
for AVI movies. However, because this particular MATLAB animation uses
XOR graphics, you must call getframe to capture the graphs and then call
addframe to add the captured frame to the movie.

3 Close the AVI file, using the close function.

aviobj = close(aviobj);

6-97

6 Data Import and Export

Working with Spreadsheets

In this section...

“Microsoft Excel Spreadsheets” on page 6-98

“Lotus 123 Spreadsheets” on page 6-101

Microsoft Excel Spreadsheets
This section covers

• “Getting Information About the File” on page 6-98

• “Exporting to the File” on page 6-99

• “Importing from the File” on page 6-100

See the xlsfinfo, xlswrite, and xlsread reference pages for more detailed
information and examples.

Getting Information About the File
Use the xlsfinfo function to determine if a file contains a readable Microsoft
Excel spreadsheet.

Inputs to xlsfinfo are

• Name of the spreadsheet file

Outputs from xlsfinfo are

• String 'Microsoft Excel Spreadsheet' if the file contains an Excel
worksheet readable with the xlsread function. Otherwise, it contains
an empty string ('').

• Cell array of strings containing the names of each worksheet in the file.

Example — Querying an XLS File. This example returns information
about spreadsheet file tempdata.xls:

[type, sheets] = xlsfinfo('tempdata.xls')

6-98

Working with Spreadsheets

type =
Microsoft Excel Spreadsheet
sheets =

'Locations' 'Rainfall' 'Temperatures'

Exporting to the File
Use the xlswrite function to export a matrix to an Excel spreadsheet file.
With xlswrite, you can export data from the workspace to any worksheet in
the file, and to any location within that worksheet.

Inputs to xlswrite are

• Name of the spreadsheet file

• Matrix to be exported

• Name of the worksheet to receive the data

• Range of cells on the worksheet in which to write the data

Outputs from xlswrite are

• Pass or fail status

• Any warning or error message generated along with its message identifier

Example — Writing To an XLS File. This example writes a mix of text and
numeric data to the file tempdata.xls. Call xlswrite, specifying a worksheet
labeled Temperatures, and the region within the worksheet to write the data
to. The 4-by-2 matrix is written to the rectangular region that starts at cell E1
in its upper-left corner:

d = {'Time', 'Temp'; 12 98; 13 99; 14 97}
d =

'Time' 'Temp'
[12] [98]
[13] [99]
[14] [97]

xlswrite('tempdata.xls', d, 'Temperatures', 'E1');

6-99

6 Data Import and Export

Adding a New Worksheet. If the worksheet being written to does not
already exist in the file, MATLAB displays the following warning:

Warning: Added specified worksheet.

You can disable these warnings with the command

warning off MATLAB:xlswrite:AddSheet

Importing from the File
Use xlsread to import a matrix from an Excel spreadsheet file into the
MATLAB workspace. You can import data from any worksheet in the file,
and from any location within that worksheet. You can also optionally have
xlsread open an Excel window showing the file and then interactively select
the worksheet and range of data to be read by the function.

Inputs to xlsread are

• Name of the spreadsheet file

• Matrix to be imported

• Name of the worksheet from which to read the data

• Range of cells on the worksheet from which to read the data

• Keyword that opens an Excel window, enabling you to interactively select
the worksheet and range of data to read

• Keyword that imports using basic import mode

Three separate outputs from xlsread are

• Numeric data

• String data

• Any unprocessed cell content

Example — Reading from an XLS File. Continuing with the previous
example, to import only the numeric data, use xlsread with a single return
argument. xlsread ignores any leading row or column of text in the numeric
result:

6-100

Working with Spreadsheets

ndata = xlsread('tempdata.xls', 'Temperatures')
ndata =

12 98
13 99
14 97

To import both numeric data and text data, specify two return values for
xlsread:

[ndata, headertext] = xlsread('tempdata.xls', 'Temperatures')

headertext =
'Time' 'Temp'

ndata =
12 98
13 99
14 97

Lotus 123 Spreadsheets
This section covers

• “Getting Information About the File” on page 6-101

• “Exporting to the File” on page 6-102

• “Importing from the File” on page 6-103

See the wk1finfo, wk1write, and wk1read reference pages for more detailed
information and examples.

Getting Information About the File
Use the wk1finfo function to determine if a file contains a Lotus WK1
spreadsheet:

Inputs to wk1finfo are

• Name of the spreadsheet file

Outputs from wk1finfo are

6-101

6 Data Import and Export

• String 'WK1' if the file is a Lotus spreadsheet readable with the wk1read
function. Otherwise, it contains an empty string ('').

• String 'Lotus 123 Spreadsheet'

Example — Querying a WK1 File. This example returns information
about spreadsheet file matA.wk1:

[extens, type] = wk1finfo('matA.wk1')

extens =
WK1

type =
Lotus 123 Spreadsheet

Exporting to the File
Use the wk1write function to export a matrix to a Lotus spreadsheet file. You
have the choice of positioning the matrix starting at the first row and column
of the spreadsheet, or at any other location in the file.

To export to a specific location in the file, use the second syntax, indicating a
zero-based starting row and column.

Inputs to wk1write are

• Name of the spreadsheet file

• Matrix to be exported

• Location in the file in which to write the data

Example — Writing to a WK1 File. This example exports an 8-by-8 matrix
to spreadsheet file matA.wk1:

A = [1:8; 11:18; 21:28; 31:38; 41:48; 51:58; 61:68; 71:78];
A =

1 2 3 4 5 6 7 8
11 12 13 14 15 16 17 18
21 22 23 24 25 26 27 28
31 32 33 34 35 36 37 38

6-102

Working with Spreadsheets

41 42 43 44 45 46 47 48
51 52 53 54 55 56 57 58
61 62 63 64 65 66 67 68
71 72 73 74 75 76 77 78

wk1write('matA.wk1', A);

Importing from the File
To import data from the spreadsheet into the MATLAB workspace, use
wk1read. There are three ways to call wk1read. The first two shown here are
similar to wk1write. The third enables you to select a range of values from
the spreadsheet. You can specify the range argument with a one-based vector,
spreadsheet notation (e.g., 'A1..B7'), or using a named range (e.g., 'Sales').

Inputs to wk1read are

• Name of the spreadsheet file

• Spreadsheet location from which to read the data

• Range of cells from which to read the data

Outputs from wk1read are

• Requested data from the spreadsheet

Example — Reading from a WK1 File. Read in a limited block of the
spreadsheet data by specifying the upper-left row and column of the block
using zero-based indexing:

M = wk1read('matA.wk1', 3, 2)
M =

33 34 35 36 37 38
43 44 45 46 47 48
53 54 55 56 57 58
63 64 65 66 67 68
73 74 75 76 77 78

6-103

6 Data Import and Export

Using Low-Level File I/O Functions

In this section...

“Overview” on page 6-104

“Opening Files” on page 6-105

“Reading Binary Data” on page 6-107

“Writing Binary Data” on page 6-109

“Controlling Position in a File” on page 6-109

“Reading Strings Line by Line from Text Files” on page 6-112

“Reading Formatted ASCII Data” on page 6-113

“Writing Formatted Text Files” on page 6-114

“Closing a File” on page 6-115

Overview
MATLAB includes a set of low-level file I/O functions that are based on the I/O
functions of the ANSI Standard C Library. If you know C, you are probably
familiar with these routines.

To read or write data, perform these steps:

1 Open the file, using fopen. fopen returns a file identifier that you use with
all the other low-level file I/O routines.

2 Operate on the file.

a Read binary data, using fread.

b Write binary data, using fwrite.

c Read text strings from a file line-by-line, using fgets or fgetl.

d Read formatted ASCII data, using fscanf.

e Write formatted ASCII data, using fprintf.

3 Close the file, using fclose.

6-104

Using Low-Level File I/O Functions

This section also describes how these functions affect the current position
in the file where read or write operations happen and how you can change
the position in the file.

Note While the MATLAB file I/O commands are modeled on the C language
I/O routines, in some ways their behavior is different. For example, the fread
function is vectorized; that is, it continues reading until it encounters a text
string or the end of file. These sections, and the MATLAB reference pages for
these functions, highlight any differences in behavior.

Opening Files
Before reading or writing a text or binary file, you must open it with the
fopen command.

fid = fopen('filename','permission')

Specifying the Permission String
The permission string specifies the kind of access to the file you require.
Possible permission strings include

• r for reading only

• w for writing only

• a for appending only

• r+ for both reading and writing

Note Systems such as Microsoft Windows that distinguish between text and
binary files might require additional characters in the permission string, such
as 'rb' to open a binary file for reading.

Using the Returned File Identifier (fid)
If successful, fopen returns a nonnegative integer, called a file identifier
(fid). You pass this value as an argument to the other I/O functions to access

6-105

6 Data Import and Export

the open file. For example, this fopen statement opens the data file named
penny.dat for reading:

fid = fopen('penny.dat','r')

If fopen fails, for example if you try to open a file that does not exist, fopen

• Assigns -1 to the file identifier.

• Assigns an error message to an optional second output argument. Note
that the error messages are system dependent and are not provided for all
errors on all systems. The function ferror can also provide information
about errors.

Test the file identifier each time you open a file in your code. For example,
this code loops until a readable filename is entered:

fid=0;
while fid < 1

filename=input('Open file: ', 's');
[fid,message] = fopen(filename, 'r');
if fid == -1

disp(message)
end

end

When you run this code, if you specify a file that doesn’t exist, such as
nofile.mat, at the Open file: prompt, the results are

Open file: nofile.mat
Sorry. No help in figuring out the problem . . .

If you specify a file that does exist, such as goodfile.mat, the code example
returns the file identifier, fid, and exits the loop.

Open file: goodfile.mat

6-106

Using Low-Level File I/O Functions

Opening Temporary Files and Directories
The tempdir and tempname functions assist in locating temporary data on
your system.

Function Purpose

tempdir Get temporary directory name.

tempname Get temporary filename.

Use these functions to create temporary files. Some systems delete temporary
files every time you reboot the system. On other systems, designating a file as
temporary can mean only that the file is not backed up.

The tempdir function returns the name of the directory or folder that has
been designated to hold temporary files on your system. For example, issuing
tempdir on a UNIX system returns the /tmp directory.

MATLAB also provides a tempname function that returns a filename in the
temporary directory. The returned filename is a suitable destination for
temporary data. For example, if you need to store some data in a temporary
file, then you might issue the following command first:

fid = fopen(tempname, 'w');

Note The filename that tempname generates is not guaranteed to be unique;
however, it is likely to be so.

Reading Binary Data
The fread function reads all or part of a binary file (as specified by a file
identifier) and stores it in a matrix. In its simplest form, it reads an entire
file and interprets each byte of input as the next element of the matrix. For
example, the following code reads the data from a file named nickel.dat
into matrix A:

fid = fopen('nickel.dat','r');
A = fread(fid);

6-107

6 Data Import and Export

To echo the data to the screen after reading it, use char to display the contents
of A as characters, transposing the data so it is displayed horizontally:

disp(char(A'))

The char function causes MATLAB to interpret the contents of A as characters
instead of as numbers. Transposing A displays it in its more natural
horizontal format.

Controlling the Number of Values Read
fread accepts an optional second argument that controls the number of
values read (if unspecified, the default is the entire file). For example, this
statement reads the first 100 data values of the file specified by fid into
the column vector A.

A = fread(fid,100);

Replacing the number 100 with the matrix dimensions [10 10] reads the
same 100 elements into a 10-by-10 array.

Controlling the Data Type of Each Value
An optional third argument to fread controls the data type of the input. The
data type argument controls both the number of bits read for each value and
the interpretation of those bits as character, integer, or floating-point values.
MATLAB supports a wide range of precisions, which you can specify with
MATLAB specific strings or their C or Fortran equivalents.

Some common precisions include

• 'char' and 'uchar' for signed and unsigned characters (usually 8 bits)

• 'short' and 'long' for short and long integers (usually 16 and 32 bits,
respectively)

• 'float' and 'double' for single- and double-precision floating-point
values (usually 32 and 64 bits, respectively)

6-108

Using Low-Level File I/O Functions

Note The meaning of a given precision can vary across different hardware
platforms. For example, a 'uchar' is not always 8 bits. fread also provides
a number of more specific precisions, such as 'int8' and 'float32'. If
in doubt, use precisions that are not platform dependent. See fread for
a complete list of precisions.

For example, if fid refers to an open file containing single-precision
floating-point values, then the following command reads the next 10
floating-point values into a column vector A:

A = fread(fid,10,'float');

Writing Binary Data
The fwrite function writes the elements of a matrix to a file in a specified
numeric precision, returning the number of values written. For instance,
these lines create a 100-byte binary file containing the 25 elements of the
5-by-5 magic square, each stored as 4-byte integers:

fwriteid = fopen('magic5.bin','w');
count = fwrite(fwriteid,magic(5),'int32');
status = fclose(fwriteid);

In this case, fwrite sets the count variable to 25 unless an error occurs, in
which case the value is less.

Controlling Position in a File
Once you open a file with fopen, MATLAB maintains a file position indicator
that specifies a particular location within a file. MATLAB uses the file
position indicator to determine where in the file the next read or write
operation will begin. The following sections describe how to

• Determine whether the file position indicator is at the end of the file

• Move to a specific location in the file

• Retrieve the current location of the file position indicator

• Reset the file position indicator to the beginning of the file

6-109

6 Data Import and Export

Setting and Querying the File Position
The fseek and ftell functions enable you to set and query the position in the
file at which the next input or output operation takes place:

• The fseek function repositions the file position indicator, letting you skip
over data or back up to an earlier part of the file.

• The ftell function gives the offset in bytes of the file position indicator for
a specified file.

The syntax for fseek is

status = fseek(fid,offset,origin)

fid is the file identifier for the file. offset is a positive or negative offset
value, specified in bytes. origin is one of the following strings that specify
the location in the file from which to calculate the position.

'bof' Beginning of file

'cof' Current position in file

'eof' End of file

Example of Using fseek And ftell
To see how fseek and ftell work, consider this short M-file:

A = 1:5;
fid = fopen('five.bin','w');
fwrite(fid, A,'short');
status = fclose(fid);

This code writes out the numbers 1 through 5 to a binary file named five.bin.
The call to fwrite specifies that each numerical element be stored as a short.
Consequently, each number uses two storage bytes.

Now reopen five.bin for reading:

fid = fopen('five.bin','r');

6-110

Using Low-Level File I/O Functions

This call to fseek moves the file position indicator forward 6 bytes from the
beginning of the file:

status = fseek(fid,6,'bof');

This call to fread reads whatever is at file positions 7 and 8 and stores it
in variable four:

four = fread(fid,1,'short');

The act of reading advances the file position indicator. To determine the
current file position indicator, call ftell:

position = ftell(fid)

position =

8

This call to fseek moves the file position indicator back 4 bytes:

status = fseek(fid,-4,'cof');

Calling fread again reads in the next value (3):

three = fread(fid,1,'short');

6-111

6 Data Import and Export

Reading Strings Line by Line from Text Files
MATLAB provides two functions, fgetl and fgets, that read lines from
formatted text files and store them in string vectors. The two functions are
almost identical; the only difference is that fgets copies the newline character
to the string vector but fgetl does not.

The following M-file function demonstrates a possible use of fgetl. This
function uses fgetl to read an entire file one line at a time. For each line,
the function determines whether an input literal string (literal) appears in
the line.

If it does, the function prints the entire line preceded by the number of times
the literal string appears on the line.

function y = litcount(filename, literal)
% Search for number of string matches per line.

fid = fopen(filename, 'rt');
y = 0;
while feof(fid) == 0

tline = fgetl(fid);
matches = findstr(tline, literal);
num = length(matches);
if num > 0

y = y + num;
fprintf(1,'%d:%s\n',num,tline);

end
end
fclose(fid);

For example, consider the following input data file called badpoem:

Oranges and lemons,
Pineapples and tea.
Orangutans and monkeys,
Dragonflys or fleas.

To find out how many times the string 'an' appears in this file, use litcount:

litcount('badpoem','an')
2: Oranges and lemons,

6-112

Using Low-Level File I/O Functions

1: Pineapples and tea.
3: Orangutans and monkeys,

Reading Formatted ASCII Data
The fscanf function is like the fscanf function in standard C. Both functions
operate in a similar manner, reading data from a file and assigning it to one
or more variables. Both functions use the same set of conversion specifiers to
control the interpretation of the input data.

The conversion specifiers for fscanf begin with a % character; common
conversion specifiers include.

Conversion Specifier Description

%s Match a string.

%d Match an integer in base 10 format.

%g Match a double-precision floating-point value.

You can also specify that fscanf skip a value by specifying an asterisk in a
conversion specifier. For example, %*f means skip the floating-point value in
the input data; %*d means skip the integer value in the input data.

Differences Between the MATLAB fscanf and the C fscanf
Despite all the similarities between the MATLAB and C versions of fscanf,
there are some significant differences. For example, consider a file named
moon.dat for which the contents are as follows:

3.654234533
2.71343142314
5.34134135678

The following code reads all three elements of this file into a matrix named
MyData:

fid = fopen('moon.dat','r');
MyData = fscanf(fid,'%g');
status = fclose(fid);

6-113

6 Data Import and Export

Notice that this code does not use any loops. Instead, the fscanf function
continues to read in text as long as the input format is compatible with the
format specifier.

An optional size argument controls the number of matrix elements read. For
example, if fid refers to an open file containing strings of integers, then this
line reads 100 integer values into the column vector A:

A = fscanf(fid,'%5d',100);

This line reads 100 integer values into the 10-by-10 matrix A:

A = fscanf(fid,'%5d',[10 10]);

A related function, sscanf, takes its input from a string instead of a file. For
example, this line returns a column vector containing 2 and its square root:

root2 = num2str([2, sqrt(2)]);
rootvalues = sscanf(root2,'%f');

Writing Formatted Text Files
The fprintf function converts data to character strings and outputs them to
the screen or a file. A format control string containing conversion specifiers
and any optional text specify the output format. The conversion specifiers
control the output of array elements; fprintf copies text directly.

Common conversion specifiers include

Conversion Specifier Description

%e Exponential notation

%f Fixed-point notation

%g Automatically select the shorter of %e and %f

Optional fields in the format specifier control the minimum field width and
precision. For example, this code creates a text file containing a short table
of the exponential function:

x = 0:0.1:1;
y = [x; exp(x)];

6-114

Using Low-Level File I/O Functions

The code below writes x and y into a newly created file named exptable.txt:

fid = fopen('exptable.txt','w');
fprintf(fid,'Exponential Function\n\n');
fprintf(fid,'%6.2f %12.8f\n',y);
status = fclose(fid);

The first call to fprintf outputs a title, followed by two carriage returns.
The second call to fprintf outputs the table of numbers. The format control
string specifies the format for each line of the table:

• A fixed-point value of six characters with two decimal places

• Two spaces

• A fixed-point value of twelve characters with eight decimal places

fprintf converts the elements of array y in column order. The function uses
the format string repeatedly until it converts all the array elements.

Now use fscanf to read the exponential data file:

fid = fopen('exptable.txt','r');
title = fgetl(fid);
[table,count] = fscanf(fid,'%f %f',[2 11]);
table = table';
status = fclose(fid);

The second line reads the file title. The third line reads the table of values,
two floating-point values on each line, until it reaches end of file. count
returns the number of values matched.

A function related to fprintf, sprintf, outputs its results to a string instead
of a file or the screen. For example,

root2 = sprintf('The square root of %f is %10.8e.\n',2,sqrt(2));

Closing a File
When you finish reading or writing, use fclose to close the file. For example,
this line closes the file associated with file identifier fid:

status = fclose(fid);

6-115

6 Data Import and Export

This line closes all open files:

status = fclose('all');

Both forms return 0 if the file or files were successfully closed or -1 if the
attempt was unsuccessful.

MATLAB automatically closes all open files when you exit from MATLAB. It
is still good practice, however, to close a file explicitly with fclose when you
are finished using it. Not doing so can unnecessarily drain system resources.

Note Closing a file does not clear the file identifier variable fid. However,
subsequent attempts to access a file through this file identifier variable will
not work.

6-116

Exchanging Files over the Internet

Exchanging Files over the Internet

In this section...

“Overview” on page 6-117

“Downloading Web Content and Files” on page 6-117

“Creating and Decompressing Zip Archives” on page 6-119

“Sending E-Mail” on page 6-120

“Performing FTP File Operations” on page 6-122

Overview
MATLAB provides functions for exchanging files over the Internet. You can
exchange files using common protocols, such as File Transfer Protocol (FTP),
Simple Mail Transport Protocol (SMTP), and HyperText Transfer Protocol
(HTTP). In addition, you can create zip archives to minimize the transmitted
file size, and also save and work with Web pages.

Downloading Web Content and Files
MATLAB provides two functions for downloading Web pages and files using
HTTP: urlread and urlwrite. With the urlread function, you can read
and save the contents of a Web page to a string variable in the MATLAB
workspace. With the urlwrite function, you can save a Web page’s content
to a file.

Because it creates a string variable in the workspace, the urlread function is
useful for working with the contents of Web pages in MATLAB. The urlwrite
function is useful for saving Web pages to a local directory.

Note When using urlread, remember that only the HTML in that specific
Web page is retrieved. The hyperlink targets, images, and so on will not be
retrieved.

6-117

6 Data Import and Export

If you need to pass parameters to a Web page, the urlread and urlwrite
functions let you use HTTP post and get methods. For more information, see
the urlread and urlwrite reference pages.

Example — Using the urlread Function
The following procedure demonstrates how to retrieve the contents of the Web
page containing the Recent File list at the MATLAB Central File Exchange,
http://www.mathworks.com/matlabcentral/fileexchange/index.jsp. It
assigns the results to a string variable, recentFile, and it uses the strfind
function to search the retrieved content for a specific word:

1 Retrieve the Web page content with the urlread function:

recentFile =
urlread('http://www.mathworks.com/matlabcentral/fileexchange/
loadFileList.do?objectType=fileexchange&orderBy=date&srt3=0');

2 After retrieving the content, run the strfind function on the recentFile
variable:

hits = strfind(recentFile,'Simulink');

If the file contains the word Simulink, MATLAB will store the matches
in the hits variable.

While you can manually pass arguments using the URL, the urlread
function also lets you pass parameters to a Web page using standard HTTP
methods, including post and form. Using the HTTP get method, which
passes parameters in the URL, the following code queries Google for the
word Simulink:

s =
urlread('http://www.google.com/search','get',{'q','Simulink'})

For more information, see the urlread reference page.

Example — Using the urlwrite Function
The following example builds on the procedure in the previous section. This
example still uses urlread and checks for a specific word, but it also uses
urlwrite to save the file if it contains any matches:

6-118

http://www.mathworks.com/matlabcentral/fileexchange/index.jsp

Exchanging Files over the Internet

% The urlread function loads the contents of the Web page into
the % MATLAB workspace.

recentFile =
urlread('http://www.mathworks.com/matlabcentral/fileexchange/
loadFileList.do?objectType=fileexchange&orderBy=date&srt3=0');

% The strfind function searches for the word "Simulink".
hits = strfind(recentFile,'Simulink');

% The if statement checks for any hits.
if ~isempty(hits)

% If there are hits, the Web page will be saved locally
% using the urlwrite function.

urlwrite('http://www.mathworks.com/matlabcentral/fileexchange/
loadFileList.do?objectType=fileexchange&orderBy=date&srt3=0',
'contains_simulink.html');
end;

MATLAB saves the Web page as contains_simulink.html.

Creating and Decompressing Zip Archives
Using the zip and unzip functions, you can compress and decompress files
and directories. The zip function compresses files or directories into a zip
archive. The unzip function decompresses zip archives.

Example — Using the zip Function
Again building on the example from previous sections, the following code
creates a zip archive of the retrieved Web page:

% The urlread function loads the contents of the Web page into
the % MATLAB workspace.
recentFile =
urlread('http://www.mathworks.com/matlabcentral/fileexchange/
loadFileList.do?objectType=fileexchange&orderBy=date&srt3=0');

% The strfind function searches for the word "Simulink".

6-119

6 Data Import and Export

hits = strfind(recentFile,'Simulink');

% The if statement checks for any hits.
if ~isempty(hits)

% If there are hits, the Web page will be saved locally
% using the urlwrite function.
urlwrite('http://www.mathworks.com/matlabcentral/fileexchange/
loadFileList.do?objectType=fileexchange&orderBy=date&srt3=0',
'contains_simulink.html');

% The zip function creates a zip archive of the retrieved Web
page.
zip('simulink_matches.zip','contains_simulink.html');
end;

Sending E-Mail
To send an e-mail from within MATLAB, use the sendmail function. You can
also attach files to an e-mail, which lets you mail files directly from MATLAB.
To use sendmail, you must first set up your e-mail address and your SMTP
server information with the setpref function.

The setpref function defines two mail-related preferences:

• E-mail address: This preference sets your e-mail address that will appear
on the message. Here is an example of the syntax:

setpref('Internet','E_mail','youraddress@yourserver.com');

• SMTP server: This preference sets your outgoing SMTP server address,
which can be almost any e-mail server that supports the Post Office
Protocol (POP) or the Internet Message Access Protocol (IMAP). Here is
an example of the syntax:

setpref('Internet', 'SMTP_Server', 'mail.server.network');

You should be able to find your outgoing SMTP server address in your e-mail
account settings in your e-mail client application. You can also contact your
system administrator for the information.

6-120

Exchanging Files over the Internet

Note The sendmail function does not support e-mail servers that require
authentication.

Once you have properly configured MATLAB, you can use the sendmail
function. The sendmail function requires at least two arguments: the
recipient’s e-mail address and the e-mail subject:

sendmail('recepient@someserver.com', 'Hello From MATLAB!');

You can supply multiple e-mail addresses using a cell array of strings, such as:

sendmail({'recepient@someserver.com', ...
'recepient2@someserver.com'}, 'Hello From MATLAB!');

You can also specify a message body with the sendmail function, such as:

sendmail('recepient@someserver.com', 'Hello From MATLAB!', ...
'Thanks for using sendmail.');

In addition, you can also attach files to an e-mail using the sendmail function,
such as:

sendmail('recepient@somesever.com', 'Hello from MATLAB!', ...
'Thanks for using sendmail.', 'C:\yourFileSystem\message.txt');

You cannot attach a file without including a message. However, the message
can be empty. You can also attach multiple files to an e-mail with the
sendmail function, such as:

sendmail('recepient@somesever.com', 'Hello from MATLAB!', ...
'Thanks for using sendmail.', ...
{'C:\yourFileSystem\message.txt',...
'C:\yourFileSystem\message2.txt'});

Example — Using the sendmail Function
The following example sends e-mail with the retrieved Web page archive
attached if it contains any matches for the specified word:

6-121

6 Data Import and Export

% The urlread function loads the contents of the Web page into
the % MATLAB workspace.
recentFile =
urlread('http://www.mathworks.com/matlabcentral/fileexchange/
loadFileList.do?objectType=fileexchange&orderBy=date&srt3=0');

% The strfind function searches for the word "Simulink".
hits = strfind(recentFile,'Simulink');

% The if statement checks for any hits.
if ~isempty(hits)

% If there are hits, the Web page will be saved locally
% using the urlwrite function.
urlwrite('http://www.mathworks.com/matlabcentral/fileexchange/
loadFileList.do?objectType=fileexchange&orderBy=date&srt3=0',
'contains_simulink.html');

% The zip function creates a zip archive of the retrieved web
page.
zip('simulink_matches.zip','contains_simulink.html');

% The setpref function supplies your e-mail address and SMTP
% server address to MATLAB.
setpref('Internet','SMTP_Server','mail.server.network');
setpref('Internet', 'E_mail', 'youraddress@yourserver.com');

% The sendmail function sends an e-mail with the zip archive of
the
% retrieved Web page attached.
sendmail('youraddress@yourserver.com', 'New Simulink Files
Found', 'New Simulink files uploaded to MATLAB Central. See
attached zip archive.', 'simulink_matches.zip');
end;

Performing FTP File Operations
From within MATLAB, you can connect to an FTP server to perform remote
file operations. The following procedure uses a public MathWorks FTP server

6-122

Exchanging Files over the Internet

(ftp.mathworks.com). To perform any file operation on an FTP server, follow
these steps:

1 Connect to the server using the ftp function.

For example, you can create an FTP object for the public MathWorks FTP
server with tmw=ftp('ftp.mathworks.com').

2 Perform the file operations using appropriate MATLAB FTP functions as
methods acting on the server object.

For example, you can display the file directories on the FTP server with
dir(tmw).

3 When you finish working on the server, close the connection object using
the close function.

For example, you can disconnect from the FTP server with close(tmw).

Example — Retrieving a File from an FTP Server
In this example, you retrieve the file pub/pentium/Moler_1.txt, which is on
the MathWorks FTP server. You can run this example; the FTP server and
content are valid.

1 Connect to the MathWorks FTP server using ftp. This creates the server
object tmw:

tmw=ftp('ftp.mathworks.com');

2 List the contents of the server using the dir FTP function, which operates
on the server object tmw:

dir(tmw)

3 Change to the pub directory by using the FTP cd function. As with all FTP
functions, you need to specify the server object you created using ftp as
part of the syntax. In this case, this is tmw:

cd(tmw,'pub');

6-123

6 Data Import and Export

The server object tmw represents the current directory on the FTP server,
which now is pub.

4 Now when you run

dir(tmw)

you see the contents of pub, rather than the top level contents as displayed
previously when you ran dir(tmw).

5 Use mget to retrieve any of the files from the current directory on the FTP
server to the MATLAB current directory:

mget(tmw,'filename');

6 Close the FTP connection using close.

close(tmw);

Summary of FTP Functions
The following table lists the available FTP functions. For more information,
refer to the applicable reference pages.

Function Description

ascii Set FTP transfer type to ASCII (convert new lines).

binary Set FTP transfer type to binary (transfer verbatim,
default).

cd (ftp) Change current directory on FTP server.

delete (ftp) Delete file on FTP server.

dir (ftp) List contents of directory on FTP server.

close (ftp) Close connection with FTP server.

ftp Connect to FTP server, creating an FTP object.

mget Download file from FTP site.

mkdir (ftp) Create new directory on FTP server.

mput (ftp) Upload file or directory to FTP server.

6-124

Exchanging Files over the Internet

Function Description

rename Rename file on FTP server.

rmdir (ftp) Remove directory on FTP server.

6-125

6 Data Import and Export

6-126

7

Working with Scientific
Data Formats

This section describes how to import and export data in several standard
scientific data formats. Topics covered include

Common Data Format (CDF) Files
(p. 7-2)

Reading and writing data and
metadata using the Common Data
Format (CDF) file format.

Flexible Image Transport System
(FITS) Files (p. 7-8)

Reading data and metadata using
the Flexible Image Transport System
(FITS) file format.

Hierarchical Data Format (HDF5)
Files (p. 7-11)

Reading and writing data and
metadata using the Hierarchical
Data Format (HDF5) file format.

Hierarchical Data Format (HDF4)
Files (p. 7-36)

Reading and writing data and
metadata using the Hierarchical
Data Format (HDF4) file format.

7 Working with Scientific Data Formats

Common Data Format (CDF) Files

In this section...

“Getting Information About CDF Files” on page 7-2

“Importing Data from a CDF File” on page 7-3

“Exporting Data to a CDF File” on page 7-6

Getting Information About CDF Files
To get information about the contents of a Common Data Format (CDF)
file, use the cdfinfo function. CDF was created by the National Space
Science Data Center (NSSDC) to provide a self-describing data storage
and manipulation format that matches the structure of scientific data and
applications (i.e., statistical and numerical methods, visualization, and
management). The cdfinfo function returns a structure containing general
information about the file and detailed information about the variables and
attributes in the file. For more information about this format, see the CDF
Web site.

The following example returns information about the sample CDF file
included with MATLAB. To determine the variables contained in the file, view
the Variables field. This field contains a cell array that lists all the variables
in the file with information that describes the variable, such as name, size, and
data type. For an example, see “Importing Data from a CDF File” on page 7-3.

Note Because cdfinfo creates temporary files, make sure that your current
working directory is writable before attempting to use the function.

info = cdfinfo('example.cdf')

info =

Filename: 'example.cdf'
FileModDate: '09-Mar-2001 16:45:22'

FileSize: 1240
Format: 'CDF'

7-2

http://cdf.gsfc.nasa.gov/

Common Data Format (CDF) Files

FormatVersion: '2.7.0'
FileSettings: [1x1 struct]

Subfiles: {}
Variables: {5x6 cell}

GlobalAttributes: [1x1 struct]
VariableAttributes: [1x1 struct]

Importing Data from a CDF File
To import data into the MATLAB workspace from a Common Data Format
(CDF) file, use the cdfread function. CDF was created by the National Space
Science Data Center (NSSDC) to provide a self-describing data storage
and manipulation format that matches the structure of scientific data and
applications (i.e., statistical and numerical methods, visualization, and
management). Using this function, you can import all the data in the file,
specific variables, specific records, or subsets of the data in a specific variable.
The following examples illustrate some of these capabilities.

1 To get information about the contents of a CDF file, such as the names of
variables in the CDF file, use the cdfinfo function. In this example, the
Variables field indicates that the file contains five variables. The first
variable, Time, is made up of 24 records containing CDF epoch data. The
next two variables, Longitude and Latitude, have only one associated
record containing int8 data. For details about how to interpret the data
returned in the Variables field, see cdfinfo.

info = cdfinfo('example.cdf');

vars = info.Variables

vars =

Columns 1 through 5

'Time' [1x2 double] [24] 'epoch' 'T/'

'Longitude' [1x2 double] [1] 'int8' 'F/FT'

'Latitude' [1x2 double] [1] 'int8' 'F/TF'

'Data' [1x3 double] [1] 'double' 'T/TTT'

'multidimensional [1x4 double] [1] 'uint8' 'T/TTTT'

Column 6

7-3

7 Working with Scientific Data Formats

'Full'

'Full'

'Full'

'Full'

'Full'

2 To read all of the data in the CDF file, use the cdfread function. The
function returns the data in a 24-by-5 cell array. The five columns of data
correspond to the five variables; the 24 rows correspond to the 24 records
associated with the Time variable and padding elements for the rows
associated with the other variables. The padding value used is specified
in the CDF file.

data = cdfread('example.cdf');

whos data
Name Size Bytes Class Attributes

data 24x5 14784 cell

3 To read the data associated with a particular variable, use the 'Variable'
parameter, specifying a cell array of variable names as the value of this
parameter. Variable names are case sensitive. For example, the following
code reads the Longitude and Latitude variables from the file. The return
value data is a 24-by-2 cell array, where each cell contains int8 data.

var_time = cdfread('example.cdf','Variable',{'Longitude','Latitude'});

whos var_time

Name Size Bytes Class Attributes

var_time 24x1 4608 cell

Speeding Up Read Operations
The cdfread function offers two ways to speed up read operations when
working with large data sets:

• Reducing the number of elements in the returned cell array

7-4

Common Data Format (CDF) Files

• Returning CDF epoch values as MATLAB serial date numbers rather than
as MATLAB cdfepoch objects

To reduce the number of elements in the returned cell array, specify the
'CombineRecords' parameter. By default, cdfread creates a cell array with a
separate element for every variable and every record in each variable, padding
the records dimension to create a rectangular cell array. For example, reading
all the data from the example file produces an output cell array, 24-by-5, where
the columns represent variables and the rows represent the records for each
variable. When you set the 'CombineRecords' parameter to true, cdfread
creates a separate element for each variable but saves time by putting all
the records associated with a variable in a single cell array element. Thus,
reading the data from the example file with 'CombineRecords' set to true
produces a 1-by-5 cell array, as shown below.

data_combined = cdfread('example.cdf','CombineRecords',true);

whos

Name Size Bytes Class Attributes

data 24x5 14784 cell

data_combined 1x5 2364 cell

When combining records, note that the dimensions of the data in the cell
change. For example, if a variable has 20 records, each of which is a scalar
value, the data in the cell array for the combined element contains a 20-by-1
vector of values. If each record is a 3-by-4 array, the cell array element
contains a 20-by-3-by-4 array. For combined data, cdfread adds a dimension
to the data, the first dimension, that is the index into the records.

Another way to speed up read operations is to read CDF epoch values as
MATLAB serial date numbers. By default, cdfread creates a MATLAB
cdfepoch object for each CDF epoch value in the file. If you specify the
'ConvertEpochToDatenum' parameter, setting it to true, cdfread returns
CDF epoch values as MATLAB serial date numbers. For more information
about working with MATLAB cdfepoch objects, see “Representing CDF Time
Values” on page 7-6.

data_datenums = cdfread('example.cdf','ConvertEpochToDatenum',true);

7-5

7 Working with Scientific Data Formats

whos

Name Size Bytes Class Attributes

data 24x5 14784 cell

data_combined 1x5 2364 cell

var_time 24x1 4608 cell

Representing CDF Time Values
CDF represents time differently than MATLAB. CDF represents date and
time as the number of milliseconds since 1-Jan-0000. This is called an epoch
in CDF terminology. MATLAB represents date and time as a serial date
number, which is the number of days since 0-Jan-0000. To represent CDF
dates, MATLAB uses an object called a CDF epoch object. To access the time
information in a CDF object, use the object’s todatenum method.

For example, this code extracts the date information from a CDF epoch object:

1 Extract the date information from the CDF epoch object returned in the
cell array data (see “Importing Data from a CDF File” on page 7-3). Use
the todatenum method of the CDF epoch object to get the date information,
which is returned as a MATLAB serial date number.

m_date = todatenum(data{1});

2 View the MATLAB serial date number as a string.

datestr(m_date)
ans =

01-Jan-2001

Exporting Data to a CDF File
To export data from the MATLAB workspace to a Common Data Format
(CDF) file, use the cdfwrite function. CDF was created by the National
Space Science Data Center (NSSDC) to provide a self-describing data storage
and manipulation format that matches the structure of scientific data and
applications (i.e., statistical and numerical methods, visualization, and
management). Using this function, you can write variables and attributes
to the file, specifying their names and associated values. See the cdfwrite
reference page for more information.

7-6

Common Data Format (CDF) Files

This example shows how to write date information to a CDF file. Note how
the example uses the CDF epoch object constructor, cdfepoch, to convert a
MATLAB serial date number into a CDF epoch.

cdfwrite('myfile',{'Time_val',cdfepoch(now)});

You can convert a cdfepoch object back into a MATLAB serial date number
with the todatenum function.

7-7

7 Working with Scientific Data Formats

Flexible Image Transport System (FITS) Files

In this section...

“Getting Information About FITS Files” on page 7-8

“Importing Data from a FITS File” on page 7-9

Getting Information About FITS Files
To get information about the contents of a Flexible Image Transport System
(FITS) file, use the fitsinfo function. The FITS file format is the standard
data format used in astronomy, endorsed by both NASA and the International
Astronomical Union (IAU). For more information about the FITS standard, go
to the official FITS Web site, http://fits.gsfc.nasa.gov/.

A data file in FITS format can contain multiple components, each marked by
an ASCII text header followed by binary data. The first component in a FITS
file is known as the primary, which can be followed by any number of other
components, called extensions, in FITS terminology. The fitsinfo function
returns a structure containing the information about the file and detailed
information about the data in the file. This example returns information about
a sample FITS file included with MATLAB. The structure returned contains
fields for the primary component, PrimaryData, and all the extensions in the
file, such as the BinaryTable, Image, and AsciiTable extensions.

info = fitsinfo('tst0012.fits')

info =

Filename: 'tst0012.fits'
FileModDate: '12-Mar-2001 18:37:46'

FileSize: 109440
Contents: {1x5 cell}

PrimaryData: [1x1 struct]
BinaryTable: [1x1 struct]

Unknown: [1x1 struct]
Image: [1x1 struct]

AsciiTable: [1x1 struct]

7-8

http://fits.gsfc.nasa.gov/

Flexible Image Transport System (FITS) Files

Importing Data from a FITS File
To import data into the MATLAB workspace from a Flexible Image Transport
System (FITS) file, use the fitsread function. The FITS file format is
designed to store scientific data sets consisting of multidimensional arrays
(1-D spectra, 2-D images, or 3-D data cubes) and two-dimensional tables
containing rows and columns of data. Using this function, you can import the
data in the PrimaryData section of the file or you can import the data in
any of the extensions in the file, such as the Image extension. This example
illustrates how to use the fitsread function to read data from a FITS file:

1 Determine which extensions the FITS file contains, using the fitsinfo
function.

info = fitsinfo('tst0012.fits')

info =

Filename: 'tst0012.fits'
FileModDate: '12-Mar-2001 18:37:46'

FileSize: 109440
Contents: {1x5 cell}

PrimaryData: [1x1 struct]
BinaryTable: [1x1 struct]

Unknown: [1x1 struct]
Image: [1x1 struct]

AsciiTable: [1x1 struct]

The info structure shows that the file contains several extensions
including the BinaryTable, AsciiTable, and Image extensions.

2 Read data from the file.

To read the PrimaryData in the file, specify the filename as the only
argument:

pdata = fitsread('tst0012.fits');

To read any of the extensions in the file, you must specify the name of the
extension as an optional parameter. This example reads the BinaryTable
extension from the FITS file:

7-9

7 Working with Scientific Data Formats

bindata = fitsread('tst0012.fits','bintable');

Note To read the BinaryTable extension using fitsread, you must specify
the parameter 'bintable'. Similarly, to read the AsciiTable extension,
you must specify the parameter 'table'. See the fitsread reference page
for more information.

7-10

Hierarchical Data Format (HDF5) Files

Hierarchical Data Format (HDF5) Files

In this section...

“Using the MATLAB High-Level HDF5 Functions” on page 7-11

“Using the MATLAB Low-Level HDF5 Functions” on page 7-26

Note For information about working with HDF4 data, which is a completely
separate, incompatible format, see “Hierarchical Data Format (HDF4) Files”
on page 7-36.

Using the MATLAB High-Level HDF5 Functions
Hierarchical Data Format, Version 5, (HDF5) is a general-purpose,
machine-independent standard for storing scientific data in files, developed
by the National Center for Supercomputing Applications (NCSA). HDF5 is
used by a wide range of engineering and scientific fields that want a standard
way to store data so that it can be shared. For more information about the
HDF5 file format, read the HDF5 documentation available at the HDF Web
site (http://www.hdfgroup.org).

The MATLAB high-level HDF5 functions provide an easy way to import data
or metadata from an HDF5 file, or write data to an HDF5 file. The following
sections provide more detail about using these functions.

• “Determining the Contents of an HDF5 File” on page 7-11

• “Importing Data from an HDF5 File” on page 7-15

• “Exporting Data to HDF5 Files” on page 7-16

• “Mapping HDF5 Data Types to MATLAB Data Types” on page 7-18

Determining the Contents of an HDF5 File
HDF5 files can contain data and metadata, called attributes. HDF5 files
organize the data and metadata in a hierarchical structure similar to the
hierarchical structure of a UNIX file system.

7-11

http://www.hdfgroup.org

7 Working with Scientific Data Formats

In an HDF5 file, the directories in the hierarchy are called groups. A group
can contain other groups, data sets, attributes, links, and data types. A data
set is a collection of data, such as a multidimensional numeric array or string.
An attribute is any data that is associated with another entity, such as a data
set. A link is similar to a UNIX file system symbolic link. Links are a way to
reference data without having to make a copy of the data.

Data types are a description of the data in the data set or attribute. Data
types tell how to interpret the data in the data set. For example, a file might
contain a data type called “Reading” that is comprised of three elements: a
longitude value, a latitude value, and a temperature value.

To explore the hierarchical organization of an HDF5 file, use the hdf5info
function. For example, to find out what the sample HDF5 file, example.h5,
contains, use this syntax:

fileinfo = hdf5info('example.h5');

hdf5info returns a structure that contains various information about the
HDF5 file, including the name of the file and the version of the HDF5 library
that MATLAB is using:

fileinfo =

Filename: 'example.h5'
LibVersion: '1.6.5'

Offset: 0
FileSize: 8172

GroupHierarchy: [1x1 struct]

In the information returned by hdf5info, look at the GroupHierarchy field.
This field is a structure that describes the top-level group in the file, called
the root group. Using the UNIX convention, HDF5 names this top-level group
/ (forward slash), as shown in the Name field of the GroupHierarchy structure.

toplevel = fileinfo.GroupHierarchy

toplevel =

Filename: 'C:\matlab\toolbox\matlab\demos\example.h5'
Name: '/'

7-12

Hierarchical Data Format (HDF5) Files

Groups: [1x2 struct]
Datasets: []

Datatypes: []
Links: []

Attributes: [1x2 struct]

By looking at the Groups and Attributes fields, you can see that the file
contains two groups and two attributes. The Datasets, Datatypes, and Links
fields are all empty, indicating that the root group does not contain any data
sets, data types, or links.

The following figure illustrates the organization of the root group in the
sample HDF5 file example.h5.

Organization of the Root Group of the Sample HDF5 File

To explore the contents of the sample HDF5 file further, examine one of the
two structures in the Groups field of the GroupHierarchy structure. Each
structure in this field represents a group contained in the root group. The
following example shows the contents of the second structure in this field.

level2 = toplevel.Groups(2)

level2 =

Filename: 'C:\matlab\toolbox\matlab\demos\example.h5'
Name: '/g2'

Groups: []
Datasets: [1x2 struct]

Datatypes: []
Links: []

Attributes: []

7-13

7 Working with Scientific Data Formats

In the sample file, the group named /g2 contains two data sets. The following
figure illustrates this part of the sample HDF5 file organization.

Organization of the Data Set /g2 in the Sample HDF5 File

To get information about a data set, look at either of the structures returned
in the Datasets field. These structures provide information about the data
set, such as its name, dimensions, and data type.

dataset1 = level2.Datasets(1)

dataset1 =
Filename: 'L:\matlab\toolbox\matlab\demos\example.h5'

Name: '/g2/dset2.1'
Rank: 1

Datatype: [1x1 struct]
Dims: 10

MaxDims: 10
Layout: 'contiguous'

Attributes: []
Links: []

Chunksize: []
Fillvalue: []

7-14

Hierarchical Data Format (HDF5) Files

By examining the structures at each level of the hierarchy, you can traverse
the entire file. The following figure describes the complete hierarchical
organization of the sample file example.h5.

Hierarchical Structure of example.h5 HDF5 File

Importing Data from an HDF5 File
To read data or metadata from an HDF5 file, use the hdf5read function. As
arguments, you must specify the name of the HDF5 file and the name of
the data set or attribute. Alternatively, you can specify just the field in the
structure returned by hdf5info that contains the name of the data set or
attribute; hdf5read can determine the file name from the Filename field in
the structure. For more information about finding the name of a data set or
attribute in an HDF5 file, see “Determining the Contents of an HDF5 File”
on page 7-11.

To illustrate, this example reads the data set, /g2/dset2.1 from the HDF5
sample file example.h5.

data = hdf5read('example.h5','/g2/dset2.1');

7-15

7 Working with Scientific Data Formats

The return value contains the values in the data set, in this case a 1-by-10
vector of single-precision values:

data =

1.0000
1.1000
1.2000
1.3000
1.4000
1.5000
1.6000
1.7000
1.8000
1.9000

The hdf5read function maps HDF5 data types to appropriate MATLAB data
types, whenever possible. If the HDF5 file contains data types that cannot
be represented in MATLAB, hdf5write uses one of the predefined MATLAB
HDF5 data type objects to represent the data.

For example, if an HDF5 data set contains four array elements, hdf5read can
return the data as a 1-by-4 array of hdf5.h5array objects:

whos

Name Size Bytes Class

data 1x4 hdf5.h5array

Grand total is 4 elements using 0 bytes

For more information about the MATLAB HDF5 data type objects, see
“Mapping HDF5 Data Types to MATLAB Data Types” on page 7-18.

Exporting Data to HDF5 Files
To write data or metadata from the MATLAB workspace to an HDF5 file, use
the hdf5write function. As arguments, specify:

• Name of an existing HDF5 file, or the name you want to assign to a new file.

7-16

Hierarchical Data Format (HDF5) Files

• Name of an existing data set or attribute, or the name you want to assign
to a new data set or attribute. To learn how to determine the name of data
sets in an existing HDF5 file, see “Determining the Contents of an HDF5
File” on page 7-11.

• Data or metadata you want to write to the file. hdf5write converts
MATLAB data types to the appropriate HDF5 data type automatically.
For nonatomic data types, you can also create HDF5 objects to represent
the data.

This example creates a 5-by-5 array of uint8 values and then writes the
array to an HDF5 file. By default, hdf5write overwrites the file, if it already
exists. The example specifies an hdf5write mode option to append data to
existing file.

1 Create a MATLAB variable in the workspace. This example creates a
5-by-5 array of uint8 values.

testdata = uint8(magic(5))

2 Write the data to an HDF5 file. As arguments to hdf5read, the example
specifies the name you want to assign to the HDF5 file, the name you want
to assign to the data set, and the MATLAB variable.

hdf5write('myfile.h5', '/dataset1', testdata)

To add data to an existing file, you must use the 'writemode' option,
specifying the'append' value. The file must already exist and it cannot
already contain a data set with the same name

hdf5write('myfile.h5', '/dataset12', testdata,'writemode','append')

If you are writing simple data sets, such as scalars, strings, or a simple
compound data types, you can just pass the data directly to hdf5write; this
function automatically maps the MATLAB data types to appropriate HDF5
data types. However, if your data is a complex data set, you might need to
use one of the predefined MATLAB HDF5 objects to pass the data to the
hdf5write function. The HDF5 objects are designed for situations where the
mapping between MATLAB and HDF5 types is ambiguous.

For example, when passed a cell array of strings, the hdf5write function
writes a data set made up of strings, not a data set of arrays containing

7-17

7 Working with Scientific Data Formats

strings. If that is not the mapping you intend, use HDF5 objects to specify
the correct mapping. In addition, note that HDF5 makes a distinction
between the size of a data set and the size of a data type. In MATLAB, data
types are always scalar. In HDF5, data types can have a size; that is, types
can be either scalar (like MATLAB) or m-by-n. In HDF5, a 5-by-5 data set
containing a single uint8 value in each element is distinct from a 1-by-1 data
set containing a 5-by-5 array of uint8 values. In the first case, the data set
contains 25 observations of a single value; in the second case, the data set
contains a single observation with 25 values. For more information about
the MATLAB HDF5 data type objects, see “Mapping HDF5 Data Types to
MATLAB Data Types” on page 7-18.

Mapping HDF5 Data Types to MATLAB Data Types
When the hdf5read function reads data from an HDF5 file into the MATLAB
workspace, it maps HDF5 data types to MATLAB data types, depending on
whether the data in the data set is in an atomic data type or a nonatomic
composite data type.

Mapping Atomic Data Types. Atomic data types describe commonly used
binary formats for numbers (integers and floating point) and characters
(ASCII). Because different computing architectures and programming
languages support different number and character representations, the HDF5
library provides the platform-independent data types, which it then maps to
an appropriate data type for each platform. For example, a computer may
support 8-, 16-, 32-, and 64-bit signed integers, stored in memory in little
endian byte order.

If the data in the data set is stored in one of the HDF5 atomic data types,
hdf5read uses the equivalent MATLAB data type to represent the data. Each
data set contains a Datatype field that names the data type. For example,
the data set /g2/dset2.2 in the sample HDF5 file includes atomic data and
data type information.

dtype = dataset1.Datatype
dtype =

Name: []
Class: 'H5T_IEEE_F32BE'

Elements: []

7-18

Hierarchical Data Format (HDF5) Files

The H5T_IEEE_F32BE class name indicates the data is a 4-byte, big endian,
IEEE floating-point data type. (See the HDF5 specification for more
information about atomic data types.)

Mapping Composite Data Types. A composite data type is an aggregation
of one or more atomic data types. Composite data types include structures,
multidimensional arrays, and variable-length data types (one-dimensional
arrays).

If the data in the data set is stored in one of the HDF5 nonatomic data types
and the data cannot be represented in the workspace using a native MATLAB
data type,hdf5read uses one of a set of classes MATLAB defines to represent
HDF5 data types. The following figure illustrates the hdf5 class and its
subclasses. For more information about a specific class, see the sections that
follow. To learn more about the HDF5 data types in general, see the HDF Web
page at http://www.hdfgroup.org.

������

����

������# ����-$��� ������������-

For example, if an HDF5 file contains a data set made up of an enumerated
data type which cannot be represented in MATLAB, hdf5read uses the HDF5
h5enum class to represent the data. An h5enum object has data members
that store the enumerations (text strings), their corresponding values, and
the enumerated data.

You might also need to use these HDF5 data type classes when using the
hdf5write function to write data from the MATLAB workspace to an HDF5
file. By default, hdf5write can convert most MATLAB data to appropriate
HDF5 data types. However, if this default data type mapping is not suitable,
you can create HDF5 data types directly.

7-19

http://www.hdfgroup.org

7 Working with Scientific Data Formats

To access the data in the data set in the MATLAB workspace, you must access
the Data field in the object.

This example converts a simple MATLAB vector into an h5array object and
then displays the fields in the object:

vec = [1 2 3];

hhh = hdf5.h5array(vec);

hhh:

Name: ''
Data: [1 2 3]

hhh.Data

ans =

1 2 3

MATLAB HDF5 h5array Data Class. The h5array data class associates
a name with an array. The following tables list the class data members and
methods.

Data Members Description

Data Multidimensional array

Name Text string specifying name of the object

Methods Description

arr = hdf5.h5array Creates an h5array object.

arr =
hdf5.h5array(data)

Creates an h5array object, where data specifies
the value of the Data member. data can be
numeric, a cell array, or an HDF5 data type.

7-20

Hierarchical Data Format (HDF5) Files

Methods Description

setData(arr, data) Sets the value of the Data member, where arr
is an h5array object and data can be numeric,
a cell array, or an HDF5 data type.

setName(arr, name) Sets the value of the Name member, where arr
is an h5array object and name is a string or
cell array.

MATLAB HDF5 h5compound Data Class. The h5compound data class
associates a name with a structure. You can define the field names in the
structure and their values. The following tables list the class data members
and methods.

Data Members Description

Data Multidimensional array

Name Text string specifying name of the object

MemberNames Text strings specifying name of the object

Methods Description

C = hdf5.h5compound Creates an h5compound object.

C =
hdf5.h5compound(n1,n2,...)

Creates an h5compound object, where n1, n2 and
so on are text strings that specify field names.
The constructor creates a corresponding data
field for every member name.

addMember(C, mName) Creates a new field in the object C. mName
specifies the name of the field.

setMember(C, mName,
mData)

Sets the value of the Data element associated
with the field specified by mName, where C is an
h5compound object and mData can be numeric
or an HDF5 data type.

7-21

7 Working with Scientific Data Formats

Methods Description

setMemberNames(C, n1,
n2,...)

Specifies the names of fields in the structure,
where C is an h5compound object and n1,n2, and
so on are text strings that specify field names.
The method creates a corresponding data field
for every name specified.

setName(C, name) Sets the value of the Name member, where C is
an h5compound object and name is a string or
cell array.

MATLAB HDF5 h5enum Data Class. The h5enum data class defines an
enumerated type. You can specify the enumerations (text strings) and the
values they represent. The following tables list the class data members and
methods.

Data Members Description

Data Multidimensional array

Name Text string specifying name of the object

EnumNames Text string specifying the enumerations, that is,
the text strings that represent values

EnumValues Values associated with enumerations

Methods Description

E = hdf5.h5enum Creates an h5enum object.

E =
hdf5.h5enum(eNames,
eVals)

Creates an h5enum object, where eNames
is a cell array of strings, and eVals is
vector of integers. eNames and eVals
must have the same number of elements.

defineEnum(E, eNames,
eVals)

Defines the set of enumerations with the
integer values they represent where eNames
is a cell array of strings, and eVals is vector
of integers. eNames and eVals must have the
same number of elements.

7-22

Hierarchical Data Format (HDF5) Files

Methods Description

enumdata =
getString(E)

Returns a cell array containing the names of
the enumerations, where E is an h5enum object.

setData(E, eData) Sets the value of the object’s Data
member, where E is an h5enum object
and eData is a vector of integers.

setEnumNames(E,
eNames)

Specifies the enumerations, where E is an
h5enum object and eNames is a cell array of
strings.

setEnumValues(E,
eVals)

Specifies the value associated with each
enumeration, where E is an h5enum object and
eVals is a vector of integers.

setName(E, name) Sets the value of the object’s Name member,
where E is an h5enum object and name is a string
or cell array.

This example uses an HDF5 enumeration object.

1 Create an HDF5 enumerated object.

enum_obj = hdf5.h5enum;

2 Define the enumerated values and their corresponding names.

enum_obj.defineEnum({'RED' 'GREEN' 'BLUE'}, uint8([1 2 3]));

enum_obj now contains the definition of the enumeration that associates
the names RED, GREEN, and BLUE with the numbers 1, 2, and 3.

3 Add enumerated data to the object.

enum_obj.setData(uint8([2 1 3 3 2 3 2 1]));

In the HDF5 file, these numeric values map to the enumerated values
GREEN, RED, BLUE, BLUE, GREEN, etc.

4 Write the enumerated data to a data set named objects in an HDF5 file.

7-23

7 Working with Scientific Data Formats

hdf5write('myfile3.h5', '/g1/objects', enum_obj);

5 Read the enumerated data set from the file.

ddd = hdf5read('myfile3.h5','/g1/objects')

hdf5.h5enum:

Name: ''
Data: [2 1 3 3 2 3 2 1]

EnumNames: {'RED' 'GREEN' 'BLUE'}
EnumValues: [1 2 3]

MATLAB HDF5 h5string Data Class. The h5string data class associates a
name with a text string and provides optional padding behavior. The following
tables list the class data members and methods.

Data Members Description

Data Multidimensional array

Name Text string specifying name of the object

Length Scalar defining length of string

Padding Type of padding to use:
'spacepad'
'nullterm'
'nullpad'

Methods Description

str = hdf5.h5string Creates an h5string object.

str =
hdf5.h5string(data)

Creates an h5string object, where data is a
text string.

str =
hdf5.h5string(data,
padtype)

Creates an h5stringobject, where data is a
text string and padtype specifies the type of
padding to use.

setData(str, data) Sets the value of the object’s Data member,
where str is an h5string object anddata is a
text string.

7-24

Hierarchical Data Format (HDF5) Files

Methods Description

setLength(str,
lenVal)

Sets the value of the object’s Length
member, where str is an h5string
object and lenVal is a scalar.

setName(str, name) Sets the value of the object’s Name member,
where str is an h5string object and name is
a string or cell array.

setPadding(str,
padType)

Specifies the value of the object’s Padding
member, where str is an h5string object and
padType is a text string specifying one of the
supported pad types.

The following example creates an HDF5 string object.

hdf5.h5vlen({0 [0 1] [0 2] [0:10]})

hdf5.h5vlen:

Name: ''
Data: [0 0 1 0 2 0 1 2 3 4 5 6 7 8 9 10]

The following example creates an HDF5 h5vlen object.

hdf5.h5vlen({0 [0 1] [0 2] [0:10]})

hdf5.h5vlen:

Name: ''
Data: [0 0 1 0 2 0 1 2 3 4 5 6 7 8 9 10]

MATLAB HDF5 h5vlen Data Class. The h5vlen data class associates a
name with an array. The following tables list the class data members and
methods.

7-25

7 Working with Scientific Data Formats

Data Members Description

Data Multidimensional array

Name Text string specifying name of the object

Methods Description

V = hdf5.h5vlen Creates an h5vlen object.

V = hdf5.h5vlen(data) Creates an h5vlen object, where data specifies
the value of the Data member. data can be
numeric, a cell array, or an HDF5 data type.

setData(V, data) Sets the value of the object’s Data member,
where V is an h5vlen object and data can be
a scalar, vector, text string, a cell array, or an
HDF5 data type.

setName(V, name) Sets the value of the object’sName member,
where V is an h5vlen object and name is a string
or cell array.

Using the MATLAB Low-Level HDF5 Functions
MATLAB provides direct access to the over 200 functions in the HDF5 library
by creating MATLAB functions that correspond to the functions in the HDF5
library. In this way, you can access the features of the HDF5 library from
MATLAB, such as reading and writing complex data types and using the
HDF5 subsetting capabilities.

The HDF5 library organizes the library functions into groups, called
interfaces. For example, all the routines related to working with files, such
as opening and closing, are in the H5F interface, where F stands for file.
MATLAB organizes the low-level HDF5 functions into classes that correspond
to each HDF5 interface. For example, the MATLAB functions that correspond
to the HDF5 file interface (H5F) are in the @H5F class directory. For a
complete list of the HDF5 interfaces and the corresponding MATLAB class
directories, see hdf5.

7-26

Hierarchical Data Format (HDF5) Files

The following sections provide more details about how to use the MATLAB
HDF5 low-level functions. Topics covered include:

• “Mapping HDF5 Function Syntax to MATLAB Function Syntax” on page
7-27

• “Mapping Between HDF5 Data Types and MATLAB Data Types” on page
7-29

• “Example: Using the MATLAB HDF5 Low-level Functions” on page 7-31

Note This section does not attempt to describe all features of the HDF5
library or explain basic HDF5 programming concepts. To use the MATLAB
HDF5 low-level functions effectively, you must refer to the official HDF5
documentation available at the HDF Web site (http://www.hdfgroup.org).

Mapping HDF5 Function Syntax to MATLAB Function Syntax
In most cases, the syntax of the MATLAB low-level HDF5 functions is
identical to the syntax of the corresponding HDF5 library functions. For
example, the following is the function signature of the H5Fopen function in
the HDF5 library. In the HDF5 function signatures, hid_t and herr_t are
HDF5 types that return numeric values that represent object identifiers or
error status values.

hid_t H5Fopen(const char *name, unsigned flags, hid_t access_id) /* C syntax */

In MATLAB, each function in an HDF5 interface is a method of a MATLAB
class. To view the function signature for a function, specify the class directory
name and then the function name, as in the following.

help @H5F/open

The following shows the signature of the corresponding MATLAB function.
First note that, because it’s a method of a class, you must use the dot notation
to call the MATLAB function: H5F.open. This MATLAB function accepts the
same three arguments as the HDF5 function: a text string for the name,
an HDF5-defined constant for the flags argument, and an HDF5 property
list ID. You use property lists to specify characteristics of many different
HDF5 objects. In this case, it’s a file access property list. Refer to the HDF5

7-27

http://www.hdfgroup.org

7 Working with Scientific Data Formats

documentation to see which constants can be used with a particular function
and note that, in MATLAB, constants are passed as text strings.

file_id = H5F.open(name, flags, plist_id)

There are, however, some functions where the MATLAB function signature
is different than the corresponding HDF5 library function. The following
sections describe some general differences that you should keep in mind when
using the MATLAB low-level HDF5 functions.

• “Output Parameters Become Return Values” on page 7-28

• “String Length Parameters Unnecessary” on page 7-28

• “Use Empty Array to Specify NULL” on page 7-29

• “Specifying Multiple Constants” on page 7-29

Output Parameters Become Return Values. Some HDF5 library
functions use function parameters to return data on the right-hand side
(RHS) of the function signature, i.e. as input parameters. The corresponding
MATLAB function, because MATLAB allows multiple return values, moves
these output parameters to the left-hand side (LHS) of the function signature,
i.e. as return values. To illustrate, look at the H5Dread function. This function
returns data in the buf parameter.

herr_t H5Dread(hid_t dataset_id, hid_t mem_type_id, hid_t mem_space_id,

hid_t file_space_id, hid_t xfer_plist_id, void * buf) /* C syntax */

The corresponding MATLAB function changes the output parameter buf into
a return value. Note that the HDF5 error return is not used. In MATLAB, the
nonzero or negative value herr_t return values become MATLAB errors. Use
MATLAB try-catch statements to handle errors.

buf = H5D.read(dataset_id, mem_type_id, mem_space_id, file_space_id, plist_id)

String Length Parameters Unnecessary. The length parameter used
by some HDF5 library functions to specify the length of string parameters
are not necessary in the corresponding MATLAB function. For example, the
H5Aget_name function in the HDF5 library includes a buffer as an output
parameter and the size of the buffer as an input parameter.

ssize_t H5Aget_name(hid_t attr_id,size_t buf_size,char *buf) /* C syntax */

7-28

Hierarchical Data Format (HDF5) Files

The corresponding MATLAB function changes the output parameter buf into
a return value and drops the buf_size parameter:

attr_name = H5A.get_name(attr_id)

Use Empty Array to Specify NULL. The MATLAB functions use empty
arrays ([]) where HDF5 library functions accept the value NULL. For example,
the H5Dfill function in the HDF5 library accepts the value NULL in place of
a specified fill value.

herr_t H5Dfill(const void *fill, hid_t fill_type_id, void *buf,

hid_t buf_type_id, hid_t space_id) /* C syntax */

When using the corresponding MATLAB function, you can specify an empty
array ([]) instead of NULL.

Specifying Multiple Constants. Some functions in the HDF5 library require
you to specify an array of constants. For example, in the H5Screate_simple
function, if you want to specify that each dimension in the data space can
be unlimited, you use the constant H5S_UNLIMITED for each dimension in
maxdims. In MATLAB, because you pass constants as text strings, you must
use a cell array to achieve the same result. The following code fragment
provides an example of using a cell array to specify this constant for each
dimension of this data space.

ds_id = H5S.create_simple(2,[3 4],{'H5S_UNLIMITED' 'H5S_UNLIMITED'});

Mapping Between HDF5 Data Types and MATLAB Data Types
When the HDF5 low-level functions read data from an HDF5 file or write
data to an HDF5 file, the functions map HDF5 data types to MATLAB data
types automatically.

For atomic data types, such as commonly used binary formats for numbers
(integers and floating point) and characters (ASCII), the mapping is typically
straightforward because MATLAB supports similar types. See the table
Mapping Between HDF5 Atomic Data Types and MATLAB Data Types on
page 7-30 for a list of these mappings.

7-29

7 Working with Scientific Data Formats

Mapping Between HDF5 Atomic Data Types and MATLAB Data Types

HDF5 Atomic
Data Type

MATLAB Data Type

Bit-field Array of packed 8-bit integers

Float MATLAB single and double types, provided that they
occupy 64 bits or fewer

Integer types,
signed and
unsigned

Equivalent MATLAB integer types, signed and
unsigned

Opaque Array of uint8 values

Reference Array of uint8 values

String MATLAB character arrays.

For composite data types, such as aggregations of one or more atomic data
types into structures, multidimensional arrays, and variable-length data
types (one-dimensional arrays), the mapping is sometimes ambiguous with
reference to the HDF5 data type. In HDF5, a 5-by-5 data set containing
a single uint8 value in each element is distinct from a 1-by-1 data set
containing a 5-by-5 array of uint8 values. In the first case, the data set
contains 25 observations of a single value; in the second case, the data set
contains a single observation with 25 values. In MATLAB both of these data
sets are represented by a 5-by-5 matrix.

If your data is a complex data set, you might need to create HDF5 data
types directly to make sure you have the mapping you intend. See the table
Mapping Between HDF5 Composite Data Types and MATLAB Data Types
on page 7-31 for a list of the default mappings. You can specify the data type
when you write data to the file using the H5Dwrite function. See the HDF5
data type interface documentation for more information.

7-30

Hierarchical Data Format (HDF5) Files

Mapping Between HDF5 Composite Data Types and MATLAB Data
Types

HDF5 Composite
Data Type

MATLAB Data Type

Array Extends the dimensionality of the data type which
it contains. For example, an array of an array of
integers in HDF5 would map onto a two dimensional
array of integers in MATLAB.

Compound MATLAB structure. Note: All structures representing
HDF5 data in MATLAB are scalar.

Enumeration Array of integers which each have an associated name

Variable Length MATLAB 1-D cell arrays

Reporting Data Set Dimensions. The MATLAB low-level HDF5 functions
report data set dimensions and the shape of data sets differently than the
MATLAB high-level functions. For ease of use, the MATLAB high-level
functions report data set dimensions consistent with MATLAB column-major
indexing. To be consistent with the HDF5 library, and to support the
possibility of nested data sets and complicated data types, the MATLAB
low-level functions report array dimensions using the C row-major orientation.

Example: Using the MATLAB HDF5 Low-level Functions
This example shows how to use the MATLAB HDF5 low-level functions to
write a data set to an HDF5 file and then read the data set from the file.

1 Create the MATLAB variable that you want to write to the HDF5 file. The
examples creates a three-dimensional array of uint8 data.

testdata = uint8(ones(5,10,3));

2 Create the HDF5 file or open an existing file. The example creates a new
HDF5 file, named my_file.h5, in the system temp directory.

filename = fullfile(tempdir,'my_file.h5');

fileID = H5F.create(filename,'H5F_ACC_TRUNC','H5P_DEFAULT','H5P_DEFAULT');

7-31

7 Working with Scientific Data Formats

In HDF5, you use the H5Fcreate function to create a file. The example
uses the MATLAB equivalent, H5F.create. As arguments, specify the
name you want to assign to the file, the type of access you want to the file
('H5F_ACC_TRUNC' in the example), and optional additional characteristics
specified by a file creation property list and a file access property list. This
example uses default values for these property lists ('H5P_DEFAULT').
In the example, note how the C constants are passed to the MATLAB
functions as strings. The function returns an ID to the HDF5 file.

3 Create the data set in the file to hold the MATLAB variable. In the HDF5
programming model, you must define the data type and dimensionality
(data space) of the data set as separate entities.

a Specify the data type used by the data set. In HDF5, you use the
H5Tcopy function to create integer or floating-point data types. The
example uses the corresponding MATLAB function, H5T.copy, to create
a uint8 data type because the MATLAB data is uint8. The function
returns a data type ID.

datatypeID = H5T.copy('H5T_NATIVE_UINT8');

b Specify the dimensions of the data set. In HDF5, you use the
H5Screate_simple routine to create a data space. The example uses the
corresponding MATLAB function, H5S.create_simple, to specify the
dimensions. The function returns a data space ID.

dims(1) = 5;
dims(2) = 10;
dims(3) = 3
dataspaceID = H5S.create_simple(3, dims, []);

c Create the data set. In HDF5, you use the H5Dcreate routine to create
a data set. The example uses the corresponding MATLAB function,
H5D.create, specifying the file ID, the name you want to assign to
the data set, data type ID, the data space ID, and a data set creation
property list ID as arguments. The example uses the defaults for the
property lists. The function returns a data set ID.

dsetname = 'my_dataset';

datasetID = H5D.create(fileID,dsetname,datatypeID,dataspaceID,'H5P_DEFAULT');

7-32

Hierarchical Data Format (HDF5) Files

Note To write a large data set, you must use the chunking capability
of the HDF5 library. To do this, create a property list and use the
H5P.set_chunk function to set the chunk size in the property list. In the
following example, the dimensions of the data set are dims = [2^16
2^16] and the chunk size is 1024-by-1024. You then pass the property
list as the last argument to the data set creation function, H5D.create,
instead of using the H5P_DEFAULT value.

plistID = H5P.create('H5P_DATASET_CREATE'); % create property list

chunk_size = min([1024 1024], dims); % define chunk size

H5P.set_chunk(plistID, chunk_size); % set chunk size in property list

datasetID = H5D.create(fileID, dsetname, datatypeID, dataspaceID, plistID);

4 Write the data to the data set. In HDF5, you use the H5Dwrite routine to
write data to a data set. The example uses the corresponding MATLAB
function, H5D.write, specifying as arguments the data set ID, the memory
data type ID, the memory space ID, the data space ID, the transfer property
list ID and the name of the MATLAB variable to be written to the data set.

You can use the memory data type to specify the data type used to represent
the data in the file. The example uses the constant 'H5ML_DEFAULT' which
lets the MATLAB function do an automatic mapping to HDF5 data types.
The memory data space ID and the data set’s data space ID specify to write
subsets of the data set to the file. The example uses the constant 'H5S_ALL'
to write all the data to the file and uses the default property list.

Note Because HDF5 stores data in row-major order and MATLAB
accesses data in column-major order, you should permute your data before
writing it to the file.

data_perm = permute(testdata,[3 2 1]);

7-33

7 Working with Scientific Data Formats

H5D.write(datasetID,'H5ML_DEFAULT','H5S_ALL','H5S_ALL', ...

'H5P_DEFAULT',data_perm);

5 Close the data set, data space, data type, and file objects. If used inside a
MATLAB function, these identifiers are closed automatically when they
go out of scope.

H5D.close(datasetID);
H5S.close(dataspaceID);
H5T.close(datatypeID);
H5F.close(fileID);

6 To read the data set you wrote to the file, you must open the file. In HDF5,
you use the H5Fopen routine to open an HDF5 file, specifying the name of
the file, the access mode, and a property list as arguments. The example
uses the corresponding MATLAB function, H5F.open, opening the file for
read-only access.

fileID = H5F.open(filename,'H5F_ACC_RDONLY','H5P_DEFAULT');

7 After opening the file, you must open the data set. In HDF5, you use the
H5Dopen function to open a data set. The example uses the corresponding
MATLAB function, H5D.open, specifying as arguments the file ID and the
name of the data set, defined earlier in the example.

datasetID = H5D.open(fileID, dsetname);

8 After opening the data set, you can read the data into the MATLAB
workspace. In HDF5, you use the H5Dread function to read an HDF5
file. The example uses the corresponding MATLAB function, H5D.read,
specifying as arguments the data set ID, the memory data type ID, the
memory space ID, the data space ID, and the transfer property list ID.

returned_data = H5D.read(datasetID,'H5ML_DEFAULT',...
'H5S_ALL','H5S_ALL','H5P_DEFAULT');

Note that the data returned must be indexed in reverse order: HDF5 stores
the data in row-major order; MATLAB accesses data in column-major
order. To rearrange the data into column-major order, use the MATLAB
permute function.

7-34

Hierarchical Data Format (HDF5) Files

data = permute(returned_data,[3 2 1]);

You can compare the original MATLAB variable, testdata, with the
variable just created, data, to see if they are the same.

7-35

7 Working with Scientific Data Formats

Hierarchical Data Format (HDF4) Files

In this section...

“Using the HDF Import Tool” on page 7-36

“Using the HDF Import Tool Subsetting Options” on page 7-41

“Using the MATLAB HDF4 High-Level Functions” on page 7-53

“Using the HDF4 Low-Level Functions” on page 7-56

Note For information about importing HDF5 data, which is a separate,
incompatible format, see “Hierarchical Data Format (HDF5) Files” on page
7-11.

Using the HDF Import Tool
Hierarchical Data Format (HDF4) is a general-purpose, machine-independent
standard for storing scientific data in files, developed by the National
Center for Supercomputing Applications (NCSA). For more information
about these file formats, read the HDF documentation at the HDF Web site
(www.hdfgroup.org).

HDF-EOS is an extension of HDF4 that was developed by the National
Aeronautics and Space Administration (NASA) for storage of data returned
from the Earth Observing System (EOS). For more information about this
extension to HDF4, see the HDF-EOS documentation at the NASA Web site
(www.hdfeos.org).

The HDF Import Tool is a graphical user interface that you can use to
navigate through HDF4 or HDF-EOS files and import data from them.
Importing data using the HDF Import Tool involves these steps:

• “Step 1: Opening an HDF4 File in the HDF Import Tool” on page 7-37

• “Step 2: Selecting a Data Set in an HDF File” on page 7-38

• “Step 3: Specifying a Subset of the Data (Optional)” on page 7-39

• “Step 4: Importing Data and Metadata” on page 7-40

7-36

http://www.hdfgroup.org
http://www.hdfeos.org

Hierarchical Data Format (HDF4) Files

• “Step 5: Closing HDF Files and the HDF Import Tool” on page 7-41

The following sections provide more detail about each of these steps.

Step 1: Opening an HDF4 File in the HDF Import Tool
Open an HDF4 or HDF-EOS file in MATLAB using one of the following
methods:

• Choose the Import Data option from the MATLAB File menu. If you select
an HDF4 or HDF-EOS file, the MATLAB Import Wizard automatically
starts the HDF Import Tool.

• Start the HDF Import Tool by entering the hdftool command at the
MATLAB command line:

hdftool

This opens an empty HDF Import Tool. To open a file, click the Open
option on the HDFTool File menu and select the file you want to open. You
can open multiple files in the HDF Import Tool.

• Open an HDF or HDF-EOS file by specifying the file name with the
hdftool command on the MATLAB command line:

hdftool('example.hdf')

Viewing a File in the HDF Import Tool. When you open an HDF4 or
HDF-EOS file in the HDF Import Tool, the tool displays the contents of the
file in the Contents pane. You can use this pane to navigate within the file
to see what data sets it contains. You can view the contents of HDF-EOS
files as HDF data sets or as HDF-EOS files. The icon in the contents pane
indicates the view, as illustrated in the following figure. Note that these are
just two views of the same data.

7-37

7 Working with Scientific Data Formats

8��!��������
92����
92�6:;"

�������-�

���������$��� 5��������$����

�-$����������
"��������
$���

Step 2: Selecting a Data Set in an HDF File
To import a data set, you must first select the data set in the contents pane of
the HDF Import Tool. Use the Contents pane to view the contents of the file
and navigate to the data set you want to import.

For example, the following figure shows the data set Example SDS in the
HDF file selected. Once you select a data set, the Metadata panel displays
information about the data set and the importing and subsetting pane
displays subsetting options available for this type of HDF object.

7-38

Hierarchical Data Format (HDF4) Files

"�������
��������

2�������
-�������

"��������
�$��������������
92����<���

Step 3: Specifying a Subset of the Data (Optional)
When you select a data set in the contents pane, the importing and subsetting
pane displays the subsetting options available for that type of HDF object.
The subsetting options displayed vary depending on the type of HDF object.
For more information, see “Using the HDF Import Tool Subsetting Options”
on page 7-41.

7-39

7 Working with Scientific Data Formats

Step 4: Importing Data and Metadata
To import the data set you have selected, click the Import button, bottom
right corner of the Importing and Subsetting pane. Using the Importing and
Subsetting pane, you can

• Specify the name of the workspace variable — By default, the HDF
Import Tool uses the name of the HDF4 data set as the name of the
MATLAB workspace variable. In the following figure, the variable name
is Example_SDS. To specify another name, enter text in the Workspace
Variable text box.

• Specify whether to import metadata associated with the data set — To
import any metadata that might be associated with the data set, select the
Import Metadata check box. To store the metadata, the HDF Import
Tool creates a second variable in the workspace with the same name
with “_info” appended to it. For example, if you select this check box,
the name of the metadata variable for the data set in the figure would be
Example_SDS_info.

• Save the data set import command syntax — The Dataset import
command text window displays the MATLAB command used to import
the data set. This text is not editable, but you can copy and paste it into the
MATLAB Command Window or a text editor for reuse.

The following figure shows how to specify these options in the HDF Import
Tool.

�-$����-�������
!������������

"$����#���-����
�����������������
��������

5=>7=?���--���
��������-$��������

����4����������-$���
��������

7-40

Hierarchical Data Format (HDF4) Files

Step 5: Closing HDF Files and the HDF Import Tool
To close a file, select the file in the contents pane and click Close File on the
HDF Import Tool File menu.

To close all the files open in the HDF Import Tool, click Close All Files on the
HDF Import Tool File menu.

To close the tool, click Close HDFTool in the HDF Import Tool File menu or
click the Close button in the upper right corner of the tool.

If you used the hdftool syntax that returns a handle to the tool,

h = hdftool('example.hdf')

you can use the close(h) command to close the tool from the MATLAB
command line.

Using the HDF Import Tool Subsetting Options
When you select a data set, the importing and subsetting pane displays the
subsetting options available for that type of data set. The following sections
provide information about these subsetting options for all supported data
set types. For general information about the HDF Import tool, see “Using
the HDF Import Tool” on page 7-36.

• “HDF Scientific Data Sets (SD)” on page 7-42

• “HDF Vdata” on page 7-42

• “HDF-EOS Grid Data” on page 7-44

• “HDF-EOS Point Data” on page 7-49

• “HDF-EOS Swath Data” on page 7-49

• “HDF Raster Image Data” on page 7-53

Note To use these data subsetting options effectively, you must understand
the HDF and HDF-EOS data formats. Therefore, use this documentation
in conjunction with the HDF documentation (www.hdfgroup.org) and the
HDF-EOS documentation (www.hdfeos.org).

7-41

http://www.hdfgroup.org
http://www.hdfeos.org

7 Working with Scientific Data Formats

HDF Scientific Data Sets (SD)
The HDF scientific data set (SD) is a group of data structures used to store
and describe multidimensional arrays of scientific data. Using the HDF
Import Tool subsetting parameters, you can import a subset of an HDF
scientific data set by specifying the location, range, and number of values to
be read along each dimension.

"��������
$���-�����

2�-������

The subsetting parameters are:

• Start — Specifies the position on the dimension to begin reading. The
default value is 1, which starts reading at the first element of each
dimension. The values specified must not exceed the size of the relevant
dimension of the data set.

• Increment — Specifies the interval between the values to read. The
default value is 1, which reads every element of the data set.

• Length — Specifies how much data to read along each dimension. The
default value is the length of the dimension, which causes all the data to
be read.

HDF Vdata
HDF Vdata data sets provide a framework for storing customized tables.
A Vdata table consists of a collection of records whose values are stored in

7-42

Hierarchical Data Format (HDF4) Files

fixed-length fields. All records have the same structure and all values in
each field have the same data type. Each field is identified by a name. The
following figure illustrates a Vdata table.

��0 2�!$�

�

>�-$

�

	 �	 �

� � '

�

�������-��

.������

������

You can import a subset of an HDF Vdata data set in the following ways:

• Specifying the name of the field that you want to import

• Specifying the range of records that you want to import

The following figure shows how you specify these subsetting parameters for
Vdata.

"$����#���������������

"$����#�!�������
�������������

"$����#���!�-��#
���������������

7-43

7 Working with Scientific Data Formats

HDF-EOS Grid Data
In HDF-EOS Grid data, a rectilinear grid overlays a map. The map uses a
known map projection. The HDF Import Tool supports the following mutually
exclusive subsetting options for Grid data:

• “Direct Index” on page 7-44

• “Geographic Box” on page 7-45

• “Interpolation” on page 7-46

• “Pixels” on page 7-47

• “Tile” on page 7-47

• “Time” on page 7-47

• “User-Defined” on page 7-48

To access these options, click the Subsetting method menu in the importing
and subsetting pane.

����4��������
�����$�����

Direct Index. You can import a subset of an HDF-EOS Grid data set by
specifying the location, range, and number of values to be read along each
dimension.

7-44

Hierarchical Data Format (HDF4) Files

Each row represents a dimension in the data set and each column represents
these subsetting parameters:

• Start — Specifies the position on the dimension to begin reading. The
default value is 1, which starts reading at the first element of each
dimension. The values specified must not exceed the size of the relevant
dimension of the data set.

• Increment — Specifies the interval between the values to read. The
default value is 1, which reads every element of the data set.

• Length — Specifies how much data to read along each dimension. The
default value is the length of the dimension, which causes all the data to
be read.

Geographic Box. You can import a subset of an HDF-EOS Grid data set
by specifying the rectangular area of the grid that you are interested in. To
define this rectangular area, you must specify two points, using longitude and
latitude in decimal degrees. These points are two corners of the rectangular
area. Typically, Corner 1 is the upper-left corner of the box, and Corner 2
is the lower-right corner of the box.

7-45

7 Working with Scientific Data Formats

Optionally, you can further define the subset of data you are interested in
by using Time parameters (see “Time” on page 7-47) or by specifying other
User-Defined subsetting parameters (see “User-Defined” on page 7-48).

Interpolation. Interpolation is the process of estimating a pixel value at a
location in between other pixels. In interpolation, the value of a particular
pixel is determined by computing the weighted average of some set of pixels
in the vicinity of the pixel.

You define the region used for bilinear interpolation by specifying two points
that are corners of the interpolation area:

• Corner 1 – Specify longitude and latitude values in decimal degrees.
Typically, Corner 1 is the upper-left corner of the box.

• Corner 2 — Specify longitude and latitude values in decimal degrees.
Typically, Corner 2 is the lower-right corner of the box

7-46

Hierarchical Data Format (HDF4) Files

Pixels. You can import a subset of the pixels in a Grid data set by defining
a rectangular area over the grid. You define the region used for bilinear
interpolation by specifying two points that are corners of the interpolation
area:

• Corner 1 – Specify longitude and latitude values in decimal degrees.
Typically, Corner 1 is the upper-left corner of the box.

• Corner 2 — Specify longitude and latitude values in decimal degrees.
Typically, Corner 2 is the lower-right corner of the box

Tile. In HDF-EOS Grid data, a rectilinear grid overlays a map. Each
rectangle defined by the horizontal and vertical lines of the grid is referred to
as a tile. If the HDF-EOS Grid data is stored as tiles, you can import a subset
of the data by specifying the coordinates of the tile you are interested in.
Tile coordinates are 1-based, with the upper-left corner of a two-dimensional
data set identified as 1,1. In a three-dimensional data set, this tile would be
referenced as 1,1,1.

Time. You can import a subset of the Grid data set by specifying a time
period. You must specify both the start time and the stop time (the endpoint
of the time span). The units (hours, minutes, seconds) used to specify the time
are defined by the data set.

7-47

7 Working with Scientific Data Formats

Along with these time parameters, you can optionally further define the
subset of data to import by supplying user-defined parameters.

User-Defined. You can import a subset of the Grid data set by specifying
user-defined subsetting parameters.

When specifying user-defined parameters, you must first specify whether you
are subsetting along a dimension or by field. Select the dimension or field by
name using the Dimension or Field Name menu. Dimension names are
prefixed with the characters DIM:.

Once you specify the dimension or field, you use Min and Max to specify
the range of values that you want to import. For dimensions, Min and Max
represent a range of elements. For fields, Min and Max represent a range
of values.

7-48

Hierarchical Data Format (HDF4) Files

HDF-EOS Point Data
HDF-EOS Point data sets are tables. You can import a subset of an HDF-EOS
Point data set by specifying field names and level. Optionally, you can refine
the subsetting by specifying the range of records you want to import, by
defining a rectangular area, or by specifying a time period. For information
about specifying a rectangular area, see “Geographic Box” on page 7-45. For
information about subsetting by time, see “Time” on page 7-47.

HDF-EOS Swath Data
HDF-EOS Swath data is data that is produced by a satellite as it traces a path
over the earth. This path is called its ground track. The sensor aboard the
satellite takes a series of scans perpendicular to the ground track. Swath data
can also include a vertical measure as a third dimension. For example, this
vertical dimension can represent the height above the Earth of the sensor.

The HDF Import Tool supports the following mutually exclusive subsetting
options for Swath data:

• “Direct Index” on page 7-50

• “Geographic Box” on page 7-51

• “Time” on page 7-52

• “User-Defined” on page 7-52

To access these options, click the Subsetting method menu in the
Importing and Subsetting pane.

7-49

7 Working with Scientific Data Formats

����4��������
������������������
�$����

Direct Index. You can import a subset of an HDF-EOS Swath data set by
specifying the location, range, and number of values to be read along each
dimension.

Each row represents a dimension in the data set and each column represents
these subsetting parameters:

• Start — Specifies the position on the dimension to begin reading. The
default value is 1, which starts reading at the first element of each
dimension. The values specified must not exceed the size of the relevant
dimension of the data set.

• Increment — Specifies the interval between the values to read. The
default value is 1, which reads every element of the data set.

• Length — Specifies how much data to read along each dimension. The
default value is the length of the dimension, which causes all the data to
be read.

7-50

Hierarchical Data Format (HDF4) Files

Geographic Box. You can import a subset of an HDF-EOS Swath data
set by specifying the rectangular area of the grid that you are interested in
and by specifying the selection Mode.

You define the rectangular area by specifying two points that specify two
corners of the box:

• Corner 1 — Specify longitude and latitude values in decimal degrees.
Typically, Corner 1 is the upper-left corner of the box.

• Corner 2 — Specify longitude and latitude values in decimal degrees.
Typically, Corner 2 is the lower-right corner of the box.

You specify the selection mode by choosing the type of Cross Track Inclusion
and the Geolocation mode. The Cross Track Inclusion value determines
how much of the area of the geographic box that you define must fall within
the boundaries of the swath.

Select from these values:

• AnyPoint — Any part of the box overlaps with the swath.

• Midpoint — At least half of the box overlaps with the swath.

7-51

7 Working with Scientific Data Formats

• Endpoint — All of the area defined by the box overlaps with the swath.

The Geolocation Mode value specifies whether geolocation fields and data
must be in the same swath.

Select from these values:

• Internal — Geolocation fields and data fields must be in the same swath.

• External — Geolocation fields and data fields can be in different swaths.

Time. You can optionally also subset swath data by specifying a time period.
The units used (hours, minutes, seconds) to specify the time are defined by
the data set

User-Defined. You can optionally also subset a swath data set by specifying
user-defined parameters.

When specifying user-defined parameters, you must first specify whether you
are subsetting along a dimension or by field. Select the dimension or field by
name using the Dimension or Field Name menu. Dimension names are
prefixed with the characters DIM:.

7-52

Hierarchical Data Format (HDF4) Files

Once you specify the dimension or field, you use Min and Max to specify
the range of values that you want to import. For dimensions, Min and Max
represent a range of elements. For fields, Min and Max represent a range
of values.

HDF Raster Image Data
For 8-bit HDF raster image data, you can specify the colormap.

Using the MATLAB HDF4 High-Level Functions
To import data from an HDF or HDF-EOS file, you can use the MATLAB
HDF4 high-level function hdfread. The hdfread function provides a
programmatic way to import data from an HDF4 or HDF-EOS file that still
hides many of the details that you need to know if you use the low-level HDF
functions, described in “Using the HDF4 Low-Level Functions” on page 7-56.
You can also import HDF4 data using an interactive GUI, described in “Using
the HDF Import Tool” on page 7-36.

This section describes these high-level MATLAB HDF functions, including

• “Using hdfinfo to Get Information About an HDF4 File” on page 7-53

• “Using hdfread to Import Data from an HDF4 File” on page 7-54

To export data to an HDF4 file, you must use the MATLAB HDF4 low-level
functions.

Using hdfinfo to Get Information About an HDF4 File
To get information about the contents of an HDF4 file, use the hdfinfo
function. The hdfinfo function returns a structure that contains information
about the file and the data in the file.

Note You can also use the HDF Import Tool to get information about the
contents of an HDF4 file. See “Using the HDF Import Tool” on page 7-36
for more information.

7-53

7 Working with Scientific Data Formats

This example returns information about a sample HDF4 file included with
MATLAB:

info = hdfinfo('example.hdf')

info =

Filename: 'example.hdf'
SDS: [1x1 struct]

Vdata: [1x1 struct]

To get information about the data sets stored in the file, look at the SDS field.

Using hdfread to Import Data from an HDF4 File
To use thehdfread function, you must specify the data set that you want to
read. You can specify the filename and the data set name as arguments, or
you can specify a structure returned by the hdfinfo function that contains
this information. The following example shows both methods. For information
about how to import a subset of the data in a data set, see “Reading a Subset
of the Data in a Data Set” on page 7-56.

1 Determine the names of data sets in the HDF4 file, using the hdfinfo
function.

info = hdfinfo('example.hdf')

info =

Filename: 'example.hdf'
SDS: [1x1 struct]

Vdata: [1x1 struct]

To determine the names and other information about the data sets in
the file, look at the contents of the SDS field. The Name field in the SDS
structure gives the name of the data set.

dsets = info.SDS

dsets =

7-54

Hierarchical Data Format (HDF4) Files

Filename: 'example.hdf'
Type: 'Scientific Data Set'
Name: 'Example SDS'
Rank: 2

DataType: 'int16'
Attributes: []

Dims: [2x1 struct]
Label: {}

Description: {}
Index: 0

2 Read the data set from the HDF4 file, using the hdfread function. Specify
the name of the data set as a parameter to the function. Note that the data
set name is case sensitive. This example returns a 16-by-5 array:

dset = hdfread('example.hdf', 'Example SDS');

dset =

3 4 5 6 7
4 5 6 7 8
5 6 7 8 9
6 7 8 9 10
7 8 9 10 11
8 9 10 11 12
9 10 11 12 13

10 11 12 13 14
11 12 13 14 15
12 13 14 15 16
13 14 15 16 17
14 15 16 17 18
15 16 17 18 19
16 17 18 19 20
17 18 19 20 21
18 19 20 21 22

Alternatively, you can specify the specific field in the structure returned by
hdfinfo that contains this information. For example, to read a scientific
data set, use the SDS field.

dset = hdfread(info.SDS);

7-55

7 Working with Scientific Data Formats

Reading a Subset of the Data in a Data Set. To read a subset of a data
set, you can use the optional 'index' parameter. The value of the index
parameter is a cell array of three vectors that specify the location in the data
set to start reading, the skip interval (e.g., read every other data item), and
the amount of data to read (e.g., the length along each dimension). In HDF4
terminology, these parameters are called the start, stride, and edge values.

For example, this code

• Starts reading data at the third row, third column ([3 3]).

• Reads every element in the array ([]).

• Reads 10 rows and 2 columns ([10 2]).

subset = hdfread('Example.hdf','Example SDS',...
'Index',{[3 3],[],[10 2]})

subset =

7 8
8 9
9 10

10 11
11 12
12 13
13 14
14 15
15 16
16 17

Using the HDF4 Low-Level Functions
This section describes how to use MATLAB functions to access the HDF4
Application Programming Interfaces (APIs). These APIs are libraries of C
routines that you can use to import data from an HDF4 file or export data
from the MATLAB workspace into an HDF4 file. To import or export data, you
must use the functions in the HDF4 API associated with the particular HDF4
data type you are working with. Each API has a particular programming
model, that is, a prescribed way to use the routines to write data sets to
the file. To illustrate this concept, this section describes the programming

7-56

Hierarchical Data Format (HDF4) Files

model of one particular HDF4 API: the HDF4 Scientific Data (SD) API. For a
complete list of the HDF4 APIs supported by MATLAB and the functions you
use to access each one, see the hdf reference page.

Note This section does not attempt to describe all HDF4 features and
routines. To use the MATLAB HDF4 functions effectively, you must refer to
the official NCSA documentation at the HDF Web site (www.hdfgroup.org).

Topics covered include

• “Understanding the HDF4 to MATLAB Syntax Mapping” on page 7-57

• “Example: Importing Data Using the HDF4 SD API Functions” on page
7-58

• “Example: Exporting Data Using the HDF4 SD API Functions” on page
7-64

• “Using the MATLAB HDF4 Utility API” on page 7-71

Understanding the HDF4 to MATLAB Syntax Mapping
Each HDF4 API includes many individual routines that you use to read
data from files, write data to files, and perform other related functions. For
example, the HDF4 Scientific Data (SD) API includes separate C routines to
open (SDopen), close (SDend), and read data (SDreaddata).

Instead of supporting each routine in the HDF4 APIs, MATLAB provides a
single function that serves as a gateway to all the routines in a particular
HDF4 API. For example, the HDF Scientific Data (SD) API includes the C
routine SDend to close an HDF4 file:

status = SDend(sd_id); /* C code */

To call this routine from MATLAB, use the MATLAB function associated with
the SD API, hdfsd. You must specify the name of the routine, minus the API
acronym, as the first argument and pass any other required arguments to the
routine in the order they are expected. For example,

status = hdfsd('end',sd_id); % MATLAB code

7-57

http://www.hdfgroup.org

7 Working with Scientific Data Formats

Handling HDF4 Routines with Output Arguments. Some HDF4 API
routines use output arguments to return data. Because MATLAB does not
support output arguments, you must specify these arguments as return
values.

For example, the SDfileinfo routine returns data about an HDF4 file in two
output arguments, ndatasets and nglobal_atts. Here is the C code:

status = SDfileinfo(sd_id, ndatasets, nglobal_atts);

To call this routine from MATLAB, change the output arguments into return
values:

[ndatasets, nglobal_atts, status] = hdfsd('fileinfo',sd_id);

Specify the return values in the same order as they appear as output
arguments. The function status return value is always specified as the last
return value.

Example: Importing Data Using the HDF4 SD API Functions
To illustrate using HDF4 API routines in MATLAB, the following sections
provide a step-by-step example of how to import HDF4 Scientific Data (SD)
into the MATLAB workspace.

• “Step 1: Opening the HDF4 File” on page 7-59

• “Step 2: Retrieving Information About the HDF4 File” on page 7-59

• “Step 3: Retrieving Attributes from an HDF4 File (Optional)” on page 7-60

• “Step 4: Selecting the Data Sets to Import” on page 7-61

• “Step 5: Getting Information About a Data Set” on page 7-61

• “Step 6: Reading Data from the HDF4 File” on page 7-62

• “Step 7: Closing the HDF4 Data Set” on page 7-63

• “Step 8: Closing the HDF4 File” on page 7-64

7-58

Hierarchical Data Format (HDF4) Files

Note The following sections, when referring to specific routines in the HDF4
SD API, use the C library name rather than the MATLAB function name. The
MATLAB syntax is used in all examples.

Step 1: Opening the HDF4 File. To import an HDF4 SD data set, you must
first open the file using the SD API routine SDstart. (In HDF4 terminology,
the numeric arrays stored in HDF4 files are called data sets.) In MATLAB,
you use the hdfsd function, specifying as arguments:

• Name of the SD API routine, start in this case.

• Name of the file you want to open.

• Mode in which you want to open it. The following table lists the file access
modes supported by the SDstart routine. In MATLAB, you specify these
modes as text strings. You can specify the full HDF4 mode name or one of
the abbreviated forms listed in the table.

HDF4 File Creation
Mode HDF4 Mode Name MATLAB String

Create a new file 'DFACC_CREATE' 'create'

Read access 'DFACC_RDONLY' 'read' or 'rdonly'

Read and write access 'DFACC_RDWR' 'rdwr' or 'write'

For example, this code opens the file mydata.hdf for read access:

sd_id = hdfsd('start','mydata.hdf','read');

If SDstart can find and open the file specified, it returns an HDF4 SD file
identifier, named sd_id in the example. Otherwise, it returns -1.

Step 2: Retrieving Information About the HDF4 File. To get information
about an HDF4 file, you must use the SD API routine SDfileinfo. This
function returns the number of data sets in the file and the number of global
attributes in the file, if any. (For more information about global attributes, see
“Example: Exporting Data Using the HDF4 SD API Functions” on page 7-64.)
In MATLAB, you use the hdfsd function, specifying the following arguments:

7-59

7 Working with Scientific Data Formats

• Name of the SD API routine, fileinfo in this case

• SD file identifier, sd_id, returned by SDstart

In this example, the HDF4 file contains three data sets and one global
attribute.

[ndatasets, nglobal_atts, stat] = hdfsd('fileinfo',sd_id)

ndatasets =
3

nglobal_atts =
1

status =
0

Step 3: Retrieving Attributes from an HDF4 File (Optional). HDF4
files can optionally include information, called attributes, that describes the
data the file contains. Attributes associated with an entire HDF4 file are
called global attributes. Attributes associated with a data set are called local
attributes. (You can also associate attributes with files or dimensions. For
more information, see “Step 4: Writing Metadata to an HDF4 File” on page
7-69.)

To retrieve attributes from an HDF4 file, use the HDF4 API routine
SDreadattr. In MATLAB, use the hdfsd function, specifying as arguments:

• Name of the SD API routine, readattr in this case.

• File identifier (sd_id) returned by SDstart, for global attributes, or the
data set identifier for local attributes. (See “Step 4: Selecting the Data Sets
to Import” on page 7-61 to learn how to get a data set identifier.)

• Index identifying the attribute you want to view. HDF4 uses zero-based
indexing. If you know the name of an attribute but not its index, use the
SDfindattr routine to determine the index value associated with the
attribute.

For example, this code returns the contents of the first global attribute, which
is the character string my global attribute:

7-60

Hierarchical Data Format (HDF4) Files

attr_idx = 0;
[attr, status] = hdfsd('readattr', sd_id, attr_idx);

attr =
my global attribute

Step 4: Selecting the Data Sets to Import. To select a data set, use
the SD API routine SDselect. In MATLAB, you use the hdfsd function,
specifying as arguments:

• Name of the SD API routine, select in this case

• HDF4 SD file identifier (sd_id) returned by SDstart

If SDselect finds the specified data set in the file, it returns an HDF4 SD
data set identifier, called sds_id in the example. If it cannot find the data
set, it returns -1.

Note Do not confuse HDF4 SD file identifiers, named sd_id in the examples,
with HDF4 SD data set identifiers, named sds_id in the examples.

sds_id = hdfsd('select',sd_id,1)

Step 5: Getting Information About a Data Set. To read a data set, you
must get information about the data set, such as its name, size, and data
type. In the HDF4 SD API, you use the SDgetinfo routine to gather this
information. In MATLAB, use the hdfsd function, specifying as arguments:

• Name of the SD API routine, getinfo in this case

• HDF4 SD data set identifier (sds_id) returned by SDselect

This code retrieves information about the data set identified by sds_id:

[dsname, dsndims, dsdims, dstype, dsatts, stat] =
hdfsd('getinfo',sds_id)

dsname =
A

7-61

7 Working with Scientific Data Formats

dsndims =
2

dsdims =
5 3

dstype =
double

dsatts =
0

stat =
0

Step 6: Reading Data from the HDF4 File. To read data from an HDF4
file, you must use the SDreaddata routine. In MATLAB, use the hdfsd
function, specifying as arguments:

• Name of the SD API function, readdata in this case.

• HDF4 SD data set identifier (sds_id) returned by SDselect.

• Location in the data set where you want to start reading data, specified as a
vector of index values, called the start vector. To read from the beginning of
a data set, specify zero for each element of the start vector. Use SDgetinfo
to determine the dimensions of the data set.

• Number of elements along each dimension to skip between each read
operation, specified as a vector of scalar values, called the stride vector. To
read every element of a data set, specify 1 as the value for each element of
the vector or specify an empty array ([]).

• Total number of elements to read along each dimension, specified as a
vector of scalar values, called the edges vector. To read every element of a
data set, set each element of the edges vector to the size of each dimension
of the data set. Use SDgetinfo to determine these sizes.

7-62

Hierarchical Data Format (HDF4) Files

Note SDgetinfo returns dimension values in row-major order, the ordering
used by HDF4. Because MATLAB stores data in column-major order, you
must specify the dimensions in column-major order, that is, [columns,rows].
In addition, you must use zero-based indexing in these arguments.

For example, to read the entire contents of a data set, use this code:

[ds_name, ds_ndims, ds_dims, ds_type, ds_atts, stat] =

hdfsd('getinfo',sds_id);

ds_start = zeros(1,ds_ndims); % Creates the vector [0 0]

ds_stride = [];

ds_edges = ds_dims;

[ds_data, status] =

hdfsd('readdata',sds_id,ds_start,ds_stride,ds_edges);

disp(ds_data)

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

To read less than the entire data set, use the start, stride, and edges vectors
to specify where you want to start reading data and how much data you want
to read. For example, this code reads the entire second row of the sample
data set:

ds_start = [0 1]; % Start reading at the first column, second row

ds_stride = []; % Read each element

ds_edges = [5 1]; % Read a 1-by-5 vector of data

[ds_data, status] =

hdfsd('readdata',sds_id,ds_start,ds_stride,ds_edges);

Step 7: Closing the HDF4 Data Set. After writing data to a data set in an
HDF4 file, you must close access to the data set. In the HDF4 SD API, you
use the SDendaccess routine to close a data set. In MATLAB, use the hdfsd
function, specifying as arguments:

7-63

7 Working with Scientific Data Formats

• Name of the SD API routine, endaccess in this case

• HDF4 SD data set identifier (sds_id) returned by SDselect

For example, this code closes the data set:

stat = hdfsd('endaccess',sds_id);

You must close access to all the data sets in an HDF4 file before closing it.

Step 8: Closing the HDF4 File. After writing data to a data set and closing
the data set, you must also close the HDF4 file. In the HDF4 SD API, you
use the SDend routine. In MATLAB, use the hdfsd function, specifying as
arguments:

• Name of the SD API routine, end in this case

• HDF4 SD file identifier (sd_id) returned by SDstart

For example, this code closes the data set:

stat = hdfsd('end',sd_id);

Example: Exporting Data Using the HDF4 SD API Functions
The following sections provide a step-by-step example of how to export data
from the MATLAB workspace to an HDF4 file using Scientific Data (SD)
API functions.

• “Step 1: Creating an HDF4 File” on page 7-65

• “Step 2: Creating an HDF4 Data Set” on page 7-65

• “Step 3: Writing MATLAB Data to an HDF4 File” on page 7-67

• “Step 4: Writing Metadata to an HDF4 File” on page 7-69

• “Step 5: Closing HDF4 Data Sets” on page 7-70

• “Step 6: Closing an HDF4 File” on page 7-71

7-64

Hierarchical Data Format (HDF4) Files

Step 1: Creating an HDF4 File. To export MATLAB data in HDF4 format,
you must first create an HDF4 file, or open an existing one. In the HDF4
SD API, you use the SDstart routine. In MATLAB, use the hdfsd function,
specifying start as the first argument. As other arguments, specify

• A text string specifying the name you want to assign to the HDF4 file (or
the name of an existing HDF4 file)

• A text string specifying the HDF4 SD interface file access mode

For example, this code creates an HDF4 file named mydata.hdf:

sd_id = hdfsd('start','mydata.hdf','DFACC_CREATE');

When you specify the DFACC_CREATE access mode, SDstart creates the file
and initializes the HDF4 SD multifile interface, returning an HDF4 SD file
identifier, named sd_id in the example.

If you specify DFACC_CREATE mode and the file already exists, SDstart fails,
returning -1. To open an existing HDF4 file, you must use HDF4 read or
write modes. For information about using SDstart in these modes, see “Step
1: Opening the HDF4 File” on page 7-59.

Step 2: Creating an HDF4 Data Set. After creating the HDF4 file, or
opening an existing one, you must create a data set in the file for each
MATLAB array you want to export. If you are writing data to an existing data
set, you can skip ahead to the next step.

In the HDF4 SD API, you use the SDcreate routine to create data sets. In
MATLAB, you use the hdfsd function, specifying as arguments:

• Name of the SD API routine, 'create' in this case

• Valid HDF4 SD file identifier, sd_id, returned by SDstart

• Name you want assigned to the data set

• Data type of the data set.

• Number of dimensions in the data set. This is called the rank of the data
set in HDF4 terminology.

• Size of each dimension, specified as a vector

7-65

7 Working with Scientific Data Formats

Once you create a data set, you cannot change its name, data type, or
dimensions.

For example, to create a data set in which you can write the following
MATLAB 3-by-5 array of doubles,

A = [1 2 3 4 5 ; 6 7 8 9 10 ; 11 12 13 14 15];

you could call hdfsd, specifying as arguments 'create' and a valid HDF
file identifier, sd_id. In addition, set the values of the other arguments as
in this code fragment:

ds_name = 'A';
ds_type = 'double';
ds_rank = ndims(A);
ds_dims = fliplr(size(A));

sds_id = hdfsd('create',sd_id,ds_name,ds_type,ds_rank,ds_dims);

If SDcreate can successfully create the data set, it returns an HDF4 SD data
set identifier, (sds_id). Otherwise, SDcreate returns -1.

In this example, note the following:

• The data type you specify in ds_type must match the data type of the
MATLAB array that you want to write to the data set. In the example, the
array is of class double so the value of ds_type is set to 'double'. If you
wanted to use another data type, such as uint8, convert the MATLAB
array to use this data type,

A = uint8([1 2 3 4 5 ; 6 7 8 9 10 ; 11 12 13 14 15]);

and specify the name of the MATLAB data type, uint8 in this case, in the
ds_type argument.

ds_type = 'uint8';

• The code fragment reverses the order of the values in the dimensions
argument (ds_dims). This processing is necessary because the MATLAB
size function returns the dimensions in column-major order and HDF4
expects to receive dimensions in row-major order.

7-66

Hierarchical Data Format (HDF4) Files

Step 3: Writing MATLAB Data to an HDF4 File. After creating an
HDF4 file and creating a data set in the file, you can write data to the entire
data set or just a portion of the data set. In the HDF4 SD API, you use the
SDwritedata routine. In MATLAB, use the hdfsd function, specifying as
arguments:

• Name of the SD API routine, 'writedata' in this case

• Valid HDF4 SD data set identifier, sds_id, returned by SDcreate

• Location in the data set where you want to start writing data, called the
start vector in HDF4 terminology

• Number of elements along each dimension to skip between each write
operation, called the stride vector in HDF4 terminology

• Total number of elements to write along each dimension, called the edges
vector in HDF4 terminology

• MATLAB array to be written

Note You must specify the values of the start, stride, and edges arguments
in row-major order, rather than the column-major order used in MATLAB.
Note how the example uses fliplr to reverse the order of the dimensions in
the vector returned by the size function before assigning it as the value of
the edges argument.

The values you assign to these arguments depend on the MATLAB array
you want to export. For example, the following code fragment writes this
MATLAB 3-by-5 array of doubles,

A = [1 2 3 4 5; 6 7 8 9 10; 11 12 13 14 15];

into an HDF4 file:

ds_start = zeros(1:ndims(A)); % Start at the beginning
ds_stride = []; % Write every element.
ds_edges = fliplr(size(A)); % Reverse the dimensions.

stat = hdfsd('writedata',sds_id,...
ds_start, ds_stride, ds_edges, A);

7-67

7 Working with Scientific Data Formats

If it can write the data to the data set, SDwritedata returns 0; otherwise,
it returns -1.

Note SDwritedata queues write operations. To ensure that these queued
write operations are executed, you must close the file, using the SDend routine.
See “Step 6: Closing an HDF4 File” on page 7-71 for more information. As a
convenience, MATLAB provides a function, MLcloseall, that you can use to
close all open data sets and file identifiers with a single call. See “Using the
MATLAB HDF4 Utility API” on page 7-71 for more information.

To write less than the entire data set, use the start, stride, and edges vectors
to specify where you want to start writing data and how much data you want
to write.

For example, the following code fragment uses SDwritedata to replace the
values of the entire second row of the sample data set:

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15

with the vector B:

B = [9 9 9 9 9];

In the example, the start vector specifies that you want to start the write
operation in the first column of the second row. Note how HDF4 uses
zero-based indexing and specifies the column dimension first. In MATLAB,
you would specify this location as (2,1). The edges argument specifies the
dimensions of the data to be written. Note that the size of the array of data
to be written must match the edge specification.

ds_start = [0 1]; % Start writing at the first column, second row.

ds_stride = []; % Write every element.

ds_edges = [5 1]; % Each row is a 1-by-5 vector.

stat = hdfsd('writedata',sds_id,ds_start,ds_stride,ds_edges,B);

7-68

Hierarchical Data Format (HDF4) Files

Step 4: Writing Metadata to an HDF4 File. You can optionally include
information in an HDF4 file, called attributes, that describes the file and its
contents. Using the HDF4 SD API, you can associate attributes with three
types of HDF4 objects:

• An entire HDF4 file — File attributes, also called global attributes,
generally contain information pertinent to all the data sets in the file.

• A data set in an HDF4 file — Data set attributes, also called local
attributes, describe individual data sets.

• A dimension of a data set — Dimension attributes provide information
about one particular dimension of a data set.

To create an attribute in the HDF4 SD API, use the SDsetattr routine. In
MATLAB, use the hdfsd function, specifying 'setattr' as the first argument.
As other arguments, specify

• A valid HDF4 SD identifier associated with the object. This value can
be a file identifier (sd_id), a data set identifier (sds_id), or a dimension
identifier (dim_id).

• A text string that defines the name of the attribute.

• The attribute value.

For example, this code creates a global attribute, named my_global_attr, and
associates it with the HDF4 file identified by sd_id:

status = hdfsd('setattr',sd_id,'my_global_attr','my_attr_val');

Note In the NCSA documentation, the SDsetattr routine has two additional
arguments: data type and the number of values in the attribute. When calling
this routine from MATLAB, you do not have to include these arguments.
The MATLAB HDF4 function can determine the data type and size of the
attribute from the value you specify.

The SD interface supports predefined attributes that have reserved names
and, in some cases, data types. Predefined attributes are identical to
user-defined attributes except that the HDF4 SD API has already defined

7-69

7 Working with Scientific Data Formats

their names and data types. For example, the HDF4 SD API defines an
attribute, named cordsys, in which you can specify the coordinate system
used by the data set. Possible values of this attribute include the text strings
'cartesian', 'polar', and 'spherical'.

Predefined attributes can be useful because they establish conventions that
applications can depend on. The HDF4 SD API supports predefined attributes
for data sets and dimensions only; there are no predefined attributes for files.
For a complete list of the predefined attributes, see the NCSA documentation.

In the HDF4 SD API, you create predefined attributes the same way you
create user-defined attributes, using the SDsetattr routine. In MATLAB, use
the hdfsd function, specifying setattr as the first argument:

attr_name = 'cordsys';
attr_value = 'polar';

status = hdfsd('setattr',sds_id,attr_name,attr_value);

The HDF4 SD API also includes specialized functions for writing and
reading the predefined attributes. These specialized functions, such as
SDsetdatastrs, are sometimes easier to use, especially when you are reading
or writing multiple related predefined attributes. You must use specialized
functions to read or write the predefined dimension attributes.

You can associate multiple attributes with a single HDF4 object. HDF4
maintains an attribute index for each object. The attribute index is
zero-based. The first attribute has index value 0, the second has index value
1, and so on. You access an attribute by its index value.

Each attribute has the format name=value, where name (called label in
HDF4 terminology) is a text string up to 256 characters in length and value
contains one or more entries of the same data type. A single attribute can
have multiple values.

Step 5: Closing HDF4 Data Sets. After writing data to a data set in an
HDF4 file, you must close access to the data set. In the HDF4 SD API, you
use the SDendaccess routine to close a data set. In MATLAB, use the hdfsd
function, specifying endaccess as the first argument. As the only other
argument, specify a valid HDF4 SD data set identifier, sds_id in this example:

7-70

Hierarchical Data Format (HDF4) Files

stat = hdfsd('endaccess',sds_id);

Step 6: Closing an HDF4 File. After writing data to a data set and closing
the data set, you must also close the HDF4 file. In the HDF4 SD API, you
use the SDend routine. In MATLAB, use the hdfsd function, specifying end
as the first argument. As the only other argument, specify a valid HDF4 SD
file identifier, sd_id in this example:

stat = hdfsd('end',sd_id);

You must close access to all the data sets in an HDF4 file before closing it.

Note Closing an HDF4 file executes all the write operations that have been
queued using SDwritedata. As a convenience, the MATLAB HDF Utility
API provides a function that can close all open data set and file identifiers
with a single call. See “Using the MATLAB HDF4 Utility API” on page 7-71
for more information.

Using the MATLAB HDF4 Utility API
In addition to the standard HDF4 APIs, listed in the hdfreference page,
MATLAB supports utility functions that are designed to make it easier to use
HDF4 in the MATLAB environment.

For example, using the gateway function to the MATLAB HDF4 utility API,
hdfml, and specifying the name of the listinfo routine as an argument, you
can view all the currently open HDF4 identifiers. MATLAB updates this list
whenever HDF identifiers are created or closed. In the following example
only two identifiers are open.

hdfml('listinfo')
No open RI identifiers
No open GR identifiers
No open grid identifiers
No open grid file identifiers
No open annotation identifiers
No open AN identifiers
Open scientific dataset identifiers:
262144

7-71

7 Working with Scientific Data Formats

Open scientific data file identifiers:
393216

No open Vdata identifiers
No open Vgroup identifiers
No open Vfile identifiers
No open point identifiers
No open point file identifiers
No open swath identifiers
No open swath file identifiers
No open access identifiers
No open file identifiers

Closing All Open HDF4 Identifiers. To close all the currently open
HDF4 identifiers in a single call, use the gateway function to the MATLAB
HDF4 utility API, hdfml, specifying the name of the closeall routine as
an argument. The following example closes all the currently open HDF4
identifiers.

hdfml('closeall')

7-72

8

Error Handling

Error Reporting in MATLAB (p. 8-2) The default error-reporting
mechanism used by MATLAB

Capturing Information About the
Error (p. 8-5)

Transferring information about
an error using an object of the
MException class

Throwing an Exception (p. 8-16) Detecting a faulty condition in
your application and throwing an
exception

Responding to an Exception (p. 8-17) Responding to an exception received
by your program

Warnings (p. 8-22) Identifying warnings and what
caused them

Warning Control (p. 8-24) Controlling the action taken when a
warning is encountered

Debugging Errors and Warnings
(p. 8-34)

Stopping code execution in the
debugger on the occurrence of an
error or warning

8 Error Handling

Error Reporting in MATLAB

In this section...

“Overview” on page 8-2

“Getting an Exception at the Command Line” on page 8-2

“Getting an Exception in Your Program Code” on page 8-3

“Generating a New Exception” on page 8-4

Overview
No matter how carefully you plan and test the programs you write, they
may not always run as smoothly as expected when executed under different
conditions. It is always a good idea to include error checking in programs to
ensure reliable operation under all conditions.

In MATLAB, you can decide how your programs respond to different types of
errors. You may want to prompt the user for more input, display extended
error or warning information, or perhaps repeat a calculation using default
values. The error-handling capabilities in MATLAB help your programs check
for particular error conditions and execute the appropriate code depending
on the situation.

When MATLAB detects a severe fault in the command or program it is
running, it collects information about what was happening at the time of the
error, displays a message to help the user understand what went wrong, and
terminates the command or program. This is called throwing an exception.
You can get an exception while entering commands at the MATLAB command
prompt or while executing your program code.

Getting an Exception at the Command Line
If you get an exception at the MATLAB prompt, you have several options on
how to deal with it as described below.

Determine the Fault from the Error Message
Evaluate the error message MATLAB has displayed. Most error messages
attempt to explain at least the immediate cause of the program failure. There

8-2

Error Reporting in MATLAB

is often sufficient information to determine the cause and what you need to
do to remedy the situation.

Review the Failing Code
If the function in which the error occurred is implemented as an M-file, the
error message should include a line that looks something like this:

surf

The underlined text to the right names the function that threw the error
(surf, in this case) and shows the failing line number within that function’s
M-file. Click the underlined text; MATLAB opens the M-file and positions
the cursor at the location in the file where the error originated. You may be
able to determine the cause of the error by examining this line and the code
that precedes it.

Step Through the Code in the Debugger
You can use the MATLAB Debugger to step through the failing code. Click the
underlined error text to open the M-file in the MATLAB Editor at or near the
point of the error. Next, click the hyphen at the beginning of that line to set a
breakpoint at that location. When you rerun your program, MATLAB pauses
execution at the breakpoint and enables you to step through the program code.
The command dbstop on error is also helpful in finding the point of error.

See the documentation on “Editing and Debugging M-Files” for more
information.

Getting an Exception in Your Program Code
When you are writing your own program in an M-file, you can catch exceptions
and attempt to handle or resolve them instead of allowing your program
to terminate. When you catch an exception, you interrupt the normal
termination process and enter a block of code that deals with the faulty
situation. This block of code is called a catch block.

8-3

8 Error Handling

Some of the things you might want to do in the catch block are:

• Examine information that has been captured about the error.

• Gather further information to report to the user.

• Try to accomplish the task at hand in some other way.

• Clean up any unwanted side effects of the error.

When you reach the end of the catch block, you can either continue executing
the program, if possible, or terminate it.

The documentation on “Capturing Information About the Error” on page
8-5 describes how to acquire information about what caused the error, and
“Responding to an Exception” on page 8-17 presents some ideas on how to
respond to it.

Generating a New Exception
When your program code detects a condition that will either make the
program fail or yield unacceptable results, it should throw an exception. This
procedure

• Saves information about what went wrong and what code was executing at
the time of the error.

• Gathers any other pertinent information about the error.

• Instructs MATLAB to throw the exception.

The documentation on “Capturing Information About the Error” on page 8-5
describes how to use an MException object to capture information about the
error, and “Throwing an Exception” on page 8-16 explains how to initiate
the exception process.

8-4

Capturing Information About the Error

Capturing Information About the Error

In this section...

“Overview” on page 8-5

“The MException Class” on page 8-5

“Properties of the MException Class” on page 8-7

“Methods of the MException Class” on page 8-14

Overview
When MATLAB throws an exception, it captures information about what
caused the error in a data structure called an MException object. This object
is an instance of the MATLAB MException class. You can obtain access
to the MException object by catching the exception before your program
aborts and accessing the object constructed for this particular error via the
catch command. When throwing an exception in response to an error in your
own M-file code, you will have to create a new MException object and store
information about the error in that object.

This section describes the MException class and objects constructed from
that class:

Information on how to use this class is presented in later sections on
“Responding to an Exception” on page 8-17 and “Throwing an Exception”
on page 8-16.

The MException Class
The figure shown below illustrates one possible configuration of an object of
the MException class. The object has four properties: identifier, message,
stack, and cause. Each of these properties is implemented as a field of the
structure that represents the MException object. The stack field is an N-by-1
array of additional structures, each one identifying an M-file, function, and
line number from the call stack. The cause field is an M-by-1 cell array of
MException objects, each representing an exception that is related to the
current one.

8-5

8 Error Handling

See “Properties of the MException Class” on page 8-7 for a full description of
these properties.

5:0��$����
����;�<���

5:0��$����
����;�<���

5:0��$����
����;�<���

5:0��$����
����;�<���

5:0��$����
����;�<���

5:0��$����
����;�<���

5:0��$����
����;�<���

5:0��$����
����;�<���

Object Constructor
Any code that detects an error and throws an exception must also construct
an MException object in which to record and transfer information about the
error. The syntax of the MException constructor is

ME = MException(identifier, message)

8-6

Capturing Information About the Error

where identifier is a MATLAB message identifier of the form

component:mnemonic

that is enclosed in single quotes, and message is a text string, also enclosed
in single quotes, that describes the error. The output ME is the resulting
MException object.

If you are responding to an exception rather than throwing one, you do
not have to construct an MException object. The object has already been
constructed and populated by the code that originally detected the error.

Properties of the MException Class
The MException class has four properties. Each of these properties is
implemented as a field of the structure that represents the MException object.
Each of these properties is described in the sections below and referenced in
the sections on “Responding to an Exception” on page 8-17 and “Throwing
an Exception” on page 8-16:

• identifier

• message

• stack

• cause

Repeating the surf example shown above, but this time catching the
exception, you can see the four properties of the MException object structure.
(This example uses try-catch in an atypical fashion. See the section on “The
try-catch Statement” on page 8-17 for more information on using try-catch).

try
surf

catch ME
ME

end

Run this at the command line and MATLAB returns the contents of the
MException object:

8-7

8 Error Handling

ME =
MException object with properties:

identifier: 'MATLAB:nargchk:notEnoughInputs'
message: 'Not enough input arguments.'

stack: [1x1 struct]
cause: {}

The stack field shows the filename, function, and line number where the
exception was thrown:

ME.stack
ans =

file: 'matlabroot\toolbox\matlab\graph3d\surf.m'
name: 'surf'
line: 54

The cause field is empty in this case. Each field is described in more detail in
the sections that follow.

Message Identifiers
A message identifier is a tag that you attach to an error or warning statement
that makes that error or warning uniquely recognizable by MATLAB. You can
use message identifiers with error reporting to better identify the source of
an error, or with warnings to control any selected subset of the warnings
in your programs.

The message identifier is a read-only character string that specifies a
component and a mnemonic label for an error or warning. The format of
a simple identifier is

component:mnemonic

A colon separates the two parts of the identifier: component and mnemonic.
If the identifier uses more than one mnemonic, then additional colons are
required to separate them. A message identifier must always contain at
least one colon.

Some examples of message identifiers are

8-8

Capturing Information About the Error

MATLAB:divideByZero
Simulink:actionNotTaken
TechCorp:OpenFile:notFoundInPath

Both the component and mnemonic fields must adhere to the following syntax
rules:

• No white space (space or tab characters) is allowed anywhere in the
identifier.

• The first character must be alphabetic, either uppercase or lowercase.

• The remaining characters can be alphanumeric or an underscore.

There is no length limitation to either the component or mnemonic. The
identifier can also be an empty string.

Component Field. The component field specifies a broad category under
which various errors and warnings can be generated. Common components
are a particular product or toolbox name, such as MATLAB or Control, or
perhaps the name of your company, such as TechCorp in the preceding
example.

You can also use this field to specify a multilevel component. The following
statement has a three-level component followed by a mnemonic label:

TechCorp:TestEquipDiv:Waveform:obsoleteSyntax

The component field enables you to guarantee the uniqueness of each
identifier. Thus, while MATLAB uses the identifier MATLAB:divideByZero for
its 'Divide by zero' warning, you can reuse the divideByZero mnemonic
by using your own unique component. For example,

warning('TechCorp:divideByZero', ...
'A sprocket value was divided by zero.')

Mnemonic Field. The mnemonic field is a string normally used as a tag
relating to the particular message. For example, when reporting an error
resulting from the use of ambiguous syntax, a simple component and
mnemonic such as the following might be appropriate:

8-9

8 Error Handling

MATLAB:ambiguousSyntax

Message Identifiers in an MException Object. When throwing an
exception, create an appropriate identifier and save it to the MException
object at the time you construct the object using the syntax

ME = MException(identifier, string)

For example,

ME = MException('AcctError:Incomplete', ...
'Client name not recognized.');

ME.identifier
ans =

AcctError:NoClient

When responding to an exception, you can extract the message identifier from
the MException object as shown here:

try
surf

catch ME
id = ME.identifier

end

id =
MATLAB:nargchk:notEnoughInputs

Text of the Error Message
An error message in MATLAB is a read-only character string issued by the
program code and returned in the MException object. This message can assist
the user in determining the cause, and possibly the remedy, of the failure.

When throwing an exception, compose an appropriate error message and
save it to the MException object at the time you construct the object using
the syntax

ME = MException(identifier, string)

8-10

Capturing Information About the Error

If your message string requires formatting specifications, like those available
with the sprintf function, use this syntax for the MException constructor:

ME = MException(identifier, formatstring, arg1, arg2, ...)

For example,

S = 'Accounts'; f1 = 'ClientName';
ME = MException('AcctError:Incomplete', ...

'Field ''%s.%s'' is not defined.', S, f1);

ME.message
ans =

Field 'Accounts.ClientName' is not defined.

When responding to an exception, you can extract the error message from the
MException object as follows:

try
surf

catch ME
msg = ME.message

end

msg =
Not enough input arguments.

The Call Stack
The stack field of the MException object identifies the line number,
function, and filename where the error was detected. If the error occurs in
a called function, as in the following example, the stack field contains the
line number, function name, and filename not only for the location of the
immediate error, but also for each of the calling functions. In this case, stack
is an N-by-1 array, where N represents the depth of the call stack. That is,
the stack field displays the M-file function name and line number where the
exception occurred, the name and line number of the M-file caller, the caller’s
caller, etc., until the top-most M-file function is reached.

8-11

8 Error Handling

When throwing an exception, MATLAB stores call stack information in the
stack field. You cannot write to this field; access is read-only.

For example, suppose you have three functions that reside in two separate
M-files:

mfileA.m
=========================

.

.
42 function A1(x, y)
43 B1(x, y);

mfileB.m
=========================

.

.
8 function B1(x, y)
9 B2(x, y)

.

.
26 function B2(x, y)
27 .
28 .
29 .
30 .
31 % Throw exception here

Catch the exception in variable ME and then examine the stack field:

for k=1:length(ME.stack)
ME.stack(k)

end

ans =
file: 'C:\matlab\test\mfileB.m'
name: 'B2'
line: 31

8-12

Capturing Information About the Error

ans =
file: 'C:\matlab\test\mfileB.m'
name: 'B1'
line: 9

ans =
file: 'C:\matlab\test\mfileA.m'
name: 'A1'
line: 43

The Cause Array
In some situations, it can be important to record information about not only
the one command that caused execution to stop, but also other exceptions that
your code caught. You can save these additional MException objects in the
cause field of the primary exception.

The cause field of an MException is an optional cell array of related
MException objects. You must use the following syntax when adding objects
to the cause cell array:

primaryException = addCause(primaryException, secondaryException)

This example attempts to assign an array D to variable X. If the D array
does not exist, the code attempts to load it from a MAT-file and then retries
assigning it to X. If the load fails, a new MException object (ME3) is constructed
to store the cause of the first two errors (ME1 and ME2):

try
X = D(1:25)

catch ME1
try

filename = 'test200';
load(filename);
X = D(1:25)

catch ME2
ME3 = MException('MATLAB:LoadErr', ...

'Unable to load from file %s', filename);
ME3 = addCause(ME3, ME1);
ME3 = addCause(ME3, ME2);

end
end

8-13

8 Error Handling

There are two exceptions in the cause field of ME3:

ME3.cause
ans =

[1x1 MException]
[1x1 MException]

Examine the cause field of ME3 to see the related errors:

ME3.cause{:}
ans =

MException object with properties:

identifier: 'MATLAB:UndefinedFunction'
message: 'Undefined function or method 'D' for input

arguments of type 'double'.'
stack: [0x1 struct]
cause: {}

ans =

MException object with properties:

identifier: 'MATLAB:load:couldNotReadFile'
message: 'Unable to read file test204: No such file or

directory.'
stack: [0x1 struct]
cause: {}

Methods of the MException Class
There are ten methods that you can use with the MException class. The
names of these methods are case-sensitive. See the MATLAB function
reference pages for more information.

Method Name Description

addCause Append an MException to the cause
field of another MException.

disp Display an MException object.

8-14

Capturing Information About the Error

Method Name Description

eq Compare MException objects for
equality.

getReport Return a formatted message based on
the current exception.

isequal Compare MException objects for
equality.

last Return the last uncaught exception.
This is a static method.

ne Compare MException objects for
inequality.

rethrow Reissue an exception that has previously
been caught.

throw Issue an exception.

throwAsCaller Issue an exception, but omit the current
stack frame from the stack field.

8-15

8 Error Handling

Throwing an Exception
When your program detects a fault that will keep it from completing as
expected or will generate erroneous results, you should halt further execution
and report the error by throwing an exception. The basic steps to take are

• Detect the error. This is often done with some type of conditional statement,
such as an if statement that checks the output of the current operation.

• Construct an MException object to represent the error. Add a message
identifier string and error message string to the object when calling the
constructor.

• If there are other exceptions that may have contributed to the current error,
you can store the MException object for each in the cause field of a single
MException that you intend to throw. Use the addCause method for this.

• Use the throw or throwAsCaller function to have MATLAB issue the
exception. At this point, MATLAB stores call stack information in the
stack field of the MException, exits the currently running function, and
returns control to either the keyboard or an enclosing catch block in a
calling function.

8-16

Responding to an Exception

Responding to an Exception

In this section...

“Overview” on page 8-17

“The try-catch Statement” on page 8-17

“Suggestions on How to Handle an Exception” on page 8-19

Overview
As stated earlier, MATLAB by default, terminates the currently running
program when an exception is thrown. If you catch the exception in your
program, however, you can capture information about what went wrong,
and deal with the situation in a way that is appropriate for the particular
condition. This requires a try-catch statement.

This section covers the following topics:

The try-catch Statement
When you have statements in your code that could generate undesirable
results, put those statements into a try-catch block that catches any errors
and handles them appropriately.

A try-catch statement looks something like the following pseudocode. It
consists of two parts:

• A try block that includes all lines between the try and catch statements.

• A catch block that includes all lines of code between the catch and end
statements.

try
Perform one ...

or more operations
A catch ME

Examine error info in exception object ME
Attempt to figure out what went wrong
Either attempt to recover, or clean up and abort

8-17

8 Error Handling

end

B Program continues

The program executes the statements in the try block. If it encounters an
error, it skips any remaining statements in the try block and jumps to the
start of the catch block (shown here as point A). If all operations in the try
block succeed, then execution skips the catch block entirely and goes to the
first line following the end statement (point B).

Specifying the try, catch, and end commands and also the code of the try
and catch blocks on separate lines is recommended. If you combine any of
these components on the same line, separate them with commas:

try, surf, catch ME, ME.stack, end
ans =

file: 'matlabroot\toolbox\matlab\graph3d\surf.m'
name: 'surf'
line: 54

The Try Block
On execution, your code enters the try block and executes each statement as
if it were part of the regular program. If no errors are encountered, MATLAB
skips the catch block entirely and continues execution following the end
statement. If any of the try statements fail, MATLAB immediately exits
the try block, leaving any remaining statements in that block unexecuted,
and enters the catch block.

The Catch Block
The catch command marks the start of a catch block and provides access to a
data structure that contains information about what caused the exception.
This is shown as the variable ME in the preceding pseudocode. This data
structure is an object of the MATLAB MException class. When an exception
occurs, MATLAB constructs an instance of this class and returns it in the
catch statement that handles that error.

You are not required to specify any argument with the catch statement. If you
do not need any of the information or methods provided by the MException
object, just specify the catch keyword alone.

8-18

Responding to an Exception

The MException object is constructed by internal code in the program that
fails. The object has properties that contain information about the error
that can be useful in determining what happened and how to proceed. The
MException object also provides access to methods that enable you to respond
to the exception. See the section on“The MException Class” on page 8-5 to
find out more about the MException class.

Having entered the catch block, MATLAB executes the statements in
sequence. These statements can attempt to

• Attempt to resolve the error.

• Capture more information about the error.

• Switch on information found in the MException object and respond
appropriately.

• Clean up the environment that was left by the failing code.

The catch block often ends with a rethrow command. The rethrow causes
MATLAB to exit the current function, keeping the call stack information as it
was when the exception was first thrown. If this function is at the highest
level, that is, it was not called by another function, the program terminates. If
the failing function was called by another function, it returns to that function.
Program execution continues to return to higher level functions, unless any
of these calls were made within a higher-level try block, in which case the
program executes the respective catch block.

More information about the MException class is provided in the section
“Capturing Information About the Error” on page 8-5.

Suggestions on How to Handle an Exception
The following example reads the contents of an image file. The try block
attempts to open and read the file. If either the open or read fails, the
program catches the resulting exception and saves the MException object in
the variable ME1.

The catch block in the example checks to see if the specified file could not be
found. If so, the program allows for the possibility that a common variation
of the filename extension (e.g., jpeg instead of jpg) was used by retrying

8-19

8 Error Handling

the operation with a modified extension. This is done using a try-catch
statement nested within the original try-catch.

function d_in = read_image(filename)
file_format = regexp(filename, '(?<=\.)\w+$', 'match');

try
fid = fopen(filename, 'r');
d_in = fread(fid);

catch ME1
% Get last segment of the error message identifier.
idSegLast = regexp(ME1.identifier, '(?<=:)\w+$', 'match');

% Did the read fail because the file could not be found?
if strcmp(idSegLast, 'InvalidFid') && ...

~exist(filename, 'file')

% Yes. Try modifying the filename extension.
switch file_format
case 'jpg' % Change jpg to jpeg

filename = regexprep(filename, '(?<=\.)\w+$', 'jpeg');
case 'jpeg' % Change jpeg to jpg

filename = regexprep(filename, '(?<=\.)\w+$', 'jpg');
case 'tif' % Change tif to tiff

filename = regexprep(filename, '(?<=\.)\w+$', 'tiff');
case 'tiff' % Change tiff to tif

filename = regexprep(filename, '(?<=\.)\w+$', 'tif');
otherwise

rethrow(ME1);
end

% Try again, with modifed filenames.
try

fid = fopen(filename, 'r');
d_in = fread(fid);

catch ME2
ME2 = addCause(ME2, ME1);
rethrow(ME2)

end
end

8-20

Responding to an Exception

end

This example illustrates some of the actions that you can take in response
to an exception:

• Compare the identifier field of the MException object against possible
causes of the error.

• Use a nested try-catch statement to retry the open and read operations
using a known variation of the filename extension.

• Display an appropriate message in the case that the file truly does not
exist and then rethrow the exception.

• Add the first MException object to the cause field of the second.

• Rethrow the exception. This stops program execution and displays the
error message.

Cleaning up any unwanted results of the error is also advisable. For example,
your program may have allocated a significant amount of memory that it
no longer needs.

8-21

8 Error Handling

Warnings

In this section...

“Reporting a Warning” on page 8-22

“Identifying the Cause” on page 8-23

Reporting a Warning
Like error, the warning function alerts the user of unexpected conditions
detected when running a program. However, warning does not halt the
execution of the program. It displays the specified warning message and
then continues.

Use warning in your code to generate a warning message during execution.
Specify the message string as the input argument to warning. For example,

warning('Input must be a string')

Warnings also differ from errors in that you can disable any warnings that
you do not want to see. You do this by invoking warning with certain control
parameters. See “Warning Control” on page 8-24 for more information.

Formatted Message Strings
The warning message string you specify can contain formatting conversion
characters, such as those used with the MATLAB sprintf function. Make
the warning string the first argument, and add any variables used by the
conversion as subsequent arguments.

warning('formatted_warningmsg', arg1, arg2, ...)

For example, if your program cannot process a given parameter, you might
report a warning with

warning('Ambiguous parameter name, "%s".', param)

MATLAB converts special characters like %d and %s in the warning message
string only when you specify more than one input argument with warning.
See “Formatted Message Strings” on page 8-22 for information.

8-22

Warnings

Message Identifiers
Use a message identifier argument with warning to attach a unique tag to a
warning message. MATLAB uses this tag to better identify the source of a
warning. The first argument in this example is the message identifier.

warning('MATLAB:paramAmbiguous', ...
'Ambiguous parameter name, "%s".', param)

See “Warning Control Statements” on page 8-26 for more information on
how to use identifiers with warnings.

Identifying the Cause
The lastwarn function returns a string containing the last warning message
issued by MATLAB. Use this to enable your program to identify the cause
of a warning that has just been issued. To return the most recent warning
message to the variable warnmsg, type

warnmsg = lastwarn;

You can also change the text of the last warning message with a new message
or with an empty string as shown here:

lastwarn('newwarnmsg'); % Replace last warning with new string
lastwarn(''); % Replace last warning with empty string

8-23

8 Error Handling

Warning Control

In this section...

“Overview” on page 8-24

“Warning Statements” on page 8-25

“Warning Control Statements” on page 8-26

“Output from Control Statements” on page 8-28

“Saving and Restoring State” on page 8-30

“Backtrace and Verbose Modes” on page 8-31

Overview
MATLAB gives you the ability to control what happens when a warning is
encountered during M-file program execution. Options that are available
include

• Display selected warnings.

• Ignore selected warnings.

• Stop in the debugger when a warning is invoked.

• Display an M-stack trace after a warning is invoked.

Depending on how you set your warning controls, you can have these actions
affect all warnings in your code, specific warnings that you select, or just
the most recently invoked warning.

Setting up this system of warning control involves several steps.

1 Start by determining the scope of the control you need for the warnings
generated by your code. Do you want the control operations to affect all the
warnings in your code at once, or do you want to be able to control certain
warnings separately?

2 If the latter is true, you will need to identify those warnings you want to
selectively control. This requires going through your code and attaching
unique message identifiers to each of those warnings. If, on the other

8-24

Warning Control

hand, you do not require that fine a granularity of control, the warning
statements in your code need no message identifiers.

3 When you are ready to run your programs, use the MATLAB warning
control statements to exercise the desired controls on all or selected
warnings. Include message identifiers in these control statements when
selecting specific warnings to act upon.

Warning Statements
The warning statements you put into your M-file code must contain the string
to be displayed when the warning is incurred, and may also contain a message
identifier. If you are not planning to use warning control or if you do not need
to single out certain warnings for control, you need to specify only the message
string. Use the syntax shown in “Warnings” on page 8-22. Valid formats are

warning('warnmsg')
warning('formatted_warnmsg', arg1, arg2, ...)

Attaching an Identifier to the Warning Statement
If you want to be able to apply control statements to specific warnings, you
need to include a message identifier in the warning statements you wish to
control. The message identifier must be the first argument in the statement.
Valid formats are

warning('msg_id', 'warnmsg')
warning('msg_id', 'formatted_warnmsg', arg1, arg2, ...)

See “Message Identifiers” on page 8-8 for information on how to specify the
msg_id argument.

Note When you specify more than one input argument with warning,
MATLAB treats the warnmsg string as if it were a formatted_warnmsg. This
is explained in “Formatted Message Strings” on page 8-22.

8-25

8 Error Handling

Warning Control Statements
Once you have the warning statements in your M-file and are ready to
execute it, you tell MATLAB how to act on these warnings by issuing control
statements. These statements place the specified warning(s) into a desired
state and have the format

warning state msg_id

Control statements can return information on the state of selected warnings
if you assign the output to a variable, as shown below. See “Output from
Control Statements” on page 8-28.

s = warning('state', 'msg_id');

Warning States
There are three possible values for the state argument of a warning control
statement.

State Description

on Enable the display of selected warning message.

off Disable the display of selected warning message.

query Display the current state of selected warning.

Message Identifiers
In addition to the message identifiers already discussed, there are three other
identifiers that you can use in control statements only.

Identifier Description

msg_id string Set selected warning to the specified state.

all Set all warnings to the specified state.

last Set only the last displayed warning to the specified
state.

8-26

Warning Control

Note MATLAB starts up with all warnings enabled, except for those
displayed in response to the command, warning('query', 'all').

Example 1 — Enabling a Selected Warning
Enable just the actionNotTaken warning from Simulink by first turning off
all warnings and then setting just that warning to on.

warning off all
warning on Simulink:actionNotTaken

Next, use query to determine the current state of all warnings. It
reports that you have set all warnings to off, with the exception of
Simulink:actionNotTaken.

warning query all
The default warning state is 'off'. Warnings not set to the
default are

State Warning Identifier

on Simulink:actionNotTaken

Example 2 — Disabling the Most Recent Warning
Evaluating inv on zero displays a warning message. Turn off the most
recently invoked warning with warning off last.

inv(0)
Warning: Matrix is singular to working precision.
ans =

Inf

warning off last

inv(0) % No warning is displayed this time
ans =

Inf

8-27

8 Error Handling

Output from Control Statements
The warning function, when used in a control statement, returns a MATLAB
structure array containing the previous state of the selected warning(s). Use
the following syntax to return this information in structure array s:

s = warning('state', 'msg_id');

You must type the command using the MATLAB function format; parentheses
and quotation marks are required.

Note MATLAB does not display warning output if you do not assign the
output to a variable.

The next example turns off divideByZero warnings for the MATLAB
component, and returns the identifier and previous state in a 1-by-1
structure array.

s = warning('off','MATLAB:divideByZero')
s =

identifier: 'MATLAB:divideByZero'
state: 'on'

You can use output variables with any type of warning control statement.
If you just want to collect the information but do not want to change state,
simply perform a query on the warning(s). MATLAB returns the current state
of those warnings selected by the message identifier.

s = warning('query', 'msg_id');

If you want to change state, but save the former state so you can restore it
later, use the return structure array to save that state. The following example
does an implicit query, returning state information in s, and then turns on
all warnings.

s = warning('on', 'all');

See “Saving and Restoring State” on page 8-30, for more information on
restoring the former state of warnings.

8-28

Warning Control

Output Structure Array
Each element of the structure array returned by warning contains two fields.

Field Name Description

identifier Message identifier string, 'all', or 'last'

state State of warning(s) prior to invoking this control
statement

If you query for the state of just one warning, using a message identifier or
'last' in the command, MATLAB returns a one-element structure array. The
identifier field contains the selected message identifier, and the state field
holds the current state of that warning:

s = warning('query','last')
s =

identifier: 'MATLAB:divideByZero'
state: 'on'

If you query for the state of all warnings, using 'all' in the command,
MATLAB returns a structure array having one or more elements:

• The first element of the array always represents the default state. (This is
the state set by the last warning on|off all command.)

• Each other element of the array represents a warning that is in a state
different from the default.

warning off all
warning on MATLAB:divideByZero
warning on MATLAB:fileNotFound

s = warning('query', 'all')
s =

3x1 struct array with fields:
identifier
state

s(1)
ans =

8-29

8 Error Handling

identifier: 'all'
state: 'off'

s(2)
ans =

identifier: 'MATLAB:divideByZero'
state: 'on'

s(3)
ans =

identifier: 'MATLAB:fileNotFound'
state: 'on'

Saving and Restoring State
To temporarily change the state of some warnings and then later return to
your original settings, save the original state in a structure array and then
restore it from that array. You can save and restore the state of all of your
warnings or just one that you select with a message identifier.

To save the current warning state, assign the output of a warning control
statement, as discussed in “Output from Control Statements” on page 8-28.
The following statement saves the current state of all warnings in structure
array s:

s = warning('query', 'all');

To restore state from s, use the syntax shown below. Note that the MATLAB
function format (enclosing arguments in parentheses) is required.

warning(s)

Example 1 — Performing an Explicit Query
Perform a query of all warnings to save the current state in structure array s:

s = warning('query', 'all');

Then, after doing some work that includes making changes to the state of
some warnings, restore the original state of all warnings:

warning(s)

8-30

Warning Control

Example 2 — Performing an Implicit Query
Turn on one particular warning, saving the previous state of this warning
in s. Remember that this nonquery syntax (where state equals on or off)
performs an implicit query prior to setting the new state:

s = warning('on', 'Control:parameterNotSymmetric');

Restore the state of that one warning when you are ready, with

warning(s)

Backtrace and Verbose Modes
In addition to warning messages, there are two modes that can be enabled or
disabled with a warning control statement. These modes are shown here.

Mode Description Default

backtrace Display an M-stack trace
after a warning is invoked.

on (enabled)

verbose Display a message on how to
suppress the warning.

off (terse)

The syntax for this type of control statement is as follows, where state, in
this case, can be only on, off, or query:

warning state mode

Note that there is no need to include a message identifier with this type of
control statement. All enabled warnings are affected by the this type of
control statement.

Note You cannot save and restore the current state of the backtrace or
verbose modes as you can with other states.

Example 1 — Displaying a Stack Trace on a Specific Warning
It can be difficult to locate the source of a warning when it is generated
from code buried in several levels of function calls. This example generates

8-31

8 Error Handling

a warning within a function that is nested several levels deep within the
primary function in file f1.m:

function f1(a, b)
for k = a:-1:b

f2(k)
end
function f2(x)

f3(x-1)
function f3(y)

x = log(y);
end

end
end

After enabling all warnings, run the M-file. The code generates a Log of
zero warning. In an M-file of this size, it is not difficult to find the cause of the
warning, but in an M-file of several hundred lines, this could take some time:

warning on all

f1(50,1)
Warning: Log of zero.

To simplify the debug process, enable backtrace mode. In this mode, MATLAB
reports which function generated the warning (f3), the line number of the
attempted operation (line 8), the sequence of function calls that led up to the
execution of the function (f1>f2/f3), and the line at which each of these
function call was made (3 and 6):

warning on backtrace
f1(50,1)
Warning: Log of zero.
> In f1>f2/f3 at 8

In f1>f2 at 6
In f1 at 3

Example 2 — Enabling Verbose Warnings
When you enable verbose warnings, MATLAB displays an extra line of
information with each warning that tells you how to suppress it:

8-32

Warning Control

Turn on all warnings, disable backtrace (if you have just run the previous
example), and enable verbose warnings:

warning on all
warning off backtrace
warning on verbose

Call the function described in Example 1 to find out how to suppress any
warnings generated by that function:

f1(50,1)

Warning: Log of zero.

(Type "warning off MATLAB:log:logOfZero" to suppress this warning.)

Use the message identifier MATLAB:log:logOfZero to disable only this
warning, and run the function again. This time the warning message is not
displayed:

warning off MATLAB:log:logOfZero

f1(50,1)

8-33

8 Error Handling

Debugging Errors and Warnings
You can direct MATLAB to temporarily stop the execution of an M-file in
the event of a run-time error or warning, at the same time opening a debug
window paused at the M-file line that generated the error or warning. This
enables you to examine values internal to the program and determine the
cause of the error.

Use the dbstop function to have MATLAB stop execution and enter debug
mode when any M-file you subsequently run produces a run-time error or
warning. There are three types of such breakpoints that you can set.

Command Description

dbstop if all
error

Stop on any error.

dbstop if error Stop on any error not detected within a try-catch
block.

dbstop if warning Stop on any warning.

In all three cases, the M-file you are trying to debug must be in a directory
that is on the search path or in the current directory.

You cannot resume execution after an error; use dbquit to exit from the
Debugger. To resume execution after a warning, use dbcont or dbstep.

8-34

9

Classes and Objects

Classes and Objects: An Overview
(p. 9-2)

Using object-oriented programming
in MATLAB

Designing User Classes in MATLAB
(p. 9-9)

The basic set of methods that should
be included in a class

Overloading Operators and
Functions (p. 9-23)

Overloading the MATLAB operators
and functions to change their
behavior

Example — A Polynomial Class
(p. 9-26)

Example that defines a new class to
implement a MATLAB data type for
polynomials

Building on Other Classes (p. 9-38) Inheritance and aggregation

Example — Assets and Asset
Subclasses (p. 9-41)

An example that uses simple
inheritance

Example — The Portfolio Container
(p. 9-58)

An example that uses aggregation

Saving and Loading Objects (p. 9-64) Saving and retrieving user-defined
objects to and from MAT-files

Example — Defining saveobj and
loadobj for Portfolio (p. 9-65)

Defining methods that automatically
execute on save and load

Object Precedence (p. 9-70) Determining which operator or
function to call in a given situation

How MATLAB Determines Which
Method to Call (p. 9-72)

How function arguments and
precedence determine which method
to call

9 Classes and Objects

Classes and Objects: An Overview

In this section...

“Overview” on page 9-2

“Features of Object-Oriented Programming” on page 9-3

“MATLAB Data Class Hierarchy” on page 9-3

“Creating Objects” on page 9-4

“Invoking Methods on Objects” on page 9-4

“Private Methods” on page 9-5

“Helper Functions” on page 9-6

“Debugging Class Methods” on page 9-6

“Setting Up Class Directories” on page 9-6

“Data Structure” on page 9-7

“Tips for C++ and Java Programmers” on page 9-8

Overview
You can view classes as new data types having specific behaviors defined
for the class. For example, a polynomial class might redefine the addition
operator (+) so that it correctly performs the operation of addition on
polynomials. Operations defined to work with objects of a particular class
are known as methods of that class.

You can also view classes as new items that you can treat as single entities.
An example is an arrow object that MATLAB can display on graphs (perhaps
composed of MATLAB line and patch objects) and that has properties like a
Handle Graphics object. You can create an arrow simply by instantiating
the arrow class.

You can add classes to your MATLAB environment by specifying a MATLAB
structure that provides data storage for the object and creating a class
directory containing M-files that operate on the object. These M-files contain
the methods for the class. The class directory can also include functions that
define the way various MATLAB operators, including arithmetic operations,

9-2

Classes and Objects: An Overview

subscript referencing, and concatenation, apply to the objects. Redefining how
a built-in operator works for your class is known as overloading the operator.

Features of Object-Oriented Programming
When using well-designed classes, object-oriented programming can
significantly increase code reuse and make your programs easier to maintain
and extend. Programming with classes and objects differs from ordinary
structured programming in these important ways:

• Function and operator overloading. You can create methods that
override existing MATLAB functions. When you call a function with a
user-defined object as an argument, MATLAB first checks to see if there is
a method defined for the object’s class. If there is, MATLAB calls it, rather
than the normal MATLAB function.

• Encapsulation of data and methods. Object properties are not visible
from the command line; you can access them only with class methods.
This protects the object properties from operations that are not intended
for the object’s class.

• Inheritance. You can create class hierarchies of parent and child classes
in which the child class inherits data fields and methods from the parent. A
child class can inherit from one parent (single inheritance) or many parents
(multiple inheritance). Inheritance can span one or more generations.
Inheritance enables sharing common parent functions and enforcing
common behavior amongst all child classes.

• Aggregation. You can create classes using aggregation, in which an object
contains other objects. This is appropriate when an object type is part
of another object type. For example, a savings account object might be a
part of a financial portfolio object.

MATLAB Data Class Hierarchy
All MATLAB data types are designed to function as classes in object-oriented
programming. The diagram below shows the fifteen fundamental data types
(or classes) defined in MATLAB. You can add new data types to MATLAB by
extending the class hierarchy.

9-3

9 Classes and Objects

The diagram shows a user class that inherits from the structure class. All
classes that you create are structure based since this is the point in the class
hierarchy where you can insert your own classes. (For more information about
MATLAB data types, see Chapter 2, “Data Types”)

Creating Objects
You create an object by calling the class constructor and passing it the
appropriate input arguments. In MATLAB, constructors have the same name
as the class name. For example, the statement,

p = polynom([1 0 -2 -5]);

creates an object named p belonging to the class polynom. Once you have
created a polynom object, you can operate on the object using methods that
are defined for the polynom class. See “Example — A Polynomial Class” on
page 9-26 for a description of the polynom class.

Invoking Methods on Objects
Class methods are M-file functions that take an object as one of the input
arguments. The methods for a specific class must be placed in the class
directory for that class (the @classname directory). This is the first place that
MATLAB looks to find a class method.

9-4

Classes and Objects: An Overview

The syntax for invoking a method on an object is similar to a function call.
Generally, it looks like

[out1,out2,...] = methodName(object,arg1,arg2, ...);

For example, suppose a user-defined class called polynom has a char method
defined for the class. This method converts a polynom object to a character
string and returns the string. This statement calls the char method on the
polynom object p.

s = char(p);

Using the class function, you can confirm that the returned value s is a
character string.

class(s)
ans =

char

s
s =

x^3-2*x-5

You can use the methods command to produce a list of all of the methods
that are defined for a class.

Private Methods
Private methods can be called only by other methods of their class. You define
private methods by placing the associated M-files in a private subdirectory
of the @classname directory. In the example,

@classname/private/updateObj.m

the method updateObj has scope only within the classname class. This
means that updateObj can be called by any method that is defined in the
@classname directory, but it cannot be called from the MATLAB command
line or by methods outside of the class directory, including parent methods.

Private methods and private functions differ in that private methods (in fact
all methods) have an object as one of their input arguments and private

9-5

9 Classes and Objects

functions do not. You can use private functions as helper functions, such as
described in the next section.

Helper Functions
In designing a class, you may discover the need for functions that perform
support tasks for the class, but do not directly operate on an object. These
functions are called helper functions. A helper function can be a subfunction
in a class method file or a private function. When determining which version
of a particular function to call, MATLAB looks for these functions in the
order listed above. For more information about the order in which MATLAB
calls functions and methods, see “How MATLAB Determines Which Method
to Call” on page 9-72.

Debugging Class Methods
You can use the MATLAB debugging commands with object methods in the
same way that you use them with other M-files. The only difference is that
you need to include the class directory name before the method name in the
command call, as shown in this example using dbstop.

dbstop @polynom/char

While debugging a class method, you have access to all methods defined for
the class, including inherited methods, private methods, and private functions.

Changing Class Definition
If you change the class definition, such as the number or names of fields in a
class, you must issue a

clear classes

command to propagate the changes to your MATLAB session. This command
also clears all objects from the workspace. See the clear command help entry
for more information.

Setting Up Class Directories
The M-files defining the methods for a class are collected together in a
directory referred to as the class directory. The directory name is formed with

9-6

Classes and Objects: An Overview

the class name preceded by the character @. For example, one of the examples
used in this chapter is a class involving polynomials in a single variable.
The name of the class, and the name of the class constructor, is polynom.
The M-files defining a polynomial class would be located in directory with
the name @polynom.

The class directories are subdirectories of directories on the MATLAB search
path, but are not themselves on the path. For instance, the new @polynom
directory could be a subdirectory of the MATLAB working directory or your
own personal directory that has been added to the search path.

Adding the Class Directory to the MATLAB Path
After creating the class directory, you need to update the MATLAB path so
that MATLAB can locate the class source files. The class directory should
not be directly on the MATLAB path. Instead, you should add the parent
directory to the MATLAB path. For example, if the @polynom class directory
is located at

c:\myClasses\@polynom

you add the class directory to the MATLAB path with the addpath command

addpath c:\myClasses;

Using Multiple Class Directories
A MATLAB class can access methods in multiple @classname directories if
all such directories are visible to MATLAB (i.e., the parent directories are on
the MATLAB path or in the current directory). When you attempt to use
a method of the class, MATLAB searches all the visible directories named
@classname for the appropriate method.

For more information, see “How MATLAB Determines Which Method to Call”
on page 9-72.

Data Structure
One of the first steps in the design of a new class is the choice of the data
structure to be used by the class. Objects are stored in MATLAB structures.
The fields of the structure, and the details of operations on the fields, are

9-7

9 Classes and Objects

visible only within the methods for the class. The design of the appropriate
data structure can affect the performance of the code.

Tips for C++ and Java Programmers
If you are accustomed to programming in other object-oriented languages,
such as C++ or Java, you will find that the MATLAB programming language
differs from these languages in some important ways:

• In MATLAB, method dispatching is not syntax based, as it is in C++
and Java. When the argument list contains objects of equal precedence,
MATLAB uses the left-most object to select the method to call.

• In MATLAB, there is no equivalent to a destructor method. To remove an
object from the workspace, use the clear function.

• Construction of MATLAB data types occurs at runtime rather than compile
time. You register an object as belonging to a class by calling the class
function.

• When using inheritance in MATLAB, the inheritance relationship is
established in the child class by creating the parent object, and then calling
the class function. For more information on writing constructors for
inheritance relationships, see “Building on Other Classes” on page 9-38.

• When using inheritance in MATLAB, the child object contains a parent
object in a property with the name of the parent class.

• In MATLAB, there is no passing of variables by reference. When writing
methods that update an object, you must pass back the updated object and
use an assignment statement. For instance, this call to the set method
updates the name field of the object A and returns the updated object.

A = set(A,'name','John Smith');

• In MATLAB, there is no equivalent to an abstract class.

• In MATLAB, there is no equivalent to the C++ scoping operator.

• In MATLAB, there is no virtual inheritance or virtual base classes.

• In MATLAB, there is no equivalent to C++ templates.

9-8

Designing User Classes in MATLAB

Designing User Classes in MATLAB

In this section...

“The MATLAB Canonical Class” on page 9-9

“The Class Constructor Method” on page 9-10

“Examples of Constructor Methods” on page 9-12

“Identifying Objects Outside the Class Directory” on page 9-12

“The display Method” on page 9-13

“Accessing Object Data” on page 9-13

“The set and get Methods” on page 9-14

“Indexed Reference Using subsref and subsasgn” on page 9-15

“Handling Subscripted Reference” on page 9-16

“Handling Subscripted Assignment” on page 9-19

“Object Indexing Within Methods” on page 9-20

“Defining end Indexing for an Object” on page 9-20

“Indexing an Object with Another Object” on page 9-21

“Converter Methods” on page 9-22

The MATLAB Canonical Class
When you design a MATLAB class, you should include a standard set of
methods that enable the class to behave in a consistent and logical way within
the MATLAB environment. Depending on the nature of the class you are
defining, you may not need to include all of these methods and you may
include a number of other methods to realize the class’s design goals.

This table lists the basic methods included in MATLAB classes.

Class Method Description

class constructor Creates an object of the class.

9-9

9 Classes and Objects

Class Method Description

display Called whenever MATLAB displays the contents
of an object (e.g., when an expression is entered
without terminating with a semicolon).

set and get Accesses class properties.

subsref and
subsasgn

Enables indexed reference and assignment for user
objects.

end Supports end syntax in indexing expressions using
an object; e.g., A(1:end).

subsindex Supports using an object in indexing expressions.

converters like
double and char

Methods that convert an object to a MATLAB data
type.

The following sections discuss the implementation of each type of method, as
well as providing references to examples used in this chapter.

The Class Constructor Method
The @ directory for a particular class must contain an M-file known as the
constructor for that class. The name of the constructor is the same as the
name of the directory (excluding the @ prefix and .m extension) that defines
the name of the class. The constructor creates the object by initializing the
data structure and instantiating an object of the class.

Guidelines for Writing a Constructor
Class constructors must perform certain functions so that objects behave
correctly in the MATLAB environment. In general, a class constructor must
handle three possible combinations of input arguments:

• No input arguments

• An object of the same class as an input argument

• The input arguments used to create an object of the class (typically data of
some kind)

9-10

Designing User Classes in MATLAB

No Input Arguments. If there are no input arguments, the constructor
should create a default object. Since there are no inputs, you have no data
from which to create the object, so you simply initialize the object’s data
structures with empty or default values, call the class function to instantiate
the object, and return the object as the output argument. Support for this
syntax is required for two reasons:

• When loading objects into the workspace, the load function calls the class
constructor with no arguments.

• When creating arrays of objects, MATLAB calls the class constructor to add
objects to the array.

Object Input Argument. If the first input argument in the argument list is
an object of the same class, the constructor should simply return the object.
Use the isa function to determine if an argument is a member of a class. See
“Overloading the + Operator” on page 9-32 for an example of a method that
uses this constructor syntax.

Data Input Arguments. If the input arguments exist and are not objects of
the same class, then the constructor creates the object using the input data.
Of course, as in any function, you should perform proper argument checking
in your constructor function. A typical approach is to use a varargin input
argument and a switch statement to control program flow. This provides an
easy way to accommodate the three cases: no inputs, object input, or the
data inputs used to create an object.

It is in this part of the constructor that you assign values to the object’s data
structure, call the class function to instantiate the object, and return the
object as the output argument. If necessary, place the object in an object
hierarchy using the superiorto and inferiorto functions.

Using the class Function in Constructors
Within a constructor method, you use the class function to associate an object
structure with a particular class. This is done using an internal class tag that
is only accessible using the class and isa functions. For example, this call to
the class function identifies the object p to be of type polynom.

p = class(p,'polynom');

9-11

9 Classes and Objects

Examples of Constructor Methods
See the following sections for examples of constructor methods:

• “The Polynom Constructor Method” on page 9-27

• “The Asset Constructor Method” on page 9-43

• “The Stock Constructor Method” on page 9-50

• “The Portfolio Constructor Method” on page 9-59

Identifying Objects Outside the Class Directory
The class and isa functions used in constructor methods can also be used
outside of the class directory. The expression

isa(a,'classname');

checks whether a is an object of the specified class. For example, if p is a
polynom object, each of the following expressions is true.

isa(pi,'double');
isa('hello','char');
isa(p,'polynom');

Outside of the class directory, the class function takes only one argument (it
is only within the constructor that class can have more than one argument).

The expression

class(a)

returns a string containing the class name of a. For example,

class(pi),
class('hello'),
class(p)

return

'double',
'char',
'polynom'

9-12

Designing User Classes in MATLAB

Use the whos function to see what objects are in the MATLAB workspace.

whos

Name Size Bytes Class
p 1x1 156 polynom object

The display Method
MATLAB calls a method named display whenever an object is the result of a
statement that is not terminated by a semicolon. For example, creating the
variable a, which is a double, calls the MATLAB display method for doubles.

a = 5
a =

5

You should define a display method so MATLAB can display values on the
command line when referencing objects from your class. In many classes,
display can simply print the variable name, and then use the char converter
method to print the contents or value of the variable, since MATLAB displays
output as strings. You must define the char method to convert the object’s
data to a character string.

Examples of display Methods
See the following sections for examples of display methods:

• “The Polynom display Method” on page 9-30

• “The Asset display Method” on page 9-48

• “The Stock display Method” on page 9-57

• “The Portfolio display Method” on page 9-61

Accessing Object Data
You need to write methods for your class that provide access to an object’s
data. Accessor methods can use a variety of approaches, but all methods that
change object data always accept an object as an input argument and return a
new object with the data changed. This is necessary because MATLAB does

9-13

9 Classes and Objects

not support passing arguments by reference (i.e., pointers). Functions can
change only their private, temporary copy of an object. Therefore, to change
an existing object, you must create a new one, and then replace the old one.

The following sections provide more detail about implementation techniques
for the set, get, subsasgn, and subsref methods.

The set and get Methods
The set and get methods provide a convenient way to access object data in
certain cases. For example, suppose you have created a class that defines
an arrow object that MATLAB can display on graphs (perhaps composed of
existing MATLAB line and patch objects).

To produce a consistent interface, you could define set and get methods that
operate on arrow objects the way the MATLAB set and get functions operate
on built-in graphics objects. The set and get verbs convey what operations
they perform, but insulate the user from the internals of the object.

Examples of set and get Methods
See the following sections for examples of set and get methods:

• “The Asset get Method” on page 9-44 and “The Asset set Method” on page
9-45

• “The Stock get Method” on page 9-52 and “The Stock set Method” on page
9-53

Property Name Methods
As an alternative to a general set method, you can write a method to handle
the assignment of an individual property. The method should have the same
name as the property name.

For example, if you defined a class that creates objects representing employee
data, you might have a field in an employee object called salary. You could
then define a method called salary.m that takes an employee object and a
value as input arguments and returns the object with the specified value set.

9-14

Designing User Classes in MATLAB

Indexed Reference Using subsref and subsasgn
User classes implement new data types in MATLAB. It is useful to be able to
access object data via an indexed reference, as is possible with the MATLAB
built-in data types. For example, if A is an array of class double, A(i) returns
the ith element of A.

As the class designer, you can decide what an index reference to an object
means. For example, suppose you define a class that creates polynomial
objects and these objects contain the coefficients of the polynomial.

An indexed reference to a polynomial object,

p(3)

could return the value of the coefficient of x3, the value of the polynomial at x
= 3, or something different depending on the intended design.

You define the behavior of indexing for a particular class by creating two class
methods - subsref and subsasgn. MATLAB calls these methods whenever a
subscripted reference or assignment is made on an object from the class. If
you do not define these methods for a class, indexing is undefined for objects
of this class.

In general, the rules for indexing objects are the same as the rules for indexing
structure arrays. For details, see “Structures” on page 2-74.

Behavior Within Class Methods
If A is an array of one of the fundamental MATLAB data types, then
referencing a value of A using an indexed reference calls the built-in MATLAB
subsref method. It does not call any subsref method that you might have
overloaded for that data type.

For example, if A is an array of type double, and there is an @double/subsref
method on your MATLAB path, the statement B = A(I) does not call this
method, but calls the MATLAB built-in subsref method instead.

The same is true for user-defined classes. Whenever a class method requires
the functionality of the overloaded subsref or subsassign, it must call the

9-15

9 Classes and Objects

overloaded methods with function calls rather than using operators like '()',
'{}', or '.'.

For example, suppose you define a polynomial class that defines a subsref
method that causes the polynomial to be evaluated with the value of the
independent variable equal to the subscript. Therefore,

p = polynom([1 0 -2 -5]);

The following subscripted expression returns the value of the polynomial at

x = 3 and x = 4.
p([3 4])
ans =

16 51

Now suppose that you want to use this feature in one of the class methods. To
do so, you must call the subsref function directly:

y = polyval(p,x);
subs.type = '()';
subs.subs = {x};
y = subsref(p, subs); % Need to call subsref here

Handling Subscripted Reference
The use of a subscript or field designator with an object on the right-hand side
of an assignment statement is known as a subscripted reference. MATLAB
calls a method named subsref in these situations.

Object subscripted references can be of three forms — an array index, a cell
array index, and a structure field name:

A(I)
A{I}
A.field

Each of these results in a call by MATLAB to the subsref method in the class
directory. MATLAB passes two arguments to subsref.

B = subsref(A,S)

9-16

Designing User Classes in MATLAB

The first argument is the object being referenced. The second argument, S,
is a structure array with two fields:

• S.type is a string containing '()', ’{}', or '.' specifying the subscript
type. The parentheses represent a numeric array; the curly braces, a cell
array; and the dot, a structure array.

• S.subs is a cell array or string containing the actual subscripts. A colon
used as a subscript is passed as a cell array containing the string ':'.

For instance, the expression

A(1:2,:)

causes MATLAB to call subsref(A,S), where S is a 1-by-1 structure with

S.type = '()'
S.subs = {1:2,':'}

Similarly, the expression

A{1:2}

uses

S.type ='{}'
S.subs = {1:2}

The expression

A.field

calls subsref(A,S) where

S.type = '.'
S.subs = 'field'

These simple calls are combined for more complicated subscripting
expressions. In such cases, length(S) is the number of subscripting levels.
For example,

9-17

9 Classes and Objects

A(1,2).name(3:4)

calls subsref(A,S), where S is a 3-by-1 structure array with the values:

S(1).type = '()' S(2).type = '.' S(3).type = '()'
S(1).subs = {1,2} S(2).subs = 'name' S(3).subs = {3:4}

How to Write subsref
The subsref method must interpret the subscripting expressions passed in by
MATLAB. A typical approach is to use the switch statement to determine the
type of indexing used and to obtain the actual indices. The following three
code fragments illustrate how to interpret the input arguments. In each case,
the function must return the value B.

For an array index:

switch S.type
case '()'

B = A(S.subs{:});
end

For a cell array:

switch S.type
case '{}'

B = A(S.subs{:}); % A is a cell array
end

For a structure array:

switch S.type
case '.'

switch S.subs
case 'field1'

B = A.field1;
case 'field2'

B = A.field2;
end

end

9-18

Designing User Classes in MATLAB

Examples of the subsref Method
See the following sections for examples of the subsref method:

• “The Polynom subsref Method” on page 9-31

• “The Asset subsref Method” on page 9-46

• “The Stock subsref Method” on page 9-54

• “The Portfolio subsref Method” on page 9-68

Handling Subscripted Assignment
The use of a subscript or field designator with an object on the left-hand side
of an assignment statement is known as a subscripted assignment. MATLAB
calls a method named subsasgn in these situations. Object subscripted
assignment can be of three forms - an array index, a cell array index, and a
structure field name.

A(I) = B
A{I} = B
A.field = B

Each of these results in a call to subsasgn of the form

A = subsasgn(A,S,B)

The first argument, A, is the object being referenced. The second argument,
S, has the same fields as those used with subsref. The third argument, B,
is the new value.

Examples of the subsasgn Method
See the following sections for examples of the subsasgn method:

• “The Asset subsasgn Method” on page 9-47

• “The Stock subsasgn Method” on page 9-55

9-19

9 Classes and Objects

Object Indexing Within Methods
If a subscripted reference is made within a class method, MATLAB uses its
built-in subsref function to access data within the method’s own class. If
the method accesses data from another class, MATLAB calls the overloaded
subsref function in that class. The same holds true for subscripted
assignment and subsasgn.

The following example shows a method, testref, that is defined in the class,
employee. This method makes a reference to a field, address, in an object of
its own class. For this, MATLAB uses the built-in subsref function. It also
references the same field in another class, this time using the overloaded
subsref of that class.

% ---- EMPLOYEE class method: testref.m ----
function testref(myclass,otherclass)

myclass.address % use built-in subsref
otherclass.address % use overloaded subsref

The example creates an employee object and a company object.

empl = employee('Johnson','Chicago');
comp = company('The MathWorks','Natick');

The employee class method, testref, is called. MATLAB uses an overloaded
subsref only to access data outside of the method’s own class.

testref(empl,comp)
ans = % built-in subsref was called

Chicago

ans = % @company\subsref was called
Executing @company\subsref ...

Natick

Defining end Indexing for an Object
When you use end in an object indexing expression, MATLAB calls the object’s
end class method. If you want to be able to use end in indexing expressions
involving objects of your class, you must define an end method for your class.

9-20

Designing User Classes in MATLAB

The end method has the calling sequence

end(a,k,n)

where a is the user object, k is the index in the expression where the end
syntax is used, and n is the total number of indices in the expression.

For example, consider the expression

A(end-1,:)

MATLAB calls the end method defined for the object A using the arguments

end(A,1,2)

That is, the end statement occurs in the first index element and there are two
index elements. The class method for end must then return the index value for
the last element of the first dimension. When you implement the end method
for your class, you must ensure it returns a value appropriate for the object.

Indexing an Object with Another Object
When MATLAB encounters an object as an index, it calls the subsindex
method defined for the object. For example, suppose you have an object a and
you want to use this object to index into another object b.

c = b(a);

A subsindex method might do something as simple as convert the object to
double format to be used as an index, as shown in this sample code.

function d = subsindex(a)
%SUBSINDEX
% convert the object a to double format to be used
% as an index in an indexing expression
d = double(a);

subsindex values are 0-based, not 1-based.

9-21

9 Classes and Objects

Converter Methods
A converter method is a class method that has the same name as another
class, such as char or double. Converter methods accept an object of one class
as input and return an object of another class. Converters enable you to

• Use methods defined for another class

• Ensure that expressions involving objects of mixed class types execute
properly

A converter function call is of the form

b = classname(a)

where a is an object of a class other than classname. In this case, MATLAB
looks for a method called classname in the class directory for object a. If the
input object is already of type classname, then MATLAB calls the constructor,
which just returns the input argument.

Examples of Converter Methods
See the following sections for examples of converter methods:

• “The Polynom to Double Converter” on page 9-28

• “The Polynom to Char Converter” on page 9-29

9-22

Overloading Operators and Functions

Overloading Operators and Functions

In this section...

“Overloading Operators” on page 9-23

“Overloading Functions” on page 9-25

Overloading Operators
In many cases, you may want to change the behavior of the MATLAB operators
and functions for cases when the arguments are objects. You can accomplish
this by overloading the relevant functions. Overloading enables a function
to handle different types and numbers of input arguments and perform
whatever operation is appropriate for the highest-precedence object. See
“Object Precedence” on page 9-70 for more information on object precedence.

Each built-in MATLAB operator has an associated function name (e.g., the +
operator has an associated plus.m function). You can overload any operator
by creating an M-file with the appropriate name in the class directory. For
example, if either p or q is an object of type classname, the expression

p + q

generates a call to a function @classname/plus.m, if it exists. If p and q are
both objects of different classes, then MATLAB applies the rules of precedence
to determine which method to use.

Examples of Overloaded Operators
See the following sections for examples of overloaded operators:

• “Overloading the + Operator” on page 9-32

• “Overloading the - Operator” on page 9-33

• “Overloading the * Operator” on page 9-33

The following table lists the function names for most of the MATLAB
operators.

9-23

9 Classes and Objects

Operation M-File Description

a + b plus(a,b) Binary addition

a - b minus(a,b) Binary subtraction

-a uminus(a) Unary minus

+a uplus(a) Unary plus

a.*b times(a,b) Element-wise multiplication

a*b mtimes(a,b) Matrix multiplication

a./b rdivide(a,b) Right elementwise division

a.\b ldivide(a,b) Left elementwise division

a/b mrdivide(a,b) Matrix right division

a\b mldivide(a,b) Matrix left division

a.^b power(a,b) Element-wise power

a^b mpower(a,b) Matrix power

a < b lt(a,b) Less than

a > b gt(a,b) Greater than

a <= b le(a,b) Less than or equal to

a >= b ge(a,b) Greater than or equal to

a ~= b ne(a,b) Not equal to

a == b eq(a,b) Equality

a & b and(a,b) Logical AND

a | b or(a,b) Logical OR

~a not(a) Logical NOT

a:d:b

a:b

colon(a,d,b)

colon(a,b)

Colon operator

a' ctranspose(a) Complex conjugate transpose

a.' transpose(a) Matrix transpose

command window
output

display(a) Display method

9-24

Overloading Operators and Functions

Operation M-File Description

[a b] horzcat(a,b,...) Horizontal concatenation

[a; b] vertcat(a,b,...) Vertical concatenation

a(s1,s2,...sn) subsref(a,s) Subscripted reference

a(s1,...,sn) = b subsasgn(a,s,b) Subscripted assignment

b(a) subsindex(a) Subscript index

Overloading Functions
You can overload any function by creating a function of the same name in the
class directory. When a function is invoked on an object, MATLAB always
looks in the class directory before any other location on the search path. To
overload the plot function for a class of objects, for example, simply place
your version of plot.m in the appropriate class directory.

Examples of Overloaded Functions
See the following sections for examples of overloaded functions:

• “Overloading Functions for the Polynom Class” on page 9-34

• “The Portfolio pie3 Method” on page 9-61

9-25

9 Classes and Objects

Example — A Polynomial Class

In this section...

“Polynom Data Structure” on page 9-26

“Polynom Methods” on page 9-26

“The Polynom Constructor Method” on page 9-27

“Converter Methods for the Polynom Class” on page 9-28

“The Polynom display Method” on page 9-30

“The Polynom subsref Method” on page 9-31

“Overloading Arithmetic Operators for polynom” on page 9-32

“Overloading Functions for the Polynom Class” on page 9-34

“Listing Class Methods” on page 9-36

Polynom Data Structure
This example implements a MATLAB data type for polynomials by defining a
new class called polynom. The polynom class represents a polynomial with a
row vector containing the coefficients of powers of the variable, in decreasing
order. Therefore, a polynom object p is a structure with a single field, p.c,
containing the coefficients. This field is accessible only within the methods in
the @polynom directory.

Polynom Methods
To create a class that is well behaved within the MATLAB environment and
provides useful functionality for a polynomial data type, the polynom class
implements the following methods:

• A constructor method polynom.m

• A polynom to double converter

• A polynom to char converter

• A display method

• A subsref method

9-26

Example — A Polynomial Class

• Overloaded +, -, and * operators

• Overloaded roots, polyval, plot, and diff functions

The Polynom Constructor Method
Here is the polynom class constructor, @polynom/polynom.m.

function p = polynom(a)
%POLYNOM Polynomial class constructor.
% p = POLYNOM(v) creates a polynomial object from vector v,
% containing the coefficients of descending powers of x.
if nargin == 0

p.c = [];
p = class(p,'polynom');

elseif isa(a,'polynom')
p = a;

else
p.c = a(:).';
p = class(p,'polynom');

end

Constructor Calling Syntax
You can call the polynom constructor method with one of three different
arguments:

• No input argument — If you call the constructor function with no
arguments, it returns a polynom object with empty fields.

• Input argument is an object — If you call the constructor function with
an input argument that is already a polynom object, MATLAB returns
the input argument. The isa function (pronounced “is a”) checks for this
situation.

• Input argument is a coefficient vector — If the input argument is a variable
that is not a polynom object, reshape it to be a row vector and assign it
to the .c field of the object’s structure. The class function creates the
polynom object, which is then returned by the constructor.

An example use of the polynom constructor is the statement

p = polynom([1 0 -2 -5])

9-27

9 Classes and Objects

This creates a polynomial with the specified coefficients.

Converter Methods for the Polynom Class
A converter method converts an object of one class to an object of another
class. Two of the most important converter methods contained in MATLAB
classes are double and char. Conversion to double produces the MATLAB
traditional matrix, although this may not be appropriate for some classes.
Conversion to char is useful for producing printed output.

The Polynom to Double Converter
The double converter method for the polynom class is a very simple M-file,
@polynom/double.m, which merely retrieves the coefficient vector.

function c = double(p)
% POLYNOM/DOUBLE Convert polynom object to coefficient vector.
% c = DOUBLE(p) converts a polynomial object to the vector c
% containing the coefficients of descending powers of x.
c = p.c;

On the object p,

p = polynom([1 0 -2 -5])

the statement

double(p)

returns

ans =
1 0 -2 -5

Having implemented the double method, you can use it to call MATLAB
functions on polynom objects that require double values as inputs. For
example,

size(double(p))
ans =
1 4

9-28

Example — A Polynomial Class

The Polynom to Char Converter
The converter to char is a key method because it produces a character string
involving the powers of an independent variable, x. Therefore, once you have
specified x, the string returned is a syntactically correct MATLAB expression,
which you can then evaluate.

Here is @polynom/char.m.

function s = char(p)
% POLYNOM/CHAR
% CHAR(p) is the string representation of p.c
if all(p.c == 0)

s = '0';
else

d = length(p.c) - 1;
s = [];
for a = p.c;

if a ~= 0;
if ~isempty(s)

if a > 0
s = [s ' + '];

else
s = [s ' - '];
a = -a;

end
end
if a ~= 1 | d == 0

s = [s num2str(a)];
if d > 0

s = [s '*'];
end

end
if d >= 2

s = [s 'x^' int2str(d)];
elseif d == 1

s = [s 'x'];
end

end
d = d - 1;

end

9-29

9 Classes and Objects

end

Evaluating the Output
If you create the polynom object p

p = polynom([1 0 -2 -5]);

and then call the char method on p

char(p)

MATLAB produces the result

ans =
x^3 - 2*x - 5

The value returned by char is a string that you can pass to eval once you
have defined a scalar value for x. For example,

x = 3;

eval(char(p))
ans =

16

See “The Polynom subsref Method” on page 9-31 for a better method to
evaluate the polynomial.

The Polynom display Method
Here is @polynom/display.m. This method relies on the char method to
produce a string representation of the polynomial, which is then displayed
on the screen. This method produces output that is the same as standard
MATLAB output. That is, the variable name is displayed followed by an equal
sign, then a blank line, then a new line with the value.

function display(p)
% POLYNOM/DISPLAY Command window display of a polynom
disp(' ');
disp([inputname(1),' = '])
disp(' ');

9-30

Example — A Polynomial Class

disp([' ' char(p)])
disp(' ');

The statement

p = polynom([1 0 -2 -5])

creates a polynom object. Since the statement is not terminated with a
semicolon, the resulting output is

p =
x^3 - 2*x - 5

The Polynom subsref Method
Suppose the design of the polynom class specifies that a subscripted reference
to a polynom object causes the polynomial to be evaluated with the value of the
independent variable equal to the subscript. That is, for a polynom object p,

p = polynom([1 0 -2 -5]);

the following subscripted expression returns the value of the polynomial at x
= 3 and x = 4.

p([3 4])
ans =

16 51

subsref Implementation Details
This implementation takes advantage of the char method already defined in
the polynom class to produce an expression that can then be evaluated.

function b = subsref(a,s)
% SUBSREF
switch s.type
case '()'

ind = s.subs{:};
for k = 1:length(ind)

b(k) = eval(strrep(char(a), 'x', ...
['(' num2str(ind(k)) ')']));

end
otherwise

9-31

9 Classes and Objects

error('Specify value for x as p(x)')
end

Once the polynomial expression has been generated by the char method,
the strrep function is used to swap the passed in value for the character x.
The eval function then evaluates the expression and returns the value in
the output argument.

Note that if you perform an indexed reference from within other class
methods, MATLAB calls the built-in subsref or subsassign. See “Behavior
Within Class Methods” on page 9-15 for more information.

Overloading Arithmetic Operators for polynom
Several arithmetic operations are meaningful on polynomials and should be
implemented for the polynom class. When overloading arithmetic operators,
keep in mind what data types you want to operate on. In this section, the
plus, minus, and mtimes methods are defined for the polynom class to
handle addition, subtraction, and multiplication on polynom/polynom and
polynom/double combinations of operands.

Overloading the + Operator
If either p or q is a polynom, the expression

p + q

generates a call to a function @polynom/plus.m, if it exists (unless p or q is
an object of a higher precedence, as described in “Object Precedence” on page
9-70).

The following M-file redefines the + operator for the polynom class.

function r = plus(p,q)
% POLYNOM/PLUS Implement p + q for polynoms.
p = polynom(p);
q = polynom(q);
k = length(q.c) - length(p.c);
r = polynom([zeros(1,k) p.c] + [zeros(1,-k) q.c]);

9-32

Example — A Polynomial Class

The function first makes sure that both input arguments are polynomials.
This ensures that expressions such as

p + 1

that involve both a polynom and a double, work correctly. The function then
accesses the two coefficient vectors and, if necessary, pads one of them with
zeros to make them the same length. The actual addition is simply the vector
sum of the two coefficient vectors. Finally, the function calls the polynom
constructor a third time to create the properly typed result.

Overloading the - Operator
You can implement the overloaded minus operator (-) using the same
approach as the plus (+) operator. MATLAB calls @polynom/minus.m to
compute p-q.

function r = minus(p,q)
% POLYNOM/MINUS Implement p - q for polynoms.
p = polynom(p);
q = polynom(q);
k = length(q.c) - length(p.c);
r = polynom([zeros(1,k) p.c] - [zeros(1,-k) q.c]);

Overloading the * Operator
MATLAB calls the method @polynom/mtimes.m to compute the product p*q.
The letter m at the beginning of the function name comes from the fact that
it is overloading the MATLAB matrix multiplication. Multiplication of two
polynomials is simply the convolution of their coefficient vectors.

function r = mtimes(p,q)
% POLYNOM/MTIMES Implement p * q for polynoms.
p = polynom(p);
q = polynom(q);
r = polynom(conv(p.c,q.c));

Using the Overloaded Operators
Given the polynom object

p = polynom([1 0 -2 -5])

9-33

9 Classes and Objects

MATLAB calls these two functions @polynom/plus.m and @polynom/mtimes.m
when you issue the statements

q = p+1
r = p*q

to produce

q =
x^3 - 2*x - 4

r =
x^6 - 4*x^4 - 9*x^3 + 4*x^2 + 18*x + 20

Overloading Functions for the Polynom Class
MATLAB already has several functions for working with polynomials
represented by coefficient vectors. They should be overloaded to also work
with the new polynom object. In many cases, the overloading methods can
simply apply the original function to the coefficient field.

Overloading roots for the Polynom Class
The method @polynom/roots.m finds the roots of polynom objects.

function r = roots(p)

% POLYNOM/ROOTS. ROOTS(p) is a vector containing the roots of p.

r = roots(p.c);

The statement

roots(p)

results in

ans =
2.0946
-1.0473 + 1.1359i
-1.0473 - 1.1359i

9-34

Example — A Polynomial Class

Overloading polyval for the Polynom Class
The function polyval evaluates a polynomial at a given set of points.
@polynom/polyval.m uses nested multiplication, or Horner’s method to
reduce the number of multiplication operations used to compute the various
powers of x.

function y = polyval(p,x)
% POLYNOM/POLYVAL POLYVAL(p,x) evaluates p at the points x.
y = 0;
for a = p.c

y = y.*x + a;
end

Overloading plot for the Polynom Class
The overloaded plot function uses both root and polyval. The function
selects the domain of the independent variable to be slightly larger than an
interval containing the roots of the polynomial. Then polyval is used to
evaluate the polynomial at a few hundred points in the domain.

function plot(p)
% POLYNOM/PLOT PLOT(p) plots the polynom p.
r = max(abs(roots(p)));
x = (-1.1:0.01:1.1)*r;
y = polyval(p,x);
plot(x,y);
title(char(p))
grid on

Overloading diff for the Polynom Class
The method @polynom/diff.m differentiates a polynomial by reducing the
degree by 1 and multiplying each coefficient by its original degree.

function q = diff(p)
% POLYNOM/DIFF DIFF(p) is the derivative of the polynom p.
c = p.c;
d = length(c) - 1; % degree
q = polynom(p.c(1:d).*(d:-1:1));

9-35

9 Classes and Objects

Listing Class Methods
The function call

methods('classname')

or its command form

methods classname

shows all the methods available for a particular class. For the polynom
example, the output is

methods polynom
Methods for class polynom:

char display minus plot polynom roots

diff double mtimes plus polyval subsref

9-36

Example — A Polynomial Class

Plotting the two polynom objects x and p calls most of these methods.

x = polynom([1 0]);
p = polynom([1 0 -2 -5]);
plot(diff(p*p + 10*p + 20*x) - 20)

9-37

9 Classes and Objects

Building on Other Classes

In this section...

“Overview” on page 9-38

“Simple Inheritance” on page 9-38

“Multiple Inheritance” on page 9-40

“Aggregation” on page 9-40

Overview
A MATLAB classes can inherit properties and behavior from another
MATLAB class. When one object (of the derived class) inherits from another
(of the base class), the derived class object includes all the fields of the base
class object and can call the base class methods. The base class methods can
access those fields that the derived class object inherited from the base class,
but not fields new to the derived class.

Inheritance is a key feature of object-oriented programming. It makes it easy
to reuse code by allowing derived class objects to take advantage of code that
exists for base class objects. Inheritance enables a derived class object to
behave exactly like a base class object, which facilitates the development of
related classes that behave similarly, but are implemented differently.

There are two kinds of inheritance:

• Simple inheritance, in which a derived class object inherits characteristics
from one base class.

• Multiple inheritance, in which a derived class object inherits characteristics
from more than one parent class.

This section also discusses a related topic, aggregation. Aggregation allows
one object to contain another object as one of its fields.

Simple Inheritance
A class that inherits attributes from a single base class, and adds new
attributes of its own, uses simple inheritance. Inheritance implies that objects

9-38

Building on Other Classes

belonging to the derived class have the same fields as the base class, as well
as any fields added by the derived class.

Base class methods can operate on objects belonging to the derived class.
However, derived class methods cannot operate on objects belonging to the
base class. You cannot access the base class object’s fields directly from the
derived class; you must use access methods defined for the base class.

Derived Class Constructor
The constructor function for a derived class has two special characteristics:

• It calls the constructor function for the base class to create the inherited
fields.

• It requires a special calling syntax for the class function, specifying both
the derived class and the base class.

The syntax for establishing simple inheritance using the class function is:

derivedObj = class(derivedObj, 'derivedClass', baseObj);

Simple inheritance can span more than one generation. If a base class is
itself an inherited class, the derived class object automatically inherits from
the original base class.

Visibility of Class Properties and Methods
The base class does not have access to the derived class properties. The
derived class cannot access the base class properties directly, but must use
base class access methods (e.g., get or subsref method) to access the base
class properties. From the derived class methods, this access is accomplished
via the base class field in the derived class structure. For example, when a
constructor creates a derived class object c,

c = class(c, 'derivedClassname', baseObject);

MATLAB automatically creates a field, c.baseClassname, in the object’s
structure that contains the base object. You could then have a statement in
the derived class display method that calls the base class display method.

display(c.baseClassname)

9-39

9 Classes and Objects

See “Designing the Stock Class” on page 9-49 for examples that use simple
inheritance.

Multiple Inheritance
In the multiple inheritance case, a class of objects inherits attributes from
more than one base class. The derived class object gets fields from all the base
classes, as well as fields of its own.

Multiple inheritance can encompass more than one generation. For example,
each of the base class objects could have inherited fields from multiple
base class objects, and so on. Multiple inheritance is implemented in the
constructors by calling class with more than three arguments.

obj = class(structure,'classname',baseclass1,baseclass2,...)

You can append as many base class arguments as desired to the class input
list.

Nonunique Method Names in Base Classes
Multiple base classes can have associated methods of the same name. In this
case, MATLAB calls the method associated with the base class that appears
first in the class function call in the constructor function. There is no way to
access subsequent base class functions of this name.

Aggregation
In addition to standard inheritance, MATLAB objects support containment or
aggregation. That is, one object can contain (embed) another object as one of
its fields. For example, a rational object might use two polynom objects, one
for the numerator and one for the denominator.

You can call a method for the contained object only from within a method
for the outer object. When determining which version of a function to call,
MATLAB considers only the outermost containing class of the objects passed
as arguments; the classes of any contained objects are ignored.

See “Example — The Portfolio Container” on page 9-58 for an example of
aggregation.

9-40

Example — Assets and Asset Subclasses

Example — Assets and Asset Subclasses

In this section...

“Inheritance Model for the Asset Class” on page 9-41

“Asset Class Design” on page 9-42

“Other Asset Methods” on page 9-43

“The Asset Constructor Method” on page 9-43

“The Asset get Method” on page 9-44

“The Asset set Method” on page 9-45

“The Asset subsref Method” on page 9-46

“The Asset subsasgn Method” on page 9-47

“The Asset display Method” on page 9-48

“The Asset fieldcount Method” on page 9-49

“Designing the Stock Class” on page 9-49

“The Stock Constructor Method” on page 9-50

“The Stock get Method” on page 9-52

“The Stock set Method” on page 9-53

“The Stock subsref Method” on page 9-54

“The Stock subsasgn Method” on page 9-55

“The Stock display Method” on page 9-57

Inheritance Model for the Asset Class
As an example of simple inheritance, consider a general asset class that
can be used to represent any item that has monetary value. Some examples
of an asset are: stocks, bonds, savings accounts, and any other piece of
property. In designing this collection of classes, the asset class holds the
data that is common to all of the specialized asset subclasses. The individual
asset subclasses, such as the stock class, inherit the asset properties and
contribute additional properties. The subclasses are “kinds of” assets.

9-41

9 Classes and Objects

An example of a simple inheritance relationship using an asset base class is
shown in this diagram.

As shown in the diagram, the stock, bond, and savings classes inherit
structure fields from the asset class. In this example, the asset class is
used to provide storage for data common to all subclasses and to share asset
methods with these subclasses. This example shows how to implement the
asset and stock classes. The bond and savings classes can be implemented in
a way that is very similar to the stock class, as would other types of asset
subclasses.

Asset Class Design
The asset class provides storage and access for information common to all
asset children. It is not intended to be instantiated directly, so it does not
require an extensive set of methods. To serve its purpose, the class needs to
contain the following methods:

• Constructor

9-42

Example — Assets and Asset Subclasses

• get and set

• subsref and subsasgn

• display

Other Asset Methods
The asset class provides inherited data storage for its child classes, but is not
instanced directly. The set, get, and display methods provide access to the
stored data. It is not necessary to implement the full complement of methods
for asset objects (such as converters, end, and subsindex) since only the child
classes access the data.

The Asset Constructor Method
The asset class is based on a structure array with four fields:

• descriptor — Identifier of the particular asset (e.g., stock name, savings
account number, etc.)

• date — The date the object was created (calculated by the date command)

• type — The type of asset (e.g., savings, bond, stock)

• currentValue — The current value of the asset (calculated from subclass
data)

This information is common to asset child objects (stock, bond, and savings),
so it is handled from the parent object to avoid having to define the same
fields in each child class. This is particularly helpful as the number of child
classes increases.

function a = asset(varargin)
% ASSET Constructor function for asset object
% a = asset(descriptor, type, currentValue)
switch nargin
case 0
% if no input arguments, create a default object

a.descriptor = 'none';
a.date = date;
a.type = 'none';
a.currentValue = 0;

9-43

9 Classes and Objects

a = class(a,'asset');
case 1
% if single argument of class asset, return it

if (isa(varargin{1},'asset'))
a = varargin{1};

else
error('Wrong argument type')

end
case 3
% create object using specified values

a.descriptor = varargin{1};
a.date = date;
a.type = varargin{2};
a.currentValue = varargin{3};
a = class(a,'asset');

otherwise
error('Wrong number of input arguments')

end

The function uses a switch statement to accommodate three possible
scenarios:

• Called with no arguments, the constructor returns a default asset object.

• Called with one argument that is an asset object, the object is simply
returned.

• Called with three arguments (subclass descriptor, type, and current value),
the constructor returns a new asset object.

The asset constructor method is not intended to be called directly; it is called
from the child constructors since its purpose is to provide storage for common
data.

The Asset get Method
The asset class needs methods to access the data contained in asset objects.
The following function implements a get method for the class. It uses
capitalized property names rather than literal field names to provide an
interface similar to other MATLAB objects.

9-44

Example — Assets and Asset Subclasses

function val = get(a, propName)
% GET Get asset properties from the specified object
% and return the value
switch propName
case 'Descriptor'

val = a.descriptor;
case 'Date'

val = a.date;
case 'CurrentValue'

val = a.currentValue;
otherwise

error([propName,' Is not a valid asset property'])
end

This function accepts an object and a property name and uses a switch
statement to determine which field to access. This method is called by the
subclass get methods when accessing the data in the inherited properties.
See “The Stock get Method” on page 9-52 for an example.

The Asset set Method
The asset class set method is called by subclass set methods. This method
accepts an asset object and variable length argument list of property
name/property value pairs and returns the modified object.

function a = set(a,varargin)
% SET Set asset properties and return the updated object
propertyArgIn = varargin;
while length(propertyArgIn) >= 2,

prop = propertyArgIn{1};
val = propertyArgIn{2};
propertyArgIn = propertyArgIn(3:end);
switch prop
case 'Descriptor'

a.descriptor = val;
case 'Date'

a.date = val;
case 'CurrentValue'

a.currentValue = val;
otherwise

9-45

9 Classes and Objects

error('Asset properties: Descriptor, Date, CurrentValue')
end

end

Subclass set methods call the asset set method and require the capability to
return the modified object since MATLAB does not support passing arguments
by reference. See “The Stock set Method” on page 9-53 for an example.

The Asset subsref Method
The subsref method provides access to the data contained in an asset object
using one-based numeric indexing and structure field name indexing. The
outer switch statement determines if the index is a numeric or field name
syntax. The inner switch statements map the index to the appropriate value.

MATLAB calls subsref whenever you make a subscripted reference to an
object (e.g., A(i), A{i}, or A.fieldname).

function b = subsref(a,index)
%SUBSREF Define field name indexing for asset objects
switch index.type
case '()'

switch index.subs{:}
case 1

b = a.descriptor;
case 2

b = a.date;
case 3

b = a.currentValue;
otherwise

error('Index out of range')
end

case '.'
switch index.subs
case 'descriptor'

b = a.descriptor;
case 'date'

b = a.date;
case 'currentValue'

b = a.currentValue;

9-46

Example — Assets and Asset Subclasses

otherwise
error('Invalid field name')

end
case '{}'

error('Cell array indexing not supported by asset objects')
end

See the “The Stock subsref Method” on page 9-54 for an example of how the
child subsref method calls the parent subsref method.

The Asset subsasgn Method
The subsasgn method is the assignment equivalent of the subsref method.
This version enables you to change the data contained in an object using
one-based numeric indexing and structure field name indexing. The outer
switch statement determines if the index is a numeric or field name syntax.
The inner switch statements map the index value to the appropriate value
in the stock structure.

MATLAB calls subsasgn whenever you execute an assignment statement
(e.g., A(i) = val, A{i} = val, or A.fieldname = val).

function a = subsasgn(a,index,val)
% SUBSASGN Define index assignment for asset objects
switch index.type
case '()'

switch index.subs{:}
case 1

a.descriptor = val;
case 2

a.date = val;
case 3

a.currentValue = val;
otherwise

error('Index out of
end

case '.'
switch index.subs
case 'descriptor'

a.descriptor = val;

9-47

9 Classes and Objects

case 'date'
a.date = val;

case 'currentValue'
a.currentValue = val;

otherwise
error('Invalid field name')

end
end

The subsasgn method enables you to assign values to the asset object data
structure using two techniques. For example, suppose you have a child stock
object s. (If you want to run this statement, you first need to create a stock
constructor method.)

s = stock('XYZ',100,25);

Within stock class methods, you could change the descriptor field with
either of the following statements

s.asset(1) = 'ABC';

or

s.asset.descriptor = 'ABC';

See the “The Stock subsasgn Method” on page 9-55 for an example of how the
child subsasgn method calls the parent subsasgn method.

The Asset display Method
The asset display method is designed to be called from child-class display
methods. Its purpose is to display the data it stores for the child object. The
method simply formats the data for display in a way that is consistent with
the formatting of the child’s display method.

function display(a)
% DISPLAY(a) Display an asset object
stg = sprintf(...

'Descriptor: %s\nDate: %s\nType: %s\nCurrent Value:%9.2f',...
a.descriptor,a.date,a.type,a.currentValue);

disp(stg)

9-48

Example — Assets and Asset Subclasses

The stock class display method can now call this method to display the data
stored in the parent class. This approach isolates the stock display method
from changes to the asset class. See “The Stock display Method” on page 9-57
for an example of how this method is called.

The Asset fieldcount Method
The asset fieldcount method returns the number of fields in the asset object
data structure. fieldcount enables asset child methods to determine the
number of fields in the asset object during execution, rather than requiring
the child methods to have knowledge of the asset class. This allows you to
make changes to the number of fields in the asset class data structure without
having to change child-class methods.

function numFields = fieldcount(assetObj)
% Determines the number of fields in an asset object
% Used by asset child class methods
numFields = length(fieldnames(assetObj));

The struct function converts an object to its equivalent data structure,
enabling access to the structure’s contents.

Designing the Stock Class
A stock object is designed to represent one particular asset in a person’s
investment portfolio. This object contains two properties of its own and
inherits three properties from its parent asset object.

Stock properties:

• NumberShares — The number of shares for the particular stock object.

• SharePrice — The value of each share.

Asset properties:

• Descriptor — The identifier of the particular asset (e.g., stock name,
savings account number, etc.).

• Date — The date the object was created (calculated by the date command).

• CurrentValue — The current value of the asset.

9-49

9 Classes and Objects

Note that the property names are not actually the same as the field names of
the structure array used internally by stock and asset objects. The property
name interface is controlled by the stock and asset set and get methods and
is designed to resemble the interface of other MATLAB object properties.

The asset field in the stock object structure contains the parent asset object
and is used to access the inherited fields in the parent structure.

Stock Class Methods
The stock class implements the following methods:

• Constructor

• get and set

• subsref and subsasgn

• display

The Stock Constructor Method
The stock constructor creates a stock object from three input arguments:

• The stock name

• The number of shares

• The share price

The constructor must create an asset object from within the stock constructor
to be able to specify it as a parent to the stock object. The stock constructor
must, therefore, call the asset constructor. The class function, which is called
to create the stock object, defines the asset object as the parent.

Keep in mind that the asset object is created in the temporary workspace of
the stock constructor function and is stored as a field (.asset) in the stock
structure. The stock object inherits the asset fields, but the asset object is
not returned to the base workspace.

function s = stock(varargin)
% STOCK Stock class constructor.
% s = stock(descriptor, numShares, sharePrice)

9-50

Example — Assets and Asset Subclasses

switch nargin
case 0

% if no input arguments, create a default object
s.numShares = 0;
s.sharePrice = 0;
a = asset('none',0);
s = class(s,'stock',a);

case 1
% if single argument of class stock, return it
if (isa(varargin{1},'stock'))

s = varargin{1};
else

error('Input argument is not a stock object')
end

case 3
% create object using specified values
s.numShares = varargin{2};
s.sharePrice = varargin{3};
a = asset(varargin{1},'stock',varargin{2} * varargin{3});
s = class(s,'stock',a);

otherwise
error('Wrong number of input arguments')

end

Constructor Calling Syntax
The stock constructor method can be called in one of three ways:

• No input argument — If called with no arguments, the constructor returns
a default object with empty fields.

• Input argument is a stock object — If called with a single input argument
that is a stock object, the constructor returns the input argument. A single
argument that is not a stock object generates an error.

• Three input arguments — If there are three input arguments, the
constructor uses them to define the stock object.

Otherwise, if none of the above three conditions are met, return an error.

9-51

9 Classes and Objects

For example, this statement creates a stock object to record the ownership of
100 shares of XYZ corporation stocks with a price per share of 25 dollars.

XYZStock = stock('XYZ',100,25);

The Stock get Method
The get method provides a way to access the data in the stock object using a
“property name” style interface, similar to Handle Graphics. While in this
example the property names are similar to the structure field name, they can
be quite different. You could also choose to exclude certain fields from access
via the get method or return the data from the same field for a variety of
property names, if such behavior suits your design.

function val = get(s,propName)
% GET Get stock property from the specified object
% and return the value. Property names are: NumberShares
% SharePrice, Descriptor, Date, CurrentValue
switch propName
case 'NumberShares'

val = s.numShares;
case 'SharePrice'

val = s.sharePrice;
case 'Descriptor'

val = get(s.asset,'Descriptor'); % call asset get method
case 'Date'

val = get(s.asset,'Date');
case 'CurrentValue'

val = get(s.asset,'CurrentValue');
otherwise

error([propName ,'Is not a valid stock property'])
end

Note that the asset object is accessed via the stock object’s asset field
(s.asset). MATLAB automatically creates this field when the class function
is called with the parent argument.

9-52

Example — Assets and Asset Subclasses

The Stock set Method
The set method provides a “property name” interface like the get method.
It is designed to update the number of shares, the share value, and the
descriptor. The current value and the date are automatically updated.

function s = set(s,varargin)
% SET Set stock properties to the specified values
% and return the updated object
propertyArgIn = varargin;
while length(propertyArgIn) >= 2,

prop = propertyArgIn{1};
val = propertyArgIn{2};
propertyArgIn = propertyArgIn(3:end);
switch prop
case 'NumberShares'

s.numShares = val;
case 'SharePrice'

s.sharePrice = val;
case 'Descriptor'

s.asset = set(s.asset,'Descriptor',val);
otherwise

error('Invalid property')
end

end
s.asset = set(s.asset,'CurrentValue',...

s.numShares * s.sharePrice,'Date',date);

Note that this function creates and returns a new stock object with the new
values, which you then copy over the old value. For example, given the stock
object,

s = stock('XYZ',100,25);

the following set command updates the share price.

s = set(s,'SharePrice',36);

It is necessary to copy over the original stock object (i.e., assign the output to
s) because MATLAB does not support passing arguments by reference. Hence
the set method actually operates on a copy of the object.

9-53

9 Classes and Objects

The Stock subsref Method
The subsref method defines subscripted indexing for the stock class. In this
example, subsref is implemented to enable numeric and structure field name
indexing of stock objects.

function b = subsref(s,index)
% SUBSREF Define field name indexing for stock objects
fc = fieldcount(s.asset);
switch index.type
case '()'

if (index.subs{:} <= fc)
b = subsref(s.asset,index);

else
switch index.subs{:} - fc
case 1

b = s.numShares;
case 2

b = s.sharePrice;
otherwise

error(['Index must be in the range 1 to ', ...
num2str(fc + 2)])

end
end

case '.'
switch index.subs
case 'numShares'

b = s.numShares;
case 'sharePrice'

b = s.sharePrice;
otherwise

b = subsref(s.asset,index);
end

end

The outer switch statement determines if the index is a numeric or field
name syntax.

The fieldcount asset method determines how many fields there are in the
asset structure, and the if statement calls the asset subsref method for

9-54

Example — Assets and Asset Subclasses

indices 1 to fieldcount. See “The Asset fieldcount Method” on page 9-49 and
“The Asset subsref Method” on page 9-46 for a description of these methods.

Numeric indices greater than the number returned by fieldcount are
handled by the inner switch statement, which maps the index value to the
appropriate field in the stock structure.

Field name indexing assumes field names other than numShares and
sharePrice are asset fields, which eliminates the need for knowledge of asset
fields by child methods. The asset subsref method performs field-name error
checking.

See the subsref help entry for general information on implementing this
method.

The Stock subsasgn Method
The subsasgn method enables you to change the data contained in a stock
object using numeric indexing and structure field name indexing. MATLAB
calls subsasgn whenever you execute an assignment statement (e.g., A(i) =
val, A{i} = val, or A.fieldname = val).

function s = subsasgn(s,index,val)
% SUBSASGN Define index assignment for stock objects
fc = fieldcount(s.asset);
switch index.type
case '()'

if (index.subs{:} <= fc)
s.asset = subsasgn(s.asset,index,val);

else
switch index.subs{:}-fc
case 1

s.numShares = val;
case 2

s.sharePrice = val;
otherwise

error(['Index must be in the range 1 to ', ...
num2str(fc + 2)])

end
end

9-55

9 Classes and Objects

case '.'
switch index.subs
case 'numShares'

s.numShares = val;
case 'sharePrice'

s.sharePrice = val;
otherwise

s.asset = subsasgn(s.asset,index,val);
end

end

The outer switch statement determines if the index is a numeric or field
name syntax.

The fieldcount asset method determines how many fields there are in the
asset structure and the if statement calls the asset subsasgn method for
indices 1 to fieldcount. See “The Asset fieldcount Method” on page 9-49 and
“The Asset subsasgn Method” on page 9-47 for a description of these methods.

Numeric indices greater than the number returned by fieldcount are
handled by the inner switch statement, which maps the index value to the
appropriate field in the stock structure.

Field name indexing assumes field names other than numShares and
sharePrice are asset fields, which eliminates the need for knowledge of asset
fields by child methods. The asset subsasgn method performs field-name
error checking.

The subsasgn method enables you to assign values to stock object data
structure using two techniques. For example, suppose you have a stock object

s = stock('XYZ',100,25)

You could change the descriptor field with either of the following statements

s(1) = 'ABC';

or

s.descriptor = 'ABC';

9-56

Example — Assets and Asset Subclasses

See the subsasgn help entry for general information on assignment
statements in MATLAB.

The Stock display Method
When you issue the statement (without terminating with a semicolon)

XYZStock = stock('XYZ',100,25)

MATLAB looks for a method in the @stock directory called display. The
display method for the stock class produces this output.

Descriptor: XYZ
Date: 17-Nov-1998
Type: stock
Current Value: 2500.00
Number of shares: 100
Share price: 25.00

Here is the stock display method.

function display(s)
% DISPLAY(s) Display a stock object
display(s.asset)
stg = sprintf('Number of shares: %g\nShare price: %3.2f\n',...

s.numShares,s.sharePrice);
disp(stg)

First, the parent asset object is passed to the asset display method to
display its fields (MATLAB calls the asset display method because the input
argument is an asset object). The stock object’s fields are displayed in a
similar way using a formatted text string.

Note that if you did not implement a stock class display method, MATLAB
would call the asset display method. This would work, but would display
only the descriptor, date, type, and current value.

9-57

9 Classes and Objects

Example — The Portfolio Container

In this section...

“Overview” on page 9-58

“Designing the Portfolio Class” on page 9-58

“The Portfolio Constructor Method” on page 9-59

“The Portfolio display Method” on page 9-61

“The Portfolio pie3 Method” on page 9-61

“Creating a Portfolio” on page 9-62

Overview
Aggregation is the containment of one class by another class. The basic
relationship is: each contained class “is a part of” the container class.

For example, consider a financial portfolio class as a container for a set of
assets (stocks, bonds, savings, etc.). Once the individual assets are grouped,
they can be analyzed, and useful information can be returned. The contained
objects are not accessible directly, but only via the portfolio class methods.

See “Example — Assets and Asset Subclasses” on page 9-41 for information
about the assets collected by this portfolio class.

Designing the Portfolio Class
The portfolio class is designed to contain the various assets owned by a given
individual and provide information about the status of his or her investment
portfolio. This example implements a somewhat over-simplified portfolio
class that

• Contains an individual’s assets

• Displays information about the portfolio contents

• Displays a 3-D pie chart showing the relative mix of asset types in the
portfolio

9-58

Example — The Portfolio Container

Required Portfolio Methods
The portfolio class implements only three methods:

• portfolio — The portfolio constructor.

• display — Displays information about the portfolio contents.

• pie3 — Overloaded version of pie3 function designed to take a single
portfolio object as an argument.

Since a portfolio object contains other objects, the portfolio class methods can
use the methods of the contained objects. For example, the portfolio display
method calls the stock class display method, and so on.

The Portfolio Constructor Method
The portfolio constructor method takes as input arguments a client’s name
and a variable length list of asset subclass objects (stock, bond, and savings
objects in this example). The portfolio object uses a structure array with the
following fields:

• name — The client’s name.

• indAssets — The array of asset subclass objects (stock, bond, savings).

• totalValue — The total value of all assets. The constructor calculates this
value from the objects passed in as arguments.

• accountNumber — The account number. This field is assigned a value only
when you save a portfolio object (see “Saving and Loading Objects” on
page 9-64).

function p = portfolio(name,varargin)
% PORTFOLIO Create a portfolio object containing the
% client's name and a list of assets
switch nargin
case 0

% if no input arguments, create a default object
p.name = 'none';
p.totalValue = 0;
p.indAssets = {};

9-59

9 Classes and Objects

p.accountNumber = '';
p = class(p,'portfolio');

case 1
% if single argument of class portfolio, return it
if isa(name,'portfolio')

p = name;
else

disp([inputname(1) ' is not a portfolio object'])
return

end
otherwise

% create object using specified arguments
p.name = name;
p.totalValue = 0;
for k = 1:length(varargin)

p.indAssets(k) = {varargin{k}};
assetValue = get(p.indAssets{k},'CurrentValue');
p.totalValue = p.totalValue + assetValue;

end
p.accountNumber = '';
p = class(p,'portfolio');

end

Constructor Calling Syntax
The portfolio constructor method can be called in one of three different ways:

• No input arguments — If called with no arguments, it returns an object
with empty fields.

• Input argument is an object — If the input argument is already a portfolio
object, MATLAB returns the input argument. The isa function checks
for this case.

• More than two input arguments — If there are more than two input
arguments, the constructor assumes the first is the client’s name and the
rest are asset subclass objects. A more thorough implementation would
perform more careful input argument checking, for example, using the isa
function to determine if the arguments are the correct class of objects.

9-60

Example — The Portfolio Container

The Portfolio display Method
The portfolio display method lists the contents of each contained object by
calling the object’s display method. It then lists the client name and total
asset value.

function display(p)

% DISPLAY Display a portfolio object

for k = 1:length(p.indAssets)

display(p.indAssets{k})

end

stg = sprintf('\nAssets for Client: %s\nTotal Value: %9.2f\n',...

p.name,p.totalValue);

disp(stg)

The Portfolio pie3 Method
The portfolio class overloads the MATLAB pie3 function to accept a portfolio
object and display a 3-D pie chart illustrating the relative asset mix of the
client’s portfolio. MATLAB calls the @portfolio/pie3.m version of pie3
whenever the input argument is a single portfolio object.

function pie3(p)
% PIE3 Create a 3-D pie chart of a portfolio
stockAmt = 0; bondAmt = 0; savingsAmt = 0;
for k = 1:length(p.indAssets)

if isa(p.indAssets{k}, 'stock')
stockAmt = stockAmt + ...

get(p.indAssets{k}, 'CurrentValue');
elseif isa(p.indAssets{k}, 'bond')

bondAmt = bondAmt + ...
get(p.indAssets{k}, 'CurrentValue');

elseif isa(p.indAssets{k}, 'savings')
savingsAmt = savingsAmt + ...

get(p.indAssets{k}, 'CurrentValue');
end

end
i = 1;
if stockAmt ~= 0

label(i) = {'Stocks'};
pieVector(i) = stockAmt;
i = i + 1;

9-61

9 Classes and Objects

end
if bondAmt ~= 0

label(i) = {'Bonds'};
pieVector(i) = bondAmt;
i = i + 1;

end
if savingsAmt ~= 0

label(i) = {'Savings'};
pieVector(i) = savingsAmt;

end
pie3(pieVector, label)
set(gcf, 'Renderer', 'zbuffer')
set(findobj(gca, 'Type', 'Text'), 'FontSize', 14)
cm = gray(64);
colormap(cm(48:end, :))
stg(1) = {['Portfolio Composition for ', p.name]};
stg(2) = {['Total Value of Assets: $', num2str(p.totalValue)]};
title(stg, 'FontSize', 12)

There are three parts in the overloaded pie3 method.

• The first uses the asset subclass get methods to access the CurrentValue
property of each contained object. The total value of each class is summed.

• The second part creates the pie chart labels and builds a vector of graph
data, depending on which objects are present.

• The third part calls the MATLAB pie3 function, makes some font and
colormap adjustments, and adds a title.

Creating a Portfolio
Suppose you have implemented a collection of asset subclasses in a manner
similar to the stock class. You can then use a portfolio object to present the
individual’s financial portfolio. For example, given the following assets

XYZStock = stock('XYZ', 200, 12);
SaveAccount = savings('Acc # 1234', 2000, 3.2);
Bonds = bond('U.S. Treasury', 1600, 12);

create a portfolio object:

9-62

Example — The Portfolio Container

p = portfolio('Gilbert Bates',XYZStock,SaveAccount,Bonds)

The portfolio display method summarizes the portfolio contents (because this
statement is not terminated by a semicolon).

Descriptor: XYZ
Date: 24-Nov-1998
Current Value: 2400.00
Type: stock
Number of shares: 200
Share price: 12.00
Descriptor: Acc # 1234
Date: 24-Nov-1998
Current Value: 2000.00
Type: savings
Interest Rate: 3.2%
Descriptor: U.S. Treasury
Date: 24-Nov-1998
Current Value: 1600.00
Type: bond
Interest Rate: 12%
Assets for Client: Gilbert Bates
Total Value: 6000.00

The portfolio pie3 method displays the relative mix of assets using a pie chart.

pie3(p)

9-63

9 Classes and Objects

Saving and Loading Objects
You can use the MATLAB save and load commands to save and retrieve
user-defined objects to and from .mat files, just like any other variables.

When you load objects, MATLAB calls the object’s class constructor to register
the object in the workspace. The constructor function for the object class you
are loading must be able to be called with no input arguments and return a
default object. See “Guidelines for Writing a Constructor” on page 9-10 for
more information.

When you issue a save or load command on objects, MATLAB looks for class
methods called saveobj and loadobj in the class directory. You can overload
these methods to modify the object before the save or load operation. For
example, you could define a saveobj method that saves related data along
with the object or you could write a loadobj method that updates objects to a
newer version when this type of object is loaded into the MATLAB workspace.

9-64

Example — Defining saveobj and loadobj for Portfolio

Example — Defining saveobj and loadobj for Portfolio

In this section...

“Methods Executed by Save and Load” on page 9-65

“Summary of Code Changes” on page 9-65

“The saveobj Method” on page 9-66

“The loadobj Method” on page 9-66

“Changing the Portfolio Constructor” on page 9-67

“The Portfolio subsref Method” on page 9-68

Methods Executed by Save and Load
In the section “Example — The Portfolio Container” on page 9-58, portfolio
objects are used to collect information about a client’s investment portfolio.
Suppose you decide to add an account number to each portfolio object that
is saved. You can define a portfolio saveobj method to carry out this task
automatically during the save operation.

Suppose further that you have already saved a number of portfolio objects
without the account number. You want to update these objects during the
load operation so that they are still valid portfolio objects. You can do this by
defining a loadobj method for the portfolio class.

Summary of Code Changes
To implement the account number scenario, you need to add or change the
following functions:

• portfolio — The portfolio constructor method needs to be modified to
create a new field, accountNumber, which is initialized to the empty string
when an object is created.

• saveobj — A new portfolio method designed to add an account number
to a portfolio object during the save operation, only if the object does not
already have one.

9-65

9 Classes and Objects

• loadobj — A new portfolio method designed to update older versions of
portfolio objects that were saved before the account number structure field
was added.

• subsref — A new portfolio method that enables subscripted reference to
portfolio objects outside of a portfolio method.

• getAccountNumber — a MATLAB function that returns an account number
that consists of the first three letters of the client’s name.

New Portfolio Class Behavior
With the additions and changes made in this example, the portfolio class now

• Includes a field for an account number

• Adds the account number when a portfolio object is saved for the first time

• Automatically updates the older version of portfolio objects when you load
them into the MATLAB workspace

The saveobj Method
MATLAB looks for the portfolio saveobj method whenever the save command
is passed a portfolio object. If @portfolio/saveobj exists, MATLAB passes
the portfolio object to saveobj, which must then return the modified object as
an output argument. The following implementation of saveobj determines if
the object has already been assigned an account number from a previous save
operation. If not, saveobj calls getAccountNumber to obtain the number and
assigns it to the accountNumber field.

function b = saveobj(a)
if isempty(a.accountNumber)

a.accountNumber = getAccountNumber(a);
end
b = a;

The loadobj Method
MATLAB looks for the portfolio loadobj method whenever the load command
detects portfolio objects in the .mat file being loaded. If loadobj exists,
MATLAB passes the portfolio object to loadobj, which must then return
the modified object as an output argument. The output argument is then
loaded into the workspace.

9-66

Example — Defining saveobj and loadobj for Portfolio

If the input object does not match the current definition as specified by the
constructor function, then MATLAB converts it to a structure containing the
same fields and the object’s structure with all the values intact (that is, you
now have a structure, not an object).

The following implementation of loadobj first uses isa to determine whether
the input argument is a portfolio object or a structure. If the input is an
object, it is simply returned since no modifications are necessary. If the
input argument has been converted to a structure by MATLAB, then the
new accountNumber field is added to the structure and is used to create an
updated portfolio object.

function b = loadobj(a)
% loadobj for portfolio class
if isa(a,'portfolio')

b = a;
else % a is an old version

a.accountNumber = getAccountNumber(a);
b = class(a,'portfolio');

end

Changing the Portfolio Constructor
The portfolio structure array needs an additional field to accommodate the
account number. To create this field, add the line

p.accountNumber = '';

to @portfolio/portfolio.m in both the zero argument and variable
argument sections.

The getAccountNumber Function
In this example, getAccountNumber is a MATLAB function that returns
an account number composed of the first three letters of the client name
prepended to a series of digits. To illustrate implementation techniques,
getAccountNumber is not a portfolio method so it cannot access the portfolio
object data directly. Therefore, it is necessary to define a portfolio subsref
method that enables access to the name field in a portfolio object’s structure.

9-67

9 Classes and Objects

For this example, getAccountNumber simply generates a random number,
which is formatted and concatenated with elements 1 to 3 from the portfolio
name field.

function n = getAccountNumber(p)
% provides a account number for object p
n = [upper(p.name(1:3)) strcat(num2str(round(rand(1,7)*10))')'];

Note that the portfolio object is indexed by field name, and then by numerical
subscript to extract the first three letters. The subsref method must be
written to support this form of subscripted reference.

The Portfolio subsref Method
When MATLAB encounters a subscripted reference, such as that made in the
getAccountNumber function

p.name(1:3)

MATLAB calls the portfolio subsref method to interpret the reference. If
you do not define a subsref method, the above statement is undefined for
portfolio objects (recall that here p is an object, not just a structure).

The portfolio subsref method must support field-name and numeric indexing
for the getAccountNumber function to access the portfolio name field.

function b = subsref(p,index)
% SUBSREF Define field name indexing for portfolio objects
switch index(1).type
case '.'

switch index(1).subs
case 'name'

if length(index)== 1
b = p.name;

else
switch index(2).type
case '()'

b = p.name(index(2).subs{:});
end

end
end

9-68

Example — Defining saveobj and loadobj for Portfolio

end

Note that the portfolio implementation of subsref is designed to provide
access to specific elements of the name field; it is not a general implementation
that provides access to all structure data, such as the stock class
implementation of subsref.

See the subsref help entry for more information about indexing and objects.

9-69

9 Classes and Objects

Object Precedence

In this section...

“How MATLAB Determines Precedence” on page 9-70

“Specifying Precedence of User-Defined Classes” on page 9-71

How MATLAB Determines Precedence
Object precedence is a means to resolve the question of which of possibly
many versions of an operator or function to call in a given situation. Object
precedence enables you to control the behavior of expressions containing
different classes of objects. For example, consider the expression

objectA + objectB

Ordinarily, MATLAB assumes that the objects have equal precedence and
calls the method associated with the leftmost object. However, there are
two exceptions:

• User-defined classes have precedence over MATLAB built-in classes.

• User-defined classes can specify their relative precedence with respect to
other user-defined classes using the inferiorto and superiorto functions.

For example, in the section “Example — A Polynomial Class” on page 9-26
the polynom class defines a plus method that enables addition of polynom
objects. Given the polynom object p

p = polynom([1 0 -2 -5])
p =

x^3-2*x-5

The expression,

1 + p
ans =

x^3-2*x-4

9-70

Object Precedence

calls the polynom plus method (which converts the double, 1, to a polynom
object, and then adds it to p). The user-defined polynom class has precedence
over the MATLAB double class.

Specifying Precedence of User-Defined Classes
You can specify the relative precedence of user-defined classes by calling the
inferiorto or superiorto function in the class constructor.

The inferiorto function places a class below other classes in the precedence
hierarchy. The calling syntax for the inferiorto function is

inferiorto('class1','class2',...)

You can specify multiple classes in the argument list, placing the class below
many other classes in the hierarchy.

Similarly, the superiorto function places a class above other classes in the
precedence hierarchy. The calling syntax for the superiorto function is

superiorto('class1','class2',...)

Location in the Hierarchy
If objectA is above objectB in the precedence hierarchy, then the expression

objectA + objectB

calls @classA/plus.m. Conversely, if objectB is above objectA in the
precedence hierarchy, then MATLAB calls @classB/plus.m.

See “How MATLAB Determines Which Method to Call” on page 9-72 for
related information.

9-71

9 Classes and Objects

How MATLAB Determines Which Method to Call

In this section...

“Overview” on page 9-72

“Selecting a Method” on page 9-72

“Querying Which Method MATLAB Will Call” on page 9-75

Overview
In MATLAB, functions exist in directories in the computer’s file system. A
directory may contain many functions (M-files). Function names are unique
only within a single directory (e.g., more than one directory may contain a
function called pie3). When you type a function name on the command line,
MATLAB must search all the directories it is aware of to determine which
function to call. This list of directories is called the MATLAB path.

When looking for a function, MATLAB searches the directories in the order
they are listed in the path, and calls the first function whose name matches
the name of the specified function.

If you write an M-file called pie3.m and put it in a directory that is searched
before the specgraph directory that contains the MATLAB pie3 function,
then MATLAB uses your pie3 function instead.

Object-oriented programming allows you to have many methods (MATLAB
functions located in class directories) with the same name and enables
MATLAB to determine which method to use based on the type or class of the
variables passed to the function. For example, if p is a portfolio object, then

pie3(p)

calls @portfolio/pie3.m because the argument is a portfolio object.

Selecting a Method
When you call a method for which there are multiple versions with the same
name, MATLAB determines the method to call by:

9-72

How MATLAB Determines Which Method to Call

• Looking at the classes of the objects in the argument list to determine
which argument has the highest object precedence; the class of this object
controls the method selection and is called the dispatch type.

• Applying the function precedence order to determine which of possibly
several implementations of a method to call. This order is determined by
the location and type of function.

Determining the Dispatch Type
MATLAB first determines which argument controls the method selection.
The class type of this argument then determines the class in which MATLAB
searches for the method. The controlling argument is either

• The argument with the highest precedence, or

• The leftmost of arguments having equal precedence

User-defined objects take precedence over the MATLAB built-in classes such
as double or char. You can set the relative precedence of user-defined objects
with the inferiorto and superiorto functions, as described in “Object
Precedence” on page 9-70.

MATLAB searches for functions by name. When you call a function, MATLAB
knows the name, number of arguments, and the type of each argument.
MATLAB uses the dispatch type to choose among multiple functions of the
same name, but does not consider the number of arguments.

Function Precedence Order
The function precedence order determines the precedence of one function
over another based on the type of function and its location on the MATLAB
path. MATLAB selects the correct function for a given context by applying the
following function precedence rules, in the order given:

1 Subfunctions

Subfunctions take precedence over all other M-file functions and overloaded
methods that are on the path and have the same name. Even if the function
is called with an argument of type matching that of an overloaded method,
MATLAB uses the subfunction and ignores the overloaded method.

9-73

9 Classes and Objects

2 Private functions

Private functions are called if there is no subfunction of the same name
within the current scope. As with subfunctions, even if the function is
called with an argument of type matching that of an overloaded method,
MATLAB uses the private function and ignores the overloaded method.

3 Class constructor functions

Constructor functions (functions having names that are the same as the @
directory, for example @polynom/polynom.m) take precedence over other
MATLAB functions. Therefore, if you create an M-file called polynom.m and
put it on your path before the constructor @polynom/polynom.m version,
MATLAB will always call the constructor version.

4 Overloaded methods

MATLAB calls an overloaded method if it is not masked by a subfunction
or private function.

5 Current directory

A function in the current working directory is selected before one elsewhere
on the path.

6 Elsewhere on path

Finally, a function anywhere else on the path is selected.

Selecting Methods from Multiple Directories
There may be a number of directories on the path that contain methods
with the same name. MATLAB stops searching when it finds the first
implementation of the method on the path, regardless of the implementation
type (MEX-file, P-code, M-file).

Selecting Methods from Multiple Implementation Types
There are five file precedence types. MATLAB uses file precedence to select
between identically named functions in the same directory. The order of
precedence for file types is

9-74

How MATLAB Determines Which Method to Call

1 Built-in file

2 MEX-files

3 MDL (Simulink model) file

4 P-code file

5 M-file

For example, if MATLAB finds a P-code and an M-file version of a method in a
class directory, then the P-code version is used. It is, therefore, important to
regenerate the P-code version whenever you edit the M-file.

Querying Which Method MATLAB Will Call
You can determine which method MATLAB will call using the which
command. For example,

which pie3
your_matlab_path/toolbox/matlab/specgraph/pie3.m

However, if p is a portfolio object,

which pie3(p)
dir_on_your_path/@portfolio/pie3.m % portfolio method

The which command determines which version of pie3 MATLAB will call
if you passed a portfolio object as the input argument. To see a list of all
versions of a particular function that are on your MATLAB path, use the -all
option. See the which reference page for more information on this command.

9-75

9 Classes and Objects

9-76

10

Scheduling Program
Execution with Timers

Using a MATLAB Timer Object
(p. 10-2)

Step-by-step procedure for using a
timer object with a simple example

Creating Timer Objects (p. 10-5) Using the timer function to create
a timer object

Working with Timer Object
Properties (p. 10-7)

Setting timer object properties and
retrieving the values of timer object
properties

Starting and Stopping Timers
(p. 10-10)

Using the start or startat function
to start timer objects; using the stop
function to stop them, and blocking
the command line

Creating and Executing Callback
Functions (p. 10-14)

Creating a callback function and
specifying it as the value of a timer
object callback property

Timer Object Execution Modes
(p. 10-19)

Using the ExecutionMode property
to control when a timer object
executes

Deleting Timer Objects from Memory
(p. 10-23)

Using the delete function to delete
a timer object

Finding Timer Objects in Memory
(p. 10-24)

Using the timerfind and
timerfindall functions to
determine if timer objects exist
in memory

10 Scheduling Program Execution with Timers

Using a MATLAB Timer Object

In this section...

“Overview” on page 10-2

“Example: Displaying a Message” on page 10-3

Overview
MATLAB includes a timer object that you can use to schedule the execution of
MATLAB commands. This section describes how you can create timer objects,
start a timer running, and specify the processing that you want performed
when a timer fires. A timer is said to fire when the amount of time specified
by the timer object elapses and the timer object executes the commands you
specify.

To use a timer, perform these steps:

1 Create a timer object.

You use the timer function to create a timer object. See “Creating Timer
Objects” on page 10-5 for more information.

2 Specify which MATLAB commands you want executed when the timer fires
and control other aspects of timer object behavior.

You use timer object properties to specify this information. To learn about
all the properties supported by the timer object, see “Working with Timer
Object Properties” on page 10-7. (You can also set timer object properties
when you create them, in step 1.)

3 Start the timer object.

After you create the timer object, you must start it, using either the start
or startat function. See “Starting and Stopping Timers” on page 10-10
for more information.

4 Delete the timer object when you are done with it.

10-2

Using a MATLAB Timer Object

After you are finished using a timer object, you should delete it from
memory. See “Deleting Timer Objects from Memory” on page 10-23 for
more information.

Note The specified execution time and the actual execution of a timer can
vary because timer objects work in the MATLAB single-threaded execution
environment. The length of this time lag is dependent on what other
processing MATLAB is performing. To force the execution of the callback
functions in the event queue, include a call to the drawnow function in your
code. The drawnow function flushes the event queue.

Example: Displaying a Message
The following example sets up a timer object that executes a MATLAB
command string after 10 seconds elapse. The example creates a timer
object, specifying the values of two timer object properties, TimerFcn and
StartDelay. TimerFcn specifies the timer callback function. This is the
MATLAB command string or M-file that you want to execute when the
timer fires. In the example, the timer callback function sets the value of
the MATLAB workspace variable stat and executes the MATLAB disp
command. The StartDelay property specifies how much time elapses before
the timer fires.

After creating the timer object, the example uses the start function to start
the timer object. (The additional commands in this example are included to
illustrate the timer but are not required for timer operation.)

t = timer('TimerFcn', 'stat=false; disp(''Timer!'')',...
'StartDelay',10);

start(t)

stat=true;
while(stat==true)

disp('.')
pause(1)

end

When you execute this code, it produces this output:

10-3

10 Scheduling Program Execution with Timers

.

.

.

.

.

.

.

.

.
Timer!

delete(t) % Always delete timer objects after using them.

10-4

Creating Timer Objects

Creating Timer Objects

In this section...

“Creating the Object” on page 10-5

“Naming the Object” on page 10-6

Creating the Object
To use a timer in MATLAB, you must create a timer object. The timer object
represents the timer in MATLAB, supporting various properties and functions
that control its behavior.

To create a timer object, use the timer function. This creates a valid timer
object with default values for most properties. The following shows an
example of the default timer object and its summary display:

t = timer
Timer Object: timer-1

Timer Settings
ExecutionMode: singleShot

Period: 1
BusyMode: drop
Running: off

Callbacks
TimerFcn: ''
ErrorFcn: ''
StartFcn: ''
StopFcn: ''

MATLAB names the timer object timer-1. (See “Naming the Object” on page
10-6 for more information.)

To specify the value of timer object properties after you create it, you can use
the set function. This example sets the value of the TimerFcn property and
the StartDelay property. For more information about timer object properties,
see “Working with Timer Object Properties” on page 10-7.

10-5

10 Scheduling Program Execution with Timers

set(t,'TimerFcn','disp(''Hello World!'')','StartDelay',5)

You can also set timer object properties when you create the timer object by
specifying property name and value pairs as arguments to the timer function.
The following example sets the same properties at object creation time:

t = timer('TimerFcn', 'disp(''Hello World!'')','StartDelay',5);

Always delete timer objects when you are done using them. See “Deleting
Timer Objects from Memory” on page 10-23 for more information.

Naming the Object
MATLAB assigns a name to each timer object you create. This name has the
form 'timer-i', where i is a number representing the total number of timer
objects created this session.

For example, the first time you call the timer function to create a timer object,
MATLAB names the object timer-1. If you call the timer function again to
create another timer object, MATLAB names the object timer-2.

MATLAB keeps incrementing the number associated with each timer object it
creates, even if you delete the timer objects you already created. For example,
if you delete the first two timer objects and create a new object, MATLAB
names it timer-3, even though the other two timer objects no longer exist
in memory. To reset the numeric part of timer object names to 1, execute
the clear classes command.

10-6

Working with Timer Object Properties

Working with Timer Object Properties

In this section...

“Retrieving the Value of Timer Object Properties” on page 10-7

“Setting the Value of Timer Object Properties” on page 10-8

To get information about timer object properties, see the timer function
reference page.

Retrieving the Value of Timer Object Properties
The timer object supports many properties that provide information about
the current state of the timer object and control aspects of its functioning. To
retrieve the value of a timer object property, you can use the get function or
use subscripts (dot notation) to access the field.

The following example uses the set function to retrieve the value of the
ExecutionMode property:

t = timer;

tmode = get(t,'ExecutionMode')

tmode =

singleShot

The following example uses dot notation to retrieve the value of the
ExecutionMode property:

tmode = t.ExecutionMode

tmode =

singleShot

To view a list of all the properties of a timer object, use the get function,
specifying the timer object as the only argument:

10-7

10 Scheduling Program Execution with Timers

get(t)
AveragePeriod: NaN

BusyMode: 'drop'
ErrorFcn: ''

ExecutionMode: 'singleShot'
InstantPeriod: NaN

Name: 'timer-4'
ObjectVisibility: 'on'

Period: 1
Running: 'off'

StartDelay: 0
StartFcn: ''
StopFcn: ''

Tag: ''
TasksExecuted: 0

TasksToExecute: Inf
TimerFcn: ''

Type: 'timer'
UserData: []

Setting the Value of Timer Object Properties
To set the value of a timer object property, use the set function or subscripted
assignment (dot notation). You can also set timer object properties when you
create the timer object. For more information, see “Creating Timer Objects”
on page 10-5.

The following example uses both methods to assign values to timer object
properties. The example creates a timer that, once started, displays a message
every second until you stop it with the stop command.

1 Create a timer object.

t = timer;

2 Assign values to timer object properties using the set function.

set(t,'ExecutionMode','fixedRate','BusyMode','drop','Period',1);

3 Assign a value to the timer object TimerFcn property using dot notation.

t.TimerFcn = 'disp(''Processing...'')'

10-8

Working with Timer Object Properties

4 Start the timer object. It displays a message at 1-second intervals.

start(t)

5 Stop the timer object.

stop(t)

6 Delete timer objects after you are done using them.

delete(t)

Viewing a List of All Settable Properties
To view a list of all timer object properties that can have values assigned to
them (in contrast to the read-only properties), use the set function, specifying
the timer object as the only argument.

The display includes the values you can use to set the property if, like the
BusyMode property, the property accepts an enumerated list of values.

t = timer;

set(t)

BusyMode: [{drop} | queue | error]

ErrorFcn: string -or- function handle -or- cell array

ExecutionMode: [{singleShot} | fixedSpacing | fixedDelay | fixedRate]

Name

ObjectVisibility: [{on} | off]

Period

StartDelay

StartFcn: string -or- function handle -or- cell array

StopFcn: string -or- function handle -or- cell array

Tag

TasksToExecute

TimerFcn: string -or- function handle -or- cell array

UserData

10-9

10 Scheduling Program Execution with Timers

Starting and Stopping Timers

In this section...

“Starting a Timer” on page 10-10

“Starting a Timer at a Specified Time” on page 10-10

“Stopping Timer Objects” on page 10-11

“Blocking the MATLAB Command Line” on page 10-12

Note Because the timer works within the MATLAB single-threaded
environment, it cannot guarantee execution times or execution rates.

Starting a Timer
To start a timer object, call the start function, specifying the timer object
as the only argument. The start function starts a timer object running;
the amount of time the timer runs is specified in seconds in the StartDelay
property.

This example creates a timer object that displays a greeting after 5 seconds
elapse.

1 Create a timer object, specifying values for timer object properties.

t = timer('TimerFcn','disp(''Hello World!'')','StartDelay', 5);

2 Start the timer object.

start(t)

3 Delete the timer object after you are finished using it.

delete(t);

Starting a Timer at a Specified Time
To start a timer object and specify a date and time for the timer to fire, (rather
than specifying the number of seconds to elapse), use the startat function.
This function starts a timer object and allows you to specify the date, hour,

10-10

Starting and Stopping Timers

minute, and second when you want to the timer to execute. You specify the
time as a MATLAB serial date number or as a specially formatted date text
string.

This example creates a timer object that displays a message after an hour has
elapsed. The startat function starts the timer object running and calculates
the value of the StartDelay property based on the time you specify.

t2=timer('TimerFcn','disp(''It has been an hour now.'')');

startat(t2,now+1/24);

Stopping Timer Objects
Once started, the timer object stops running if one of the following conditions
apply:

• The timer function callback (TimerFcn) has been executed the number of
times specified in the TasksToExecute property.

• An error occurred while executing a timer function callback (TimerFcn).

You can also stop a timer object by using the stop function, specifying the
timer object as the only argument. The following example illustrates stopping
a timer object:

1 Create a timer object.

t = timer('TimerFcn','disp(''Hello World!'')', ...
'StartDelay', 100);

2 Start it running.

start(t)

3 Check the state of the timer object after starting it.

get(t,'Running')

ans =

on

10-11

10 Scheduling Program Execution with Timers

4 Stop the timer using the stop command and check the state again. When
a timer stops, the value of the Running property of the timer object is set
to 'off'.

stop(t)

get(t,'Running')

ans =

off

5 Delete the timer object when you are finished using it.

delete(t)

Note The timer object can execute a callback function that you specify when
it starts or stops. See “Creating and Executing Callback Functions” on page
10-14.

Blocking the MATLAB Command Line
By default, when you use the start or startat function to start a timer
object, the function returns control to the command line immediately. For
some applications, you might prefer to block the command line until the
timer fires. To do this, call the wait function right after calling the start
or startat function.

1 Create a timer object.

t = timer('StartDelay', 5,'TimerFcn', ...
'disp(''Hello World!'')');

2 Start the timer object running.

start(t)

10-12

Starting and Stopping Timers

3 After the start function returns, call the wait function immediately. The
wait function blocks the command line until the timer object fires.

wait(t)

4 Delete the timer object after you are finished using it.

delete(t)

10-13

10 Scheduling Program Execution with Timers

Creating and Executing Callback Functions

In this section...

“Associating Commands with Timer Object Events” on page 10-14

“Creating Callback Functions” on page 10-15

“Specifying the Value of Callback Function Properties” on page 10-17

Note Callback function execution might be delayed if the callback involves
a CPU-intensive task such as updating a figure.

Associating Commands with Timer Object Events
The timer object supports properties that let you specify the MATLAB
commands that execute when a timer fires, and for other timer object events,
such as starting, stopping, or when an error occurs. These are called callbacks.
To associate MATLAB commands with a timer object event, set the value of
the associated timer object callback property.

The following diagram shows when the events occur during execution of a
timer object and give the names of the timer object properties associated
with each event. For example, to associate MATLAB commands with a start
event, assign a value to the StartFcn callback property. Error callbacks can
occur at any time.

10-14

Creating and Executing Callback Functions

Timer Object Events and Related Callback Function

Creating Callback Functions
When the time period specified by a timer object elapses, the timer object
executes one or more MATLAB functions of your choosing. You can specify
the functions directly as the value of the callback property. You can also put
the commands in an M-file function and specify the M-file function as the
value of the callback property.

Specifying Callback Functions Directly
This example creates a timer object that displays a greeting after 5 seconds.
The example specifies the value of the TimerFcn callback property directly,
putting the commands in a text string.

t = timer('TimerFcn','disp(''Hello World!'')','StartDelay',5);

10-15

10 Scheduling Program Execution with Timers

Note When you specify the callback commands directly as the value of the
callback function property, the commands are evaluated in the MATLAB
workspace.

Putting Commands in a Callback Function
Instead of specifying MATLAB commands directly as the value of a callback
property, you can put the commands in an M-file and specify the M-file as the
value of the callback property.

When you create a callback function, the first two arguments must be a
handle to the timer object and an event structure. An event structure contains
two fields: Type and Data. The Type field contains a text string that identifies
the type of event that caused the callback. The value of this field can be any of
the following strings: 'StartFcn', 'StopFcn', 'TimerFcn', or 'ErrorFcn'.
The Data field contains the time the event occurred.

In addition to these two required input arguments, your callback function can
accept application-specific arguments. To receive these input arguments, you
must use a cell array when specifying the name of the function as the value
of a callback property. For more information, see “Specifying the Value of
Callback Function Properties” on page 10-17.

Example: Writing a Callback Function
This example implements a simple callback function that displays the type
of event that triggered the callback and the time the callback occurred. To
illustrate passing application-specific arguments, the example callback
function accepts as an additional argument a text string and includes this text
string in the display output. To see this function used with a callback property,
see “Specifying the Value of Callback Function Properties” on page 10-17.

function my_callback_fcn(obj, event, string_arg)

txt1 = ' event occurred at ';
txt2 = string_arg;

event_type = event.Type;
event_time = datestr(event.Data.time);

10-16

Creating and Executing Callback Functions

msg = [event_type txt1 event_time];
disp(msg)
disp(txt2)

Specifying the Value of Callback Function Properties
You associate a callback function with a specific event by setting the value of
the appropriate callback property. You can specify the callback function as
a text string, cell array, or function handle. To access the object and event
arguments, you must specify the function as a cell array or as a function
handle. If your callback function accepts additional arguments, you must
use a cell array.

The following table shows the syntax for several sample callback functions
and describes how you call them.

Callback Function Syntax
How to Specify as a Property
Value

function myfile set(h, 'StartFcn', 'myfile')

function myfile(obj, event) set(h, 'StartFcn', @myfile)

function myfile(obj, event,
arg1, arg2)

set(h, 'StartFcn', {'myfile',
5, 6})

function myfile(obj, event,
arg1, arg2)

set(h, 'StartFcn', {@myfile,
5, 6})

This example illustrates several ways you can specify the value of timer object
callback function properties, some with arguments and some without. To see
the code of the callback function, my_callback_fcn, see “Example: Writing a
Callback Function” on page 10-16.

1 Create a timer object.

t = timer('StartDelay', 4,'Period', 4,'TasksToExecute', 2,...
'ExecutionMode','fixedRate');

10-17

10 Scheduling Program Execution with Timers

2 Specify the value of the StartFcn callback. Note that the example specifies
the value in a cell array because the callback function needs to access
arguments passed to it.

t.StartFcn = {'my_callback_fcn', 'My start message'};

3 Specify the value of the StopFcn callback. The example specifies the
callback function by its handle, rather than as a text string. Again, the
value is specified in a cell array because the callback function needs to
access the arguments passed to it.

t.StopFcn = { @my_callback_fcn, 'My stop message'};

4 Specify the value of the TimerFcn callback. The example specifies the
MATLAB commands in a text string.

t.TimerFcn = 'disp(''Hello World!'')';

5 Start the timer object.

start(t)

The example outputs the following.

StartFcn event occurred at 10-Mar-2004 17:16:59
Start message
Hello World!
Hello World!
StopFcn event occurred at 10-Mar-2004 17:16:59
Stop message

6 Delete the timer object after you are finished with it.

delete(t)

10-18

Timer Object Execution Modes

Timer Object Execution Modes

In this section...

“Executing a Timer Callback Function Once” on page 10-19

“Executing a Timer Callback Function Multiple Times” on page 10-20

“Handling Callback Function Queuing Conflicts” on page 10-21

Executing a Timer Callback Function Once
The timer object supports several execution modes that determine how it
schedules the timer callback function (TimerFcn) for execution. You specify
the execution mode by setting the value of the ExecutionMode property.

To execute a timer callback function once, set the ExecutionMode property to
'singleShot'. This is the default execution mode. In this mode, the timer
object starts the timer and, after the time period specified in the StartDelay
property elapses, adds the timer callback function (TimerFcn) to the MATLAB
execution queue. When the timer callback function finishes, the timer stops.

The following figure graphically illustrates the parts of timer callback
execution for a singleShot execution mode. The shaded area in the figure,
labelled queue lag, represents the indeterminate amount of time between
when the timer adds a timer callback function to the MATLAB execution
queue and when the function starts executing. The duration of this lag is
dependent on what other processing MATLAB happens to be doing at the time.

Timer Callback Execution (singleShot Execution Mode)

10-19

10 Scheduling Program Execution with Timers

Executing a Timer Callback Function Multiple Times
The timer object supports three multiple-execution modes:

• 'fixedRate'

• 'fixedDelay'

• 'fixedSpacing'

In many ways, these execution modes operate the same:

• The TasksToExecute property specifies the number of times you want the
timer to execute the timer callback function (TimerFcn).

• The Period property specifies the amount of time between executions of
the timer callback function.

• The BusyMode property specifies how the timer object handles queuing of
the timer callback function when the previous execution of the callback
function has not completed. See “Handling Callback Function Queuing
Conflicts” on page 10-21 for more information.

The execution modes differ only in where they start measuring the time
period between executions. The following table describes these differences.

Execution
Mode Description

'fixedRate' Time period between executions begins immediately after
the timer callback function is added to the MATLAB
execution queue.

'fixedDelay' Time period between executions begins when the timer
function callback actually starts executing, after any time
lag due to delays in the MATLAB execution queue.

'fixedSpacing' Time period between executions begins when the timer
callback function finishes executing.

The following figure illustrates the difference between these modes. Note that
the amount of time between executions (specified by the Period property)
remains the same. Only the point at which execution begins is different.

10-20

Timer Object Execution Modes

Differences Between Execution Modes

Handling Callback Function Queuing Conflicts
At busy times, in multiple-execution scenarios, the timer may need to add the
timer callback function (TimerFcn) to the MATLAB execution queue before
the previously queued execution of the callback function has completed.
You can determine how the timer object handles this scenario by using the
BusyMode property.

If you specify 'drop' as the value of the BusyMode property, the timer object
skips the execution of the timer function callback if the previously scheduled
callback function has not already completed.

If you specify 'queue', the timer object waits until the currently executing
callback function finishes before queuing the next execution of the timer
callback function.

10-21

10 Scheduling Program Execution with Timers

Note In 'queue' mode, the timer object tries to make the average time
between executions equal the amount of time specified in the Period property.
If the timer object has to wait longer than the time specified in the Period
property between executions of the timer function callback, it shortens the
time period for subsequent executions to make up the time.

If the BusyMode property is set to 'error', the timer object stops and executes
the timer object error callback function (ErrorFcn), if one is specified.

10-22

Deleting Timer Objects from Memory

Deleting Timer Objects from Memory

In this section...

“Deleting One or More Timer Objects” on page 10-23

“Testing the Validity of a Timer Object” on page 10-23

Deleting One or More Timer Objects
When you are finished with a timer object, delete it from memory using the
delete function:

delete(t)

When you delete a timer object, workspace variables that referenced the object
remain. Deleted timer objects are invalid and cannot be reused. Use the clear
command to remove workspace variables that reference deleted timer objects.

To remove all timer objects from memory, enter

delete(timerfind)

For information about the timerfind function, see “Finding Timer Objects
in Memory” on page 10-24.

Testing the Validity of a Timer Object
To test if a timer object has been deleted, use the isvalid function. The
isvalid function returns logical 0 (false) for deleted timer objects:

isvalid(t)
ans =

0

10-23

10 Scheduling Program Execution with Timers

Finding Timer Objects in Memory

In this section...

“Finding All Timer Objects” on page 10-24

“Finding Invisible Timer Objects” on page 10-24

Finding All Timer Objects
To find all the timer objects that exist in memory, use the timerfind
function. This function returns an array of timer objects. If you leave off
the semicolon, and there are multiple timer objects in the array, timerfind
displays summary information in a table:

t1 = timer;
t2 = timer;
t3 = timer;
t_array = timerfind

Timer Object Array

Index: ExecutionMode: Period: TimerFcn: Name:
1 singleShot 1 '' timer-3
2 singleShot 1 '' timer-4
3 singleShot 1 '' timer-5

Using timerfind to determine all the timer objects that exist in memory can
be helpful when deleting timer objects.

Finding Invisible Timer Objects
If you set the value of a timer object’s ObjectVisibility property to
'off', the timer object does not appear in listings of existing timer objects
returned by timerfind. The ObjectVisibility property provides a way for
application developers to prevent end-user access to the timer objects created
by their application.

Objects that are not visible are still valid. If you have access to the object (for
example, from within the M-file that created it), you can set its properties. To

10-24

Finding Timer Objects in Memory

retrieve a list of all the timer objects in memory, including invisible ones, use
the timerfindall function.

10-25

10 Scheduling Program Execution with Timers

10-26

11

Improving Performance and
Memory Usage

Analyzing Your Program’s
Performance (p. 11-2)

What tools are provided by MATLAB
to measure the performance of your
programs and identify where the
bottlenecks are

Techniques for Improving
Performance (p. 11-4)

How to improve M-file performance
by vectorizing loops, preallocating
arrays, etc.

Multiprocessing in MATLAB
(p. 11-13)

How to speed up performance
with two types of multiprocessing
provided with MATLAB

Memory Allocation in MATLAB
(p. 11-18)

How MATLAB allocates memory to
different

data structures, array types, etc.

Memory Management Functions
(p. 11-24)

MATLAB functions that can help
you manage memory use

Strategies for Efficient Use of
Memory (p. 11-25)

Tips to help you reduce
fragmentation and allocate memory
more efficiently

Resolving “Out of Memory” Errors
(p. 11-27)

What to do when if you get an "Out
of Memory" error

11 Improving Performance and Memory Usage

Analyzing Your Program’s Performance

In this section...

“Overview” on page 11-2

“The M-File Profiler Utility” on page 11-2

“Stopwatch Timer Functions” on page 11-2

Overview
The M-file Profiler graphical user interface and the stopwatch timer functions
enable you to get back information on how your program is performing
and help you identify areas that need improvement. The Profiler can be
more useful in measuring relative execution time and in identifying specific
performance bottlenecks in your code, while the stopwatch functions tend to
be more useful for providing absolute time measurements.

The M-File Profiler Utility
A good first step to speeding up your programs is to find out where the
bottlenecks are. This is where you need to concentrate your attention to
optimize your code.

MATLAB provides the M-file Profiler, a graphical user interface that shows
you where your program is spending its time during execution. Use the
Profiler to help you determine where you can modify your code to make
performance improvements.

To start the Profiler, type profile viewer or select Desktop > Profiler in
the MATLAB Command Window. See Profiling for Improving Performance in
the MATLAB Desktop Tools and Development Environment documentation,
and the profile function reference page.

Stopwatch Timer Functions
If you just need to get an idea of how long your program (or a portion of
it) takes to run, or to compare the speed of different implementations of a
program, you can use the stopwatch timer functions, tic and toc. Invoking

11-2

Analyzing Your Program’s Performance

tic starts the timer, and the first subsequent toc stops it and reports the
time elapsed between the two.

Use tic and toc as shown here:

tic
-- run the program section to be timed --

toc

Keep in mind that tic and toc measure overall elapsed time. Make sure that
no other applications are running in the background on your system that
could affect the timing of your MATLAB programs.

Measuring Smaller Programs
Shorter programs sometimes run too fast to get useful data from tic and toc.
When this is the case, try measuring the program running repeatedly in a
loop, and then average to find the time for a single run:

tic
for k = 1:100

-- run the program --
end

toc

Using tic and toc Versus the cputime Function
Although it is possible to measure performance using the cputime function,
it is recommended that you use the tic and toc functions for this purpose
exclusively. It has been the general rule for CPU-intensive calculations run
on Windows machines that the elapsed time using cputime and the elapsed
time using tic and toc are close in value, ignoring any first time costs.
There are cases however that show a significant difference between these
two methods. For example, in the case of a Pentium 4 with hyperthreading
running Windows, there can be a significant difference between the values
returned by cputime versus tic and toc.

11-3

11 Improving Performance and Memory Usage

Techniques for Improving Performance

In this section...

“Vectorizing Loops” on page 11-4

“Preallocating Arrays” on page 11-7

“Use Distributed Arrays for Large Datasets” on page 11-9

“When Possible, Replace for with parfor (Parallel for)” on page 11-9

“Multithreading Capabilities in MATLAB” on page 11-9

“Limiting M-File Size and Complexity” on page 11-9

“Coding Loops in a MEX-File” on page 11-10

“Assigning to Variables” on page 11-10

“Operating on Real Data” on page 11-11

“Using Appropriate Logical Operators” on page 11-11

“Overloading Built-In Functions” on page 11-12

“Functions Are Generally Faster Than Scripts” on page 11-12

“Load and Save Are Faster Than File I/O Functions” on page 11-12

“Avoid Large Background Processes” on page 11-12

Vectorizing Loops
MATLAB is a matrix language, which means it is designed for vector
and matrix operations. You can often speed up your M-file code by using
vectorizing algorithms that take advantage of this design. Vectorization means
converting for and while loops to equivalent vector or matrix operations.

Simple Example of Vectorizing
Here is one way to compute the sine of 1001 values ranging from 0 to 10:

i = 0;
for t = 0:.01:10

i = i + 1;
y(i) = sin(t);

11-4

Techniques for Improving Performance

end

A vectorized version of the same code is

t = 0:.01:10;
y = sin(t);

The second example executes much faster than the first and is the way
MATLAB is meant to be used. Test this on your system by creating M-file
scripts that contain the code shown, and then using the tic and toc functions
to time the M-files.

Advanced Example of Vectorizing
repmat is an example of a function that takes advantage of vectorization. It
accepts three input arguments: an array A, a row dimension M, and a column
dimension N.

repmat creates an output array that contains the elements of array A,
replicated and “tiled” in an M-by-N arrangement:

A = [1 2 3; 4 5 6];

B = repmat(A,2,3);
B =

1 2 3 1 2 3 1 2 3
4 5 6 4 5 6 4 5 6
1 2 3 1 2 3 1 2 3
4 5 6 4 5 6 4 5 6

repmat uses vectorization to create the indices that place elements in the
output array:

function B = repmat(A, M, N)

% Step 1 Get row and column sizes
[m,n] = size(A);

% Step 2 Generate vectors of indices from 1 to row/column size
mind = (1:m)';
nind = (1:n)';

11-5

11 Improving Performance and Memory Usage

% Step 3 Create index matrices from vectors above
mind = mind(:,ones(1, M));
nind = nind(:,ones(1, N));

% Step 4 Create output array
B = A(mind,nind);

Step 1, above, obtains the row and column sizes of the input array.

Step 2 creates two column vectors. mind contains the integers from 1 through
the row size of A. The nind variable contains the integers from 1 through
the column size of A.

Step 3 uses a MATLAB vectorization trick to replicate a single column of
data through any number of columns. The code is

B = A(:,ones(1,nCols))

where nCols is the desired number of columns in the resulting matrix.

Step 4 uses array indexing to create the output array. Each element of the
row index array, mind, is paired with each element of the column index array,
nind, using the following procedure:

1 The first element of mind, the row index, is paired with each element of
nind. MATLAB moves through the nind matrix in a columnwise fashion,
so mind(1,1) goes with nind(1,1), and then nind(2,1), and so on. The
result fills the first row of the output array.

2 Moving columnwise through mind, each element is paired with the elements
of nind as above. Each complete pass through the nind matrix fills one row
of the output array.

Caution While repmat can take advantage of vectorization, it can do so
at the expense of memory usage. When this is the case, you might find the
bsxfun function be more appropriate in this respect.

11-6

Techniques for Improving Performance

Functions Used in Vectorizing
Some of the most commonly used functions for vectorizing are as follows

Function Description

all Test to determine if all elements are nonzero

any Test for any nonzeros

cumsum Find cumulative sum

diff Find differences and approximate derivatives

find Find indices and values of nonzero elements

ind2sub Convert from linear index to subscripts

ipermute Inverse permute dimensions of a multidimensional array

logical Convert numeric values to logical

ndgrid Generate arrays for multidimensional functions and
interpolation

permute Rearrange dimensions of a multidimensional array

prod Find product of array elements

repmat Replicate and tile an array

reshape Change the shape of an array

shiftdim Shift array dimensions

sort Sort array elements in ascending or descending order

squeeze Remove singleton dimensions from an array

sub2ind Convert from subscripts to linear index

sum Find the sum of array elements

Preallocating Arrays
for and while loops that incrementally increase, or grow, the size of a data
structure each time through the loop can adversely affect performance and
memory use. Repeatedly resizing arrays often requires that MATLAB spend
extra time looking for larger contiguous blocks of memory and then moving
the array into those blocks. You can often improve on code execution time by

11-7

11 Improving Performance and Memory Usage

preallocating the maximum amount of space that would be required for the
array ahead of time.

The following code creates a scalar variable x, and then gradually increases
the size of x in a for loop instead of preallocating the required amount of
memory at the start:

x = 0;
for k = 2:1000

x(k) = x(k-1) + 5;
end

Change the first line to preallocate a 1-by-1000 block of memory for x
initialized to zero. This time there is no need to repeatedly reallocate memory
and move data as more values are assigned to x in the loop:

x = zeros(1, 1000);
for k = 2:1000

x(k) = x(k-1) + 5;
end

Preallocation Functions
Preallocation makes it unnecessary for MATLAB to resize an array each time
you enlarge it. Use the appropriate preallocation function for the kind of
array you are working with.

Array Type Function Examples

Numeric zeros y = zeros(1, 100);

Cell cell B = cell(2, 3);
B{1,3} = 1:3;
B{2,2} = 'string';

Preallocating a Nondouble Matrix
When you preallocate a block of memory to hold a matrix of some type other
than double, avoid using the method

A = int8(zeros(100));

11-8

Techniques for Improving Performance

This statement preallocates a 100-by-100 matrix of int8 first by creating a
full matrix of doubles, and then converting each element to int8. This costs
time and uses memory unnecessarily.

The next statement shows how to do this more efficiently:

A = zeros(100, 'int8');

Use Distributed Arrays for Large Datasets
This topic is described in the “Parallel Math” section of the Distributed
Computing Toolbox documentation.

When Possible, Replace for with parfor (Parallel for)
This topic is described in the “Parallel for-Loops” section of the Distributed
Computing Toolbox documentation.

Multithreading Capabilities in MATLAB
See “Implicit Multiprocessing” on page 11-14 to learn more about making
use of multithreaded computation.

Limiting M-File Size and Complexity
Running programs that are unusually large or complex can put a strain on
your system’s resources. For example, a program that nearly exceeds memory
capacity may work some of the time and sometimes not, depending on the
commands it uses and on what other applications are running at the time.
An example of unnecessary complexity might be having a large number of if
and else statements where switch and case might be more suitable. This
can also lead to performance and space problems.

If you have an M-file that includes thousands of variables or functions, tens
of thousands of statements, or hundreds of language keyword pairs (e.g.,
if-else, or try-catch), then making some of the changes suggested here is
likely to not only boost its performance and reliability, but should make your
program code easier to understand and maintain as well.

Here are a few suggestions on how to make your programs less
resource-intensive:

11-9

11 Improving Performance and Memory Usage

• Split large script files into smaller ones, having the first file call the second
if necessary.

• Take your larger chunks of program code and make separate functions (or
subfunctions and nested functions) of them.

• If you have functions or expressions by that seem overly complicated, make
smaller and simpler functions or expressions of them. Simpler functions
are also more likely to be made into utility functions that you can share
with others.

Coding Loops in a MEX-File
If there are instances where you cannot vectorize and must use a for or
while loop, consider coding the loop in a MEX-file. In this way, the loop
executes much more quickly since the instructions in the loop do not have to
be interpreted each time they execute.

See “Introducing MEX-Files” in the External Interfaces documentation.

Assigning to Variables
For best performance, keep the following suggestions in mind when assigning
values to variables.

Changing a Variable’s Data Type or Dimension
Changing the data type or array shape of an existing variable slows MATLAB
down as it must take extra time to process this. When you need to store data
of a different type, it is advisable to create a new variable.

This code changes the type for X from double to char, which has a negative
impact on performance:

X = 23;
.

-- other code --
.

X = 'A'; % X changed from type double to char
.

-- other code --

11-10

Techniques for Improving Performance

Assigning Real and Complex Numbers
Assigning a complex number to a variable that already holds a real number
impacts the performance of your program. Similarly, you should not assign a
real value to a variable that already holds a complex value.

Operating on Real Data
When operating on real (i.e., noncomplex) numbers, it is more efficient to use
MATLAB functions that have been designed specifically for real numbers.
The following functions return numeric values that are real.

Function Description

reallog Find natural logarithm for nonnegative real arrays

realpow Find array power for real-only output

realsqrt Find square root for nonnegative real arrays

Using Appropriate Logical Operators
When performing a logical AND or OR operation, you have a choice of two
operators of each type.

Operator Description

&, | Perform logical AND and OR on arrays element by
element

&&, || Perform logical AND and OR on scalar values with
short-circuiting

In if and while statements, it is more efficient to use the short-circuiting
operators, && for logical AND and || for logical OR. This is because these
operators often don’t have to evaluate the entire logical expression. For
example, MATLAB evaluates only the first part of this expression whenever
the number of input arguments is less than three:

if (nargin >= 3) && (ischar(varargin{3}))

See Short-Circuit Operators in the MATLAB documentation for a discussion
on short-circuiting with && and ||.

11-11

11 Improving Performance and Memory Usage

Overloading Built-In Functions
Overloading MATLAB built-in functions on any of the standard MATLAB
data types can negatively affect performance. For example, if you overload
the plus function to handle any of the integer data types differently, you may
hinder certain optimizations in the MATLAB built-in function code for plus,
and thus may slow down any programs that make use of this overload.

Functions Are Generally Faster Than Scripts
Your code executes more quickly if it is implemented in a function rather
than a script.

Load and Save Are Faster Than File I/O Functions
If you have a choice of whether to use load and save instead of the low-level
MATLAB file I/O routines such as fread and fwrite, choose the former.
load and save have been optimized to run faster and reduce memory
fragmentation.

Avoid Large Background Processes
Avoid running large processes in the background at the same time you are
executing your program in MATLAB. This frees more CPU time for your
MATLAB session.

11-12

Multiprocessing in MATLAB

Multiprocessing in MATLAB

In this section...

“Overview” on page 11-13

“Implicit Multiprocessing” on page 11-14

“Explicit Multiprocessing” on page 11-17

Overview
MATLAB supports two types of multiprocessing: implicit and explicit.

Implicit Multiprocessing
Characteristics of implicit multiprocessing:

• Runs multiple threads on a single machine, most often using one thread
per processing unit.

• Requires a multiple CPU (multiprocessor or multicore) system.

• Speeds up elementwise computations such as those done by the sin
and log functions, and computations that use the Basic Linear Algebra
Subroutines (BLAS) library, such as matrix multiply.

• Does not require any changes to your MATLAB code.

• Works behind the scenes to take advantage of the processing units available
to you. It does this by multithreading the computationally-intensive math
library functions that you use in the course of your MATLAB session.

Enable implicit multiprocessing with the MATLAB Preferences Panel to
enable or disable, or to set the number of threads to be used. You can
change the maximum number of threads programmatically using the
maxNumCompThreads function.

Explicit Multiprocessing
Characteristics of explicit multiprocessing:

• Runs separate processes on one or many machines.

11-13

11 Improving Performance and Memory Usage

• Requires installation of Distributed Computing Toolbox (DCT).

• Speeds up execution of large MATLAB jobs. Enables you to run jobs
simultaneously on a cluster of computers, or as several processes on a
single machine.

• Requires that you modify your MATLAB code.

• DCT supports programming constructs for distributed arrays and parallel
for (parfor) loops. It also supports both interactive and batch execution.

Enable explicit multiprocessing by installing Distributed Computing Toolbox.

Implicit Multiprocessing
Multithreaded computation runs in a single instance of MATLAB
and generates simultaneous instruction streams on a multiple CPU
(multiprocessor or multicore) system. The multiple processors share the
memory of a single computer. The work to be processed is implicitly
partitioned for execution on multiple threads. In particular, multithreaded
computation in MATLAB speeds up elementwise computations such as those
done by the sin and log functions, and computations that use the Basic
Linear Algebra Subroutines (BLAS) library, such as matrix multiply.

If you are using a multiple-CPU system, you can run a demo to see the
performance impact—see Multithreaded Computation in the Help browser
Demos pane, under MATLAB Mathematics.

For information regarding specific functions, search for “What MATLAB
Functions Support Multithreaded Computation” on The MathWorks online
Support page.

Platform Differences and Multithreaded Computation
The BLAS library used for multithreaded computation differs according to
which platform you are using:

11-14

Multiprocessing in MATLAB

Platform BLAS Used

Windows with Intel processors Intel MKL BLAS

Windows with AMD processors AMD ACML BLAS

Linux with Intel processors Intel MKL BLAS

Linux with AMD processors AMD ACML BLAS

Macintosh Intel-based Intel MKL BLAS

MacIntosh PowerPC Mac Accelerate BLAS

Solaris Sun Performance Library BLAS

Note On Macintosh PowerPC platforms, multithreaded computation
is always enabled for the Accelerate BLAS. To enable multithreaded
computation for elementwise operations, use MATLAB preferences.

Enabling Multithreaded Computation
The preference automatically detects the number of CPUs on your system and
recommends the number of threads based on that.

Multithreaded computation in MATLAB is disabled by default. To enable it
and set the maximum number of threads to use, follow these steps:

1 Select File > Preferences > General > Multithreading.

The General Multithreading Preferences panel opens.

2 On the General Multithreading Preferences panel, select Enable
multithreaded computation.

3 Specify the Maximum number of computational threads. Accepting
the Automatic option is recommended—MATLAB automatically sets the
value to the actual number of computational cores on your system. Note

11-15

11 Improving Performance and Memory Usage

that if your system uses hyperthreading (where one processor is logically
configured as two), MATLAB sets the value to 1.

If you choose Manual, enter the maximum number of threads you want
to set; use a positive integer not greater than 16. (Selecting a number
other than the recommended value might increase performance for some
computations, but might decrease performance for others.)

Note You may find that, at certain times, a library function uses a number
of threads smaller than what you have specified. This can happen if the
function finds the specified number of threads to be inappropriate.

In the event of an abnormal termination with multithreaded computation
enabled, MATLAB behaves differently than when multithreaded
computation is not enabled. For details, see .

Making this setting in the Preferences panel not only affects your current
MATLAB session, but future sessions as well. To disable multithreaded
computation, clear the Enable multithreaded computation selection and
click OK.

Note For Macintosh PowerPC platforms, BLAS multithreaded computation
cannot be disabled.

Setting the Number of Threads Programmatically
To set or retrieve the maximum number of computational threads from within
an M-file program, use the maxNumCompThreads function. You can either
set the maximum number of computational threads to a specific number, or
indicate that you want the setting to be done automatically by MATLAB.

To set the maximum number of computational threads to a specific number
N, use

maxNumCompThreads(N)

11-16

Multiprocessing in MATLAB

To have MATLAB set the maximum number of threads, use:

maxNumCompThreads('automatic')

maxNumCompThreads also returns the current maximum number of threads
if you call it with an output value:

old_N = MaxNumCompThreads(new_N)

MATLAB keeps the settings you make using maxNumCompThreads synchronous
with your Preferences settings. If you change the maximum number
of computational threads by means of the maxNumCompThreads function,
MATLAB updates the Preferences panel to agree with the new setting.

Note Setting the maximum number of computational threads using
maxNumCompThreads does not propagate to your next MATLAB session. To
make this setting carry over to future sessions, use the Preferences panel
instead.

Crash Recovery and Multithreading
If MATLAB experiences a segmentation violation or other serious problem
when multithreaded computation is enabled, it cannot try to return control to
the Command Window. You do not have an opportunity to view a segmentation
violation message in the Command Window as you might when multithreaded
computation is not enabled. Instead, your platform’s vendor, for example,
Microsoft or Apple, provides an error dialog box. MATLAB then terminates.

Upon the next MATLAB startup after a fatal problem, the “Error Log
Reporter” prompts you to e-mail the log to The MathWorks.

Explicit Multiprocessing
See the Distributed Computing Toolbox documentation for information
regarding explicit multiprocessing in MATLAB.

11-17

11 Improving Performance and Memory Usage

Memory Allocation in MATLAB

In this section...

“Memory Allocation for Arrays” on page 11-18

“Data Structures and Memory” on page 11-22

For more information on memory management, see Technical Note 1106:
“Memory Management Guide” at the following URL:

http://www.mathworks.com/support/tech-notes/1100/1106.html

Memory Allocation for Arrays
The topics below provide information on how MATLAB allocates memory
when working with arrays and variables. The purpose is to help you use
memory more efficiently when writing code. Most of the time, however, you
should not need to be concerned with these internal operations as MATLAB
handles data storage for you automatically.

• “Creating and Modifying Arrays” on page 11-18

• “Copying Arrays” on page 11-19

• “Array Headers” on page 11-20

• “Function Arguments” on page 11-21

Note Any information on how data is handled internally by MATLAB is
subject to change in future releases.

Creating and Modifying Arrays
When you assign any type of data (a numeric, string, or structure array, for
example) to a variable, MATLAB allocates a contiguous block of memory
and stores the array data in that block. It also stores information about the
array data, such as its data type and dimensions, in a separate, small block of
memory called a header. The variable that you assign this data to is actually
a pointer to the data; it does not contain the data.

11-18

http://www.mathworks.com/support/tech-notes/1100/1106.html

Memory Allocation in MATLAB

If you add new elements to an existing array, MATLAB expands the existing
array in memory in a way that keeps its storage contiguous. This might
require finding a new block of memory large enough to hold the expanded
array, and then copying the contents of the array from its original location to
the new block in memory, adding the new elements to the array in this block,
and freeing up the original array location in memory.

If you remove elements from an existing array, MATLAB keeps the memory
storage contiguous by removing the deleted elements, and then compacting its
storage in the original memory location.

Working with Large Data Sets. If you are working with large data sets,
you need to be careful when increasing the size of an array to avoid getting
errors caused by insufficient memory. If you expand the array beyond the
available contiguous memory of its original location, MATLAB has to make
a copy of the array in a new location in memory, as explained above, and
then set this array to its new value. During this operation, there are two
copies of the original array in memory, thus temporarily doubling the amount
of memory required for the array and increasing the risk of your program
running out of memory during execution. It is better to preallocate sufficient
memory for the array at the start. See “Preallocating Arrays” on page 11-7.

Copying Arrays
Internally, multiple variables can point to the same block of data, thus
sharing that array’s value. When you copy a variable to another variable (e.g.,
B = A), MATLAB makes a copy of the pointer, not the array. For example,
the following code creates a single 500-by-500 matrix and two pointers to it,
A and B:

A = magic(500);
B = A;

As long as the contents of the array are not modified, there is no need to
store two copies of it. If you modify the array, then MATLAB does create a
separate array to hold the new values.

If you modify the array shown above by referencing it with variable A
(e.g., A(400,:) = 0), then MATLAB creates a copy of the array, modifies it
accordingly, and stores a pointer to the new array in A. Variable B continues

11-19

11 Improving Performance and Memory Usage

to point to the original array. If you modify the array by referencing it with
variable B (e.g., B(400,:) = 0), the same thing happens except that it is B
that points to the new array.

Array Headers
When you assign an array to a variable, MATLAB also stores information
about the array (such as data type and dimensions) in a separate piece of
memory called a header. For most arrays, the memory required to store the
header is insignificant. There is a small advantage though to storing large
data sets in a small number of large arrays as opposed to a large number of
small arrays, as the former configuration requires fewer array headers.

Structure and Cell Arrays. For structures and cell arrays, MATLAB creates
a header not only for each array, but also for each field of the structure and for
each cell of a cell array. Because of this, the amount of memory required to
store a structure or cell array depends not only on how much data it holds,
but also how it is constructed.

For example, a scalar structure array S1 having fields R, G, and B, each field of
size 100-by-50, requires one array header to describe the overall structure,
and one header to describe each of the three field arrays, making a total of 4
array headers for the entire data structure:

S1.R(1:100,1:50)
S1.G(1:100,1:50)
S1.B(1:100,1:50)

On the other hand, a 100-by-50 structure array S2 in which each element has
scalar fields R, G, and B requires one array header to describe the overall
structure, and one array header per field for each of the 5,000 elements of the
structure, making a total of 15,001 array headers for the entire data structure:

S2(1:100,1:50).R
S2(1:100,1:50).G
S2(1:100,1:50).B

Thus, even though S1 and S2 contain the same amount of data, S1 uses
significantly less space in memory. Not only is less memory required, but
there is a corresponding speed benefit to using the S1 format as well.

11-20

Memory Allocation in MATLAB

Memory Usage Reported By the whos Function. The whos function
displays the amount of memory consumed by any variable. For reasons of
simplicity, whos reports only the memory used to store the actual data. It does
not report storage for the variable itself or the array header.

Function Arguments
MATLAB handles arguments passed in function calls in a similar way. When
you pass a variable to a function, you are actually passing a pointer to the
data that the variable represents. As long as the input data is not modified
by the function being called, the variable in the calling function and the
variable in the called function point to the same location in memory. If the
called function modifies the value of the input data, then MATLAB makes
a copy of the original array in a new location in memory, updates that copy
with the modified value, and points the input variable in the called function
to this new array.

In the example below, function myfun modifies the value of the array passed
into it. MATLAB makes a copy in memory of the array pointed to by A, sets
variable X as a pointer to this new array, and then sets one row of X to zero.
The array referenced by A remains unchanged:

A = magic(500);
myfun(A);

function myfun(X)
X(400,:) = 0;

If the calling function needs the modified value of the array it passed to
myfun, you will need to return the updated array as an output of the called
function, as shown here for variable A:

A = magic(500);
A = myfun(A);
sprintf('The new value of A is %d', A)

function Y = myfun(X)
X(400,:) = 0;
Y = X;

11-21

11 Improving Performance and Memory Usage

Working with Large Data Sets. Again, when working with large data sets,
you should be aware that MATLAB makes a temporary copy of A if the called
function modifies its value. This temporarily doubles the memory required
to store the array, which causes MATLAB to generate an error if sufficient
memory is not available.

One way to avoid running out of memory in this situation is to use nested
functions. A nested function shares the workspace of all outer functions,
giving the nested function access to data outside of its usual scope. In the
example shown here, nested function setrowval has direct access to the
workspace of the outer function myfun, making it unnecessary to pass a copy
of the variable in the function call. When setrowval modifies the value of A, it
modifies it in the workspace of the calling function. There is no need to use
additional memory to hold a separate array for the function being called, and
there also is no need to return the modified value of A:

function myfun
A = magic(500);

function setrowval(row, value)
A(row,:) = value;
end

setrowval(400, 0);
disp('The new value of A(399:401,1:10) is')
A(399:401,1:10)
end

Data Structures and Memory
Memory requirements differ for the various types of MATLAB data structures.
You may be able to reduce the amount of memory used for these structures by
considering how MATLAB stores them.

Numeric Arrays
MATLAB requires 1, 2, 4, or 8 bytes to store 8-bit, 16-bit, 32-bit, and 64-bit
signed and unsigned integers respectively. For floating-point numbers,
MATLAB uses 4 or 8 bytes for single and double types. To conserve
memory, The MathWorks recommends that you use the smallest integer or
floating-point type that will contain your data without overflowing. For more

11-22

Memory Allocation in MATLAB

information, see "Numeric Types" in the MATLAB Programming section on
Data Types.

Complex Arrays
MATLAB stores complex data as separate real and imaginary parts. If you
make a copy of a complex array variable, and then modify only the real or
imaginary part of the array, MATLAB creates a new array containing both
real and imaginary parts.

Sparse Matrices
It is best to store matrices with values that are mostly zero in sparse format.
Sparse matrices can use less memory and may also be faster to manipulate
than full matrices. You can convert a full matrix to sparse format using the
sparse function.

Compare two 1000-by-1000 matrices: X, a matrix of doubles with 2/3 of
its elements equal to zero; and Y, a sparse copy of X. As shown below,
approximately half as much memory is required for the sparse matrix:

whos
Name Size Bytes Class

X 1000x1000 8000000 double array
Y 1000x1000 4004000 double array (sparse)

11-23

11 Improving Performance and Memory Usage

Memory Management Functions
The following functions can help you to manage memory use in MATLAB:

• whos shows how much memory has been allocated for variables in the
workspace.

• pack saves existing variables to disk, and then reloads them contiguously.
This reduces the chances of running into problems due to memory
fragmentation.

See “Compressing Data in Memory” on page 11-28.

• clear removes variables from memory. One way to increase the amount
of available memory is to periodically clear variables from memory that
you no longer need.

If you use pack and there is still not enough free memory to proceed, you
probably need to remove some of the variables you are no longer using
from memory. Use clear to do this.

• save selectively stores variables to the disk. This is a useful technique
when you are working with large amounts of data. Save data to the disk
periodically, and then use the clear function to remove the saved data
from memory.

• load reloads a data file saved with the save function.

• quit exits MATLAB and returns all allocated memory to the system. This
can be useful on UNIX systems as UNIX does not free up memory allocated
to an application (e.g., MATLAB) until the application exits.

You can use the save and load functions in conjunction with the quit
command to free memory by:

1 Saving any needed variables with the save function.

2 Quitting MATLAB to free all memory allocated to MATLAB.

3 Starting a new MATLAB session and loading the saved variables back
into the clean MATLAB workspace.

11-24

Strategies for Efficient Use of Memory

Strategies for Efficient Use of Memory

In this section...

“Preallocating Arrays to Reduce Fragmentation” on page 11-25

“Allocating Large Matrices Earlier” on page 11-26

“Working with Large Amounts of Data” on page 11-26

To conserve memory when creating variables,

• Avoid creating large temporary variables, and clear temporary variables
when they are no longer needed.

• When working with arrays of fixed size, preallocate them rather than
having MATLAB resize the array each time you enlarge it.

• Allocate your larger matrices first, as explained in .

• Set variables equal to the empty matrix [] to free memory, or clear the
variables using the clear function.

• Reuse variables as much as possible, but keeping in mind the guidelines
stated in “Assigning to Variables” on page 11-10.

Preallocating Arrays to Reduce Fragmentation
In the course of a MATLAB session, memory can become fragmented due
to dynamic memory allocation and deallocation. for and while loops that
incrementally increase, or grow, the size of a data structure each time through
the loop can add to this fragmentation as they have to repeatedly find and
allocate larger blocks of memory to store the data.

To make more efficient use of your memory, preallocate a block of memory
large enough to hold the matrix at its final size before entering the loop.
When you preallocate memory for a potentially large array, MATLAB “grabs”
sufficient contiguous space for the data at the beginning of the computation.
Once you have this space, you can add elements to the array without having
to continually allocate new space for it in memory.

For more information on preallocation, see “Preallocating Arrays” on page
11-7.

11-25

11 Improving Performance and Memory Usage

Allocating Large Matrices Earlier
MATLAB uses a heap method of memory management. It requests memory
from the operating system when there is not enough memory available in the
MATLAB heap to store the current variables. It reuses memory as long as the
size of the memory segment required is available in the MATLAB heap.

For example, on one machine these statements use approximately 15.4 MB
of RAM:

a = rand(1e6,1);
b = rand(1e6,1);

This statement uses approximately 16.4 MB of RAM:

c = rand(2.1e6,1);

The following statements can use approximately 32.4 MB of RAM. This is
because MATLAB may not be able to reuse the space previously occupied by
two 1MB arrays when allocating space for a 2.1 MB array:

a = rand(1e6,1);
b = rand(1e6,1);
clear
c = rand(2.1e6,1);

The simplest way to prevent overallocation of memory is to allocate the largest
vectors first. These statements use only about 16.4 MB of RAM:

c = rand(2.1e6,1);
clear
a = rand(1e6,1);
b = rand(1e6,1);

Working with Large Amounts of Data
If your program generates very large amounts of data, consider writing the
data to disk periodically. After saving that portion of the data, use the clear
function to remove the variable from memory and continue with the data
generation.

11-26

Resolving “Out of Memory” Errors

Resolving “Out of Memory” Errors

In this section...

“General Suggestions for Reclaiming Memory” on page 11-27

“Compressing Data in Memory” on page 11-28

“Increasing System Swap Space” on page 11-28

“Freeing Up System Resources on Windows Systems” on page 11-29

“Reloading Variables on UNIX Systems” on page 11-30

For more information on this topic, search for “Avoiding Out of Memory
Errors” on The MathWorks online “Support” page.

General Suggestions for Reclaiming Memory
MATLAB generates an Out of Memory message whenever it requests a
segment of memory from the operating system that is larger than what is
currently available. When you see the Out of Memory message, use any of the
techniques discussed under “Memory Allocation in MATLAB” on page 11-18
to help optimize the available memory. If the Out of Memory message still
appears, you can try any of the following:

• Compress data to reduce memory fragmentation

• If possible, break large matrices into several smaller matrices so that less
memory is used at any one time.

• If possible, reduce the size of your data.

• Make sure that there are no external constraints on the memory accessible
to MATLAB. (On UNIX systems, use the limit command to check).

• Increase the size of the swap file. We recommend that your machine
be configured with twice as much swap space as you have RAM. See
“Increasing System Swap Space” on page 11-28, below.

• Add more memory to the system.

On machines running Windows 2000 Advanced Server or Windows 2000
Datacenter Server, the amount of virtual memory space reserved by the

11-27

11 Improving Performance and Memory Usage

operating system can be reduced by using the /3GB switch in the boot.ini
file. More documentation on this option can be found at the following URL:

http://support.microsoft.com/support/kb/articles/Q291/9/88.ASP

Similarly, on machines running Windows Vista, you can achieve the same
effect by using the command:

BCDEdit /set increaseuserva 3072

More documentation on this option can be found at the following URL:

http://msdn2.microsoft.com/en-us/library/aa906211.aspx

Compressing Data in Memory
Since MATLAB uses a heap method of memory management, extended
MATLAB sessions may cause memory to become fragmented. When memory
is fragmented, there may be plenty of free space, but not enough contiguous
memory to store a new large variable. If you get the Out of Memory message
from MATLAB, the pack function may be able to compress some of your data
in memory, thus freeing up larger contiguous blocks.

Note Because of time considerations, you should not use pack within loops or
M-file functions.

Increasing System Swap Space
How you set the swap space for your computer depends on what operating
system you are running on.

UNIX
Information about swap space can be procured by typing pstat -s at the
UNIX command prompt. For detailed information on changing swap space,
ask your system administrator.

11-28

http://support.microsoft.com/support/kb/articles/Q291/9/88.ASP
http://msdn2.microsoft.com/en-us/library/aa906211.aspx

Resolving “Out of Memory” Errors

Linux
Swap space can be changed by using the mkswap and swapon commands. For
more information on the above commands, type man followed by the command
name at the Linux prompt.

Windows 2000
Follow the steps shown here:

1 Right-click the My Computer icon, and select Properties.

2 Select the Advanced tab and click the Performance Options button.

3 Click the Change button to change the amount of virtual memory.

Windows XP
Follow the steps shown here:

1 Right-click the My Computer icon, and select Properties.

2 In the System Properties GUI, select the Advanced tab. In the section
labeled Performance, click the Settings button.

3 In the Performance Options GUI, click Advanced. In the section labeled
Virtual Memory, click the Change button

4 In the Virtual Memory GUI, under Paging file size for selected drive,
you can change the amount of virtual memory.

Freeing Up System Resources on Windows Systems
There are no functions implemented to manipulate the way MATLAB handles
Microsoft Windows system resources. Windows uses system resources to
track fonts, windows, and screen objects. Resources can be depleted by using
multiple figure windows, multiple fonts, or several UI controls. One way
to free up system resources is to close all inactive windows. Windows icons
still use resources.

11-29

11 Improving Performance and Memory Usage

Reloading Variables on UNIX Systems
On UNIX systems, MATLAB does not return memory to the operating
system even after variables have been cleared. This is due to the manner in
which UNIX manages memory. UNIX does not accept memory back from a
program until the program has terminated. So, the amount of memory used
in a MATLAB session is not returned to the operating system until you exit
MATLAB.

To free up the memory used in your MATLAB session, save your workspace
variables, exit MATLAB, and then load your variables back in.

11-30

12

Programming Tips

Introduction (p. 12-3) How to Use the Programming Tips

Command and Function Syntax
(p. 12-4)

Syntax, command shortcuts,
command recall, etc.

Help (p. 12-7) Getting help on MATLAB functions
and your own

Development Environment (p. 12-12) Useful features in the development
environment

M-File Functions (p. 12-14) M-file structure, getting information
about a function

Function Arguments (p. 12-17) Various ways to pass arguments,
useful functions

Program Development (p. 12-20) Suggestions for creating and
modifying program code

Debugging (p. 12-23) Using the debugging environment
and commands

Variables (p. 12-27) Variable names, global and
persistent variables

Strings (p. 12-31) String concatenation, string
conversion, etc.

Evaluating Expressions (p. 12-34) Use of eval, short-circuiting logical
expressions, etc.

MATLAB Path (p. 12-36) Precedence rules, making file
changes visible to MATLAB, etc.

Program Control (p. 12-40) Using program control statements
like if, switch, try

12 Programming Tips

Save and Load (p. 12-44) Saving MATLAB data to a file,
loading it back in

Files and Filenames (p. 12-47) Naming M-files, passing filenames,
etc.

Input/Output (p. 12-50) Reading and writing various types
of files

Starting MATLAB (p. 12-53) Getting MATLAB to start up faster

Operating System Compatibility
(p. 12-54)

Interacting with the operating
system

Demos (p. 12-56) Learning about the demos supplied
with MATLAB

For More Information (p. 12-57) Other valuable resources for
information

12-2

Introduction

Introduction
This section is a categorized compilation of tips for the MATLAB®

programmer. Each item is relatively brief to help you browse through them
and find information that is useful. Many of the tips include a reference to
specific MATLAB documentation that gives you more complete coverage of
the topic. You can find information on the following topics:

For suggestions on how to improve the performance of your MATLAB
programs, and how to write programs that use memory more efficiently, see
Chapter 11, “Improving Performance and Memory Usage”

12-3

12 Programming Tips

Command and Function Syntax

In this section...

“Syntax Help” on page 12-4

“Command and Function Syntaxes” on page 12-4

“Command Line Continuation” on page 12-4

“Completing Commands Using the Tab Key” on page 12-5

“Recalling Commands” on page 12-5

“Clearing Commands” on page 12-6

“Suppressing Output to the Screen” on page 12-6

Syntax Help
For help about the general syntax of MATLAB functions and commands, type

help syntax

Command and Function Syntaxes
You can enter MATLAB commands using either a command or function
syntax. It is important to learn the restrictions and interpretation rules for
both.

functionname arg1 arg2 arg3 % Command syntax
functionname('arg1','arg2','arg3') % Function syntax

For more information: See “Calling Functions” on page 4-52in the
MATLAB Programming documentation.

Command Line Continuation
You can continue most statements to one or more additional lines by
terminating each incomplete line with an ellipsis (...). Breaking down
a statement into a number of lines can sometimes result in a clearer
programming style.

sprintf ('Example %d shows a command coded on %d lines.\n', ...
exampleNumber, ...

12-4

Command and Function Syntax

numberOfLines)

Note that you cannot continue an incomplete string to another line.

disp 'This statement attempts to continue a string ...
to another line, resulting in an error.'

For more information: See Entering Long Lines in the MATLAB Desktop
Tools and Development Environment documentation.

Completing Commands Using the Tab Key
You can save some typing when entering commands by entering only the first
few letters of the command, variable, property, etc. followed by the Tab key.
Typing the second line below (with T representing Tab) yields the expanded,
full command shown in the third line:

f = figure;
set(f, 'papTuT,'cT) % Type this line.
set(f, 'paperunits','centimeters') % This is what you get.

If there are too many matches for the string you are trying to complete, you
will get no response from the first Tab. Press Tab again to see all possible
choices:

set(f, 'paTT
PaperOrientation PaperPositionMode PaperType Parent
PaperPosition PaperSize PaperUnits

For more information: See Tab Completion in the MATLAB Desktop Tools
and Development Environment documentation

Recalling Commands
Use any of the following methods to simplify recalling previous commands
to the screen:

• To recall an earlier command to the screen, press the up arrow key one or
more times, until you see the command you want. If you want to modify the
recalled command, you can edit its text before pressing Enter or Return
to execute it.

12-5

12 Programming Tips

• To recall a specific command by name without having to scroll through your
earlier commands one by one, type the starting letters of the command,
followed by the up arrow key.

• Open the Command History window (View > Command History) to see
all previous commands. Double-click the command you want to execute.

For more information: See Recalling Previous Lines and Command History
in the MATLAB Desktop Tools and Development Environment documentation.

Clearing Commands
If you have typed a command that you then decide not to execute, you can
clear it from the Command Window by pressing the Escape (Esc) key.

Suppressing Output to the Screen
To suppress output to the screen, end statements with a semicolon. This can
be particularly useful when generating large matrices.

A = magic(100); % Create matrix A, but do not display it.

12-6

Help

Help

In this section...

“Using the Help Browser” on page 12-7

“Help on Functions from the Help Browser” on page 12-8

“Help on Functions from the Command Window” on page 12-8

“Topical Help” on page 12-8

“Paged Output” on page 12-9

“Writing Your Own Help” on page 12-10

“Help for Subfunctions and Private Functions” on page 12-10

“Help for Methods and Overloaded Functions” on page 12-10

Using the Help Browser
Open the Help browser from the MATLAB Command Window using one of
the following:

• Click the question mark symbol in the toolbar.

• Select Help > Product Help from the menu.

• Type the word doc at the command prompt.

Some of the features of the Help browser are listed below.

Feature Description

Product Filter Establish which products to find help on.

Contents Look up topics in the Table of Contents.

Index Look up help using the documentation Index.

Search Search the documentation for one or more words.

Demos See what demos are available; run selected demos.

Favorites Save bookmarks for frequently used Help pages.

12-7

12 Programming Tips

For more information: See Finding Information with the Help Browser in
the MATLAB Desktop Tools and Development Environment documentation.

Help on Functions from the Help Browser
To find help on any function from the Help browser, do either of the following:

• Select the Contents tab of the Help browser, open the Contents entry
labeled MATLAB, and find the two subentries shown below. Use one of these
to look up the function you want help on.

- Functions — Categorical List

- Functions — Alphabetical List

• Type doc functionname at the command line.

Help on Functions from the Command Window
Several types of help on functions are available from the Command Window:

• To list all categories that you can request help on from the Command
Window, just type

help

• To see a list of functions for one of these categories, along with a brief
description of each function, type help category. For example,

help datafun

• To get help on a particular function, type help functionname. For example,

help sortrows

Topical Help
In addition to the help on individual functions, you can get help on any of the
following topics by typing help topicname at the command line.

12-8

Help

Topic Name Description

arith Arithmetic operators

relop Relational and logical operators

punct Special character operators

slash Arithmetic division operators

paren Parentheses, braces, and bracket operators

precedence Operator precedence

datatypes MATLAB data types, their associated functions, and
operators that you can overload

lists Comma separated lists

strings Character strings

function_handle Function handles and the @ operator

debug Debugging functions

java Using Java from within MATLAB

fileformats A list of readable file formats

changeNotification Windows directory change notification

Paged Output
Before displaying a lengthy section of help text or code, put MATLAB into its
paged output mode by typing more on. This breaks up any ensuing display
into pages for easier viewing. Turn off paged output with more off.

Page through the displayed text using the space bar key. Or step through
line by line using Enter or Return. Discontinue the display by pressing
the Q key or Ctrl+C.

12-9

12 Programming Tips

Writing Your Own Help
Start each program you write with a section of text providing help on how and
when to use the function. If formatted properly, the MATLAB help function
displays this text when you enter

help functionname

MATLAB considers the first group of consecutive lines immediately following
the function definition line that begin with % to be the help section for the
function. The first line without % as the left-most character ends the help.

For more information: See Help Text in the MATLAB Desktop Tools and
Development Environment documentation.

Help for Subfunctions and Private Functions
You can write help for subfunctions using the same rules that apply to main
functions. To display the help for the subfunction mysubfun in file myfun.m,
type

help myfun>mysubfun

To display the help for a private function, precede the function name with
private/. To get help on private function myprivfun, type

help private/myprivfun

Help for Methods and Overloaded Functions
You can write help text for object-oriented class methods implemented with
M-files. Display help for the method by typing

help classname/methodname

where the file methodname.m resides in subdirectory @classname.

For example, if you write a plot method for a class named polynom, (where
the plot method is defined in the file @polynom/plot.m), you can display
this help by typing

help polynom/plot

12-10

Help

You can get help on overloaded MATLAB functions in the same way. To display
the help text for the eq function as implemented in matlab/iofun/@serial,
type

help serial/eq

12-11

12 Programming Tips

Development Environment

In this section...

“Workspace Browser” on page 12-12

“Using the Find and Replace Utility” on page 12-12

“Commenting Out a Block of Code” on page 12-13

“Creating M-Files from Command History” on page 12-13

“Editing M-Files in EMACS” on page 12-13

Workspace Browser
The Workspace browser is a graphical interface to the variables stored in
the MATLAB base and function workspaces. You can view, modify, save,
load, and create graphics from workspace data using the browser. Select
View > Workspace to open the browser.

To view function workspaces, you need to be in debug mode.

For more information: See MATLAB Workspace in the MATLAB Desktop
Tools and Development Environment documentation.

Using the Find and Replace Utility
Find any word or phrase in a group of files using the Find and Replace utility.
Click View > Current Directory, and then click the binoculars icon at the
top of the Current Directory window.

When entering search text, you do not need to put quotes around a phrase.
In fact, parts of words, like win for windows, will not be found if enclosed in
quotes.

For more information: See Finding and Replacing a String in the MATLAB
Desktop Tools and Development Environment documentation.

12-12

Development Environment

Commenting Out a Block of Code
To comment out a block of text or code within the MATLAB editor,

1 Highlight the block of text you would like to comment out.

2 Holding the mouse over the highlighted text, select Text > Comment (or
Uncomment, to do the reverse) from the toolbar. (You can also get these
options by right-clicking the mouse.)

For more information: See Commenting in the MATLAB Desktop Tools
and Development Environment documentation.

Creating M-Files from Command History
If there is part of your current MATLAB session that you would like to put
into an M-file, this is easily done using the Command History window:

1 Open this window by selecting View > Command History.

2 Use Shift+Click or Ctrl+Click to select the lines you want to use.
MATLAB highlights the selected lines.

3 Right-click once, and select Create M-File from the menu that appears.
MATLAB creates a new Editor window displaying the selected code.

Editing M-Files in EMACS
If you use Emacs, you can download editing modes for editing M-files with
GNU-Emacs or with early versions of Emacs from the MATLAB Central Web
site:

http://www.mathworks.com/matlabcentral/

At this Web site, select File Exchange, and then Utilities > Emacs.

For more information: See General Preferences for the Editor/Debugger in
the MATLAB Desktop Tools and Development Environment documentation.

12-13

http://www.mathworks.com/matlabcentral/%0D

12 Programming Tips

M-File Functions

In this section...

“M-File Structure” on page 12-14

“Using Lowercase for Function Names” on page 12-14

“Getting a Function’s Name and Path” on page 12-15

“What M-Files Does a Function Use?” on page 12-15

“Dependent Functions, Built-Ins, Classes” on page 12-16

M-File Structure
An M-File consists of the components shown here:

function [x, y] = myfun(a, b, c) % Function definition line
% H1 line -- A one-line summary of the function's purpose.
% Help text -- One or more lines of help text that explain
% how to use the function. This text is displayed when
% the user types "help functionname".

% The Function body normally starts after the first blank line.
% Comments -- Description (for internal use) of what the
% function does, what inputs are expected, what outputs
% are generated. Typing "help functionname" does not display
% this text.

x = prod(a, b); % Start of Function code

For more information: See “Basic Parts of an M-File” on page 4-8 in the
MATLAB Programming documentation.

Using Lowercase for Function Names
Function names appear in uppercase in MATLAB help text only to make the
help easier to read. In practice, however, it is usually best to use lowercase
when calling functions.

12-14

M-File Functions

For M-file functions, case requirements depend on the case sensitivity of the
operating system you are using. As a rule, naming and calling functions using
lowercase generally makes your M-files more portable from one operating
system to another.

Getting a Function’s Name and Path
To obtain the name of an M-file that is currently being executed, use the
following function in your M-file code.

mfilename

To include the path along with the M-file name, use

mfilename('fullpath')

For more information: See the mfilename function reference page.

What M-Files Does a Function Use?
For a simple display of all M-files referenced by a particular function, follow
the steps below:

1 Type clear functions to clear all functions from memory (see Note below).

2 Execute the function you want to check. Note that the function arguments
you choose to use in this step are important, since you can get different
results when calling the same function with different arguments.

3 Type inmem to display all M-Files that were used when the function ran. If
you want to see what MEX-files were used as well, specify an additional
output, as shown here:

[mfiles, mexfiles] = inmem

Note clear functions does not clear functions locked by mlock. If you
have locked functions, (which you can check using inmem), unlock them with
munlock, and then repeat step 1.

12-15

12 Programming Tips

Dependent Functions, Built-Ins, Classes
For a much more detailed display of dependent function information, use the
depfun function. In addition to M-files, depfun shows which built-ins and
classes a particular function depends on.

12-16

Function Arguments

Function Arguments

In this section...

“Getting the Input and Output Arguments” on page 12-17

“Variable Numbers of Arguments” on page 12-17

“String or Numeric Arguments” on page 12-18

“Passing Arguments in a Structure” on page 12-18

“Passing Arguments in a Cell Array” on page 12-19

Getting the Input and Output Arguments
Use nargin and nargout to determine the number of input and output
arguments in a particular function call. Use nargchk and nargoutchk to
verify that your function is called with the required number of input and
output arguments.

function [x, y] = myplot(a, b, c, d)
disp(nargchk(2, 4, nargin)) % Allow 2 to 4 inputs
disp(nargoutchk(0, 2, nargout)) % Allow 0 to 2 outputs

x = plot(a, b);
if nargin == 4

y = myfun(c, d);
end

Variable Numbers of Arguments
You can call functions with fewer input and output arguments than you have
specified in the function definition, but not more. If you want to call a function
with a variable number of arguments, use the varargin and varargout
function parameters in the function definition.

This function returns the size vector and, optionally, individual dimensions:

function [s, varargout] = mysize(x)
nout = max(nargout, 1) - 1;
s = size(x);
for k = 1:nout

12-17

12 Programming Tips

varargout(k) = {s(k)};
end

Try calling it with

[s, rows, cols] = mysize(rand(4, 5))

String or Numeric Arguments
If you are passing only string arguments into a function, you can use
MATLAB command syntax. All arguments entered in command syntax are
interpreted as strings.

strcmp string1 string1
ans =

1

When passing numeric arguments, it is best to use function syntax unless you
want the number passed as a string. The right-hand example below passes
the number 75 as the string, '75'.

isnumeric(75) isnumeric 75
ans = ans =

1 0

For more information: See “Passing Arguments with Command and
Function Syntax” on page 4-57 in the MATLAB Programming documentation.

Passing Arguments in a Structure
Instead of requiring an additional argument for every value you want to pass
in a function call, you can package them in a MATLAB structure and pass the
structure. Make each input you want to pass a separate field in the structure
argument, using descriptive names for the fields.

Structures allow you to change the number, contents, or order of the
arguments without having to modify the function. They can also be useful
when you have a number of functions that need similar information.

12-18

Function Arguments

Passing Arguments in a Cell Array
You can also group arguments into cell arrays. The disadvantage over
structures is that you do not have field names to describe each variable. The
advantage is that cell arrays are referenced by index, allowing you to loop
through a cell array and access each argument passed in or out of the function.

12-19

12 Programming Tips

Program Development

In this section...

“Planning the Program” on page 12-20

“Using Pseudo-Code” on page 12-20

“Selecting the Right Data Structures” on page 12-20

“General Coding Practices” on page 12-21

“Naming a Function Uniquely” on page 12-21

“The Importance of Comments” on page 12-21

“Coding in Steps” on page 12-22

“Making Modifications in Steps” on page 12-22

“Functions with One Calling Function” on page 12-22

“Testing the Final Program” on page 12-22

Planning the Program
When planning how to write a program, take the problem you are trying
to solve and break it down into a series of smaller, independent tasks.
Implement each task as a separate function. Try to keep functions fairly
short, each having a single purpose.

Using Pseudo-Code
You may find it helpful to write the initial draft of your program in a
structured format using your own natural language. This pseudo-code is often
easier to think through, review, and modify than using a formal programming
language, yet it is easily translated into a programming language in the next
stage of development.

Selecting the Right Data Structures
Look at what data types and data structures are available to you in MATLAB
and determine which of those best fit your needs in storing and passing your
data.

12-20

Program Development

For more information: See Data Types in the MATLAB Programming
documentation.

General Coding Practices
A few suggested programming practices:

• Use descriptive function and variable names to make your code easier to
understand.

• Order subfunctions alphabetically in an M-file to make them easier to find.

• Precede each subfunction with a block of help text describing what that
subfunction does. This not only explains the subfunctions, but also helps
to visually separate them.

• Do not extend lines of code beyond the 80th column. Otherwise, it will be
hard to read when you print it out.

• Use full Handle Graphics® property and value names. Abbreviated names
are often allowed, but can make your code unreadable. They also could be
incompatible in future releases of MATLAB.

Naming a Function Uniquely
To avoid choosing a name for a new function that might conflict with a name
already in use, check for any occurrences of the name using this command:

which -all functionname

For more information: See the which function reference page.

The Importance of Comments
Be sure to document your programs well to make it easier for you or someone
else to maintain them. Add comments generously, explaining each major
section and any smaller segments of code that are not obvious. You can add
a block of comments as shown here.

%---
% This function computes the ... <and so on>
%---

12-21

12 Programming Tips

For more information: See Comments in the MATLAB Programming
documentation.

Coding in Steps
Do not try to write the entire program all at once. Write a portion of it, and
then test that piece out. When you have that part working the way you want,
then write the next piece, and so on. It’s much easier to find programming
errors in a small piece of code than in a large program.

Making Modifications in Steps
When making modifications to a working program, do not make widespread
changes all at one time. It’s better to make a few small changes, test and
debug, make a few more changes, and so on. Tracking down a difficult bug
in the small section that you’ve changed is much easier than trying to find it
in a huge block of new code.

Functions with One Calling Function
If you have a function that is called by only one other function, put it in the
same M-file as the calling function, making it a subfunction.

For more information: See Subfunctions in the MATLAB Programming
documentation.

Testing the Final Program
One suggested practice for testing a new program is to step through the
program in the MATLAB debugger while keeping a record of each line that
gets executed on a printed copy of the program. Use different combinations of
inputs until you have observed that every line of code is executed at least once.

12-22

Debugging

Debugging

In this section...

“The MATLAB Debug Functions” on page 12-23

“More Debug Functions” on page 12-23

“The MATLAB Graphical Debugger” on page 12-24

“A Quick Way to Examine Variables” on page 12-24

“Setting Breakpoints from the Command Line” on page 12-25

“Finding Line Numbers to Set Breakpoints” on page 12-25

“Stopping Execution on an Error or Warning” on page 12-25

“Locating an Error from the Error Message” on page 12-25

“Using Warnings to Help Debug” on page 12-26

“Making Code Execution Visible” on page 12-26

“Debugging Scripts” on page 12-26

The MATLAB Debug Functions
For a brief description of the main debug functions in MATLAB, type

help debug

For more information: See Debugging M-Files in the MATLAB Desktop
Tools and Development Environment documentation.

More Debug Functions
Other functions you may find useful in debugging are listed below.

Function Description

echo Display function or script code as it executes.

disp Display specified values or messages.

sprintf,
fprintf

Display formatted data of different types.

12-23

12 Programming Tips

Function Description

whos List variables in the workspace.

size Show array dimensions.

keyboard Interrupt program execution and allow input from
keyboard.

return Resume execution following a keyboard
interruption.

warning Display specified warning message.

error Display specified error message.

lasterr Return error message that was last issued.

lasterror Return last error message and related information.

lastwarn Return warning message that was last issued.

The MATLAB Graphical Debugger
Learn to use the MATLAB graphical debugger. You can view the function
and its calling functions as you debug, set and clear breakpoints, single-step
through the program, step into or over called functions, control visibility into
all workspaces, and find and replace strings in your files.

Start out by opening the file you want to debug using File > Open or the
open function. Use the debugging functions available on the toolbar and
pull-down menus to set breakpoints, run or step through the program, and
examine variables.

For more information: See Debugging M-Files and Using Debugging
Features in the MATLAB Desktop Tools and Development Environment
documentation.

A Quick Way to Examine Variables
To see the value of a variable from the Editor/Debugger window, hold the
mouse cursor over the variable name for a second or two. You will see the
value of the selected variable displayed.

12-24

Debugging

Setting Breakpoints from the Command Line
You can set breakpoints with dbstop in any of the following ways:

• Break at a specific M-file line number.

• Break at the beginning of a specific subfunction.

• Break at the first executable line in an M-file.

• Break when a warning, or error, is generated.

• Break if any infinite or NaN values are encountered.

For more information: See Setting Breakpoints in the MATLAB Desktop
Tools and Development Environment documentation.

Finding Line Numbers to Set Breakpoints
When debugging from the command line, a quick way to find line numbers for
setting breakpoints is to use dbtype. The dbtype function displays all or part
of an M-file, also numbering each line. To display delaunay.m, use

dbtype delaunay

To display only lines 35 through 41, use

dbtype delaunay 35:41

Stopping Execution on an Error or Warning
Use dbstop if error to stop program execution on any error and enter
debug mode. Use warning debug to stop execution on any warning and enter
debug mode.

For more information: See Debug, Backtrace, and Verbose Modes in the
MATLAB Programming documentation.

Locating an Error from the Error Message
Click on the underlined text in an error message, and MATLAB opens the
M-file being executed in its editor and places the cursor at the point of error.

12-25

12 Programming Tips

For more information: See Types of Errors in the MATLAB Desktop Tools
and Development Environment documentation.

Using Warnings to Help Debug
You can detect erroneous or unexpected behavior in your programs by
inserting warning messages that MATLAB will display under the conditions
you specify. See the section on “Warning Control” on page 8-24 in the MATLAB
Programming documentation to find out how to selectively enable warnings.

For more information: See the warning function reference page.

Making Code Execution Visible
An easy way to see the end result of a particular line of code is to edit the
program and temporarily remove the terminating semicolon from that line.
Then, run your program and the evaluation of that statement is displayed
on the screen.

For more information: See Finding Errors in the MATLAB Desktop Tools
and Development Environment documentation.

Debugging Scripts
Scripts store their variables in a workspace that is shared with the caller of
the script. So, when you debug a script from the command line, the script uses
variables from the base workspace. To avoid errors caused by workspace
sharing, type clear all before starting to debug your script to clear the
base workspace.

12-26

Variables

Variables

In this section...

“Rules for Variable Names” on page 12-27

“Making Sure Variable Names Are Valid” on page 12-27

“Do Not Use Function Names for Variables” on page 12-28

“Checking for Reserved Keywords” on page 12-28

“Avoid Using i and j for Variables” on page 12-29

“Avoid Overwriting Variables in Scripts” on page 12-29

“Persistent Variables” on page 12-29

“Protecting Persistent Variables” on page 12-29

“Global Variables” on page 12-30

Rules for Variable Names
Although variable names can be of any length, MATLAB uses only the first
N characters of the name, (where N is the number returned by the function
namelengthmax), and ignores the rest. Hence, it is important to make
each variable name unique in the first N characters to enable MATLAB to
distinguish variables. Also note that variable names are case sensitive.

N = namelengthmax
N =

63

For more information: See “Naming Variables” on page 3-6 in the MATLAB
Programming documentation.

Making Sure Variable Names Are Valid
Before using a new variable name, you can check to see if it is valid with the
isvarname function. Note that isvarname does not consider names longer
than namelengthmax characters to be valid.

For example, the following name cannot be used for a variable since it begins
with a number.

12-27

12 Programming Tips

isvarname 8thColumn
ans =

0

For more information: See “Naming Variables” on page 3-6 in the MATLAB
Programming documentation.

Do Not Use Function Names for Variables
When naming a variable, make sure you are not using a name that is already
used as a function name. If you do define a variable with a function name,
you will not be able to call that function until you clear the variable from
memory. (If it’s a MATLAB built-in function, then you will still be able to call
that function but you must do so using builtin.)

To test whether a proposed variable name is already used as a function name,
use

which -all name

For more information: See “Potential Conflict with Function Names” on
page 3-7 in the MATLAB Programming documentation.

Checking for Reserved Keywords
MATLAB reserves certain keywords for its own use and does not allow you
to override them. Attempts to use these words may result in any one of a
number of error messages, some of which are shown here:

Error: Expected a variable, function, or constant, found "=".
Error: "End of Input" expected, "case" found.
Error: Missing operator, comma, or semicolon.
Error: "identifier" expected, "=" found.

Use the iskeyword function with no input arguments to list all reserved
words.

12-28

Variables

Avoid Using i and j for Variables
MATLAB uses the characters i and j to represent imaginary units. Avoid
using i and j for variable names if you intend to use them in complex
arithmetic.

If you want to create a complex number without using i and j, you can use
the complex function.

Avoid Overwriting Variables in Scripts
MATLAB scripts store their variables in a workspace that is shared with
the caller of the script. When called from the command line, they share the
base workspace. When called from a function, they share that function’s
workspace. If you run a script that alters a variable that already exists in the
caller’s workspace, that variable is overwritten by the script.

For more information: See “M-File Scripts” on page 4-17 in the MATLAB
Programming documentation.

Persistent Variables
To get the equivalent of a static variable in MATLAB, use persistent.
When you declare a variable to be persistent within a function, its value is
retained in memory between calls to that function. Unlike global variables,
persistent variables are known only to the function in which they are
declared.

For more information: See “Persistent Variables” on page 3-5 in the
MATLAB Programming documentation.

Protecting Persistent Variables
You can inadvertently clear persistent variables from memory by either
modifying the function in which the variables are defined, or by clearing the
function with one of the following commands:

clear all
clear functions

12-29

12 Programming Tips

Locking the M-file in memory with mlock prevents any persistent variables
defined in the file from being reinitialized.

Global Variables
Use global variables sparingly. The global workspace is shared by all of
your functions and also by your interactive MATLAB session. The more
global variables you use, the greater the chances of unintentionally reusing a
variable name, thus leaving yourself open to having those variables change in
value unexpectedly. This can be a difficult bug to track down.

For more information: See “Global Variables” on page 3-3 in the MATLAB
Programming documentation.

12-30

Strings

Strings

In this section...

“Creating Strings with Concatenation” on page 12-31

“Comparing Methods of Concatenation” on page 12-31

“Store Arrays of Strings in a Cell Array” on page 12-32

“Converting Between Strings and Cell Arrays” on page 12-32

“Search and Replace Using Regular Expressions” on page 12-33

Creating Strings with Concatenation
Strings are often created by concatenating smaller elements together (e.g.,
strings, values, etc.). Two common methods of concatenating are to use the
MATLAB concatenation operator ([]) or the sprintf function. The second
and third line below illustrate both of these methods. Both lines give the
same result:

numChars = 28;
s = ['There are ' int2str(numChars) ' characters here']
s = sprintf('There are %d characters here\n', numChars)

For more information: See “Creating Character Arrays” on page 2-37
and “Converting from Numeric to String” on page 2-59 in the MATLAB
Programming documentation.

Comparing Methods of Concatenation
When building strings with concatenation, sprintf is often preferable to []
because

• It is easier to read, especially when forming complicated expressions

• It gives you more control over the output format

• It often executes more quickly

You can also concatenate using the strcat function, However, for simple
concatenations, sprintf and [] are faster.

12-31

12 Programming Tips

Store Arrays of Strings in a Cell Array
It is usually best to store an array of strings in a cell array instead of a
character array, especially if the strings are of different lengths. Strings in
a character array must be of equal length, which often requires padding the
strings with blanks. This is not necessary when using a cell array of strings
that has no such requirement.

The cellRecord below does not require padding the strings with spaces:

cellRecord = {'Allison Jones'; 'Development'; 'Phoenix'};

For more information: See “Cell Arrays of Strings” on page 2-39 in the
MATLAB Programming documentation.

Converting Between Strings and Cell Arrays
You can convert between standard character arrays and cell arrays of strings
using the cellstr and char functions:

charRecord = ['Allison Jones'; 'Development '; ...
'Phoenix '];

cellRecord = cellstr(charRecord);

Also, a number of the MATLAB string operations can be used with either
character arrays, or cell arrays, or both:

cellRecord2 = {'Brian Lewis'; 'Development'; 'Albuquerque'};
strcmp(charRecord, cellRecord2)
ans =

0
1
0

For more information: See “Converting to a Cell Array of Strings” on page
2-40 and “String Comparisons” on page 2-55 in the MATLAB Programming
documentation.

12-32

Strings

Search and Replace Using Regular Expressions
Using regular expressions in MATLAB offers a very versatile way of searching
for and replacing characters or phrases within a string. See the help on these
functions for more information.

Function Description

regexp Match regular expression.

regexpi Match regular expression, ignoring case.

regexprep Replace string using regular expression.

For more information: See “Regular Expressions” on page 3-30 in the
MATLAB Programming documentation.

12-33

12 Programming Tips

Evaluating Expressions

In this section...

“Find Alternatives to Using eval” on page 12-34

“Assigning to a Series of Variables” on page 12-34

“Short-Circuit Logical Operators” on page 12-35

“Changing the Counter Variable within a for Loop” on page 12-35

Find Alternatives to Using eval
While the eval function can provide a convenient solution to certain
programming challenges, it is best to limit its use. The main reason is that
code that uses eval is often difficult to read and hard to debug. A second
reason is that eval statements cannot always be translated into C or C++
code by the MATLAB Compiler.

If you are evaluating a function, it is more efficient to use feval than eval.
The feval function is made specifically for this purpose and is optimized to
provide better performance.

For more information: See MATLAB Technical Note 1103, “What Is the
EVAL Function, When Should I Use It, and How Can I Avoid It?” at URL
http://www.mathworks.com/support/tech-notes/1100/1103.html.

Assigning to a Series of Variables
One common pattern for creating variables is to use a variable name suffixed
with a number (e.g., phase1, phase2, phase3, etc.). We recommend using a
cell array to build this type of variable name series, as it makes code more
readable and executes more quickly than some other methods. For example:

for k = 1:800
phase{k} = expression;

end

12-34

http://www.mathworks.com/support/tech-notes/1100/1103.html

Evaluating Expressions

Short-Circuit Logical Operators
MATLAB has logical AND and OR operators (&& and ||) that enable you to
partially evaluate, or short-circuit, logical expressions. Short-circuit operators
are useful when you want to evaluate a statement only when certain
conditions are satisfied.

In this example, MATLAB does not execute the function myfun unless its
M-file exists on the current path.

comp = (exist('myfun.m') == 2) && (myfun(x) >= y)

For more information: See “Short-Circuit Operators” on page 3-24 in the
MATLAB Programming documentation.

Changing the Counter Variable within a for Loop
You cannot change the value of the loop counter variable (e.g., the variable
k in the example below) in the body of a for loop. For example, this loop
executes just 10 times, even though k is set back to 1 on each iteration.

for k = 1:10
fprintf('Pass %d\n', k)
k = 1;

end

Although MATLAB does allow you to use a variable of the same name as the
loop counter within a loop, this is not a recommended practice.

12-35

12 Programming Tips

MATLAB Path

In this section...

“Precedence Rules” on page 12-36

“File Precedence” on page 12-37

“Adding a Directory to the Search Path” on page 12-37

“Handles to Functions Not on the Path” on page 12-37

“Making Toolbox File Changes Visible to MATLAB” on page 12-38

“Making Nontoolbox File Changes Visible to MATLAB” on page 12-39

“Change Notification on Windows” on page 12-39

Precedence Rules
When MATLAB is given a name to interpret, it determines its usage by
checking the name against each of the entities listed below, and in the order
shown:

1 Variable

2 Subfunction

3 Private function

4 Class constructor

5 Overloaded method

6 M-file in the current directory

7 M-file on the path, or MATLAB built-in function

If you have two or more M-files on the path that have the same name,
MATLAB selects the function that has its M-file in the directory closest to the
beginning of the path string.

For more information: See “Function Precedence Order” on page 9-73 in
the MATLAB Programming documentation.

12-36

MATLAB Path

File Precedence
If you refer to a file by its filename only (leaving out the file extension), and
there is more than one file of this name in the directory, MATLAB selects the
file to use according to the following precedence:

1 MEX-file

2 MDL-file (Simulink® model)

3 P-Code file

4 M-file

For more information: See “Multiple Implementation Types” on page 4-55
in the MATLAB Programming documentation.

Adding a Directory to the Search Path
To add a directory to the search path, use either of the following:

• At the toolbar, select File > Set Path.

• At the command line, use the addpath function.

You can also add a directory and all of its subdirectories in one operation
by either of these means. To do this from the command line, use genpath
together with addpath. The online help for the genpath function shows how
to do this.

This example adds /control and all of its subdirectories to the MATLAB path:

addpath(genpath('K:/toolbox/control'))

For more information: See Search Path in the MATLAB Desktop Tools and
Development Environment documentation.

Handles to Functions Not on the Path
You cannot create function handles to functions that are not on the MATLAB
path. But you can achieve essentially the same thing by creating the handles
through a script file placed in the same off-path directory as the functions.

12-37

12 Programming Tips

If you then run the script, using run path/script, you will have created
the handles that you need.

For example,

1 Create a script in this off-path directory that constructs function handles
and assigns them to variables. That script might look something like this:

File E:/testdir/createFhandles.m
fhset = @setItems
fhsort = @sortItems
fhdel = @deleteItem

2 Run the script from your current directory to create the function handles:

run E:/testdir/createFhandles

3 You can now execute one of the functions by means of its handle.

fhset(item, value)

Making Toolbox File Changes Visible to MATLAB
Unlike functions in user-supplied directories, M-files (and MEX-files) in the
matlabroot/toolbox directories are not time-stamp checked, so MATLAB
does not automatically see changes to them. If you modify one of these
files, and then rerun it, you may find that the behavior does not reflect the
changes that you made. This is most likely because MATLAB is still using the
previously loaded version of the file.

To force MATLAB to reload a function from disk, you need to explicitly clear
the function from memory using clear functionname. Note that there are
rare cases where clear will not have the desired effect, (for example, if the
file is locked, or if it is a class constructor and objects of the given class exist
in memory).

Similarly, MATLAB does not automatically detect the presence of new files
in matlabroot/toolbox directories. If you add (or remove) files from these
directories, use rehash toolbox to force MATLAB to see your changes. Note
that if you use the MATLAB Editor to create files, these steps are unnecessary,
as the Editor automatically informs MATLAB of such changes.

12-38

MATLAB Path

Making Nontoolbox File Changes Visible to MATLAB
For M-files outside of the toolbox directories, MATLAB sees the changes made
to these files by comparing timestamps and reloads any file that has changed
the next time you execute the corresponding function.

If MATLAB does not see the changes you make to one of these files, try
clearing the old copy of the function from memory using clear functionname.
You can verify that MATLAB has cleared the function using inmem to list all
functions currently loaded into memory.

Change Notification on Windows
If MATLAB, running on Windows, is unable to see new files or changes you
have made to an existing file, the problem may be related to operating system
change notification handles.

Type the following for more information:

help changeNotification
help changeNotificationAdvanced

12-39

12 Programming Tips

Program Control

In this section...

“Using break, continue, and return” on page 12-40

“Using switch Versus if” on page 12-41

“MATLAB case Evaluates Strings” on page 12-41

“Multiple Conditions in a case Statement” on page 12-41

“Implicit Break in switch-case” on page 12-41

“Variable Scope in a switch” on page 12-42

“Catching Errors with try-catch” on page 12-42

“Nested try-catch Blocks” on page 12-43

“Forcing an Early Return from a Function” on page 12-43

Using break, continue, and return
It’s easy to confuse the break, continue, and return functions as they are
similar in some ways. Make sure you use these functions appropriately.

Function Where to Use It Description

break for or while loops Exits the loop in which it
appears. In nested loops,
control passes to the next
outer loop.

continue for or while loops Skips any remaining
statements in the current
loop. Control passes to next
iteration of the same loop.

return Anywhere Immediately exits the
function in which it appears.
Control passes to the caller
of the function.

12-40

Program Control

Using switch Versus if
It is possible, but usually not advantageous, to implement switch-case
statements using if-elseif instead. See pros and cons in the table.

switch-case Statements if-elseif Statements

Easier to read. Can be difficult to read.

Can compare strings of different
lengths.

You need strcmp to compare strings
of different lengths.

Test for equality only. Test for equality or inequality.

MATLAB case Evaluates Strings
A useful difference between switch-case statements in MATLAB and C is
that you can specify string values in MATLAB case statements, which you
cannot do in C.

switch(method)
case 'linear'

disp('Method is linear')
case 'cubic'

disp('Method is cubic')
end

Multiple Conditions in a case Statement
You can test against more than one condition with switch. The first case
below tests for either a linear or bilinear method by using a cell array
in the case statement.

switch(method)
case {'linear', 'bilinear'}

disp('Method is linear or bilinear')
case (<and so on>)

end

Implicit Break in switch-case
In C, if you do not end each case with a break statement, code execution
falls through to the following case. In MATLAB, case statements do not fall

12-41

12 Programming Tips

through; only one case may execute. Using break within a case statement is
not only unnecessary, it is also invalid and generates a warning.

In this example, if result is 52, only the first disp statement executes, even
though the second is also a valid match:

switch(result)
case 52

disp('result is 52')
case {52, 78}

disp('result is 52 or 78')
end

Variable Scope in a switch
Since MATLAB executes only one case of any switch statement, variables
defined within one case are not known in the other cases of that switch
statement. The same holds true for if-elseif statements.

In these examples, you get an error when choice equals 2, because x is
undefined.

-- SWITCH-CASE -- -- IF-ELSEIF --
switch choice

case 1 if choice == 1
x = -pi:0.01:pi; x = -pi:0.01:pi;

case 2 elseif choice == 2
plot(x, sin(x)); plot(x, sin(x));

end end

Catching Errors with try-catch
When you have statements in your code that could possibly generate
unwanted results, put those statements into a try-catch block that will catch
any errors and handle them appropriately.

The example below shows a try-catch block within a function that multiplies
two matrices. If a statement in the try segment of the block fails, control
passes to the catch segment. In this case, the catch statements check
the error message that was issued (returned by lasterr) and respond
appropriately.

12-42

Program Control

try
X = A * B

catch
errmsg = lasterr;
if(strfind(errmsg, 'Inner matrix dimensions'))

disp('** Wrong dimensions for matrix multiply')
end

For more information: See “The try-catch Statement” on page 8-17 in the
MATLAB Programming documentation.

Nested try-catch Blocks
You can also nest try-catch blocks, as shown here. You can use this to
attempt to recover from an error caught in the first try section:

try
statement1 % Try to execute statement1

catch
try

statement2 % Attempt to recover from error
catch

disp 'Operation failed' % Handle the error
end

end

Forcing an Early Return from a Function
To force an early return from a function, place a return statement in the
function at the point where you want to exit. For example,

if <done>
return

end

12-43

12 Programming Tips

Save and Load

In this section...

“Saving Data from the Workspace” on page 12-44

“Loading Data into the Workspace” on page 12-44

“Viewing Variables in a MAT-File” on page 12-45

“Appending to a MAT-File” on page 12-45

“Save and Load on Startup or Quit” on page 12-46

“Saving to an ASCII File” on page 12-46

Saving Data from the Workspace
To save data from your workspace, you can do any of the following:

• Copy from the MATLAB Command Window and paste into a text file.

• Record part of your session in a diary file, and then edit the file in a text
editor.

• Save to a binary or ASCII file using the save function.

• Save spreadsheet, scientific, image, or audio data with appropriate function.

• Save to a file using low-level file I/O functions (fwrite, fprintf, ...).

For more information: See Saving the Current Workspace in the MATLAB
Desktop Tools and Development Environment documentation, “Using the
diary Function to Export Data” on page 6-87, and “Using Low-Level File
I/O Functions” on page 6-104.

Loading Data into the Workspace
Similarly, to load new or saved data into the workspace, you can do any
of the following:

• Enter or paste data at the command line.

• Create a script file to initialize large matrices or data structures.

12-44

Save and Load

• Read a binary or ASCII file using load.

• Load spreadsheet, scientific, image, or audio data with appropriate
function.

• Load from a file using low-level file I/O functions (fread, fscanf, ...).

For more information: See Loading a Saved Workspace and Importing
Data in the MATLAB Development Environment documentation, and “Using
Low-Level File I/O Functions” on page 6-104.

Viewing Variables in a MAT-File
To see what variables are saved in a MAT-file, use who or whos as shown
here (the .mat extension is not required). who returns a cell array and whos
returns a structure array.

mydataVariables = who('-file', 'mydata.mat');

Appending to a MAT-File
To save additional variables to an existing MAT-file, use

save matfilename -append

Any variables you save that do not yet exist in the MAT-file are added to
the file. Any variables you save that already exist in the MAT-file overwrite
the old values.

Note Saving with the -append switch does not append additional elements to
an array that is already saved in a MAT-file. See the example below.

In this example, the second save operation does not concatenate new elements
to vector A, (making A equal to [1 2 3 4 5 6 7 8]) in the MAT-file. Instead,
it replaces the 5 element vector, A, with a 3 element vector, also retaining all
other variables that were stored on the first save operation.

A = [1 2 3 4 5]; B = 12.5; C = rand(4);
save savefile;
A = [6 7 8];

12-45

12 Programming Tips

save savefile A -append;

Save and Load on Startup or Quit
You can automatically save your variables at the end of each MATLAB session
by creating a finish.m file to save the contents of your base workspace every
time you quit MATLAB. Load these variables back into your workspace at the
beginning of each session by creating a startup.m file that uses the load
function to load variables from your MAT-file.

For more information: See the startup and finish function reference
pages.

Saving to an ASCII File
When you save matrix data to an ASCII file using save -ascii, MATLAB
combines the individual matrices into one collection of numbers. Variable
names are not saved. If this is not acceptable for your application, use
fprintf to store your data instead.

For more information: See “Exporting Delimited ASCII Data Files” on
page 6-86.

12-46

Files and Filenames

Files and Filenames

In this section...

“Naming M-files” on page 12-47

“Naming Other Files” on page 12-47

“Passing Filenames as Arguments” on page 12-48

“Passing Filenames to ASCII Files” on page 12-48

“Determining Filenames at Run-Time” on page 12-48

“Returning the Size of a File” on page 12-48

Naming M-files
M-file names must start with an alphabetic character, may contain any
alphanumeric characters or underscores, and must be no longer than
the maximum allowed M-file name length (returned by the function
namelengthmax).

N = namelengthmax
N =

63

Since variables must obey similar rules, you can use the isvarname function
to check whether a filename (minus its .m file extension) is valid for an M-file.

isvarname mfilename

Naming Other Files
The names of other files that MATLAB interacts with (e.g., MAT, MEX, and
MDL-files) follow the same rules as M-files, but may be of any length.

Depending on your operating system, you may be able to include certain
nonalphanumeric characters in your filenames. Check your operating system
manual for information on valid filename restrictions.

12-47

12 Programming Tips

Passing Filenames as Arguments
In MATLAB commands, you can specify a filename argument using the
MATLAB command or function syntax. For example, either of the following
are acceptable. (The .mat file extension is optional for save and load).

load mydata.mat % Command syntax
load('mydata.mat') % Function syntax

If you assign the output to a variable, you must use the function syntax.

savedData = load('mydata.mat')

Passing Filenames to ASCII Files
ASCII files are specified as follows. Here, the file extension is required.

load mydata.dat -ascii % Command syntax
load('mydata.dat','-ascii') % Function syntax

Determining Filenames at Run-Time
There are several ways that your function code can work on specific files
without you having to hardcode their filenames into the program. You can

• Pass the filename in as an argument

function myfun(datafile)

• Prompt for the filename using the input function

filename = input('Enter name of file: ', 's');

• Browse for the file using the uigetfile function

[filename, pathname] =
uigetfile('*.mat', 'Select MAT-file');

For more information: See the input and uigetfile function reference
pages.

Returning the Size of a File
Two ways to have your program determine the size of a file are shown here.

12-48

Files and Filenames

-- METHOD #1 -- -- METHOD #2 --
s = dir('myfile.dat'); fid = fopen('myfile.dat');
filesize = s.bytes fseek(fid, 0, 'eof');

filesize = ftell(fid)
fclose(fid);

The dir function also returns the filename (s.name), last modification date
(s.date), and whether or not it’s a directory (s.isdir).

(The second method requires read access to the file.)

For more information: See the fopen, fseek, ftell, and fclose function
reference pages.

12-49

12 Programming Tips

Input/Output

In this section...

“File I/O Function Overview” on page 12-50

“Common I/O Functions” on page 12-50

“Readable File Formats” on page 12-51

“Using the Import Wizard” on page 12-51

“Loading Mixed Format Data” on page 12-51

“Reading Files with Different Formats” on page 12-52

“Reading ASCII Data into a Cell Array” on page 12-52

“Interactive Input into Your Program” on page 12-52

For more information and examples on importing and exporting data, see
Technical Note 1602:

http://www.mathworks.com/support/tech-notes/1600/1602.html

File I/O Function Overview
For a good overview of MATLAB file I/O functions, use the online “Functions
— Categorical List” reference. In the Help browser Contents, select
MATLAB > Functions — Categorical List, and then click File I/O.

Common I/O Functions
The most commonly used, high-level, file I/O functions in MATLAB are save
and load. For help on these, type doc save or doc load.

Functions for I/O to text files with delimited values are textread, dlmread,
dlmwrite. Functions for I/O to text files with comma-separated values are
csvread, csvwrite.

For more information: See Text Files in the MATLAB “Functions —
Categorical List” reference documentation.

12-50

http://www.mathworks.com/support/tech-notes/1600/1602.html

Input/Output

Readable File Formats
Type doc fileformats to see a list of file formats that MATLAB can read,
along with the associated MATLAB functions.

Using the Import Wizard
A quick method of importing text or binary data from a file (e.g., Excel files)
is to use the MATLAB Import Wizard. Open the Import Wizard with the
command, uiimport filename or by selecting File > Import Data at the
Command Window.

Specify or browse for the file containing the data you want to import and
you will see a preview of what the file contains. Select the data you want
and click Finish.

For more information: See “Using the Import Wizard” on page 6-11 in the
MATLAB Programming documentation.

Loading Mixed Format Data
To load data that is in mixed formats, use textread instead of load. The
textread function lets you specify the format of each piece of data.

If the first line of file mydata.dat is

Sally 12.34 45

Read the first line of the file as a free format file using the % format:

[names, x, y] = textread('mydata.dat', '%s %f %d', 1)

returns

names =
'Sally'

x =
12.34000000000000

y =
45

12-51

12 Programming Tips

Reading Files with Different Formats
Attempting to read data from a file that was generated on a different platform
may result in an error because the binary formats of the platforms may differ.
Using the fopen function, you can specify a machine format when you open
the file to avoid these errors.

Reading ASCII Data into a Cell Array
A common technique used to read an ASCII data file into a cell array is

[a,b,c,d] = textread('data.txt', '%s %s %s %s');
mydata = cellstr([a b c d]);

For more information: See the textread and cellstr function reference
pages.

Interactive Input into Your Program
Your program can accept interactive input from users during execution. Use
the input function to prompt the user for input, and then read in a response.
When executed, input causes the program to display your prompt, pause
while a response is entered, and then resume when the Enter key is pressed.

12-52

Starting MATLAB

Starting MATLAB

Getting MATLAB to Start Up Faster
Here are some things that you can do to make MATLAB start up faster.

• Make sure toolbox path caching is enabled.

• Make sure that the system on which MATLAB is running has enough RAM.

• Choose only the windows you need in the MATLAB desktop.

• Close the Help browser before exiting MATLAB. When you start your next
session, MATLAB will not open the Help browser, and thus will start faster.

• If disconnected from the network, check the LM_LICENSE_FILE variable.
See http://www.mathworks.com/support/solutions/data/1-17VEB.html for a
more detailed explanation.

For more information: See Reduced Startup Time with Toolbox Path
Caching in the MATLAB Desktop Tools and Development Environment
documentation.

12-53

http://www.mathworks.com/support/solutions/data/1-17VEB.html

12 Programming Tips

Operating System Compatibility

In this section...

“Executing O/S Commands from MATLAB” on page 12-54

“Searching Text with grep” on page 12-54

“Constructing Paths and Filenames” on page 12-54

“Finding the MATLAB Root Directory” on page 12-55

“Temporary Directories and Filenames” on page 12-55

Executing O/S Commands from MATLAB
To execute a command from your operating system prompt without having to
exit MATLAB, precede the command with the MATLAB ! operator.

On Windows, you can add an ampersand (&) to the end of the line to make the
output appear in a separate window.

For more information: See Running External Programs in the MATLAB
Desktop Tools and Development Environment documentation, and the system
and dos function reference pages.

Searching Text with grep
grep is a powerful tool for performing text searches in files on UNIX systems.
To grep from within MATLAB, precede the command with an exclamation
point (!grep).

For example, to search for the word warning, ignoring case, in all M-files of
the current directory, you would use

!grep -i 'warning' *.m

Constructing Paths and Filenames
Use the fullfile function to construct path names and filenames rather
than entering them as strings into your programs. In this way, you always
get the correct path specification, regardless of which operating system you
are using at the time.

12-54

Operating System Compatibility

Finding the MATLAB Root Directory
The matlabroot function returns the location of the MATLAB installation
on your system. Use matlabroot to create a path to MATLAB and toolbox
directories that does not depend on a specific platform or MATLAB version.

The following example uses matlabroot with fullfile to return a
platform-independent path to the general toolbox directory:

fullfile(matlabroot,'toolbox','matlab','general')

Temporary Directories and Filenames
If you need to locate the directory on your system that has been designated to
hold temporary files, use the tempdir function. tempdir returns a string that
specifies the path to this directory.

To create a new file in this directory, use the tempname function. tempname
returns a string that specifies the path to the temporary file directory, plus a
unique filename.

For example, to store some data in a temporary file, you might issue the
following command first.

fid = fopen(tempname, 'w');

12-55

12 Programming Tips

Demos

Demos Available with MATLAB
MATLAB comes with a wide array of visual demonstrations to help you see
the extent of what you can do with the product. To start running any of the
demos, simply type demo at the MATLAB command prompt. Demos cover the
following major areas:

• MATLAB

• Toolboxes

• Simulink

• Blocksets

• Real-Time Workshop®

• Stateflow®

For more information: See Demos in the Help Browser in the MATLAB
Desktop Tools and Development Environment documentation, and the demo
function reference page.

12-56

For More Information

For More Information

In this section...

“Current CSSM” on page 12-57

“Archived CSSM” on page 12-57

“MATLAB Technical Support” on page 12-57

“Tech Notes” on page 12-57

“MATLAB Central” on page 12-57

“MATLAB Newsletters (Digest, News & Notes)” on page 12-57

“MATLAB Documentation” on page 12-58

“MATLAB Index of Examples” on page 12-58

Current CSSM

http://newsreader.mathworks.com/WebX?14@@/comp.soft-sys.matlab

Archived CSSM

http://mathforum.org/kb/forum.jspa?forumID=80

MATLAB Technical Support

http://www.mathworks.com/support/

Tech Notes

http://www.mathworks.com/support/tech-notes/list_all.html

MATLAB Central

http://www.mathworks.com/matlabcentral/

MATLAB Newsletters (Digest, News & Notes)

http://www.mathworks.com/company/newsletters/index.html

12-57

http://newsreader.mathworks.com/WebX?14@@/comp.soft-sys.matlab
http://mathforum.org/kb/forum.jspa?forumID=80
http://www.mathworks.com/support/
http://www.mathworks.com/support/tech-notes/list_all.html
http://www.mathworks.com/matlabcentral/
http://www.mathworks.com/company/newsletters/index.html

12 Programming Tips

MATLAB Documentation

http://www.mathworks.com/access/helpdesk/help/helpdesk.html

MATLAB Index of Examples

http://www.mathworks.com/access/helpdesk/help/techdoc/demo_example.shtml

12-58

http://www.mathworks.com/access/helpdesk/help/helpdesk.html
http://www.mathworks.com/access/helpdesk/help/techdoc/demo_example.shtml

Index

Index() symbol
for indexing into an array 3-103
for specifying function input

arguments 3-103
[] symbol

for concatenating arrays 3-107
for constructing an array 3-107
for specifying function return values 3-107

{ } symbol
for constructing a cell array 3-100
for indexing into a cell array 3-100

! symbol
for entering a shell escape function 3-103

% symbol
for specifying character conversions 3-104
for writing single-line comments 3-104
for writing the H1 help line 4-10

' symbol
for constructing a character array 3-106

* symbol
for filename wildcards 3-97

, symbol
for separating array indices 3-99
for separating array row elements 3-99
for separating input or output

arguments 3-100
for separating MATLAB commands 3-100

. symbol
for defining a structure field 3-101
for specifying object methods 3-101

: symbol
for converting to a column vector 3-99
for generating a numeric sequence 3-98
for preserving array shape on

assignment 3-99
for specifying an indexing range 3-99
generating a numeric sequence 1-11

; symbol
for separating rows of an array 3-105
for suppressing command output 3-105

@ symbol
for class directories 3-98
for constructing function handles 3-97

.() symbol
for creating a dynamic structure field 3-102

%{ and %} symbols
for writing multiple-line comments 3-104

.. symbol
for referring to a parent directory 3-101

... symbol
for continuing a command line 3-101

A
access modes

HDF4 files 7-59
accuracy of calculations 3-14
addition operator 3-16
aggregation 9-40
and (M-file function equivalent for &) 3-20
anonymous functions 5-3

changing variables 5-9
constructing 5-3
evaluating variables 5-8
in cell arrays 5-6
multiple anonymous functions 5-13
passing a function to quad 5-12
using space characters in 5-6
with no input arguments 5-5

answer, assigned to ans 3-14
arguments

checking number of 4-32
function 4-10
memory requirements 11-21
order in argument list 4-36
order of outputs 4-34
parsing 4-36
passing 4-57
passing variable number 4-34
to nested functions 4-47

Index-1

Index

arithmetic operators 3-16
overloading 9-32

array headers
memory requirements 11-20

arrays
cell array of strings 2-39
concatenating diagonally 1-47
copying 11-19
deleting rows and columns 1-35
diagonal 1-46
dimensions

inverse permutation 1-69
empty 1-49
expanding 1-31
flipping 1-38
functions

changing indexing style 1-79
creating a matrix 1-76
determining data type 1-77
finding matrix structure or shape 1-77
modifying matrix shape 1-76
multidimensional arrays 1-79
sorting and shifting 1-78

functions for diagonals 1-78
getting dimensions of 1-28
linear indexing 1-19
multidimensional 1-56
numeric

converting to cell array 2-112
of strings 2-38
reshaping 1-36
rotating 1-38
shifting 1-41
sorting column data 1-43
sorting row data 1-43
sorting row vectors 1-44
storage 1-19
transposing 1-37

ASCII data
exporting 6-84

exporting delimited data 6-86
exporting with diary function 6-87
formats 6-75
importing 6-75
importing delimited files 6-79
importing mixed alphabetic and numeric

data 6-81
importing space-delimited data 6-78
reading formatted text 6-113
saving 6-86
specifying delimiter used in file 6-79
with text headers 6-80
writing 6-114

assert
formatting strings 2-42

assignment statements
building structure arrays with 2-75
local and global variables 3-10

attributes
retrieving from HDF4 files 7-60
writing to an HDF4 file 7-69

B
backtrace mode

warning control 8-31
base (numeric), converting 2-60
base date 2-67
binary data

controlling data type of values read 6-108
using the Import Wizard 6-11
writing to 6-109

binary from decimal conversion 2-60
blanks

finding in string arrays 2-57
removing from strings 2-39

built-in functions 3-109
forcing a built-in call 3-110
identifying 3-110

Index-2

Index

C
C++ and MATLAB OOP 9-8
caching

MATLAB directory 4-14
callback functions

creating 10-15
specifying 10-17

calling context 4-18
calling MATLAB functions

storing as pseudocode 4-15
canonical class 9-9
case conversion 2-63 to 2-64
cat 1-60
CDF. See Common Data Format
cdfepoch object

representing CDF time values 7-6
cell

building nested arrays with 2-110
preallocating empty arrays with 2-99

cell arrays 2-93
applying functions to 2-108
converting to numeric array 2-112
creating 2-95

with cells function 2-99
deleting cells 2-106
deleting dimensions 2-106
flat 2-110
functions 2-114
growing 1-32 1-34
multidimensional 1-73
nested 2-110

building with the cells function 2-111
indexing 2-111

of strings 2-39
comparing strings 2-56
functions 2-41

of structures 2-113
organizing data 2-109
preallocating 2-99 11-8
replacing comma-separated list with 2-107

reshaping 2-106
with anonymous function elements 5-6

char data type 6-108
character arrays

categorizing characters of 2-57
comparing 2-55
comparing values on cell arrays 2-56
conversion 2-59
converting to cell arrays 2-39
converting to numeric 2-61
creating 2-37
delimiting character 2-58
evaluating 3-27
expanding 1-35
finding a substring 2-58
functions 2-64
functions that create 2-63
functions that modify 2-63
in cell arrays 2-39
padding for equal row length 2-39
removing trailing blanks 2-39
representation 2-37
scalar 2-56
searching and replacing 2-58
searching or comparing 2-64
token 2-58
two-dimensional 2-38
using relational operators on 2-56

characters
conversion, in format specification

string 2-47
corresponding ASCII values 2-61
finding in string 2-57
used as delimiters 6-75

characters and strings 2-37
class 9-11
class directories 9-6
classes

clearing definition 9-6
constructor method 9-10

Index-3

Index

debugging 9-6
designing 9-9
java 2-118
methods required by MATLAB 9-9
object-oriented methods 9-2
overview 9-2

classes, matlab
overview 2-117

clear 4-52 11-24
clipboard

importing binary data 6-11
closing

files 6-115
colon operator 1-11

for multidimensional array subscripting 1-63
scalar expansion with 1-59

column separators
defined 6-75

comma-separated lists 3-79
assigning output from 3-81
assigning to 3-82
FFT example 3-85
generating from cell array 3-79
generating from structure 3-80
replacing with cell array 2-107
usage 3-83

concatenation 3-84
constructing arrays 3-83
displaying arrays 3-84
function call arguments 3-84
function return values 3-85

command/function duality 4-56
comments

in code 4-12
in scripts and functions 4-8

Common Data Format (CDF)
combining records to improve read

performance 7-5
converting CDF epoch values to MATLAB

datenum values 7-5

reading CDF files 7-2 to 7-3
reading metadata from CDF files 7-2
representing time values 7-6
speeding up read operations 7-4
writing data to CDF files 7-6

comparing
strings 2-55

complex arrays
memory requirements 11-23

complex conjugate transpose operator 3-16
complex number functions 2-31
complex numbers 2-24

creating 2-24
computational functions

applying to cell arrays 2-108
applying to multidimensional arrays 1-70
applying to structure fields 2-83
in M-file 4-8

computer 3-14
computer type 3-14
concatenation 1-8

functions 1-9
of diagonal matrices 1-47
of matrices 1-8
of strings 12-31
of unlike data types 1-13

conditional statements 4-32
constructor methods 9-10

guidelines 9-10
using class in 9-11

containment 9-40
Contents.m file 4-15
control statements

break 3-93
case 3-89
catch 3-94
conditional control 3-87
continue 3-93
else 3-87
elseif 3-87

Index-4

Index

error control 3-94
for 3-91
if 3-87
loop control 3-91
otherwise 3-89
program termination 3-95
return 3-95
switch 3-89
try 3-94
while 3-92

conv 2-107
conversion characters in format specification

string 2-47
converter methods 9-22
converting

cases of strings 2-63 to 2-64
dates 2-66
numbers 2-59
numeric to string 2-59
string to numeric 2-61
strings 2-59

converting numeric and string data types 2-65
converting numeric to string 2-59
converting string to numeric 2-61
cos 4-17
cputime

versus tic and toc 11-3
creating

cell array 2-95
multidimensional array 1-58
string array 2-39
strings 2-37
structure array 2-75
timer objects 10-5

cross 1-70
curly braces

to nest cell arrays 2-110

D
data

binary, dependence upon array size and
type 6-70

data class hierarchy 9-3
data organization

cell arrays 2-109
multidimensional arrays 1-71
structure arrays 2-85

data types 2-3
cell arrays 2-93
cell arrays of strings 2-39
combining unlike data types 1-13
complex numbers 2-24
dates and times 2-66
determining 2-64
double precision 6-108
floating point 2-14

double-precision 2-14
single-precision 2-15

infinity 2-25
integers 2-6
java classes 2-118
logical 2-33
logicals 2-33
NaN 2-26
numeric 2-6
precision 6-108
reading files 6-108
specifying for input 6-108
structure arrays 2-74
user-defined classes 9-3

date 2-71
date and time functions 2-72
datenum 2-68
dates

base 2-67
conversions 2-68
handling and converting 2-66
number 2-67

Index-5

Index

string, vector of input 2-69
dates and times 2-66
datestr 2-68
datevec 2-68
deblank 2-39
debugging

errors and warnings 8-34
debugging class methods 9-6
decimal representation

to binary 2-60
to hexadecimal 2-60

delaying program execution
using timers 10-2

deleting
cells from cell array 2-106
fields from structure arrays 2-83
matrix rows and columns 1-35

deleting array elements 1-35
deletion operator 1-35
delimiter in string 2-58
delimiters

defined 6-75
diagonal matrices 1-46
diary 6-87
dim argument for cat 1-60
dimensions

deleting 2-106
permuting 1-68
removing singleton 1-67

directories
adding to path 9-7
class 9-6
Contents.m file 4-15
help for 4-15
MATLAB

caching 4-14
private functions for 5-35
private methods for 9-5
temporary 6-107

disp 2-90

dispatch type 9-73
display method 9-13

examples 9-13
displaying

field names for structure array 2-76
division operators

left division 3-16
matrix left division 3-17
matrix right division 3-16
right division 3-16

double precision 6-108
double-precision matrix 2-6
downloading files 6-117
duality, command/function 4-56
dynamic field names in structure arrays 2-80
dynamic regular expressions 3-57

E
Earth Observing System (EOS) 7-36
editor

accessing 4-13
for creating M-files 4-13

eig 1-71
element-by-element organization for

structures 2-88
else, elseif 3-88
empty arrays

and if statement 3-88
and relational operators 3-18
and while loops 3-93

empty matrices 1-49
end 1-21
end method 9-20
end of file 6-110
EOS (Earth Observing System)

sources of information 7-36
eps 3-14
epsilon 3-14
equal to operator 3-18

Index-6

Index

error 4-19
formatting strings 2-42

error handling
debugging 8-34

escape characters
in format specification string 2-43

evaluating
string containing function name 3-28
string containing MATLAB expression 3-27

examples
checking number of function arguments 4-33
container class 9-58
for 3-91
function 4-19
if 3-87
inheritance 9-41
M-file for structure array 2-84
polynomial class 9-26
script 4-17
switch 3-90
vectorization 11-4
while 3-92

expanding
character arrays 1-35
structure arrays 2-75

expanding cell arrays 1-32 1-34
expanding structure arrays 1-32 1-34
exporting

ASCII data 6-84
in HDF4 format 7-57
in HDF5 format 7-16

exporting files
overview 6-3

expressions
involving empty arrays 3-18
most recent answer 3-14
overloading 9-23
scalar expansion with 3-17

external program, running from MATLAB 3-28

F
fclose 6-115
feof 6-109
fid. See file identifiers
field names

dynamic 2-80
fieldnames 2-76
fields 2-74 to 2-76

accessing data within 2-78
adding to structure array 2-82
applying functions to 2-83

all like-named fields 2-83
assigning data to 2-75
deleting from structures 2-83
indexing within 2-80
names 2-76
size 2-81
writing M-files for 2-84

file exchange
over Internet 6-117

file I/O
audio/video files 6-4 6-93

exporting 6-95
importing 6-94

binary files 6-4
files from the Internet 6-5
graphics files 6-4 6-90

exporting 6-91
importing 6-91

internet 6-117
downloading from web 6-117
FTP operations 6-122
sending e-mail 6-120
ZIP files 6-119

low-level functions 6-104
ASCII files:exporting 6-114
ASCII files:importing 6-113
binary files:exporting 6-109
binary files:importing 6-107

Index-7

Index

MAT-files
exporting 6-64

MATLAB HDF4 utility API 7-71
memory mapping. See memory mapping
overview 6-3

Import Wizard 6-5
large data sets 6-6
low-level functions 6-6
toolboxes for importing data 6-7

scientific formats 7-1
CDF files 7-2
FITS files 7-8
HDF4 and HDF-DOS files 7-53
HDF4 files 7-36 7-57
HDF5 files 7-11

spreadsheet files 6-5 6-98
Lotus 123 6-101
Microsoft Excel 6-98

supported file formats 6-9
supported file types 6-3
system clipboard 6-5
text files

exporting 6-84
importing 6-75
text files 6-4

using Import Wizard 6-11
file identifiers

clearing 6-116
defined 6-105

file import and export
overview 6-3
supported file types 6-3

file operations
FTP 6-122

file types
audio, video 6-4
binary 6-4
graphics 6-4
spreadsheets 6-5
supported by MATLAB 6-3

text 6-4
filenames

wildcards 3-97
files

ASCII
reading 6-112
reading formatted text 6-113
writing 6-114

beginning of 6-110
binary

controlling data type values read 6-108
data types 6-108
reading 6-107
writing to 6-109

closing 6-115
current position 6-110
end of 6-110
failing to open 6-106
file identifiers (FID) 6-105
MAT 6-73
opening 6-105
permissions 6-105
position 6-109
specifying delimiter used in ASCII files 6-79
temporary 6-107

find function
and subscripting 3-22

finding
substring within a string 2-58

FITS. See Flexible Image Transport System
Flexible Image Transport System (FITS)

reading 7-8
reading data 7-9
reading metadata 7-8

flipping matrices 1-38
float 6-108
floating point 2-14
floating point, double-precision 2-14

converting to 2-16
creating 2-15

Index-8

Index

maximum and minimum values 2-18
floating point, single-precision 2-15

converting to 2-16
creating 2-16
maximum and minimum values 2-18

floating-point functions 2-30
floating-point numbers

largest 3-14
smallest 3-14

floating-point precision 6-108
floating-point relative accuracy 3-14
flow control

break 3-93
case 3-89
catch 3-94
conditional control 3-87
continue 3-93
else 3-87
elseif 3-87
error control 3-94
for 3-91
if 3-87
loop control 3-91
otherwise 3-89
program termination 3-95
return 3-95
switch 3-89
try 3-94
while 3-92

fopen 6-105
failing 6-106

for 2-112
example 3-91
indexing 3-92
nested 3-91
syntax 3-91

format for numeric values 2-27
formatting strings 2-42

field width 2-49
flags 2-50

format operator 2-45
precision 2-48
setting field width 2-51 to 2-52
setting precision 2-51 to 2-52
subtype 2-48
using identifiers 2-53
value identifiers 2-51

fprintf
formatting strings 2-42

fread 6-107
frewind 6-109
fseek 6-109
ftell 6-109
FTP file operations 6-122
function calls

memory requirements 11-21
function definition line

for subfunction 5-33
in an M-file 4-8
syntax 4-9

function handles
example 4-24
for nested functions 5-21
maximum name length 4-30
naming 4-30
operations on 4-25
overview 2-115
overview of 4-22

function types
overloaded 5-37

function workspace 4-18
functions

applying
to multidimensional structure

arrays 1-75
to structure contents 2-83

applying to cell arrays 2-108
arguments

passing variable number of 4-34
body 4-8 4-11

Index-9

Index

built-in 3-109
forcing a built-in call 3-110
identifying 3-110

calling
command syntax 4-56
function syntax 4-57
passing arguments 4-57

calling context 4-18
cell arrays 2-114
cell arrays of strings 2-41
changing indexing style 1-79
character arrays 2-64
clearing from memory 4-52
comments 4-8
comparing character arrays 2-64
complex number 2-31
computational, applying to structure

fields 2-83
creating a matrix 1-76
creating arrays with 1-60
creating matrices 1-5
date and time 2-72
determining data type 1-77
example 4-19
executing function name string 3-28
finding matrix structure or shape 1-77
floating-point 2-30
for diagonal matrices 1-78
infinity 2-31
integer 2-30
logical array 2-34
M-file 3-108
matrix concatenation 1-9
modifying character arrays 2-63
modifying matrix shape 1-76
multidimensional arrays 1-79
multiple output arguments 4-10
naming

conflict with variable names 3-7
NaN 2-31

numeric and string conversion 2-65
numeric to string conversion 2-59
output formatting 2-32
overloaded 3-110
overloading 9-25
primary 5-33
searching character arrays 2-64
sorting and shifting 1-78
sparse matrix 1-54
storing as pseudocode 4-15
string to numeric conversion 2-61
structures 2-92
that determine data type 2-64
type identification 2-32
types of 4-19

anonymous 5-3
nested 5-16
overloaded 5-37
primary 5-15
private 5-35
subfunctions 5-33

fwrite 6-109

G
get method 9-14
global attributes

HDF4 files 7-60
global variables 3-3

alternatives 3-5
creating 3-4
displaying 3-4
suggestions for use 3-4

graphics files
getting information about 6-90
importing and exporting 6-90

greater than operator 3-18
greater than or equal to operator 3-18
growing an array 1-31
growing cell array 1-32 1-34

Index-10

Index

growing structure arrays 1-32 1-34

H
H1 line 4-8 4-10

and help command 4-8
and lookfor command 4-8

HDF Import Tool
using 7-36
using subsetting options 7-41

HDF-EOS
Earth Observing System 7-36

HDF4 7-36
closing a data set 7-70
closing a file 7-71
closing all open identifiers 7-72
closing data sets 7-63
creating a file 7-65
creating data sets 7-65
exporting in HDF4 format 7-57
importing data 7-54
importing subsets of data 7-39
listing all open identifiers 7-71
low-level functions

overview 7-56
reading data 7-58

mapping HDF4 syntax to MATLAB
syntax 7-57

MATLAB utility API 7-71
opening files 7-59
overview 7-36
reading data 7-62
reading data set metadata 7-61
reading data sets 7-61
reading global attributes 7-60
reading metadata 7-59
selecting data sets to import 7-38
specifying file access modes 7-59
using hdfinfo to import metadata 7-53

using high-level functions
overview 7-53

using predefined attributes 7-69
using the HDF Import Tool 7-36
writing data 7-64 7-67
writing metadata 7-69
See also HDF5

HDF5 7-11
exporting data in HDF5 format 7-16
low-level functions

mapping HDF5 data types to MATLAB
data types 7-29

mapping HDF5 syntax to MATLAB
syntax 7-27

reading and writing data 7-31
overview 7-11
using hdf5info to read metadata 7-11
using hdf5read to import data 7-15
using high-level functions 7-11
using low-level functions 7-26
See also HDF4

help
and H1 line 4-8
M-file 4-11

help text 4-8
hexadecimal, converting from decimal 2-60
Hierarchical Data Format. See HDF4. See HDF5
hierarchy of data classes 9-3
hyperthreading 11-16

I
if

and empty arrays 3-88
example 3-87
nested 3-88

imaginary unit 3-14
Import Data option 6-11
import functions

comparison of features 6-77

Index-11

Index

Import Wizard
importing binary data 6-11
overview 6-5

importing
ASCII data 6-75
HDF4 data 7-53

from the command line 7-56
selecting HDF4 data sets 7-38
subsets of HDF4 data 7-39

importing files
overview 6-3

indexed reference 9-15
indexing

for loops 3-92
multidimensional arrays 1-62
nested cell arrays 2-111
nested structure arrays 2-91
structures within cell arrays 2-113
within structure fields 2-80

indices, how MATLAB calculates 1-65
Inf 3-14
inferiorto 9-71
inferiorto function 9-71
infinity 2-25

functions 2-31
represented in MATLAB 3-14

inheritance
example class 9-41
multiple 9-40
simple 9-38

inputParser class
arguments that default 4-43
building the schema 4-38
case-sensitive matching 4-45
constructor 4-38
defined 4-36
handling unmatched arguments 4-44
method summary 4-46
parsing parameters 4-40
passing arguments in a structure 4-41

property summary 4-46
integer data type 6-114
integer functions 2-30
integers 2-6

creating 2-7
largest system can represent 3-14
smallest system can represent 3-14

Internet functions 6-117
intmax 3-14
intmin 3-14
inverse permutation of array dimensions 1-69
ipermute 1-69
isa 9-12

J
Java and MATLAB OOP 9-8
java classes 2-118

K
keywords 3-13

checking for 12-28

L
large data sets

memory usage in array storage 11-19
memory usage in function calls 11-22

less than operator 3-17
less than or equal to operator 3-17
load 11-24
loading objects 9-64
loadobj example 9-66
local variables 3-2
logical array functions 2-34
logical data type 2-33
logical expressions

and subscripting 3-22
logical operators 3-19

bit-wise 3-23

Index-12

Index

elementwise 3-19
short-circuit 3-24

logical types 2-33
long 6-108
long integer 6-108
lookfor 4-8 4-10

and H1 line 4-8
loops

for 3-91
while 3-92

M
M-file functions

identifying 3-108
M-files

comments 4-12
contents 4-8
corresponding to functions 9-23
creating

in MATLAB directory 4-14
creating with text editor 4-13
kinds 4-7
naming 4-7
operating on structures 2-84
overview 4-8
primary function 5-15
subfunction 5-33
superseding existing names 5-34

mapping memory. See memory mapping
MATLAB

data type classes 9-3
programming

M-files 4-7
scripts 4-17

structures 9-7
version 3-14

matrices
accessing multiple elements 1-20
accessing single elements 1-18

concatenating 1-8
concatenating diagonally 1-47
constructing a matrix operations

constructing 1-4
creating 1-3
data structure query 1-30
data type query 1-29
deleting rows and columns 1-35
diagonal 1-46
double-precision 2-6
empty 1-49
expanding 1-31
flipping 1-38
for loop index 3-92
functions

changing indexing style 1-79
creating a matrix 1-76
determining data type 1-77
finding matrix structure or shape 1-77
modifying matrix shape 1-76
sorting and shifting 1-78

functions for creating 1-5
functions for diagonals 1-78
getting dimensions of 1-28
linear indexing 1-19
reshaping 1-36
rotating 1-38
scalar 1-51
See also matrices 3-92
shifting 1-41
single-precision 2-6
sorting column data 1-43
sorting row data 1-43
sorting row vectors 1-44
transposing 1-37
vectors 1-52

matrix operations
concatenating matrices 1-8
creating matrices 1-3

mean 1-70

Index-13

Index

memory
function workspace 4-18
making efficient use of 11-18
management 11-24
Out of Memory message 11-27

memory mapping
demonstration 6-58
memmapfile class

class constructor 6-29
class methods 6-56
class properties 6-27
defined 6-27
Filename property 6-32
Format property 6-34
Offset property 6-34
Repeat property 6-41
supported formats 6-40
Writable property 6-42

overview 6-23
benefits of 6-24
byte ordering 6-26
limitations of 6-25
when to use 6-26

reading from file 6-43
removing map 6-58
selecting file to map 6-32
setting access privileges 6-42
setting extent of map 6-41
setting start of map 6-34
specifying data types in file 6-34
supported data types 6-40
writing to file 6-48

memory requirements
array headers 11-20
for array allocation 11-18
for complex arrays 11-23
for copying arrays 11-19
for creating and modifying arrays 11-18
for handling variables in 11-18
for numeric arrays 11-22

for passing arguments 11-21
for sparse matrices 11-23

message identifiers
using with warnings 8-26

methods 9-2
converters 9-22
determining which is called 4-55
display 9-13
end 9-20
get 9-14
invoking on objects 9-4
listing 9-36
precedence 9-72
required by MATLAB 9-9
set 9-14
subsasgn 9-15
subsref 9-15

multidimensional arrays
applying functions 1-70

element-by-element functions 1-70
matrix functions 1-70
vector functions 1-70

cell arrays 1-73
computations on 1-70
creating 1-58

at the command line 1-58
with functions 1-60
with the cat function 1-60

extending 1-59
format 1-62
indexing 1-62

avoiding ambiguity 1-66
with the colon operator 1-63

number of dimensions 1-62
organizing data 1-71
permuting dimensions 1-68
removing singleton dimensions 1-67
reshaping 1-66
size of 1-62
storage 1-62

Index-14

Index

structure arrays 1-74
applying functions 1-75

subscripts 1-57
multiple conditions for switch 3-90
multiple inheritance 9-40
multiplication operators

matrix multiplication 3-16
multiplication 3-16

multithreaded computation 11-14

N
names

structure fields 2-76
superseding 5-34

NaN 2-26 3-14
functions 2-31
logical operations on 2-26

nargin 4-32
checking input arguments 4-32
in nested functions 4-47

nargout 4-32
checking output arguments 4-32
in nested functions 4-47

ndgrid 1-79
ndims 1-62
nested functions 5-16

creating 5-16
example — creating a function handle 5-27
example — function-generating

functions 5-29
passing optional arguments 4-47
separate variable instances 5-25
using function handles with 5-21
variable scope in 5-19

nesting
cell arrays 2-110
for loops 3-91
if statements 3-88
structures 2-91

newlines in string arrays 2-57
not (M-file function equivalent for ~) 3-20
not a number (NaN) 2-26
not equal to operator 3-18
Not-a-Number 3-14
now 2-71
number of arguments 4-32
numbers

date 2-67
time 2-67

numeric arrays
memory requirements 11-22

numeric data types 2-6
conversion functions 2-65
converting to strings 2-59
setting display format 2-27

numeric to string conversion
functions 2-59

O
object-oriented programming

features of 9-3
inheritance

multiple 9-40
simple 9-38

overloading 9-23
subscripting 9-16

See also classes and objects 9-12
objects

accessing data in 9-13
as indices into objects 9-21
creating 9-4
invoking methods on 9-4
loading 9-64
overview 9-2
precedence 9-70
saving 9-64

offsets for indexing 1-65
online help 4-11

Index-15

Index

opening
files

failing 6-106
HDF4 files 7-59
permissions 6-105
using low-level functions 6-105

operator precedence 3-25
overriding 3-26

operators
addition 3-16
applying to cell arrays 2-108
applying to structure fields 2-83
arithmetic 3-16
categories 3-16
colon 3-16
complex conjugate transpose 3-16
deletion 1-35
equal to 3-18
greater than 3-18
greater than or equal to 3-18
left division 3-16
less than 3-17
less than or equal to 3-17
logical 3-19

bit-wise 3-23
elementwise 3-19
short-circuit 3-24

matrix left division 3-17
matrix multiplication 3-16
matrix power 3-17
matrix right division 3-16
multiplication 3-16
not equal to 3-18
overloading 9-3
power 3-16
relational 3-17
right division 3-16
subtraction 3-16
table of 9-23
transpose 3-16

unary minus 3-16
unary plus 3-16

optimization
preallocation, array 11-7 11-25
vectorization 11-4

or (M-file function equivalent for |) 3-20
organizing data

cell arrays 2-109
multidimensional arrays 1-71
structure arrays 2-85

Out of Memory message 11-27
output arguments 4-10

order of 4-34
output formatting functions 2-32
overloaded functions 3-110 5-37
overloading 9-16

arithmetic operators 9-32
functions 9-25
loadobj 9-65
operators 9-3
pie3 9-61
saveobj 9-65

P
pack 11-24
page subscripts 1-57
parentheses

for input arguments 4-10
overriding operator precedence with 3-26

parsing input arguments 4-36
Paste Special option 6-11
path

adding directories to 9-7
pcode 4-15
percent sign (comments) 4-12
performance

analyzing 11-2
permission strings 6-105
permute 1-68

Index-16

Index

permuting array dimensions 1-68
inverse 1-69

persistent variables 3-5
initializing 3-6

pi 3-14
pie3 function overloaded 9-61
plane organization for structures 2-87
polar 4-18
polynomials

example class 9-26
power operators

matrix power 3-17
power 3-16

preallocation
arrays 11-7 11-25
cell array 11-8

precedence
object 9-70
operator 3-25

overriding 3-26
precision

char 6-108
data types 6-108
double 6-108
float 6-108
long 6-108
short 6-108
single 6-108
uchar 6-108

primary functions 5-15
private directory 5-35
private functions 5-35

precedence of in classes 9-74
precedence of when calling 4-54

private methods 9-5
program control

break 3-93
case 3-89
catch 3-94

conditional control 3-87
continue 3-93
else 3-87
elseif 3-87
error control 3-94
for 3-91
if 3-87
loop control 3-91
otherwise 3-89
program termination 3-95
return 3-95
switch 3-89
try 3-94
while 3-92

programs
running external 3-28

pseudocode 4-15 to 4-16

Q
quit 11-24

R
randn 1-60
reading

HDF4 data 7-53
from the command line 7-56

selecting HDF4 data sets 7-38
subsets of HDF4 data 7-39

realmax 3-14
realmin 3-14
reference, subscripted 9-16
regexp 3-31
regexpi 3-31
regexprep 3-31
regexptranslate 3-31
regular expression metacharacters

Index-17

Index

character classes
match alphanumeric character (\w) 3-35
match any character (period) 3-34
match any characters but these

([^c1c2c3]) 3-33
match any of these characters

([c1c2c3]) 3-34
match characters in this range

([c1-c2]) 3-35
match digit character (\d) 3-35
match nonalphanumeric character

(\W) 3-33
match nondigit character (\D) 3-33
match nonwhitespace character

(\S) 3-33
match whitespace character (\s) 3-35

character representation
alarm character (\a) 3-36
backslash character (\\) 3-36 3-73
backspace character (\b) 3-36
carriage return character (\r) 3-36
dollar sign (\$) 3-36 3-73
form feed character (\f) 3-36
hexadecimal character (\x) 3-36
horizontal tab character (\t) 3-36
literal character (\char) 3-36
new line character (\n) 3-36
octal character (\o) 3-36
vertical tab character (\v) 3-36

conditional operators
if condition, match expr

((?(condition)expr)) 3-55 3-77
dynamic expressions

pattern matching functions 3-61
pattern matching scripts 3-62
replacement expressions 3-60
string replacement functions 3-64

logical operators
atomic group ((?>expr)) 3-37
comment (?#expr) 3-39
grouping and capture (expr) 3-37
grouping only (?:expr) 3-37
match exact word (\<expr\>) 3-40
match expr1 or expr2 (expr1|expr2) 3-38
match if expression begins string

(^expr) 3-39
match if expression begins word

(\<expr) 3-40
match if expression ends string

(expr$) 3-39
match if expression ends word

(expr\>) 3-40
noncapturing group ((?:expr)) 3-37

lookaround operators
match expr1, if followed by expr2

(expr1(?=expr2)) 3-42
match expr1, if not followed by expr2

(expr1(?!expr2)) 3-42
match expr2, if not preceded by expr1

(expr1(?<!expr2)) 3-44
match expr2, if preceded by expr1

(expr1(?<=expr2)) 3-43
operator summary 3-71
quantifiers

lazy quantifier (quant?) 3-47
match 0 or 1 instance (expr?) 3-46
match 0 or more instances (expr*) 3-46
match 1 or more instances (expr+) 3-47
match at least m instances

(expr{m,}) 3-45
match m to n instances (expr{m,n}) 3-47
match n instances (expr{n}) 3-45

Index-18

Index

token operators
conditional with named token

((?(name)s1|s2)) 3-53
create named token

((?<name>expr)) 3-53
create unnamed token ((expr)) 3-48
give name to token

((?<name>expr))) 3-53
if token, match expr1, else expr2

((?(token)expr1|expr2)) 3-55
match named token (\k<name>) 3-53
match Nth token (\N) 3-48
replace Nth token ($N) 3-49
replace Nth token (N) 3-49
replace with named token

(?<name>) 3-53
regular expressions

character classes 3-33
character representation 3-36
conditional expressions 3-55
dynamic expressions 3-57

example 3-58
functions

regexp 3-31
regexpi 3-31
regexprep 3-31
regexptranslate 3-31

introduction 3-30
logical operators 3-37
lookaround operators 3-39

used in logical statements 3-44
multiple strings

finding a single pattern 3-68
finding multiple patterns 3-70
matching 3-68
replacing 3-70

quantifiers 3-45
lazy 3-47

tokens 3-48
example 1 3-50
example 2 3-50
introduction 3-49
named capture 3-53
operators 3-48
use in replacement string 3-53

relational operators 3-17
empty arrays 3-18
strings 2-56

removing
cells from cell array 2-106
fields from structure arrays 2-83
singleton dimensions 1-67

replacing substring within string 2-58
repmap 1-60
reshape 1-66 2-106
reshaping

cell arrays 2-106
multidimensional arrays 1-66

reshaping matrices 1-36
rmfield 2-83
rotating matrices 1-38

S
save 11-24
saveobj example 9-66
saving

objects 9-64
scalar

and relational operators 2-56
expansion 3-17
string 2-56

scalars 1-51
scheduling program execution

using timers 10-2
scripts 4-7

example 4-17
executing 4-18

Index-19

Index

search path
M-files on 5-34

set method 9-14
shell escape functions 3-28
shiftdim 1-79
shifting matrix elements 1-41
short 6-108
short integer 6-108
short-circuiting

in conditional expressions 3-21
operators 3-24

simple inheritance 9-38
sin 1-70
single precision 6-108
single-precision matrix 2-6
size 2-81

structure arrays 2-81
structure fields 2-81

smallest value system can represent 3-14
sorting matrix column data 1-43
sorting matrix row data 1-43
sorting matrix row vectors 1-44
(space) character

for separating array row elements 3-106
for separating function return values 3-106

sparse matrices
memory requirements 11-23

sparse matrix functions 1-54
sprintf 6-115

formatting strings 2-42
square brackets

for output arguments 4-10
squeeze 1-67

with multidimensional arguments 1-71
sscanf 6-114
starting

timers 10-10
statements

conditional 4-32
stopping

timers 10-10
strcmp 2-55
string to numeric conversion

functions 2-61
strings 2-37

comparing 2-55
converting to numeric 2-61
functions to create 2-63
searching and replacing 2-58

strings, cell arrays of 2-39
strings, formatting 2-42

escape characters 2-43
field width 2-49
flags 2-50
format operator 2-45
precision 2-48
setting field width 2-51 to 2-52
setting precision 2-51 to 2-52
subtype 2-48
using identifiers 2-53
value identifiers 2-51

structs 2-76
for nested structures 2-91

structure arrays 2-74
accessing data 2-78
adding fields to 2-82
applying functions to 2-83
building 2-75

using structs 2-76
data organization 2-85
deleting fields 2-83
dynamic field names 2-80
element-by-element organization 2-88
expanding 2-75
fields 2-74

assigning data to 2-75
growing 1-32 1-34
indexing

nested structures 2-91
within fields 2-80

Index-20

Index

multidimensional 1-74
applying functions 1-75

nesting 2-91
obtaining field names 2-76
organizing data 2-85

example 2-89
plane organization 2-87
size 2-81
subarrays, accessing 2-79
subscripting 2-75
used with classes 9-7
within cell arrays 2-113
writing M-files for 2-84

example 2-84
structures

field names
dynamic 2-80

functions 2-92
subfunctions 5-33

accessing 5-34
creating 5-33
debugging 5-34
definition line 5-33
precedence of 4-54

subsasgn
for index reference 9-15
for subscripted assignment 9-19

subscripted assignment 9-19
subscripting

how MATLAB calculates indices 1-65
multidimensional arrays 1-57
overloading 9-16
page 1-57
structure arrays 2-75
with logical expression 3-22
with the find function 3-22

subsref 9-16
subsref method 9-15
substring within a string 2-58
subtraction operator 3-16

sum 1-70
superiorto 9-71
superseding existing M-file names 5-34
switch

case groupings 3-89
example 3-90
multiple conditions 3-90

symbols 3-96
asterisk * 3-96
at sign @ 3-97
colon : 3-98
comma , 3-99
curly braces { } 3-100
dot . 3-100
dot-dot .. 3-101
dot-dot-dot ... 3-101
dot-parentheses .() 3-102
exclamation point ! 3-103
parentheses () 3-103
percent % 3-103
percent-brace %{ and %} 3-104
semicolon ; 3-104
single quotes ' 3-105
space character 3-106
square brackets [] 3-107

T
tabs in string arrays 2-57
tempdir 6-107
tempname 6-107
temporary files

creating 6-107
text files

reading 6-112
tic and toc

versus cputime 11-3
time

numbers 2-67
time and date functions 2-72

Index-21

Index

timer objects
blocking the command line 10-12
callback functions 10-14
creating 10-5
deleting 10-5
execution modes 10-19
finding all existing timers 10-24
naming convention 10-6
overview 10-2
properties 10-7
starting 10-10
stopping 10-10

timers
starting and stopping 10-10
using 10-2

times and dates 2-66
tips, programming

additional information 12-57
command and function syntax 12-4
debugging 12-23
demos 12-56
development environment 12-12
evaluating expressions 12-34
files and filenames 12-47
function arguments 12-17
help 12-7
input/output 12-50
M-file functions 12-14
MATLAB path 12-36
operating system compatibility 12-54
program control 12-40
program development 12-20
save and load 12-44
starting MATLAB 12-53
strings 12-31
variables 12-27

token in string 2-58
tokens

regular expressions 3-48
tolerance 3-14

transpose 1-69
transpose operator 3-16
transposing matrices 1-37
trigonometric functions 1-70
type identification functions 2-32

U
uchar data type 6-108
unary minus operator 3-16
unary plus operator 3-16
user classes, designing 9-9

V
value

data type 6-108
largest system can represent 3-14

varargin 2-108 4-35
in argument list 4-36
in nested functions 4-47
unpacking contents 4-35

varargout 4-35
in argument list 4-36
in nested functions 4-47
packing contents 4-35

variables
global 3-3

alternatives 3-5
creating 3-4
displaying 3-4
recommendations 3-11
suggestions for use 3-4

in evaluation statements 3-9
lifetime of 3-12
loaded from a MAT-file 3-8
local 3-2
naming 3-6

conflict with function names 3-7

Index-22

Index

persistent 3-5
initializing 3-6

replacing list with a cell array 2-107
scope 3-10

in nested functions 3-12
storage in memory 11-18
usage guidelines 3-10

vector
of dates 2-69
preallocation 11-7 11-25

vectorization 11-4
example 11-4
replacing for

vectorization 3-91
vectors 1-52
verbose mode

warning control 8-31
version 3-14

obtaining 3-14

W
warning

formatting strings 2-42
warning control 8-24

backtrace, verbose modes 8-31
saving and restoring state 8-30

warning control statements
message identifiers 8-26
output from 8-28
output structure array 8-29

warnings
debugging 8-34
identifying 8-23
syntax 8-25
warning control statements 8-26
warning states 8-26

Web content access 6-117
which 4-55

used with methods 9-75
while

empty arrays 3-93
example 3-92
syntax 3-92

white space
finding in string 2-57

whos 1-62
interpreting memory use 11-24

wildcards, in filenames 3-97
workspace

context 4-18
of individual functions 4-18

writing
ASCII data 6-84
HDF4 data 7-67
in HDF4 format 7-57
in HDF5 format 7-16

Z
zeros 1-60

Index-23

MATLAB® 7
Programming Tips

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

MATLAB Programming Tips

© COPYRIGHT 1984–2007 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined
in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of
this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government’s
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, SimBiology,
SimHydraulics, SimEvents, and xPC TargetBox are registered trademarks and The
MathWorks, the L-shaped membrane logo, Embedded MATLAB, and PolySpace are
trademarks of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective
holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
July 2002 Online only New for MATLAB 6.5 (Release 13)
June 2004 Online only Revised for MATLAB 7.0 (Release 14)
March 2005 Online only Minor revision for MATLAB 7.0.4 (Release 14SP2)
September 2005 Online only Minor revision for MATLAB 7.1 (Release 14SP3)
September 2007 Online only Minor revision for MATLAB 7.5 (Release 2007b)

Contents

Programming Tips

1
Introduction . 1-3

Command and Function Syntax . 1-4
Syntax Help . 1-4
Command and Function Syntaxes . 1-4
Command Line Continuation . 1-4
Completing Commands Using the Tab Key 1-5
Recalling Commands . 1-5
Clearing Commands . 1-6
Suppressing Output to the Screen . 1-6

Help . 1-7
Using the Help Browser . 1-7
Help on Functions from the Help Browser 1-8
Help on Functions from the Command Window 1-8
Topical Help . 1-8
Paged Output . 1-9
Writing Your Own Help . 1-10
Help for Subfunctions and Private Functions 1-10
Help for Methods and Overloaded Functions 1-10

Development Environment . 1-12
Workspace Browser . 1-12
Using the Find and Replace Utility 1-12
Commenting Out a Block of Code . 1-13
Creating M-Files from Command History 1-13
Editing M-Files in EMACS . 1-13

M-File Functions . 1-14
M-File Structure . 1-14
Using Lowercase for Function Names 1-14
Getting a Function’s Name and Path 1-15
What M-Files Does a Function Use? 1-15
Dependent Functions, Built-Ins, Classes 1-16

v

Function Arguments . 1-17
Getting the Input and Output Arguments 1-17
Variable Numbers of Arguments . 1-17
String or Numeric Arguments . 1-18
Passing Arguments in a Structure . 1-18
Passing Arguments in a Cell Array 1-19

Program Development . 1-20
Planning the Program . 1-20
Using Pseudo-Code . 1-20
Selecting the Right Data Structures 1-20
General Coding Practices . 1-21
Naming a Function Uniquely . 1-21
The Importance of Comments . 1-21
Coding in Steps . 1-22
Making Modifications in Steps . 1-22
Functions with One Calling Function 1-22
Testing the Final Program . 1-22

Debugging . 1-23
The MATLAB Debug Functions . 1-23
More Debug Functions . 1-23
The MATLAB Graphical Debugger 1-24
A Quick Way to Examine Variables 1-24
Setting Breakpoints from the Command Line 1-25
Finding Line Numbers to Set Breakpoints 1-25
Stopping Execution on an Error or Warning 1-25
Locating an Error from the Error Message 1-25
Using Warnings to Help Debug . 1-26
Making Code Execution Visible . 1-26
Debugging Scripts . 1-26

Variables . 1-27
Rules for Variable Names . 1-27
Making Sure Variable Names Are Valid 1-27
Do Not Use Function Names for Variables 1-28
Checking for Reserved Keywords . 1-28
Avoid Using i and j for Variables . 1-29
Avoid Overwriting Variables in Scripts 1-29
Persistent Variables . 1-29
Protecting Persistent Variables . 1-29
Global Variables . 1-30

vi Contents

Strings . 1-31
Creating Strings with Concatenation 1-31
Comparing Methods of Concatenation 1-31
Store Arrays of Strings in a Cell Array 1-32
Converting Between Strings and Cell Arrays 1-32
Search and Replace Using Regular Expressions 1-32

Evaluating Expressions . 1-34
Find Alternatives to Using eval . 1-34
Assigning to a Series of Variables . 1-34
Short-Circuit Logical Operators . 1-35
Changing the Counter Variable within a for Loop 1-35

MATLAB Path . 1-36
Precedence Rules . 1-36
File Precedence . 1-37
Adding a Directory to the Search Path 1-37
Handles to Functions Not on the Path 1-37
Making Toolbox File Changes Visible to MATLAB 1-38
Making Nontoolbox File Changes Visible to MATLAB 1-39
Change Notification on Windows . 1-39

Program Control . 1-40
Using break, continue, and return . 1-40
Using switch Versus if . 1-41
MATLAB case Evaluates Strings . 1-41
Multiple Conditions in a case Statement 1-41
Implicit Break in switch-case . 1-41
Variable Scope in a switch . 1-42
Catching Errors with try-catch . 1-42
Nested try-catch Blocks . 1-43
Forcing an Early Return from a Function 1-43

Save and Load . 1-44
Saving Data from the Workspace . 1-44
Loading Data into the Workspace . 1-44
Viewing Variables in a MAT-File . 1-45
Appending to a MAT-File . 1-45
Save and Load on Startup or Quit . 1-46
Saving to an ASCII File . 1-46

Files and Filenames . 1-47

vii

Naming M-files . 1-47
Naming Other Files . 1-47
Passing Filenames as Arguments . 1-48
Passing Filenames to ASCII Files . 1-48
Determining Filenames at Run-Time 1-48
Returning the Size of a File . 1-48

Input/Output . 1-50
File I/O Function Overview . 1-50
Common I/O Functions . 1-50
Readable File Formats . 1-51
Using the Import Wizard . 1-51
Loading Mixed Format Data . 1-51
Reading Files with Different Formats 1-52
Reading ASCII Data into a Cell Array 1-52
Interactive Input into Your Program 1-52

Starting MATLAB . 1-53
Getting MATLAB to Start Up Faster 1-53

Operating System Compatibility . 1-54
Executing O/S Commands from MATLAB 1-54
Searching Text with grep . 1-54
Constructing Paths and Filenames 1-54
Finding the MATLAB Root Directory 1-55
Temporary Directories and Filenames 1-55

Demos . 1-56
Demos Available with MATLAB . 1-56

For More Information . 1-57
Current CSSM . 1-57
Archived CSSM . 1-57
MATLAB Technical Support . 1-57
Tech Notes . 1-57
MATLAB Central . 1-57
MATLAB Newsletters (Digest, News & Notes) 1-57
MATLAB Documentation . 1-58
MATLAB Index of Examples . 1-58

viii Contents

1

Programming Tips

Introduction (p. 1-3) How to Use the Programming Tips

Command and Function Syntax
(p. 1-4)

Syntax, command shortcuts,
command recall, etc.

Help (p. 1-7) Getting help on MATLAB functions
and your own

Development Environment (p. 1-12) Useful features in the development
environment

M-File Functions (p. 1-14) M-file structure, getting information
about a function

Function Arguments (p. 1-17) Various ways to pass arguments,
useful functions

Program Development (p. 1-20) Suggestions for creating and
modifying program code

Debugging (p. 1-23) Using the debugging environment
and commands

Variables (p. 1-27) Variable names, global and
persistent variables

Strings (p. 1-31) String concatenation, string
conversion, etc.

Evaluating Expressions (p. 1-34) Use of eval, short-circuiting logical
expressions, etc.

MATLAB Path (p. 1-36) Precedence rules, making file
changes visible to MATLAB, etc.

Program Control (p. 1-40) Using program control statements
like if, switch, try

1 Programming Tips

Save and Load (p. 1-44) Saving MATLAB data to a file,
loading it back in

Files and Filenames (p. 1-47) Naming M-files, passing filenames,
etc.

Input/Output (p. 1-50) Reading and writing various types
of files

Starting MATLAB (p. 1-53) Getting MATLAB to start up faster

Operating System Compatibility
(p. 1-54)

Interacting with the operating
system

Demos (p. 1-56) Learning about the demos supplied
with MATLAB

For More Information (p. 1-57) Other valuable resources for
information

1-2

Introduction

Introduction
This section is a categorized compilation of tips for the MATLAB®

programmer. Each item is relatively brief to help you browse through them
and find information that is useful. Many of the tips include a reference to
specific MATLAB documentation that gives you more complete coverage of
the topic. You can find information on the following topics:

For suggestions on how to improve the performance of your MATLAB
programs, and how to write programs that use memory more efficiently, see
Improving Performance and Memory Usage

1-3

1 Programming Tips

Command and Function Syntax

In this section...

“Syntax Help” on page 1-4

“Command and Function Syntaxes” on page 1-4

“Command Line Continuation” on page 1-4

“Completing Commands Using the Tab Key” on page 1-5

“Recalling Commands” on page 1-5

“Clearing Commands” on page 1-6

“Suppressing Output to the Screen” on page 1-6

Syntax Help
For help about the general syntax of MATLAB functions and commands, type

help syntax

Command and Function Syntaxes
You can enter MATLAB commands using either a command or function
syntax. It is important to learn the restrictions and interpretation rules for
both.

functionname arg1 arg2 arg3 % Command syntax
functionname('arg1','arg2','arg3') % Function syntax

For more information: See Calling Functions in the MATLAB Programming
documentation.

Command Line Continuation
You can continue most statements to one or more additional lines by
terminating each incomplete line with an ellipsis (...). Breaking down
a statement into a number of lines can sometimes result in a clearer
programming style.

sprintf ('Example %d shows a command coded on %d lines.\n', ...
exampleNumber, ...

1-4

Command and Function Syntax

numberOfLines)

Note that you cannot continue an incomplete string to another line.

disp 'This statement attempts to continue a string ...
to another line, resulting in an error.'

For more information: See Entering Long Statements in the MATLAB
Desktop Tools and Development Environment documentation.

Completing Commands Using the Tab Key
You can save some typing when entering commands by entering only the first
few letters of the command, variable, property, etc. followed by the Tab key.
Typing the second line below (with T representing Tab) yields the expanded,
full command shown in the third line:

f = figure;
set(f, 'papTuT,'cT) % Type this line.
set(f, 'paperunits','centimeters') % This is what you get.

If there are too many matches for the string you are trying to complete, you
will get no response from the first Tab. Press Tab again to see all possible
choices:

set(f, 'paTT
PaperOrientation PaperPositionMode PaperType Parent
PaperPosition PaperSize PaperUnits

For more information: See Tab Completion in the Command Window in the
MATLAB Desktop Tools and Development Environment documentation

Recalling Commands
Use any of the following methods to simplify recalling previous commands
to the screen:

• To recall an earlier command to the screen, press the up arrow key one or
more times, until you see the command you want. If you want to modify the
recalled command, you can edit its text before pressing Enter or Return
to execute it.

1-5

1 Programming Tips

• To recall a specific command by name without having to scroll through your
earlier commands one by one, type the starting letters of the command,
followed by the up arrow key.

• Open the Command History window (View > Command History) to see
all previous commands. Double-click the command you want to execute.

For more information: See Recalling Previous Lines and Command History
Window in the MATLAB Desktop Tools and Development Environment
documentation.

Clearing Commands
If you have typed a command that you then decide not to execute, you can
clear it from the Command Window by pressing the Escape (Esc) key.

Suppressing Output to the Screen
To suppress output to the screen, end statements with a semicolon. This can
be particularly useful when generating large matrices.

A = magic(100); % Create matrix A, but do not display it.

1-6

Help

Help

In this section...

“Using the Help Browser” on page 1-7

“Help on Functions from the Help Browser” on page 1-8

“Help on Functions from the Command Window” on page 1-8

“Topical Help” on page 1-8

“Paged Output” on page 1-9

“Writing Your Own Help” on page 1-10

“Help for Subfunctions and Private Functions” on page 1-10

“Help for Methods and Overloaded Functions” on page 1-10

Using the Help Browser
Open the Help browser from the MATLAB Command Window using one of
the following:

• Click the question mark symbol in the toolbar.

• Select Help > Product Help from the menu.

• Type the word doc at the command prompt.

Some of the features of the Help browser are listed below.

Feature Description

Product Filter Establish which products to find help on.

Contents Look up topics in the Table of Contents.

Index Look up help using the documentation Index.

Search Search the documentation for one or more words.

Demos See what demos are available; run selected demos.

Favorites Save bookmarks for frequently used Help pages.

1-7

1 Programming Tips

For more information: See Finding Information with the Help Browser in
the MATLAB Desktop Tools and Development Environment documentation.

Help on Functions from the Help Browser
To find help on any function from the Help browser, do either of the following:

• Select the Contents tab of the Help browser, open the Contents entry
labeled MATLAB, and find the two subentries shown below. Use one of these
to look up the function you want help on.

- Functions — Categorical List

- Functions — Alphabetical List

• Type doc functionname at the command line.

Help on Functions from the Command Window
Several types of help on functions are available from the Command Window:

• To list all categories that you can request help on from the Command
Window, just type

help

• To see a list of functions for one of these categories, along with a brief
description of each function, type help category. For example,

help datafun

• To get help on a particular function, type help functionname. For example,

help sortrows

Topical Help
In addition to the help on individual functions, you can get help on any of the
following topics by typing help topicname at the command line.

1-8

Help

Topic Name Description

arith Arithmetic operators

relop Relational and logical operators

punct Special character operators

slash Arithmetic division operators

paren Parentheses, braces, and bracket operators

precedence Operator precedence

datatypes MATLAB data types, their associated functions, and
operators that you can overload

lists Comma separated lists

strings Character strings

function_handle Function handles and the @ operator

debug Debugging functions

java Using Java from within MATLAB

fileformats A list of readable file formats

changeNotification Windows directory change notification

Paged Output
Before displaying a lengthy section of help text or code, put MATLAB into its
paged output mode by typing more on. This breaks up any ensuing display
into pages for easier viewing. Turn off paged output with more off.

Page through the displayed text using the space bar key. Or step through
line by line using Enter or Return. Discontinue the display by pressing
the Q key or Ctrl+C.

1-9

1 Programming Tips

Writing Your Own Help
Start each program you write with a section of text providing help on how and
when to use the function. If formatted properly, the MATLAB help function
displays this text when you enter

help functionname

MATLAB considers the first group of consecutive lines immediately following
the function definition line that begin with % to be the help section for the
function. The first line without % as the left-most character ends the help.

For more information: See Help Text in the MATLAB Desktop Tools and
Development Environment documentation.

Help for Subfunctions and Private Functions
You can write help for subfunctions using the same rules that apply to main
functions. To display the help for the subfunction mysubfun in file myfun.m,
type

help myfun>mysubfun

To display the help for a private function, precede the function name with
private/. To get help on private function myprivfun, type

help private/myprivfun

Help for Methods and Overloaded Functions
You can write help text for object-oriented class methods implemented with
M-files. Display help for the method by typing

help classname/methodname

where the file methodname.m resides in subdirectory @classname.

For example, if you write a plot method for a class named polynom, (where
the plot method is defined in the file @polynom/plot.m), you can display
this help by typing

help polynom/plot

1-10

Help

You can get help on overloaded MATLAB functions in the same way. To display
the help text for the eq function as implemented in matlab/iofun/@serial,
type

help serial/eq

1-11

1 Programming Tips

Development Environment

In this section...

“Workspace Browser” on page 1-12

“Using the Find and Replace Utility” on page 1-12

“Commenting Out a Block of Code” on page 1-13

“Creating M-Files from Command History” on page 1-13

“Editing M-Files in EMACS” on page 1-13

Workspace Browser
The Workspace browser is a graphical interface to the variables stored in
the MATLAB base and function workspaces. You can view, modify, save,
load, and create graphics from workspace data using the browser. Select
View > Workspace to open the browser.

To view function workspaces, you need to be in debug mode.

For more information: See MATLAB Workspace in the MATLAB Desktop
Tools and Development Environment documentation.

Using the Find and Replace Utility
Find any word or phrase in a group of files using the Find and Replace utility.
Click View > Current Directory, and then click the binoculars icon at the
top of the Current Directory window.

When entering search text, you do not need to put quotes around a phrase.
In fact, parts of words, like win for windows, will not be found if enclosed in
quotes.

For more information: See Finding and Replacing Text in the Current File
in the MATLAB Desktop Tools and Development Environment documentation.

1-12

Development Environment

Commenting Out a Block of Code
To comment out a block of text or code within the MATLAB editor,

1 Highlight the block of text you would like to comment out.

2 Holding the mouse over the highlighted text, select Text > Comment (or
Uncomment, to do the reverse) from the toolbar. (You can also get these
options by right-clicking the mouse.)

For more information: See Adding Comments in the MATLAB Desktop
Tools and Development Environment documentation.

Creating M-Files from Command History
If there is part of your current MATLAB session that you would like to put
into an M-file, this is easily done using the Command History window:

1 Open this window by selecting View > Command History.

2 Use Shift+Click or Ctrl+Click to select the lines you want to use.
MATLAB highlights the selected lines.

3 Right-click once, and select Create M-File from the menu that appears.
MATLAB creates a new Editor window displaying the selected code.

Editing M-Files in EMACS
If you use Emacs, you can download editing modes for editing M-files with
GNU-Emacs or with early versions of Emacs from the MATLAB Central Web
site:

http://www.mathworks.com/matlabcentral/

At this Web site, select File Exchange, and then Utilities > Emacs.

For more information: See General Preferences for the Editor/Debugger in
the MATLAB Desktop Tools and Development Environment documentation.

1-13

http://www.mathworks.com/matlabcentral/%0D

1 Programming Tips

M-File Functions

In this section...

“M-File Structure” on page 1-14

“Using Lowercase for Function Names” on page 1-14

“Getting a Function’s Name and Path” on page 1-15

“What M-Files Does a Function Use?” on page 1-15

“Dependent Functions, Built-Ins, Classes” on page 1-16

M-File Structure
An M-File consists of the components shown here:

function [x, y] = myfun(a, b, c) % Function definition line
% H1 line -- A one-line summary of the function's purpose.
% Help text -- One or more lines of help text that explain
% how to use the function. This text is displayed when
% the user types "help functionname".

% The Function body normally starts after the first blank line.
% Comments -- Description (for internal use) of what the
% function does, what inputs are expected, what outputs
% are generated. Typing "help functionname" does not display
% this text.

x = prod(a, b); % Start of Function code

For more information: See Basic Parts of an M-File in the MATLAB
Programming documentation.

Using Lowercase for Function Names
Function names appear in uppercase in MATLAB help text only to make the
help easier to read. In practice, however, it is usually best to use lowercase
when calling functions.

1-14

M-File Functions

For M-file functions, case requirements depend on the case sensitivity of the
operating system you are using. As a rule, naming and calling functions using
lowercase generally makes your M-files more portable from one operating
system to another.

Getting a Function’s Name and Path
To obtain the name of an M-file that is currently being executed, use the
following function in your M-file code.

mfilename

To include the path along with the M-file name, use

mfilename('fullpath')

For more information: See the mfilename function reference page.

What M-Files Does a Function Use?
For a simple display of all M-files referenced by a particular function, follow
the steps below:

1 Type clear functions to clear all functions from memory (see Note below).

2 Execute the function you want to check. Note that the function arguments
you choose to use in this step are important, since you can get different
results when calling the same function with different arguments.

3 Type inmem to display all M-Files that were used when the function ran. If
you want to see what MEX-files were used as well, specify an additional
output, as shown here:

[mfiles, mexfiles] = inmem

Note clear functions does not clear functions locked by mlock. If you
have locked functions, (which you can check using inmem), unlock them with
munlock, and then repeat step 1.

1-15

1 Programming Tips

Dependent Functions, Built-Ins, Classes
For a much more detailed display of dependent function information, use the
depfun function. In addition to M-files, depfun shows which built-ins and
classes a particular function depends on.

1-16

Function Arguments

Function Arguments

In this section...

“Getting the Input and Output Arguments” on page 1-17

“Variable Numbers of Arguments” on page 1-17

“String or Numeric Arguments” on page 1-18

“Passing Arguments in a Structure” on page 1-18

“Passing Arguments in a Cell Array” on page 1-19

Getting the Input and Output Arguments
Use nargin and nargout to determine the number of input and output
arguments in a particular function call. Use nargchk and nargoutchk to
verify that your function is called with the required number of input and
output arguments.

function [x, y] = myplot(a, b, c, d)
disp(nargchk(2, 4, nargin)) % Allow 2 to 4 inputs
disp(nargoutchk(0, 2, nargout)) % Allow 0 to 2 outputs

x = plot(a, b);
if nargin == 4

y = myfun(c, d);
end

Variable Numbers of Arguments
You can call functions with fewer input and output arguments than you have
specified in the function definition, but not more. If you want to call a function
with a variable number of arguments, use the varargin and varargout
function parameters in the function definition.

This function returns the size vector and, optionally, individual dimensions:

function [s, varargout] = mysize(x)
nout = max(nargout, 1) - 1;
s = size(x);
for k = 1:nout

1-17

1 Programming Tips

varargout(k) = {s(k)};
end

Try calling it with

[s, rows, cols] = mysize(rand(4, 5))

String or Numeric Arguments
If you are passing only string arguments into a function, you can use
MATLAB command syntax. All arguments entered in command syntax are
interpreted as strings.

strcmp string1 string1
ans =

1

When passing numeric arguments, it is best to use function syntax unless you
want the number passed as a string. The right-hand example below passes
the number 75 as the string, '75'.

isnumeric(75) isnumeric 75
ans = ans =

1 0

For more information: See Passing Arguments with Command and
Function Syntax in the MATLAB Programming documentation.

Passing Arguments in a Structure
Instead of requiring an additional argument for every value you want to pass
in a function call, you can package them in a MATLAB structure and pass the
structure. Make each input you want to pass a separate field in the structure
argument, using descriptive names for the fields.

Structures allow you to change the number, contents, or order of the
arguments without having to modify the function. They can also be useful
when you have a number of functions that need similar information.

1-18

Function Arguments

Passing Arguments in a Cell Array
You can also group arguments into cell arrays. The disadvantage over
structures is that you do not have field names to describe each variable. The
advantage is that cell arrays are referenced by index, allowing you to loop
through a cell array and access each argument passed in or out of the function.

1-19

1 Programming Tips

Program Development

In this section...

“Planning the Program” on page 1-20

“Using Pseudo-Code” on page 1-20

“Selecting the Right Data Structures” on page 1-20

“General Coding Practices” on page 1-21

“Naming a Function Uniquely” on page 1-21

“The Importance of Comments” on page 1-21

“Coding in Steps” on page 1-22

“Making Modifications in Steps” on page 1-22

“Functions with One Calling Function” on page 1-22

“Testing the Final Program” on page 1-22

Planning the Program
When planning how to write a program, take the problem you are trying
to solve and break it down into a series of smaller, independent tasks.
Implement each task as a separate function. Try to keep functions fairly
short, each having a single purpose.

Using Pseudo-Code
You may find it helpful to write the initial draft of your program in a
structured format using your own natural language. This pseudo-code is often
easier to think through, review, and modify than using a formal programming
language, yet it is easily translated into a programming language in the next
stage of development.

Selecting the Right Data Structures
Look at what data types and data structures are available to you in MATLAB
and determine which of those best fit your needs in storing and passing your
data.

1-20

Program Development

For more information: See Data Types in the MATLAB Programming
documentation.

General Coding Practices
A few suggested programming practices:

• Use descriptive function and variable names to make your code easier to
understand.

• Order subfunctions alphabetically in an M-file to make them easier to find.

• Precede each subfunction with a block of help text describing what that
subfunction does. This not only explains the subfunctions, but also helps
to visually separate them.

• Do not extend lines of code beyond the 80th column. Otherwise, it will be
hard to read when you print it out.

• Use full Handle Graphics® property and value names. Abbreviated names
are often allowed, but can make your code unreadable. They also could be
incompatible in future releases of MATLAB.

Naming a Function Uniquely
To avoid choosing a name for a new function that might conflict with a name
already in use, check for any occurrences of the name using this command:

which -all functionname

For more information: See the which function reference page.

The Importance of Comments
Be sure to document your programs well to make it easier for you or someone
else to maintain them. Add comments generously, explaining each major
section and any smaller segments of code that are not obvious. You can add
a block of comments as shown here.

%---
% This function computes the ... <and so on>
%---

1-21

1 Programming Tips

For more information: See Comments in the MATLAB Programming
documentation.

Coding in Steps
Do not try to write the entire program all at once. Write a portion of it, and
then test that piece out. When you have that part working the way you want,
then write the next piece, and so on. It’s much easier to find programming
errors in a small piece of code than in a large program.

Making Modifications in Steps
When making modifications to a working program, do not make widespread
changes all at one time. It’s better to make a few small changes, test and
debug, make a few more changes, and so on. Tracking down a difficult bug
in the small section that you’ve changed is much easier than trying to find it
in a huge block of new code.

Functions with One Calling Function
If you have a function that is called by only one other function, put it in the
same M-file as the calling function, making it a subfunction.

For more information: See Subfunctions in the MATLAB Programming
documentation.

Testing the Final Program
One suggested practice for testing a new program is to step through the
program in the MATLAB debugger while keeping a record of each line that
gets executed on a printed copy of the program. Use different combinations of
inputs until you have observed that every line of code is executed at least once.

1-22

Debugging

Debugging

In this section...

“The MATLAB Debug Functions” on page 1-23

“More Debug Functions” on page 1-23

“The MATLAB Graphical Debugger” on page 1-24

“A Quick Way to Examine Variables” on page 1-24

“Setting Breakpoints from the Command Line” on page 1-25

“Finding Line Numbers to Set Breakpoints” on page 1-25

“Stopping Execution on an Error or Warning” on page 1-25

“Locating an Error from the Error Message” on page 1-25

“Using Warnings to Help Debug” on page 1-26

“Making Code Execution Visible” on page 1-26

“Debugging Scripts” on page 1-26

The MATLAB Debug Functions
For a brief description of the main debug functions in MATLAB, type

help debug

For more information: See Debugging Process and Features in the
MATLAB Desktop Tools and Development Environment documentation.

More Debug Functions
Other functions you may find useful in debugging are listed below.

Function Description

echo Display function or script code as it executes.

disp Display specified values or messages.

sprintf,
fprintf

Display formatted data of different types.

1-23

1 Programming Tips

Function Description

whos List variables in the workspace.

size Show array dimensions.

keyboard Interrupt program execution and allow input from
keyboard.

return Resume execution following a keyboard
interruption.

warning Display specified warning message.

error Display specified error message.

lasterr Return error message that was last issued.

lasterror Return last error message and related information.

lastwarn Return warning message that was last issued.

The MATLAB Graphical Debugger
Learn to use the MATLAB graphical debugger. You can view the function
and its calling functions as you debug, set and clear breakpoints, single-step
through the program, step into or over called functions, control visibility into
all workspaces, and find and replace strings in your files.

Start out by opening the file you want to debug using File > Open or the
open function. Use the debugging functions available on the toolbar and
pull-down menus to set breakpoints, run or step through the program, and
examine variables.

For more information: See Debugging Process and Features in the
MATLAB Desktop Tools and Development Environment documentation.

A Quick Way to Examine Variables
To see the value of a variable from the Editor/Debugger window, hold the
mouse cursor over the variable name for a second or two. You will see the
value of the selected variable displayed.

1-24

Debugging

Setting Breakpoints from the Command Line
You can set breakpoints with dbstop in any of the following ways:

• Break at a specific M-file line number.

• Break at the beginning of a specific subfunction.

• Break at the first executable line in an M-file.

• Break when a warning, or error, is generated.

• Break if any infinite or NaN values are encountered.

For more information: See Setting Breakpoints in the MATLAB Desktop
Tools and Development Environment documentation.

Finding Line Numbers to Set Breakpoints
When debugging from the command line, a quick way to find line numbers for
setting breakpoints is to use dbtype. The dbtype function displays all or part
of an M-file, also numbering each line. To display delaunay.m, use

dbtype delaunay

To display only lines 35 through 41, use

dbtype delaunay 35:41

Stopping Execution on an Error or Warning
Use dbstop if error to stop program execution on any error and enter
debug mode. Use warning debug to stop execution on any warning and enter
debug mode.

For more information: See Backtrace and Verbose Modes in the MATLAB
Programming documentation.

Locating an Error from the Error Message
Click on the underlined text in an error message, and MATLAB opens the
M-file being executed in its editor and places the cursor at the point of error.

1-25

1 Programming Tips

For more information: See Finding Errors, Debugging, and Correcting
M-Files in the MATLAB Desktop Tools and Development Environment
documentation.

Using Warnings to Help Debug
You can detect erroneous or unexpected behavior in your programs by
inserting warning messages that MATLAB will display under the conditions
you specify. See the section on Warning Control in the MATLAB Programming
documentation to find out how to selectively enable warnings.

For more information: See the warning function reference page.

Making Code Execution Visible
An easy way to see the end result of a particular line of code is to edit the
program and temporarily remove the terminating semicolon from that line.
Then, run your program and the evaluation of that statement is displayed
on the screen.

For more information: See Finding Errors, Debugging, and Correcting
M-Files in the MATLAB Desktop Tools and Development Environment
documentation.

Debugging Scripts
Scripts store their variables in a workspace that is shared with the caller of
the script. So, when you debug a script from the command line, the script uses
variables from the base workspace. To avoid errors caused by workspace
sharing, type clear all before starting to debug your script to clear the
base workspace.

1-26

Variables

Variables

In this section...

“Rules for Variable Names” on page 1-27

“Making Sure Variable Names Are Valid” on page 1-27

“Do Not Use Function Names for Variables” on page 1-28

“Checking for Reserved Keywords” on page 1-28

“Avoid Using i and j for Variables” on page 1-29

“Avoid Overwriting Variables in Scripts” on page 1-29

“Persistent Variables” on page 1-29

“Protecting Persistent Variables” on page 1-29

“Global Variables” on page 1-30

Rules for Variable Names
Although variable names can be of any length, MATLAB uses only the first
N characters of the name, (where N is the number returned by the function
namelengthmax), and ignores the rest. Hence, it is important to make
each variable name unique in the first N characters to enable MATLAB to
distinguish variables. Also note that variable names are case sensitive.

N = namelengthmax
N =

63

For more information: See Naming Variables in the MATLAB
Programming documentation.

Making Sure Variable Names Are Valid
Before using a new variable name, you can check to see if it is valid with the
isvarname function. Note that isvarname does not consider names longer
than namelengthmax characters to be valid.

For example, the following name cannot be used for a variable since it begins
with a number.

1-27

1 Programming Tips

isvarname 8thColumn
ans =

0

For more information: See Naming Variables in the MATLAB
Programming documentation.

Do Not Use Function Names for Variables
When naming a variable, make sure you are not using a name that is already
used as a function name. If you do define a variable with a function name,
you will not be able to call that function until you clear the variable from
memory. (If it’s a MATLAB built-in function, then you will still be able to call
that function but you must do so using builtin.)

To test whether a proposed variable name is already used as a function name,
use

which -all name

For more information: See Potential Conflict with Function Names in the
MATLAB Programming documentation.

Checking for Reserved Keywords
MATLAB reserves certain keywords for its own use and does not allow you
to override them. Attempts to use these words may result in any one of a
number of error messages, some of which are shown here:

Error: Expected a variable, function, or constant, found "=".
Error: "End of Input" expected, "case" found.
Error: Missing operator, comma, or semicolon.
Error: "identifier" expected, "=" found.

Use the iskeyword function with no input arguments to list all reserved
words.

1-28

Variables

Avoid Using i and j for Variables
MATLAB uses the characters i and j to represent imaginary units. Avoid
using i and j for variable names if you intend to use them in complex
arithmetic.

If you want to create a complex number without using i and j, you can use
the complex function.

Avoid Overwriting Variables in Scripts
MATLAB scripts store their variables in a workspace that is shared with
the caller of the script. When called from the command line, they share the
base workspace. When called from a function, they share that function’s
workspace. If you run a script that alters a variable that already exists in the
caller’s workspace, that variable is overwritten by the script.

For more information: See M-File Scripts in the MATLAB Programming
documentation.

Persistent Variables
To get the equivalent of a static variable in MATLAB, use persistent.
When you declare a variable to be persistent within a function, its value is
retained in memory between calls to that function. Unlike global variables,
persistent variables are known only to the function in which they are
declared.

For more information: See Persistent Variables in the MATLAB
Programming documentation.

Protecting Persistent Variables
You can inadvertently clear persistent variables from memory by either
modifying the function in which the variables are defined, or by clearing the
function with one of the following commands:

clear all
clear functions

1-29

1 Programming Tips

Locking the M-file in memory with mlock prevents any persistent variables
defined in the file from being reinitialized.

Global Variables
Use global variables sparingly. The global workspace is shared by all of
your functions and also by your interactive MATLAB session. The more
global variables you use, the greater the chances of unintentionally reusing a
variable name, thus leaving yourself open to having those variables change in
value unexpectedly. This can be a difficult bug to track down.

For more information: See Global Variables in the MATLAB Programming
documentation.

1-30

Strings

Strings

In this section...

“Creating Strings with Concatenation” on page 1-31

“Comparing Methods of Concatenation” on page 1-31

“Store Arrays of Strings in a Cell Array” on page 1-32

“Converting Between Strings and Cell Arrays” on page 1-32

“Search and Replace Using Regular Expressions” on page 1-32

Creating Strings with Concatenation
Strings are often created by concatenating smaller elements together (e.g.,
strings, values, etc.). Two common methods of concatenating are to use the
MATLAB concatenation operator ([]) or the sprintf function. The second
and third line below illustrate both of these methods. Both lines give the
same result:

numChars = 28;
s = ['There are ' int2str(numChars) ' characters here']
s = sprintf('There are %d characters here\n', numChars)

For more information: See Creating Character Arrays and Converting from
Numeric to String in the MATLAB Programming documentation.

Comparing Methods of Concatenation
When building strings with concatenation, sprintf is often preferable to []
because

• It is easier to read, especially when forming complicated expressions

• It gives you more control over the output format

• It often executes more quickly

You can also concatenate using the strcat function, However, for simple
concatenations, sprintf and [] are faster.

1-31

1 Programming Tips

Store Arrays of Strings in a Cell Array
It is usually best to store an array of strings in a cell array instead of a
character array, especially if the strings are of different lengths. Strings in
a character array must be of equal length, which often requires padding the
strings with blanks. This is not necessary when using a cell array of strings
that has no such requirement.

The cellRecord below does not require padding the strings with spaces:

cellRecord = {'Allison Jones'; 'Development'; 'Phoenix'};

For more information: See Cell Arrays of Strings in the MATLAB
Programming documentation.

Converting Between Strings and Cell Arrays
You can convert between standard character arrays and cell arrays of strings
using the cellstr and char functions:

charRecord = ['Allison Jones'; 'Development '; ...
'Phoenix '];

cellRecord = cellstr(charRecord);

Also, a number of the MATLAB string operations can be used with either
character arrays, or cell arrays, or both:

cellRecord2 = {'Brian Lewis'; 'Development'; 'Albuquerque'};
strcmp(charRecord, cellRecord2)
ans =

0
1
0

For more information: See Converting to a Cell Array of Strings and String
Comparisons in the MATLAB Programming documentation.

Search and Replace Using Regular Expressions
Using regular expressions in MATLAB offers a very versatile way of searching
for and replacing characters or phrases within a string. See the help on these
functions for more information.

1-32

Strings

Function Description

regexp Match regular expression.

regexpi Match regular expression, ignoring case.

regexprep Replace string using regular expression.

For more information: See “Regular Expressions” in the MATLAB
Programming documentation.

1-33

1 Programming Tips

Evaluating Expressions

In this section...

“Find Alternatives to Using eval” on page 1-34

“Assigning to a Series of Variables” on page 1-34

“Short-Circuit Logical Operators” on page 1-35

“Changing the Counter Variable within a for Loop” on page 1-35

Find Alternatives to Using eval
While the eval function can provide a convenient solution to certain
programming challenges, it is best to limit its use. The main reason is that
code that uses eval is often difficult to read and hard to debug. A second
reason is that eval statements cannot always be translated into C or C++
code by the MATLAB Compiler.

If you are evaluating a function, it is more efficient to use feval than eval.
The feval function is made specifically for this purpose and is optimized to
provide better performance.

For more information: See MATLAB Technical Note 1103, “What Is the
EVAL Function, When Should I Use It, and How Can I Avoid It?” at URL
http://www.mathworks.com/support/tech-notes/1100/1103.html.

Assigning to a Series of Variables
One common pattern for creating variables is to use a variable name suffixed
with a number (e.g., phase1, phase2, phase3, etc.). We recommend using a
cell array to build this type of variable name series, as it makes code more
readable and executes more quickly than some other methods. For example:

for k = 1:800
phase{k} = expression;

end

1-34

http://www.mathworks.com/support/tech-notes/1100/1103.html

Evaluating Expressions

Short-Circuit Logical Operators
MATLAB has logical AND and OR operators (&& and ||) that enable you to
partially evaluate, or short-circuit, logical expressions. Short-circuit operators
are useful when you want to evaluate a statement only when certain
conditions are satisfied.

In this example, MATLAB does not execute the function myfun unless its
M-file exists on the current path.

comp = (exist('myfun.m') == 2) && (myfun(x) >= y)

For more information: See “Short-Circuit Operators” in the MATLAB
Programming documentation.

Changing the Counter Variable within a for Loop
You cannot change the value of the loop counter variable (e.g., the variable
k in the example below) in the body of a for loop. For example, this loop
executes just 10 times, even though k is set back to 1 on each iteration.

for k = 1:10
fprintf('Pass %d\n', k)
k = 1;

end

Although MATLAB does allow you to use a variable of the same name as the
loop counter within a loop, this is not a recommended practice.

1-35

1 Programming Tips

MATLAB Path

In this section...

“Precedence Rules” on page 1-36

“File Precedence” on page 1-37

“Adding a Directory to the Search Path” on page 1-37

“Handles to Functions Not on the Path” on page 1-37

“Making Toolbox File Changes Visible to MATLAB” on page 1-38

“Making Nontoolbox File Changes Visible to MATLAB” on page 1-39

“Change Notification on Windows” on page 1-39

Precedence Rules
When MATLAB is given a name to interpret, it determines its usage by
checking the name against each of the entities listed below, and in the order
shown:

1 Variable

2 Subfunction

3 Private function

4 Class constructor

5 Overloaded method

6 M-file in the current directory

7 M-file on the path, or MATLAB built-in function

If you have two or more M-files on the path that have the same name,
MATLAB selects the function that has its M-file in the directory closest to the
beginning of the path string.

For more information: See Function Precedence Order in the MATLAB
Programming documentation.

1-36

MATLAB Path

File Precedence
If you refer to a file by its filename only (leaving out the file extension), and
there is more than one file of this name in the directory, MATLAB selects the
file to use according to the following precedence:

1 MEX-file

2 MDL-file (Simulink® model)

3 P-Code file

4 M-file

For more information: See Multiple Implementation Types in the MATLAB
Programming documentation.

Adding a Directory to the Search Path
To add a directory to the search path, use either of the following:

• At the toolbar, select File > Set Path.

• At the command line, use the addpath function.

You can also add a directory and all of its subdirectories in one operation
by either of these means. To do this from the command line, use genpath
together with addpath. The online help for the genpath function shows how
to do this.

This example adds /control and all of its subdirectories to the MATLAB path:

addpath(genpath('K:/toolbox/control'))

For more information: See Search Path in the MATLAB Desktop Tools and
Development Environment documentation.

Handles to Functions Not on the Path
You cannot create function handles to functions that are not on the MATLAB
path. But you can achieve essentially the same thing by creating the handles
through a script file placed in the same off-path directory as the functions.

1-37

1 Programming Tips

If you then run the script, using run path/script, you will have created
the handles that you need.

For example,

1 Create a script in this off-path directory that constructs function handles
and assigns them to variables. That script might look something like this:

File E:/testdir/createFhandles.m
fhset = @setItems
fhsort = @sortItems
fhdel = @deleteItem

2 Run the script from your current directory to create the function handles:

run E:/testdir/createFhandles

3 You can now execute one of the functions by means of its handle.

fhset(item, value)

Making Toolbox File Changes Visible to MATLAB
Unlike functions in user-supplied directories, M-files (and MEX-files) in the
matlabroot/toolbox directories are not time-stamp checked, so MATLAB
does not automatically see changes to them. If you modify one of these
files, and then rerun it, you may find that the behavior does not reflect the
changes that you made. This is most likely because MATLAB is still using the
previously loaded version of the file.

To force MATLAB to reload a function from disk, you need to explicitly clear
the function from memory using clear functionname. Note that there are
rare cases where clear will not have the desired effect, (for example, if the
file is locked, or if it is a class constructor and objects of the given class exist
in memory).

Similarly, MATLAB does not automatically detect the presence of new files
in matlabroot/toolbox directories. If you add (or remove) files from these
directories, use rehash toolbox to force MATLAB to see your changes. Note
that if you use the MATLAB Editor to create files, these steps are unnecessary,
as the Editor automatically informs MATLAB of such changes.

1-38

MATLAB Path

Making Nontoolbox File Changes Visible to MATLAB
For M-files outside of the toolbox directories, MATLAB sees the changes made
to these files by comparing timestamps and reloads any file that has changed
the next time you execute the corresponding function.

If MATLAB does not see the changes you make to one of these files, try
clearing the old copy of the function from memory using clear functionname.
You can verify that MATLAB has cleared the function using inmem to list all
functions currently loaded into memory.

Change Notification on Windows
If MATLAB, running on Windows, is unable to see new files or changes you
have made to an existing file, the problem may be related to operating system
change notification handles.

Type the following for more information:

help changeNotification
help changeNotificationAdvanced

1-39

1 Programming Tips

Program Control

In this section...

“Using break, continue, and return” on page 1-40

“Using switch Versus if” on page 1-41

“MATLAB case Evaluates Strings” on page 1-41

“Multiple Conditions in a case Statement” on page 1-41

“Implicit Break in switch-case” on page 1-41

“Variable Scope in a switch” on page 1-42

“Catching Errors with try-catch” on page 1-42

“Nested try-catch Blocks” on page 1-43

“Forcing an Early Return from a Function” on page 1-43

Using break, continue, and return
It’s easy to confuse the break, continue, and return functions as they are
similar in some ways. Make sure you use these functions appropriately.

Function Where to Use It Description

break for or while loops Exits the loop in which it
appears. In nested loops,
control passes to the next
outer loop.

continue for or while loops Skips any remaining
statements in the current
loop. Control passes to next
iteration of the same loop.

return Anywhere Immediately exits the
function in which it appears.
Control passes to the caller
of the function.

1-40

Program Control

Using switch Versus if
It is possible, but usually not advantageous, to implement switch-case
statements using if-elseif instead. See pros and cons in the table.

switch-case Statements if-elseif Statements

Easier to read. Can be difficult to read.

Can compare strings of different
lengths.

You need strcmp to compare strings
of different lengths.

Test for equality only. Test for equality or inequality.

MATLAB case Evaluates Strings
A useful difference between switch-case statements in MATLAB and C is
that you can specify string values in MATLAB case statements, which you
cannot do in C.

switch(method)
case 'linear'

disp('Method is linear')
case 'cubic'

disp('Method is cubic')
end

Multiple Conditions in a case Statement
You can test against more than one condition with switch. The first case
below tests for either a linear or bilinear method by using a cell array
in the case statement.

switch(method)
case {'linear', 'bilinear'}

disp('Method is linear or bilinear')
case (<and so on>)

end

Implicit Break in switch-case
In C, if you do not end each case with a break statement, code execution
falls through to the following case. In MATLAB, case statements do not fall

1-41

1 Programming Tips

through; only one case may execute. Using break within a case statement is
not only unnecessary, it is also invalid and generates a warning.

In this example, if result is 52, only the first disp statement executes, even
though the second is also a valid match:

switch(result)
case 52

disp('result is 52')
case {52, 78}

disp('result is 52 or 78')
end

Variable Scope in a switch
Since MATLAB executes only one case of any switch statement, variables
defined within one case are not known in the other cases of that switch
statement. The same holds true for if-elseif statements.

In these examples, you get an error when choice equals 2, because x is
undefined.

-- SWITCH-CASE -- -- IF-ELSEIF --
switch choice

case 1 if choice == 1
x = -pi:0.01:pi; x = -pi:0.01:pi;

case 2 elseif choice == 2
plot(x, sin(x)); plot(x, sin(x));

end end

Catching Errors with try-catch
When you have statements in your code that could possibly generate
unwanted results, put those statements into a try-catch block that will catch
any errors and handle them appropriately.

The example below shows a try-catch block within a function that multiplies
two matrices. If a statement in the try segment of the block fails, control
passes to the catch segment. In this case, the catch statements check
the error message that was issued (returned by lasterr) and respond
appropriately.

1-42

Program Control

try
X = A * B

catch
errmsg = lasterr;
if(strfind(errmsg, 'Inner matrix dimensions'))

disp('** Wrong dimensions for matrix multiply')
end

For more information: See “The try-catch Statement” in the MATLAB
Programming documentation.

Nested try-catch Blocks
You can also nest try-catch blocks, as shown here. You can use this to
attempt to recover from an error caught in the first try section:

try
statement1 % Try to execute statement1

catch
try

statement2 % Attempt to recover from error
catch

disp 'Operation failed' % Handle the error
end

end

Forcing an Early Return from a Function
To force an early return from a function, place a return statement in the
function at the point where you want to exit. For example,

if <done>
return

end

1-43

1 Programming Tips

Save and Load

In this section...

“Saving Data from the Workspace” on page 1-44

“Loading Data into the Workspace” on page 1-44

“Viewing Variables in a MAT-File” on page 1-45

“Appending to a MAT-File” on page 1-45

“Save and Load on Startup or Quit” on page 1-46

“Saving to an ASCII File” on page 1-46

Saving Data from the Workspace
To save data from your workspace, you can do any of the following:

• Copy from the MATLAB Command Window and paste into a text file.

• Record part of your session in a diary file, and then edit the file in a text
editor.

• Save to a binary or ASCII file using the save function.

• Save spreadsheet, scientific, image, or audio data with appropriate function.

• Save to a file using low-level file I/O functions (fwrite, fprintf, ...).

For more information: See Saving the Current Workspace in the MATLAB
Desktop Tools and Development Environment documentation, and “Using the
diary Function to Export Data” and “Using Low-Level File I/O Functions” in
the MATLAB Programming documentation.

Loading Data into the Workspace
Similarly, to load new or saved data into the workspace, you can do any
of the following:

• Enter or paste data at the command line.

• Create a script file to initialize large matrices or data structures.

1-44

Save and Load

• Read a binary or ASCII file using load.

• Load spreadsheet, scientific, image, or audio data with appropriate
function.

• Load from a file using low-level file I/O functions (fread, fscanf, ...).

For more information: See Loading a Saved Workspace and Importing
Data in the MATLAB Development Environment documentation, and “Using
Low-Level File I/O Functions” in the MATLAB Programming documentation.

Viewing Variables in a MAT-File
To see what variables are saved in a MAT-file, use who or whos as shown
here (the .mat extension is not required). who returns a cell array and whos
returns a structure array.

mydataVariables = who('-file', 'mydata.mat');

Appending to a MAT-File
To save additional variables to an existing MAT-file, use

save matfilename -append

Any variables you save that do not yet exist in the MAT-file are added to
the file. Any variables you save that already exist in the MAT-file overwrite
the old values.

Note Saving with the -append switch does not append additional elements to
an array that is already saved in a MAT-file. See the example below.

In this example, the second save operation does not concatenate new elements
to vector A, (making A equal to [1 2 3 4 5 6 7 8]) in the MAT-file. Instead,
it replaces the 5 element vector, A, with a 3 element vector, also retaining all
other variables that were stored on the first save operation.

A = [1 2 3 4 5]; B = 12.5; C = rand(4);
save savefile;
A = [6 7 8];

1-45

1 Programming Tips

save savefile A -append;

Save and Load on Startup or Quit
You can automatically save your variables at the end of each MATLAB session
by creating a finish.m file to save the contents of your base workspace every
time you quit MATLAB. Load these variables back into your workspace at the
beginning of each session by creating a startup.m file that uses the load
function to load variables from your MAT-file.

For more information: See the startup and finish function reference
pages.

Saving to an ASCII File
When you save matrix data to an ASCII file using save -ascii, MATLAB
combines the individual matrices into one collection of numbers. Variable
names are not saved. If this is not acceptable for your application, use
fprintf to store your data instead.

For more information: See “Exporting Delimited ASCII Data Files”.

1-46

Files and Filenames

Files and Filenames

In this section...

“Naming M-files” on page 1-47

“Naming Other Files” on page 1-47

“Passing Filenames as Arguments” on page 1-48

“Passing Filenames to ASCII Files” on page 1-48

“Determining Filenames at Run-Time” on page 1-48

“Returning the Size of a File” on page 1-48

Naming M-files
M-file names must start with an alphabetic character, may contain any
alphanumeric characters or underscores, and must be no longer than
the maximum allowed M-file name length (returned by the function
namelengthmax).

N = namelengthmax
N =

63

Since variables must obey similar rules, you can use the isvarname function
to check whether a filename (minus its .m file extension) is valid for an M-file.

isvarname mfilename

Naming Other Files
The names of other files that MATLAB interacts with (e.g., MAT, MEX, and
MDL-files) follow the same rules as M-files, but may be of any length.

Depending on your operating system, you may be able to include certain
nonalphanumeric characters in your filenames. Check your operating system
manual for information on valid filename restrictions.

1-47

1 Programming Tips

Passing Filenames as Arguments
In MATLAB commands, you can specify a filename argument using the
MATLAB command or function syntax. For example, either of the following
are acceptable. (The .mat file extension is optional for save and load).

load mydata.mat % Command syntax
load('mydata.mat') % Function syntax

If you assign the output to a variable, you must use the function syntax.

savedData = load('mydata.mat')

Passing Filenames to ASCII Files
ASCII files are specified as follows. Here, the file extension is required.

load mydata.dat -ascii % Command syntax
load('mydata.dat','-ascii') % Function syntax

Determining Filenames at Run-Time
There are several ways that your function code can work on specific files
without you having to hardcode their filenames into the program. You can

• Pass the filename in as an argument

function myfun(datafile)

• Prompt for the filename using the input function

filename = input('Enter name of file: ', 's');

• Browse for the file using the uigetfile function

[filename, pathname] =
uigetfile('*.mat', 'Select MAT-file');

For more information: See the input and uigetfile function reference
pages.

Returning the Size of a File
Two ways to have your program determine the size of a file are shown here.

1-48

Files and Filenames

-- METHOD #1 -- -- METHOD #2 --
s = dir('myfile.dat'); fid = fopen('myfile.dat');
filesize = s.bytes fseek(fid, 0, 'eof');

filesize = ftell(fid)
fclose(fid);

The dir function also returns the filename (s.name), last modification date
(s.date), and whether or not it’s a directory (s.isdir).

(The second method requires read access to the file.)

For more information: See the fopen, fseek, ftell, and fclose function
reference pages.

1-49

1 Programming Tips

Input/Output

In this section...

“File I/O Function Overview” on page 1-50

“Common I/O Functions” on page 1-50

“Readable File Formats” on page 1-51

“Using the Import Wizard” on page 1-51

“Loading Mixed Format Data” on page 1-51

“Reading Files with Different Formats” on page 1-52

“Reading ASCII Data into a Cell Array” on page 1-52

“Interactive Input into Your Program” on page 1-52

For more information and examples on importing and exporting data, see
Technical Note 1602:

http://www.mathworks.com/support/tech-notes/1600/1602.html

File I/O Function Overview
For a good overview of MATLAB file I/O functions, use the online “Functions
— Categorical List” reference. In the Help browser Contents, select
MATLAB > Functions — Categorical List, and then click File I/O.

Common I/O Functions
The most commonly used, high-level, file I/O functions in MATLAB are save
and load. For help on these, type doc save or doc load.

Functions for I/O to text files with delimited values are textread, dlmread,
dlmwrite. Functions for I/O to text files with comma-separated values are
csvread, csvwrite.

For more information: See Text Files in the MATLAB “Functions —
Categorical List” reference documentation.

1-50

http://www.mathworks.com/support/tech-notes/1600/1602.html

Input/Output

Readable File Formats
Type doc fileformats to see a list of file formats that MATLAB can read,
along with the associated MATLAB functions.

Using the Import Wizard
A quick method of importing text or binary data from a file (e.g., Excel files)
is to use the MATLAB Import Wizard. Open the Import Wizard with the
command, uiimport filename or by selecting File > Import Data at the
Command Window.

Specify or browse for the file containing the data you want to import and
you will see a preview of what the file contains. Select the data you want
and click Finish.

For more information: See “Using the Import Wizard” in the MATLAB
Programming documentation.

Loading Mixed Format Data
To load data that is in mixed formats, use textread instead of load. The
textread function lets you specify the format of each piece of data.

If the first line of file mydata.dat is

Sally 12.34 45

Read the first line of the file as a free format file using the % format:

[names, x, y] = textread('mydata.dat', '%s %f %d', 1)

returns

names =
'Sally'

x =
12.34000000000000

y =
45

1-51

1 Programming Tips

Reading Files with Different Formats
Attempting to read data from a file that was generated on a different platform
may result in an error because the binary formats of the platforms may differ.
Using the fopen function, you can specify a machine format when you open
the file to avoid these errors.

Reading ASCII Data into a Cell Array
A common technique used to read an ASCII data file into a cell array is

[a,b,c,d] = textread('data.txt', '%s %s %s %s');
mydata = cellstr([a b c d]);

For more information: See the textread and cellstr function reference
pages.

Interactive Input into Your Program
Your program can accept interactive input from users during execution. Use
the input function to prompt the user for input, and then read in a response.
When executed, input causes the program to display your prompt, pause
while a response is entered, and then resume when the Enter key is pressed.

1-52

Starting MATLAB

Starting MATLAB

Getting MATLAB to Start Up Faster
Here are some things that you can do to make MATLAB start up faster.

• Make sure toolbox path caching is enabled.

• Make sure that the system on which MATLAB is running has enough RAM.

• Choose only the windows you need in the MATLAB desktop.

• Close the Help browser before exiting MATLAB. When you start your next
session, MATLAB will not open the Help browser, and thus will start faster.

• If disconnected from the network, check the LM_LICENSE_FILE variable.
See http://www.mathworks.com/support/solutions/data/1-17VEB.html for a
more detailed explanation.

For more information: See Toolbox Path Caching in MATLAB in the
MATLAB Desktop Tools and Development Environment documentation.

1-53

http://www.mathworks.com/support/solutions/data/1-17VEB.html

1 Programming Tips

Operating System Compatibility

In this section...

“Executing O/S Commands from MATLAB” on page 1-54

“Searching Text with grep” on page 1-54

“Constructing Paths and Filenames” on page 1-54

“Finding the MATLAB Root Directory” on page 1-55

“Temporary Directories and Filenames” on page 1-55

Executing O/S Commands from MATLAB
To execute a command from your operating system prompt without having to
exit MATLAB, precede the command with the MATLAB ! operator.

On Windows, you can add an ampersand (&) to the end of the line to make the
output appear in a separate window.

For more information: See Running External Programs in the MATLAB
Desktop Tools and Development Environment documentation, and the system
and dos function reference pages.

Searching Text with grep
grep is a powerful tool for performing text searches in files on UNIX systems.
To grep from within MATLAB, precede the command with an exclamation
point (!grep).

For example, to search for the word warning, ignoring case, in all M-files of
the current directory, you would use

!grep -i 'warning' *.m

Constructing Paths and Filenames
Use the fullfile function to construct path names and filenames rather
than entering them as strings into your programs. In this way, you always
get the correct path specification, regardless of which operating system you
are using at the time.

1-54

Operating System Compatibility

Finding the MATLAB Root Directory
The matlabroot function returns the location of the MATLAB installation
on your system. Use matlabroot to create a path to MATLAB and toolbox
directories that does not depend on a specific platform or MATLAB version.

The following example uses matlabroot with fullfile to return a
platform-independent path to the general toolbox directory:

fullfile(matlabroot,'toolbox','matlab','general')

Temporary Directories and Filenames
If you need to locate the directory on your system that has been designated to
hold temporary files, use the tempdir function. tempdir returns a string that
specifies the path to this directory.

To create a new file in this directory, use the tempname function. tempname
returns a string that specifies the path to the temporary file directory, plus a
unique filename.

For example, to store some data in a temporary file, you might issue the
following command first.

fid = fopen(tempname, 'w');

1-55

1 Programming Tips

Demos

Demos Available with MATLAB
MATLAB comes with a wide array of visual demonstrations to help you see
the extent of what you can do with the product. To start running any of the
demos, simply type demo at the MATLAB command prompt. Demos cover the
following major areas:

• MATLAB

• Toolboxes

• Simulink

• Blocksets

• Real-Time Workshop®

• Stateflow®

For more information: See Demos in the Help Browser in the MATLAB
Desktop Tools and Development Environment documentation, and the demo
function reference page.

1-56

For More Information

For More Information

In this section...

“Current CSSM” on page 1-57

“Archived CSSM” on page 1-57

“MATLAB Technical Support” on page 1-57

“Tech Notes” on page 1-57

“MATLAB Central” on page 1-57

“MATLAB Newsletters (Digest, News & Notes)” on page 1-57

“MATLAB Documentation” on page 1-58

“MATLAB Index of Examples” on page 1-58

Current CSSM

http://newsreader.mathworks.com/WebX?14@@/comp.soft-sys.matlab

Archived CSSM

http://mathforum.org/kb/forum.jspa?forumID=80

MATLAB Technical Support

http://www.mathworks.com/support/

Tech Notes

http://www.mathworks.com/support/tech-notes/list_all.html

MATLAB Central

http://www.mathworks.com/matlabcentral/

MATLAB Newsletters (Digest, News & Notes)

http://www.mathworks.com/company/newsletters/index.html

1-57

http://newsreader.mathworks.com/WebX?14@@/comp.soft-sys.matlab
http://mathforum.org/kb/forum.jspa?forumID=80
http://www.mathworks.com/support/
http://www.mathworks.com/support/tech-notes/list_all.html
http://www.mathworks.com/matlabcentral/
http://www.mathworks.com/company/newsletters/index.html

1 Programming Tips

MATLAB Documentation

http://www.mathworks.com/access/helpdesk/help/helpdesk.html

MATLAB Index of Examples

http://www.mathworks.com/access/helpdesk/help/techdoc/demo_example.shtml

1-58

http://www.mathworks.com/access/helpdesk/help/helpdesk.html
http://www.mathworks.com/access/helpdesk/help/techdoc/demo_example.shtml

MATLAB® 7
3-D Visualization

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

3-D Visualization

© COPYRIGHT 1984–2007 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined
in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of
this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government’s
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, SimBiology,
SimHydraulics, SimEvents, and xPC TargetBox are registered trademarks and The
MathWorks, the L-shaped membrane logo, Embedded MATLAB, and PolySpace are
trademarks of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective
holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
March 2006 Online only New for MATLAB 7.2 (Release 2006a)
September 2006 Online only Revised for MATLAB 7.3 (Release 2006b)
March 2007 Online only Revised for MATLAB 7.4 (Release 2007a)
September 2007 Online only Revised for MATLAB 7.5 (Release 2007b)

This publication was previously part of the Using MATLAB
Graphics User Guide.

Contents

Creating 3-D Graphs

1
A Typical 3-D Graph . 1-2

Line Plots of 3-D Data . 1-4
Basic 3-D Plotting: The plot3 function 1-4
Plotting Matrix Data . 1-5

Representing a Matrix as a Surface 1-7
Functions for Plotting Data Grids . 1-7
Mesh and Surface Plots . 1-8
Visualizing Functions of Two Variables 1-8
Surface Plots of Nonuniformly Sampled Data 1-10
Parametric Surfaces . 1-12
Hidden Line Removal . 1-14

Coloring Mesh and Surface Plots . 1-16
Coloring Techniques . 1-16
Types of Color Data . 1-17
Colormaps . 1-17
Indexed Color Surfaces — Direct and Scaled Color

Mapping . 1-19
Example — Mapping Surface Curvature to Color 1-21
Altering Colormaps . 1-23
Truecolor Surfaces . 1-24
Texture Mapping . 1-26

Defining the View

2
Viewing Overview . 2-3

Viewing 3-D Graphs and Scenes . 2-3
Positioning the Viewpoint . 2-3

v

Setting the Aspect Ratio . 2-4
Default Views . 2-4

Setting the Viewpoint with Azimuth and Elevation . . . 2-5
Azimuth and Elevation . 2-5

Defining Scenes with Camera Graphics 2-9

View Control with the Camera Toolbar 2-10
Camera Toolbar . 2-10
Camera Motion Controls . 2-13
Orbit Camera . 2-13
Orbit Scene Light . 2-15
Pan/Tilt Camera . 2-15
Move Camera Horizontally/Vertically 2-16
Move Camera Forward and Backward 2-17
Zoom Camera . 2-18
Camera Roll . 2-19

Camera Graphics Functions . 2-21

Example — Dollying the Camera . 2-22
Summary of Techniques . 2-22
Implementation . 2-22

Example — Moving the Camera Through a Scene 2-24
Summary of Techniques . 2-24
Graphing the Volume Data . 2-25
Setting Up the View . 2-25
Specifying the Light Source . 2-26
Selecting a Renderer . 2-26
Defining the Camera Path as a Stream Line 2-26
Implementing the Fly-Through . 2-27

Low-Level Camera Properties . 2-30
Camera Properties You Can Set . 2-30
Default Viewpoint Selection . 2-31
Moving In and Out on the Scene . 2-32
Making the Scene Larger or Smaller 2-33
Revolving Around the Scene . 2-34
Rotation Without Resizing of Graphics Objects 2-34

vi Contents

Rotation About the Viewing Axis . 2-34

Understanding View Projections . 2-37
The Two Types of Projections . 2-37
Projection Types and Camera Location 2-39

Understanding Axes Aspect Ratio 2-42
Stretch-to-Fill . 2-42
Specifying Axis Scaling . 2-42
Specifying Aspect Ratio . 2-43
Example — axis Command Options 2-44
Additional Commands for Setting Aspect Ratio 2-46

Manipulating Axes Aspect Ratio . 2-47
Axes Aspect Ratio Properties . 2-47
Default Aspect Ratio Selection . 2-48
Overriding Stretch-to-Fill . 2-51
Effects of Setting Aspect Ratio Properties 2-52
Example — Displaying Cross-Sections of Surfaces 2-55
Example — Displaying Real Objects 2-57

Lighting as a Visualization Tool

3
Lighting Overview . 3-2

Lighting Commands . 3-2
Light Objects . 3-2
Properties That Affect Lighting . 3-3
Examples of Lighting Control . 3-5

Selecting a Lighting Method . 3-8
Face and Edge Lighting Methods . 3-8

Reflectance Characteristics of Graphics Objects 3-10
Specular and Diffuse Reflection . 3-10
Ambient Light . 3-11
Specular Exponent . 3-12
Specular Color Reflectance . 3-13

vii

Back Face Lighting . 3-13
Positioning Lights in Data Space . 3-16

Transparency

4
Making Objects Transparent . 4-2

About Transparency . 4-2
Specifying Transparency . 4-3
Example — A Transparent Isosurface 4-5

Mapping Data to Transparency — Alpha Data 4-8
What Is Alpha Data? . 4-8
Size of the Alpha Data Array . 4-9
Mapping Alpha Data to the Alphamap 4-9
Example — Mapping Data to Color or Transparency 4-10

Selecting an Alphamap . 4-12
What Is an Alphamap? . 4-12
Example — Modifying the Alphamap 4-14

Creating 3-D Models with Patches

5
Introduction to Patch Objects . 5-2

What Are Patch Objects? . 5-2
Behavior of the patch Function . 5-3
Creating a Single Polygon . 5-4

Multifaceted Patches . 5-7
Example — Defining a Cube . 5-7

Modifying Data on Existing Patch Objects 5-11
Specifying Patch Data . 5-11
Handling Mixed Data Specification 5-11

viii Contents

Specifying Patch Coloring . 5-14
Patch Color Properties . 5-14
Patch Edge Coloring . 5-15
Coloring Edges with Shared Vertices 5-17

Interpreting Indexed and Truecolor Data 5-18
Introduction . 5-18
Indexed Color Data . 5-18
Truecolor Patches . 5-21
Interpolating in Indexed Color Versus Truecolor 5-22

Volume Visualization Techniques

6
Overview of Volume Visualization 6-3

Examples of Volume Data . 6-3
Selecting Visualization Techniques 6-4
Steps to Create a Volume Visualization 6-4
Volume Visualization Functions . 6-5

Techniques for Visualizing Scalar Volume Data 6-7
What Is Scalar Volume Data? . 6-7
Example — Ways to Display MRI Data 6-7

Exploring Volumes with Slice Planes 6-14
Example — Slicing Fluid Flow Data 6-14
Modifying the Color Mapping . 6-17

Connecting Equal Values with Isosurfaces 6-19
Example — Isosurfaces in Fluid Flow Data 6-19

Isocaps Add Context to Visualizations 6-21
What Are Isocaps? . 6-21
Other Isocap Applications . 6-22
Defining Isocaps . 6-22
Example — Adding Isocaps to an Isosurface 6-23

Visualizing Vector Volume Data . 6-26

ix

Lines, Particles, Ribbons, Streams, Tubes, and Cones 6-26
Using Scalar Techniques with Vector Data 6-27
Specifying Starting Points for Stream Plots 6-27
Accessing Subregions of Volume Data 6-30

Example — Stream Line Plots of Vector Data 6-32
Wind Mapping Data . 6-32
1. Determine the Range of the Coordinates 6-32
2. Add Slice Planes for Visual Context 6-32
3. Add Contour Lines to the Slice Planes 6-33
4. Define the Starting Points for the Stream Lines 6-33
5. Define the View . 6-33

Example — Displaying Curl with Stream Ribbons 6-35
What Stream Ribbons Can Show . 6-35
1. Select a Subset of Data to Plot . 6-35
2. Calculate Curl Angular Velocity and Wind Speed 6-35
3. Create the Stream Ribbons . 6-36
4. Define the View and Add Lighting 6-36

Example — Displaying Divergence with Stream
Tubes . 6-38
What Stream Tubes Can Show . 6-38
1. Load Data and Calculate Required Values 6-38
2. Draw the Slice Planes . 6-39
3. Add Contour Lines to Slice Planes 6-39
4. Create the Stream Tubes . 6-39
5. Define the View . 6-40

Example — Creating Stream Particle Animations 6-42
What Particle Animations Can Show 6-42
1. Specify the Starting Points of the Data Range to Plot . . 6-42
2. Create Stream Lines to Indicate the Particle Paths 6-42
3. Define the View . 6-43
4. Calculate the Stream Particle Vertices 6-43

Example — Vector Field Displayed with Cone Plots . . . 6-45
What Cone Plots Can Show . 6-45
1. Create an Isosurface . 6-45
2. Add Isocaps to the Isosurface . 6-46
3. Create First Set of Cones . 6-46
4. Create Second Set of Cones . 6-47

x Contents

5. Define the View . 6-47
6. Add Lighting . 6-47

Index

xi

xii Contents

1

Creating 3-D Graphs

A Typical 3-D Graph (p. 1-2) The steps to follow to create a typical
3-D graph

Line Plots of 3-D Data (p. 1-4) Line plots of data having x-, y-, and
z-coordinates

Representing a Matrix as a Surface
(p. 1-7)

Graphing matrix (2-D array) data on
a rectangular grid

Coloring Mesh and Surface Plots
(p. 1-16)

Techniques for coloring surface and
mesh plots, including colormaps,
truecolor, and texture mapping.

1 Creating 3-D Graphs

A Typical 3-D Graph
This table illustrates typical steps involved in producing 3-D scenes containing
either data graphs or models of 3-D objects. Example applications include
pseudocolor surfaces illustrating the values of functions over specific regions
and objects drawn with polygons and colored with light sources to produce
realism. Usually, you follow either step 4 or step 5.

Step Typical Code

1 Prepare your data.
Z = peaks(20);

2 Select window and
position plot region
within window.

figure(1) subplot(2,1,2)

3 Call 3-D graphing
function.

h = surf(Z);

4 Set colormap and
shading algorithm.

colormap hot

shading interp

set(h,'EdgeColor','k')

1-2

A Typical 3-D Graph

Step Typical Code

5 Add lighting.

light('Position',[-2,2,20])

lighting phong

material([0.4,0.6,0.5,30])

set(h,'FaceColor',[0.7 0.7 0],...

'BackFaceLighting','lit')

6 Set viewpoint.

view([30,25])

set(gca,'CameraViewAngleMode','Manual')

7 Set axis limits and tick
marks.

axis([5 15 5 15 -8 8])

set(gca,'ZTickLabel','Negative||Positive')

8 Set aspect ratio.
set(gca,'PlotBoxAspectRatio',[2.5 2.5 1])

9 Annotate the graph
with axis labels, legend,
and text.

xlabel('X Axis')

ylabel('Y Axis')

zlabel('Function Value')

title('Peaks')

10 Print graph.
set(gcf,'PaperPositionMode','auto')

print -dps2

1-3

1 Creating 3-D Graphs

Line Plots of 3-D Data

In this section...

“Basic 3-D Plotting: The plot3 function” on page 1-4

“Plotting Matrix Data” on page 1-5

Basic 3-D Plotting: The plot3 function
The 3-D analog of the plot function is plot3. If x, y, and z are three vectors
of the same length,

plot3(x,y,z)

generates a line in 3-D through the points whose coordinates are the elements
of x, y, and z and then produces a 2-D projection of that line on the screen.
For example, these statements produce a helix.

t = 0:pi/50:10*pi;
plot3(sin(t),cos(t),t)
axis square; grid on

1-4

Line Plots of 3-D Data

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
0

10

20

30

40

Plotting Matrix Data
If the arguments to plot3 are matrices of the same size, MATLAB© plots lines
obtained from the columns of X, Y, and Z. For example,

[X,Y] = meshgrid([-2:0.1:2]);
Z = X.*exp(-X.^2-Y.^2);
plot3(X,Y,Z)
grid on

Notice how MATLAB cycles through line colors.

1-5

1 Creating 3-D Graphs

−2
−1

0
1

2

−2

−1

0

1

2
−0.5

0

0.5

1-6

Representing a Matrix as a Surface

Representing a Matrix as a Surface

In this section...

“Functions for Plotting Data Grids” on page 1-7

“Mesh and Surface Plots” on page 1-8

“Visualizing Functions of Two Variables” on page 1-8

“Surface Plots of Nonuniformly Sampled Data” on page 1-10

“Parametric Surfaces” on page 1-12

“Hidden Line Removal” on page 1-14

Functions for Plotting Data Grids
MATLAB defines a surface by the z-coordinates of points above a rectangular
grid in the x-y plane. The plot is formed by joining adjacent points with
straight lines. Surface plots are useful for visualizing matrices that are too
large to display in numerical form and for graphing functions of two variables.

MATLAB can create different forms of surface plots. Mesh plots are
wire-frame surfaces that color only the lines connecting the defining points.
Surface plots display both the connecting lines and the faces of the surface in
color. This table lists the various forms.

Function Used to Create

mesh, surf Surface plot

meshc, surfc Surface plot with contour plot beneath it

meshz Surface plot with curtain plot (reference plane)

pcolor Flat surface plot (value is proportional only to color)

surfl Surface plot illuminated from specified direction

surface Low-level function (on which high-level functions are
based) for creating surface graphics objects

1-7

1 Creating 3-D Graphs

Mesh and Surface Plots
The mesh and surf commands create 3-D surface plots of matrix data. If Z is a
matrix for which the elements Z(i,j) define the height of a surface over an
underlying (i,j) grid, then

mesh(Z)

generates a colored, wire-frame view of the surface and displays it in a 3-D
view. Similarly,

surf(Z)

generates a colored, faceted view of the surface and displays it in a 3-D view.
Ordinarily, the facets are quadrilaterals, each of which is a constant color,
outlined with black mesh lines, but the shading command allows you to
eliminate the mesh lines (shading flat) or to select interpolated shading
across the facet (shading interp).

Surface object properties provide additional control over the visual appearance
of the surface. You can specify edge line styles, vertex markers, face coloring,
lighting characteristics, and so on.

Visualizing Functions of Two Variables
The first step in displaying a function of two variables, z = f(x,y), is to generate
X and Y matrices consisting of repeated rows and columns, respectively, over
the domain of the function. Then use these matrices to evaluate and graph
the function.

The meshgrid function transforms the domain specified by two vectors, x and
y, into matrices X and Y. You then use these matrices to evaluate functions
of two variables. The rows of X are copies of the vector x and the columns of
Y are copies of the vector y.

To illustrate the use of meshgrid, consider the sin(r)/r or sinc function. To
evaluate this function between -8 and 8 in both x and y, you need pass only
one vector argument to meshgrid, which is then used in both directions.

[X,Y] = meshgrid(-8:.5:8);
R = sqrt(X.^2 + Y.^2) + eps;

1-8

Representing a Matrix as a Surface

The matrix R contains the distance from the center of the matrix, which is
the origin. Adding eps prevents the divide by zero (in the next step) that
produces Inf values in the data.

Forming the sinc function and plotting Z with mesh results in the 3-D surface.

Z = sin(R)./R;
mesh(X,Y,Z)

−10
−5

0
5

10

−10

−5

0

5

10
−0.5

0

0.5

1

Emphasizing Surface Shape
MATLAB provides a number of techniques that can enhance the information
content of your graphs. For example, this graph of the sinc function uses the
same data as the previous graph, but employs lighting and view adjustment to
emphasize the shape of the graphed function (daspect, axis, view, camlight).

surf(X,Y,Z,'FaceColor','interp',...
'EdgeColor','none',...
'FaceLighting','phong')

1-9

1 Creating 3-D Graphs

daspect([5 5 1])
axis tight
view(-50,30)
camlight left

See the surf function for more information on surface plots.

Surface Plots of Nonuniformly Sampled Data
You can use meshgrid to create a grid of uniformly sampled data points at
which to evaluate and graph the sinc function. MATLAB then constructs
the surface plot by connecting neighboring matrix elements to form a mesh
of quadrilaterals.

To produce a surface plot from nonuniformly sampled data, first use griddata
to interpolate the values at uniformly spaced points, and then use mesh and
surf in the usual way.

Example — Displaying Nonuniform Data on a Surface
This example evaluates the sinc function at random points within a specific
range and then generates uniformly sampled data for display as a surface
plot. The process involves these tasks:

1-10

Representing a Matrix as a Surface

• Use linspace to generate evenly spaced values over the range of your
unevenly sampled data.

• Use meshgrid to generate the plotting grid with the output of linspace.

• Use griddata to interpolate the irregularly sampled data to the regularly
spaced grid returned by meshgrid.

• Use a plotting function to display the data.

1 First, generate unevenly sampled data within the range [-8, 8] and use
it to evaluate the function.

x = rand(100,1)*16 - 8;
y = rand(100,1)*16 - 8;
r = sqrt(x.^2 + y.^2) + eps;
z = sin(r)./r;

2 The linspace function provides a convenient way to create uniformly
spaced data with the desired number of elements. The following statements
produce vectors over the range of the random data with the same resolution
as that generated by the -8:.5:8 statement in the previous sinc example.

xlin = linspace(min(x),max(x),33);
ylin = linspace(min(y),max(y),33);

3 Now use these points to generate a uniformly spaced grid.

[X,Y] = meshgrid(xlin,ylin);

4 The key to this process is to use griddata to interpolate the values of
the function at the uniformly spaced points, based on the values of the
function at the original data points (which are random in this example).
This statement uses a triangle-based cubic interpolation to generate the
new data.

Z = griddata(x,y,z,X,Y,'cubic');

5 Plotting the interpolated and the nonuniform data produces

mesh(X,Y,Z) %interpolated
axis tight; hold on

1-11

1 Creating 3-D Graphs

plot3(x,y,z,'.','MarkerSize',15) %nonuniform

−5
0

5

−5

0

5

0

0.5

Parametric Surfaces
The functions that draw surfaces can take two additional vector or matrix
arguments to describe surfaces with specific x and y data. If Z is an m-by-n
matrix, x is an n-vector, and y is an m-vector, then

mesh(x,y,Z,C)

describes a mesh surface with vertices having color C(i,j) and located at
the points

(x(j), y(i), Z(i,j))

where x corresponds to the columns of Z and y to its rows.

More generally, if X, Y, Z, and C are matrices of the same dimensions, then

mesh(X,Y,Z,C)

1-12

Representing a Matrix as a Surface

describes a mesh surface with vertices having color C(i,j) and located at
the points

(X(i,j), Y(i,j), Z(i,j))

This example uses spherical coordinates to draw a sphere and color it with the
pattern of pluses and minuses in a Hadamard matrix, an orthogonal matrix
used in signal processing coding theory. The vectors theta and phi are in the
range -π ≤ theta ≤ π and -π/2 ≤ phi ≤ π/2. Because theta is a row vector
and phi is a column vector, the multiplications that produce the matrices X,
Y, and Z are vector outer products.

k = 5;
n = 2^k-1;
theta = pi*(-n:2:n)/n;
phi = (pi/2)*(-n:2:n)'/n;
X = cos(phi)*cos(theta);
Y = cos(phi)*sin(theta);
Z = sin(phi)*ones(size(theta));
colormap([0 0 0;1 1 1])
C = hadamard(2^k);
surf(X,Y,Z,C)
axis square

1-13

1 Creating 3-D Graphs

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
−1

−0.5

0

0.5

1

Hidden Line Removal
By default, MATLAB removes lines that are hidden from view in mesh plots,
even though the faces of the plot are not colored. You can disable hidden
line removal and allow the faces of a mesh plot to be transparent with the
command

hidden off

This is the surface plot with hidden set to off.

1-14

Representing a Matrix as a Surface

−10
−5

0
5

10

−10

−5

0

5

10
−0.5

0

0.5

1

1-15

1 Creating 3-D Graphs

Coloring Mesh and Surface Plots

In this section...

“Coloring Techniques” on page 1-16

“Types of Color Data” on page 1-17

“Colormaps” on page 1-17

“Indexed Color Surfaces — Direct and Scaled Color Mapping” on page 1-19

“Example — Mapping Surface Curvature to Color” on page 1-21

“Altering Colormaps” on page 1-23

“Truecolor Surfaces” on page 1-24

“Texture Mapping” on page 1-26

Coloring Techniques
You can enhance the information content of surface plots by controlling the
way MATLAB applies color to these plots. MATLAB can map particular data
values to colors specified explicitly or can map the entire range of data to a
predefined range of colors called a colormap.

You can apply three different coloring techniques:

• Indexed Color -- MATLAB colors the surface plot by assigning each data
point an index into the figure’s colormap. The way MATLAB applies these
colors depends on the type of shading used (faceted, flat, or interpolated).

• Truecolor — MATLAB colors the surface plot using the explicitly specified
colors (i.e., the RGB triplets). The way MATLAB applies these colors
depends on the type of shading used (faceted, flat, or interpolated). To be
rendered accurately, truecolor requires computers with 24-bit displays;
however, MATLAB simulates truecolor on indexed systems. See the
shading command for information on the types of shading.

• Texture Mapping -- Texture mapping displays a 2-D image mapped onto a
3-D surface.

1-16

Coloring Mesh and Surface Plots

Types of Color Data
The type of color data you specify (i.e., single values or RGB triplets)
determines how MATLAB interprets it. When you create a surface plot,
you can

• Provide no explicit color data, in which case MATLAB generates colormap
indices from the z-data.

• Specify an array of color data that is equal in size to the z-data and is used
for indexed colors.

• Specify an m-by-n-by-3 array of color data that defines an RGB triplet for
each element in the m-by-n z-data array and is used for truecolor.

Colormaps
Each MATLAB figure window has a colormap associated with it. A colormap
is simply a three-column matrix whose length is equal to the number of colors
it defines. Each row of the matrix defines a particular color by specifying
three values in the range 0 to 1. These values define the RGB components
(i.e., the intensities of the red, green, and blue video components).

The colormap function, with no arguments, returns the current figure’s
colormap.

For example, the MATLAB default colormap contains 64 colors and the 57th
color is red.

cm = colormap;
cm(57,:)
ans =

1 0 0

RGB Color Components
This table lists some representative RGB color definitions.

1-17

1 Creating 3-D Graphs

Red Green Blue Color

0 0 0 Black

1 1 1 White

1 0 0 Red

0 1 0 Green

0 0 1 Blue

1 1 0 Yellow

1 0 1 Magenta

0 1 1 Cyan

0.5 0.5 0.5 Gray

0.5 0 0 Dark red

1 0.62 0.40 Copper

0.49 1 0.83 Aquamarine

You can create colormaps with MATLAB array operations or you can use any
of several functions that generate useful maps, including hsv, hot, cool,
summer, and gray. Each function has an optional parameter that specifies the
number of rows in the resulting map.

For example,

hot(m)

creates an m-by-3 matrix whose rows specify the RGB intensities of a map
that varies from black, through shades of red, orange, and yellow, to white.

If you do not specify the colormap length, MATLAB creates a colormap the
same length as the current colormap. The default colormap is jet(64).

If you use long colormaps (> 64 colors) in each of several figure windows, it
might become necessary for the operating system to swap in different color
lookup tables as the active focus is moved among the windows.

1-18

Coloring Mesh and Surface Plots

Displaying Colormaps
The colorbar function displays the current colormap, either vertically or
horizontally, in the figure window along with your graph. For example, the
statements

[x,y] = meshgrid([-2:.2:2]);
Z = x.*exp(-x.^2-y.^2);
surf(x,y,Z,gradient(Z))
colorbar

produce a surface plot and a vertical strip of color corresponding to the
colormap. Note how the colorbar indicates the mapping of data value to color
with the axis labels.

−2

−1

0

1

2

−2

−1

0

1

2
−0.5

0

0.5

−0.05

0

0.05

0.1

0.15

Indexed Color Surfaces — Direct and Scaled Color
Mapping
MATLAB can use two different methods to map indexed color data to the
colormap — direct and scaled.

1-19

1 Creating 3-D Graphs

Direct Mapping
Direct mapping uses the color data directly as indices into the colormap.
For example, a value of 1 points to the first color in the colormap, a value
of 2 points to the second color, and so on. If the color data is noninteger,
MATLAB rounds it toward zero. Values greater than the number of colors in
the colormap are set equal to the last color in the colormap (i.e., the number
length(colormap)). Values less than 1 are set to 1.

Scaled Mapping
Scaled mapping uses a two-element vector [cmin cmax] (specified with the
caxis command) to control the mapping of color data to the figure colormap.
cmin specifies the data value to map to the first color in the colormap and
cmax specifies the data value to map to the last color in the colormap. Data
values in between are linearly transformed from the second to the next-to-last
color, using the expression

colormap_index = fix((color_data-cmin)/(cmax-cmin)*cm_length)+1

cm_length is the length of the colormap.

By default, MATLAB sets cmin and cmax to span the range of the color data
of all graphics objects within the axes. However, you can set these limits to
any range of values. This enables you to display multiple axes within a single
figure window and use different portions of the figure’s colormap for each
one. See Calculating Color Limits in Axes Properties of the Using MATLAB
Graphics documentation for an example that uses color limits.

By default, MATLAB uses scaled mapping. To use direct mapping, you must
turn off scaling when you create the plot. For example,

surf(Z,C,'CDataMapping','direct')

See surface for more information on specifying color data.

Specifying Indexed Colors
When creating a surface plot with a single matrix argument, surf(Z) for
example, the argument Z specifies both the height and the color of the surface.
MATLAB transforms Z to obtain indices into the current colormap.

1-20

Coloring Mesh and Surface Plots

With two matrix arguments, the statement

surf(Z,C)

independently specifies the color using the second argument.

Example — Mapping Surface Curvature to Color
The Laplacian of a surface plot is related to its curvature; it is positive for
functions shaped like i^2 + j^2 and negative for functions shaped like -(i^2
+ j^2). The function del2 computes the discrete Laplacian of any matrix.
For example, use del2 to determine the color for the data returned by peaks.

P = peaks(40);
C = del2(P);
surf(P,C)
colormap hot

Creating a color array by applying the Laplacian to the data is useful because
it causes regions with similar curvature to be drawn in the same color.

1-21

1 Creating 3-D Graphs

Compare this surface coloring with that produced by the statements

surf(P)
colormap hot

which use the same colormap, but map regions with similar z value (height
above the x-y plane) to the same color.

1-22

Coloring Mesh and Surface Plots

Altering Colormaps
Because colormaps are matrices, you can manipulate them like other arrays.
The brighten function takes advantage of this fact to increase or decrease the
intensity of the colors. Plotting the values of the R, G, and B components of a
colormap using rgbplot illustrates the effects of brighten.

1-23

1 Creating 3-D Graphs

NTSC Color Encoding
The brightness component of television signals uses the NTSC color encoding
scheme.

b = .30*red + .59*green + .11*blue
= sum(diag([.30 .59 .11])*map')';

Using the nonlinear greyscale map,

colormap([b b b])

effectively converts a color image to its NTSC black-and-white equivalent.

Truecolor Surfaces
Computer systems with 24-bit displays are capable of displaying over 16
million (224) colors, as opposed to the 256 colors available on 8-bit displays.
You can take advantage of this capability by defining color data directly
as RGB values and eliminating the step of mapping numerical values to
locations in a colormap.

Specify truecolor using an m-by-n-by-3 array, where the size of Z is m-by-n.

1-24

Coloring Mesh and Surface Plots

For example, the statements

Z = peaks(25);
C(:,:,1) = rand(25);
C(:,:,2) = rand(25);
C(:,:,3) = rand(25);
surf(Z,C)

create a plot of the peaks matrix with random coloring.

You can set surface properties as with indexed color.

surf(Z,C,'FaceColor','interp','FaceLighting','phong')
camlight right

1-25

1 Creating 3-D Graphs

Rendering Methods for Truecolor
MATLAB always uses either OpenGL or the Z-buffer rendering method
when displaying truecolor. If the figure RendererMode property is set to
auto, MATLAB automatically switches the value of the Renderer property
to zbuffer whenever you specify truecolor data.

If you explicitly set Renderer to painters (this sets RendererMode to manual)
and attempt to define an image, patch, or surface object using truecolor,
MATLAB returns a warning and does not render the object.

See the image, patch, and surface functions for information on defining
truecolor for these objects.

Texture Mapping
Texture mapping is a technique for mapping a 2-D image onto a 3-D surface
by transforming color data so that it conforms to the surface plot. It allows
you to apply a "texture," such as bumps or wood grain, to a surface without
performing the geometric modeling necessary to create a surface with these
features. The color data can also be any image, such as a scanned photograph.

Texture mapping allows the dimensions of the color data array to be different
from the data defining the surface plot. You can apply an image of arbitrary

1-26

Coloring Mesh and Surface Plots

size to any surface. MATLAB interpolates texture color data so that it is
mapped to the entire surface.

Example — Texture Mapping a Surface
This example creates a spherical surface using the sphere function and
texture maps it with an image of the earth taken from space. Because the
earth image is a view of earth from one side, this example maps the image to
only one side of the sphere, padding the image data with 1s In this case, the
image data is a 257-by-250 matrix, so it is padded equally on each side with
two 257-by-125 matrices of 1s by concatenating the three matrices.

To use texture mapping, set the FaceColor to texturemap and assign the
image to the surface’s CData.

load earth % Load image data, X, and colormap, map
sphere; h = findobj('Type','surface');
hemisphere = [ones(257,125),...

X,...
ones(257,125)];

set(h,'CData',flipud(hemisphere),'FaceColor','texturemap')
colormap(map)
axis equal
view([90 0])
set(gca,'CameraViewAngleMode','manual')
view([65 30])

1-27

1 Creating 3-D Graphs

1-28

2

Defining the View

Viewing Overview (p. 2-3) Overview of topics covered in this
chapter

Setting the Viewpoint with Azimuth
and Elevation (p. 2-5)

Using the simple azimuth and
elevation view model to define the
viewpoint, including definition and
examples

Defining Scenes with Camera
Graphics (p. 2-9)

Using the camera view model to
control 3-D scenes (illustration
defines terms)

View Control with the Camera
Toolbar (p. 2-10)

Camera tools for manipulating 3–D
scenes

Camera Graphics Functions (p. 2-21) Functions that control the camera
view model

Example — Dollying the Camera
(p. 2-22)

Example showing how to reposition
a scene when the user clicks over an
image

Example — Moving the Camera
Through a Scene (p. 2-24)

Example showing how to move a
camera through a scene along a path
traced by a stream line and showing
how to move a light source with the
camera

Low-Level Camera Properties
(p. 2-30)

Description of the graphic object
properties that control the camera

2 Defining the View

Understanding View Projections
(p. 2-37)

Orthographic and perspective project
types compared and illustrated and
the interaction between camera
properties and projection type

Understanding Axes Aspect Ratio
(p. 2-42)

How MATLAB determines the axes
aspect ratio for graphs and how you
can specify aspect ratio

Manipulating Axes Aspect Ratio
(p. 2-47)

Axes properties that control the
aspect ratio and how to set them to
achieve particular results

2-2

Viewing Overview

Viewing Overview

In this section...

“Viewing 3-D Graphs and Scenes” on page 2-3

“Positioning the Viewpoint” on page 2-3

“Setting the Aspect Ratio” on page 2-4

“Default Views” on page 2-4

Viewing 3-D Graphs and Scenes
The view is the particular orientation you select to display your graph or
graphical scene. The term viewing refers to the process of displaying a
graphical scene from various directions, zooming in or out, changing the
perspective and aspect ratio, flying by, and so on.

This section describes how to define the various viewing parameters to obtain
the view you want. Generally, viewing is applied to 3-D graphs or models,
although you might want to adjust the aspect ratio of 2-D views to achieve
specific proportions or make a graph fit in a particular shape.

MATLAB viewing is composed of two basic areas:

• Positioning the viewpoint to orient the scene

• Setting the aspect ratio and relative axis scaling to control the shape of
the objects being displayed

Positioning the Viewpoint

• Setting the Viewpoint -- Discusses how to specify the point from which
you view a graph in terms of azimuth and elevation. This is conceptually
simple, but does have limitations.

• Defining Scenes with Camera Graphics, View Control with the Camera
Toolbar, and Camera Graphics Functions — How to compose complex
scenes using the MATLAB camera viewing model.

• Dollying the Camera and Moving the Camera Through a Scene --
Programming techniques for moving the view around and through scenes.

2-3

2 Defining the View

• Low-Level Camera Properties — The graphics properties that control the
camera and illustrates the effects they cause.

Setting the Aspect Ratio

• View Projection Types -- Describes orthographic and perspective projection
types and illustrates their use.

• Understanding Axes Aspect Ratio and Axes Aspect Ratio Properties — How
MATLAB sets the aspect ratio of the axes and how you can select the most
appropriate setting for your graphs.

Default Views
MATLAB automatically sets the view when you create a graph. The actual
view that MATLAB selects depends on whether you are creating a 2- or 3-D
graph. See “Default Viewpoint Selection” on page 2-31 and “Default Aspect
Ratio Selection” on page 2-48 for a description of how MATLAB defines the
standard view.

2-4

Setting the Viewpoint with Azimuth and Elevation

Setting the Viewpoint with Azimuth and Elevation

Azimuth and Elevation
MATLAB enables you to control the orientation of the graphics displayed in
an axes. You can specify the viewpoint, view target, orientation, and extent
of the view displayed in a figure window. These viewing characteristics are
controlled by a set of graphics properties. You can specify values for these
properties directly or you can use the view command and rely on MATLAB
automatic property selection to define a reasonable view.

The view command specifies the viewpoint by defining azimuth and elevation
with respect to the axis origin. Azimuth is a polar angle in the x-y plane,
with positive angles indicating counterclockwise rotation of the viewpoint.
Elevation is the angle above (positive angle) or below (negative angle) the
x-y plane.

This diagram illustrates the coordinate system. The arrows indicate positive
directions.

Default 2-D and 3-D Views
MATLAB automatically selects a viewpoint that is determined by whether
the plot is 2-D or 3-D:

2-5

2 Defining the View

• For 2-D plots, the default is azimuth = 0° and elevation = 90°.

• For 3-D plots, the default is azimuth = -37.5° and elevation = 30°.

Examples of Views Specified with Azimuth and Elevation
For example, these statements create a 3-D surface plot and display it in
the default 3-D view.

[X,Y] = meshgrid([-2:.25:2]);
Z = X.*exp(-X.^2 -Y.^2);
surf(X,Y,Z)

−2
−1

0
1

2

−2
−1

0
1

2
−0.5

0

0.5

x−axis

Azimuth = −37.5° Elevation = 30°

y−axis

z−
ax

is

The statement

view([180 0])

sets the viewpoint so you are looking in the negative y-direction with your eye
at the z = 0 elevation.

2-6

Setting the Viewpoint with Azimuth and Elevation

−2−1012
−0.5

0

0.5

x−axis

Azimuth = 180° Elevation = 0°

z−
ax

is

You can move the viewpoint to a location below the axis origin using a
negative elevation.

view([-37.5 -30])

−2
−1

0
1

2

−2
−1

0
1

2

−0.5

0

0.5

y−axis

Azimuth = −37.5° Elevation = −30°

x−axis

z−
ax

is

2-7

2 Defining the View

Limitations of Azimuth and Elevation
Specifying the viewpoint in terms of azimuth and elevation is conceptually
simple, but it has limitations. It does not allow you to specify the actual
position of the viewpoint, just its direction, and the z-axis is always pointing
up. It does not allow you to zoom in and out on the scene or perform arbitrary
rotations and translations.

MATLAB camera graphics provides greater control than the simple
adjustments allowed with azimuth and elevation. The following sections
discuss how to use camera properties to control the view.

2-8

Defining Scenes with Camera Graphics

Defining Scenes with Camera Graphics
When you look at the graphics objects displayed in an axes, you are viewing
a scene from a particular location in space that has a particular orientation
with regard to the scene. MATLAB provides functionality, analogous to that
of a camera with a zoom lens, that enables you to control the view of the
scene created by MATLAB.

This picture illustrates how the camera is defined in terms of properties of
the axes.

2-9

2 Defining the View

View Control with the Camera Toolbar

In this section...

“Camera Toolbar” on page 2-10

“Camera Motion Controls” on page 2-13

“Orbit Camera” on page 2-13

“Orbit Scene Light” on page 2-15

“Pan/Tilt Camera” on page 2-15

“Move Camera Horizontally/Vertically” on page 2-16

“Move Camera Forward and Backward” on page 2-17

“Zoom Camera” on page 2-18

“Camera Roll” on page 2-19

Camera Toolbar
The Camera toolbar enables you to perform a number of viewing operations
interactively. To use the Camera toolbar,

• Display the toolbar by selecting Camera Toolbar from the figure window’s
View menu.

• Select the type of camera motion control you want to use.

• Position the cursor over the figure window and click, hold down the right
mouse button, then move the cursor in the desired direction.

MATLAB updates the display immediately as you move the mouse.

The toolbar contains the following parts:

2-10

View Control with the Camera Toolbar

• Camera Motion Controls — These tools select which camera motion
function to enable. You can also access the camera motion controls from
the Tools menu.

• Principal Axis Selector — Some camera controls operate with respect to a
particular axis. These selectors enable you to select the principal axis or
to select nonaxis constrained motion. The selectors are grayed out when
not applicable to the currently selected function. You can also access the
principal axis selector from the Tools menu.

• Scene Light — The scene light button toggles a light source on or off in the
scene (one light per axes).

• Projection Type — You can select orthographic or perspective projection
types.

• Reset and Stop — Reset returns the scene to the standard 3-D view. Stop
causes the camera to stop moving (this can be useful if you apply too much
cursor movement). You can also access an expanded set of reset functions
from the Tools menu.

Principal Axes
The principal axis of a scene defines the direction that is oriented upward
on the screen. For example, a MATLAB surface plot aligns the up direction
along the positive z-axis.

Principal axes constrain camera-tool motion along axes that are (on the
screen) parallel and perpendicular to the principal axis that you select.
Specifying a principal axis is useful if your data is defined with respect to
a specific axis. Z is the default principal axis, because this matches the
MATLAB default 3-D view.

Two of the camera tools (Orbit and Pan/Tilt) allow you to select a principal
axis as well as axis-free motion. On the screen, the axes of rotation are
determined by a vertical and a horizontal line, both of which pass through
the point defined by the CameraTarget property and are parallel and
perpendicular to the principal axis.

For example, when the principal axis is z, movement occurs about

2-11

2 Defining the View

• A vertical line that passes through the camera target and is parallel to
the z-axis

• A horizontal line that passes through the camera target and is
perpendicular to the z-axis

This means the scene (or camera, as the case may be) moves in an arc whose
center is at the camera target. The following picture illustrates the rotation
axes for a z principal axis.

The axes of rotation always pass through the camera target.

Optimizing for 3-D Camera Motion
When you create a plot, MATLAB displays it with an aspect ratio that fits
the figure window. This behavior might not create an optimum situation for
the manipulation of 3-D graphics, as it can lead to distortion as you move the
camera around the scene. To avoid possible distortion, it is best to switch to a
3-D visualization mode (enabled from the command line with the command

2-12

View Control with the Camera Toolbar

axis vis3d). When using the Camera toolbar, MATLAB automatically
switches to the 3-D visualization mode, but warns you first with the following
dialog box.

This dialog box appears only once per MATLAB session.

For more information about the underlying effects of related camera
properties, see “Understanding Axes Aspect Ratio” on page 2-42. The next
section, “Camera Motion Controls” on page 2-13, discusses how to use each
tool.

Camera Motion Controls
This section discusses the individual camera motion functions selectable from
the toolbar.

Note When interpreting the following diagrams, keep in mind that the
camera always points towards the camera target. See “Defining Scenes with
Camera Graphics” on page 2-9 for an illustration of the graphics properties
involved in camera motion.

Orbit Camera

2-13

2 Defining the View

Orbit Camera rotates the camera about the z-axis (by default). You can select
x-, y-, z-, or free-axis rotation using the Principal Axis Selectors. When using
no principal axis, you can rotate about an arbitrary axis.

Graphics Properties
Orbit Camera changes the CameraPosition property while keeping the
CameraTarget fixed.

2-14

View Control with the Camera Toolbar

Orbit Scene Light

The scene light is a light source that is placed with respect to the camera
position. By default, the scene light is positioned to the right of the camera
(i.e., camlight right). Orbit Scene Light changes the light’s offset from the
camera position. There is only one scene light; however, you can add other
lights using the light command.

Toggle the scene light on and off by clicking the yellow light bulb icon.

Graphics Properties
Orbit Scene Light moves the scene light by changing the light’s Position
property.

Pan/Tilt Camera

Pan/Tilt Camera moves the point in the scene that the camera points to while
keeping the camera fixed. The movement occurs in an arc about the z-axis
by default. You can select x-, y-, z-, or free-axis rotation using the Principal
Axes Selectors.

Graphics Properties
Pan/Tilt Camera moves the point in the scene that the camera is pointing to
by changing the CameraTarget property.

2-15

2 Defining the View

Move Camera Horizontally/Vertically

Moving the cursor horizontally or vertically (or any combination of the two)
moves the scene in the same direction.

Graphics Properties
The horizontal and vertical movement is achieved by moving the
CameraPosition and the CameraTarget in unison along parallel lines.

2-16

View Control with the Camera Toolbar

Move Camera Forward and Backward

Moving the cursor up or to the right moves the camera toward the scene.
Moving the cursor down or to the left moves the camera away from the scene.
It is possible to move the camera through objects in the scene and to the
other side of the camera target.

Graphics Properties
This function moves the CameraPosition along the line connecting the
camera position and the camera target.

2-17

2 Defining the View

Zoom Camera

Zoom Camera makes the scene larger as you move the cursor up or to the
right and smaller as you move the cursor down or to the left. Zooming does
not move the camera and therefore cannot move the viewpoint through
objects in the scene.

Graphics Properties
Zoom is implemented by changing the CameraViewAngle. The larger the
angle, the smaller the scene appears, and vice versa.

2-18

View Control with the Camera Toolbar

Camera Roll

Camera Roll rotates the camera about the viewing axis, thereby rotating
the view on the screen.

Graphics Properties
Camera Roll changes the CameraUpVector.

2-19

2 Defining the View

2-20

Camera Graphics Functions

Camera Graphics Functions
The following table lists MATLAB functions that enable you to perform a
number of useful camera maneuvers. The individual command descriptions
provide information on using each one.

Function Purpose

camdolly Move camera position and target

camlookat View specific objects

camorbit Orbit the camera about the camera target

campan Rotate the camera target about the camera
position

campos Set or get the camera position

camproj Set or get the projection type (orthographic or
perspective)

camroll Rotate the camera about the viewing axis

camtarget Set or get the camera target location

camup Set or get the value of the camera up vector

camva Set or get the value of the camera view angle

camzoom Zoom the camera in or out on the scene

2-21

2 Defining the View

Example — Dollying the Camera

In this section...

“Summary of Techniques” on page 2-22

“Implementation” on page 2-22

Summary of Techniques
In the camera metaphor, a dolly is a stage that enables movement of the
camera from side to side with respect to the scene. The camdolly command
implements similar behavior by moving both the position of the camera
and the position of the camera target in unison (or just the camera position
if you so desire).

This example illustrates how to use camdolly to explore different regions of
an image. It shows how to use the following functions:

• ginput to obtain the coordinates of locations on the image

• The camdolly data coordinates option to move the camera and target to
the new position based on coordinates obtained from ginput

• camva to zoom in and to fix the camera view angle, which is otherwise
under automatic control

Implementation
First load the Cape Cod image and zoom in by setting the camera view angle
(using camva).

load cape
image(X)
colormap(map)
axis image
camva(camva/2.5)

Then use ginput to select the x- and y-coordinates of the camera target and
camera position.

while 1

2-22

Example — Dollying the Camera

[x,y] = ginput(1);
if ~strcmp(get(gcf,'SelectionType'),'normal')

break
end
ct = camtarget;
dx = x - ct(1);
dy = y - ct(2);
camdolly(dx,dy,ct(3),'movetarget','data')
drawnow

end

2-23

2 Defining the View

Example — Moving the Camera Through a Scene

In this section...

“Summary of Techniques” on page 2-24

“Graphing the Volume Data” on page 2-25

“Setting Up the View” on page 2-25

“Specifying the Light Source” on page 2-26

“Selecting a Renderer” on page 2-26

“Defining the Camera Path as a Stream Line” on page 2-26

“Implementing the Fly-Through” on page 2-27

Summary of Techniques
A fly-through is an effect created by moving the camera through
three-dimensional space, giving the impression that you are flying along with
the camera as if in an aircraft. You can fly through regions of a scene that
might be otherwise obscured by objects in the scene or you can fly by a scene
by keeping the camera focused on a particular point.

To accomplish these effects you move the camera along a particular path, the
x-axis for example, in a series of steps. To produce a fly-through, move both
the camera position and the camera target at the same time.

The following example makes use of the fly-though effect to view the interior
of an isosurface drawn within a volume defined by a vector field of wind
velocities. This data represents air currents over North America.

This example employs a number of visualization techniques. It uses

• Isosurfaces and cone plots to illustrate the flow through the volume

• Lighting to illuminate the isosurface and cones in the volume

• Stream lines to define a path for the camera through the volume

• Coordinated motion of the camera position, camera target, and light

2-24

Example — Moving the Camera Through a Scene

See coneplot for a fixed visualization of the same data.

Graphing the Volume Data
The first step is to draw the isosurface and plot the air flow using cone plots.

See isosurface, isonormals, reducepatch, and coneplot for information on
using these commands.

Setting the data aspect ratio (daspect) to [1,1,1] before drawing the cone
plot enables MATLAB to calculate the size of the cones correctly for the final
view.

load wind
wind_speed = sqrt(u.^2 + v.^2 + w.^2);

hpatch = patch(isosurface(x,y,z,wind_speed,35));
isonormals(x,y,z,wind_speed,hpatch)
set(hpatch,'FaceColor','red','EdgeColor','none');

[f vt] = reducepatch(isosurface(x,y,z,wind_speed,45),0.05);
daspect([1,1,1]);
hcone = coneplot(x,y,z,u,v,w,vt(:,1),vt(:,2),vt(:,3),2);
set(hcone,'FaceColor','blue','EdgeColor','none');

Setting Up the View
You need to define viewing parameters to ensure the scene is displayed
correctly:

• Selecting a perspective projection provides the perception of depth as the
camera passes through the interior of the isosurface (camproj).

• Setting the camera view angle to a fixed value prevents MATLAB from
automatically adjusting the angle to encompass the entire scene as well as
zooming in the desired amount (camva).

camproj perspective
camva(25)

2-25

2 Defining the View

Specifying the Light Source
Positioning the light source at the camera location and modifying the
reflectance characteristics of the isosurface and cones enhances the realism
of the scene:

• Creating a light source at the camera position provides a "headlight" that
moves along with the camera through the isosurface interior (camlight).

• Setting the reflection properties of the isosurface gives the appearance of a
dark interior (AmbientStrength set to 0.1) with highly reflective material
(SpecularStrength and DiffuseStrength set to 1).

• Setting the SpecularStrength of the cones to 1 makes them highly
reflective.

hlight = camlight('headlight');
set(hpatch,'AmbientStrength',.1,...

'SpecularStrength',1,...
'DiffuseStrength',1);

set(hcone,'SpecularStrength',1);
set(gcf,'Color','k')

Selecting a Renderer
Because this example uses lighting, MATLAB must use either zbuffer or, if
available, OpenGL renderer settings. The OpenGL renderer is likely to be much
faster displaying the animation; however, you need to use gouraud lighting
with OpenGL, which is not as smooth as Phong lighting, which you can use
with the zbuffer renderer. The two choices are

lighting gouraud
set(gcf,'Renderer','OpenGL')

or for zbuffer

lighting phong
set(gcf,'Renderer','zbuffer')

Defining the Camera Path as a Stream Line
Stream lines indicate the direction of flow in the vector field. This example
uses the x-, y-, and z-coordinate data of a single stream line to map a path

2-26

Example — Moving the Camera Through a Scene

through the volume. The camera is then moved along this path. The tasks
include

• Create a stream line starting at the point x = 80, y = 30, z = 11.

• Get the x-, y-, and z-coordinate data of the stream line.

• Delete the stream line (note that you could also use stream3 to calculate
the stream line data without actually drawing the stream line).

hsline = streamline(x,y,z,u,v,w,80,30,11);
xd = get(hsline,'XData');
yd = get(hsline,'YData');
zd = get(hsline,'ZData');
delete(hsline)

Implementing the Fly-Through
To create a fly-through, move the camera position and camera target along the
same path. In this example, the camera target is placed five elements further
along the x-axis than the camera. A small value is added to the camera target
x position to prevent the position of the camera and target from becoming the
same point if the condition xd(n) = xd(n+5) should occur:

• Update the camera position and camera target so that they both move
along the coordinates of the stream line.

• Move the light along with the camera.

• Call drawnow to display the results of each move.

for i=1:length(xd)-50
campos([xd(i),yd(i),zd(i)])
camtarget([xd(i+5)+min(xd)/100,yd(i),zd(i)])
camlight(hlight,'headlight')
drawnow

end

These snapshots illustrate the view at values of i equal to 10, 110, and 185.

2-27

2 Defining the View

2-28

Example — Moving the Camera Through a Scene

2-29

2 Defining the View

Low-Level Camera Properties

In this section...

“Camera Properties You Can Set” on page 2-30

“Default Viewpoint Selection” on page 2-31

“Moving In and Out on the Scene” on page 2-32

“Making the Scene Larger or Smaller” on page 2-33

“Revolving Around the Scene” on page 2-34

“Rotation Without Resizing of Graphics Objects” on page 2-34

“Rotation About the Viewing Axis” on page 2-34

Camera Properties You Can Set
Camera graphics is based on a group of axes properties that control the
position and orientation of the camera. In general, the camera commands
make it unnecessary to access these properties directly.

Property Description

CameraPosition Specifies the location of the viewpoint in axes units.

CameraPositionMode In automatic mode, MATLAB determines the position based
on the scene. In manual mode, you specify the viewpoint
location.

CameraTarget Specifies the location in the axes pointed to by the camera.
Together with the CameraPosition, it defines the viewing
axis.

CameraTargetMode In automatic mode, MATLAB specifies the CameraTarget as
the center of the axes plot box. In manual mode, you specify
the location.

CameraUpVector The rotation of the camera around the viewing axis is defined
by a vector indicating the direction taken as up.

CameraUpVectorMode In automatic mode, MATLAB orients the up vector along the
positive y-axis for 2-D views and along the positive z-axis for
3-D views. In manual mode, you specify the direction.

2-30

Low-Level Camera Properties

Property Description

CameraViewAngle Specifies the field of view of the "lens." If you specify a value
for CameraViewAngle, MATLAB overrides stretch-to-fill
behavior (see “Understanding Axes Aspect Ratio” on page
2-42).

CameraViewAngleMode In automatic mode, MATLAB adjusts the view angle to the
smallest angle that captures the entire scene. In manual
mode, you specify the angle.

Setting CameraViewAngleMode to manual overrides
stretch-to-fill behavior.

Projection Selects either an orthographic or perspective projection.

Default Viewpoint Selection
When all the camera mode properties are set to auto (the default), MATLAB
automatically controls the view, selecting appropriate values based on the
assumption that you want the scene to fill the position rectangle (which is
defined by the width and height components of the axes Position property).

By default, MATLAB

• Sets the CameraPosition so the orientation of the scene is the standard
MATLAB 2-D or 3-D view (see the view command)

• Sets the CameraTarget to the center of the plot box

• Sets the CameraUpVector so the y-direction is up for 2-D views and the
z-direction is up for 3-D views

• Sets the CameraViewAngle to the minimum angle that makes the scene fill
the position rectangle (the rectangle defined by the axes Position property)

• Uses orthographic projection

This default behavior generally produces desirable results. However, you can
change these properties to produce useful effects.

2-31

2 Defining the View

Moving In and Out on the Scene
You can move the camera anywhere in the 3-D space defined by the axes.
The camera continues to point towards the target regardless of its position.
When the camera moves, MATLAB varies the camera view angle to ensure
the scene fills the position rectangle.

Moving Through a Scene
You can create a fly-by effect by moving the camera through the scene. To
do this, continually change CameraPosition property, moving it toward the
target. Because the camera is moving through space, it turns as it moves past
the camera target. Override the MATLAB automatic resizing of the scene each
time you move the camera by setting the CameraViewAngleMode to manual.

If you update the CameraPosition and the CameraTarget, the effect is to pass
through the scene while continually facing the direction of movement.

If the Projection is set to perspective, the amount of perspective distortion
increases as the camera gets closer to the target and decreases as it gets
farther away.

Example — Moving Toward or Away from the Target
To move the camera along the viewing axis, you need to calculate new
coordinates for the CameraPosition property. This is accomplished by
subtracting (to move closer to the target) or adding (to move away from the
target) some fraction of the total distance between the camera position and
the camera target.

The function movecamera calculates a new CameraPosition that moves in on
the scene if the argument dist is positive and moves out if dist is negative.

function movecamera(dist) %dist in the range [-1 1]
set(gca,'CameraViewAngleMode','manual')
newcp = cpos - dist * (cpos - ctarg);
set(gca,'CameraPosition',newcp)
function out = cpos
out = get(gca,'CameraPosition');
function out = ctarg
out = get(gca,'CameraTarget');

2-32

Low-Level Camera Properties

Note that setting the CameraViewAngleMode to manual overrides MATLAB
stretch-to-fill behavior and can cause an abrupt change in the aspect ratio.
See “Understanding Axes Aspect Ratio” on page 2-42 for more information
on stretch-to-fill.

Making the Scene Larger or Smaller
Adjusting the CameraViewAngle property makes the view of the scene larger
or smaller. Larger angles cause the view to encompass a larger area, thereby
making the objects in the scene appear smaller. Similarly, smaller angles
make the objects appear larger.

Changing CameraViewAngle makes the scene larger or smaller without
affecting the position of the camera. This is desirable if you want to zoom in
without moving the viewpoint past objects that will then no longer be in the
scene (as could happen if you changed the camera position). Also, changing

2-33

2 Defining the View

the CameraViewAngle does not affect the amount of perspective applied to
the scene, as changing CameraPosition does when the figure Projection
property is set to perspective.

Revolving Around the Scene
You can use the view command to revolve the viewpoint about the z-axis by
varying the azimuth, and about the azimuth by varying the elevation. This
has the effect of moving the camera around the scene along the surface of a
sphere whose radius is the length of the viewing axis. You could create the
same effect by changing the CameraPosition, but doing so requires you to
perform calculations that MATLAB performs for you when you call view.

For example, the function orbit moves the camera around the scene.

function orbit(deg)
[az el] = view;
rotvec = 0:deg/10:deg;
for i = 1:length(rotvec)

view([az+rotvec(i) el])
drawnow

end

Rotation Without Resizing of Graphics Objects
When CameraViewAngleMode is auto, MATLAB calculates the
CameraViewAngle so that the scene is as large as can fit in the axes position
rectangle. This causes an apparent size change during rotation of the scene.
To prevent resizing during rotation, you need to set the CameraViewAngleMode
to manual (which happens automatically when you specify a value for the
CameraViewAngle property). To do this in the orbit function, add the
statement

set(gca,'CameraViewAngleMode','manual')

Rotation About the Viewing Axis
You can change the orientation of the scene by specifying the direction
defined as up. By default, MATLAB defines up as the y-axis in 2-D
views (the CameraUpVector is [0 1 0]) and the z-axis for 3-D views (the

2-34

Low-Level Camera Properties

CameraUpVector is [0 0 1]). However, you can specify up as any arbitrary
direction.

The vector defined by the CameraUpVector property forms one axis of the
camera’s coordinate system. Internally, MATLAB determines the actual
orientation of the camera up vector by projecting the specified vector onto the
plane that is normal to the camera direction (i.e., the viewing axis). This
simplifies the specification of the CameraUpVector property, because it need
not lie in this plane.

In many cases, you might find it convenient to visualize the desired up vector
in terms of angles with respect to the axes x-, y-, and z-axis. You can then use
direction cosines to convert from angles to vector components. For a unit
vector, the expression simplifies to

where the angles α, β, and γ are specified in degrees.

XComponent = cos(α x (pi 180));
YComponent = cos(β x (pi 180));
ZComponent = cos([[GAMMA]] x (pi 180));

(Consult a mathematics book on vector analysis for a more detailed
explanation of direction cosines.)

2-35

2 Defining the View

Example — Calculating a Camera Up Vector
To specify an up vector that makes an angle of 30° with the z-axis and lies
in the y-z plane, use the expression

upvec = [cos(90*(pi/180)),cos(60*(pi/180)),cos(30*(pi/180))];

and then set the CameraUpVector property.

set(gca,'CameraUpVector',upvec)

Drawing a sphere with this orientation produces

−1 −0.5 0 0.5 1−1

−0.5

0

0.5

1
−1

−0.5

0

0.5

1

Z
−

A
xi

s

Y−Axis

X−Axis

2-36

Understanding View Projections

Understanding View Projections

In this section...

“The Two Types of Projections” on page 2-37

“Projection Types and Camera Location” on page 2-39

The Two Types of Projections
MATLAB supports both orthographic and perspective projection types for
displaying 3-D graphics. The one you select depends on the type of graphics
you are displaying:

• orthographic projects the viewing volume as a rectangular parallelepiped
(i.e., a box whose opposite sides are parallel). Relative distance from the
camera does not affect the size of objects. This projection type is useful
when it is important to maintain the actual size of objects and the angles
between objects.

• perspective projects the viewing volume as the frustum of a pyramid
(a pyramid whose apex has been cut off parallel to the base). Distance
causes foreshortening; objects further from the camera appear smaller.
This projection type is useful when you want to display realistic views of
real objects.

By default, MATLAB displays objects using orthographic projection. You can
set the projection type using the camproj command.

These pictures show a drawing of a dump truck (created with patch) and a
surface plot of a mathematical function, both using orthographic projection.

2-37

2 Defining the View

If you measure the width of the front and rear faces of the box enclosing the
dump truck, you’ll see they are the same size. This picture looks unnatural
because it lacks the apparent perspective you see when looking at real objects
with depth. On the other hand, the surface plot accurately indicates the
values of the function within rectangular space.

Now look at the same graphics objects with perspective added. The dump
truck looks more natural because portions of the truck that are farther from
the viewer appear smaller. This projection mimics the way human vision
works. The surface plot, on the other hand, looks distorted.

2-38

Understanding View Projections

Projection Types and Camera Location
By default, MATLAB adjusts the CameraPosition, CameraTarget, and
CameraViewAngle properties to point the camera at the center of the scene
and to include all graphics objects in the axes. If you position the camera so
that there are graphics objects behind the camera, the scene displayed can
be affected by both the axes Projection property and the figure Renderer
property. The following summarizes the interactions between projection type
and rendering method.

Orthographic Perspective

Z-buffer CameraViewAngle determines extent
of scene at CameraTarget.

CameraViewAngle determines extent
of scene from CameraPosition to
infinity.

Painters All objects are displayed regardless of
CameraPosition.

Not recommended if graphics objects
are behind the CameraPosition.

This diagram illustrates what you see (gray area) when using orthographic
projection and Z-buffer. Anything in front of the camera is visible.

2-39

2 Defining the View

In perspective projection, you see only what is visible in the cone of the
camera view angle.

Painters rendering method is less suited to moving the camera in 3-D
space because MATLAB does not clip along the viewing axis. Orthographic
projection in painters method results in all objects contained in the scene
being visible regardless of the camera position.

2-40

Understanding View Projections

Printing 3-D Scenes
The same effects described in the previous section occur in hardcopy output.
However, because of the differences in the process of rendering to the screen
and to a printing format, MATLAB might render using Z-buffer and generate
printed output using painters. You might need to specify Z-buffer printing
explicitly to obtain the results displayed on the screen (use the -zbuffer
option with the print command).

Additional Information
See Basic Printing and Exporting and Selecting a Renderer in Figure
Properties in the Using MATLAB Graphics documentation for information
on printing and rendering methods.

2-41

2 Defining the View

Understanding Axes Aspect Ratio

In this section...

“Stretch-to-Fill” on page 2-42

“Specifying Axis Scaling” on page 2-42

“Specifying Aspect Ratio” on page 2-43

“Example — axis Command Options” on page 2-44

“Additional Commands for Setting Aspect Ratio” on page 2-46

Stretch-to-Fill
Axes shape graphics objects by setting the scaling and limits of each axis.
When you create a graph, MATLAB automatically determines axis scaling
based on the values or size of the plotted data, and then draws the axes to
fit the space available for display. Axes aspect ratio properties control how
MATLAB performs the scaling required to create a graph.

By default, the size of the axes MATLAB creates for plotting is normalized
to the size of the figure window (but is slightly smaller to allow for borders).
If you resize the figure, the size and possibly the aspect ratio (the ratio of
width to height) of the axes changes proportionally. This enables the axes to
always fill the available space in the window. MATLAB also sets the x-, y-,
and z-axis limits to provide the greatest resolution in each direction, again
optimizing the use of available space.

This stretch-to-fill behavior is generally desirable; however, you might want
to control this process to produce specific results. For example, images need
to be displayed in correct proportions regardless of the aspect ratio of the
figure window, or you might want graphs always to be a particular size on a
printed page.

Specifying Axis Scaling
The axis command enables you to adjust the scaling of graphs. By default,
MATLAB finds the maxima and minima of the plotted data and chooses
appropriate axes ranges. You can override the defaults by setting axis limits.

2-42

Understanding Axes Aspect Ratio

axis([xmin xmax ymin ymax zmin zmax])

You can control how MATLAB scales the axes with predefined axis options:

• axis auto returns the axis scaling to its default, automatic mode. v
= axis saves the scaling of the axes of the current plot in vector v. For
subsequent graphics commands to have these same axis limits, follow
them with axis(v).

• axis manual freezes the scaling at the current limits. If you then set hold
on, subsequent plots use the current limits. Specifying values for axis
limits also sets axis scaling to manual.

• axis tight sets the axis limits to the range of the data.

• axis ij places MATLAB into its "matrix" axes mode. The coordinate system
origin is at the upper left corner. The i-axis is vertical and is numbered from
top to bottom. The j-axis is horizontal and is numbered from left to right.

• axis xy places MATLAB into its default Cartesian axes mode. The
coordinate system origin is at the lower left corner. The x-axis is horizontal
and is numbered from left to right. The y-axis is vertical and is numbered
from bottom to top.

Specifying Aspect Ratio
The axis command enables you to adjust the aspect ratio of graphs. Normally
MATLAB stretches the axes to fill the window. In many cases, it is more useful
to specify the aspect ratio of the axes based on a particular characteristic such
as the relative length or scaling of each axis. The axis command provides a
number of useful options for adjusting the aspect ratio:

• axis equal changes the current axes scaling so that equal tick mark
increments on the x-, y-, and z-axis are equal in length. This makes the
surface displayed by sphere look like a sphere instead of an ellipsoid. axis
equal overrides stretch-to-fill behavior.

• axis square makes each axis the same length and overrides stretch-to-fill
behavior.

• axis vis3d freezes aspect ratio properties to enable rotation of 3-D objects
and overrides stretch-to-fill. Use this option after other axis options to
keep settings from changing while you rotate the scene.

2-43

2 Defining the View

• axis image makes the aspect ratio of the axes the same as the image.

• axis auto returns the x-, y-, and z-axis limits to automatic selection mode.

• axis normal restores the current axis box to full size and removes any
restrictions on the scaling of the units. It undoes the effects of axis square.
Used in conjunction with axis auto, it undoes the effects of axis equal.

The axis command works by manipulating axes graphics object properties.

Example — axis Command Options
The following three pictures illustrate the effects of three axis options on a
cylindrical surface created with the statements

t = 0:pi/6:4*pi;
[x,y,z] = cylinder(4+cos(t),30);
surf(x,y,z)

axis normal is the default behavior. MATLAB automatically sets the axis
limits to span the data range along each axis and stretches the plot to fit
the figure window.

−5

0

5

−5

0

5
0

0.2

0.4

0.6

0.8

1

axis normal

2-44

Understanding Axes Aspect Ratio

axis square creates an axes that is square regardless of the shape of the
figure window. The cylindrical surface is no longer distorted because it is not
warped to fit the window. However, the size of one data unit is not equal
along all axes (the z-axis spans only one unit while the x-axes and y-axes
span 10 units each).

−5

0

5

−5

0

5
0

0.2

0.4

0.6

0.8

1

axis square

axis equal makes the length of one data unit equal along each axis while
maintaining a nearly square plot box. It also prevents warping of the axis to
fill the window’s shape.

−5

0

5

−4

−2

0

2

4

0
0.5

1

axis equal

2-45

2 Defining the View

Additional Commands for Setting Aspect Ratio
You can control the aspect ratio of your graph in three ways:

• Specifying the relative scales of the x-, y-, and z-axes (data aspect ratio)

• Specifying the shape of the space defined by the axes (plot box aspect ratio)

• Specifying the axis limits

The following commands enable you to set these values.

Command Purpose

daspect Set or query the data aspect ratio

pbaspect Set or query the plot box aspect ratio

xlim Set or query x-axis limits

ylim Set or query y-axis limits

zlim Set or query z-axis limits

See “Manipulating Axes Aspect Ratio” on page 2-47 for a list of the axes
properties that control aspect ratio.

2-46

Manipulating Axes Aspect Ratio

Manipulating Axes Aspect Ratio

In this section...

“Axes Aspect Ratio Properties” on page 2-47

“Default Aspect Ratio Selection” on page 2-48

“Overriding Stretch-to-Fill” on page 2-51

“Effects of Setting Aspect Ratio Properties” on page 2-52

“Example — Displaying Cross-Sections of Surfaces” on page 2-55

“Example — Displaying Real Objects” on page 2-57

Axes Aspect Ratio Properties
The axis command works by setting various axes object properties. You can
set these properties directly to achieve precisely the effect you want.

Property Description

DataAspectRatio Sets the relative scaling of the individual axis data values.
Set DataAspectRatio to [1 1 1] to display real-world
objects in correct proportions. Specifying a value for
DataAspectRatio overrides stretch-to-fill behavior.

DataAspectRatioMode In auto, MATLAB selects axis scales that provide the
highest resolution in the space available.

PlotBoxAspectRatio Sets the proportions of the axes plot box (set box to on to
see the box). Specifying a value for PlotBoxAspectRatio
overrides stretch-to-fill behavior.

PlotBoxAspectRatioMode In auto, MATLAB sets the PlotBoxAspectRatio to [1 1
1] unless you explicitly set the DataAspectRatio and/or
the axis limits.

Position Defines the location and size of the axes with a four-element
vector: [left offset, bottom offset, width, height].

XLim, YLim, ZLim Sets the minimum and maximum limits of the respective
axes.

XLimMode, YLimMode, ZLimMode In auto, MATLAB selects the axis limits.

2-47

2 Defining the View

By default, MATLAB automatically determines values for all of these
properties (i.e., all the modes are auto) and then applies stretch-to-fill. You
can override any property’s automatic operation by specifying a value for the
property or setting its mode to manual. The value you select for a particular
property depends primarily on what type of data you want to display.

Much of the data visualized with MATLAB is either

• Numerical data displayed as line or mesh plots

• Representations of real-world objects (e.g., a dump truck or a section of the
earth’s topography)

In the first case, it is generally desirable to select axis limits that provide good
resolution in each axis direction and to fill the available space. Real-world
objects, on the other hand, need to be represented accurately in proportion,
regardless of the angle of view.

Default Aspect Ratio Selection
There are two key elements to MATLAB default behavior — normalizing the
axes size to the window size and stretch-to-fill.

The axes Position property specifies the location and dimensions of the
axes. The third and fourth elements of the Position vector (width and
height) define a rectangle in which MATLAB draws the axes (indicated by
the dotted line in the following pictures). MATLAB stretches the axes to
fill this rectangle.

The default value for the axes Units property is normalized to the parent
figure dimensions. This means the shape of the figure window determines
the shape of the position rectangle. As you change the size of the window,
MATLAB reshapes the position rectangle to fit it.

2-48

Manipulating Axes Aspect Ratio

The view is the 2-D projection of the plot box onto the screen.

As you can see, reshaping the axes to fit into the figure window can change
the aspect ratio of the graph. MATLAB applies stretch-to-fill so the axes
fill the position rectangle and in the process can distort the shape. This is

2-49

2 Defining the View

generally desirable for graphs of numeric data, but not for displaying objects
realistically.

Example — MATLAB Defaults
MATLAB surface plots are well suited for visualizing mathematical functions
of two variables. For example, to display a mesh plot of the function

evaluated over the range -2 ≤ x ≤ 2, -4 ≤ y ≤ 4, use the
statements

[X,Y] = meshgrid([-2:.15:2],[-4:.3:4]);
Z = X.*exp(-X.^2 - Y.^2);
mesh(X,Y,Z)

The MATLAB default property values are designed to

• Select axis limits to span the range of the data (XLimMode, YLimMode, and
ZLimMode are set to auto).

• Provide the highest resolution in the available space by setting the
scale of each axis independently (DataAspectRatioMode and the
PlotBoxAspectRatioMode are set to auto).

• Draw axes that fit the position rectangle by adjusting the CameraViewAngle
and then stretch-to-fill the axes if necessary.

2-50

Manipulating Axes Aspect Ratio

Overriding Stretch-to-Fill
To maintain a particular shape, you can specify the size of the axes in
absolute units such as inches, which are independent of the figure window
size. However, this is not a good approach if you are writing an M-file that you
want to work with a figure window of any size. A better approach is to specify
the aspect ratio of the axes and override automatic stretch-to-fill.

In cases where you want a specific aspect ratio, you can override stretching by
specifying a value for these axes properties:

• DataAspectRatio or DataAspectRatioMode

• PlotBoxAspectRatio or PlotBoxAspectRatioMode

• CameraViewAngle or CameraViewAngleMode

The first two sets of properties affect the aspect ratio directly. Setting
either of the mode properties to manual simply disables stretch-to-fill while
maintaining all current property values. In this case, MATLAB enlarges the
axes until one dimension of the position rectangle constrains it.

Setting the CameraViewAngle property disables stretch-to-fill, and also
prevents MATLAB from readjusting the size of the axes if you change the view.

2-51

2 Defining the View

Effects of Setting Aspect Ratio Properties
It is important to understand how properties interact with each other, in order
to obtain the results you want. The DataAspectRatio, PlotBoxAspectRatio,
and the x-, y-, and z-axis limits (XLim, YLim, and ZLim properties) all place
constraints on the shape of the axes.

Data Aspect Ratio
The DataAspectRatio property controls the ratio of the axis scales. For a
mesh plot of the function evaluated over the range -2 ≤
x ≤ 2, -4 ≤ y ≤ 4

[X,Y] = meshgrid([-2:.15:2],[-4:.3:4]);
Z = X.*exp(-X.^2 - Y.^2);
mesh(X,Y,Z)

the values are

get(gca,'DataAspectRatio')
ans =

4 8 1

This means that four units in length along the x-axis cover the same data
values as eight units in length along the y-axis and one unit in length along
the z-axis. The axes fill the plot box, which has an aspect ratio of [1 1 1] by
default.

If you want to view the mesh plot so that the relative magnitudes along each
axis are equal with respect to each other, you can set the DataAspectRatio
to [1 1 1].

set(gca,'DataAspectRatio',[1 1 1])

2-52

Manipulating Axes Aspect Ratio

−2
−1

0
1

2

−4

−3

−2

−1

0

1

2

3

4
−0.5

0

0.5

Setting the value of the DataAspectRatio property also sets the
DataAspectRatioMode to manual and overrides stretch-to-fill so the specified
aspect ratio is achieved.

Plot Box Aspect Ratio
Looking at the value of the PlotBoxAspectRatio for the graph in the
previous section shows that it has now taken on the former value of the
DataAspectRatio.

get(gca,'PlotBoxAspectRatio')
ans =

4 8 1

MATLAB has rescaled the plot box to accommodate the graph using the
specified DataAspectRatio.

The PlotBoxAspectRatio property controls the shape of the axes plot
box. MATLAB sets this property to [1 1 1] by default and adjusts the
DataAspectRatio property so that graphs fill the plot box if stretching is on,
or until reaching a constraint if stretch-to-fill has been overridden.

2-53

2 Defining the View

When you set the value of the DataAspectRatio and thereby prevent it from
changing, MATLAB varies the PlotBoxAspectRatio instead. If you specify
both the DataAspectRatio and the PlotBoxAspectRatio, MATLAB is forced
to change the axis limits to obey the two constraints you have already defined.

Continuing with the mesh example, if you set both properties,

set(gca,'DataAspectRatio',[1 1 1],...
'PlotBoxAspectRatio',[1 1 1])

MATLAB changes the axis limits to satisfy the two constraints placed on
the axes.

−2

0

2

−4

−2

0

2

−2

0

2

Adjusting Axis Limits
MATLAB enables you to set the axis limits to the values you want. However,
specifying a value for DataAspectRatio, PlotBoxAspectRatio, and the axis
limits overconstrains the axes definition. For example, it is not possible for
MATLAB to draw the axes if you set these values:

set(gca,'DataAspectRatio',[1 1 1],...
'PlotBoxAspectRatio',[1 1 1],...

2-54

Manipulating Axes Aspect Ratio

'XLim',[-4 4],...
'YLim',[-4 4],...
'ZLim',[-1 1])

In this case, MATLAB ignores the setting of the PlotBoxAspectRatio and
determines its value automatically. These particular values cause the
PlotBoxAspectRatio to return to its calculated value.

get(gca,'PlotBoxAspectRatio')
ans =

4 8 1

MATLAB can now draw the axes using the specified DataAspectRatio and
axis limits.

−4

−2

0

2

4

−4

−2

0

2

4
−1

0

1

Example — Displaying Cross-Sections of Surfaces
Sometimes projecting a 3-D surface onto an x-, y-, or z-axis can aid
visualization. To do this, you might change the aspect ratio, in order to make
space for the projection. The following example illustrates how to do this:

2-55

2 Defining the View

1 Create an x-y grid and z-values for it:

[x,y] = meshgrid([-2:.2:2]);
Z = x.*exp(-x.^2-y.^2);

2 Plot the surface in 3-D; annotate with a colorbar and axis labels:

surf(x,y,Z,gradient(Z))
colorbar
xlabel('X-AXIS')
ylabel('Y-AXIS')
zlabel('Z-AXIS')

3 Use axis to change the Ymax value in to 3, stretching the plot in one
direction:

axis([-2 2 -2 3 -0.5 0.5]) %

4 Regrid the surface, setting all Y-values equal to 3:

y = 3*ones(21);

5 Plaster a plot of the surface onto the Y-axis:

2-56

Manipulating Axes Aspect Ratio

hold on
surf(x,y,Z,gradient(Z))

Example — Displaying Real Objects
If you want to display an object so that it looks realistic, you need to change
MATLAB defaults. For example, this data defines a wedge-shaped patch
object.

patch('Vertices',vertex_list,'Faces',vertex_connection,...

2-57

2 Defining the View

'FaceColor','w','EdgeColor','k')
view(3)

0
0.5

1

0
0.5

1
0

0.5

1

1.5

2

2.5

3

3.5

4

However, this axes distorts the actual shape of the solid object defined by the
data. To display it in correct proportions, set the DataAspectRatio.

set(gca,'DataAspectRatio',[1 1 1])

The units are now equal in the x-, y-, and z-directions and the axes is not being
stretched to fill the position rectangle, revealing the true shape of the object.

2-58

Manipulating Axes Aspect Ratio

0 0.5 1
00.51

0

0.5

1

1.5

2

2.5

3

3.5

4

2-59

2 Defining the View

2-60

3

Lighting as a Visualization
Tool

Lighting Overview (p. 3-2) Contains links to examples
throughout the graphics
documentation that illustrate
the use of lighting

Selecting a Lighting Method (p. 3-8) Illustration of various lighting
methods showing which to use

Reflectance Characteristics of
Graphics Objects (p. 3-10)

Catalog illustrating various lighting
characteristics

3 Lighting as a Visualization Tool

Lighting Overview

In this section...

“Lighting Commands” on page 3-2

“Light Objects” on page 3-2

“Properties That Affect Lighting” on page 3-3

“Examples of Lighting Control” on page 3-5

Lighting Commands
MATLAB provides commands that enable you to position light sources and
adjust the characteristics of lit objects. These commands include the following.

Command Purpose

camlight Create or move a light with respect to the camera
position

lightangle Create or position a light in spherical coordinates

light Create a light object

lighting Select a lighting method

material Set the reflectance properties of lit objects

You might find it useful to set light or lit-object properties directly to achieve
specific results. In addition to the material in this topic area, you can explore
the following lighting examples as an introduction to lighting for visualization.

Light Objects
You create a light object using the light function. Three important light
object properties are

• Color — Color of the light cast by the light object

• Style — Either infinitely far away (the default) or local

• Position — Direction (for infinite light sources) or the location (for local
light sources)

3-2

Lighting Overview

The Color property determines the color of the directional light from the light
source. The color of an object in a scene is determined by the color of the
object and the light source.

The Style property determines whether the light source is a point source
(Style set to local), which radiates from the specified position in all
directions, or a light source placed at infinity (Style set to infinite), which
shines from the direction of the specified position with parallel rays.

The Position property specifies the location of the light source in axes data
units. In the case of a light source at infinity, Position specifies the direction
to the light source.

Lights affect surface and patch objects that are in the same axes as the light.
These objects have a number of properties that alter the way they look when
illuminated by lights.

Properties That Affect Lighting
You cannot see light objects themselves, but you can see their effects on any
patch and surface objects present in the axes containing the light. A number
of functions create these objects, including surf, mesh, pcolor, fill, and
fill3 as well as the surface and patch functions.

You control lighting effects by setting various axes, light, patch, and surface
object properties. All properties have default values that generally produce
desirable results. However, you can achieve the specific effect you want by
adjusting the values of these properties.

Property Effect

AmbientLightColor An axes property that specifies the color of the background
light in the scene, which has no direction and affects all objects
uniformly. Ambient light effects occur only when there is a
visible light object in the axes.

AmbientStrength A patch and surface property that determines the intensity of the
ambient component of the light reflected from the object.

DiffuseStrength A patch and surface property that determines the intensity of the
diffuse component of the light reflected from the object.

3-3

3 Lighting as a Visualization Tool

Property Effect

SpecularStrength A patch and surface property that determines the intensity of the
specular component of the light reflected from the object.

SpecularExponent A patch and surface property that determines the size of the
specular highlight.

SpecularColorReflectance A patch and surface property that determines the degree to
which the specularly reflected light is colored by the object color
or the light source color.

FaceLighting A patch and surface property that determines the method used
to calculate the effect of the light on the faces of the object.
Choices are either no lighting, or flat, Gouraud, or Phong lighting
algorithms.

EdgeLighting A patch and surface property that determines the method used
to calculate the effect of the light on the edges of the object.
Choices are either no lighting, or flat, Gouraud, or Phong lighting
algorithms.

BackFaceLighting A patch and surface property that determines how faces are lit
when their vertex normals point away from the camera. This
property is useful for discriminating between the internal and
external surfaces of an object.

FaceColor A patch and surface property that specifies the color of the object
faces.

EdgeColor A patch and surface property that specifies the color of the object
edges.

VertexNormals A patch and surface property that contains normal vectors for
each vertex of the object. MATLAB uses vertex normal vectors
to perform lighting calculations. While MATLAB automatically
generates this data, you can also specify your own vertex
normals.

NormalMode A patch and surface property that determines whether MATLAB
recalculates vertex normals if you change object data (auto) or
uses the current values of the VertexNormals property (manual).
If you specify values for VertexNormals, MATLAB sets this
property to manual.

3-4

Lighting Overview

For more information, see descriptions of axes, surface, and patch object
properties.

Examples of Lighting Control
Lighting is a technique for adding realism to a graphical scene. It does this by
simulating the highlights and dark areas that occur on objects under natural
lighting (e.g., the directional light that comes from the sun). To create lighting
effects, MATLAB defines a graphics object called a light. MATLAB applies
lighting to surface and patch objects.

These examples illustrate the use of lighting in a visualization context.

• Tracing a stream line through a volume — Sets properties of surfaces,
patches, and lights (MATLAB Graphics documentation).

• Using slice planes and cone plots — Sets lighting characteristics of objects
in a scene independently to achieve a desired result (MATLAB coneplot
function).

• Lighting multiple slice planes independently to visualize fluid flow
(MATLAB Graphics documentation).

• Combining single-color lit surfaces with interpolated coloring. See
"Example — Visualizing MRI Data" (3–D Visualization documentation).

• Employing lighting to reveal surface shape. The fluid flow isosurface
example and the surface plot of the sinc function examples illustrate this
technique (3–D Visualization documentation).

Example — Adding Lights to a Scene
This example displays the membrane surface and illuminates it with a light
source emanating from the direction defined by the position vector [0 -2 1].
This vector defines a direction from the axes origin passing through the point
with the coordinates 0, -2, 1. The light shines from this direction toward
the axes origin.

membrane
light('Position',[0 -2 1])

3-5

3 Lighting as a Visualization Tool

Creating a light activates a number of lighting-related properties controlling
characteristics such as the ambient light and reflectance properties of objects.
It also switches to Z-buffer renderer if not already in that mode.

Example — Illuminating Mathematical Functions
Lighting can enhance surface graphs of mathematical functions.
For example, use the ezsurf command to evaluate the

expression over the region -6π to
6π.

ezsurf('sin(sqrt(x^2+y^2))/sqrt(x^2+y^2)',[-6*pi,6*pi])

Now add lighting using the lightangle command, which accepts the light
position in terms of azimuth and elevation.

3-6

Lighting Overview

view(0,75)
shading interp
lightangle(-45,30)
set(gcf,'Renderer','zbuffer')
set(findobj(gca,'type','surface'),...

'FaceLighting','phong',...
'AmbientStrength',.3,'DiffuseStrength',.8,...
'SpecularStrength',.9,'SpecularExponent',25,...
'BackFaceLighting','unlit')

After obtaining the surface object’s handle using findobj, you can set
properties that affect how the light reflects from the surface. See for more
detailed descriptions of these properties.

3-7

3 Lighting as a Visualization Tool

Selecting a Lighting Method

Face and Edge Lighting Methods
When you add lights to an axes, MATLAB determines the effects these lights
have on the patch and surface objects that are displayed in that axes. There
are different methods used to calculate the face and edge coloring of lit objects,
and the one you select depends on the results you want to obtain.

MATLAB supports three different algorithms for lighting calculations,
selected by setting the FaceLighting and EdgeLighting properties of each
patch and surface object in the scene. Each algorithm produces somewhat
different results:

• Flat lighting — Produces uniform color across each of the faces of the
object. Select this method to view faceted objects.

• Gouraud lighting — Calculates the colors at the vertices and then
interpolates colors across the faces. Select this method to view curved
surfaces.

• Phong lighting — Interpolates the vertex normals across each face and
calculates the reflectance at each pixel. Select this choice to view curved
surfaces. Phong lighting generally produces better results than Gouraud
lighting, but takes longer to render.

This illustration shows how a red sphere looks using each of the lighting
methods with one white light source.

3-8

Selecting a Lighting Method

The lighting command (as opposed to the light function) provides a
convenient way to set the lighting method.

3-9

3 Lighting as a Visualization Tool

Reflectance Characteristics of Graphics Objects

In this section...

“Specular and Diffuse Reflection” on page 3-10

“Ambient Light” on page 3-11

“Specular Exponent” on page 3-12

“Specular Color Reflectance” on page 3-13

“Back Face Lighting” on page 3-13

“Positioning Lights in Data Space” on page 3-16

Specular and Diffuse Reflection
You can specify the reflectance characteristics of patch and surface objects
and thereby affect the way they look when lights are applied to the scene.
It is likely you will adjust these characteristics in combination to produce
particular results.

Also see the material command for a convenient way to produce certain
lighting effects.

You can control the amount of specular and diffuse reflection from the
surface of an object by setting the SpecularStrength and DiffuseStrength
properties. This picture illustrates various settings.

3-10

Reflectance Characteristics of Graphics Objects

Ambient Light
Ambient light is a directionless light that shines uniformly on all objects in the
scene. Ambient light is visible only when there are light objects in the axes.
There are two properties that control ambient light — AmbientLightColor
is an axes property that sets the color, and AmbientStrength is a property
of patch and surface objects that determines the intensity of the ambient
light on the particular object.

This illustration shows three different ambient light colors at various
intensities. The sphere is red and there is a white light object present.

3-11

3 Lighting as a Visualization Tool

The green [0 1 0] ambient light does not affect the scene because there is no
red component in green light. However, the color defined by the RGB values
[.5 0 1] does have a red component, so it contributes to the light on the sphere
(but less than the white [1 1 1] ambient light).

Specular Exponent
The size of the specular highlight spot depends on the value of the patch and
surface object’s SpecularExponent property. Typical values for this property
range from 1 to 500, with normal objects having values in the range 5 to 20.

This illustration shows a red sphere illuminated by a white light with three
different values for the SpecularExponent property.

3-12

Reflectance Characteristics of Graphics Objects

Specular Color Reflectance
The color of the specularly reflected light can range from a combination of the
color of the object and the color of the light source to the color of the light
source only. The patch and surface SpecularColorReflectance property
controls this color. This illustration shows a red sphere illuminated by a white
light. The values of the SpecularColorReflectance property range from 0
(object and light color) to 1 (light color).

Back Face Lighting
Back face lighting is useful for showing the difference between internal and
external faces. These pictures of cut-away cylindrical surfaces illustrate the
effects of back face lighting.

3-13

3 Lighting as a Visualization Tool

The default value for BackFaceLighting is reverselit. This setting
reverses the direction of the vertex normals that face away from the camera,
causing the interior surface to reflect light towards the camera. Setting
BackFaceLighting to unlit disables lighting on faces with normals that
point away from the camera.

You can also use BackFaceLighting to remove edge effects for closed objects.
These effects occur when BackFaceLighting is set to reverselit and pixels
along the edge of a closed object are lit as if their vertex normals faced the
camera. This produces an improperly lit pixel because the pixel is visible but
is really facing away from the camera.

To illustrate this effect, the next picture shows a blowup of the edge of a lit
sphere. Setting BackFaceLighting to lit prevents the improper lighting
of pixels.

3-14

Reflectance Characteristics of Graphics Objects

3-15

3 Lighting as a Visualization Tool

Positioning Lights in Data Space
This example creates a sphere and a cube to illustrate the effects of various
properties on lighting. The variables vert and fac define the cube using the
patch function.

sphere(36);
h = findobj('Type','surface');
set(h,'FaceLighting','phong',...

'FaceColor','interp',...
'EdgeColor',[.4 .4 .4],...
'BackFaceLighting','lit')

hold on
patch('faces',fac,'vertices',vert,'FaceColor','y');
light('Position',[1 3 2]);
light('Position',[-3 -1 3]);
material shiny
axis vis3d off
hold off

All faces of the cube have FaceColor set to yellow. The sphere function
creates a spherical surface and the handle of this surface is obtained using
findobj to search for the object whose Type property is surface. The light
functions define two white (the default color) light objects located at infinity
in the direction specified by the Position vectors. These vectors are defined
in axes coordinates [x, y, z].

3-16

Reflectance Characteristics of Graphics Objects

The patch uses flat FaceLighting (the default) to enhance the visibility of
each side. The surface uses phong FaceLighting because it produces the
smoothest interpolation of lighting effects. The material shiny command
affects the reflectance properties of both the cube and sphere (although its
effects are noticeable only on the sphere because of the cube’s flat shading).

Because the sphere is closed, the BackFaceLighting property is changed
from its default setting, which reverses the direction of vertex normals that
face away from the camera, to normal lighting, which removes undesirable
edge effects.

Examining the code in the lighting and material M-files can help you
understand how various properties affect lighting.

3-17

3 Lighting as a Visualization Tool

3-18

4

Transparency

Making Objects Transparent (p. 4-2) Overview of the object properties
that specify transparency

Mapping Data to Transparency —
Alpha Data (p. 4-8)

How to use transparency as another
dimension for visualizing data

Selecting an Alphamap (p. 4-12) Characteristics of various alphamaps
and illustrations of the effects they
produce

4 Transparency

Making Objects Transparent

In this section...

“About Transparency” on page 4-2

“Specifying Transparency” on page 4-3

“Example — A Transparent Isosurface” on page 4-5

About Transparency
Making graphics objects semitransparent is a useful technique in 3-D
visualization to make it possible to see an object, while at the same time, see
what information the object would obscure if it was completely opaque. You
can also use transparency as another dimension for displaying data, much
the way color is used in MATLAB.

The transparency of a graphics object determines the degree to which you can
see through the object. You can specify a continuous range of transparency
varying from completely transparent (i.e., invisible) to completely opaque
(i.e., no transparency).

Objects that support transparency are

• Image

• Patch

• Surface

The following picture illustrates the effect of transparency. The green
isosurface (patch object) reveals the cone plot that lies in the interior.

4-2

Making Objects Transparent

Note You must have OpenGL available on your system to use transparency.
When rendering transparency MATLAB automatically uses OpenGL if it is
available. If it is not available, transparency does not display. See the figure
property RendererMode for more information.

Specifying Transparency
Transparency values, which range from [0 1], are referred to as alpha values.
An alpha value of 0 means completely transparent (i.e., invisible); an alpha
value of 1 means completely opaque (i.e., no transparency).

MATLAB treats transparency in a way that is analogous to how it treats
color for the respective objects:

4-3

4 Transparency

• Patches and surfaces can define a single face and edge alpha value or use
flat or interpolated transparency based on values in the figure’s alphamap.

• Images, patches, and surfaces can define alpha data that is used as indices
into the alphamap or directly as alpha values.

• Axes define alpha limits that control the mapping of object data to alpha
values.

• Figures contain alphamaps, which are m-by-1 arrays of alpha values.

See the following sections for more information on color:

• “Specifying Patch Coloring” on page 5-14 in Creating 3-D Models with
Patches in the Using MATLAB Graphics documentation

• “Coloring Mesh and Surface Plots” on page 1-16 in Creating 3-D Graphs
in the Using MATLAB Graphics documentation

Transparency Properties
The following table summarizes the object properties that control
transparency.

Property Purpose

AlphaData Transparency data for image and surface objects

AlphaDataMapping Transparency data mapping method

FaceAlpha Transparency of the faces (patch and surface
only)

EdgeAlpha Transparency of the edges (patch and surface
only)

FaceVertexAlphaData Patch only alpha data property

ALim Alpha axis limits

ALimMode Alpha axis limits mode

Alphamap Figure alphamap

4-4

Making Objects Transparent

Transparency Functions
There are three functions that simplify the process of setting alpha properties.

Function Purpose

alpha Set or query transparency properties for objects
in current axes

alphamap Specify the figure alphamap

alim Set or query the axes alpha limits

Example — A Transparent Isosurface
Specifying a single transparency value for graphics objects is useful when you
want to reveal structure that is obscured with opaque objects. For patches
and surfaces, use the FaceAlpha and EdgeAlpha properties to specify the
transparency of faces and edges. The following example illustrates this.

This example uses the flow function to generate data for the speed profile
of a submerged jet within an infinite tank. One way to visualize this data
is by creating an isosurface illustrating where the rate of flow is equal to a
specified value.

[x y z v] = flow;
p = patch(isosurface(x,y,z,v,-3));
isonormals(x,y,z,v,p);
set(p,'facecolor','red','edgecolor','none');
daspect([1 1 1]);
view(3); axis tight; grid on;
camlight; lighting gouraud;

4-5

4 Transparency

Adding transparency to the isosurface reveals that there is greater complexity
in the fluid flow than is visible using the opaque surface. The statement

alpha(.5)

sets the FaceAlpha value for the isosurface face to .5.

Setting a Single Transparency Value for Images
For images, the statement

4-6

Making Objects Transparent

alpha(.5)

sets AlphaData to .5. When the AlphaDataMapping property is set to none
(the default), setting AlphaData on an image causes the entire image to be
rendered with the specified alpha value.

4-7

4 Transparency

Mapping Data to Transparency — Alpha Data

In this section...

“What Is Alpha Data?” on page 4-8

“Size of the Alpha Data Array” on page 4-9

“Mapping Alpha Data to the Alphamap” on page 4-9

“Example — Mapping Data to Color or Transparency” on page 4-10

What Is Alpha Data?
Alpha data is analogous to color data (e.g., the CData property of surfaces).
When you create a surface, MATLAB maps each element in the color data
array to a color in the colormap. Similarly, each element in the alpha data
maps to a transparency value in the alphamap.

Specify surface and image alpha data with the AlphaData property. For patch
objects, use the FaceVertexAlphaData property.

You can control how MATLAB interprets alpha data with the following
properties:

• FaceAlpha and EdgeAlpha — Enable you to select flat or interpolated
transparency rendering. If set to a single transparency value, MATLAB
applies this value to all faces or edges and does not use the alpha data.

• AlphaDataMapping and ALim — Determine how MATLAB maps the alpha
data to the alphamap. By default, MATLAB scales the alpha data to be
within the range [0 1].

• Alphamap — Contains the actual transparency values to which the data
is to be mapped.

Note that there are differences between the default values of equivalent
color and alpha properties because, in contrast to color, transparency is not
displayed by default. The following table highlights these differences.

4-8

Mapping Data to Transparency — Alpha Data

Color Property Default Alpha Property Default

FaceColor Flat FaceAlpha 1 (opaque)

CData Equal to ZData AlphaData and
FaceVertexAlphaData

1 (scalar)

By default, objects have single-valued alpha data. Therefore you cannot
specify flat or interp FaceAlpha or EdgeAlpha without first setting
AlphaData to an array of the appropriate size.

The sections that follow illustrate how to use these properties to display object
data as degrees of transparency.

Size of the Alpha Data Array
In order to use nonscalar alpha data, you need to specify the alpha data as an
array equal in size to

• CData of images and surfaces

• The number of faces (flat) or the number of vertices (interpolated) defined
in the FaceVertexAlphaData property of patches

Once you have specified an alpha data array of the proper size, you can select
the face and edge rendering you want to use. Flat uses one transparency
value per face, while interpolated performs bilinear interpolation of the
values at each vertex.

Mapping Alpha Data to the Alphamap
You can control how MATLAB maps the alpha data to the alphamap using the
AlphaDataMapping property. There are three possible mappings:

• none — Interpret the values in alpha data as transparency values (data
values must be between 0 and 1, or will be clamped to 0 or 1). This is the
default mapping.

4-9

4 Transparency

• scaled — Transform the alpha data to span the portion of the alphamap
indicated by the axes ALim property, linearly mapping data values to alpha
values. This is the same way color data is mapped to the colormap.

• direct — Use the alpha data directly as indices into the figure alphamap.

By default, objects have scalar alpha data (AlphaData and
FaceVertexAlphaData) set to the value 1.

Example — Mapping Data to Color or Transparency
This example displays a surface plot of a function of two variables. The color
is mapped to the gradient of the z data.

[x,y] = meshgrid([-2:.2:2]);
z = x.*exp(-x.^2-y.^2);
surf(x,y,z,gradient(z)); axis tight

You can map transparency to the gradient of z in a similar way.

surf(x,y,z,'FaceAlpha','flat',...
'AlphaDataMapping','scaled',...
'AlphaData',gradient(z),...
'FaceColor','blue');

axis tight

4-10

Mapping Data to Transparency — Alpha Data

4-11

4 Transparency

Selecting an Alphamap

In this section...

“What Is an Alphamap?” on page 4-12

“Example — Modifying the Alphamap” on page 4-14

What Is an Alphamap?
An alphamap is simply an array of values ranging from 0 to 1. The size of the
array can be either m-by-1 or 1-by-m.

The default alphamap contains 64 values ranging linearly from 0 to 1, as you
can see in the following plot.

plot(get(gcf,'Alphamap'))

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Default Alphamap

This alphamap displays the lowest alpha data values as completely
transparent and the highest alpha data values as opaque.

The alphamap function creates some useful predefined alphamaps and also
enables you to modify existing maps. For example,

4-12

Selecting an Alphamap

plot(alphamap('vup'))

produces the following alphamap.

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

You can shift the values using the increase or decrease options. For example,

alphamap('increase',.4)

adds the value .4 to all values in the current figure’s alphamap. Replotting
the 'vup' alphamap illustrates the change. Note how the values are clamped
to the range [0 1].

plot(get(gcf,'Alphamap'))

4-13

4 Transparency

0 10 20 30 40 50 60 70
0.4

0.5

0.6

0.7

0.8

0.9

1

Example — Modifying the Alphamap
This example uses slice planes to examine volume data. The slice planes use
the color data for alpha data and employ a rampdown alphamap (the values
range from 1 to 0):

1 Create the volume data by evaluating a function of three variables.

[x,y,z] = meshgrid(-1.25:.1:-.25,-2:.2:2,-2:.1:2);
v = x.*exp(-x.^2-y.^2-z.^2);

2 Create the slice planes, set the alpha data equal to the color data, and
specify interpolated FaceAlpha.

h = slice(x,y,z,v,[-1 -.75 -.5],[],[0]);
alpha('color')
set(h,'EdgeColor','none','FaceColor','interp',...
'FaceAlpha','interp')

3 Install the rampdown alphamap and increase each value in the alphamap
by .1 to achieve the desired degree of transparency. Specify the hsv
colormap.

alphamap('rampdown')

4-14

Selecting an Alphamap

alphamap('increase',.1)
colormap(hsv)

This alphamap causes the smallest values of the function (around zero) to be
displayed with the least transparency and the greatest values to display with
the most transparency. This enables you to see through the slice planes, while
at the same time preserving the data around zero.

4-15

4 Transparency

4-16

5

Creating 3-D Models with
Patches

Introduction to Patch Objects (p. 5-2) Overview of what a patch object is
and how to define one

Multifaceted Patches (p. 5-7) Shows how to define a 3-D patch
object using both x-, y-, and
z-coordinate and faces/vertices data,
and illustrates flat and interpolated
face coloring

Modifying Data on Existing Patch
Objects (p. 5-11)

Read this section before you attempt
to modify the data of a patch object

Specifying Patch Coloring (p. 5-14) How to specify patch coloring using
various patch properties

Interpreting Indexed and Truecolor
Data (p. 5-18)

Specifying color data that uses
colormaps or defines explicit colors

5 Creating 3-D Models with Patches

Introduction to Patch Objects

In this section...

“What Are Patch Objects?” on page 5-2

“Behavior of the patch Function” on page 5-3

“Creating a Single Polygon” on page 5-4

What Are Patch Objects?
A patch graphics object is composed of one or more polygons that may or may
not be connected. Patches are useful for modeling real-world objects such as
airplanes or automobiles, and for drawing 2- or 3-D polygons of arbitrary
shape.

In contrast, surface objects are rectangular grids of quadrilaterals and
are better suited for displaying planar topographies such as the values of
mathematical functions of two variables, the contours of data in a rectangular
plane, or parameterized surfaces such as spheres.

A number of MATLAB functions create patch objects — fill, fill3,
isosurface, isocaps, some of the contour functions, and patch. This section
concentrates on use of the patch function.

You define a patch by specifying the coordinates of its vertices and some form
of color data. Patches support a variety of coloring options that are useful for
visualizing data superimposed on geometric shapes.

There are two ways to specify a patch:

• By specifying the coordinates of the vertices of each polygon, which
MATLAB connects to form the patch

• By specifying the coordinates of each unique vertex and a matrix that
specifies how to connect these vertices to form the faces

The second technique is preferred for multifaceted patches because it
generally requires less data to define the patch; vertices shared by more than

5-2

Introduction to Patch Objects

one face need be defined only once. This section provides examples of both
techniques.

Behavior of the patch Function
There are two forms of the patch function -- high-level syntax and low-level
syntax. The behavior of the patch function differs somewhat depending on
which syntax you use.

High-Level Syntax
When you use the high-level syntax, MATLAB automatically determines how
to color each face based on the color data you specify. The high-level syntax
enables you to omit the property names for the x-, y-, and z-coordinates and
the color data, as long as you specify these arguments in the correct order.

patch(x-coordinates,y-coordinates,z-coordinates,colordata)

However, you must specify color data so MATLAB can determine what type of
coloring to use. If you do not specify color data, MATLAB returns an error.

patch(sin(t),cos(t))
??? Error using ==> patch
Not enough input arguments.

Low-Level Syntax
The low-level syntax accepts only property name/property value pairs as
arguments and does not automatically color the faces unless you also change
the value of the FaceColor property. For example, the statement

patch('XData',sin(t),'YData',cos(t)) % Low-level syntax

draws a patch with white face color because the factory default value for the
FaceColor property is the color white.

get(0,'FactoryPatchFaceColor')
ans =

1 1 1

5-3

5 Creating 3-D Models with Patches

See the list of patch properties in the MATLAB Function Reference and the
get command for information on how to obtain the factory and user default
values for properties.

Interpreting the Color Argument
When you use the low-level syntax, MATLAB interprets the third (or fourth if
there are z-coordinates) argument as color data. If you intend to define a patch
with x-, y-, and z-coordinates, but leave out the color, MATLAB interprets the
z-coordinates as color data, and then draws a 2-D patch. For example,

h = patch(sin(t),cos(t),1:length(t))

draws a patch with all vertices at z = 0, colored by interpolating the vertex
colors (since there is one color for each vertex), whereas

h = patch(sin(t),cos(t),1:length(t),'y')

draws a patch with vertices at increasing values of z, colored yellow.

“Specifying Patch Coloring” on page 5-14 provides more information on
options for coloring patches.

Creating a Single Polygon
A polygon is simply a patch with one face. To create a polygon, specify the
coordinates of the vertices and color data with a statement of the form

patch(x-coordinates,y-coordinates,[z-coordinates],colordata)

For example, these statements display a 10-sided polygon with a yellow face
enclosed by a black edge. The axis equal command produces a correctly
proportioned polygon.

t = 0:pi/5:2*pi;
patch(sin(t),cos(t),'y')
axis equal

5-4

Introduction to Patch Objects

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

The first and last vertices need not coincide; MATLAB automatically closes
each polygonal face of the patch. In fact, it is generally better to define each
vertex only once, particularly if you are using interpolated face coloring.

Interpolated Face Colors
You can control many aspects of the patch coloring. For example, instead of
specifying a single color, you can provide a range of numerical values that map
the color at each vertex to a color in the figure colormap.

a = t(1:length(t)-1); %remove redundant vertex definition
patch(sin(a),cos(a),1:length(a),'FaceColor','interp')
colormap cool;
axis equal

5-5

5 Creating 3-D Models with Patches

MATLAB now interpolates the colors across the face of the patch. You can
color the edges of the patch the same way, by setting the edge colors to be
interpolated. The command is

patch(sin(t),cos(t),1:length(t),'EdgeColor','interp')

“Specifying Patch Coloring” on page 5-14 provides more information on
options for coloring patches.

5-6

Multifaceted Patches

Multifaceted Patches

Example — Defining a Cube
A cube is defined by eight vertices that form six sides. This illustration shows
the x-, y-, and z-coordinates of the vertices defining a cube in which the sides
are one unit in length.

If you specify the x-, y-, and z-coordinate arguments as vectors, MATLAB
draws a single polygon by connecting the points. If the arguments are
matrices, MATLAB draws one polygon per column, producing a single
patch with multiple faces. These faces need not be connected and can be
self-intersecting.

Alternatively, you can specify the coordinates of each unique vertex and the
order in which to connect them to form the faces. The examples in this section
illustrate both techniques.

Specifying X, Y, and Z Coordinates
Each of the six faces has four vertices. Because you do not need to close each
polygon (i.e., the first and last vertices do not need to be the same), you can
define this cube using a 4-by-6 matrix for each of the x-, y-, and z-coordinates.

5-7

5 Creating 3-D Models with Patches

Each column of the matrices specifies a different face. Note that while there
are only eight vertices, you must specify 24 vertices to define all six faces.
Since each face shares vertices with four other faces, you can define the patch
more efficiently by defining each vertex only once and then specifying the
order in which to connect these vertices to form each face. The patch Vertices
and Faces properties define patches in just this way.

Specifying Faces and Vertices
These matrices specify the cube using Vertices and Faces.

Using the vertices/faces technique can save a considerable amount of
computer memory when patches contain a large number of faces. This
technique requires the formal patch function syntax, which entails assigning
values to the Vertices and Faces properties explicitly. For example,

5-8

Multifaceted Patches

patch('Vertices',vertex_matrix,'Faces',faces_matrix)

Because the high-level syntax does not automatically assign face or edge
colors, you must set the appropriate properties to produce patches with colors
other than the default white face color and black edge color.

Flat Face Color
Flat face color is the result of specifying one color per face. For example, using
the vertices/faces technique and the FaceVertexCData property to define
color, this statement specifies one color per face and sets the FaceColor
property to flat.

patch('Vertices',vertex_matrix,'Faces',faces_matrix,...
'FaceVertexCData',hsv(6),'FaceColor','flat')

Because truecolor specified with the FaceVertexCData property has the
same format as a MATLAB colormap (i.e., an n-by-3 array of RGB values),
this example uses the hsv colormap to generate the six colors required for
flat shading.

Interpolated Face Color
Interpolated face color means the vertex colors of each face define a transition
of color from one vertex to the next. To interpolate the colors between vertices,
you must specify a color for each vertex and set the FaceColor property to
interp.

patch('Vertices',vertex_matrix,'Faces',faces_matrix,...
'FaceVertexCData',hsv(8),'FaceColor','interp')

Changing to the standard 3-D view and making the axis square,

view(3); axis square

produces a cube with each face colored by interpolating the vertex colors.

To specify the same coloring using the x, y, z, c technique, c must be an
m-by-n-by-3 array, where the dimensions of x, y, and z are m-by-n.

5-9

5 Creating 3-D Models with Patches

This diagram shows the correspondence between the FaceVertexCData and
CData properties.

“Specifying Patch Coloring” on page 5-14 discusses coloring techniques in
more detail.

5-10

Modifying Data on Existing Patch Objects

Modifying Data on Existing Patch Objects

In this section...

“Specifying Patch Data” on page 5-11

“Handling Mixed Data Specification” on page 5-11

Specifying Patch Data
In general, if you define a patch with Faces and Vertices data and then want
to modify its data, you should continue to use these same properties. Do not
switch modes and modify the XData, YData, ZData, or CData properties.

Handling Mixed Data Specification
When you create a patch specified with Faces and Vertices data, MATLAB
constructs arrays of data for the XData, YData, ZData and CData properties
when you query them. However, these arrays contain only enough data
to define the same number of vertices as there are referred to in the Faces
property. If the number of vertices in the Vertices property is greater than
the number of vertices used by the Faces property, then MATLAB cannot
generate complete x, y, and z data from the faces and vertex data.

While you should not use mixed data specification when defining patch objects
directly, you might need to modify patch data when using functions that
themselves create patch objects. For example, the bar function creates patch
objects to implement the bars in a graph.

Note The barseries YData property enables you to modify the bar graph
without the need to use the following steps. See the bar function for more
information on working with bar graphs.

The function uses y-data values to determine the height of each bar, but
creates each bar as the face of a patch specified by faces and vertices. For
example,

rand('state',4)

5-11

5 Creating 3-D Models with Patches

h = bar(rand(10,1)); % y data for each bar
p = get(h,'children'); % get the handle of the patch
cl = get(gca,'CLim');

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Before you can change the patch YData property, you must switch the patch
to x, y, and z data as follows:

xd = get(p,'XData');
yd = get(p,'YData');
zd = get(p,'ZData');
cd = get(p,'CData');
set(p,'XData',xd,'YData',yd,'ZData',zd,'CData',cd);
set(gca,'CLim',cl)

This setting of the XData, YData, ZData and CData properties causes the patch
function to match the faces and vertex data with x, y, and z data. Note that
because there is a change in the patch data, the color limits change, so you
must use the original values for the axes CLim property.

You can now modify the y data values to change your graph. For example,
the value of bar at x = 10 is 0.0122:

5-12

Modifying Data on Existing Patch Objects

yd(:,10)
ans =

0
0.0122
0.0122

0

You can change this bar by changes rows 2 and 3:

yd(2:3,10) = [.65 .65];

Now reset the patch YData property:

set(p,'YData',yd)

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Another reason you might want to modify face-vertex data for bar graphs
or other objects is to modify their CData to customize how they are colored.
Techniques for doing this for 2–D and 3–D bar graphs are explained in
“Coloring 2-D Bars According to Height” and “Coloring 3-D Bars According to
Height” in the MATLAB Graphics documentation.

5-13

5 Creating 3-D Models with Patches

Specifying Patch Coloring

In this section...

“Patch Color Properties” on page 5-14

“Patch Edge Coloring” on page 5-15

“Coloring Edges with Shared Vertices” on page 5-17

Patch Color Properties
Patch coloring is defined differently from surface object coloring in that
patches do not automatically generate color data based on the value of the
z-coordinate at each vertex. You must explicitly specify patch coloring, or
MATLAB uses the default white face color and black edge color.

You can specify patch face coloring by defining

• A single color for all faces

• One color for each face, which is used for flat coloring

• One color for each vertex, which is used for interpolated coloring

Specify the face color using either the CData property, if you are using x-, y-,
and z-coordinates, or the FaceVertexCData property, if you are specifying
vertices and faces.

This table summarizes the patch properties that control color (exclusive of
those used when light sources are present).

Property Purpose

CData Specify single, per face, or per vertex colors in
conjunction with x, y, and z data

CDataMapping Specifies whether color data is scaled or used
directly as indices into the figure colormap

FaceVertexCData Specify single, per face, or per vertex colors in
conjunction with faces and vertices data

5-14

Specifying Patch Coloring

Property Purpose

EdgeColor Specifies whether edges are invisible, a single
color, a flat color determined by vertex colors, or
interpolated colors determined by vertex colors

FaceColor Specifies whether faces are invisible, a single
color, a flat color determined by vertex colors, or
interpolated colors determined by vertex colors

MarkerEdgeColor Specifies the color of the marker, or the edge color
for filled markers

MarkerFaceColor Specifies the fill color for markers that are closed
shapes

Patch Edge Coloring
Each patch face has a bounding edge, which you can color as

• A single color for all edges

• A flat color defined by the color of the vertex that precedes the edge

• Interpolated colors determined by the two vertices that bound the edge

Note that patch edge colors can be flat or interpolated only when you specify a
color for each vertex. For flat edge coloring, MATLAB uses the color of the
vertex preceding the edge to determine the color of the edge. The order in
which you specify the vertices establishes which vertex colors a particular
edge.

The following examples illustrate patch edge coloring:

•

• “Coloring Edges with Shared Vertices” on page 5-17

Example — Specifying Flat Edge and Face Coloring
These statements create a square patch.

v = [0 0 0;1 0 0;1 1 0;0 1 0];

5-15

5 Creating 3-D Models with Patches

f = [1 2 3 4];
fvc = [1 0 0;0 1 0;1 0 1;1 1 0];
patch('Vertices',v,'Faces',f,'FaceVertexCData',fvc,...

'FaceColor','flat','EdgeColor','flat',...
'Marker','o','MarkerFaceColor','flat')

The Faces property value, [1 2 3 4], determines the order in which
MATLAB connects the vertices. In this case, the order is red, green, magenta,
and yellow. If you change this order, the results can be quite different. For
example, specifying the Faces property as

f = [4 3 2 1];

changes the order to yellow, magenta, green, and red. Note that changing the
order not only changes the color of the edges, but also the color of the face,
which is the color of the first vertex specified.

5-16

Specifying Patch Coloring

Coloring Edges with Shared Vertices
Each patch face is bound by edges, which are line segments that connect the
vertices. When patches have multiple faces that share vertices, some of the
edges might overlap. In such cases, the edges of the most recently drawn
face overlie previously drawn edges.

For example, this illustration shows a patch with four faces and flat colored
edges (FaceColor set to none, EdgeColor set to flat).

The arrows indicate the order in which each edge is drawn in the first, second,
third, and fourth face. The color at each vertex determines the color of the
edge that follows it. Notice how the second edge in the first face would be
green except that the second face drew its fourth edge from the magenta
vertex. You can see similar effects in all shared edges.

For EdgeColor set to interp, MATLAB interpolates colors between adjacent
vertices. In this case, the order in which you specify the vertices does not
affect the edge color.

5-17

5 Creating 3-D Models with Patches

Interpreting Indexed and Truecolor Data

In this section...

“Introduction” on page 5-18

“Indexed Color Data” on page 5-18

“Truecolor Patches” on page 5-21

“Interpolating in Indexed Color Versus Truecolor” on page 5-22

Introduction
MATLAB interprets the patch color data in either of two ways:

• Indexed Color Data — Numerical values that are mapped to colors defined
in the figure colormap

• Truecolor Data — RGB triples that define colors explicitly and do not make
use of the figure colormap

The dimensions of the color data (CData or FaceVertexCData) determine how
MATLAB interprets it. If you specify only one numeric value per patch, per
face, or per vertex, then MATLAB interprets the data as indexed. If there are
three numeric values per patch, face, or vertex, then MATLAB interprets the
data as RGB values.

Indexed Color Data
MATLAB interprets indexed color data as either values to scale before
mapping to the colormap, or directly as indices into the colormap. You control
the interpretation by setting the CDataMapping property. The default is to
scale the data.

Scaled Color
By default, MATLAB scales the color data so that the minimum value maps
to the first color in the colormap, the maximum value maps to the last color
in the colormap, and values in between are linearly transformed to span
the colormap. This enables you to use colormaps of different sizes without

5-18

Interpreting Indexed and Truecolor Data

changing your data and to use data in any range of values without changing
the colormap.

For example, the following patch has eight triangular faces with a total of
24 (nonunique) vertices. The color data are integers that range from one to
24, but could be any values.

The variable c contains the color data. It is a 3-by-8 matrix, with each column
specifying the colors for the three vertices of each face.

c =
1 4 7 10 13 16 19 22
2 5 8 11 14 17 20 23
3 6 9 12 15 18 21 24

The color bar (colorbar) on the right side of the patch illustrates the
colormap used and indicates with the vertical axis which color is mapped
to the respective data value.

2

4

6

8

10

12

14

16

18

20

22

24

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

CDataMapping = scaled

You can alter the mapping of color data to colormap entry using the caxis
command. This command uses a two-element vector [cmin cmax] to specify

5-19

5 Creating 3-D Models with Patches

what data values map to the beginning and end of the colormap, thereby
shifting the color mapping.

By default, MATLAB sets cmin to the minimum value and cmax to the
maximum value of the color data of all graphics objects within the axes.
However, you can set these limits to span any range of values and thereby
shift the color mapping. See Calculating Color Limits in "Axes Properties" in
the Using MATLAB Graphics documentation for more information.

The color data does not need to be a sequential list of integers; it can be any
matrix with dimensions matching the coordinate data. For example,

patch(x,y,z,rand(size(z)))

Direct Color
If you set the patch CDataMapping property to direct,

set(patch_handle,'CDataMapping','direct')

MATLAB interprets each color data value as a direct index into the colormap.
That is, a value of 1 maps to the first color, a value of 2 maps to the second
color, and so on.

The patch from the previous example would then use only the first 24 colors
in the colormap.

5-20

Interpreting Indexed and Truecolor Data

10

20

30

40

50

60

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

CDataMapping = direct

This example uses integer color data. However, if the values are not integers,
MATLAB converts them according to these rules:

• If value is < 1, it maps to the first color in the colormap.

• If value is not an integer, it is rounded to the nearest integer toward zero.

• If value > length(colormap), it maps to the last color in the colormap.

Unscaled color data is more commonly used for images where there is
typically a colormap associated with a particular image.

Truecolor Patches
Truecolor is a means to specify a color explicitly with RGB values rather than
pointing to an entry in the figure colormap. Truecolor generally provides a
greater range of colors than can be defined in a colormap.

Using truecolor eliminates the mapping of data to colormap entries. On the
other hand, you cannot change the coloring of the patch without redefining
the color data (as opposed to just changing the colormap).

5-21

5 Creating 3-D Models with Patches

Interpolating in Indexed Color Versus Truecolor
When you specify interpolated face coloring, MATLAB determines the color
of each face by interpolating the vertex colors. The method of interpolation
depends on whether you specified truecolor data or indexed color data.

With truecolor data, MATLAB interpolates the numeric RGB values defined
for the vertices. This generally produces a smooth variation of color across the
face. In contrast, indexed color interpolation uses only colors that are defined
in the colormap. With certain colormaps, the results can be quite different.

To illustrate this difference, these two patches are defined with the same
vertex colors. Circular markers indicate the yellow, red, and blue vertex colors.

The patch on the left uses indexed colors obtained from the six-element
colormap shown next to it. The color data maps the vertex colors to the
colormap elements indicated in the picture. With this colormap, interpolating
from the cyan vertex to the blue vertex can include only the colors green, red,
yellow, and magenta, hence the banding.

Interpolation in RGB space makes no use of the colormap. It is simply
the gradual transition from one numeric value to another. For example,

5-22

Interpreting Indexed and Truecolor Data

interpolating from the cyan vertex to the blue vertex follows a progression
similar to these values.

0 1 1, 0 0.9 1, 0 0.8 1, ... 0 0.2 1, 0 0.1 1, 0 0 1

In reality each pixel would be a different color so the incremental change
would be much smaller than illustrated here.

5-23

5 Creating 3-D Models with Patches

5-24

6

Volume Visualization
Techniques

Overview of Volume Visualization
(p. 6-3)

Volume data visualization with
MATLAB, including examples of
available techniques

Techniques for Visualizing Scalar
Volume Data (p. 6-7)

Techniques available for visualizing
scalar volume data, such as MRI
slices

Exploring Volumes with Slice Planes
(p. 6-14)

Using slice planes to scan the
interior of scalar volumes

Connecting Equal Values with
Isosurfaces (p. 6-19)

Using isosurfaces to illustrate scalar
fluid-flow data

Isocaps Add Context to
Visualizations (p. 6-21)

Using isocaps to improve the shape
definition of isosurface plots

Visualizing Vector Volume Data
(p. 6-26)

Techniques for visualizing vector
volume data, including scalar
techniques, determining starting
points for stream plots, and plotting
subregions of volumes

Example — Stream Line Plots of
Vector Data (p. 6-32)

Using stream lines, slice planes, and
contour lines in one graph

Example — Displaying Curl with
Stream Ribbons (p. 6-35)

Example using stream ribbon plots
to display the curl of a vector field

6 Volume Visualization Techniques

Example — Displaying Divergence
with Stream Tubes (p. 6-38)

Example using stream tube plots to
display the divergence of a vector
field. Slice planes and contour lines
enhance the visualization.

Example — Creating Stream Particle
Animations (p. 6-42)

Example using stream lines and
stream particles to create an
animation illustrating wind currents

Example — Vector Field Displayed
with Cone Plots (p. 6-45)

Example using cone plots,
isosurfaces, lighting, and camera
placement to visualize a vector field

6-2

Overview of Volume Visualization

Overview of Volume Visualization

In this section...

“Examples of Volume Data” on page 6-3

“Selecting Visualization Techniques” on page 6-4

“Steps to Create a Volume Visualization” on page 6-4

“Volume Visualization Functions” on page 6-5

Examples of Volume Data
Volume visualization is the creation of graphical representations of data
sets that are defined on three-dimensional grids. Volume data sets are
characterized by multidimensional arrays of scalar or vector data. These data
are typically defined on lattice structures representing values sampled in 3-D
space. There are two basic types of volume data:

• Scalar volume data contains single values for each point.

• Vector volume data contains two or three values for each point, defining
the components of a vector.

An example of scalar volume data is that produced by the flow M-file. The
flow data represents the speed profile of a submerged jet within an infinite
tank. Typing

[x,y,z,v] = flow;

produces four 3-D arrays. The x, y, and z arrays specify the coordinates of the
scalar values in the array v.

The wind data set is an example of vector volume data that represents
air currents over North America. You can load this data in the MATLAB
workspace with the command

load wind

6-3

6 Volume Visualization Techniques

This data set comprises six 3-D arrays: x, y, and z are the coordinate data
for the arrays u, v, and w, which are the vector components for each point in
the volume.

Selecting Visualization Techniques
The techniques you select to visualize volume data depend on what type of
data you have and what you want to learn. In general,

• Scalar data is best viewed with isosurfaces, slice planes, and contour slices.

• Vector data represents both a magnitude and direction at each point, which
is best displayed by stream lines (particles, ribbons, and tubes), cone plots,
and arrow plots. Most visualizations, however, employ a combination of
techniques to best reveal the content of the data.

The material in these sections describes how to apply a variety of techniques
to typical volume data.

Steps to Create a Volume Visualization
Creating an effective visualization requires a number of steps to compose the
final scene. These steps fall into four basic categories:

1 Determine the characteristics of your data. Graphing volume data usually
requires knowledge of the range of both the coordinates and the data values.

2 Select an appropriate plotting routine. The information in this section
helps you select the right methods.

3 Define the view. The information conveyed by a complex three-dimensional
graph can be greatly enhanced through careful composition of the scene.
Viewing techniques include adjusting camera position, specifying aspect
ratio and project type, zooming in or out, and so on.

4 Add lighting and specify coloring. Lighting is an effective means to
enhance the visibility of surface shape and to provide a three-dimensional
perspective to volume graphs. Color can convey data values, both constant
and varying.

6-4

Overview of Volume Visualization

Volume Visualization Functions
MATLAB provides functions that enable you to apply a variety of volume
visualization techniques. The following tables group these functions into two
categories based on the type of data (scalar or vector) that each is designed
to work with. The reference page for each function provides examples of the
intended use.

Functions for Scalar Data

Function Purpose

contourslice Draw contours in volume slice planes

isocaps Compute isosurface end-cap geometry

isocolors Compute the colors of isosurface vertices

isonormals Compute normals of isosurface vertices

isosurface Extract isosurface data from volume data

patch Create a patch (multipolygon) graphics object

reducepatch Reduce the number of patch faces

reducevolume Reduce the number of elements in a volume data set

shrinkfaces Reduce the size of each patch face

slice Draw slice planes in volume

smooth3 Smooth 3-D data

surf2patch Convert surface data to patch data

subvolume Extract subset of volume data set

Functions for Vector Data

Function Purpose

coneplot Plot velocity vectors as cones in 3-D
vector fields

curl Compute the curl and angular
velocity of a 3-D vector field

6-5

6 Volume Visualization Techniques

Function Purpose

divergence Compute the divergence of a 3-D
vector field

interpstreamspeed Interpolate streamline vertices from
vector-field magnitudes

streamline Draw stream lines from 2-D or 3-D
vector data

streamparticles Draw stream particles from vector
volume data

streamribbon Draw stream ribbons from vector
volume data

streamslice Draw well-spaced stream lines from
vector volume data

streamtube Draw stream tubes from vector
volume data

stream2 Compute 2-D stream line data

stream3 Compute 3-D stream line data

volumebounds Return coordinate and color limits
for volume (scalar and vector)

6-6

Techniques for Visualizing Scalar Volume Data

Techniques for Visualizing Scalar Volume Data

In this section...

“What Is Scalar Volume Data?” on page 6-7

“Example — Ways to Display MRI Data” on page 6-7

What Is Scalar Volume Data?
Typical scalar volume data is composed of a 3-D array of data and three
coordinate arrays of the same dimensions. The coordinate arrays specify the
x-, y-, and z-coordinates for each data point.

The units of the coordinates depend on the type of data. For example, flow
data might have coordinate units of inches and data units of psi.

MATLAB supports a number of functions that are useful for visualizing
scalar data:

• Slice planes provide a way to explore the distribution of data values within
the volume by mapping values to colors. You can orient slice planes at
arbitrary angles, as well as use nonplanar slices. (For illustrations of how
to use slice planes, see slice, a volume slicing example, and slice planes
used to show context.) You can specify the data used to color isosurfaces,
enabling you to display different information in color and surface shape
(see isocolors).

• Contour slices are contour plots drawn at specific coordinates within the
volume. Contour plots enable you to see where in a given plane the data
values are equal. See contourslice for an example

• Isosurfaces are surfaces constructed by using points of equal value as the
vertices of patch graphics objects.

Example — Ways to Display MRI Data

Changing the Data Format (p. 6-8)

Displaying Images of MRI Data
(p. 6-9)

6-7

6 Volume Visualization Techniques

Displaying a 2-D Contour Slice
(p. 6-9)

Displaying 3-D Contour Slices
(p. 6-10)

Displaying an Isosurface (p. 6-11)

Adding an Isocap to Show a Cutaway
Surface (p. 6-11)

Defining the View (p. 6-12)

Add Lighting (p. 6-12)

An example of scalar data includes Magnetic Resonance Imaging (MRI) data.
This data typically contains a number of slice planes taken through a volume,
such as the human body. MATLAB includes an MRI data set that contains
27 image slices of a human head. This example illustrate the following
techniques applied to MRI data:

• A series of 2-D images representing slices through the head

• 2-D and 3-D contour slices taken at arbitrary locations within the data

• An isosurface with isocaps showing a cross section of the interior

Changing the Data Format
The MRI data, D, is stored as a 128-by-128-by-1-by-27 array. The third array
dimension is used typically for the image color data. However, since these are
indexed images (a colormap, map, is also loaded) there is no information in
the third dimension, which you can remove using the squeeze command. The
result is a 128-by-128-by-27 array.

The first step is to load the data and transform the data array from 4-D to 3-D.

load mri
D = squeeze(D);

6-8

Techniques for Visualizing Scalar Volume Data

Displaying Images of MRI Data
To display one of the MRI images, use the image command, indexing into the
data array to obtain the eighth image. Then adjust axis scaling, and install
the MRI colormap, which was loaded along with the data.

image_num = 8;
image(D(:,:,image_num))
axis image
colormap(map)

20 40 60 80 100 120

20

40

60

80

100

120

Save the x- and y-axis limits for use in the next part of the example.

x = xlim;
y = ylim;

Displaying a 2-D Contour Slice
You can treat this MRI data as a volume because it is a collection of slices
taken progressively through the 3-D object. Use contourslice to display a
contour plot of a slice of the volume. To create a contour plot with the same

6-9

6 Volume Visualization Techniques

orientation and size as the image created in the first part of this example,
adjust the y-axis direction (axis), set the limits (xlim, ylim), and set the
data aspect ratio (daspect).

contourslice(D,[],[],image_num)
axis ij
xlim(x)
ylim(y)
daspect([1,1,1])
colormap('default')

This contour plot uses the figure colormap to map color to contour value.

20 40 60 80 100 120

20

40

60

80

100

120

Displaying 3-D Contour Slices
Unlike images, which are 2-D objects, contour slices are 3-D objects that you
can display in any orientation. For example, you can display four contour
slices in a 3-D view. To improve the visibility of the contour line, increase the
LineWidth to 2 points (one point equals 1/72 of an inch).

phandles = contourslice(D,[],[],[1,12,19,27],8);

6-10

Techniques for Visualizing Scalar Volume Data

view(3); axis tight
set(phandles,'LineWidth',2)

Displaying an Isosurface
You can use isosurfaces to display the overall structure of a volume. When
combined with isocaps, this technique can reveal information about data on
the interior of the isosurface.

First, smooth the data with smooth3; then use isosurface to calculate the
isodata. Use patch to display this data as a graphics object.

Ds = smooth3(D);
hiso = patch(isosurface(Ds,5),...
'FaceColor',[1,.75,.65],...
'EdgeColor','none');

Adding an Isocap to Show a Cutaway Surface
Use isocaps to calculate the data for another patch that is displayed at the
same isovalue (5) as the surface. Use the unsmoothed data (D) to show details
of the interior. You can see this as the sliced-away top of the head.

6-11

6 Volume Visualization Techniques

hcap = patch(isocaps(D,5),...
'FaceColor','interp',...
'EdgeColor','none');

colormap(map)

Defining the View
Define the view and set the aspect ratio (view, axis, daspect).

view(45,30)
axis tight
daspect([1,1,.4])

Add Lighting
Add lighting and recalculate the surface normals based on the gradient
of the volume data, which produces smoother lighting (camlight,
lighting, isonormals). Increase the AmbientStrength property of the
isocap to brighten the coloring without affecting the isosurface. Set the
SpecularColorReflectance of the isosurface to make the color of the
specular reflected light closer to the color of the isosurface; then set the
SpecularExponent to reduce the size of the specular spot.

lightangle(45,30);
set(gcf,'Renderer','zbuffer'); lighting phong
isonormals(Ds,hiso)
set(hcap,'AmbientStrength',.6)
set(hiso,'SpecularColorReflectance',0,'SpecularExponent',50)

6-12

Techniques for Visualizing Scalar Volume Data

Example of an Isocap

The isocap uses interpolated face coloring, which means the figure colormap
determines the coloring of the patch. This example uses the colormap supplied
with the data.

To display isocaps at other data values, try changing the isosurface value or
use the subvolume command. See the isocaps and subvolume reference
pages for examples.

6-13

6 Volume Visualization Techniques

Exploring Volumes with Slice Planes

In this section...

“Example — Slicing Fluid Flow Data” on page 6-14

“Modifying the Color Mapping” on page 6-17

Example — Slicing Fluid Flow Data
A slice plane (which does not have to be planar) is a surface that takes on
coloring based on the values of the volume data in the region where the slice
is positioned. Slice planes are useful for probing volume data sets to discover
where interesting regions exist, which you can then visualize with other types
of graphs (see the slice example). Slice planes are also useful for adding a
visual context to the bound of the volume when other graphing methods are
also used (see coneplot and “Example — Stream Line Plots of Vector Data”
on page 6-32 for examples).

Use the slice function to create slice planes. This example slices through a
volume generated by the flow M-file.

1. Investigate the Data
Generate the volume data with the command

[x,y,z,v] = flow;

Determine the range of the volume by finding the minimum and maximum of
the coordinate data.

xmin = min(x(:));
ymin = min(y(:));
zmin = min(z(:));

xmax = max(x(:));
ymax = max(y(:));
zmax = max(z(:));

6-14

Exploring Volumes with Slice Planes

2. Create a Slice Plane at an Angle to the X-Axes
To create a slice plane that does not lie in an axes plane, first define a surface
and rotate it to the desired orientation. This example uses a surface that has
the same x- and y- coordinates as the volume.

hslice = surf(linspace(xmin,xmax,100),...
linspace(ymin,ymax,100),...
zeros(100));

Rotate the surface by -45 degrees about the x-axis and save the surface XData,
YData, and ZData to define the slice plane; then delete the surface.

rotate(hslice,[-1,0,0],-45)
xd = get(hslice,'XData');
yd = get(hslice,'YData');
zd = get(hslice,'ZData');
delete(hslice)

3. Draw the Slice Planes
Draw the rotated slice plane, setting the FaceColor to interp so that it is
colored by the figure colormap, and set the EdgeColor to none. Increase the
DiffuseStrength to .8 to make this plane shine more brightly after adding a
light source.

h = slice(x,y,z,v,xd,yd,zd);
set(h,'FaceColor','interp',...
'EdgeColor','none',...
'DiffuseStrength',.8)

Set hold to on and add three more orthogonal slice planes at xmax, ymax, and
zmin to provide a context for the first plane, which slices through the volume
at an angle.

hold on
hx = slice(x,y,z,v,xmax,[],[]);
set(hx,'FaceColor','interp','EdgeColor','none')

hy = slice(x,y,z,v,[],ymax,[]);
set(hy,'FaceColor','interp','EdgeColor','none')

6-15

6 Volume Visualization Techniques

hz = slice(x,y,z,v,[],[],zmin);
set(hz,'FaceColor','interp','EdgeColor','none')

4. Define the View
To display the volume in correct proportions, set the data aspect ratio to
[1,1,1] (daspect). Adjust the axis to fit tightly around the volume (axis)
and turn on the box to provide a sense of a 3-D object. The orientation of the
axes can be selected initially using rotate3d to determine the best view.

Zooming in on the scene provides a larger view of the volume (camzoom).
Selecting a projection type of perspective gives the rectangular solid more
natural proportions than the default orthographic projection (camproj).

daspect([1,1,1])
axis tight
box on
view(-38.5,16)
camzoom(1.4)
camproj perspective

5. Add Lighting and Specify Colors
Adding a light to the scene makes the boundaries between the four slice planes
more obvious because each plane forms a different angle with the light source
(lightangle). Selecting a colormap with only 24 colors (the default is 64)
creates visible gradations that help indicate the variation within the volume.

lightangle(-45,45)
colormap (jet(24))
set(gcf,'Renderer','zbuffer')

6-16

Exploring Volumes with Slice Planes

The “Modifying the Color Mapping” on page 6-17 section shows how to modify
how the data is mapped to color.

Modifying the Color Mapping
The current colormap determines the coloring of the slice planes. This enables
you to change the slice plane coloring by

• Changing the colormap

• Changing the mapping of data value to color

Suppose, for example, you are interested in data values only between -5 and
2.5 and would like to use a colormap that mapped lower values to reds and
higher values to blues (that is, the opposite of the default jet colormap).

Customizing the Colormap
The first step is to flip the colormap (colormap, flipud).

colormap (flipud(jet(24)))

6-17

6 Volume Visualization Techniques

Adjusting the Color Limits
Adjusting the color limits enables you to emphasize any particular data
range of interest. Adjust the color limits to range from -5 to 2.4832 so that
any value lower than the value -5 (the original data ranged from -11.5417 to
2.4832) is mapped into the same color. (See caxis and Axis Color Limits - The
CLim Property in Axes Properties in the MATLAB documentation for an
explanation of color mapping.)

caxis([-5,2.4832])

Adding a color bar provides a key for the data-to-color mapping.

colorbar('horiz')

6-18

Connecting Equal Values with Isosurfaces

Connecting Equal Values with Isosurfaces

Example — Isosurfaces in Fluid Flow Data
Isosurfaces are constructed by creating a surface within the volume that has
the same value at each vertex. Isosurface plots are similar to contour plots
in that they both indicate where values are equal.

Isosurfaces are useful to determine where in a volume a certain threshold
value is reached or to observe the spatial distribution of data by selecting
various isovalues at which to generate a plot. The isovalue must lie within
the range of the volume data.

Create isosurfaces with the isosurface and patch commands.

This example creates isosurfaces in a volume generated by the flow M-file.
Generate the volume data with the command

[x,y,z,v] = flow;

To select the isovalue, determine the range of values in the volume data.

min(v(:))
ans =
-11.5417

max(v(:))
ans =
2.4832

Through exploration, you can select isovalues that reveal useful information
about the data. Once selected, use the isovalue to create the isosurface:

• Use isosurface to generate data that you can pass directly to patch.

• Recalculate the surface normals from the gradient of the volume data to
produce better lighting characteristics (isonormals).

• Set the patch FaceColor to red and the EdgeColor to none to produce a
smoothly lit surface.

• Adjust the view and add lighting (daspect, view, camlight, lighting).

6-19

6 Volume Visualization Techniques

hpatch = patch(isosurface(x,y,z,v,0));
isonormals(x,y,z,v,hpatch)
set(hpatch,'FaceColor','red','EdgeColor','none')
daspect([1,4,4])
view([-65,20])
axis tight
camlight left;
set(gcf,'Renderer','zbuffer'); lighting phong

6-20

Isocaps Add Context to Visualizations

Isocaps Add Context to Visualizations

In this section...

“What Are Isocaps?” on page 6-21

“Other Isocap Applications” on page 6-22

“Defining Isocaps” on page 6-22

“Example — Adding Isocaps to an Isosurface” on page 6-23

What Are Isocaps?
Isocaps are planes that are fitted to the limits of an isosurface to provide a
visual context for the isosurface. Isocaps show a cross-sectional view of the
interior of the isosurface for which the isocap provides an end cap.

The following two pictures illustrate the use of isocaps. The first is an
isosurface without isocaps.

The second picture shows the effect of adding isocaps to the same isosurface.

6-21

6 Volume Visualization Techniques

Other Isocap Applications
Some additional applications of isocaps are shown in the following examples.

• Isocaps show the interior of a cut-away volume.

• Isocaps cap the end of a volume that would otherwise appear empty.

• Isocaps enhance the visibility of the isosurface limits.

Defining Isocaps
Isocaps, like isosurfaces, are created as patch graphics objects. Use the
isocaps command to generate the data to pass to patch. For example,

patch(isocaps(voldata,isoval),...
'FaceColor','interp',...
'EdgeColor','none')

creates isocaps for the scalar volume data voldata at the value isoval. You
should create the isosurface using the same volume data and isovalue to
ensure that the edges of the isocaps fit the isosurface.

Setting the patch FaceColor property to interp results in a coloring that
maps the data values spanned by the isocap to colormap entries. You can also
set other patch properties to control the effects of lighting and coloring on
the isocaps.

6-22

Isocaps Add Context to Visualizations

Example — Adding Isocaps to an Isosurface
This example illustrates how to set coloring and lighting characteristics when
working with isocaps. There are five basic steps:

• Generate and process your volume data.

• Create the isosurface and isocaps and set patch properties to control the
coloring and lighting.

• Create the isocaps and set properties.

• Specify the view.

• Add lights to the scene.

1. Prepare the Data
This example uses a 3-D array of random (rand) data to define the volume
data. The data is then smoothed (smooth3).

data = rand(12,12,12);
data = smooth3(data,'box',5);

2. Create the Isosurface and Set Properties
Use isosurface and patch to create the isosurface and set coloring and
lighting properties. Reduce the AmbientStrength, SpecularStrength, and
DiffuseStrength of the reflected light to compensate for the brightness of
the two light sources used to provide more uniform lighting.

Recalculate the vertex normals of the isosurface to produce smoother lighting
(isonormals).

isoval = .5;
h = patch(isosurface(data,isoval),...
'FaceColor','blue',...
'EdgeColor','none',...
'AmbientStrength',.2,...
'SpecularStrength',.7,...
'DiffuseStrength',.4);

isonormals(data,h)

6-23

6 Volume Visualization Techniques

3. Create the Isocaps and Set Properties
Define the isocaps using the same data and isovalue as the isosurface.
Specify interpolated coloring and select a colormap that provides better
contrasting colors with the blue isosurface than those in the default colormap
(colormap).

patch(isocaps(data,isoval),...
'FaceColor','interp',...
'EdgeColor','none')

colormap hsv

4. Define the View
Set the data aspect ratio to [1,1,1] so that the display is in correct
proportions (daspect). Eliminate white space within the axes and set the
view to 3-D (axis tight, view).

daspect([1,1,1])
axis tight
view(3)

5. Add Lighting
To add fairly uniform lighting, but still take advantage of the ability of light
sources to make visible subtle variations in shape, this example uses two
lights, one to the left and one to the right of the camera (camlight). Use
Phong lighting to produce the smoothest variation of color (lighting). Phong
lighting requires the zbuffer renderer.

camlight right
camlight left
set(gcf,'Renderer','zbuffer');
lighting phong

6-24

Isocaps Add Context to Visualizations

6-25

6 Volume Visualization Techniques

Visualizing Vector Volume Data

In this section...

“Lines, Particles, Ribbons, Streams, Tubes, and Cones” on page 6-26

“Using Scalar Techniques with Vector Data” on page 6-27

“Specifying Starting Points for Stream Plots” on page 6-27

“Accessing Subregions of Volume Data” on page 6-30

Lines, Particles, Ribbons, Streams, Tubes, and Cones
Vector volume data contains more information than scalar data because each
coordinate point in the data set has three values associated with it. These
values define a vector that represents both a magnitude and a direction. The
velocity of fluid flow is an example of vector data.

MATLAB supports a number of techniques that are useful for visualizing
vector data:

• Stream lines trace the path that a massless particle immersed in the vector
field would follow.

• Stream particles are markers that trace stream lines and are useful for
creating stream line animations.

• Stream ribbons are similar to stream lines, except that the width of the
ribbons enables them to indicate twist. Stream ribbons are useful to
indicate curl angular velocity.

• Stream tubes are similar to stream lines, but you can also control the
width of the tube. Stream tubes are useful for displaying the divergence
of a vector field.

• Cone plots represent the magnitude and direction of the data at each point
by displaying a conical arrowhead or an arrow.

It is typically the case that these functions best elucidate the data when used
in conjunction with other visualization techniques, such as contours, slice
planes, and isosurfaces. The examples in this section illustrate some of these
techniques.

6-26

Visualizing Vector Volume Data

Using Scalar Techniques with Vector Data
Visualization techniques such as contour slices, slice planes, and isosurfaces
require scalar volume data. You can use these techniques with vector data by
taking the magnitude of the vectors. For example, the wind data set returns
three coordinate arrays and three vector component arrays, u, v, w. In this
case, the magnitude of the velocity vectors equals the wind speed at each
corresponding coordinate point in the volume.

wind_speed = sqrt(u.^2 + v.^2 + w.^2);

The array wind_speed contains scalar values for the volume data. The
usefulness of the information produced by this approach, however, depends on
what physical phenomenon is represented by the magnitude of your vector
data.

Specifying Starting Points for Stream Plots
Stream plots (stream lines, ribbons, tubes, and cones or arrows) illustrate the
flow of a 3-D vector field. The MATLAB stream plotting routines (streamline,
streamribbon, streamtube, coneplot, stream2, stream3) all require you to
specify the point at which you want to begin each stream trace.

Determining the Starting Points
Generally, knowledge of your data’s characteristics helps you select the
starting points. Information such as the primary direction of flow and the
range of the data coordinates helps you decide where to evaluate the data.

The streamslice function is useful for exploring your data. For example,
these statements draw a slice through the vector field at a z value midway
in the range.

load wind
zmax = max(z(:)); zmin = min(z(:));
streamslice(x,y,z,u,v,w,[],[],(zmax-zmin)/2)

6-27

6 Volume Visualization Techniques

This stream slice plot indicates that the flow is in the positive x direction and
also enables you to select starting points in both x and y. You could create
similar plots that slice the volume in the x-z plane or the y-z plane to gain
further insight into your data’s range and orientation.

Specifying Arrays of Starting-Point Coordinates
To specify the starting point for one stream line, you need the x-, y-, and
z-coordinates of the point. The meshgrid command provides a convenient way
to create arrays of starting points. For example, you could select the following
starting points from the wind data displayed in the previous stream slice.

[sx,sy,sz] = meshgrid(80,20:10:50,0:5:15);

This statement defines the starting points as all lying on x = 80, y ranging
from 20 to 50, and z ranging from 0 to 15. You can use plot3 to display the
locations.

plot3(sx(:),sy(:),sz(:),'*r');
axis(volumebounds(x,y,z,u,v,w))
grid; box; daspect([2 2 1])

6-28

Visualizing Vector Volume Data

80
90

100
110

120
130

20
30

40
50

0

5

10

15

You do not need to use 3-D arrays, such as those returned by meshgrid, but
the size of each array must be the same, and meshgrid provides a convenient
way to generate arrays when you do not have an equal number of unique
values in each coordinate. You can also define starting-point arrays as column
vectors. For example, meshgrid returns 3-D arrays.

[sx,sy,sz] = meshgrid(80,20:10:50,0:5:15);
whos
Name Size Bytes Class
sx 4x1x4 128 double array
sy 4x1x4 128 double array
sz 4x1x4 128 double array

In addition, you could use 16-by-1 column vectors with the corresponding
elements of the three arrays composing the coordinates of each starting
point. (This is the equivalent of indexing the values returned by meshgrid
as sx(:), sy(:), and sz(:).)

For example, adding the stream lines produces

streamline(x,y,z,u,v,w,sx(:),sy(:),sz(:))

6-29

6 Volume Visualization Techniques

80
90

100
110

120
130

20
30

40
50

0

5

10

15

Accessing Subregions of Volume Data
The subvolume function provides a simple way to access subregions of a
volume data set. subvolume enables you to select regions of interest based on
limits rather than using the colon operator to index into the 3-D arrays that
define volumes. Consider the following two approaches to creating the data
for a subvolume — indexing with the colon operator and using subvolume.

Indexing with the Colon Operator
When you index the arrays, you work with values that specify the elements in
each dimension of the array.

load wind
xsub = x(1:10,20:30,1:7);
ysub = y(1:10,20:30,1:7);
zsub = z(1:10,20:30,1:7);
usub = u(1:10,20:30,1:7);
vsub = v(1:10,20:30,1:7);
wsub = w(1:10,20:30,1:7);

6-30

Visualizing Vector Volume Data

Using the subvolume Function
subvolume enables you to use coordinate values that you can read from the
axes. For example,

lims = [100.64 116.67 17.25 28.75 -0.02 6.86];
[xsub,ysub,zsub,usub,vsub,wsub] = subvolume(x,y,z,u,v,w,lims);

You can then use the subvolume data as inputs to any function requiring
vector volume data.

6-31

6 Volume Visualization Techniques

Example — Stream Line Plots of Vector Data

In this section...

“Wind Mapping Data” on page 6-32

“1. Determine the Range of the Coordinates” on page 6-32

“2. Add Slice Planes for Visual Context” on page 6-32

“3. Add Contour Lines to the Slice Planes” on page 6-33

“4. Define the Starting Points for the Stream Lines” on page 6-33

“5. Define the View” on page 6-33

Wind Mapping Data
MATLAB includes a vector data set called wind that represents air currents
over North America. This example uses a combination of techniques:

• Stream lines to trace the wind velocity

• Slice planes to show cross-sectional views of the data

• Contours on the slice planes to improve the visibility of slice-plane coloring

1. Determine the Range of the Coordinates
Load the data and determine minimum and maximum values to locate the
slice planes and contour plots (load, min, max).

load wind
xmin = min(x(:));
xmax = max(x(:));
ymax = max(y(:));
zmin = min(z(:));

2. Add Slice Planes for Visual Context
Calculate the magnitude of the vector field (which represents wind speed) to
generate scalar data for the slice command. Create slice planes along the
x-axis at xmin, 100, and xmax, along the y-axis at ymax, and along the z-axis at
zmin. Specify interpolated face coloring so the slice coloring indicates wind
speed, and do not draw edges (sqrt, slice, FaceColor, EdgeColor).

6-32

Example — Stream Line Plots of Vector Data

wind_speed = sqrt(u.^2 + v.^2 + w.^2);
hsurfaces = slice(x,y,z,wind_speed,[xmin,100,xmax],ymax,zmin);
set(hsurfaces,'FaceColor','interp','EdgeColor','none')

3. Add Contour Lines to the Slice Planes
Draw light gray contour lines on the slice planes to help quantify the color
mapping (contourslice, EdgeColor, LineWidth).

hcont = ...
contourslice(x,y,z,wind_speed,[xmin,100,xmax],ymax,zmin);
set(hcont,'EdgeColor',[.7,.7,.7],'LineWidth',.5)

4. Define the Starting Points for the Stream Lines
In this example, all stream lines start at an x-axis value of 80 and span
the range 20 to 50 in the y direction and 0 to 15 in the z direction. Save
the handles of the stream lines and set the line width and color (meshgrid,
streamline, LineWidth, Color).

[sx,sy,sz] = meshgrid(80,20:10:50,0:5:15);
hlines = streamline(x,y,z,u,v,w,sx,sy,sz);
set(hlines,'LineWidth',2,'Color','r')

5. Define the View
Set up the view, expanding the z-axis to make it easier to read the graph
(view, daspect, axis).

view(3)
daspect([2,2,1])
axis tight

6-33

6 Volume Visualization Techniques

See coneplot for an example of the same data plotted with cones.

6-34

Example — Displaying Curl with Stream Ribbons

Example — Displaying Curl with Stream Ribbons

In this section...

“What Stream Ribbons Can Show” on page 6-35

“1. Select a Subset of Data to Plot” on page 6-35

“2. Calculate Curl Angular Velocity and Wind Speed” on page 6-35

“3. Create the Stream Ribbons” on page 6-36

“4. Define the View and Add Lighting” on page 6-36

What Stream Ribbons Can Show
Stream ribbons illustrate direction of flow, similar to stream lines, but can
also show rotation about the flow axis by twisting the ribbon-shaped flow line.
The streamribbon function enables you to specify a twist angle (in radians)
for each vertex in the stream ribbons.

When used in conjunction with the curl function, streamribbon is useful for
displaying the curl angular velocity of a vector field. The following example
illustrates this technique:

1. Select a Subset of Data to Plot
Load and select a region of interest in the wind data set using subvolume.
Plotting the full data set first can help you select a region of interest.

load wind
lims = [100.64 116.67 17.25 28.75 -0.02 6.86];
[x,y,z,u,v,w] = subvolume(x,y,z,u,v,w,lims);

2. Calculate Curl Angular Velocity and Wind Speed
Calculate the curl angular velocity and the wind speed.

cav = curl(x,y,z,u,v,w);
wind_speed = sqrt(u.^2 + v.^2 + w.^2);

6-35

6 Volume Visualization Techniques

3. Create the Stream Ribbons

• Use meshgrid to create arrays of starting points for the stream ribbons.
See “Starting Points for Stream Plots” in this chapter for information on
specifying the arrays of starting points.

• stream3 calculates the stream line vertices with a step size of .5.

• streamribbon scales the width of the ribbon by a factor of 2 to enhance the
visibility of the twisting (which indicates curl angular velocity).

• streamribbon returns the handles of the surface objects it creates, which
are then used to set the color to red (FaceColor), the color of the surface
edges to light gray (EdgeColor), and slightly increase the brightness of the
ambient light reflected when lighting is applied (AmbientStrength).

[sx sy sz] = meshgrid(110,20:5:30,1:5);
verts = stream3(x,y,z,u,v,w,sx,sy,sz,.5);
h = streamribbon(verts,x,y,z,cav,wind_speed,2);
set(h,'FaceColor','r',...
'EdgeColor',[.7 .7 .7],...
'AmbientStrength',.6)

4. Define the View and Add Lighting

• The volumebounds command provides a convenient way to set axis and
color limits.

• Add a grid and set the view for 3-D (streamribbon does not change the
current view).

• camlight creates a light positioned to the right of the viewpoint and
lighting sets the lighting method to Phong (which requires the Z-buffer
renderer).

axis(volumebounds(x,y,z,wind_speed))
grid on
view(3)
camlight right;
set(gcf,'Renderer','zbuffer'); lighting phong

6-36

Example — Displaying Curl with Stream Ribbons

6-37

6 Volume Visualization Techniques

Example — Displaying Divergence with Stream Tubes

In this section...

“What Stream Tubes Can Show” on page 6-38

“1. Load Data and Calculate Required Values” on page 6-38

“2. Draw the Slice Planes” on page 6-39

“3. Add Contour Lines to Slice Planes” on page 6-39

“4. Create the Stream Tubes” on page 6-39

“5. Define the View” on page 6-40

What Stream Tubes Can Show
Stream tubes are similar to stream lines, except the tubes have width,
providing another dimension that you can use to represent information.

By default, MATLAB indicates the divergence of the vector field by the width
of the tube. You can also define widths for each tube vertex and thereby map
other data to width.

This example uses the following techniques:

• Stream tubes to indicate flow direction and divergence of the vector field
in the wind data set

• Slice planes colored to indicate the speed of the wind currents overlaid
with contour line to enhance visibility

Inputs include the coordinates of the volume, vector field components, and
starting locations for the stream tubes.

1. Load Data and Calculate Required Values
The first step is to load the data and calculate values needed to make the
plots. These values include

• The location of the slice planes (maximum x, minimum y, and a value for
the altitude)

6-38

Example — Displaying Divergence with Stream Tubes

• The minimum x value for the start of the stream tubes

• The speed of the wind (magnitude of the vector field)

load wind
xmin = min(x(:));
xmax = max(x(:));
ymin = min(y(:));
alt = 7.356; % z-value for slice and streamtube plane
wind_speed = sqrt(u.^2 + v.^2 + w.^2);

2. Draw the Slice Planes
Draw the slice planes (slice) and set surface properties to create a smoothly
colored slice. Use 16 colors from the hsv colormap.

hslice = slice(x,y,z,wind_speed,xmax,ymin,alt);
set(hslice,'FaceColor','interp','EdgeColor','none')
colormap hsv(16)

3. Add Contour Lines to Slice Planes
Add contour lines (contourslice) to the slice planes. Adjust the contour
interval so the lines match the color boundaries in the slice planes:

• Call caxis to get the current color limits.

• Set the interpolation method used by contourslice to linear to match
the default used by slice.

color_lim = caxis;
cont_intervals = linspace(color_lim(1),color_lim(2),17);
hcont = contourslice(x,y,z,wind_speed,xmax,ymin,...
alt,cont_intervals,'linear');

set(hcont,'EdgeColor',[.4 .4 .4],'LineWidth',1)

4. Create the Stream Tubes
Use meshgrid to create arrays for the starting points for the stream tubes,
which begin at the minimum x value, range from 20 to 50 in y, and lie in a
single plane in z (corresponding to one of the slice planes).

6-39

6 Volume Visualization Techniques

The stream tubes (streamtube) are drawn at the specified locations and
scaled to be 1.25 times the default width to emphasize the variation in
divergence (width). The second element in the vector [1.25 30] specifies the
number of points along the circumference of the tube (the default is 20). You
might want to increase this value as the tube size increases, to maintain a
smooth-looking tube.

Set the data aspect ratio (daspect) before calling streamtube.

Stream tubes are surface objects, therefore you can control their appearance
by setting surface properties. This example sets surface properties to give a
brightly lit, red surface.

[sx,sy,sz] = meshgrid(xmin,20:3:50,alt);
daspect([1,1,1]) % set DAR before calling streamtube
htubes = streamtube(x,y,z,u,v,w,sx,sy,sz,[1.25 30]);
set(htubes,'EdgeColor','none','FaceColor','r',...
'AmbientStrength',.5)

5. Define the View
The final step is to define the view and add lighting (view, axis volumebounds,
Projection, camlight).

view(-100,30)
axis(volumebounds(x,y,z,wind_speed))
set(gca,'Projection','perspective')
camlight left

6-40

Example — Displaying Divergence with Stream Tubes

6-41

6 Volume Visualization Techniques

Example — Creating Stream Particle Animations

In this section...

“What Particle Animations Can Show” on page 6-42

“1. Specify the Starting Points of the Data Range to Plot” on page 6-42

“2. Create Stream Lines to Indicate the Particle Paths” on page 6-42

“3. Define the View” on page 6-43

“4. Calculate the Stream Particle Vertices” on page 6-43

What Particle Animations Can Show
A stream particle animation is useful for visualizing the flow direction and
speed of a vector field. The "particles" (represented by any of the line markers)
trace the flow along a particular stream line. The speed of each particle in the
animation is proportional to the magnitude of the vector field at any given
point along the stream line:

1. Specify the Starting Points of the Data Range to
Plot
This example determines the region of the volume to plot by specifying the
appropriate starting points. In this case, the stream plots begin at x = 100, y
spans 20 to 50 and in the z = 5 plane. Note that this is not the full volume
bounds.

load wind
[sx sy sz] = meshgrid(100,20:2:50,5);

2. Create Stream Lines to Indicate the Particle Paths
This example uses stream lines (stream3, streamline) to trace the path of
the animated particles. This adds a visual context for the animation. Another
possibility is to set the EraseMode property of the stream particle to none,
which would be useful for a single trace through the volume.

verts = stream3(x,y,z,u,v,w,sx,sy,sz);
sl = streamline(verts);

6-42

Example — Creating Stream Particle Animations

3. Define the View
While all the stream lines start in the z = 5 plane, the values of some spiral
down to lower values. The following settings provide a clear view of the
animation:

• The viewpoint (view) selected shows both the plane containing most stream
lines and the spiral.

• Selecting a data aspect ratio (daspect) of [2 2 0.125] provides greater
resolution in the z direction to make the stream particles more easily
visible in the spiral.

• Set the axes limits to match the data limits (axis) and draw the axis box
(box).

view(-10.5,18)
daspect([2 2 0.125])
axis tight; box on

4. Calculate the Stream Particle Vertices
The first step is to determine the vertices along the stream line where a
particle should be drawn. The interpstreamspeed function returns this
data based on the stream line vertices and the speed of the vector data. This
example scales the velocities by 0.05 to increase the number of interpolated
vertices.

Setting the axes DrawMode property to fast enables the animation to run
faster.

The streamparticles function sets the following properties:

• Animate to 10 to run the animation 10 times

• ParticleAlignment to on to start all particle traces together

• MarkerEdgeColor to none to draw only the face of the circular marker.
Animations usually run faster when marker edges are not drawn.

• MarkerFaceColor to red

• Marker to o, which draws a circular marker. You can use other line markers
as well.

6-43

6 Volume Visualization Techniques

iverts = interpstreamspeed(x,y,z,u,v,w,verts,0.05);
set(gca,'drawmode','fast');
streamparticles(iverts,15,...
'Animate',10,...
'ParticleAlignment','on',...
'MarkerEdgeColor','none',...
'MarkerFaceColor','red',...
'Marker','o');

6-44

Example — Vector Field Displayed with Cone Plots

Example — Vector Field Displayed with Cone Plots

In this section...

“What Cone Plots Can Show” on page 6-45

“1. Create an Isosurface” on page 6-45

“2. Add Isocaps to the Isosurface” on page 6-46

“3. Create First Set of Cones” on page 6-46

“4. Create Second Set of Cones” on page 6-47

“5. Define the View” on page 6-47

“6. Add Lighting” on page 6-47

What Cone Plots Can Show
This example plots the velocity vector cones for the wind data. The graph
produced employs a number of visualization techniques:

• An isosurface is used to provide visual context for the cone plots and to
provide means to select a specific data value for a set of cones.

• Lighting enables the shape of the isosurface to be clearly visible.

• The use of perspective projection, camera positioning, and view angle
adjustments composes the final view.

1. Create an Isosurface
Displaying an isosurface within the rectangular space of the data provides a
visual context for the cone plot. Creating the isosurface requires a number
of steps:

• Calculate the magnitude of the vector field, which represents the speed
of the wind.

• Use isosurface and patch to draw an isosurface illustrating where
in the rectangular space the wind speed is equal to a particular value.
Regions inside the isosurface have higher wind speeds, regions outside the
isosurface have lower wind speeds.

6-45

6 Volume Visualization Techniques

• Use isonormals to compute vertex normals of the isosurface from the
volume data rather than calculate the normals from the triangles used to
render the isosurface. These normals generally produce more accurate
results.

• Set visual properties of the isosurface, making it red and without drawing
edges (FaceColor, EdgeColor).

load wind
wind_speed = sqrt(u.^2 + v.^2 + w.^2);
hiso = patch(isosurface(x,y,z,wind_speed,40));
isonormals(x,y,z,wind_speed,hiso)
set(hiso,'FaceColor','red','EdgeColor','none');

2. Add Isocaps to the Isosurface
Isocaps are similar to slice planes in that they show a cross section of
the volume. They are designed to be the end caps of isosurfaces. Using
interpolated face color on an isocap causes a mapping of data value to color in
the current colormap. To create isocaps for the isosurface, define them at the
same isovalue (isocaps, patch, colormap).

hcap = patch(isocaps(x,y,z,wind_speed,40),...
'FaceColor','interp',...
'EdgeColor','none');

colormap hsv

3. Create First Set of Cones

• Use daspect to set the data aspect ratio of the axes before calling coneplot
so MATLAB can determine the proper size of the cones.

• Determine the points at which to place cones by calculating another
isosurface that has a smaller isovalue (so the cones are displayed outside
the first isosurface) and use reducepatch to reduce the number of faces
and vertices (so there are not too many cones on the graph).

• Draw the cones and set the face color to blue and the edge color to none.

daspect([1,1,1]);
[f verts] = reducepatch(isosurface(x,y,z,wind_speed,30),0.07);
h1 = coneplot(x,y,z,u,v,w,verts(:,1),verts(:,2),verts(:,3),3);

6-46

Example — Vector Field Displayed with Cone Plots

set(h1,'FaceColor','blue','EdgeColor','none');

4. Create Second Set of Cones

• Create a second set of points at values that span the data range (linspace,
meshgrid).

• Draw a second set of cones and set the face color to green and the edge
color to none.

xrange = linspace(min(x(:)),max(x(:)),10);
yrange = linspace(min(y(:)),max(y(:)),10);
zrange = 3:4:15;
[cx,cy,cz] = meshgrid(xrange,yrange,zrange);
h2 = coneplot(x,y,z,u,v,w,cx,cy,cz,2);
set(h2,'FaceColor','green','EdgeColor','none');

5. Define the View

• Use the axis command to set the axis limits equal to the minimum and
maximum values of the data and enclose the graph in a box to improve
the sense of a volume (box).

• Set the projection type to perspective to create a more natural view of the
volume. Set the viewpoint and zoom in to make the scene larger (camproj,
camzoom, view).

axis tight
box on
camproj perspective
camzoom(1.25)
view(65,45)

6. Add Lighting
Add a light source and use Phong lighting for the smoothest lighting of the
isosurface (Phong lighting requires the Z-buffer renderer). Increase the
strength of the background lighting on the isocaps to make them brighter
(camlight, lighting, AmbientStrength).

camlight(-45,45)

6-47

6 Volume Visualization Techniques

set(gcf,'Renderer','zbuffer');
lighting phong
set(hcap,'AmbientStrength',.6)

6-48

Index

IndexA
alpha data

decription 4-8
alpha values 4-3
ambient light 3-11
AmbientLightColor property 3-3

illustration 3-11
AmbientStrength property 3-3

illustration 3-11
aspect ratio 2-42 2-58

for realistic objects 2-57
for surface displays 2-55
properties that affect 2-47
specifying 2-52

axes
aspect ratio 2-42 2-47

3-D 2-42
properties that affect 2-47
specifying 2-52

camera properties 2-30
controlling the shape of 2-52
default aspect ratio 2-48
limits 2-42

example 2-54
plot box 2-9
position rectangle 2-31
scaling 2-42
stretch-to-fill 2-42

axis 2-42
auto 2-43
equal 2-43
ij 2-43
illustrated examples, 3-D 2-44
image 2-44
manual 2-43
normal 2-44
square 2-43
tight 2-43
vis3d 2-43
xy 2-43

azimuth of viewpoint 2-5
default 2-D 2-6
default 3-D 2-6
limitations 2-8

B
BackFaceLighting property 3-4

illustration 3-13
brighten 1-23

C
camdolly 2-21
camera position, moving 2-32
camera properties 2-30

illustration showing 2-9
camera toolbar 2-10
CameraPosition property 2-30

and perspective 2-32
fly-by 2-32

CameraPositionMode property 2-30
CameraTarget property 2-30
CameraTargetMode property 2-30
CameraUpVector property 2-30 2-34

example 2-36
CameraUpVectorMode property 2-30
CameraViewAngle property 2-31

and perspective 2-34
zooming with 2-33

CameraViewAngleMode property 2-31 2-34
camlookat 2-21
camorbit 2-21
campan 2-21
campos 2-21
camproj 2-21
camroll 2-21
camtarget 2-21
camup 2-21
camva 2-21

Index-1

Index

camzoom 2-21
CData property

patches 5-14
CDataMapping property 1-20

patches 5-14
colorbar 1-19
colormap 1-17
colormaps

altering 1-23
brightening 1-23
brightness component of TV signal 1-24
displaying 1-19
for surfaces 1-17
functions that create 1-18
range of RGB values in 1-17

colors
colormaps 1-17
indexed 1-16 to 1-17

direct 1-19
scaled 1-19

interpreted by surfaces 1-17
NTSC encoding of 1-24
of patches 5-14
of surface plots 1-16
scaling algorithm 1-20
specifying for surface plot, example 1-20
truecolor 1-16

specifying 1-24
typical RGB values 1-17

cone plots 6-45
coordinate system and viewpoint 2-5

D
DataAspectRatio property 2-47

example 2-52
DataAspectRatioMode property 2-47
default

aspect ratio 2-48

azimuth
2-D 2-6
3-D 2-6

CameraPosition 2-31
CameraTarget 2-31
CameraUpVector 2-31
CameraViewAngle 2-31
elevation

2-D 2-6
3-D 2-6

Projection 2-31
view 2-31

del2 1-21
diffuse reflection 3-10
DiffuseStrength property 3-3

illustration 3-10
direct color mapping 1-20
direction cosines 2-35

E
edge effects and lighting 3-14
EdgeColor property 3-4
EdgeLighting property 3-4
edges of patches 5-17
elevation of viewpoint 2-5

default 2-D 2-6
default 3-D 2-6
limitations 2-8

examples
3-D graph 1-2
axis 2-44
changing CameraPosition 2-32
DataAspectRatio property 2-52
del2 1-21
direction cosines 2-35
displaying real objects 2-55 2-57
linspace 1-11
meshgrid 1-5 1-11
of lighting 3-5

Index-2

Index

parametric surfaces 1-13
plot3 1-4
PlotBoxAspectRatio property 2-53
specifying truecolor

surfaces 1-24
stretch-to-fill 2-52
texture mapping 1-27
unevenly sampled data 1-10
view 2-34

F
FaceColor property 3-4
FaceLighting property 3-4
Faces property 5-8
FaceVertexCData property 5-10 5-14
fly-by effect 2-32

G
Gouraud lighting algorithm 3-8
graphs

steps to create 3-D 1-2
griddata 1-11

H
Hadamard matrix 1-13
hidden 1-14
hidden line removal 1-14

I
indexed color

surfaces 1-16
Infs, avoiding in data 1-9
interpolated colors

patches 5-9
indexed vs. truecolor 5-22

isosurface
illustrating flow data 6-19

L
Laplacian of a matrix 1-21
light 3-2
lighting 3-2 3-17

algorithms
flat 3-8
Gouraud 3-8
Phong 3-8

ambient light 3-11
backface 3-13
diffuse reflection 3-10
important properties 3-2
properties that affect 3-3
reflectance characteristics 3-10 3-13
specular

color 3-13
exponent 3-12
reflection 3-10

lighting command 3-9
lines

removing hidden 1-14
linspace 1-11

M
material command 3-10
mathematical functions

visualizing with surface plot 1-8
matrix

Hadamard 1-13
representing as

surface 1-7
mesh 1-8
meshgrid 1-8
MRI data, visualizing 6-7

N
nonuniform data, plotting 1-10
NormalMode property 3-4

Index-3

Index

NTSC color encoding 1-24

O
orthographic projection 2-37

and Z-buffer 2-39

P
parametric surfaces 1-12
patch

behavior of function 5-3
interpreting color 5-4

patches
coloring 5-14

edges 5-15
face coloring

flat 5-9
interpolated 5-9

indexed color 5-18
direct 5-20
scaled 5-18

interpreting color data 5-18
multifaceted 5-7
single polygons 5-4
specifying faces and vertices 5-8
truecolor 5-21
ways to specify 5-2

perspective projection 2-37
and Z-buffer 2-40

Phong lighting algorithm 3-8
plot box 2-9
plot3 1-4
PlotBoxAspectRatio property 2-47

example 2-53
PlotBoxAspectRatioMode property 2-47
plotting

3-D
matrices 1-5
vectors 1-4

nonuniform data 1-10
surfaces 1-8

polygons, creating with patch 5-2
position rectangle 2-9
printing

3-D scenes 2-41
projecting surfaces onto an axis 2-55
Projection property 2-31
projection types 2-37 2-41

camera position 2-39
orthographic 2-37
perspective 2-37
rendering method 2-39

R
realism, adding with lighting 3-2
realistic display of objects 2-57
reflection, specular and diffuse 3-10
Renderer property 1-26
RendererMode property 1-26
RGB

color values 1-17
rgbplot 1-23
rotation

about viewing axis 2-34
without resizing 2-34

S
scaled color mapping 1-20
slice planes

colormapping 6-17
slicing a volume 6-14

specular
color 3-13
exponent 3-12
highlight 3-12
reflection 3-10

SpecularColorReflectance property 3-4

Index-4

Index

illustration 3-13
SpecularExponent property 3-4

illustration 3-12
SpecularStrength property 3-4

illustration 3-10
sphere 1-27
starting points for stream plots 6-27
stream line plots 6-32
stream plots

starting points 6-27
stretch-to-fill 2-42

overriding 2-51
surf 1-8
surfaces

CData 1-27
coloring 1-16
curvature mapped to color 1-21
FaceColor 1-27
parametric 1-12
plotting 1-8

nonuniformly sampled data 1-10
texturemap 1-27

T
texture mapping 1-26
three-dimensional objects, creating with

patch 5-2
toolbar, camera 2-10
truecolor

patches 5-21
rendering method used for 1-26
surface plots 1-24

V
vectors

determined by direction cosines 2-35
vertex normals and back face lighting 3-14
VertexNormals property 3-4

Vertices property 5-8
view 2-5

azimuth of viewpoint 2-5
camera properties 2-30
coordinate system defining 2-5
definition of 2-3
elevation of viewpoint 2-5
example of rotation 2-34
limitation of azimuth and elevation 2-8
limitations using 2-8
MATLAB default behavior 2-31
projection types 2-37
specifying 2-30
specifying with azimuth and elevation 2-5

viewing axis 2-9
moving camera along 2-32

viewpoint, controlling 2-5 to 2-6 2-8
visualizing

mathematical functions 1-8
steps for volume data 6-4
techniques for volume data 6-4

volume data
accessing subregions 6-30
examples of 6-3
MRI 6-7
scalar 6-7
slicing with plane 6-14
steps to visualize 6-4
techniques for visualizing 6-4
vector 6-26
visualizing 6-3

W
wire frame surface 1-7 1-14

Z
Z-buffer

orthographic projection 2-39

Index-5

Index

perspective projection 2-40
rendering truecolor 1-26

zooming by setting camera angle 2-33

Index-6

MATLAB® 7
C and Fortran API Reference

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

MATLAB C and Fortran API Reference

© COPYRIGHT 1984–2007 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined
in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of
this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government’s
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, SimBiology,
SimHydraulics, SimEvents, and xPC TargetBox are registered trademarks and The
MathWorks, the L-shaped membrane logo, Embedded MATLAB, and PolySpace are
trademarks of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective
holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
December 1996 First Printing New for MATLAB 5 (Release 8)
May 1997 Online only Revised for MATLAB 5.1 (Release 9)
January 1998 Online Only Revised for MATLAB 5.2 (Release 10)
January 1999 Online Only Revised for MATLAB 5.3 (Release 11)
September 2000 Online Only Revised for MATLAB 6.0 (Release 12)
June 2001 Online only Revised for MATLAB 6.1 (Release 12.1)
July 2002 Online only Revised for MATLAB 6.5 (Release 13)
January 2003 Online only Revised for MATLAB 6.5.1 (Release 13SP1)
June 2004 Online only Revised for MATLAB 7.0 (Release 14)
October 2004 Online only Revised for MATLAB 7.0.1 (Release 14SP1)
March 2005 Online only Revised for MATLAB 7.0.4 (Release 14SP2)
September 2005 Online only Revised for MATLAB 7.1 (Release 14SP3)
March 2006 Online only Revised for MATLAB 7.2 (Release 2006a)
September 2006 Online only Revised for MATLAB 7.3 (Release 2006b)
March 2007 Online only Revised and renamed for MATLAB 7.4 (Release 2007a)
September 2007 Online only Revised and renamed for MATLAB 7.5 (Release 2007b)

Contents

API — By Category

1
MAT-File Access . 1-2

MX Array Manipulation . 1-2

MEX-Files . 1-9

MATLAB Engine . 1-11

API — Alphabetical List

2

Index

v

vi Contents

1

API — By Category

MAT-File Access (p. 1-2) Incorporate and use MATLAB® data
in C and Fortran programs

MX Array Manipulation (p. 1-2) Create and manipulate MATLAB
arrays from C and Fortran MEX and
engine routines

MEX-Files (p. 1-9) Perform operations in MATLAB
environment from C and Fortran
MEX-files

MATLAB Engine (p. 1-11) Call MATLAB from C and Fortran
programs

See also “External Interfaces” in MATLAB Function Reference for MATLAB
interfaces to DLLs, Java, COM and ActiveX, Web services, and serial port
devices.

1 API — By Category

MAT-File Access
matClose (C and Fortran) Close MAT-file

matDeleteVariable (C and
Fortran)

Delete named mxArray from MAT-file

MATFile (C and Fortran) Type for a MAT-file

matGetDir (C and Fortran) Get directory of mxArrays in MAT-file

matGetFp (C) Get file pointer to MAT-file

matGetNextVariable (C and
Fortran)

Read next mxArray from MAT-file

matGetNextVariableInfo (C and Fortran)Load array header information only

matGetVariable (C and Fortran) Read mxArrays from MAT-files

matGetVariableInfo (C and
Fortran)

Load array header information only

matOpen (C and Fortran) Open MAT-file

matPutVariable (C and Fortran) Write mxArrays to MAT-files

matPutVariableAsGlobal (C and
Fortran)

Put mxArrays into MAT-files as
originating from global workspace

MX Array Manipulation
mwIndex (C and Fortran) Type for index values

mwPointer (Fortran) Declare appropriate pointer type for
platform

mwSize (C and Fortran) Type for size values

mxAddField (C and Fortran) Add field to structure array

mxArray (C and Fortran) Type for a MATLAB array

mxArrayToString (C) Convert array to string

1-2

MX Array Manipulation

mxAssert (C) Check assertion value for debugging
purposes

mxAssertS (C) Check assertion value without
printing assertion text

mxCalcSingleSubscript (C and
Fortran)

Offset from first element to desired
element

mxCalloc (C and Fortran) Allocate dynamic memory for array
using MATLAB memory manager

mxChar (C) Type for string mxArray

mxClassID (C) Enumerated value identifying class
of mxArray

mxClassIDFromClassName
(Fortran)

Identifier corresponding to class

mxComplexity (C) Flag specifying whether mxArray
has imaginary components

mxCopyCharacterToPtr (Fortran) Copy character values from Fortran
array to pointer array

mxCopyComplex16ToPtr (Fortran) Copy COMPLEX*16 values from
Fortran array to pointer array

mxCopyComplex8ToPtr (Fortran) Copy COMPLEX*8 values from Fortran
array to pointer array

mxCopyInteger1ToPtr (Fortran) Copy INTEGER*1 values from Fortran
array to pointer array

mxCopyInteger2ToPtr (Fortran) Copy INTEGER*2 values from Fortran
array to pointer array

mxCopyInteger4ToPtr (Fortran) Copy INTEGER*4 values from Fortran
array to pointer array

mxCopyPtrToCharacter (Fortran) Copy character values from pointer
array to Fortran array

mxCopyPtrToComplex16 (Fortran) Copy COMPLEX*16 values from
pointer array to Fortran array

1-3

1 API — By Category

mxCopyPtrToComplex8 (Fortran) Copy COMPLEX*8 values from pointer
array to Fortran array

mxCopyPtrToInteger1 (Fortran) Copy INTEGER*1 values from pointer
array to Fortran array

mxCopyPtrToInteger2 (Fortran) Copy INTEGER*2 values from pointer
array to Fortran array

mxCopyPtrToInteger4 (Fortran) Copy INTEGER*4 values from pointer
array to Fortran array

mxCopyPtrToPtrArray (Fortran) Copy pointer values from pointer
array to Fortran array

mxCopyPtrToReal4 (Fortran) Copy REAL*4 values from pointer
array to Fortran array

mxCopyPtrToReal8 (Fortran) Copy REAL*8 values from pointer
array to Fortran array

mxCopyReal4ToPtr (Fortran) Copy REAL*4 values from Fortran
array to pointer array

mxCopyReal8ToPtr (Fortran) Copy REAL*8 values from Fortran
array to pointer array

mxCreateCellArray (C and
Fortran)

Create unpopulated N-D cell
mxArray

mxCreateCellMatrix (C and
Fortran)

Create unpopulated 2-D cell mxArray

mxCreateCharArray (C and
Fortran)

Create unpopulated N-D string
mxArray

mxCreateCharMatrixFromStrings (C and Fortran)Create populated 2-D string mxArray

mxCreateDoubleMatrix (C and
Fortran)

Create 2-D, double-precision,
floating-point mxArray initialized to
0

mxCreateDoubleScalar (C and
Fortran)

Create scalar, double-precision array
initialized to specified value

mxCreateLogicalArray (C) Create N-D logical mxArray
initialized to false

1-4

MX Array Manipulation

mxCreateLogicalMatrix (C) Create 2-D, logical mxArray
initialized to false

mxCreateLogicalScalar (C) Create scalar, logical mxArray
initialized to false

mxCreateNumericArray (C and
Fortran)

Create unpopulated N-D numeric
mxArray

mxCreateNumericMatrix (C and
Fortran)

Create numeric matrix and initialize
data elements to 0

mxCreateSparse (C and Fortran) Create 2-D unpopulated sparse
mxArray

mxCreateSparseLogicalMatrix
(C)

Create unpopulated 2-D, sparse,
logical mxArray

mxCreateString (C and Fortran) Create 1-by-N string mxArray
initialized to specified string

mxCreateStructArray (C and
Fortran)

Create unpopulated N-D structure
mxArray

mxCreateStructMatrix (C and
Fortran)

Create unpopulated 2-D structure
mxArray

mxDestroyArray (C and Fortran) Free dynamic memory allocated by
mxCreate* functions

mxDuplicateArray (C and
Fortran)

Make deep copy of array

mxFree (C and Fortran) Free dynamic memory allocated by
mxCalloc, mxMalloc, or mxRealloc

mxGetCell (C and Fortran) Get contents of mxArray cell

mxGetChars (C) Get pointer to character array data

mxGetClassID (C and Fortran) Get class of mxArray

mxGetClassName (C and Fortran) Get class of mxArray as string

mxGetData (C and Fortran) Get pointer to data

mxGetDimensions (C andFortran) Get pointer to dimensions array

1-5

1 API — By Category

mxGetElementSize (C and
Fortran)

Get number of bytes required to
store each data element

mxGetEps (C and Fortran) Get value of eps

mxGetField (C and Fortran) Get field value, given field name and
index into structure array

mxGetFieldByNumber (C and
Fortran)

Get field value, given field number
and index into structure array

mxGetFieldNameByNumber (C and
Fortran)

Get field name, given field number
in structure array

mxGetFieldNumber (C and
Fortran)

Get field number, given field name
in structure array

mxGetImagData (C and Fortran) Get pointer to imaginary data of
mxArray

mxGetInf (C and Fortran) Get value of infinity

mxGetIr (C and Fortran) Get ir array of sparse matrix

mxGetJc (C and Fortran) Get jc array of sparse matrix

mxGetLogicals (C) Get pointer to logical array data

mxGetM (C and Fortran) Get number of rows in mxArray

mxGetN (C and Fortran) Get number of columns in mxArray

mxGetNaN (C and Fortran) Get value of NaN (Not-a-Number)

mxGetNumberOfDimensions (C and
Fortran)

Get number of dimensions in
mxArray

mxGetNumberOfElements (C and
Fortran)

Get number of elements in mxArray

mxGetNumberOfFields (C and
Fortran)

Get number of fields in structure
mxArray

mxGetNzmax (C and Fortran) Get number of elements in ir, pr,
and pi arrays

mxGetPi (C and Fortran) Get imaginary data elements in
mxArray

mxGetPr (C and Fortran) Get real data elements in mxArray

1-6

MX Array Manipulation

mxGetScalar (C and Fortran) Get real component of first data
element in mxArray

mxGetString (C and Fortran) Copy string mxArray to C-style string

mxIsCell (C and Fortran) Determine whether input is cell
mxArray

mxIsChar (C and Fortran) Determine whether input is string
mxArray

mxIsClass (C and Fortran) Determine whether mxArray is
member of specified class

mxIsComplex (C and Fortran) Determine whether data is complex

mxIsDouble (C and Fortran) Determine whether mxArray
represents data as double-precision,
floating-point numbers

mxIsEmpty (C and Fortran) Determine whether mxArray is
empty

mxIsFinite (C and Fortran) Determine whether input is finite

mxIsFromGlobalWS (C and
Fortran)

Determine whether mxArray was
copied from MATLAB global
workspace

mxIsInf (C and Fortran) Determine whether input is infinite

mxIsInt16 (C and Fortran) Determine whether mxArray
represents data as signed 16-bit
integers

mxIsInt32 (C and Fortran) Determine whether mxArray
represents data as signed 32-bit
integers

mxIsInt64 (C and Fortran) Determine whether mxArray
represents data as signed 64-bit
integers

mxIsInt8 (C and Fortran) Determine whether mxArray
represents data as signed 8-bit
integers

1-7

1 API — By Category

mxIsLogical (C and Fortran) Determine whether mxArray is of
type mxLogical

mxIsLogicalScalar (C) Determine whether scalar mxArray
is of type mxLogical

mxIsLogicalScalarTrue (C) Determine whether scalar mxArray
of type mxLogical is true

mxIsNaN (C and Fortran) Determine whether input is NaN
(Not-a-Number)

mxIsNumeric (C and Fortran) Determine whether mxArray is
numeric

mxIsSingle (C and Fortran) Determine whether mxArray
represents data as single-precision,
floating-point numbers

mxIsSparse (C and Fortran) Determine whether input is sparse
mxArray

mxIsStruct (C and Fortran) Determine whether input is
structure mxArray

mxIsUint16 (C and Fortran) Determine whether mxArray
represents data as unsigned 16-bit
integers

mxIsUint32 (C and Fortran) Determine whether mxArray
represents data as unsigned 32-bit
integers

mxIsUint64 (C and Fortran) Determine whether mxArray
represents data as unsigned 64-bit
integers

mxIsUint8 (C and Fortran) Determine whether mxArray
represents data as unsigned 8-bit
integers

mxLogical (C) Type for logical mxArray

mxMalloc (C and Fortran) Allocate dynamic memory using
MATLAB memory manager

mxRealloc (C and Fortran) Reallocate memory

1-8

MEX-Files

mxRemoveField (C and Fortran) Remove field from structure array

mxSetCell (C and Fortran) Set value of one cell of mxArray

mxSetClassName (C) Convert structure array to MATLAB
object array

mxSetData (C and Fortran) Set pointer to data

mxSetDimensions (C and
Fortran)

Modify number of dimensions and
size of each dimension

mxSetField (C and Fortran) Set structure array field, given field
name and index

mxSetFieldByNumber (C and
Fortran)

Set structure array field, given field
number and index

mxSetImagData (C and Fortran) Set imaginary data pointer for
mxArray

mxSetIr (C and Fortran) Set ir array of sparse mxArray

mxSetJc (C and Fortran) Set jc array of sparse mxArray

mxSetM (C and Fortran) Set number of rows in mxArray

mxSetN (C and Fortran) Set number of columns in mxArray

mxSetNzmax (C and Fortran) Set storage space for nonzero
elements

mxSetPi (C and Fortran) Set new imaginary data for mxArray

mxSetPr (C and Fortran) Set new real data for mxArray

MEX-Files
mexAtExit (C and Fortran) Register function to call when

MEX-function is cleared or MATLAB
terminates

mexCallMATLAB (C and Fortran) Call MATLAB function or
user-defined M-file or MEX-file

1-9

1 API — By Category

mexErrMsgIdAndTxt (C and
Fortran)

Issue error message with identifier
and return to MATLAB prompt

mexErrMsgTxt (C and Fortran) Issue error message and return to
MATLAB prompt

mexEvalString (C and Fortran) Execute MATLAB command in
caller’s workspace

mexFunction (C and Fortran) Entry point to C MEX-file

mexFunctionName (C and
Fortran)

Name of current MEX-function

mexGet (C) Get value of specified Handle
Graphics® property

mexGetVariable (C and Fortran) Get copy of variable from specified
workspace

mexGetVariablePtr (C and
Fortran)

Get read-only pointer to variable
from another workspace

mexIsGlobal (C and Fortran) Determine whether mxArray has
global scope

mexIsLocked (C and Fortran) Determine whether MEX-file is
locked

mexLock (C and Fortran) Prevent MEX-file from being cleared
from memory

mexMakeArrayPersistent (C and Fortran)Make mxArray persist after MEX-file
completes

mexMakeMemoryPersistent (C and Fortran)Make allocated memory MATLAB
persist after MEX-function
completes

mexPrintf (C and Fortran) ANSI C printf-style output routine

mexPutVariable (C and Fortran) Copy mxArray from MEX-function
into specified workspace

mexSet (C) Set value of specified Handle
Graphics property

1-10

MATLAB Engine

mexSetTrapFlag (C and Fortran) Control response of mexCallMATLAB
to errors

mexUnlock (C and Fortran) Allow MEX-file to be cleared from
memory

mexWarnMsgIdAndTxt (C and
Fortran)

Issue warning message with
identifier

mexWarnMsgTxt (C and Fortran) Issue warning message

MATLAB Engine
engClose (C and Fortran) Quit MATLAB engine session

engEvalString (C and Fortran) Evaluate expression in string

engGetVariable (C and Fortran) Copy variable from MATLAB engine
workspace

engGetVisible (C) Determine visibility of MATLAB
engine session

Engine (C) Type for a MATLAB engine

engOpen (C and Fortran) Start MATLAB engine session

engOpenSingleUse (C) Start MATLAB engine session for
single, nonshared use

engOutputBuffer (C and Fortran) Specify buffer for MATLAB output

engPutVariable (C and Fortran) Put variables into MATLAB engine
workspace

engSetVisible (C) Show or hide MATLAB engine
session

1-11

1 API — By Category

1-12

2

API — Alphabetical List

engClose (C and Fortran)

Purpose Quit MATLAB engine session

C Syntax #include "engine.h"
int engClose(Engine *ep);

Fortran
Syntax

integer*4 engClose(ep)
mwPointer ep

Arguments ep
Engine pointer

Returns 0 on success, and 1 otherwise. Possible failure includes attempting to
terminate a MATLAB engine session that was already terminated.

Description This routine sends a quit command to the MATLAB engine session
and closes the connection.

C
Examples

UNIX

See engdemo.c in the eng_mat subdirectory of the examples directory
for a sample program that illustrates how to call the MATLAB engine
functions from a C program.

Windows

See engwindemo.c in the eng_mat subdirectory of the examples
directory for a sample program that illustrates how to call the MATLAB
engine functions from a C program for Windows.

Fortran
Examples

See fengdemo.F in the eng_mat subdirectory of the examples directory
for a sample program that illustrates how to call the MATLAB engine
functions from a Fortran program.

See Also engOpen

2-2

engEvalString (C and Fortran)

Purpose Evaluate expression in string

C Syntax #include "engine.h"
int engEvalString(Engine *ep,const char *string);

Fortran
Syntax

integer*4 engEvalString(ep, string)
mwPointer ep
character*(*) string

Arguments ep
Engine pointer

string
String to execute

Returns 0 if the command was evaluated by the MATLAB engine session, and
nonzero otherwise. Possible reasons for failure include the MATLAB
engine session is no longer running or the engine pointer is invalid
or NULL.

Description engEvalString evaluates the expression contained in string for the
MATLAB engine session, ep, previously started by engOpen.

UNIX

On UNIX systems, engEvalString sends commands to MATLAB by
writing down a pipe connected to the MATLAB stdin. Any output
resulting from the command that ordinarily appears on the screen is
read back from stdout into the buffer defined by engOutputBuffer.

To turn off output buffering in C, use

engOutputBuffer(ep, NULL, 0);

To turn off output buffering in Fortran, use

engOutputBuffer(ep, '')

2-3

engEvalString (C and Fortran)

Windows

On a PC, engEvalString communicates with MATLAB using a
Component Object Model (COM) interface.

C
Examples

UNIX

See engdemo.c in the eng_mat subdirectory of the examples directory
for a sample program that illustrates how to call the MATLAB engine
functions from a C program.

Windows

See engwindemo.c in the eng_mat subdirectory of the examples
directory for a sample program that illustrates how to call the MATLAB
engine functions from a C program for Windows.

Fortran
Examples

See fengdemo.F in the eng_mat subdirectory of the examples directory
for a sample program that illustrates how to call the MATLAB engine
functions from a Fortran program.

See Also engOpen, engOutputBuffer

2-4

engGetVariable (C and Fortran)

Purpose Copy variable from MATLAB engine workspace

C Syntax #include "engine.h"
mxArray *engGetVariable(Engine *ep, const char *name);

Fortran
Syntax

mwPointer engGetVariable(ep, name)
mwPointer ep
character*(*) name

Arguments ep
Engine pointer

name
Name of mxArray to get from MATLAB

Returns A pointer to a newly allocated mxArray structure, or NULL if the attempt
fails. engGetVariable fails if the named variable does not exist.

Description engGetVariable reads the named mxArray from the MATLAB engine
session associated with ep.

Be careful in your code to free the mxArray created by this routine when
you are finished with it.

C
Examples

UNIX

See engdemo.c in the eng_mat subdirectory of the examples directory
for a sample program that illustrates how to call the MATLAB engine
functions from a C program.

Windows

See engwindemo.c in the eng_mat subdirectory of the examples
directory for a sample program that illustrates how to call the MATLAB
engine functions from a C program for Windows.

See Also engPutVariable

2-5

engGetVisible (C)

Purpose Determine visibility of MATLAB engine session

C Syntax #include "engine.h"
int engGetVisible(Engine *ep, bool *value);

Arguments ep
Engine pointer

value
Pointer to value returned from engGetVisible

Returns Windows Only

0 on success, and 1 otherwise.

Description engGetVisible returns the current visibility setting for MATLAB
engine session, ep. A visible engine session runs in a window on
the Windows desktop, thus making the engine available for user
interaction. An invisible session is hidden from the user by removing
it from the desktop.

Examples The following code opens engine session ep and disables its visibility.

Engine *ep;
bool vis;

ep = engOpen(NULL);
engSetVisible(ep, 0);

To determine the current visibility setting, use

engGetVisible(ep, &vis);

See Also engSetVisible

2-6

Engine (C)

Purpose Type for a MATLAB engine

Description A handle to a MATLAB engine object.

Engine is a C language opaque type.

You can call MATLAB as a computational engine by writing C and
Fortran programs that use the MATLAB engine library, described in
“MATLAB Engine” on page 1-11. Engine is the link between your
program and the separate MATLAB engine process.

The header file containing this type is

#include "engine.h"

Examples The example engwindemo.c (in your
matlabroot/extern/examples/eng_mat directory)
shows how to plot position versus time for a falling object in a MATLAB
figure window.

The engOpen function starts the MATLAB process, returning an Engine
variable. You use this handle for all calls to MATLAB.

The mxCreateDoubleMatrix function creates an mxArray named T. The
C function memcpy copies your time data (initialized in engwindemo.c)
into T.

The engPutVariable function puts T into MATLAB. Now you can use
this variable to calculate distance D. The engEvalString function
evaluates the expression D = .5.*(-9.8).*T.^2.

Next, various MATLAB plot functions, like plot(T,D), display the
graph.

Calls to the engClose and mxDestroyArray functions complete the
procedure.

Other sample programs, also found in your
matlabroot\extern\examples\eng_mat directory, that
show you how to use Engine are:

2-7

Engine (C)

• engdemo.c shows how to call the MATLAB engine functions from a
C program.

• engwindemo.c show how to call the MATLAB engine functions from
a C program for Windows.

• fengdemo.F shows how to call the MATLAB engine functions from
a Fortran program.

See Also engOpen

2-8

engOpen (C and Fortran)

Purpose Start MATLAB engine session

C Syntax #include "engine.h"
Engine *engOpen(const char *startcmd);

Fortran
Syntax

mwPointer engOpen(startcmd)
character*(*) startcmd

Arguments startcmd
String to start the MATLAB process. On Windows, the startcmd
string must be NULL.

Returns A pointer to an engine handle or NULL if the open fails.

Description This routine allows you to start a MATLAB process for the purpose of
using MATLAB as a computational engine.

engOpen starts a MATLAB process using the command specified in the
string startcmd, establishes a connection, and returns a unique engine
identifier, or NULL if the open fails.

On UNIX systems, if startcmd is NULL or the empty string, engOpen
starts MATLAB on the current host using the command matlab. If
startcmd is a hostname, engOpen starts MATLAB on the designated
host by embedding the specified hostname string into the larger string:

"rsh hostname \"/bin/csh -c 'setenv DISPLAY\
hostname:0; matlab'\""

If startcmd is any other string (has white space in it, or
nonalphanumeric characters), the string is executed literally to start
MATLAB.

On UNIX systems, engOpen performs the following steps:

1 Creates two pipes.

2-9

engOpen (C and Fortran)

2 Forks a new process and sets up the pipes to pass stdin and stdout
from MATLAB (parent) to two file descriptors in the engine program
(child).

3 Executes a command to run MATLAB (rsh for remote execution).

Under Windows on a PC, engOpen opens a COM channel to MATLAB.
This starts the MATLAB that was registered during installation. If
you did not register during installation, on the command line you can
enter the command

matlab /regserver

See “Introducing MATLAB COM Integration” for additional details.

C
Examples

UNIX

See engdemo.c in the eng_mat subdirectory of the examples directory
for a sample program that illustrates how to call the MATLAB engine
functions from a C program.

Windows

See engwindemo.c in the eng_mat subdirectory of the examples
directory for a sample program that illustrates how to call the MATLAB
engine functions from a C program for Windows.

Fortran
Examples

See fengdemo.F in the eng_mat subdirectory of the examples directory
for a sample program that illustrates how to call the MATLAB engine
functions from a Fortran program.

2-10

engOpenSingleUse (C)

Purpose Start MATLAB engine session for single, nonshared use

C Syntax #include "engine.h"
Engine *engOpenSingleUse(const char *startcmd, void *dcom,

int *retstatus);

Arguments startcmd
String to start MATLAB process. On Windows, the startcmd
string must be NULL.

dcom
Reserved for future use; must be NULL.

retstatus
Return status; possible cause of failure.

Returns Windows Only

A pointer to an engine handle or NULL if the open fails.

UNIX

This routine is not supported and simply returns.

Description This routine allows you to start multiple MATLAB processes
for the purpose of using MATLAB as a computational engine.
engOpenSingleUse starts a MATLAB process, establishes a connection,
and returns a unique engine identifier, or NULL if the open fails.
engOpenSingleUse starts a new MATLAB process each time it is called.

engOpenSingleUse opens a COM channel to MATLAB. This starts the
MATLAB that was registered during installation. If you did not register
during installation, on the command line you can enter the command

matlab /regserver

engOpenSingleUse allows single-use instances of a MATLAB engine
server. engOpenSingleUse differs from engOpen, which allows multiple
users to use the same MATLAB engine server.

2-11

engOpenSingleUse (C)

See “Introducing MATLAB COM Integration” for additional details.

2-12

engOutputBuffer (C and Fortran)

Purpose Specify buffer for MATLAB output

C Syntax #include "engine.h"
int engOutputBuffer(Engine *ep, char *p, int n);

Fortran
Syntax

integer*4 engOutputBuffer(ep, p)
mwPointer ep
character*n p

Arguments ep
Engine pointer

p
Pointer to character buffer

n
Length of buffer p

Returns 1 if you pass it a NULL engine pointer. Otherwise, it returns 0.

Description engOutputBuffer defines a character buffer for engEvalString to
return any output that ordinarily appears on the screen.

The default behavior of engEvalString is to discard any standard output
caused by the command it is executing. A call to engOutputBuffer with
a buffer of nonzero length tells any subsequent calls to engEvalString
to save output in the character buffer pointed to by p.

To turn off output buffering in C, use

engOutputBuffer(ep, NULL, 0);

To turn off output buffering in Fortran, use

engOutputBuffer(ep, '')

2-13

engOutputBuffer (C and Fortran)

Note The buffer returned by engEvalString is not guaranteed to be
NULL terminated.

C
Examples

UNIX

See engdemo.c in the eng_mat subdirectory of the examples directory
for a sample program that illustrates how to call the MATLAB engine
functions from a C program.

Windows

See engwindemo.c in the eng_mat subdirectory of the examples
directory for a sample program that illustrates how to call the MATLAB
engine functions from a C program for Windows.

Fortran
Examples

See fengdemo.F in the eng_mat subdirectory of the examples directory
for a sample program that illustrates how to call the MATLAB engine
functions from a Fortran program.

See Also engOpen, engEvalString

2-14

engPutVariable (C and Fortran)

Purpose Put variables into MATLAB engine workspace

C Syntax #include "engine.h"
int engPutVariable(Engine *ep, const char *name, const mxArray

*pm);

Fortran
Syntax integer*4 engPutVariable(ep, name, pm)

mwPointer ep, pm
character*(*) name

Arguments ep
Engine pointer

name
Name given to the mxArray in the engine’s workspace

pm
mxArray pointer

Returns 0 if successful and 1 if an error occurs.

Description engPutVariable writes mxArray pm to the engine ep, giving it the
variable name name. If the mxArray does not exist in the workspace, it
is created. If an mxArray with the same name already exists in the
workspace, the existing mxArray is replaced with the new mxArray.

C
Examples

UNIX

See engdemo.c in the eng_mat subdirectory of the examples directory
for a sample program that illustrates how to call the MATLAB engine
functions from a C program.

Windows

See engwindemo.c in the eng_mat subdirectory of the examples
directory for a sample program that illustrates how to call the MATLAB
engine functions from a C program for Windows.

2-15

engPutVariable (C and Fortran)

See Also

engGetVariable

2-16

engSetVisible (C)

Purpose Show or hide MATLAB engine session

C Syntax #include "engine.h"
int engSetVisible(Engine *ep, bool value);

Arguments ep
Engine pointer

value
Value to set the Visible property to. Set value to 1 to make the
engine window visible, or to 0 to make it invisible.

Returns Windows Only

0 on success, and 1 otherwise.

Description engSetVisible makes the window for the MATLAB engine session,
ep, either visible or invisible on the Windows desktop. You can use
this function to enable or disable user interaction with the MATLAB
engine session.

Examples The following code opens engine session ep and disables its visibility.

Engine *ep;
bool vis;

ep = engOpen(NULL);
engSetVisible(ep, 0);

To determine the current visibility setting, use

engGetVisible(ep, &vis);

See Also engGetVisible

2-17

matClose (C and Fortran)

Purpose Close MAT-file

C Syntax #include "mat.h"
int matClose(MATFile *mfp);

Fortran
Syntax

integer*4 matClose(mfp)
mwPointer mfp

Arguments mfp
Pointer to MAT-file information

Returns EOF in C (-1 in Fortran) for a write error, and 0 if successful.

Description matClose closes the MAT-file associated with mfp.

C
Examples

See matcreat.c and matdgns.c in the eng_mat subdirectory of the
examples directory for sample programs that illustrate how to use the
MATLAB MAT-file routines in a C program.

Fortran
Examples

See matdemo1.F and matdemo2.F in the eng_mat subdirectory of the
examples directory for sample programs that illustrate how to use this
MAT-file routine in a Fortran program.

2-18

matDeleteVariable (C and Fortran)

Purpose Delete named mxArray from MAT-file

C Syntax #include "mat.h"
int matDeleteVariable(MATFile *mfp, const char *name);

Fortran
Syntax

integer*4 matDeleteVariable(mfp, name)
mwPointer mfp
character*(*) name

Arguments mfp
Pointer to MAT-file information

name
Name of mxArray to delete

Returns 0 if successful, and nonzero otherwise.

Description matDeleteVariable deletes the named mxArray from the MAT-file
pointed to by mfp.

C
Examples

See matcreat.c and matdgns.c in the eng_mat subdirectory of the
examples directory for sample programs that illustrate how to use the
MATLAB MAT-file routines in a C program.

2-19

MATFile (C and Fortran)

Purpose Type for a MAT-file

Description A handle to a MAT-file object. A MAT-file is the data file format
MATLAB uses for saving data to your disk.

MATFile is a C language opaque type.

The MAT-file interface library contains routines for reading and writing
MAT-files. These routines are listed in “MAT-File Access” on page 1-2.
You call these routines from your own C and Fortran programs, using
MATFile to access your data file.

The header file containing this type is

#include "mat.h"

Examples The example matcreat.c in your
matlabroot/extern/examples/eng_mat directory
shows how to create and use a MAT-file.

The matOpen function creates the file mattest.mat.

The mxCreateDoubleMatrix and mxCreateString functions create
mxArrays pa1, pa2, and pa3. mxCreateString also initializes pa3 using
the literal string "MATLAB: the language of technical computing".
The C function memcpy copies data (initialized in matcreat.c) into pa2.

The matPutVariable and matPutVariableAsGlobal functions write
the data to mattest.mat.

Calls to the matClose and mxDestroyArray functions complete the
procedure.

Other examples, also found in your
matlabroot\extern\examples\eng_mat directory,
that show you how to use MATFile are:

• matdgns.c shows how to use MAT-file routines in a C program.

• matdemo1.F and matdemo2.F show how to use MAT-file routines in
a Fortran program.

2-20

MATFile (C and Fortran)

See Also matOpen, matClose, matPutVariable, matGetVariable,
mxDestroyArray

2-21

matGetDir (C and Fortran)

Purpose Get directory of mxArrays in MAT-file

C Syntax #include "mat.h"
char **matGetDir(MATFile *mfp, int *num);

Fortran
Syntax

mwPointer matGetDir(mfp, num)
mwPointer mfp
integer*4 num

Arguments mfp
Pointer to MAT-file information

num
Address of the variable to contain the number of mxArrays in the
MAT-file

Returns A pointer to an internal array containing pointers to the names of
the mxArrays in the MAT-file pointed to by mfp. In C, each name is
a NULL-terminated string. The length of the internal array (number
of mxArrays in the MAT-file) is placed into num. If num is zero, mfp
contains no arrays.

matGetDir returns NULL in C (0 in Fortran) and sets num to a negative
number if it fails.

Description This routine allows you to get a list of the names of the mxArrays
contained within a MAT-file.

The internal array of strings that matGetDir returns is allocated
using a single mxCalloc and must be freed using mxFree when you
are finished with it.

MATLAB variable names can be up to length mxMAXNAM, where
mxMAXNAM is defined in the C header file matrix.h.

C
Examples

See matcreat.c and matdgns.c in the eng_mat subdirectory of the
examples directory for sample programs that illustrate how to use the
MATLAB MAT-file routines in a C program.

2-22

matGetDir (C and Fortran)

Fortran
Examples

See matdemo2.F in the eng_mat subdirectory of the examples directory
for a sample program that illustrates how to use this MAT-file routine
in a Fortran program.

2-23

matGetFp (C)

Purpose Get file pointer to MAT-file

C Syntax #include "mat.h"
FILE *matGetFp(MATFile *mfp);

Arguments mfp
Pointer to MAT-file information

Returns A C file handle to the MAT-file with handle mfp. Returns NULL if mfp is
a handle to a MAT-file in HDF5-based format.

Description Use matGetFp to obtain a C file handle to a MAT-file. This can be
useful for using standard C library routines like ferror and feof to
investigate error situations.

Examples See matcreat.c and matdgns.c in the eng_mat subdirectory of the
examples directory for sample programs that illustrate how to use the
MATLAB MAT-file routines in a C program.

2-24

matGetNextVariable (C and Fortran)

Purpose Read next mxArray from MAT-file

C Syntax #include "mat.h"
mxArray *matGetNextVariable(MATFile *mfp, const char **name);

Fortran
Syntax

mwPointer matGetNextVariable(mfp, name)
mwPointer mfp
character*(*) name

Arguments mfp
Pointer to MAT-file information

name
Address of the variable to contain the mxArray name

Returns A pointer to a newly allocated mxArray structure representing the next
mxArray from the MAT-file pointed to by mfp. The function returns
the name of the mxArray in name.

matGetNextVariable returns NULL in C (0 in Fortran) when the
end-of-file is reached or if there is an error condition. In C, use feof and
ferror from the Standard C Library to determine status.

Description matGetNextVariable allows you to step sequentially through a
MAT-file and read all the mxArrays in a single pass. The function reads
and returns the next mxArray from the MAT-file pointed to by mfp.

Use matGetNextVariable immediately after opening the MAT-file
with matOpen and not in conjunction with other MAT-file routines.
Otherwise, the concept of the next mxArray is undefined.

Free the memory used by the mxArray created by this routine when you
are finished with it.

The order of variables returned from successive calls to
matGetNextVariable is not guaranteed to be the same order in which
the variables were written.

2-25

matGetNextVariable (C and Fortran)

C
Examples

See matdgns.c in the eng_mat subdirectory of the examples directory
for a sample program that illustrates how to use the MATLAB MAT-file
routines in a C program.

2-26

matGetNextVariableInfo (C and Fortran)

Purpose Load array header information only

C Syntax #include "mat.h"
mxArray *matGetNextVariableInfo(MATFile *mfp, const char **name);

Fortran
Syntax

mwPointer matGetNextVariableInfo(mfp, name)
mwPointer mfp
character*(*) name

Arguments mfp
Pointer to MAT-file information

name
Address of the variable to contain the mxArray name

Returns A pointer to a newly allocated mxArray structure representing header
information for the next mxArray from the MAT-file pointed to by mfp.
The function returns the name of the mxArray in name.

matGetNextVariableInfo returns NULL in C (0 in Fortran) when the
end-of-file is reached or if there is an error condition. In C, use feof and
ferror from the Standard C Library to determine status.

Description matGetNextVariableInfo loads only the array header information,
including everything except pr, pi, ir, and jc, from the file’s current
file offset.

If pr, pi, ir, and jc are set to nonzero values when loaded with
matGetVariable, matGetNextVariableInfo sets them to -1 instead.
These headers are for informational use only and should never be
passed back to MATLAB or saved to MAT-files.

Free the memory used by the mxArray created by this routine when you
are finished with it.

The order of variables returned from successive calls to
matGetNextVariableInfo is not guaranteed to be the same order in
which the variables were written.

2-27

matGetNextVariableInfo (C and Fortran)

C
Examples

See matdgns.c in the eng_mat subdirectory of the examples directory
for a sample program that illustrates how to use the MATLAB MAT-file
routines in a C program.

See Also matGetNextVariable, matGetVariableInfo

2-28

matGetVariable (C and Fortran)

Purpose Read mxArrays from MAT-files

C Syntax #include "mat.h"
mxArray *matGetVariable(MATFile *mfp, const char *name);

Fortran
Syntax

mwPointer matGetVariable(mfp, name)
mwPointer mfp
character*(*) name

Arguments mfp
Pointer to MAT-file information

name
Name of mxArray to get from MAT-file

Returns A pointer to a newly allocated mxArray structure representing the
mxArray named by name from the MAT-file pointed to by mfp.

matGetVariable returns NULL in C (0 in Fortran) if the attempt to
return the mxArray named by name fails.

Description This routine allows you to copy an mxArray out of a MAT-file.

Free the memory used by the mxArray created by this routine when you
are finished with it.

C
Examples

See matcreat.c and matdgns.c in the eng_mat subdirectory of the
examples directory for sample programs that illustrate how to use the
MATLAB MAT-file routines in a C program.

2-29

matGetVariableInfo (C and Fortran)

Purpose Load array header information only

C Syntax #include "mat.h"
mxArray *matGetVariableInfo(MATFile *mfp, const char *name);

Fortran
Syntax

mwPointer matGetVariableInfo(mfp, name);
mwPointer mfp
character*(*) name

Arguments mfp
Pointer to MAT-file information

name
Name of mxArray to get from MAT-file

Returns A pointer to a newly allocated mxArray structure representing header
information for the mxArray named by name from the MAT-file pointed
to by mfp.

matGetVariableInfo returns NULL in C (0 in Fortran) if the attempt to
return header information for the mxArray named by name fails.

Description matGetVariableInfo loads only the array header information,
including everything except pr, pi, ir, and jc. It recursively creates the
cells and structures through their leaf elements, but does not include
pr, pi, ir, and jc.

If pr, pi, ir, and jc are set to nonzero values when loaded with
matGetVariable, matGetVariableInfo sets them to -1 instead. These
headers are for informational use only and should never be passed back
to MATLAB or saved to MAT-files.

Free the memory used by the mxArray created by this routine when you
are finished with it.

C
Examples

See matcreat.c and matdgns.c in the eng_mat subdirectory of the
examples directory for sample programs that illustrate how to use the
MATLAB MAT-file routines in a C program.

2-30

matGetVariableInfo (C and Fortran)

See Also matGetVariable

2-31

matOpen (C and Fortran)

Purpose Open MAT-file

C Syntax #include "mat.h"
MATFile *matOpen(const char *filename, const char *mode);

Fortran
Syntax

mwPointer matOpen(filename, mode)
character*(*) filename, mode

Arguments filename
Name of file to open

mode
File opening mode. Valid values for mode are listed in the following
table.

r Opens file for reading only; determines the current
version of the MAT-file by inspecting the files and
preserves the current version.

u Opens file for update, both reading and writing,
but does not create the file if the file does not exist
(equivalent to the r+ mode of fopen); determines the
current version of the MAT-file by inspecting the files
and preserves the current version.

w Opens file for writing only; deletes previous contents,
if any.

w4 Creates a Level 4 MAT-file, compatible with MATLAB
Versions 4 and earlier.

wL Opens file for writing character data using the default
character set for your system. The resulting MAT-file
can be read with MATLAB Version 6 or 6.5.

If you do not use the wL mode switch, MATLAB writes
character data to the MAT-file using Unicode character
encoding by default.

2-32

matOpen (C and Fortran)

wz Opens file for writing compressed data.

w7.3 Creates a MAT-file in an HDF5-based format that can
store objects occupy more than 2 GB.

Returns A file handle, or NULL in C (0 in Fortran) if the open fails.

Description This routine opens a MAT-file for reading and writing.

See “Writing Character Data” in the External Interfaces documentation
for more information on how MATLAB uses character encodings.

C
Examples

See matcreat.c and matdgns.c in the eng_mat subdirectory of the
examples directory for sample programs that illustrate how to use the
MATLAB MAT-file routines in a C program.

Fortran
Examples

See matdemo1.F and matdemo2.F in the eng_mat subdirectory of the
examples directory for sample programs that illustrate how to use the
MATLAB MAT-file routines in a Fortran program.

2-33

matPutVariable (C and Fortran)

Purpose Write mxArrays to MAT-files

C Syntax #include "mat.h"
int matPutVariable(MATFile *mfp, const char *name, const mxArray

*pm);

Fortran
Syntax

integer*4 matPutVariable(mfp, name, pm)
mwPointer mfp, pm
character*(*) name

Arguments mfp
Pointer to MAT-file information

name
Name of mxArray to put into MAT-file

pm
mxArray pointer

Returns 0 if successful and nonzero if an error occurs. In C, use feof and ferror
from the Standard C Library along with matGetFp to determine status.

Description This routine allows you to put an mxArray into a MAT-file.

matPutVariable writes mxArray pm to the MAT-file mfp. If the mxArray
does not exist in the MAT-file, it is appended to the end. If an mxArray
with the same name already exists in the file, the existing mxArray is
replaced with the new mxArray by rewriting the file. The size of the new
mxArray can be different from the existing mxArray.

C
Examples

See matcreat.c and matdgns.c in the eng_mat subdirectory of the
examples directory for sample programs that illustrate how to use the
MATLAB MAT-file routines in a C program.

2-34

matPutVariableAsGlobal (C and Fortran)

Purpose Put mxArrays into MAT-files as originating from global workspace

C Syntax #include "mat.h"
int matPutVariableAsGlobal(MATFile *mfp, const char *name, const

mxArray *pm);

Fortran
Syntax

integer*4 matPutVariableAsGlobal(mfp, name, pm)
mwPointer mfp, pm
character*(*) name

Arguments mfp
Pointer to MAT-file information

name
Name of mxArray to put into MAT-file

pm
mxArray pointer

Returns 0 if successful and nonzero if an error occurs. In C, use feof and ferror
from the Standard C Library with matGetFp to determine status.

Description This routine puts an mxArray into a MAT-file. matPutVariableAsGlobal
is similar to matPutVariable, except that the array, when loaded by
MATLAB, is placed into the global workspace and a reference to it is
set in the local workspace. If you write to a MATLAB 4 format file,
matPutVariableAsGlobal does not load it as global and has the same
effect as matPutVariable.

matPutVariableAsGlobal writes mxArray pm to the MAT-file mfp. If
the mxArray does not exist in the MAT-file, it is appended to the end. If
an mxArray with the same name already exists in the file, the existing
mxArray is replaced with the new mxArray by rewriting the file. The
size of the new mxArray can be different from the existing mxArray.

2-35

matPutVariableAsGlobal (C and Fortran)

C
Examples

See matcreat.c and matdgns.c in the eng_mat subdirectory of the
examples directory for sample programs that illustrate how to use the
MATLAB MAT-file routines in a C program.

2-36

mexAtExit (C and Fortran)

Purpose Register function to call when MEX-function is cleared or MATLAB
terminates

C Syntax #include "mex.h"
int mexAtExit(void (*ExitFcn)(void));

Fortran
Syntax

integer*4 mexAtExit(ExitFcn)
subroutine ExitFcn()

Arguments ExitFcn
Pointer to function you want to run on exit

Returns Always returns 0.

Description Use mexAtExit to register a function to be called just before the
MEX-function is cleared or MATLAB is terminated. mexAtExit gives
your MEX-function a chance to perform tasks such as freeing persistent
memory and closing files. Typically, the named ExitFcn performs tasks
like closing streams or sockets.

Each MEX-function can register only one active exit function at a time.
If you call mexAtExit more than once, MATLAB uses the ExitFcn from
the more recent mexAtExit call as the exit function.

If a MEX-function is locked, all attempts to clear the MEX-file will fail.
Consequently, if a user attempts to clear a locked MEX-file, MATLAB
does not call the ExitFcn.

In Fortran, you must declare the ExitFcn as external in the Fortran
routine that calls mexAtExit if it is not within the scope of the file.

C
Examples

See mexatexit.c in the mex subdirectory of the examples directory.

See Also mexLock, mexUnlock, mexSetTrapFlag

2-37

mexCallMATLAB (C and Fortran)

Purpose Call MATLAB function or user-defined M-file or MEX-file

C Syntax #include "mex.h"
int mexCallMATLAB(int nlhs, mxArray *plhs[], int nrhs,

mxArray *prhs[], const char *name);

Fortran
Syntax

integer*4 mexCallMATLAB(nlhs, plhs, nrhs, prhs, name)
integer*4 nlhs, nrhs
mwPointer plhs(*), prhs(*)
character*(*) name

Arguments nlhs
Number of desired output arguments. This value must be less
than or equal to 50.

plhs
Array of pointers to mxArrays. The called command puts pointers
to the resultant mxArrays into plhs and allocates dynamic
memory to store the resultant mxArrays. By default, MATLAB
automatically deallocates this dynamic memory when you clear
the MEX-file. However, if heap space is at a premium, you may
want to call mxDestroyArray as soon as you are finished with the
mxArrays that plhs points to.

nrhs
Number of input arguments. This value must be less than or
equal to 50.

prhs
Array of pointers to input arguments.

name
Character string containing the name of the MATLAB built-in,
operator, M-file, or MEX-file that you are calling. If name is an
operator, just place the operator inside a pair of single quotes,
for example, '+'.

Returns 0 if successful, and a nonzero value if unsuccessful.

2-38

mexCallMATLAB (C and Fortran)

Description Call mexCallMATLAB to invoke internal MATLAB numeric functions,
MATLAB operators, M-files, or other MEX-files. See mexFunction for a
complete description of the arguments.

By default, if name detects an error, MATLAB terminates the MEX-file
and returns control to the MATLAB prompt. If you want a different
error behavior, turn on the trap flag by calling mexSetTrapFlag.

It is possible to generate an object of type mxUNKNOWN_CLASS using
mexCallMATLAB. For example, if you create an M-file that returns two
variables but assigns only one of them a value,

function [a,b]=foo(c)
a=2*c;

you get this warning message in MATLAB:

Warning: One or more output arguments not assigned
during call to 'foo'.

MATLAB assigns output b to an empty matrix. If you then call foo
using mexCallMATLAB, the unassigned output variable is given type
mxUNKNOWN_CLASS.

C
Examples

See mexcallmatlab.c in the mex subdirectory of the examples directory.

Additional examples:

• sincall.c in the refbook subdirectory of the examples directory

• mexevalstring.c and mexsettrapflag.c in the mex subdirectory
of the examples directory

• mxcreatecellmatrix.c and mxisclass.c in the mx subdirectory
of the examples directory

See Also mexFunction, mexSetTrapFlag

2-39

mexErrMsgIdAndTxt (C and Fortran)

Purpose Issue error message with identifier and return to MATLAB prompt

C Syntax #include "mex.h"
void mexErrMsgIdAndTxt(const char *errorid,
const char *errormsg, ...);

Fortran
Syntax

mexErrMsgIdAndTxt(errorid, errormsg)
character*(*) errorid, errormsg

Arguments errorid
String containing a MATLAB message identifier. See “Message
Identifiers” in the MATLAB documentation for information on
this topic.

errormsg
String containing the error message to be displayed. In C, the
string may include formatting conversion characters, such as
those used with the ANSI C sprintf function.

...
In C, any additional arguments needed to translate formatting
conversion characters used in errormsg. Each conversion
character in errormsg is converted to one of these values.

Description Call mexErrMsgIdAndTxt to write an error message and its
corresponding identifier to the MATLAB window. After the error
message prints, MATLAB terminates the MEX-file and returns control
to the MATLAB prompt.

Calling mexErrMsgIdAndTxt does not clear the MEX-file from memory.
Consequently, mexErrMsgIdAndTxt does not invoke the function
registered through mexAtExit.

If your application called mxCalloc or one of the mxCreate* routines to
allocate memory, mexErrMsgIdAndTxt automatically frees the allocated
memory.

2-40

mexErrMsgIdAndTxt (C and Fortran)

Note If you get warnings when using mexErrMsgIdAndTxt, you
may have a memory management compatibility problem. For more
information, see “Memory Management Compatibility Issues” in the
External Interfaces documentation.

Remarks In addition to the errorid and errormsg, the mexerrmsgtxt function
determines where the error occurred, and displays the following
information. For example, in the function foo, mexerrmsgtxt displays:

??? Error using ==> foo

See Also mexErrMsgTxt, mexWarnMsgIdAndTxt, mexWarnMsgTxt

2-41

mexErrMsgTxt (C and Fortran)

Purpose Issue error message and return to MATLAB prompt

C Syntax #include "mex.h"
void mexErrMsgTxt(const char *errormsg);

Fortran
Syntax

mexErrMsgTxt(errormsg)
character*(*) errormsg

Arguments errormsg
String containing the error message to be displayed

Description Call mexErrMsgTxt to write an error message to the MATLAB window.
After the error message prints, MATLAB terminates the MEX-file and
returns control to the MATLAB prompt.

Calling mexErrMsgTxt does not clear the MEX-file from memory.
Consequently, mexErrMsgTxt does not invoke the function registered
through mexAtExit.

If your application called mxCalloc or one of the mxCreate* routines
to allocate memory, mexErrMsgTxt automatically frees the allocated
memory.

Note If you get warnings when using mexErrMsgTxt, you may have a
memory management compatibility problem. For more information, see
“Memory Management Compatibility Issues”.

Remarks In addition to the errormsg, the mexerrmsgtxt function determines
where the error occurred, and displays the following information. If
an error labeled Print my error message occurs in the function foo,
mexerrmsgtxt displays:

??? Error using ==> foo
Print my error message

2-42

mexErrMsgTxt (C and Fortran)

C
Examples

See xtimesy.c in the refbook subdirectory of the examples directory.

For additional examples, see convec.c, findnz.c, fulltosparse.c,
phonebook.c, revord.c, and timestwo.c in the refbook subdirectory
of the examples directory.

See Also mexErrMsgIdAndTxt, mexWarnMsgIdAndTxt, mexWarnMsgTxt

2-43

mexEvalString (C and Fortran)

Purpose Execute MATLAB command in caller’s workspace

C Syntax #include "mex.h"
int mexEvalString(const char *command);

Fortran
Syntax

integer*4 mexEvalString(command)
character*(*) command

Arguments command
A string containing the MATLAB command to execute

Returns 0 if successful, and a nonzero value if unsuccessful.

Description Call mexEvalString to invoke a MATLAB command in the workspace
of the caller.

mexEvalString and mexCallMATLAB both execute MATLAB commands.
However, mexCallMATLAB provides a mechanism for returning results
(left-hand side arguments) back to the MEX-file; mexEvalString
provides no way for return values to be passed back to the MEX-file.

All arguments that appear to the right of an equal sign in the command
string must already be current variables of the caller’s workspace.

Examples See mexevalstring.c in the mex subdirectory of the examples directory.

See Also mexCallMATLAB

2-44

mexFunction (C and Fortran)

Purpose Entry point to C MEX-file

C Syntax #include "mex.h"
void mexFunction(int nlhs, mxArray *plhs[], int nrhs,

const mxArray *prhs[]);

Fortran
Syntax

mexFunction(nlhs, plhs, nrhs, prhs)
integer*4 nlhs, nrhs
mwPointer plhs(*), prhs(*)

Arguments nlhs
The number of expected output mxArrays

plhs
Array of pointers to the expected output mxArrays

nrhs
The number of input mxArrays

prhs
Array of pointers to the input mxArrays. These mxArrays are read
only and should not be modified by your MEX-file. Changing the
data in these mxArrays may produce undesired side effects.

Description mexFunction is not a routine you call. Rather, mexFunction is the name
of a function in C (subroutine in Fortran) that you must write in every
MEX-file. When you invoke a MEX-function, MATLAB finds and loads
the corresponding MEX-file of the same name. MATLAB then searches
for a symbol named mexFunction within the MEX-file. If it finds one, it
calls the MEX-function using the address of the mexFunction symbol.
If MATLAB cannot find a routine named mexFunction inside the
MEX-file, it issues an error message.

When you invoke a MEX-file, MATLAB automatically seeds nlhs, plhs,
nrhs, and prhs with the caller’s information. In the syntax of the
MATLAB language, functions have the general form

[a,b,c,...] = fun(d,e,f,...)

2-45

mexFunction (C and Fortran)

where the ... denotes more items of the same format. The a,b,c...
are left-hand side arguments, and the d,e,f... are right-hand side
arguments. The arguments nlhs and nrhs contain the number of
left-hand side and right-hand side arguments, respectively, with which
the MEX-function is called. prhs is an array of mxArray pointers whose
length is nrhs. plhs is an array whose length is nlhs, where your
function must set pointers for the returned left-hand side mxArrays.

C
Examples

See mexfunction.c in the mex subdirectory of the examples directory.

2-46

mexFunctionName (C and Fortran)

Purpose Name of current MEX-function

C Syntax #include "mex.h"
const char *mexFunctionName(void);

Fortran
Syntax

character*(*) mexFunctionName()

Returns The name of the current MEX-function.

Description mexFunctionName returns the name of the current MEX-function.

C
Examples

See mexgetarray.c in the mex subdirectory of the examples directory.

2-47

mexGet (C)

Purpose Get value of specified Handle Graphics® property

C Syntax #include "mex.h"
const mxArray *mexGet(double handle, const char *property);

Arguments handle
Handle to a particular graphics object

property
A Handle Graphics property

Returns The value of the specified property in the specified graphics object on
success. Returns NULL on failure. The return argument from mexGet is
declared as constant, meaning that it is read only and should not be
modified. Changing the data in these mxArrays may produce undesired
side effects.

Description Call mexGet to get the value of the property of a certain graphics object.
mexGet is the API equivalent of the MATLAB get function. To set a
graphics property value, call mexSet.

Examples See mexget.c in the mex subdirectory of the examples directory.

See Also mexSet

2-48

mexGetVariable (C and Fortran)

Purpose Get copy of variable from specified workspace

C Syntax #include "mex.h"
mxArray *mexGetVariable(const char *workspace, const char

*varname);

Fortran
Syntax

mwPointer mexGetVariable(workspace, varname)
character*(*) workspace, varname

Arguments workspace
Specifies where mexGetVariable should search in order to find
array varname. The possible values are

base Search for the variable in the base workspace.

caller Search for the variable in the caller’s workspace.

global Search for the variable in the global workspace.

varname
Name of the variable to copy

Returns A copy of the variable on success. Returns NULL in C (0 on Fortran) on
failure. A common cause of failure is specifying a variable that is not
currently in the workspace. Perhaps the variable was in the workspace
at one time but has since been cleared.

Description Call mexGetVariable to get a copy of the specified variable. The
returned mxArray contains a copy of all the data and characteristics
that the variable had in the other workspace. Modifications to the
returned mxArray do not affect the variable in the workspace unless you
write the copy back to the workspace with mexPutVariable.

C
Examples

See mexgetarray.c in the mex subdirectory of the examples directory.

See Also mexGetVariablePtr, mexPutVariable

2-49

mexGetVariablePtr (C and Fortran)

Purpose Get read-only pointer to variable from another workspace

C Syntax #include "mex.h"
const mxArray *mexGetVariablePtr(const char *workspace,

const char *varname);

Fortran
Syntax

mwPointer mexGetVariablePtr(workspace, varname)
character*(*) workspace, varname

Arguments workspace
Specifies which workspace you want mexGetVariablePtr to
search. The possible values are

base Search for the variable in the base workspace.

caller Search for the variable in the caller’s workspace.

global Search for the variable in the global workspace.

varname
Name of a variable in another workspace. This is a variable name,
not an mxArray pointer.

Returns A read-only pointer to the mxArray on success. Returns NULL in C (0 in
Fortran) on failure.

Description Call mexGetVariablePtr to get a read-only pointer to the specified
variable, varname, into your MEX-file’s workspace. This command is
useful for examining an mxArray’s data and characteristics. If you need
to change data or characteristics, use mexGetVariable (along with
mexPutVariable) instead of mexGetVariablePtr.

If you simply need to examine data or characteristics,
mexGetVariablePtr offers superior performance because the caller
needs to pass only a pointer to the array.

2-50

mexGetVariablePtr (C and Fortran)

C
Examples

See mxislogical.c in the mx subdirectory of the examples directory.

See Also mexGetVariable

2-51

mexIsGlobal (C and Fortran)

Purpose Determine whether mxArray has global scope

C Syntax #include "matrix.h"
bool mexIsGlobal(const mxArray *pm);

Fortran
Syntax

integer*4 mexIsGlobal(pm)
mwPointer pm

Arguments pm
Pointer to an mxArray

Returns Logical 1 (true) if the mxArray has global scope, and logical 0 (false)
otherwise.

Description Use mexIsGlobal to determine whether the specified mxArray has
global scope.

C
Examples

See mxislogical.c in the mx subdirectory of the examples directory.

See Also mexGetVariable, mexGetVariablePtr, mexPutVariable, global

2-52

mexIsLocked (C and Fortran)

Purpose Determine whether MEX-file is locked

C Syntax #include "mex.h"
bool mexIsLocked(void);

Fortran
Syntax

integer*4 mexIsLocked()

Returns Logical 1 (true) if the MEX-file is locked; logical 0 (false) if the file
is unlocked.

Description Call mexIsLocked to determine whether the MEX-file is locked. By
default, MEX-files are unlocked, meaning that users can clear the
MEX-file at any time.

To unlock a MEX-file, call mexUnlock.

C
Examples

See mexlock.c in the mex subdirectory of the examples directory.

See Also mexLock, mexMakeArrayPersistent, mexMakeMemoryPersistent,
mexUnlock

2-53

mexLock (C and Fortran)

Purpose Prevent MEX-file from being cleared from memory

C Syntax #include "mex.h"
void mexLock(void);

Fortran
Syntax

mexLock()

Description By default, MEX-files are unlocked, meaning that a user can clear them
at any time. Call mexLock to prohibit a MEX-file from being cleared.

To unlock a MEX-file, you must call mexUnlock. Do not use the munlock
function.

mexLock increments a lock count. If you call mexLock n times, you must
call mexUnlock n times to unlock your MEX-file.

C
Examples

See mexlock.c in the mex subdirectory of the examples directory.

See Also mexIsLocked, mexMakeArrayPersistent, mexMakeMemoryPersistent,
mexUnlock

2-54

mexMakeArrayPersistent (C and Fortran)

Purpose Make mxArray persist after MEX-file completes

C Syntax #include "mex.h"
void mexMakeArrayPersistent(mxArray *pm);

Fortran
Syntax

mexMakeArrayPersistent(pm)
mwPointer pm

Arguments pm
Pointer to an mxArray created by an mxCreate* function

Description By default, mxArrays allocated by mxCreate* functions are not
persistent. The MATLAB memory management facility automatically
frees nonpersistent mxArrays when the MEX-function finishes. If
you want the mxArray to persist through multiple invocations of the
MEX-function, you must call mexMakeArrayPersistent.

Note If you create a persistent mxArray, you are responsible for
destroying it when the MEX-file is cleared. If you do not destroy a
persistent mxArray, MATLAB leaks memory. See mexAtExit to see how
to register a function that gets called when the MEX-file is cleared. See
mexLock to see how to lock your MEX-file so that it is never cleared.

See Also mexAtExit, mexLock, mexMakeMemoryPersistent, and the mxCreate*
functions

2-55

mexMakeMemoryPersistent (C and Fortran)

Purpose Make allocated memory MATLAB persist after MEX-function completes

C Syntax #include "mex.h"
void mexMakeMemoryPersistent(void *ptr);

Fortran
Syntax

mexMakeMemoryPersistent(ptr)
mwPointer ptr

Arguments ptr
Pointer to the beginning of memory allocated by one of the
MATLAB memory allocation routines

Description By default, memory allocated by MATLAB is nonpersistent, so it is
freed automatically when the MEX-function finishes. If you want the
memory to persist, you must call mexMakeMemoryPersistent.

Note If you create persistent memory, you are responsible for freeing
it when the MEX-function is cleared. If you do not free the memory,
MATLAB leaks memory. To free memory, use mxFree. See mexAtExit to
see how to register a function that gets called when the MEX-function
is cleared. See mexLock to see how to lock your MEX-function so that
it is never cleared.

See Also mexAtExit, mexLock, mexMakeArrayPersistent, mxCalloc, mxFree,
mxMalloc, mxRealloc

2-56

mexPrintf (C and Fortran)

Purpose ANSI C printf-style output routine

C Syntax #include "mex.h"
int mexPrintf(const char *message, ...);

Fortran
Syntax

integer*4 mexPrintf(message)
character*(*) message

Arguments message
String to be displayed. In C, the string may include formatting
conversion characters, such as those used with the ANSI C printf
function.

...
In C, any additional arguments needed to translate formatting
conversion characters used in message. Each conversion character
in message is converted to one of these values.

Returns The number of characters printed. This includes characters specified
with backslash codes, such as \n and \b.

Description This routine prints a string on the screen and in the diary (if the diary
is in use). It provides a callback to the standard C printf routine
already linked inside MATLAB, and avoids linking the entire stdio
library into your MEX-file.

In a C MEX-file, you must call mexPrintf instead of printf to display
a string.

Note If you want the literal % in your message, you must use %% in your
message string since % has special meaning to mexPrintf. Failing to do
so causes unpredictable results.

2-57

mexPrintf (C and Fortran)

C
Examples

See

• mexfunction.c in the mex subdirectory of the examples directory

• phonebook.c in the refbook subdirectory of the examples directory.

See Also mexErrMsgIdAndTxt, mexErrMsgTxt, mexWarnMsgIdAndTxt,
mexWarnMsgTxt

2-58

mexPutVariable (C and Fortran)

Purpose Copy mxArray from MEX-function into specified workspace

C Syntax #include "mex.h"
int mexPutVariable(const char *workspace, const char *varname,

const mxArray *pm);

Fortran
Syntax

integer*4 mexPutVariable(workspace, varname, pm)
character*(*) workspace, varname
mwPointer pm

Arguments workspace
Specifies the scope of the array that you are copying. The possible
values are

base Copy mxArray to the base workspace.

caller Copy mxArray to the caller’s workspace.

global Copy mxArray to the list of global variables.

varname
Name given to the mxArray in the workspace

pm
Pointer to the mxArray

Returns 0 on success; 1 on failure. A possible cause of failure is that pm is NULL
in C (0 in Fortran).

Description Call mexPutVariable to copy the mxArray, at pointer pm, from your
MEX-function into the specified workspace. MATLAB gives the name,
varname, to the copied mxArray in the receiving workspace.

mexPutVariable makes the array accessible to other entities, such as
MATLAB, M-files, or other MEX-functions.

If a variable of the same name already exists in the specified workspace,
mexPutVariable overwrites the previous contents of the variable with

2-59

mexPutVariable (C and Fortran)

the contents of the new mxArray. For example, suppose the MATLAB
workspace defines variable Peaches as

Peaches
1 2 3 4

and you call mexPutVariable to copy Peaches into the same workspace:

mexPutVariable("base", "Peaches", pm)

Then the old value of Peaches disappears and is replaced by the value
passed in by mexPutVariable.

C
Examples

See mexgetarray.c in the mex subdirectory of the examples directory.

See Also mexGetVariable

2-60

mexSet (C)

Purpose Set value of specified Handle Graphics property

C Syntax #include "mex.h"
int mexSet(double handle, const char *property,

mxArray *value);

Arguments handle
Handle to a particular graphics object

property
String naming a Handle Graphics property

value
Pointer to an mxArray holding the new value to assign to the
property

Returns 0 on success; 1 on failure. Possible causes of failure include:

• Specifying a nonexistent property.

• Specifying an illegal value for that property, for example, specifying a
string value for a numerical property.

Description Call mexSet to set the value of the property of a certain graphics object.
mexSet is the API equivalent of the MATLAB set function. To get the
value of a graphics property, call mexGet.

Examples See mexget.c in the mex subdirectory of the examples directory.

See Also mexGet

2-61

mexSetTrapFlag (C and Fortran)

Purpose Control response of mexCallMATLAB to errors

C Syntax #include "mex.h"
void mexSetTrapFlag(int trapflag);

Fortran
Syntax

mexSetTrapFlag(trapflag)
integer*4 trapflag

Arguments trapflag
Control flag. Possible values are

0 On error, control returns to the MATLAB prompt.

1 On error, control returns to your MEX-file.

Description Call mexSetTrapFlag to control the MATLAB response to errors in
mexCallMATLAB.

If you do not call mexSetTrapFlag, then whenever MATLAB detects an
error in a call to mexCallMATLAB, MATLAB automatically terminates
the MEX-file and returns control to the MATLAB prompt. Calling
mexSetTrapFlag with trapflag set to 0 is equivalent to not calling
mexSetTrapFlag at all.

If you call mexSetTrapFlag and set the trapflag to 1, then whenever
MATLAB detects an error in a call to mexCallMATLAB, MATLAB does
not automatically terminate the MEX-file. Rather, MATLAB returns
control to the line in the MEX-file immediately following the call
to mexCallMATLAB. The MEX-file is then responsible for taking an
appropriate response to the error.

If you call mexSetTrapFlag, the value of the trapflag you set remains
in effect until the next call to mexSetTrapFlag within that MEX-file or,
if there are no more calls to mexSetTrapFlag, until the MEX-file exits.
If a routine defined in a MEX-file calls another MEX-file,

1 The current value of the trapflag in the first MEX-file is saved.

2-62

mexSetTrapFlag (C and Fortran)

2 The second MEX-file is called with the trapflag initialized to 0
within that file.

3 When the second MEX-file exits, the saved value of the trapflag in
the first MEX-file is restored within that file.

C
Examples

See mexsettrapflag.c in the mex subdirectory of the examples
directory.

See Also mexAtExit, mexErrMsgTxt

2-63

mexUnlock (C and Fortran)

Purpose Allow MEX-file to be cleared from memory

C Syntax #include "mex.h"
void mexUnlock(void);

Fortran
Syntax

mexUnlock()

Description By default, MEX-files are unlocked, meaning that a user can clear
them at any time. Calling mexLock locks a MEX-file so that it cannot
be cleared. Calling mexUnlock removes the lock so that the MEX-file
can be cleared.

mexLock increments a lock count. If you called mexLock n times, you
must call mexUnlock n times to unlock your MEX-file.

C
Examples

See mexlock.c in the mex subdirectory of the examples directory.

See Also mexIsLocked, mexLock, mexMakeArrayPersistent,
mexMakeMemoryPersistent

2-64

mexWarnMsgIdAndTxt (C and Fortran)

Purpose Issue warning message with identifier

C Syntax #include "mex.h"
void mexWarnMsgIdAndTxt(const char *warningid,

const char *warningmsg, ...);

Fortran
Syntax

mexWarnMsgIdAndTxt(warningid, warningmsg)
character*(*) warningid, warningmsg

Arguments warningid
String containing a MATLAB message identifier. See “Message
Identifiers” in the MATLAB documentation for information on
this topic.

warningmsg
String containing the warning message to be displayed. In C,
the string may include formatting conversion characters, such as
those used with the ANSI C sprintf function.

...
In C, any additional arguments needed to translate formatting
conversion characters used in warningmsg. Each conversion
character in warningmsg is converted to one of these values.

Description Call mexWarnMsgIdAndTxt to write a warning message and its
corresponding identifier to the MATLAB window.

Unlike mexErrMsgIdAndTxt, mexWarnMsgIdAndTxt does not cause the
MEX-file to terminate.

See Also mexErrMsgTxt, mexErrMsgIdAndTxt, mexWarnMsgTxt

2-65

mexWarnMsgTxt (C and Fortran)

Purpose Issue warning message

C Syntax #include "mex.h"
void mexWarnMsgTxt(const char *warningmsg);

Fortran
Syntax

mexWarnMsgTxt(warningmsg)
character*(*) warningmsg

Arguments warningmsg
String containing the warning message to be displayed

Description mexWarnMsgTxt causes MATLAB to display the contents of warningmsg.

Unlike mexErrMsgTxt, mexWarnMsgTxt does not cause the MEX-file to
terminate.

C
Examples

See yprime.c in the mex subdirectory of the examples directory.

Additional examples:

• explore.c in the mex subdirectory of the examples directory

• fulltosparse.c in the refbook subdirectory of the examples
directory

• mxisfinite.c and mxsetnzmax.c in the mx subdirectory of the
examples directory

See Also mexErrMsgTxt, mexErrMsgIdAndTxt, mexWarnMsgIdAndTxt

2-66

mwIndex (C and Fortran)

Purpose Type for index values

Description mwIndex is a type that represents index values, such as indices into
arrays. This function is provided for purposes of cross-platform
flexibility. By default, mwIndex is equivalent to int in C. When using
the mex -largeArrayDims switch, mwIndex is equivalent to size_t
in C. mwIndex is equivalent to INTEGER*4 in Fortran. The C header
file containing this type is

#include "matrix.h"

In Fortran, mwIndex is implemented as a preprocessor macro. The
Fortran header file containing this type is

#include "fintrf.h"

See Also mex, mwSize

2-67

mwPointer (Fortran)

Purpose Declare appropriate pointer type for platform

Description mwPointer is a preprocessor macro that declares the appropriate
Fortran type representing a pointer to an mxArray or to other data
that is not of a native Fortran type, such as memory allocated by
mxMalloc. On 32-bit platforms, the Fortran type that represents a
pointer is INTEGER*4; on 64-bit platforms, it is INTEGER*8. The Fortran
preprocessor translates mwPointer to the Fortran declaration that is
appropriate for the platform on which you compile your file.

If your Fortran compiler supports preprocessing, you can use mwPointer
to declare functions, arguments, and variables that represent pointers.
If you cannot use mwPointer, you must ensure that your declarations
have the correct size for the platform on which you are compiling
Fortran code.

The Fortran header file containing this type is

#include "fintrf.h"

Examples This example declares the arguments for mexFunction in a Fortran
MEX-file:

SUBROUTINE MEXFUNCTION(NLHS, PLHS, NRHS, PRHS)
MWPOINTER PLHS(*), PRHS(*)
INTEGER NLHS, NRHS

For additional examples, see the Fortran files with names ending in
.F in the $MATLAB/extern/examples directory, where $MATLAB is the
string returned by the matlabroot command.

2-68

mwSize (C and Fortran)

Purpose Type for size values

Description mwSize is a type that represents size values, such as array dimensions.
This function is provided for purposes of cross-platform flexibility.
By default, mwSize is equivalent to int in C. When using the mex
-largeArrayDims switch, mwSize is equivalent to size_t in C. mwSize
is equivalent to INTEGER*4 in Fortran.

In Fortran, mwSize is implemented as a preprocessor macro.

The C header file containing this type is

#include "matrix.h"

The Fortran header file containing this type is

#include "fintrf.h"

See Also mex, mwIndex

2-69

mxAddField (C and Fortran)

Purpose Add field to structure array

C Syntax #include "matrix.h"
extern int mxAddField(mxArray pm, const char *fieldname);

Fortran
Syntax

integer*4 mxAddField(pm, fieldname)
mwPointer pm
character*(*) fieldname

Arguments pm
Pointer to a structure mxArray

fieldname
The name of the field you want to add

Returns Field number on success or -1 if inputs are invalid or an out-of-memory
condition occurs.

Description Call mxAddField to add a field to a structure array. You must then create
the values with the mxCreate* functions and use mxSetFieldByNumber
to set the individual values for the field.

See Also mxRemoveField, mxSetFieldByNumber

2-70

mxArray (C and Fortran)

Purpose Type for a MATLAB array

Description The fundamental type underlying MATLAB data. For information on
how the MATLAB array works with MATLAB-supported variables, see
“MATLAB Data” in the External Interfaces documentation.

mxArray is a C language opaque type.

All C and Fortran MEX-files start with a gateway routine, called
mexFunction, which requires mxArray for both input and output
parameters. A C MEX-file gateway routine is described in “C
MEX-Files”. The Fortran version is described in “Fortran MEX-Files”.

Once you have MATLAB data in your MEX-file, you can use the array
access library routines (listed in “MX Array Manipulation” on page
1-2) to manipulate the data, and the MEX library routines (listed
in “MEX-Files” on page 1-9) to perform operations in the MATLAB
environment. You use mxArray to pass data to and from these functions.

Use any of the mxcreate* functions when you need to create data, and
the corresponding mxDestroyArray function to free memory.

The header file containing this type is

#include "matrix.h"

Example See mxcreatecharmatrixfromstr.c in your
matlabroot/extern/examples/mx directory.

The input argument prhs contains two or more strings, defined as
mxArray. Use the mxIsChar function to validate the input. Create a C
variable str of type char using the mxArrayToString function. Now
you can manipulate your data in C.

To set the return values in plhs, use the
mxCreateCharMatrixFromStrings function.

Before you exit your routine, be sure to free memory using the mxFree
function on str.

2-71

mxArray (C and Fortran)

See Also mexFunction, mxClassID, mxCreateDoubleMatrix,
mxCreateNumericArray, mxCreateString, mxDestroyArray,
mxGetData, mxSetData

2-72

mxArrayToString (C)

Purpose Convert array to string

C Syntax #include "matrix.h"
char *mxArrayToString(const mxArray *array_ptr);

Arguments array_ptr
Pointer to a string mxArray; that is, a pointer to an mxArray
having the mxCHAR_CLASS class.

Returns A C-style string. Returns NULL on failure. Possible reasons for failure
include out of memory and specifying an mxArray that is not a string
mxArray.

Description Call mxArrayToString to copy the character data of a string mxArray
into a C-style string. The C-style string is always terminated with a
NULL character.

If the string array contains several rows, they are copied, one column
at a time, into one long string array. This function is similar to
mxGetString, except that

• It does not require the length of the string as an input.

• It supports multibyte character sets.

mxArrayToString does not free the dynamic memory that the char
pointer points to. Consequently, you should typically free the string
(using mxFree) immediately after you have finished using it.

Examples See mexatexit.c in the mex subdirectory of the examples directory.

For additional examples, see mxcreatecharmatrixfromstr.c and
mxislogical.c in the mx subdirectory of the examples directory.

See Also mxCreateCharArray, mxCreateCharMatrixFromStrings,
mxCreateString, mxGetString

2-73

mxAssert (C)

Purpose Check assertion value for debugging purposes

C Syntax #include "matrix.h"
void mxAssert(int expr, char *error_message);

Arguments expr
Value of assertion

error_message
Description of why assertion failed

Description Similar to the ANSI C assert macro, mxAssert checks the value of
an assertion, and continues execution only if the assertion holds. If
expr evaluates to logical 1 (true), mxAssert does nothing. If expr
evaluates to logical 0 (false), mxAssert prints an error to the MATLAB
command window consisting of the failed assertion’s expression, the
filename and line number where the failed assertion occurred, and the
error_message string. The error_message string allows you to specify
a better description of why the assertion failed. Use an empty string if
you don’t want a description to follow the failed assertion message.

After a failed assertion, control returns to the MATLAB command line.

The mex script turns off these assertions when building optimized
MEX-functions, so use this for debugging purposes only. Build the
MEX-file using the syntax mex -g filename in order to use mxAssert.

Assertions are a way of maintaining internal consistency of logic. Use
them to keep yourself from misusing your own code and to prevent
logical errors from propagating before they are caught; do not use
assertions to prevent users of your code from misusing it.

Assertions can be taken out of your code by the C preprocessor. You can
use these checks during development and then remove them when the
code works properly, letting you use them for troubleshooting during
development without slowing down the final product.

2-74

mxAssertS (C)

Purpose Check assertion value without printing assertion text

C Syntax #include "matrix.h"
void mxAssertS(int expr, char *error_message);

Arguments expr
Value of assertion

error_message
Description of why assertion failed

Description mxAssertS is similar to mxAssert, except mxAssertS does not print the
text of the failed assertion. mxAssertS checks the value of an assertion,
and continues execution only if the assertion holds. If expr evaluates to
logical 1 (true), mxAssertS does nothing. If expr evaluates to logical 0
(false), mxAssertS prints an error to the MATLAB command window
consisting of the filename and line number where the assertion failed
and the error_message string. The error_message string allows you to
specify a better description of why the assertion failed. Use an empty
string if you don’t want a description to follow the failed assertion
message.

After a failed assertion, control returns to the MATLAB command line.

Note that the mex script turns off these assertions when building
optimized MEX-functions, so use this for debugging purposes only.
Build the MEX-file using the syntaxmex -g filename in order to use
mxAssertS.

2-75

mxCalcSingleSubscript (C and Fortran)

Purpose Offset from first element to desired element

C Syntax #include "matrix.h"
mwIndex mxCalcSingleSubscript(const mxArray *pm, mwSize nsubs,

mwIndex *subs);

Fortran
Syntax

mwIndex mxCalcSingleSubscript(pm, nsubs, subs)
mwPointer pm
mwSize nsubs
mwIndex subs

Arguments pm
Pointer to an mxArray

nsubs
The number of elements in the subs array. Typically, you set
nsubs equal to the number of dimensions in the mxArray that
pm points to.

subs
An array of integers. Each value in the array should specify that
dimension’s subscript. In C syntax, the value in subs[0] specifies
the row subscript, and the value in subs[1] specifies the column
subscript. Use zero-based indexing for subscripts. For example,
to express the starting element of a two-dimensional mxArray in
subs, set subs[0] to 0 and subs[1] to 0.

In Fortran syntax, the value in subs(1) specifies the row
subscript, and the value in subs(2) specifies the column
subscript. Use 1-based indexing for subscripts. For example, to
express the starting element of a two-dimensional mxArray in
subs, set subs(1) to 1 and subs(2) to 1.

Returns The number of elements between the start of the mxArray and the
specified subscript. This returned number is called an index; many mx
routines (for example, mxGetField) require an index as an argument.

2-76

mxCalcSingleSubscript (C and Fortran)

If subs describes the starting element of an mxArray,
mxCalcSingleSubscript returns 0. If subs describes the final element
of an mxArray, mxCalcSingleSubscript returns N-1 (where N is the
total number of elements).

Description Call mxCalcSingleSubscript to determine how many elements
there are between the beginning of the mxArray and a given
element of that mxArray. For example, given a subscript like (5,7),
mxCalcSingleSubscript returns the distance from the first element of
the array to the (5,7) element. Remember that the mxArray data type
internally represents all data elements in a one-dimensional array no
matter how many dimensions the MATLAB mxArray appears to have.

MATLAB uses a column-major numbering scheme to represent data
elements internally. That means that MATLAB internally stores data
elements from the first column first, then data elements from the
second column second, and so on through the last column. For example,
suppose you create a 4-by-2 variable. It is helpful to visualize the data
as follows.

A E

B F

C G

D H

In fact, though, MATLAB internally represents the data as the
following:

A B C D E F G H

Index
0

Index
1

Index
2

Index
3

Index
4

Index
5

Index
6

Index
7

If an mxArray is N-dimensional, MATLAB represents the data in
N-major order. For example, consider a three-dimensional array having
dimensions 4-by-2-by-3. Although you can visualize the data as

2-77

mxCalcSingleSubscript (C and Fortran)

MATLAB internally represents the data for this three-dimensional
array in the following order:

A B C D E F G H I J K L M N O P Q R S T U V W X

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Avoid using mxCalcSingleSubscript to traverse the elements of an
array. In C, it is more efficient to do this by finding the array’s starting
address and then using pointer auto-incrementing to access successive
elements. For example, to find the starting address of a numerical
array, call mxGetPr or mxGetPi.

C
Examples

See mxcalcsinglesubscript.c in the mx subdirectory of the examples
directory.

See Also mxGetCell, mxSetCell

2-78

mxCalloc (C and Fortran)

Purpose Allocate dynamic memory for array using MATLAB memory manager

C Syntax #include "matrix.h"
#include <stdlib.h>
void *mxCalloc(mwSize n, mwSize size);

Fortran
Syntax

mwPointer mxCalloc(n, size)
mwSize n, size

Arguments n
Number of elements to allocate. This must be a nonnegative
number.

size
Number of bytes per element. (The C sizeof operator calculates
the number of bytes per element.)

Returns A pointer to the start of the allocated dynamic memory, if successful.
If unsuccessful in a stand-alone (non-MEX-file) application, mxCalloc
returns NULL in C (0 in Fortran). If unsuccessful in a MEX-file, the
MEX-file terminates and control returns to the MATLAB prompt.

mxCalloc is unsuccessful when there is insufficient free heap space.

Description MATLAB applications should always call mxCalloc rather than calloc
to allocate memory. Note that mxCalloc works differently in MEX-files
than in stand-alone MATLAB applications.

In MEX-files, mxCalloc automatically

• Allocates enough contiguous heap space to hold n elements.

• Initializes all n elements to0.

• Registers the returned heap space with the MATLAB memory
management facility.

2-79

mxCalloc (C and Fortran)

The MATLAB memory management facility maintains a list of all
memory allocated by mxCalloc. The MATLAB memory management
facility automatically frees (deallocates) all of a MEX-file’s parcels when
control returns to the MATLAB prompt.

In stand-alone MATLAB C applications, mxCalloc calls the ANSI C
calloc function.

By default, in a MEX-file, mxCalloc generates nonpersistent
mxCalloc data. In other words, the memory management facility
automatically deallocates the memory as soon as the MEX-file ends.
If you want the memory to persist after the MEX-file completes, call
mexMakeMemoryPersistent after calling mxCalloc. If you write a
MEX-file with persistent memory, be sure to register a mexAtExit
function to free allocated memory in the event your MEX-file is cleared.

When you finish using the memory allocated by mxCalloc, call mxFree.
mxFree deallocates the memory.

C
Examples

See

• explore.c in the mex subdirectory of the examples directory

• phonebook.c and revord.c in the refbook subdirectory of the
examples directory

For additional examples, see mxcalcsinglesubscript.c and
mxsetdimensions.c in the mx subdirectory of the examples directory.

See Also mexAtExit, mexMakeArrayPersistent, mexMakeMemoryPersistent,
mxDestroyArray, mxFree, mxMalloc, mxRealloc

2-80

mxChar (C)

Purpose Type for string mxArray

Description A string mxArray stores its data elements as mxChar rather than as
char.

The header file containing this type is

#include "matrix.h"

Examples See mxmalloc.c in the mx subdirectory of the examples directory.

Additional examples:

• explore.c in the mex subdirectory of the examples directory

• mxcreatecharmatrixfromstr.c in the mx subdirectory of the
examples directory

See Also mxCreateCharArray

2-81

mxClassID (C)

Purpose Enumerated value identifying class of mxArray

C Syntax typedef enum {
mxUNKNOWN_CLASS,
mxCELL_CLASS,
mxSTRUCT_CLASS,
mxLOGICAL_CLASS,
mxCHAR_CLASS,
mxDOUBLE_CLASS,
mxSINGLE_CLASS,
mxINT8_CLASS,
mxUINT8_CLASS,
mxINT16_CLASS,
mxUINT16_CLASS,
mxINT32_CLASS,
mxUINT32_CLASS,
mxINT64_CLASS,
mxUINT64_CLASS,
mxFUNCTION_CLASS

} mxClassID;

Constants mxUNKNOWN_CLASS
The class cannot be determined. You cannot specify this category
for an mxArray; however, mxGetClassID can return this value
if it cannot identify the class.

mxCELL_CLASS
Identifies a cell mxArray.

mxSTRUCT_CLASS
Identifies a structure mxArray.

mxLOGICAL_CLASS
Identifies a logical mxArray, an mxArray whose data is represented
as mxLogical.

mxCHAR_CLASS
Identifies a string mxArray, an mxArray whose data is represented
as mxChar.

2-82

mxClassID (C)

mxDOUBLE_CLASS
Identifies a numeric mxArray whose data is stored as
double-precision, floating-point numbers.

mxSINGLE_CLASS
Identifies a numeric mxArray whose data is stored as
single-precision, floating-point numbers.

mxINT8_CLASS
Identifies a numeric mxArray whose data is stored as signed 8-bit
integers.

mxUINT8_CLASS
Identifies a numeric mxArray whose data is stored as unsigned
8-bit integers.

mxINT16_CLASS
Identifies a numeric mxArray whose data is stored as signed
16-bit integers.

mxUINT16_CLASS
Identifies a numeric mxArray whose data is stored as unsigned
16-bit integers.

mxINT32_CLASS
Identifies a numeric mxArray whose data is stored as signed
32-bit integers.

mxUINT32_CLASS
Identifies a numeric mxArray whose data is stored as unsigned
32-bit integers.

mxINT64_CLASS
Identifies a numeric mxArray whose data is stored as signed
64-bit integers.

mxUINT64_CLASS
Identifies a numeric mxArray whose data is stored as unsigned
64-bit integers.

mxFUNCTION_CLASS
Identifies a function handle mxArray.

2-83

mxClassID (C)

Description Various mx* calls require or return an mxClassID argument. mxClassID
identifies the way in which the mxArray represents its data elements.

Examples See explore.c in the mex subdirectory of the examples directory.

See Also mxGetClassID , mxCreateNumericArray

2-84

mxClassIDFromClassName (Fortran)

Purpose Identifier corresponding to class

Fortran
Syntax

integer*4 mxClassIDFromClassName(classname)
character*(*) classname

Arguments classname
A character array specifying a MATLAB class name. Use one of
the strings from the following table.

Returns A numeric identifier used internally by MATLAB to represent the
MATLAB class, classname. Returns unknown if classname is not a
recognized MATLAB class.

Description Use mxClassIDFromClassName to obtain an identifier for any class
that is recognized by MATLAB. This function is most commonly
used to provide a classid argument to mxCreateNumericArray and
mxCreateNumericMatrix.

Valid choices for classname are listed in the mxIsClass reference page.

See Also mxGetClassName, mxCreateNumericArray, mxCreateNumericMatrix,
mxIsClass

2-85

mxComplexity (C)

Purpose Flag specifying whether mxArray has imaginary components

C Syntax typedef enum mxComplexity {mxREAL=0, mxCOMPLEX};

Constants mxREAL
Identifies an mxArray with no imaginary components.

mxCOMPLEX
Identifies an mxArray with imaginary components.

Description Various mx* calls require an mxComplexity argument. You can set an
mxComplex argument to either mxREAL or mxCOMPLEX.

Examples See mxcalcsinglesubscript.c in the mx subdirectory of the examples
directory.

See Also mxCreateNumericArray, mxCreateDoubleMatrix, mxCreateSparse

2-86

mxCopyCharacterToPtr (Fortran)

Purpose Copy character values from Fortran array to pointer array

Fortran
Syntax

mxCopyCharacterToPtr(y, px, n)
character*(*) y
mwPointer px
mwSize n

Arguments y
character Fortran array

px
Pointer to character or name array

n
Number of elements to copy

Description mxCopyCharacterToPtr copies n character values from the Fortran
character array y into the MATLAB string array pointed to by px. This
subroutine is essential for copying character data between MATLAB
pointer arrays and ordinary Fortran character arrays.

See Also mxCopyPtrToCharacter, mxCreateCharArray, mxCreateString,
mxCreateCharMatrixFromStrings

2-87

mxCopyComplex16ToPtr (Fortran)

Purpose Copy COMPLEX*16 values from Fortran array to pointer array

Fortran
Syntax

mxCopyComplex16ToPtr(y, pr, pi, n)
complex*16 y(n)
mwPointer pr, pi
mwSize n

Arguments y
COMPLEX*16 Fortran array

pr
Pointer to the real data of a double-precision MATLAB array

pi
Pointer to the imaginary data of a double-precision MATLAB
array

n
Number of elements to copy

Description mxCopyComplex16ToPtr copies n COMPLEX*16 values from the Fortran
COMPLEX*16 array y into the MATLAB arrays pointed to by pr and pi.
This subroutine is essential for use with Fortran compilers that do not
support the %VAL construct in order to set up standard Fortran arrays
for passing as arguments to the computation routine of a MEX-file.

See Also mxCopyPtrToComplex16, mxCreateNumericArray,
mxCreateNumericMatrix, mxGetData, mxGetImagData

2-88

mxCopyComplex8ToPtr (Fortran)

Purpose Copy COMPLEX*8 values from Fortran array to pointer array

Fortran
Syntax

mxCopyComplex8ToPtr(y, pr, pi, n)
complex*8 y(n)
mwPointer pr, pi
mwSize n

Arguments y
COMPLEX*8 Fortran array

pr
Pointer to the real data of a single-precision MATLAB array

pi
Pointer to the imaginary data of a single-precision MATLAB array

n
Number of elements to copy

Description mxCopyComplex8ToPtr copies n COMPLEX*8 values from the Fortran
COMPLEX*8 array y into the MATLAB arrays pointed to by pr and pi.
This subroutine is essential for use with Fortran compilers that do not
support the %VAL construct in order to set up standard Fortran arrays
for passing as arguments to the computation routine of a MEX-file.

See Also mxCopyPtrToComplex8, mxCreateNumericArray,
mxCreateNumericMatrix, mxGetData, mxGetImagData

2-89

mxCopyInteger1ToPtr (Fortran)

Purpose Copy INTEGER*1 values from Fortran array to pointer array

Fortran
Syntax

mxCopyInteger1ToPtr(y, px, n)
integer*1 y(n)
mwPointer px
mwSize n

Arguments y
INTEGER*1 Fortran array

px
Pointer to ir or jc array

n
Number of elements to copy

Description mxCopyInteger1ToPtr copies n INTEGER*1 values from the Fortran
INTEGER*1 array y into the MATLAB array pointed to by px, either
an ir or jc array. This subroutine is essential for use with Fortran
compilers that do not support the %VAL construct in order to set up
standard Fortran arrays for passing as arguments to the computation
routine of a MEX-file.

See Also mxCopyPtrToInteger1, mxCreateNumericArray,
mxCreateNumericMatrix

2-90

mxCopyInteger2ToPtr (Fortran)

Purpose Copy INTEGER*2 values from Fortran array to pointer array

Fortran
Syntax

mxCopyInteger2ToPtr(y, px, n)
integer*2 y(n)
mwPointer px
mwSize n

Arguments y
INTEGER*2 Fortran array

px
Pointer to ir or jc array

n
Number of elements to copy

Description mxCopyInteger2ToPtr copies n INTEGER*2 values from the Fortran
INTEGER*2 array y into the MATLAB array pointed to by px, either
an ir or jc array. This subroutine is essential for use with Fortran
compilers that do not support the %VAL construct in order to set up
standard Fortran arrays for passing as arguments to the computation
routine of a MEX-file.

See Also mxCopyPtrToInteger2, mxCreateNumericArray,
mxCreateNumericMatrix

2-91

mxCopyInteger4ToPtr (Fortran)

Purpose Copy INTEGER*4 values from Fortran array to pointer array

Fortran
Syntax

mxCopyInteger4ToPtr(y, px, n)
integer*4 y(n)
mwPointer px
mwSize n

Arguments y
INTEGER*4 Fortran array

px
Pointer to ir or jc array

n
Number of elements to copy

Description mxCopyInteger4ToPtr copies n INTEGER*4 values from the Fortran
INTEGER*4 array y into the MATLAB array pointed to by px, either
an ir or jc array. This subroutine is essential for use with Fortran
compilers that do not support the %VAL construct in order to set up
standard Fortran arrays for passing as arguments to the computation
routine of a MEX-file.

See Also mxCopyPtrToInteger4, mxCreateNumericArray,
mxCreateNumericMatrix

2-92

mxCopyPtrToCharacter (Fortran)

Purpose Copy character values from pointer array to Fortran array

Fortran
Syntax

mxCopyPtrToCharacter(px, y, n)
mwPointer px
character*(*) y
mwSize n

Arguments px
Pointer to character or name array

y
character Fortran array

n
Number of elements to copy

Description mxCopyPtrToCharacter copies n character values from the MATLAB
array pointed to by px into the Fortran character array y. This
subroutine is essential for copying character data from MATLAB
pointer arrays into ordinary Fortran character arrays.

Examples See matdemo2.F in the eng_mat subdirectory of the examples directory
for a sample program that illustrates how to use this routine in a
Fortran program.

See Also mxCopyCharacterToPtr, mxCreateCharArray, mxCreateString,
mxCreateCharMatrixFromStrings

2-93

mxCopyPtrToComplex16 (Fortran)

Purpose Copy COMPLEX*16 values from pointer array to Fortran array

Fortran
Syntax

mxCopyPtrToComplex16(pr, pi, y, n)
mwPointer pr, pi
complex*16 y(n)
mwSize n

Arguments pr
Pointer to the real data of a double-precision MATLAB array

pi
Pointer to the imaginary data of a double-precision MATLAB
array

y
COMPLEX*16 Fortran array

n
Number of elements to copy

Description mxCopyPtrToComplex16 copies n COMPLEX*16 values from the MATLAB
arrays pointed to by pr and pi into the Fortran COMPLEX*16 array y.
This subroutine is essential for use with Fortran compilers that do not
support the %VAL construct in order to set up standard Fortran arrays
for passing as arguments to the computation routine of a MEX-file.

See Also mxCopyComplex16ToPtr, mxCreateNumericArray,
mxCreateNumericMatrix, mxGetData, mxGetImagData

2-94

mxCopyPtrToComplex8 (Fortran)

Purpose Copy COMPLEX*8 values from pointer array to Fortran array

Fortran
Syntax

mxCopyPtrToComplex8(pr, pi, y, n)
mwPointer pr, pi
complex*8 y(n)
mwSize n

Arguments pr
Pointer to the real data of a single-precision MATLAB array

pi
Pointer to the imaginary data of a single-precision MATLAB array

y
COMPLEX*8 Fortran array

n
Number of elements to copy

Description mxCopyPtrToComplex8 copies n COMPLEX*8 values from the MATLAB
arrays pointed to by pr and pi into the Fortran COMPLEX*8 array y.
This subroutine is essential for use with Fortran compilers that do not
support the %VAL construct in order to set up standard Fortran arrays
for passing as arguments to the computation routine of a MEX-file.

See Also mxCopyComplex8ToPtr, mxCreateNumericArray,
mxCreateNumericMatrix, mxGetData, mxGetImagData

2-95

mxCopyPtrToInteger1 (Fortran)

Purpose Copy INTEGER*1 values from pointer array to Fortran array

Fortran
Syntax

mxCopyPtrToInteger1(px, y, n)
mwPointer px
integer*1 y(n)
mwSize n

Arguments px
Pointer to ir or jc array

y
INTEGER*1 Fortran array

n
Number of elements to copy

Description mxCopyPtrToInteger1 copies n INTEGER*1 values from the MATLAB
array pointed to by px, either an ir or jc array, into the Fortran
INTEGER*1 array y. This subroutine is essential for use with Fortran
compilers that do not support the %VAL construct in order to set up
standard Fortran arrays for passing as arguments to the computation
routine of a MEX-file.

See Also mxCopyInteger1ToPtr, mxCreateNumericArray,
mxCreateNumericMatrix

2-96

mxCopyPtrToInteger2 (Fortran)

Purpose Copy INTEGER*2 values from pointer array to Fortran array

Fortran
Syntax

mxCopyPtrToInteger2(px, y, n)
mwPointer px
integer*2 y(n)
mwSize n

Arguments px
Pointer to ir or jc array

y
INTEGER*2 Fortran array

n
Number of elements to copy

Description mxCopyPtrToInteger2 copies n INTEGER*2 values from the MATLAB
array pointed to by px, either an ir or jc array, into the Fortran
INTEGER*2 array y. This subroutine is essential for use with Fortran
compilers that do not support the %VAL construct in order to set up
standard Fortran arrays for passing as arguments to the computation
routine of a MEX-file.

See Also mxCopyInteger2ToPtr, mxCreateNumericArray,
mxCreateNumericMatrix

2-97

mxCopyPtrToInteger4 (Fortran)

Purpose Copy INTEGER*4 values from pointer array to Fortran array

Fortran
Syntax

mxCopyPtrToInteger4(px, y, n)
mwPointer px
integer*4 y(n)
mwSize n

Arguments px
Pointer to ir or jc array

y
INTEGER*4 Fortran array

n
Number of elements to copy

Description mxCopyPtrToInteger4 copies n INTEGER*4 values from the MATLAB
array pointed to by px, either an ir or jc array, into the Fortran
INTEGER*4 array y. This subroutine is essential for use with Fortran
compilers that do not support the %VAL construct in order to set up
standard Fortran arrays for passing as arguments to the computation
routine of a MEX-file.

See Also mxCopyInteger4ToPtr, mxCreateNumericArray,
mxCreateNumericMatrix

2-98

mxCopyPtrToPtrArray (Fortran)

Purpose Copy pointer values from pointer array to Fortran array

Fortran
Syntax

mxCopyPtrToPtrArray(px, y, n)
mwPointer px
mwPointer y(n)
mwSize n

Arguments px
Pointer to pointer array

y
Fortran array of mwPointer values

n
Number of pointers to copy

Description mxCopyPtrToPtrArray copies n pointers from the MATLAB array
pointed to by px into the Fortran array y. This subroutine is essential
for copying the output of matGetDir into an array of pointers. After
calling this function, each element of y contains a pointer to a string.
You can convert these strings to Fortran character arrays by passing
each element of y as the first argument to mxCopyPtrToCharacter.

Examples See matdemo2.F in the eng_mat subdirectory of the examples directory
for a sample program that illustrates how to use this routine in a
Fortran program.

See Also matGetDir, mxCopyPtrToCharacter

2-99

mxCopyPtrToReal4 (Fortran)

Purpose Copy REAL*4 values from pointer array to Fortran array

Fortran
Syntax

mxCopyPtrToReal4(px, y, n)
mwPointer px
real*4 y(n)
mwSize n

Arguments px
Pointer to the real or imaginary data of a single-precision
MATLAB array

y
REAL*4 Fortran array

n
Number of elements to copy

Description mxCopyPtrToReal4 copies n REAL*4 values from the MATLAB array
pointed to by px, either a pr or pi array, into the Fortran REAL*4 array y.
This subroutine is essential for use with Fortran compilers that do not
support the %VAL construct in order to set up standard Fortran arrays
for passing as arguments to the computation routine of a MEX-file.

See Also mxCopyReal4ToPtr, mxCreateNumericArray, mxCreateNumericMatrix,
mxGetData, mxGetImagData

2-100

mxCopyPtrToReal8 (Fortran)

Purpose Copy REAL*8 values from pointer array to Fortran array

Fortran
Syntax

mxCopyPtrToReal8(px, y, n)
mwPointer px
real*8 y(n)
mwSize n

Arguments px
Pointer to the real or imaginary data of a double-precision
MATLAB array

y
REAL*8 Fortran array

n
Number of elements to copy

Description mxCopyPtrToReal8 copies n REAL*8 values from the MATLAB array
pointed to by px, either a pr or pi array, into the Fortran REAL*8 array y.
This subroutine is essential for use with Fortran compilers that do not
support the %VAL construct in order to set up standard Fortran arrays
for passing as arguments to the computation routine of a MEX-file.

Examples See fengdemo.F in the eng_mat subdirectory of the examples directory
for a sample program that illustrates how to use this routine in a
Fortran program.

See Also mxCopyReal8ToPtr, mxCreateNumericArray, mxCreateNumericMatrix,
mxGetData, mxGetImagData

2-101

mxCopyReal4ToPtr (Fortran)

Purpose Copy REAL*4 values from Fortran array to pointer array

Fortran
Syntax

mxCopyReal4ToPtr(y, px, n)
real*4 y(n)
mwPointer px
mwSize n

Arguments y
REAL*4 Fortran array

px
Pointer to the real or imaginary data of a single-precision
MATLAB array

n
Number of elements to copy

Description mxCopyReal4ToPtr copies n REAL*4 values from the Fortran REAL*4
array y into the MATLAB array pointed to by px, either a pr or pi array.
This subroutine is essential for use with Fortran compilers that do not
support the %VAL construct in order to set up standard Fortran arrays
for passing as arguments to the computation routine of a MEX-file.

See Also mxCopyPtrToReal4, mxCreateNumericArray, mxCreateNumericMatrix,
mxGetData, mxGetImagData

2-102

mxCopyReal8ToPtr (Fortran)

Purpose Copy REAL*8 values from Fortran array to pointer array

Fortran
Syntax

mxCopyReal8ToPtr(y, px, n)
real*8 y(n)
mwPointer px
mwSize n

Arguments y
REAL*8 Fortran array

px
Pointer to the real or imaginary data of a double-precision
MATLAB array

n
Number of elements to copy

Description mxCopyReal8ToPtr copies n REAL*8 values from the Fortran REAL*8
array y into the MATLAB array pointed to by px, either a pr or pi array.
This subroutine is essential for use with Fortran compilers that do not
support the %VAL construct in order to set up standard Fortran arrays
for passing as arguments to the computation routine of a MEX-file.

Examples See matdemo1.F and fengdemo.F in the eng_mat subdirectory of the
examples directory for a sample program that illustrates how to use
this routine in a Fortran program.

See Also mxCopyPtrToReal8, mxCreateNumericArray, mxCreateNumericMatrix,
mxGetData, mxGetImagData

2-103

mxCreateCellArray (C and Fortran)

Purpose Create unpopulated N-D cell mxArray

C Syntax #include "matrix.h"
mxArray *mxCreateCellArray(mwSize ndim, const mwSize *dims);

Fortran
Syntax

mwPointer mxCreateCellArray(ndim, dims)
mwSize ndim, dims

Arguments ndim
The desired number of dimensions in the created cell. For
example, to create a three-dimensional cell mxArray, set ndim to 3.

dims
The dimensions array. Each element in the dimensions array
contains the size of the mxArray in that dimension. For example,
in C, setting dims[0] to 5 and dims[1] to 7 establishes a 5-by-7
mxArray. In Fortran, setting dims(1) to 5 and dims(2) to 7
establishes a 5-by-7 mxArray. In most cases, there should be ndim
elements in the dims array.

Returns A pointer to the created cell mxArray, if successful. If unsuccessful in
a stand-alone (nonMEX-file) application, mxCreateCellArray returns
NULL in C (0 in Fortran). If unsuccessful in a MEX-file, the MEX-file
terminates and control returns to the MATLAB prompt. The most
common cause of failure is insufficient free heap space.

Description Use mxCreateCellArray to create a cell mxArray whose size is defined
by ndim and dims. For example, in C, to establish a three-dimensional
cell mxArray having dimensions 4-by-8-by-7, set

ndim = 3;
dims[0] = 4; dims[1] = 8; dims[2] = 7;

In Fortran, to establish a three-dimensional cell mxArray having
dimensions 4-by-8-by-7, set

ndim = 3;

2-104

mxCreateCellArray (C and Fortran)

dims(1) = 4; dims(2) = 8; dims(3) = 7;

The created cell mxArray is unpopulated; mxCreateCellArray initializes
each cell to NULL. To put data into a cell, call mxSetCell.

Any trailing singleton dimensions specified in the dims argument are
automatically removed from the resulting array. For example, if ndim
equals 5 and dims equals [4 1 7 1 1], the resulting array is given
the dimensions 4-by-1-by-7.

C
Examples

See phonebook.c in the refbook subdirectory of the examples directory.

See Also mxCreateCellMatrix, mxGetCell, mxSetCell, mxIsCell

2-105

mxCreateCellMatrix (C and Fortran)

Purpose Create unpopulated 2-D cell mxArray

C Syntax #include "matrix.h"
mxArray *mxCreateCellMatrix(mwSize m, mwSize n);

Fortran
Syntax

mwPointer mxCreateCellMatrix(m, n)
mwSize m, n

Arguments m
The desired number of rows

n
The desired number of columns

Returns A pointer to the created cell mxArray, if successful. If unsuccessful in a
stand-alone (non-MEX-file) application, mxCreateCellMatrix returns
NULL in C (0 in Fortran). If unsuccessful in a MEX-file, the MEX-file
terminates and control returns to the MATLAB prompt. Insufficient
free heap space is the only reason for mxCreateCellMatrix to be
unsuccessful.

Description Use mxCreateCellMatrix to create an m-by-n two-dimensional cell
mxArray. The created cell mxArray is unpopulated; mxCreateCellMatrix
initializes each cell to NULL in C (0 in Fortran). To put data into cells,
call mxSetCell.

mxCreateCellMatrix is identical to mxCreateCellArray except that
mxCreateCellMatrix can create two-dimensional mxArrays only,
but mxCreateCellArray can create mxArrays having any number of
dimensions greater than 1.

C
Examples

See mxcreatecellmatrix.c in the mx subdirectory of the examples
directory.

See Also mxCreateCellArray

2-106

mxCreateCharArray (C and Fortran)

Purpose Create unpopulated N-D string mxArray

C Syntax #include "matrix.h"
mxArray *mxCreateCharArray(mwSize ndim, const mwSize *dims);

Fortran
Syntax

mwPointer mxCreateCharArray(ndim, dims)
mwSize ndim, dims

Arguments ndim
The desired number of dimensions in the string mxArray.
You must specify a positive number. If you specify 0, 1, or 2,
mxCreateCharArray creates a two-dimensional mxArray.

dims
The dimensions array. Each element in the dimensions array
contains the size of the array in that dimension. For example,
in C, setting dims[0] to 5 and dims[1] to 7 establishes a 5-by-7
mxArray. In Fortran, setting dims(1) to 5 and dims(2) to 7
establishes a 5-by-7 character mxArray. The dims array must
have at least ndim elements.

Returns A pointer to the created string mxArray, if successful. If unsuccessful
in a stand-alone (non-MEX-file) application, mxCreateCharArray
returns NULL in C (0 in Fortran). If unsuccessful in a MEX-file, the
MEX-file terminates and control returns to the MATLAB prompt.
Insufficient free heap space is the only reason for mxCreateCharArray
to be unsuccessful.

Description Call mxCreateCharArray to create an N-dimensional string mxArray.
The created mxArray is unpopulated; that is, mxCreateCharArray
initializes each cell to NULL in C (0 in Fortran).

Any trailing singleton dimensions specified in the dims argument are
automatically removed from the resulting array. For example, if ndim
equals 5 and dims equals [4 1 7 1 1], the resulting array is given
the dimensions 4-by-1-by-7.

2-107

mxCreateCharArray (C and Fortran)

C
Examples

See mxcreatecharmatrixfromstr.c in the mx subdirectory of the
examples directory.

See Also mxCreateCharMatrixFromStrings, mxCreateString

2-108

mxCreateCharMatrixFromStrings (C and Fortran)

Purpose Create populated 2-D string mxArray

C Syntax #include "matrix.h"
mxArray *mxCreateCharMatrixFromStrings(mwSize m, const char **str);

Fortran
Syntax

mwPointer mxCreateCharMatrixFromStrings(m, str)
mwSize m
character*(*) str(m)

Arguments m
The desired number of rows in the created string mxArray. The
value you specify for m should equal the number of strings in str.

str
In C, an array of strings containing at least m strings. In Fortran,
a character*n array of size m, where each element of the array
is n bytes.

Returns A pointer to the created string mxArray, if successful. If
unsuccessful in a stand-alone (non-MEX-file) application,
mxCreateCharMatrixFromStrings returns NULL in C (0 in Fortran). If
unsuccessful in a MEX-file, the MEX-file terminates and control returns
to the MATLAB prompt. Insufficient free heap space is the primary
reason for mxCreateCharMatrixFromStrings to be unsuccessful.
Another possible reason for failure is that str contains fewer than m
strings.

Description Use mxCreateCharMatrixFromStrings to create a two-dimensional
string mxArray, where each row is initialized to a string from str. In
C, the created mxArray has dimensions m-by-max, where max is the
length of the longest string in str. In Fortran, the created mxArray has
dimensions m-by-n, where n is the number of characters in str(i).

Note that string mxArrays represent their data elements as mxChar
rather than as C char.

2-109

mxCreateCharMatrixFromStrings (C and Fortran)

C
Examples

See mxcreatecharmatrixfromstr.c in the mx subdirectory of the
examples directory.

See Also mxCreateCharArray, mxCreateString, mxGetString

2-110

mxCreateDoubleMatrix (C and Fortran)

Purpose Create 2-D, double-precision, floating-point mxArray initialized to 0

C Syntax #include "matrix.h"
mxArray *mxCreateDoubleMatrix(mwSize m, mwSize n,

mxComplexity ComplexFlag);

Fortran
Syntax

mwPointer mxCreateDoubleMatrix(m, n, ComplexFlag)
mwSize m, n
integer*4 ComplexFlag

Arguments m
The desired number of rows

n
The desired number of columns

ComplexFlag
Specify either mxREAL or mxCOMPLEX. If the data you plan to put
into the mxArray has no imaginary components, specify mxREAL
in C (0 in Fortran). If the data has some imaginary components,
specify mxCOMPLEX in C (1 in Fortran).

Returns A pointer to the created mxArray, if successful. If unsuccessful in
a stand-alone (non-MEX-file) application, mxCreateDoubleMatrix
returns NULL in C (0 in Fortran). If unsuccessful in a MEX-file, the
MEX-file terminates and control returns to the MATLAB prompt.
mxCreateDoubleMatrix is unsuccessful when there is not enough free
heap space to create the mxArray.

Description Use mxCreateDoubleMatrix to create an m-by-n mxArray.
mxCreateDoubleMatrix initializes each element in the pr array
to 0. If you set ComplexFlag to mxCOMPLEX in C (1 in Fortran),
mxCreateDoubleMatrix also initializes each element in the pi array
to 0.

If you set ComplexFlag to mxREAL in C (0 in Fortran),
mxCreateDoubleMatrix allocates enough memory to hold m-by-n real
elements. If you set ComplexFlag to mxCOMPLEX in C (1 in Fortran),

2-111

mxCreateDoubleMatrix (C and Fortran)

mxCreateDoubleMatrix allocates enough memory to hold m-by-n real
elements and m-by-n imaginary elements.

Call mxDestroyArray when you finish using the mxArray.
mxDestroyArray deallocates the mxArray and its associated real and
complex elements.

C
Examples

See convec.c, findnz.c, sincall.c, timestwo.c, timestwoalt.c, and
xtimesy.c in the refbook subdirectory of the examples directory.

See Also mxCreateNumericArray

2-112

mxCreateDoubleScalar (C and Fortran)

Purpose Create scalar, double-precision array initialized to specified value

C Syntax #include "matrix.h"
mxArray *mxCreateDoubleScalar(double value);

Fortran
Syntax

mwPointer mxCreateDoubleScalar(value)
real*8 value

Arguments value
The desired value to which you want to initialize the array

Returns A pointer to the created mxArray, if successful. mxCreateDoubleScalar
is unsuccessful if there is not enough free heap space to create the
mxArray. If mxCreateDoubleScalar is unsuccessful in a MEX-file,
the MEX-file prints an “Out of Memory” message, terminates, and
control returns to the MATLAB prompt. If mxCreateDoubleScalar
is unsuccessful in a stand-alone (nonMEX-file) application,
mxCreateDoubleScalar returns NULL in C (0 in Fortran).

Description Call mxCreateDoubleScalar to create a scalar double mxArray.
mxCreateDoubleScalar is a convenience function that can be used in
place of the following C code:

pa = mxCreateDoubleMatrix(1, 1, mxREAL);
*mxGetPr(pa) = value;

mxCreateDoubleScalar can be used in place of the following Fortran
code:

pm = mxCreateDoubleMatrix(1, 1, 0)
mxCopyReal8ToPtr(value, mxGetPr(pm), 1)

When you finish using the mxArray, call mxDestroyArray to destroy it.

See Also mxGetPr, mxCreateDoubleMatrix

2-113

mxCreateLogicalArray (C)

Purpose Create N-D logical mxArray initialized to false

C Syntax #include "matrix.h"
mxArray *mxCreateLogicalArray(mwSize ndim, const mwSize *dims);

Arguments ndim
Number of dimensions. If you specify a value for ndim that is less
than 2, mxCreateLogicalArray automatically sets the number
of dimensions to 2.

dims
The dimensions array. Each element in the dimensions array
contains the size of the array in that dimension. For example,
setting dims[0] to 5 and dims[1] to 7 establishes a 5-by-7
mxArray. There should be ndim elements in the dims array.

Returns A pointer to the created mxArray, if successful. If unsuccessful in
a stand-alone (non-MEX-file) application, mxCreateLogicalArray
returns NULL. If unsuccessful in a MEX-file, the MEX-file terminates
and control returns to the MATLAB prompt. mxCreateLogicalArray
is unsuccessful when there is not enough free heap space to create the
mxArray.

Description Call mxCreateLogicalArray to create an N-dimensional
mxArray of mxLogical elements. After creating the mxArray,
mxCreateLogicalArray initializes all its elements to logical 0.
mxCreateLogicalArray differs from mxCreateLogicalMatrix in that
the latter can create two-dimensional arrays only.

mxCreateLogicalArray allocates dynamic memory to store the
created mxArray. When you finish with the created mxArray, call
mxDestroyArray to deallocate its memory.

Any trailing singleton dimensions specified in the dims argument are
automatically removed from the resulting array. For example, if ndim
equals 5 and dims equals [4 1 7 1 1], the resulting array is given
the dimensions 4-by-1-by-7.

2-114

mxCreateLogicalArray (C)

See Also mxCreateLogicalMatrix, mxCreateSparseLogicalMatrix,
mxCreateLogicalScalar

2-115

mxCreateLogicalMatrix (C)

Purpose Create 2-D, logical mxArray initialized to false

C Syntax #include "matrix.h"
mxArray *mxCreateLogicalMatrix(mwSize m, mwSize n);

Arguments m
The desired number of rows

n
The desired number of columns

Returns A pointer to the created mxArray, if successful. If unsuccessful in
a stand-alone (non-MEX-file) application, mxCreateLogicalMatrix
returns NULL. If unsuccessful in a MEX-file, the MEX-file terminates
and control returns to the MATLAB prompt. mxCreateLogicalMatrix
is unsuccessful when there is not enough free heap space to create the
mxArray.

Description Use mxCreateLogicalMatrix to create an m-by-n mxArray of mxLogical
elements. mxCreateLogicalMatrix initializes each element in the
array to logical 0.

Call mxDestroyArray when you finish using the mxArray.
mxDestroyArray deallocates the mxArray.

See Also mxCreateLogicalArray, mxCreateSparseLogicalMatrix,
mxCreateLogicalScalar

2-116

mxCreateLogicalScalar (C)

Purpose Create scalar, logical mxArray initialized to false

C Syntax #include "matrix.h"
mxArray *mxCreateLogicalScalar(mxLogical value);

Arguments value
The desired logical value to which you want to initialize the array

Returns A pointer to the created mxArray, if successful. mxCreateLogicalScalar
is unsuccessful if there is not enough free heap space to create the
mxArray. If mxCreateLogicalScalar is unsuccessful in a MEX-file,
the MEX-file prints an “Out of Memory” message, terminates, and
control returns to the MATLAB prompt. If mxCreateLogicalScalar is
unsuccessful in a stand-alone (non-MEX-file) application, the function
returns NULL.

Description Call mxCreateLogicalScalar to create a scalar logical mxArray.
mxCreateLogicalScalar is a convenience function that can be used in
place of the following code:

pa = mxCreateLogicalMatrix(1, 1);
*mxGetLogicals(pa) = value;

When you finish using the mxArray, call mxDestroyArray to destroy it.

See Also mxCreateLogicalArray, mxCreateLogicalMatrix,
mxIsLogicalScalar, mxIsLogicalScalarTrue, mxGetLogicals

2-117

mxCreateNumericArray (C and Fortran)

Purpose Create unpopulated N-D numeric mxArray

C Syntax #include "matrix.h"
mxArray *mxCreateNumericArray(mwSize ndim, const mwSize *dims,

mxClassID classid, mxComplexity ComplexFlag);

Fortran
Syntax

mwPointer mxCreateNumericArray(ndim, dims, classid,
ComplexFlag)

mwSize ndim, dims
integer*4 classid, ComplexFlag

Arguments ndim
Number of dimensions. If you specify a value for ndim that is less
than 2, mxCreateNumericArray automatically sets the number
of dimensions to 2.

dims
The dimensions array. Each element in the dimensions array
contains the size of the array in that dimension. For example,
in C, setting dims[0] to 5 and dims[1] to 7 establishes a 5-by-7
mxArray. In Fortran, setting dims(1) to 5 and dims(2) to 7
establishes a 5-by-7 mxArray. In most cases, there should be ndim
elements in the dims array.

classid
An identifier for the class of the array, which determines the
way the numerical data is represented in memory. For example,
specifying mxINT16_CLASS in C causes each piece of numerical
data in the mxArray to be represented as a 16-bit signed integer.
In Fortran, use the function mxClassIDFromClassName to
derive the classid value from a MATLAB class name. See the
Description section for more information.

ComplexFlag
If the data you plan to put into the mxArray has no imaginary
components, specify mxREAL in C (0 in Fortran). If the data
has some imaginary components, specify mxCOMPLEX in C (1 in
Fortran).

2-118

mxCreateNumericArray (C and Fortran)

Returns A pointer to the created mxArray, if successful. If unsuccessful in
a stand-alone (non-MEX-file) application, mxCreateNumericArray
returns NULL in C (0 in Fortran). If unsuccessful in a MEX-file, the
MEX-file terminates and control returns to the MATLAB prompt.
mxCreateNumericArray is unsuccessful when there is not enough free
heap space to create the mxArray.

Description Call mxCreateNumericArray to create an N-dimensional mxArray
in which all data elements have the numeric data type specified
by classid. After creating the mxArray, mxCreateNumericArray
initializes all its real data elements to 0. If ComplexFlag equals
mxCOMPLEX in C (1 in Fortran), mxCreateNumericArray also initializes
all its imaginary data elements to 0. mxCreateNumericArray differs
from mxCreateDoubleMatrix in two important respects:

• All data elements in mxCreateDoubleMatrix are double-precision,
floating-point numbers. The data elements in mxCreateNumericArray
could be any numerical type, including different integer precisions.

• mxCreateDoubleMatrix can create two-dimensional arrays only;
mxCreateNumericArray can create arrays of two or more dimensions.

mxCreateNumericArray allocates dynamic memory to store the
created mxArray. When you finish with the created mxArray, call
mxDestroyArray to deallocate its memory.

Any trailing singleton dimensions specified in the dims argument are
automatically removed from the resulting array. For example, if ndim
equals 5 and dims equals [4 1 7 1 1], the resulting array is given
the dimensions 4-by-1-by-7.

The following table shows the C classid values and the Fortran data
types that are equivalent to MATLAB classes.

2-119

mxCreateNumericArray (C and Fortran)

MATLAB Class
Name C classid Value Fortran Type

int8 mxINT8_CLASS BYTE

uint8 mxUINT8_CLASS

int16 mxUINT16_CLASS INTEGER*2

uint16 mxUINT16_CLASS

int32 mxINT32_CLASS INTEGER*4

uint32 mxUINT32_CLASS

int64 mxINT64_CLASS INTEGER*8

uint64 mxUINT64_CLASS

single mxSINGLE_CLASS REAL*4

double mxDOUBLE_CLASS REAL*8

single, with
imaginary
components

mxSINGLE_CLASS COMPLEX*8

double, with
imaginary
components

mxDOUBLE_CLASS COMPLEX*16

C
Examples

See phonebook.c and doubleelement.c in the refbook subdirectory of
the examples directory. For an additional example, see mxisfinite.c
in the mx subdirectory of the examples directory.

Fortran
Examples

To create a 4-by-4-by-2 array of REAL*8 elements having no imaginary
components, use

C Create 4x4x2 mxArray of REAL*8
data dims / 4, 4, 2 /
mxCreateNumericArray(3, dims,

+ mxClassIDFromClassName('double'), 0)

2-120

mxCreateNumericArray (C and Fortran)

See Also mxClassId, mxClassIdFromClassName, mxComplexity,
mxCreateNumericMatrix

2-121

mxCreateNumericMatrix (C and Fortran)

Purpose Create numeric matrix and initialize data elements to 0

C Syntax #include "matrix.h"
mxArray *mxCreateNumericMatrix(mwSize m, mwSize n,

mxClassID classid, mxComplexity ComplexFlag);

Fortran
Syntax

mwPointer mxCreateNumericMatrix(m, n, classid,
ComplexFlag)

mwSize m, n
integer*4 classid, ComplexFlag

Arguments m
The desired number of rows.

n
The desired number of columns.

classid
An identifier for the class of the array, which determines the
way the numerical data is represented in memory. For example,
specifying mxINT16_CLASS in C causes each piece of numerical
data in the mxArray to be represented as a 16-bit signed integer.
In Fortran, use the function mxClassIDFromClassName to
derive the classid value from a MATLAB class name. See the
Description section for more information.

ComplexFlag
If the data you plan to put into the mxArray has no imaginary
components, specify mxREAL in C (0 in Fortran). If the data
has some imaginary components, specify mxCOMPLEX in C (1 in
Fortran).

Returns A pointer to the created mxArray, if successful. mxCreateNumericMatrix
is unsuccessful if there is not enough free heap space to create the
mxArray. If mxCreateNumericMatrix is unsuccessful in a MEX-file,
the MEX-file prints an “Out of Memory” message, terminates, and
control returns to the MATLAB prompt. If mxCreateNumericMatrix

2-122

mxCreateNumericMatrix (C and Fortran)

is unsuccessful in a stand-alone (nonMEX-file) application,
mxCreateNumericMatrix returns NULL in C (0 in Fortran).

Description Call mxCreateNumericMatrix to create a 2-D mxArray in which all
data elements have the numeric data type specified by classid. After
creating the mxArray, mxCreateNumericMatrix initializes all its real
data elements to 0. If ComplexFlag equals mxCOMPLEX in C (1 in
Fortran), mxCreateNumericMatrix also initializes all its imaginary data
elements to 0. mxCreateNumericMatrix allocates dynamic memory to
store the created mxArray. When you finish using the mxArray, call
mxDestroyArray to destroy it.

The following table shows the C classid values and the Fortran data
types that are equivalent to MATLAB classes.

MATLAB Class
Name C classid Value Fortran Type

int8 mxINT8_CLASS BYTE

uint8 mxUINT8_CLASS

int16 mxUINT16_CLASS INTEGER*2

uint16 mxUINT16_CLASS

int32 mxINT32_CLASS INTEGER*4

uint32 mxUINT32_CLASS

int64 mxINT64_CLASS INTEGER*8

uint64 mxUINT64_CLASS

single mxSINGLE_CLASS REAL*4

double mxDOUBLE_CLASS REAL*8

2-123

mxCreateNumericMatrix (C and Fortran)

MATLAB Class
Name C classid Value Fortran Type

single, with
imaginary
components

mxSINGLE_CLASS COMPLEX*8

double, with
imaginary
components

mxDOUBLE_CLASS COMPLEX*16

Fortran
Examples

To create a 4-by-3 matrix of REAL*4 elements having no imaginary
components, use

C Create 4x3 mxArray of REAL*4
mxCreateNumericMatrix(4, 3,

+ mxClassIDFromClassName('single'), 0)

See Also mxClassId, mxClassIdFromClassName, mxComplexity,
mxCreateNumericArray

2-124

mxCreateSparse (C and Fortran)

Purpose Create 2-D unpopulated sparse mxArray

C Syntax #include "matrix.h"
mxArray *mxCreateSparse(mwSize m, mwSize n, mwSize nzmax,

mxComplexity ComplexFlag);

Fortran
Syntax

mwPointer mxCreateSparse(m, n, nzmax, ComplexFlag)
mwSize m, n, nzmax
integer*4 ComplexFlag

Arguments m
The desired number of rows

n
The desired number of columns

nzmax
The number of elements that mxCreateSparse should allocate
to hold the pr, ir, and, if ComplexFlag is mxCOMPLEX in C (1 in
Fortran), pi arrays. Set the value of nzmax to be greater than or
equal to the number of nonzero elements you plan to put into the
mxArray, but make sure that nzmax is less than or equal to m*n.

ComplexFlag
If the mxArray you are creating is to contain imaginary data, set
ComplexFlag to mxCOMPLEX in C (1 in Fortran). Otherwise, set
ComplexFlag to mxREAL in C (0 in Fortran).

Returns A pointer to the created sparse double mxArray if successful, and NULL
in C (0 in Fortran) otherwise. The most likely reason for failure is
insufficient free heap space. If that happens, try reducing nzmax, m, or n.

Description Call mxCreateSparse to create an unpopulated sparse double mxArray.
The returned sparse mxArray contains no sparse information and
cannot be passed as an argument to any MATLAB sparse functions. To
make the returned sparse mxArray useful, you must initialize the pr,
ir, jc, and (if it exists) pi arrays.

2-125

mxCreateSparse (C and Fortran)

mxCreateSparse allocates space for

• A pr array of length nzmax.

• A pi array of length nzmax, but only if ComplexFlag is mxCOMPLEX
in C (1 in Fortran).

• An ir array of length nzmax.

• A jc array of length n+1.

When you finish using the sparse mxArray, call mxDestroyArray to
reclaim all its heap space.

C
Examples

See fulltosparse.c in the refbook subdirectory of the examples
directory.

See Also mxDestroyArray, mxSetNzmax, mxSetPr, mxSetPi, mxSetIr, mxSetJc,
mxComplexity

2-126

mxCreateSparseLogicalMatrix (C)

Purpose Create unpopulated 2-D, sparse, logical mxArray

C Syntax #include "matrix.h"
mxArray *mxCreateSparseLogicalMatrix(mwSize m, mwSize n,

mwSize nzmax);

Arguments m
The desired number of rows

n
The desired number of columns

nzmax
The number of elements that mxCreateSparseLogicalMatrix
should allocate to hold the data. Set the value of nzmax to be
greater than or equal to the number of nonzero elements you plan
to put into the mxArray, but make sure that nzmax is less than or
equal to m*n.

Returns A pointer to the created mxArray, if successful. If unsuccessful in a
stand-alone (nonMEX-file) application, mxCreateSparseLogicalMatrix
returns NULL. If unsuccessful in a MEX-file, the MEX-file
terminates and control returns to the MATLAB prompt.
mxCreateSparseLogicalMatrix is unsuccessful when there is not
enough free heap space to create the mxArray.

Description Use mxCreateSparseLogicalMatrix to create an m-by-n mxArray of
mxLogical elements. mxCreateSparseLogicalMatrix initializes each
element in the array to logical 0.

Call mxDestroyArray when you finish using the mxArray.
mxDestroyArray deallocates the mxArray and its elements.

See Also mxCreateLogicalArray, mxCreateLogicalMatrix,
mxCreateLogicalScalar, mxCreateSparse, mxIsLogical

2-127

mxCreateString (C and Fortran)

Purpose Create 1-by-N string mxArray initialized to specified string

C Syntax #include "matrix.h"
mxArray *mxCreateString(const char *str);

Fortran
Syntax

mwPointer mxCreateString(str)
character*(*) str

Arguments str
The string that is to serve as the mxArray’s initial data

Returns A pointer to the created string mxArray if successful, and NULL in C (0
in Fortran) otherwise. The most likely cause of failure is insufficient
free heap space.

Description Use mxCreateString to create a string mxArray initialized to str.
Many MATLAB functions (for example, strcmp and upper) require
string array inputs.

Free the string mxArray when you are finished using it. To free a string
mxArray, call mxDestroyArray.

C
Examples

See revord.c in the refbook subdirectory of the examples directory.

For additional examples, see mxcreatestructarray.c and mxisclass.c
in the mx subdirectory of the examples directory.

Fortran
Examples

See matdemo1.F in the eng_mat subdirectory of the examples directory
for a sample program that illustrates how to use this routine in a
Fortran program.

See Also mxCreateCharMatrixFromStrings, mxCreateCharArray

2-128

mxCreateStructArray (C and Fortran)

Purpose Create unpopulated N-D structure mxArray

C Syntax #include "matrix.h"
mxArray *mxCreateStructArray(mwSize ndim, const mwSize *dims,

int nfields, const char **fieldnames);

Fortran
Syntax

mwPointer mxCreateStructArray(ndim, dims, nfields,
fieldnames)

mwSize ndim, dims
integer*4 nfields
character*(*) fieldnames(nfields)

Arguments ndim
Number of dimensions. If you set ndim to be less than 2,
mxCreateStructArray creates a two-dimensional mxArray.

dims
The dimensions array. Each element in the dimensions array
contains the size of the array in that dimension. For example,
in C, setting dims[0] to 5 and dims[1] to 7 establishes a 5-by-7
mxArray. In Fortran, setting dims(1) to 5 and dims(2) to 7
establishes a 5-by-7 mxArray. Typically, the dims array should
have ndim elements.

nfields
The desired number of fields in each element

fieldnames
The desired list of field names

Each structure field name must begin with a letter and is case
sensitive. The rest of the name may contain letters, numerals, and
underscore characters. Use the namelengthmax function to determine
the maximum length of a field name.

2-129

mxCreateStructArray (C and Fortran)

Returns A pointer to the created structure mxArray if successful, and NULL in C
(0 in Fortran) otherwise. The most likely cause of failure is insufficient
heap space to hold the returned mxArray.

Description Call mxCreateStructArray to create an unpopulated structure
mxArray. Each element of a structure mxArray contains the same
number of fields (specified in nfields). Each field has a name; the list
of names is specified in fieldnames. A structure mxArray in MATLAB
is conceptually identical to an array of structs in the C language.

Each field holds one mxArray pointer. mxCreateStructArray
initializes each field to NULL in C (0 in Fortran). Call mxSetField or
mxSetFieldByNumber to place a non-NULL mxArray pointer in a field.

When you finish using the returned structure mxArray, call
mxDestroyArray to reclaim its space.

Any trailing singleton dimensions specified in the dims argument are
automatically removed from the resulting array. For example, if ndim
equals 5 and dims equals [4 1 7 1 1], the resulting array is given
the dimensions 4-by-1-by-7.

C
Examples

See mxcreatestructarray.c in the mx subdirectory of the examples
directory.

See Also mxDestroyArray, mxAddField, mxRemoveField, mxSetField,
mxSetFieldByNumber

2-130

mxCreateStructMatrix (C and Fortran)

Purpose Create unpopulated 2-D structure mxArray

C Syntax #include "matrix.h"
mxArray *mxCreateStructMatrix(mwSize m, mwSize n, int nfields,

const char **fieldnames);

Fortran
Syntax

mwPointer mxCreateStructMatrix(m, n, nfields, fieldnames)
mwSize m, n
integer*4 nfields
character*(*) fieldnames(nfields)

Arguments m
The desired number of rows. This must be a positive integer.

n
The desired number of columns. This must be a positive integer.

nfields
The desired number of fields in each element.

fieldnames
The desired list of field names.

Each structure field name must begin with a letter and is case
sensitive. The rest of the name may contain letters, numerals, and
underscore characters. Use the namelengthmax function to determine
the maximum length of a field name.

Returns A pointer to the created structure mxArray if successful, and NULL in C
(0 in Fortran) otherwise. The most likely cause of failure is insufficient
heap space to hold the returned mxArray.

Description mxCreateStructMatrix and mxCreateStructArray are almost
identical. The only difference is that mxCreateStructMatrix can create
only two-dimensional mxArrays, while mxCreateStructArray can
create mxArrays having two or more dimensions.

2-131

mxCreateStructMatrix (C and Fortran)

C
Examples

See phonebook.c in the refbook subdirectory of the examples directory.

See Also mxCreateStructArray

2-132

mxDestroyArray (C and Fortran)

Purpose Free dynamic memory allocated by mxCreate* functions

C Syntax #include "matrix.h"
void mxDestroyArray(mxArray *pm);

Fortran
Syntax

mxDestroyArray(pm)
mwPointer pm

Arguments pm
Pointer to the mxArray you want to free

Description mxDestroyArray deallocates the memory occupied by the specified
mxArray. mxDestroyArray not only deallocates the memory occupied
by the mxArray’s characteristics fields (such as m and n), but also
deallocates all the mxArray’s associated data arrays, such as pr and
pi for complex arrays, ir and jc for sparse arrays, fields of structure
arrays, and cells of cell arrays. Do not call mxDestroyArray on an
mxArray you are returning on the left-hand side.

C
Examples

See sincall.c in the refbook subdirectory of the examples directory.

Additional examples:

• mexcallmatlab.c and mexgetarray.c in the mex subdirectory of the
examples directory

• mxisclass.c in the mx subdirectory of the examples directory

See Also mxCalloc, mxMalloc, mxFree, mexMakeArrayPersistent,
mexMakeMemoryPersistent

2-133

mxDuplicateArray (C and Fortran)

Purpose Make deep copy of array

C Syntax #include "matrix.h"
mxArray *mxDuplicateArray(const mxArray *in);

Fortran
Syntax

mwPointer mxDuplicateArray(in)
mwPointer in

Arguments in
Pointer to the mxArray you want to copy

Returns Pointer to a copy of the array.

Description mxDuplicateArray makes a deep copy of an array, and returns a pointer
to the copy. A deep copy refers to a copy in which all levels of data are
copied. For example, a deep copy of a cell array copies each cell and the
contents of each cell (if any), and so on.

C
Examples

See

• mexget.c in the mex subdirectory of the examples directory

• phonebook.c in the refbook subdirectory of the examples directory

For additional examples, see mxcreatecellmatrix.c, mxgetinf.c, and
mxsetnzmax.c in the mx subdirectory of the examples directory.

2-134

mxFree (C and Fortran)

Purpose Free dynamic memory allocated by mxCalloc, mxMalloc, or mxRealloc

C Syntax #include "matrix.h"
void mxFree(void *ptr);

Fortran
Syntax

mxFree(ptr)
mwPointer ptr

Arguments ptr
Pointer to the beginning of any memory parcel allocated by
mxCalloc, mxMalloc, or mxRealloc.

Description mxFree deallocates heap space using the MATLAB memory
management facility. This ensures correct memory management in
error and abort (Ctrl+C) conditions.

To deallocate heap space, MATLAB applications in C should always call
mxFree rather than the ANSI C free function.

The MATLAB memory management facility maintains a list of
all memory allocated by mxCalloc, mxMalloc, mxRealloc, and
the mxCreate* calls. The MATLAB memory management facility
automatically deallocates all of a MEX-file’s managed parcels when the
MEX-file completes and control returns to the MATLAB prompt.

When mxFree appears in a stand-alone MATLAB application, mxFree
simply deallocates the contiguous heap space that begins at address
ptr. In a MEX-file, mxFree also removes the memory parcel from the
MATLAB memory management facility’s list of memory parcels.

In a MEX-file, your use of mxFree depends on whether the
specified memory parcel is persistent or nonpersistent. By default,
memory parcels created by mxCalloc, mxMalloc, and mxRealloc
are nonpersistent. The MATLAB memory management facility
automatically frees all nonpersistent memory whenever a MEX-file
completes. Thus, even if you do not call mxFree, MATLAB takes care
of freeing the memory for you. Nevertheless, it is good programming

2-135

mxFree (C and Fortran)

practice to deallocate memory as soon as you are through using it.
Doing so generally makes the entire system run more efficiently.

If an application calls mexMakeMemoryPersistent, the specified memory
parcel becomes persistent. When a MEX-file completes, the MATLAB
memory management facility does not free persistent memory parcels.
Therefore, the only way to free a persistent memory parcel is to call
mxFree. Typically, MEX-files call mexAtExit to register a cleanup
handler. The cleanup handler calls mxFree.

C
Examples

See mxcalcsinglesubscript.c in the mx subdirectory of the examples
directory.

Additional examples:

• phonebook.c in the refbook subdirectory of the examples directory

• explore.c and mexatexit.c in the mex subdirectory of the examples
directory

• mxcreatecharmatrixfromstr.c, mxisfinite.c, mxmalloc.c, and
mxsetdimensions.c in the mx subdirectory of the examples directory

See Also mexAtExit, mexMakeArrayPersistent, mexMakeMemoryPersistent,
mxCalloc, mxDestroyArray, mxMalloc, mxRealloc

2-136

mxGetCell (C and Fortran)

Purpose Get contents of mxArray cell

C Syntax #include "matrix.h"
mxArray *mxGetCell(const mxArray *pm, mwIndex index);

Fortran
Syntax

mwPointer mxGetCell(pm, index)
mwPointer pm
mwIndex index

Arguments pm
Pointer to a cell mxArray

index
The number of elements in the cell mxArray between the first
element and the desired one. See mxCalcSingleSubscript for
details on calculating an index in a multidimensional cell array.

Returns A pointer to the ith cell mxArray if successful, and NULL in C (0 in
Fortran) otherwise. Causes of failure include

• Specifying the index of a cell array element that has not been
populated.

• Specifying a pm that does not point to a cell mxArray.

• Specifying an index greater than the number of elements in the cell.

• Insufficient free heap space to hold the returned cell mxArray.

Description Call mxGetCell to get a pointer to the mxArray held in the indexed
element of the cell mxArray.

Note Inputs to a MEX-file are constant read-only mxArrays and should
not be modified. Using mxSetCell* or mxSetField* to modify the cells
or fields of an argument passed from MATLAB causes unpredictable
results.

2-137

mxGetCell (C and Fortran)

C
Examples

See explore.c in the mex subdirectory of the examples directory.

See Also mxCreateCellArray, mxIsCell, mxSetCell

2-138

mxGetChars (C)

Purpose Get pointer to character array data

C Syntax #include "matrix.h"
mxChar *mxGetChars(const mxArray *array_ptr);

Arguments array_ptr
Pointer to an mxArray

Returns The address of the first character in the mxArray. Returns NULL if the
specified array is not a character array.

Description Call mxGetChars to determine the address of the first character in the
mxArray that array_ptr points to. Once you have the starting address,
you can access any other element in the mxArray.

See Also mxGetString

2-139

mxGetClassID (C and Fortran)

Purpose Get class of mxArray

C Syntax #include "matrix.h"
mxClassID mxGetClassID(const mxArray *pm);

Fortran
Syntax

integer*4 mxGetClassID(pm)
mwPointer pm

Arguments pm
Pointer to an mxArray

Returns A numeric identifier of the class (category) of the mxArray that pm
points to. The C-language class identifiers are listed in the mxClassID
reference page.

Description Use mxGetClassId to determine the class of an mxArray. The class
of an mxArray identifies the kind of data the mxArray is holding. For
example, if pm points to a logical mxArray, then mxGetClassId returns
mxLOGICAL_CLASS (in C).

mxGetClassId is similar to mxGetClassName, except that the former
returns the class as an integer identifier and the latter returns the
class as a string.

C
Examples

See

• phonebook.c in the refbook subdirectory of the examples directory

• explore.c in the mex subdirectory of the examples directory

See Also mxClassID, mxGetClassName

2-140

mxGetClassName (C and Fortran)

Purpose Get class of mxArray as string

C Syntax #include "matrix.h"
const char *mxGetClassName(const mxArray *pm);

Fortran
Syntax

character*(*) mxGetClassName(pm)
mwPointer pm

Arguments pm
Pointer to an mxArray

Returns The class (as a string) of the mxArray pointed to by pm.

Description Call mxGetClassName to determine the class of an mxArray. The class
of an mxArray identifies the kind of data the mxArray is holding. For
example, if pm points to a logical mxArray, mxGetClassName returns
logical.

mxGetClassID is similar to mxGetClassName, except that the former
returns the class as an integer identifier, as listed in the mxClassID
reference page, and the latter returns the class as a string, as listed
in the mxIsClass reference page.

C
Examples

See mexfunction.c in the mex subdirectory of the examples directory.
For an additional example, see mxisclass.c in the mx subdirectory
of the examples directory.

See Also mxGetClassID, mxIsClass

2-141

mxGetData (C and Fortran)

Purpose Get pointer to data

C Syntax #include "matrix.h"
void *mxGetData(const mxArray *pm);

Fortran
Syntax

mwPointer mxGetData(pm)
mwPointer pm

Arguments pm
Pointer to an mxArray

Returns The address of the first element of the real data. Returns NULL in C (0
in Fortran) if there is no real data.

Description Similar to mxGetPr, except that in C, mxGetData returns a void *.

To copy values from the returned pointer to Fortran, use one of the
mxCopyPtrTo* functions in the following manner:

C Get the data in mxArray, pm
mxCopyPtrToReal8(mxGetData(pm), data,

+ mxGetNumberOfElements(pm))

C
Examples

See phonebook.c in the refbook subdirectory of the examples directory.

For additional examples, see mxcreatecharmatrixfromstr.c and
mxisfinite.c in the mx subdirectory of the examples directory.

See Also mxGetImagData, mxGetPr

2-142

mxGetDimensions (C andFortran)

Purpose Get pointer to dimensions array

C Syntax #include "matrix.h"
const mwSize *mxGetDimensions(const mxArray *pm);

Fortran
Syntax

mwPointer mxGetDimensions(pm)
mwPointer pm

Arguments pm
Pointer to an mxArray.

Returns The address of the first element in the dimensions array. Each integer
in the dimensions array represents the number of elements in a
particular dimension. The array is not NULL terminated.

Description Use mxGetDimensions to determine how many elements are
in each dimension of the mxArray that pm points to. Call
mxGetNumberOfDimensions to get the number of dimensions in the
mxArray.

To copy the values to Fortran, use mxCopyPtrToInteger4 in the
following manner:

C Get dimensions of mxArray, pm
mxCopyPtrToInteger4(mxGetDimensions(pm), dims,

+ mxGetNumberOfDimensions(pm))

C
Examples

See mxcalcsinglesubscript.c in the mx subdirectory of the examples
directory.

Additional examples:

• findnz.c and phonebook.c in the refbook subdirectory of the
examples directory

• explore.c in the mex subdirectory of the examples directory

2-143

mxGetDimensions (C andFortran)

• mxgeteps.c and mxisfinite.c in the mx subdirectory of the
examples directory

See Also mxGetNumberOfDimensions

2-144

mxGetElementSize (C and Fortran)

Purpose Get number of bytes required to store each data element

C Syntax #include "matrix.h"
mwSize mxGetElementSize(const mxArray *pm);

Fortran
Syntax

mwSize mxGetElementSize(pm)
mwPointer pm

Arguments pm
Pointer to an mxArray

Returns The number of bytes required to store one element of the specified
mxArray, if successful. Returns 0 on failure. The primary reason for
failure is that pm points to an mxArray having an unrecognized class. If
pm points to a cell mxArray or a structure mxArray, mxGetElementSize
returns the size of a pointer (not the size of all the elements in each
cell or structure field).

Description Call mxGetElementSize to determine the number of bytes in each
data element of the mxArray. For example, if the MATLAB class of an
mxArray is int16, the mxArray stores each data element as a 16-bit
(2-byte) signed integer. Thus, mxGetElementSize returns 2.

mxGetElementSize is particularly helpful when using a non-MATLAB
routine to manipulate data elements. For example, the C function
memcpy requires (for its third argument) the size of the elements you
intend to copy.

C
Examples

See doubleelement.c and phonebook.c in the refbook subdirectory
of the examples directory.

See Also mxGetM, mxGetN

2-145

mxGetEps (C and Fortran)

Purpose Get value of eps

C Syntax #include "matrix.h"
double mxGetEps(void);

Fortran
Syntax

real*8 mxGetEps

Returns The value of the MATLAB eps variable

Description Call mxGetEps to return the value of the MATLAB eps variable. This
variable holds the distance from 1.0 to the next largest floating-point
number. As such, it is a measure of floating-point accuracy. The
MATLAB PINV and RANK functions use eps as a default tolerance.

C
Examples

See mxgeteps.c in the mx subdirectory of the examples directory.

See Also mxGetInf, mxGetNan

2-146

mxGetField (C and Fortran)

Purpose Get field value, given field name and index into structure array

C Syntax #include "matrix.h"
mxArray *mxGetField(const mxArray *pm, mwIndex index,

const char *fieldname);

Fortran
Syntax

mwPointer mxGetField(pm, index, fieldname)
mwPointer pm
mwIndex index
character*(*) fieldname

Arguments pm
Pointer to a structure mxArray

index
The desired element. In C, the first element of an mxArray has
an index of 0, the second element has an index of 1, and the
last element has an index of N-1, where N is the total number of
elements in the structure mxArray. In Fortran, the first element
of an mxArray has an index of 1, the second element has an index
of 2, and the last element has an index of N, where N is the total
number of elements in the structure mxArray.

fieldname
The name of the field whose value you want to extract.

Returns A pointer to the mxArray in the specified field at the specified
fieldname, on success. Returns NULL in C (0 in Fortran) if passed an
invalid argument or if there is no value assigned to the specified field.
Common causes of failure include

• Specifying an array pointer pm that does not point to a structure
mxArray. To determine whether pm points to a structure mxArray,
call mxIsStruct.

• Specifying an index to an element outside the bounds of the mxArray.
For example, given a structure mxArray that contains 10 elements,
you cannot specify an index greater than 9 in C (10 in Fortran).

2-147

mxGetField (C and Fortran)

• Specifying a nonexistent fieldname. Call mxGetFieldNameByNumber
or mxGetFieldNumber to get existing field names.

• Insufficient heap space to hold the returned mxArray.

Description Call mxGetField to get the value held in the specified element of the
specified field. In pseudo-C terminology, mxGetField returns the value
at

pm[index].fieldname

mxGetFieldByNumber is similar to mxGetField. Both functions return
the same value. The only difference is in the way you specify the field.
mxGetFieldByNumber takes a field number as its third argument, and
mxGetField takes a field name as its third argument.

Note Inputs to a MEX-file are constant read-only mxArrays and should
not be modified. Using mxSetCell* or mxSetField* to modify the cells
or fields of an argument passed from MATLAB causes unpredictable
results.

In C, calling

mxGetField(pa, index, "field_name");

is equivalent to calling

field_num = mxGetFieldNumber(pa, "field_name");
mxGetFieldByNumber(pa, index, field_num);

where index is 0 if you have a 1-by-1 structure.

In Fortran, calling

mxGetField(pm, index, 'fieldname')

is equivalent to calling

2-148

mxGetField (C and Fortran)

fieldnum = mxGetFieldNumber(pm, 'fieldname')
mxGetFieldByNumber(pm, index, fieldnum)

where index is 1 if you have a 1-by-1 structure.

See Also mxGetFieldByNumber, mxGetFieldNameByNumber, mxGetFieldNumber,
mxGetNumberOfFields, mxIsStruct, mxSetField, mxSetFieldByNumber

2-149

mxGetFieldByNumber (C and Fortran)

Purpose Get field value, given field number and index into structure array

C Syntax #include "matrix.h"
mxArray *mxGetFieldByNumber(const mxArray *pm, mwIndex index,

int fieldnumber);

Fortran
Syntax

mwPointer mxGetFieldByNumber(pm, index, fieldnumber)
mwPointer pm
mwIndex index
integer*4 fieldnumber

Arguments pm
Pointer to a structure mxArray

index
The desired element. In C, the first element of an mxArray has
an index of 0, the second element has an index of 1, and the
last element has an index of N-1, where N is the total number of
elements in the structure mxArray. In Fortran, the first element
of an mxArray has an index of 1, the second element has an
index of 2, and the last element has an index of N, where N is
the total number of elements in the structure mxArray. See
mxCalcSingleSubscript for more details on calculating an index.

fieldnumber
The position of the field whose value you want to extract. In C, the
first field within each element has a field number of 0, the second
field has a field number of 1, and so on. The last field has a field
number of N-1, where N is the number of fields. In Fortran, the
first field within each element has a field number of 1, the second
field has a field number of 2, and so on. The last field has a field
number of N, where N is the number of fields.

Returns A pointer to the mxArray in the specified field for the desired element,
on success. Returns NULL in C (0 in Fortran) if passed an invalid
argument or if there is no value assigned to the specified field. Common
causes of failure include

2-150

mxGetFieldByNumber (C and Fortran)

• Specifying an array pointer pm that does not point to a structure
mxArray. Call mxIsStructto determine whether pm points to a
structure mxArray.

• Specifying an index to an element outside the bounds of the mxArray.
For example, given a structure mxArray that contains 10 elements,
you cannot specify an index greater than 9 in C (10 in Fortran).

• Specifying a nonexistent field number. Call mxGetFieldNumber to
determine the field number that corresponds to a given field name.

Description Call mxGetFieldByNumber to get the value held in the specified
fieldnumber at the indexed element.

Note Inputs to a MEX-file are constant read-only mxArrays and should
not be modified. Using mxSetCell* or mxSetField* to modify the cells
or fields of an argument passed from MATLAB causes unpredictable
results.

In C, calling

mxGetField(pa, index, "field_name");

is equivalent to calling

field_num = mxGetFieldNumber(pa, "field_name");
mxGetFieldByNumber(pa, index, field_num);

where index is 0 if you have a 1-by-1 structure.

In Fortran, calling

mxGetField(pm, index, 'fieldname')

is equivalent to calling

fieldnum = mxGetFieldNumber(pm, 'fieldname')
mxGetFieldByNumber(pm, index, fieldnum)

2-151

mxGetFieldByNumber (C and Fortran)

where index is 1 if you have a 1-by-1 structure.

C
Examples

See phonebook.c in the refbook subdirectory of the examples directory.

Additional examples:

• mxisclass.c in the mx subdirectory of the examples directory

• explore.c in the mex subdirectory of the examples directory

See Also mxGetField, mxGetFieldNameByNumber, mxGetFieldNumber,
mxGetNumberOfFields, mxIsStruct, mxSetField, mxSetFieldByNumber

2-152

mxGetFieldNameByNumber (C and Fortran)

Purpose Get field name, given field number in structure array

C Syntax #include "matrix.h"
const char *mxGetFieldNameByNumber(const mxArray *pm,

int fieldnumber);

Fortran
Syntax

character*(*) mxGetFieldNameByNumber(pm, fieldnumber)
mwPointer pm
integer*4 fieldnumber

Arguments pm
Pointer to a structure mxArray

fieldnumber
The position of the desired field. For instance, in C, to get the
name of the first field, set fieldnumber to 0; to get the name of
the second field, set fieldnumber to 1; and so on. In Fortran, to
get the name of the first field, set fieldnumber to 1; to get the
name of the second field, set fieldnumber to 2; and so on.

Returns A pointer to the nth field name, on success. Returns NULL in C (0 in
Fortran) on failure. Common causes of failure include

• Specifying an array pointer pm that does not point to a structure
mxArray. Call mxIsStruct to determine whether pm points to a
structure mxArray.

• Specifying a value of fieldnumber outside the bounds of the
number of fields in the structure mxArray. In C, fieldnumber 0
represents the first field, and fieldnumber N-1 represents the last
field, where N is the number of fields in the structure mxArray. In
Fortran, fieldnumber 1 represents the first field, and fieldnumber N
represents the last field.

Description Call mxGetFieldNameByNumber to get the name of a field in the given
structure mxArray. A typical use of mxGetFieldNameByNumber is to call

2-153

mxGetFieldNameByNumber (C and Fortran)

it inside a loop in order to get the names of all the fields in a given
mxArray.

Consider a MATLAB structure initialized to

patient.name = 'John Doe';
patient.billing = 127.00;
patient.test = [79 75 73; 180 178 177.5; 220 210 205];

In C, the field number 0 represents the field name; field number 1
represents field billing; field number 2 represents field test. A field
number other than 0, 1, or 2 causes mxGetFieldNameByNumber to return
NULL.

In Fortran, the field number 1 represents the field name; field number
2 represents field billing; field number 3 represents field test. A
field number other than 1, 2, or 3 causes mxGetFieldNameByNumber
to return 0.

C
Examples

See phonebook.c in the refbook subdirectory of the examples directory.

Additional examples:

• mxisclass.c in the mx subdirectory of the examples directory

• explore.c in the mex subdirectory of the examples directory

See Also mxGetField, mxGetFieldByNumber, mxGetFieldNumber,
mxGetNumberOfFields, mxIsStruct, mxSetField, mxSetFieldByNumber

2-154

mxGetFieldNumber (C and Fortran)

Purpose Get field number, given field name in structure array

C Syntax #include "matrix.h"
int mxGetFieldNumber(const mxArray *pm,

const char *fieldname);

Fortran
Syntax

integer*4 mxGetFieldNumber(pm, fieldname)
mwPointer pm
character*(*) fieldname

Arguments pm
Pointer to a structure mxArray.

fieldname
The name of a field in the structure mxArray.

Returns The field number of the specified fieldname, on success. In C, the first
field has a field number of 0, the second field has a field number of 1,
and so on. In Fortran, the first field has a field number of 1, the second
field has a field number of 2, and so on. Returns -1 in C (0 in Fortran)
on failure. Common causes of failure include

• Specifying an array pointer pm that does not point to a structure
mxArray. Call mxIsStruct to determine whether pm points to a
structure mxArray.

• Specifying the fieldname of a nonexistent field.

Description If you know the name of a field but do not know its field number, call
mxGetFieldNumber. Conversely, if you know the field number but do
not know its field name, call mxGetFieldNameByNumber.

For example, consider a MATLAB structure initialized to

patient.name = 'John Doe';
patient.billing = 127.00;
patient.test = [79 75 73; 180 178 177.5; 220 210 205];

2-155

mxGetFieldNumber (C and Fortran)

In C, the field name has a field number of 0; the field billing has a field
number of 1; and the field test has a field number of 2. If you call
mxGetFieldNumber and specify a field name of anything other than
name, billing, or test, mxGetFieldNumber returns -1.

Calling

mxGetField(pa, index, "field_name");

is equivalent to calling

field_num = mxGetFieldNumber(pa, "field_name");
mxGetFieldByNumber(pa, index, field_num);

where index is 0 if you have a 1-by-1 structure.

In Fortran, the field name has a field number of 1; the field billing has
a field number of 2; and the field test has a field number of 3. If you
call mxGetFieldNumber and specify a field name of anything other than
name, billing, or test, mxGetFieldNumber returns 0.

Calling

mxGetField(pm, index, 'fieldname');

is equivalent to calling

fieldnum = mxGetFieldNumber(pm, 'fieldname');
mxGetFieldByNumber(pm, index, fieldnum);

where index is 1 if you have a 1-by-1 structure.

C
Examples

See mxcreatestructarray.c in the mx subdirectory of the examples
directory.

See Also mxGetField, mxGetFieldByNumber, mxGetFieldNameByNumber,
mxGetNumberOfFields, mxIsStruct, mxSetField, mxSetFieldByNumber

2-156

mxGetImagData (C and Fortran)

Purpose Get pointer to imaginary data of mxArray

C Syntax #include "matrix.h"
void *mxGetImagData(const mxArray *pm);

Fortran
Syntax

mwPointer mxGetImagData(pm)
mwPointer pm

Arguments pm
Pointer to an mxArray

Returns The address of the first element of the imaginary data, on success.
Returns NULL in C (0 in Fortran) if there is no imaginary data or if there
is an error.

Description This function is similar to mxGetPi, except that in C it returns a void *.

C
Examples

See mxisfinite.c in the mx subdirectory of the examples directory.

See Also mxGetData, mxGetPi

2-157

mxGetInf (C and Fortran)

Purpose Get value of infinity

C Syntax #include "matrix.h"
double mxGetInf(void);

Fortran
Syntax

real*8 mxGetInf

Returns The value of infinity on your system.

Description Call mxGetInf to return the value of the MATLAB internal inf variable.
inf is a permanent variable representing IEEE arithmetic positive
infinity. The value of inf is built into the system; you cannot modify it.

Operations that return infinity include

• Division by 0. For example, 5/0 returns infinity.

• Operations resulting in overflow. For example, exp(10000) returns
infinity because the result is too large to be represented on your
machine.

C
Examples

See mxgetinf.c in the mx subdirectory of the examples directory.

See Also mxGetEps, mxGetNaN

2-158

mxGetIr (C and Fortran)

Purpose Get ir array of sparse matrix

C Syntax #include "matrix.h"
mwIndex *mxGetIr(const mxArray *pm);

Fortran
Syntax

mwPointer mxGetIr(pm)
mwPointer pm

Arguments pm
Pointer to a sparse mxArray

Returns A pointer to the first element in the ir array, if successful, and NULL in
C (0 in Fortran) otherwise. Possible causes of failure include

• Specifying a full (nonsparse) mxArray.

• Specifying a value for pm that is NULL in C (0 in Fortran). This usually
means that an earlier call to mxCreateSparse failed.

Description Use mxGetIr to obtain the starting address of the ir array. The ir
array is an array of integers; the length of the ir array is typically
nzmax values. For example, if nzmax equals 100, the ir array should
contain 100 integers.

Each value in an ir array indicates a row (offset by 1) at which a
nonzero element can be found. (The jc array is an index that indirectly
specifies a column where nonzero elements can be found.)

For details on the ir and jc arrays, see mxSetIr and mxSetJc.

C
Examples

See fulltosparse.c in the refbook subdirectory of the examples
directory.

Additional examples:

• explore.c in the mex subdirectory of the examples directory

2-159

mxGetIr (C and Fortran)

• mxsetdimensions.c and mxsetnzmax.c in the mx subdirectory of the
examples directory

See Also mxGetJc, mxGetNzmax, mxSetIr, mxSetJc, mxSetNzmax

2-160

mxGetJc (C and Fortran)

Purpose Get jc array of sparse matrix

C Syntax #include "matrix.h"
mwIndex *mxGetJc(const mxArray *pm);

Fortran
Syntax

mwPointer mxGetJc(pm)
mwPointer pm

Arguments pm
Pointer to a sparse mxArray

Returns A pointer to the first element in the jc array, if successful, and NULL in
C (0 in Fortran) otherwise. Possible causes of failure include

• Specifying a full (nonsparse) mxArray.

• Specifying a value for pm that is NULL in C (0 in Fortran). This usually
means that an earlier call to mxCreateSparse failed.

Description Use mxGetJc to obtain the starting address of the jc array. The
jc array is an integer array having n+1 elements, where n is the
number of columns in the sparse mxArray. The values in the jc array
indirectly indicate columns containing nonzero elements. For a detailed
explanation of the jc array, see mxSetJc.

C
Examples

See fulltosparse.c in the refbook subdirectory of the examples
directory.

Additional examples:

• explore.c in the mex subdirectory of the examples directory

• mxgetnzmax.c, mxsetdimensions.c, and mxsetnzmax.c in the mx
subdirectory of the examples directory

See Also mxGetIr, mxGetNzmax, mxSetIr, mxSetJc, mxSetNzmax

2-161

mxGetLogicals (C)

Purpose Get pointer to logical array data

C Syntax #include "matrix.h"
mxLogical *mxGetLogicals(const mxArray *array_ptr);

Arguments array_ptr
Pointer to an mxArray

Returns The address of the first logical element in the mxArray. The result is
unspecified if the mxArray is not a logical array.

Description Call mxGetLogicals to determine the address of the first logical element
in the mxArray that array_ptr points to. Once you have the starting
address, you can access any other element in the mxArray.

See Also mxCreateLogicalArray, mxCreateLogicalMatrix,
mxCreateLogicalScalar, mxIsLogical, mxIsLogicalScalar,
mxIsLogicalScalarTrue

2-162

mxGetM (C and Fortran)

Purpose Get number of rows in mxArray

C Syntax #include "matrix.h"
mwSize mxGetM(const mxArray *pm);

Fortran
Syntax

mwSize mxGetM(pm)
mwPointer pm

Arguments pm
Pointer to an mxArray

Returns The number of rows in the mxArray to which pm points.

Description mxGetM returns the number of rows in the specified array. The term
rows always means the first dimension of the array, no matter how
many dimensions the array has. For example, if pm points to a
four-dimensional array having dimensions 8-by-9-by-5-by-3, mxGetM
returns 8.

C
Examples

See convec.c in the refbook subdirectory of the examples directory.

Additional examples:

• fulltosparse.c, revord.c, timestwo.c, and xtimesy.c in the
refbook subdirectory of the examples directory

• explore.c, mexget.c, mexlock.c, mexsettrapflag.c and yprime.c
in the mex subdirectory of the examples directory

• mxmalloc.c, mxsetdimensions.c, mxgetnzmax.c, and mxsetnzmax.c
in the mx subdirectory of the examples directory

Fortran
Examples

See matdemo2.F in the eng_mat subdirectory of the examples directory
for a sample program that illustrates how to use this routine in a
Fortran program.

See Also mxGetN, mxSetM, mxSetN

2-163

mxGetN (C and Fortran)

Purpose Get number of columns in mxArray

C Syntax #include "matrix.h"
mwSize mxGetN(const mxArray *pm);

Fortran
Syntax

mwSize mxGetN(pm)
mwPointer pm

Arguments pm
Pointer to an mxArray

Returns The number of columns in the mxArray.

Description Call mxGetN to determine the number of columns in the specified
mxArray.

If pm is an N-dimensional mxArray, mxGetN is the product of dimensions
2 through N. For example, if pm points to a four-dimensional mxArray
having dimensions 13-by-5-by-4-by-6, mxGetN returns the value 120 (5 ×
4 × 6). If the specified mxArray has more than two dimensions and you
need to know exactly how many elements are in each dimension, call
mxGetDimensions.

If pm points to a sparse mxArray, mxGetN still returns the number of
columns, not the number of occupied columns.

C
Examples

See convec.c in the refbook subdirectory of the examples directory.

Additional examples:

• fulltosparse.c, revord.c, timestwo.c, and xtimesy.c in the
refbook subdirectory of the examples directory

• explore.c, mexget.c, mexlock.c, mexsettrapflag.c and yprime.c
in the mex subdirectory of the examples directory

• mxmalloc.c, mxsetdimensions.c, mxgetnzmax.c, and mxsetnzmax.c
in the mx subdirectory of the examples directory

2-164

mxGetN (C and Fortran)

Fortran
Examples

See matdemo2.F in the eng_mat subdirectory of the examples directory
for a sample program that illustrates how to use this routine in a
Fortran program.

See Also mxGetM, mxGetDimensions, mxSetM, mxSetN

2-165

mxGetNaN (C and Fortran)

Purpose Get value of NaN (Not-a-Number)

C Syntax #include "matrix.h"
double mxGetNaN(void);

Fortran
Syntax

real*8 mxGetNaN

Returns The value of NaN (Not-a-Number) on your system

Description Call mxGetNaN to return the value of NaN for your system. NaN is
the IEEE arithmetic representation for Not-a-Number. Certain
mathematical operations return NaN as a result, for example,

• 0.0/0.0

• Inf-Inf

The value of Not-a-Number is built in to the system. You cannot modify
it.

C
Examples

See mxgetinf.c in the mx subdirectory of the examples directory.

See Also mxGetEps, mxGetInf

2-166

mxGetNumberOfDimensions (C and Fortran)

Purpose Get number of dimensions in mxArray

C Syntax #include "matrix.h"
mwSize mxGetNumberOfDimensions(const mxArray *pm);

Fortran
Syntax

mwSize mxGetNumberOfDimensions(pm)
mwPointer pm

Arguments pm
Pointer to an mxArray

Returns The number of dimensions in the specified mxArray. The returned value
is always 2 or greater.

Description Use mxGetNumberOfDimensions to determine how many dimensions are
in the specified array. To determine how many elements are in each
dimension, call mxGetDimensions.

C
Examples

See explore.c in the mex subdirectory of the examples directory.

Additional examples:

• findnz.c, fulltosparse.c, and phonebook.c in the refbook
subdirectory of the examples directory

• mxcalcsinglesubscript.c, mxgeteps.c, and mxisfinite.c in the
mx subdirectory of the examples directory.

See Also mxSetM, mxSetN, mxGetDimensions

2-167

mxGetNumberOfElements (C and Fortran)

Purpose Get number of elements in mxArray

C Syntax #include "matrix.h"
mwSize mxGetNumberOfElements(const mxArray *pm);

Fortran
Syntax

mwSize mxGetNumberOfElements(pm)
mwPointer pm

Arguments pm
Pointer to an mxArray

Returns Number of elements in the specified mxArray

Description mxGetNumberOfElements tells you how many elements an array
has. For example, if the dimensions of an array are 3-by-5-by-10,
mxGetNumberOfElements returns the number 150.

C
Examples

See findnz.c and phonebook.c in the refbook subdirectory of the
examples directory.

Additional examples:

• explore.c in the mex subdirectory of the examples directory

• mxcalcsinglesubscript.c, mxgeteps.c, mxgetinf.c,
mxisfinite.c, and mxsetdimensions.c in the mx subdirectory of the
examples directory

See Also mxGetDimensions, mxGetM, mxGetN, mxGetClassID, mxGetClassName

2-168

mxGetNumberOfFields (C and Fortran)

Purpose Get number of fields in structure mxArray

C Syntax #include "matrix.h"
int mxGetNumberOfFields(const mxArray *pm);

Fortran
Syntax

integer*4 mxGetNumberOfFields(pm)
mwPointer pm

Arguments pm
Pointer to a structure mxArray

Returns The number of fields, on success. Returns 0 on failure. The most
common cause of failure is that pm is not a structure mxArray. Call
mxIsStruct to determine whether pm is a structure.

Description Call mxGetNumberOfFields to determine how many fields are in the
specified structure mxArray.

Once you know the number of fields in a structure, you can loop through
every field in order to set or to get field values.

C
Examples

See phonebook.c in the refbook subdirectory of the examples directory.

Additional examples:

• mxisclass.c in the mx subdirectory of the examples directory

• explore.c in the mex subdirectory of the examples directory.

See Also mxGetField, mxIsStruct, mxSetField

2-169

mxGetNzmax (C and Fortran)

Purpose Get number of elements in ir, pr, and pi arrays

C Syntax #include "matrix.h"
mwSize mxGetNzmax(const mxArray *pm);

Fortran
Syntax

mwSize mxGetNzmax(pm)
mwPointer pm

Arguments pm
Pointer to a sparse mxArray

Returns The number of elements allocated to hold nonzero entries in the
specified sparse mxArray, on success. Returns an indeterminate value
on error. The most likely cause of failure is that pm points to a full
(nonsparse) mxArray.

Description Use mxGetNzmax to get the value of the nzmax field. The nzmax field
holds an integer value that signifies the number of elements in the
ir, pr, and, if it exists, the pi arrays. The value of nzmax is always
greater than or equal to the number of nonzero elements in a sparse
mxArray. In addition, the value of nzmax is always less than or equal to
the number of rows times the number of columns.

As you adjust the number of nonzero elements in a sparse mxArray,
MATLAB often adjusts the value of the nzmax field. MATLAB adjusts
nzmax in order to reduce the number of costly reallocations and in order
to optimize its use of heap space.

C
Examples

See mxgetnzmax.c and mxsetnzmax.c in the mx subdirectory of the
examples directory.

See Also mxSetNzmax

2-170

mxGetPi (C and Fortran)

Purpose Get imaginary data elements in mxArray

C Syntax #include "matrix.h"
double *mxGetPi(const mxArray *pm);

Fortran
Syntax

mwPointer mxGetPi(pm)
mwPointer pm

Arguments pm
Pointer to an mxArray

Returns The imaginary data elements of the specified mxArray, on success.
Returns NULL in C (0 in Fortran) if there is no imaginary data or if there
is an error.

Description The pi field points to an array containing the imaginary data of the
mxArray. Call mxGetPi to get the contents of the pi field, that is, to get
the starting address of this imaginary data.

The best way to determine whether an mxArray is purely real is to call
mxIsComplex.

The imaginary parts of all input matrices to a MATLAB function are
allocated if any of the input matrices are complex.

C
Examples

See convec.c, findnz.c, and fulltosparse.c in the refbook
subdirectory of the examples directory.

Additional examples:

• explore.c and mexcallmatlab.c in the mex subdirectory of the
examples directory

• mxcalcsinglesubscript.c, mxgetinf.c, mxisfinite.c, and
mxsetnzmax.c in the mx subdirectory of the examples directory

See Also mxGetPr, mxSetPi, mxSetPr

2-171

mxGetPr (C and Fortran)

Purpose Get real data elements in mxArray

C Syntax #include "matrix.h"
double *mxGetPr(const mxArray *pm);

Fortran
Syntax

mwPointer mxGetPr(pm)
mwPointer pm

Arguments pm
Pointer to an mxArray

Returns The address of the first element of the real data. Returns NULL in C (0
in Fortran) if there is no real data.

Description Call mxGetPr to determine the starting address of the real data in the
mxArray that pm points to. Once you have the starting address, you can
access any other element in the mxArray.

C
Examples

See convec.c, doubleelement.c, findnz.c, fulltosparse.c,
sincall.c, timestwo.c, timestwoalt.c, and xtimesy.c in the
refbook subdirectory of the examples directory.

See Also mxGetPi, mxSetPi, mxSetPr

2-172

mxGetScalar (C and Fortran)

Purpose Get real component of first data element in mxArray

C Syntax #include "matrix.h"
double mxGetScalar(const mxArray *pm);

Fortran
Syntax

real*8 mxGetScalar(pm)
mwPointer pm

Arguments pm
Pointer to an mxArray; cannot be a cell mxArray, a structure
mxArray, or an empty mxArray

Returns The value of the first real (nonimaginary) element of the mxArray.
Notice that in C, mxGetScalar returns a double. Therefore, if real
elements in the mxArray are stored as something other than double,
mxGetScalar automatically converts the scalar value into a double. To
preserve the original data representation of the scalar, you must cast
the return value to the desired data type.

mxGetScalar should only be called when pm points to a non-empty
numeric, logical, or char mxArray. Use mx functions such as mxIsEmpty,
mxIsLogical, mxIsNumeric, or mxIsChar to test for this condition before
calling mxGetScalar.

If pm points to a sparse mxArray, mxGetScalar returns the value of the
first nonzero real element in the mxArray.

Description Call mxGetScalar to get the value of the first real (nonimaginary)
element of the mxArray.

In most cases, you call mxGetScalar when pm points to an mxArray
containing only one element (a scalar). However, pm can point to
an mxArray containing many elements. If pm points to an mxArray
containing multiple elements, mxGetScalar returns the value of
the first real element. If pm points to a two-dimensional mxArray,
mxGetScalar returns the value of the (1,1) element; if pm points to

2-173

mxGetScalar (C and Fortran)

a three-dimensional mxArray, mxGetScalar returns the value of the
(1,1,1) element; and so on.

C
Examples

See timestwoalt.c and xtimesy.c in the refbook subdirectory of the
examples directory.

Additional examples:

• mxsetdimensions.c in the mx subdirectory of the examples directory

• mexlock.c and mexsettrapflag.c in the mex subdirectory of the
examples directory

See Also mxGetM, mxGetN

2-174

mxGetString (C and Fortran)

Purpose Copy string mxArray to C-style string

C Syntax #include "matrix.h"
int mxGetString(const mxArray *pm, char *str, mwSize strlen);

Fortran
Syntax

integer*4 mxGetString(pm, str, strlen)
mwPointer pm
character*(*) str
mwSize strlen

Arguments pm
Pointer to a string mxArray; that is, a pointer to an mxArray
having the mxCHAR_CLASS class.

str
The starting location into which the string should be written.
mxGetString writes the character data into str and then, in C,
terminates the string with a NULL character (in the manner of C
strings). str can point to either dynamic or static memory.

strlen
Maximum number of characters to read into str. Typically, in C,
you set strlen to 1 plus the number of elements in the string
mxArray to which pm points. See the mxGetM and mxGetN reference
pages to find out how to get the number of elements.

Returns 0 on success, and 1 on failure. Possible reasons for failure include

• Specifying an mxArray that is not a string mxArray.

• Specifying strlen with less than the number of characters needed
to store the entire mxArray pointed to by pm. If this is the case, 1 is
returned and the string is truncated.

Description Call mxGetString to copy the character data of a string mxArray into a
C-style string in C or a character array in Fortran. The copied string
starts at str and contains no more than strlen-1 characters in C (no

2-175

mxGetString (C and Fortran)

more than strlen characters in Fortran). In C, the C-style string is
always terminated with a NULL character.

If the string array contains several rows, they are copied—one column
at a time—into one long string array.

Multibyte Character Sets

This function is for use only with strings that represent single-byte
character sets. For strings that represent multibyte character sets, use
the C function mxArrayToString. Fortran users must allocate sufficient
space for the return string to avoid possible truncation.

strlen = (mxGetM(prhs[0]) * mxGetN(prhs[0]) * sizeof(mxChar)) + 1

C
Examples

Examples:

• explore.c in the mex subdirectory of the examples directory

• mxmalloc.c in the mx subdirectory of the examples directory

See Also mxArrayToString, mxCreateCharArray,
mxCreateCharMatrixFromStrings, mxCreateString

2-176

mxIsCell (C and Fortran)

Purpose Determine whether input is cell mxArray

C Syntax #include "matrix.h"
bool mxIsCell(const mxArray *pm);

Fortran
Syntax

integer*4 mxIsCell(pm)
mwPointer pm

Arguments pm
Pointer to an mxArray

Returns Logical 1 (true) if pm points to an array having the class mxCELL_CLASS,
and logical 0 (false) otherwise.

Description Use mxIsCell to determine whether the specified array is a cell array.

In C, calling mxIsCell is equivalent to calling

mxGetClassID(pm) == mxCELL_CLASS

In Fortran, calling mxIsCell is equivalent to calling

mxGetClassName(pm) .eq. 'cell'

Note mxIsCell does not answer the question “Is this mxArray a cell of a
cell array?” An individual cell of a cell array can be of any type.

See Also mxIsClass

2-177

mxIsChar (C and Fortran)

Purpose Determine whether input is string mxArray

C Syntax #include "matrix.h"
bool mxIsChar(const mxArray *pm);

Fortran
Syntax

integer*4 mxIsChar(pm)
mwPointer pm

Arguments pm
Pointer to an mxArray

Returns Logical 1 (true) if pm points to an array having the class mxCHAR_CLASS,
and logical 0 (false) otherwise.

Description Use mxIsChar to determine whether pm points to string mxArray.

In C, calling mxIsChar is equivalent to calling

mxGetClassID(pm) == mxCHAR_CLASS

In Fortran, calling mxIsChar is equivalent to calling

mxGetClassName(pm) .eq. 'char'

C
Examples

See phonebook.c and revord.c in the refbook subdirectory of the
examples directory.

For additional examples, see mxcreatecharmatrixfromstr.c,
mxislogical.c, and mxmalloc.c in the mx subdirectory of the examples
directory.

See Also mxIsClass, mxGetClassID

2-178

mxIsClass (C and Fortran)

Purpose Determine whether mxArray is member of specified class

C Syntax #include "matrix.h"
bool mxIsClass(const mxArray *pm, const char *classname);

Fortran
Syntax

integer*4 mxIsClass(pm, classname)
mwPointer pm
character*(*) classname

Arguments pm
Pointer to an mxArray

classname
The array category that you are testing. Specify classname as a
string (not as an integer identifier). You can specify any one of the
following predefined constants:

Value of
classname Corresponding Class

cell mxCELL_CLASS

char mxCHAR_CLASS

double mxDOUBLE_CLASS

function_handle mxFUNCTION_CLASS

int8 mxINT8_CLASS

int16 mxINT16_CLASS

int32 mxINT32_CLASS

int64 mxINT64_CLASS

logical mxLOGICAL_CLASS

single mxSINGLE_CLASS

struct mxSTRUCT_CLASS

uint8 mxUINT8_CLASS

2-179

mxIsClass (C and Fortran)

Value of
classname Corresponding Class

uint16 mxUINT16_CLASS

uint32 mxUINT32_CLASS

uint64 mxUINT64_CLASS

<class_name> <class_id>

unknown mxUNKNOWN_CLASS

In the table, <class_name> represents the name of a specific MATLAB
custom object. You can also specify one of your own class names.

Returns Logical 1 (true) if pm points to an array having category classname,
and logical 0 (false) otherwise.

Description Each mxArray is tagged as being a certain type. Call mxIsClass to
determine whether the specified mxArray has this type.

In C,

mxIsClass("double");

is equivalent to calling either of these forms:

mxIsDouble(pm);

strcmp(mxGetClassName(pm), "double");

In Fortran,

mxIsClass(pm, 'double')

is equivalent to calling either one of the following

mxIsDouble(pm)

mxGetClassName(pm) .eq. 'double'

2-180

mxIsClass (C and Fortran)

It is most efficient to use the mxIsDouble form.

C
Examples

See mxisclass.c in the mx subdirectory of the examples directory.

See Also mxClassID, mxGetClassID, mxIsEmpty, mxGetClassName

2-181

mxIsComplex (C and Fortran)

Purpose Determine whether data is complex

C Syntax #include "matrix.h"
bool mxIsComplex(const mxArray *pm);

Fortran
Syntax

integer*4 mxIsComplex(pm)
mwPointer pm

Arguments pm
Pointer to an mxArray

Returns Logical 1 (true) if pm is a numeric array containing complex data, and
logical 0 (false) otherwise. If pm points to a cell array or a structure
array, mxIsComplex returns false.

Description Use mxIsComplex to determine whether or not an imaginary part is
allocated for an mxArray. The imaginary pointer pi is NULL in C (0 in
Fortran) if an mxArray is purely real and does not have any imaginary
data. If an mxArray is complex, pi points to an array of numbers.

C
Examples

See mxisfinite.c in the mx subdirectory of the examples directory.

Additional examples:

• convec.c, phonebook.c, timestwo.c, and xtimesy.c in the refbook
subdirectory of the examples directory

• explore.c, yprime.c, mexlock.c, and mexsettrapflag.c in the mex
subdirectory of the examples directory

• mxcalcsinglesubscript.c, mxgeteps.c, and mxgetinf.c in the mx
subdirectory of the examples directory

See Also mxIsNumeric

2-182

mxIsDouble (C and Fortran)

Purpose Determine whether mxArray represents data as double-precision,
floating-point numbers

C Syntax #include "matrix.h"
bool mxIsDouble(const mxArray *pm);

Fortran
Syntax

integer*4 mxIsDouble(pm)
mwPointer pm

Arguments pm
Pointer to an mxArray

Returns Logical 1 (true) if the mxArray stores its data as double-precision,
floating-point numbers, and logical 0 (false) otherwise.

Description Call mxIsDouble to determine whether or not the specified mxArray
represents its real and imaginary data as double-precision,
floating-point numbers.

Older versions of MATLAB store all mxArray data as double-precision,
floating-point numbers. However, starting with MATLAB Version 5,
MATLAB can store real and imaginary data in a variety of numerical
formats.

In C, calling mxIsDouble is equivalent to calling

mxGetClassID(pm) == mxDOUBLE_CLASS

In Fortran, calling mxIsDouble is equivalent to calling

mxGetClassName(pm) .eq. 'double'

C
Examples

See findnz.c, fulltosparse.c, timestwo.c, and xtimesy.c in the
refbook subdirectory of the examples directory.

Additional examples:

2-183

mxIsDouble (C and Fortran)

• mexget.c, mexlock.c, mexsettrapflag.c, and yprime.c in the mex
subdirectory of the examples directory

• mxcalcsinglesubscript.c, mxgeteps.c, mxgetinf.c, and
mxisfinite.c in the mx subdirectory of the examples directory

See Also mxIsClass, mxGetClassID

2-184

mxIsEmpty (C and Fortran)

Purpose Determine whether mxArray is empty

C Syntax #include "matrix.h"
bool mxIsEmpty(const mxArray *pm);

Fortran
Syntax

integer*4 mxIsEmpty(pm)
mwPointer pm

Arguments pm
Pointer to an mxArray

Returns Logical 1 (true) if the mxArray is empty, and logical 0 (false) otherwise.

Description Use mxIsEmpty to determine whether an mxArray contains no data. An
mxArray is empty if the size of any of its dimensions is 0.

C
Examples

See mxisfinite.c in the mx subdirectory of the examples directory.

See Also mxIsClass

2-185

mxIsFinite (C and Fortran)

Purpose Determine whether input is finite

C Syntax #include "matrix.h"
bool mxIsFinite(double value);

Fortran
Syntax

integer*4 mxIsFinite(value)
real*8 value

Arguments value
The double-precision, floating-point number that you are testing

Returns Logical 1 (true) if value is finite, and logical 0 (false) otherwise.

Description Call mxIsFinite to determine whether or not value is finite. A number
is finite if it is greater than -Inf and less than Inf.

C
Examples

See mxisfinite.c in the mx subdirectory of the examples directory.

See Also mxIsInf, mxIsNan

2-186

mxIsFromGlobalWS (C and Fortran)

Purpose Determine whether mxArray was copied from MATLAB global
workspace

C Syntax #include "matrix.h"
bool mxIsFromGlobalWS(const mxArray *pm);

Fortran
Syntax

integer*4 mxIsFromGlobalWS(pm)
mwPointer pm

Arguments pm
Pointer to an mxArray

Returns Logical 1 (true) if the array was copied out of the global workspace,
and logical 0 (false) otherwise.

Description mxIsFromGlobalWS is useful for stand-alone MAT programs.
mexIsGlobal tells you whether the pointer you pass actually points
into the global workspace.

C
Examples

See matdgns.c and matcreat.c in the eng_mat subdirectory of the
examples directory.

See Also mexIsGlobal

2-187

mxIsInf (C and Fortran)

Purpose Determine whether input is infinite

C Syntax #include "matrix.h"
bool mxIsInf(double value);

Fortran
Syntax

integer*4 mxIsInf(value)
real*8 value

Arguments value
The double-precision, floating-point number that you are testing

Returns Logical 1 (true) if value is infinite, and logical 0 (false) otherwise.

Description Call mxIsInf to determine whether or not value is equal to infinity or
minus infinity. MATLAB stores the value of infinity in a permanent
variable named Inf, which represents IEEE arithmetic positive infinity.
The value of the variable Inf is built into the system; you cannot modify
it.

Operations that return infinity include

• Division by 0. For example, 5/0 returns infinity.

• Operations resulting in overflow. For example, exp(10000) returns
infinity because the result is too large to be represented on your
machine.

If value equals NaN (Not-a-Number), mxIsInf returns false. In other
words, NaN is not equal to infinity.

C
Examples

See mxisfinite.c in the mx subdirectory of the examples directory.

See Also mxIsFinite, mxIsNaN

2-188

mxIsInt16 (C and Fortran)

Purpose Determine whether mxArray represents data as signed 16-bit integers

C Syntax #include "matrix.h"
bool mxIsInt16(const mxArray *pm);

Fortran
Syntax

integer*4 mxIsInt16(pm)
mwPointer pm

Arguments pm
Pointer to an mxArray

Returns Logical 1 (true) if the array stores its data as signed 16-bit integers,
and logical 0 (false) otherwise.

Description Use mxIsInt16 to determine whether or not the specified array
represents its real and imaginary data as 16-bit signed integers.

In C, calling mxIsInt16 is equivalent to calling

mxGetClassID(pm) == mxINT16_CLASS

In Fortran, calling mxIsInt16 is equivalent to calling

mxGetClassName(pm) == 'int16'

See Also mxIsClass, mxGetClassID, mxIsInt8, mxIsInt32, mxIsInt64,
mxIsUint8, mxIsUint16, mxIsUint32, mxIsUint64

2-189

mxIsInt32 (C and Fortran)

Purpose Determine whether mxArray represents data as signed 32-bit integers

C Syntax #include "matrix.h"
bool mxIsInt32(const mxArray *pm);

Fortran
Syntax

integer*4 mxIsInt32(pm)
mwPointer pm

Arguments pm
Pointer to an mxArray

Returns Logical 1 (true) if the array stores its data as signed 32-bit integers,
and logical 0 (false) otherwise.

Description Use mxIsInt32 to determine whether or not the specified array
represents its real and imaginary data as 32-bit signed integers.

In C, calling mxIsInt32 is equivalent to calling

mxGetClassID(pm) == mxINT32_CLASS

In Fortran, calling mxIsInt32 is equivalent to calling

mxGetClassName(pm) == 'int32'

See Also mxIsClass, mxGetClassID, mxIsInt8, mxIsInt16, mxIsInt64,
mxIsUint8, mxIsUint16, mxIsUint32, mxIsUint64

2-190

mxIsInt64 (C and Fortran)

Purpose Determine whether mxArray represents data as signed 64-bit integers

C Syntax #include "matrix.h"
bool mxIsInt64(const mxArray *pm);

Fortran
Syntax

integer*4 mxIsInt64(pm)
mwPointer pm

Arguments pm
Pointer to an mxArray

Returns Logical 1 (true) if the array stores its data as signed 64-bit integers,
and logical 0 (false) otherwise.

Description Use mxIsInt64 to determine whether or not the specified array
represents its real and imaginary data as 64-bit signed integers.

In C, calling mxIsInt64 is equivalent to calling

mxGetClassID(pm) == mxINT64_CLASS

In Fortran, calling mxIsInt64 is equivalent to calling

mxGetClassName(pm) == 'int64'

See Also mxIsClass, mxGetClassID, mxIsInt8, mxIsInt16, mxIsInt32,
mxIsUint8, mxIsUint16, mxIsUint32, mxIsUint64

2-191

mxIsInt8 (C and Fortran)

Purpose Determine whether mxArray represents data as signed 8-bit integers

C Syntax #include "matrix.h"
bool mxIsInt8(const mxArray *pm);

Fortran
Syntax

integer*4 mxIsInt8(pm)
mwPointer pm

Arguments pm
Pointer to an mxArray

Returns Logical 1 (true) if the array stores its data as signed 8-bit integers,
and logical 0 (false) otherwise.

Description Use mxIsInt8 to determine whether or not the specified array
represents its real and imaginary data as 8-bit signed integers.

In C, calling mxIsInt8 is equivalent to calling

mxGetClassID(pm) == mxINT8_CLASS

In Fortran, calling mxIsInt8 is equivalent to calling

mxGetClassName(pm) .eq. 'int8'

See Also mxIsClass, mxGetClassID, mxIsInt16, mxIsInt32, mxIsInt64,
mxIsUint8, mxIsUint16, mxIsUint32, mxIsUint64

2-192

mxIsLogical (C and Fortran)

Purpose Determine whether mxArray is of type mxLogical

C Syntax #include "matrix.h"
bool mxIsLogical(const mxArray *pm);

Fortran
Syntax

integer*4 mxIsLogical(pm)
mwPointer pm

Arguments pm
Pointer to an mxArray

Returns Logical 1 (true) if pm points to a logical mxArray, and logical 0 (false)
otherwise.

Description Use mxIsLogical to determine whether MATLAB treats the data in the
mxArray as Boolean (logical). If an mxArray is logical, MATLAB treats
all zeros as meaning false and all nonzero values as meaning true.
For additional information on the use of logical variables in MATLAB,
type help logical at the MATLAB prompt.

C
Examples

See mxislogical.c in the mx subdirectory of the examples directory.

See Also mxIsClass

2-193

mxIsLogicalScalar (C)

Purpose Determine whether scalar mxArray is of type mxLogical

C Syntax #include "matrix.h"
bool mxIsLogicalScalar(const mxArray *array_ptr);

Arguments array_ptr
Pointer to an mxArray

Returns Logical 1 (true) if the mxArray is of class mxLogical and has 1-by-1
dimensions, and logical 0 (false) otherwise.

Description Use mxIsLogicalScalar to determine whether MATLAB treats the
scalar data in the mxArray as logical or numerical. For additional
information on the use of logical variables in MATLAB, type help
logical at the MATLAB prompt.

mxIsLogicalScalar(pa) is equivalent to

mxIsLogical(pa) && mxGetNumberOfElements(pa) == 1

See Also mxIsLogical, mxIsLogicalScalarTrue, mxGetLogicals, mxGetScalar

2-194

mxIsLogicalScalarTrue (C)

Purpose Determine whether scalar mxArray of type mxLogical is true

C Syntax #include "matrix.h"
bool mxIsLogicalScalarTrue(const mxArray *array_ptr);

Arguments array_ptr
Pointer to an mxArray

Returns Logical 1 (true) if the value of the mxArray’s logical, scalar element is
true, and logical 0 (false) otherwise.

Description Use mxIsLogicalScalarTrue to determine whether the value of a scalar
mxArray is true or false. For additional information on the use of logical
variables in MATLAB, type help logical at the MATLAB prompt.

mxIsLogicalScalarTrue(pa) is equivalent to

mxIsLogical(pa) && mxGetNumberOfElements(pa) == 1 &&
mxGetLogicals(pa)[0] == true

See Also mxIsLogical, mxIsLogicalScalar, mxGetLogicals, mxGetScalar

2-195

mxIsNaN (C and Fortran)

Purpose Determine whether input is NaN (Not-a-Number)

C Syntax #include "matrix.h"
bool mxIsNaN(double value);

Fortran
Syntax

integer*4 mxIsNaN(value)
real*8 value

Arguments value
The double-precision, floating-point number that you are testing

Returns Logical 1 (true) if value is NaN (Not-a-Number), and logical 0 (false)
otherwise.

Description Call mxIsNaN to determine whether or not value is NaN. NaN is the IEEE
arithmetic representation for Not-a-Number. A NaN is obtained as a
result of mathematically undefined operations such as

• 0.0/0.0

• Inf-Inf

The system understands a family of bit patterns as representing NaN. In
other words, NaN is not a single value; rather, it is a family of numbers
that MATLAB (and other IEEE-compliant applications) use to represent
an error condition or missing data.

C
Examples

See mxisfinite.c in the mx subdirectory of the examples directory.

For additional examples, see findnz.c and fulltosparse.c in the
refbook subdirectory of the examples directory.

See Also mxIsFinite, mxIsInf

2-196

mxIsNumeric (C and Fortran)

Purpose Determine whether mxArray is numeric

C Syntax #include "matrix.h"
bool mxIsNumeric(const mxArray *pm);

Fortran
Syntax

integer*4 mxIsNumeric(pm)
mwPointer pm

Arguments pm
Pointer to an mxArray

Returns Logical 1 (true) if the array can contain numeric data. The following
class IDs represent storage types for arrays that can contain numeric
data:

• mxDOUBLE_CLASS

• mxSINGLE_CLASS

• mxINT8_CLASS

• mxUINT8_CLASS

• mxINT16_CLASS

• mxUINT16_CLASS

• mxINT32_CLASS

• mxUINT32_CLASS

• mxINT64_CLASS

• mxUINT64_CLASS

Logical 0 (false) if the array cannot contain numeric data.

Description Call mxIsNumeric to determine whether the specified array contains
numeric data. If the specified array has a storage type that represents

2-197

mxIsNumeric (C and Fortran)

numeric data, mxIsNumeric returns logical 1 (true). Otherwise,
mxIsNumeric returns logical 0 (false).

Call mxGetClassID to determine the exact storage type.

C
Examples

See phonebook.c in the refbook subdirectory of the examples directory.

Fortran
Examples

See matdemo1.F in the eng_mat subdirectory of the examples directory.

See Also mxGetClassID

2-198

mxIsSingle (C and Fortran)

Purpose Determine whether mxArray represents data as single-precision,
floating-point numbers

C Syntax #include "matrix.h"
bool mxIsSingle(const mxArray *pm);

Fortran
Syntax

integer*4 mxIsSingle(pm)
mwPointer pm

Arguments pm
Pointer to an mxArray

Returns Logical 1 (true) if the array stores its data as single-precision,
floating-point numbers, and logical 0 (false) otherwise.

Description Use mxIsSingle to determine whether or not the specified array
represents its real and imaginary data as single-precision, floating-point
numbers.

In C, calling mxIsSingle is equivalent to calling

mxGetClassID(pm) == mxSINGLE_CLASS

In Fortran, calling mxIsSingle is equivalent to calling

mxGetClassName(pm) .eq. 'single'

See Also mxIsClass, mxGetClassID

2-199

mxIsSparse (C and Fortran)

Purpose Determine whether input is sparse mxArray

C Syntax #include "matrix.h"
bool mxIsSparse(const mxArray *pm);

Fortran
Syntax

integer*4 mxIsSparse(pm)
mwPointer pm

Arguments pm
Pointer to an mxArray

Returns Logical 1 (true) if pm points to a sparse mxArray, and logical 0 (false)
otherwise. A false return value means that pm points to a full mxArray
or that pm does not point to a legal mxArray.

Description Use mxIsSparse to determine whether pm points to a sparse mxArray.
Many routines (for example, mxGetIr and mxGetJc) require a sparse
mxArray as input.

C
Examples

See phonebook.c in the refbook subdirectory of the examples directory.

For additional examples, see mxgetnzmax.c, mxsetdimensions.c, and
mxsetnzmax.c in the mx subdirectory of the examples directory.

See Also mxGetIr, mxGetJc, mxCreateSparse

2-200

mxIsStruct (C and Fortran)

Purpose Determine whether input is structure mxArray

C Syntax #include "matrix.h"
bool mxIsStruct(const mxArray *pm);

Fortran
Syntax

integer*4 mxIsStruct(pm)
mwPointer pm

Arguments pm
Pointer to an mxArray

Returns Logical 1 (true) if pm points to a structure mxArray, and logical 0
(false) otherwise.

Description Use mxIsStruct to determine whether pm points to a structure mxArray.
Many routines (for example, mxGetFieldName and mxSetField) require
a structure mxArray as an argument.

C
Examples

See phonebook.c in the refbook subdirectory of the examples directory.

See Also mxCreateStructArray, mxCreateStructMatrix,
mxGetNumberOfFields, mxGetField, mxSetField

2-201

mxIsUint16 (C and Fortran)

Purpose Determine whether mxArray represents data as unsigned 16-bit integers

C Syntax #include "matrix.h"
bool mxIsUint16(const mxArray *pm);

Fortran
Syntax

integer*4 mxIsUint16(pm)
mwPointer pm

Arguments pm
Pointer to an mxArray

Returns Logical 1 (true) if the mxArray stores its data as unsigned 16-bit
integers, and logical 0 (false) otherwise.

Description Use mxIsUint16 to determine whether or not the specified mxArray
represents its real and imaginary data as 16-bit unsigned integers.

In C, calling mxIsUint16 is equivalent to calling

mxGetClassID(pm) == mxUINT16_CLASS

In Fortran, calling mxIsUint16 is equivalent to calling

mxGetClassName(pm) .eq. 'uint16'

See Also mxIsClass, mxGetClassID, mxIsInt8, mxIsInt16, mxIsInt32,
mxIsInt64, mxIsUint8, mxIsUint32, mxIsUint64

2-202

mxIsUint32 (C and Fortran)

Purpose Determine whether mxArray represents data as unsigned 32-bit integers

C Syntax #include "matrix.h"
bool mxIsUint32(const mxArray *pm);

Fortran
Syntax

integer*4 mxIsUint32(pm)
mwPointer pm

Arguments pm
Pointer to an mxArray

Returns Logical 1 (true) if the mxArray stores its data as unsigned 32-bit
integers, and logical 0 (false) otherwise.

Description Use mxIsUint32 to determine whether or not the specified mxArray
represents its real and imaginary data as 32-bit unsigned integers.

In C, calling mxIsUint32 is equivalent to calling

mxGetClassID(pm) == mxUINT32_CLASS

In Fortran, calling mxIsUint32 is equivalent to calling

mxGetClassName(pm) .eq. 'uint32'

See Also mxIsClass, mxGetClassID, mxIsInt8, mxIsInt16, mxIsInt32,
mxIsInt64, mxIsUint8, mxIsUint16, mxIsUint64

2-203

mxIsUint64 (C and Fortran)

Purpose Determine whether mxArray represents data as unsigned 64-bit integers

C Syntax #include "matrix.h"
bool mxIsUint64(const mxArray *pm);

Fortran
Syntax

integer*4 mxIsUint64(pm)
mwPointer pm

Arguments pm
Pointer to an mxArray

Returns Logical 1 (true) if the mxArray stores its data as unsigned 64-bit
integers, and logical 0 (false) otherwise.

Description Use mxIsUint64 to determine whether or not the specified mxArray
represents its real and imaginary data as 64-bit unsigned integers.

In C, calling mxIsUint64 is equivalent to calling

mxGetClassID(pm) == mxUINT64_CLASS

In Fortran, calling mxIsUint64 is equivalent to calling

mxGetClassName(pm) .eq. 'uint64'

See Also mxIsClass, mxGetClassID, mxIsInt8, mxIsInt16, mxIsInt32,
mxIsInt64, mxIsUint8, mxIsUint16, mxIsUint32

2-204

mxIsUint8 (C and Fortran)

Purpose Determine whether mxArray represents data as unsigned 8-bit integers

C Syntax #include "matrix.h"
bool mxIsUint8(const mxArray *pm);

Fortran
Syntax

integer*4 mxIsUint8(pm)
mwPointer pm

Arguments pm
Pointer to an mxArray

Returns Logical 1 (true) if the mxArray stores its data as unsigned 8-bit integers,
and logical 0 (false) otherwise.

Description Use mxIsUint8 to determine whether or not the specified mxArray
represents its real and imaginary data as 8-bit unsigned integers.

In C, calling mxIsUint8 is equivalent to calling

mxGetClassID(pm) == mxUINT8_CLASS

In Fortran, calling mxIsUint8 is equivalent to calling

mxGetClassName(pm) .eq. 'uint8'

See Also mxIsClass, mxGetClassID, mxIsInt8, mxIsInt16, mxIsInt32,
mxIsInt64, mxIsUint16, mxIsUint32, mxIsUint64

2-205

mxLogical (C)

Purpose Type for logical mxArray

Description All logical mxArrays store their data elements as mxLogical rather
than as bool.

The header file containing this type is

#include "matrix.h"

Examples See mxislogical.c in the mx subdirectory of the examples directory.

See Also mxCreateLogicalArray

2-206

mxMalloc (C and Fortran)

Purpose Allocate dynamic memory using MATLAB memory manager

C Syntax #include "matrix.h"
#include <stdlib.h>
void *mxMalloc(mwSize n);

Fortran
Syntax

mwPointer mxMalloc(n)
mwSize n

Arguments n
Number of bytes to allocate

Returns A pointer to the start of the allocated dynamic memory, if successful.
If unsuccessful in a stand-alone (nonMEX-file) application, mxMalloc
returns NULL in C (0 in Fortran). If unsuccessful in a MEX-file, the
MEX-file terminates and control returns to the MATLAB prompt.

mxMalloc is unsuccessful when there is insufficient free heap space.

Description MATLAB applications should always call mxMalloc rather than malloc
to allocate memory.

mxMalloc works differently in MEX-files than in stand-alone MATLAB
applications. In MEX-files, mxMalloc automatically

• Allocates enough contiguous heap space to hold n bytes.

• Registers the returned heap space with the MATLAB memory
management facility.

The MATLAB memory management facility maintains a list of all
memory allocated by mxMalloc. The MATLAB memory management
facility automatically frees (deallocates) all of a MEX-file’s parcels when
control returns to the MATLAB prompt.

In stand-alone MATLAB C applications, mxMalloc calls the ANSI C
malloc function.

2-207

mxMalloc (C and Fortran)

By default, in a MEX-file, mxMalloc generates nonpersistent
mxMalloc data. In other words, the memory management facility
automatically deallocates the memory as soon as the MEX-file ends.
If you want the memory to persist after the MEX-file completes, call
mexMakeMemoryPersistent after calling mxMalloc. If you write a
MEX-file with persistent memory, be sure to register a mexAtExit
function to free allocated memory in the event your MEX-file is cleared.

When you finish using the memory allocated by mxMalloc, call mxFree.
mxFree deallocates the memory.

C
Examples

See mxmalloc.c in the mx subdirectory of the examples directory. For
an additional example, see mxsetdimensions.c in the mx subdirectory
of the examples directory.

See Also mexAtExit, mexMakeArrayPersistent, mexMakeMemoryPersistent,
mxCalloc, mxDestroyArray, mxFree, mxRealloc

2-208

mxRealloc (C and Fortran)

Purpose Reallocate memory

C Syntax #include "matrix.h"
#include <stdlib.h>
void *mxRealloc(void *ptr, mwSize size);

Fortran
Syntax

mwPointer mxRealloc(ptr, size)
mwPointer ptr
mwSize size

Arguments ptr
Pointer to a block of memory allocated by mxCalloc, mxMalloc,
or mxRealloc

size
New size of allocated memory, in bytes

Returns A pointer to the reallocated block of memory, or NULL in C (0 in Fortran)
if size is 0. In a stand-alone (non-MEX-file) application, if not enough
memory is available to expand the block to the given size, mxRealloc
returns NULL in C (0 in Fortran). In a MEX-file, if not enough memory is
available to expand the block to the given size, the MEX-file terminates
and control returns to the MATLAB prompt.

Description mxRealloc changes the size of a memory block that has been allocated
with mxCalloc, mxMalloc, or mxRealloc.

If size is 0 and ptr is not NULL in C (0 in Fortran), mxRealloc frees the
memory pointed to by ptr and returns NULL in C (0 in Fortran).

If size is greater than 0 and ptr is NULL in C (0 in Fortran), mxRealloc
behaves like mxMalloc, allocating a new block of memory of size bytes
and returning a pointer to the new block.

Otherwise, mxRealloc changes the size of the memory block pointed
to by ptr to size bytes. The contents of the reallocated memory are
unchanged up to the smaller of the new and old sizes. The reallocated
memory may be in a different location from the original memory, so

2-209

mxRealloc (C and Fortran)

the returned pointer can be different from ptr. If the memory location
changes, mxRealloc frees the original memory block pointed to by ptr.

In a stand-alone (non-MEX-file) application, if not enough memory is
available to expand the block to the given size, mxRealloc returns NULL
in C (0 in Fortran) and leaves the original memory block unchanged.
You must use mxFree to free the original memory block.

MATLAB maintains a list of all memory allocated by mxRealloc. By
default, in a MEX-file, mxRealloc generates nonpersistent mxRealloc
data. The memory management facility automatically deallocates the
memory as soon as the MEX-file ends.

If you want the memory to persist after a MEX-file completes, call
mexMakeMemoryPersistent after calling mxRealloc. If you write a
MEX-file with persistent memory, be sure to register a mexAtExit
function to free allocated memory when your MEX-file is cleared.

When you finish using the memory allocated by mxRealloc, call mxFree.
mxFree deallocates the memory.

C
Examples

See mxsetnzmax.c in the mx subdirectory of the examples directory.

See Also mexAtExit, mexMakeArrayPersistent, mexMakeMemoryPersistent,
mxCalloc, mxDestroyArray, mxFree, mxMalloc

2-210

mxRemoveField (C and Fortran)

Purpose Remove field from structure array

C Syntax #include "matrix.h"
void mxRemoveField(mxArray pm, int fieldnumber);

Fortran
Syntax

subroutine mxRemoveField(pm, fieldnumber)
mwPointer pm
integer*4 fieldnumber

Arguments pm
Pointer to a structure mxArray

fieldnumber
The number of the field you want to remove. In C, to remove the
first field, set fieldnumber to 0; to remove the second field, set
fieldnumber to 1; and so on. In Fortran, to remove the first field,
set fieldnumber to 1; to remove the second field, set fieldnumber
to 2; and so on.

Description Call mxRemoveField to remove a field from a structure array. If the field
does not exist, nothing happens. This function does not destroy the field
values. Use mxDestroyArray to destroy the actual field values.

Consider a MATLAB structure initialized to

patient.name = 'John Doe';
patient.billing = 127.00;
patient.test = [79 75 73; 180 178 177.5; 220 210 205];

In C, the field number 0 represents the field name; field number 1
represents field billing; field number 2 represents field test. In
Fortran, the field number 1 represents the field name; field number 2
represents field billing; field number 3 represents field test.

See Also mxAddField, mxDestroyArray, mxGetFieldByNumber

2-211

mxSetCell (C and Fortran)

Purpose Set value of one cell of mxArray

C Syntax #include "matrix.h"
void mxSetCell(mxArray *pm, mwIndex index, mxArray *value);

Fortran
Syntax

mxSetCell(pm, index, value)
mwPointer pm, value
mwIndex index

Arguments pm
Pointer to a cell mxArray

index
Index from the beginning of the mxArray. Specify the number
of elements between the first cell of the mxArray and the
cell you want to set. The easiest way to calculate index in a
multidimensional cell array is to call mxCalcSingleSubscript.

value
The new value of the cell. You can put any kind of mxArray into a
cell. In fact, you can even put another cell mxArray into a cell.

Description Call mxSetCell to put the designated value into a particular cell of
a cell mxArray.

Note Inputs to a MEX-file are constant read-only mxArrays and should
not be modified. Using mxSetCell* or mxSetField* to modify the cells
or fields of an argument passed from MATLAB causes unpredictable
results.

This function does not free any memory allocated for existing data
that it displaces. To free existing memory, call mxFree on the pointer
returned by mxGetCell before you call mxSetCell.

2-212

mxSetCell (C and Fortran)

C
Examples

See phonebook.c in the refbook subdirectory of the examples directory.
For an additional example, see mxcreatecellmatrix.c in the mx
subdirectory of the examples directory.

See Also mxCreateCellArray, mxCreateCellMatrix, mxGetCell, mxIsCell,
mxFree

2-213

mxSetClassName (C)

Purpose Convert structure array to MATLAB object array

C Syntax #include "matrix.h"
int mxSetClassName(mxArray *array_ptr, const char *classname);

Arguments array_ptr
Pointer to an mxArray of class mxSTRUCT_CLASS

classname
The object class to which to convert array_ptr

Returns 0 if successful, and nonzero otherwise. One cause of failure is that
array_ptr is not a structure mxArray. Call mxIsStruct to determine
whether array_ptr is a structure.

Description mxSetClassName converts a structure array to an object array, to be
saved subsequently to a MAT-file. The object is not registered or
validated by MATLAB until it is loaded via the LOAD command. If
the specified classname is an undefined class within MATLAB, LOAD
converts the object back to a simple structure array.

See Also mxIsClass, mxGetClassID

2-214

mxSetData (C and Fortran)

Purpose Set pointer to data

C Syntax #include "matrix.h"
void mxSetData(mxArray *pm, void *pr);

Fortran
Syntax

mxSetData(pm, pr)
mwPointer pm, pr

Arguments pm
Pointer to an mxArray

pr
Pointer to an array. Each element in the array contains the real
component of a value. The array must be in dynamic memory; call
mxCalloc to allocate this memory.

Description mxSetData is similar to mxSetPr, except that in C, its second argument
is a void *. Use this on numeric arrays with contents other than
double.

This function does not free any memory allocated for existing data
that it displaces. To free existing memory, call mxFree on the pointer
returned by mxGetData before you call mxSetData.

See Also mxCalloc, mxFree, mxGetData, mxSetPr

2-215

mxSetDimensions (C and Fortran)

Purpose Modify number of dimensions and size of each dimension

C Syntax #include "matrix.h"
int mxSetDimensions(mxArray *pm, const mwSize *dims,

mwSize ndim);

Fortran
Syntax

integer*4 mxSetDimensions(pm, dims, ndim)
mwPointer pm
mwSize dims, ndim

Arguments pm
Pointer to an mxArray

dims
The dimensions array. Each element in the dimensions array
contains the size of the array in that dimension. For example,
in C, setting dims[0] to 5 and dims[1] to 7 establishes a 5-by-7
mxArray. In Fortran, setting dims(1) to 5 and dims(2) to 7
establishes a 5-by-7 mxArray. In most cases, there should be ndim
elements in the dims array.

ndim
The desired number of dimensions

Returns 0 on success, and 1 on failure. mxSetDimensions allocates heap space to
hold the input size array. So it is possible (though extremely unlikely)
that increasing the number of dimensions can cause the system to run
out of heap space.

Description Call mxSetDimensions to reshape an existing mxArray.
mxSetDimensions is similar to mxSetM and mxSetN; however,
mxSetDimensions provides greater control for reshaping mxArrays that
have more than two dimensions.

mxSetDimensions does not allocate or deallocate any space for the pr
or pi arrays. Consequently, if your call to mxSetDimensions increases
the number of elements in the mxArray, you must enlarge the pr (and
pi, if it exists) arrays accordingly.

2-216

mxSetDimensions (C and Fortran)

If your call to mxSetDimensions reduces the number of elements in the
mxArray, you can optionally reduce the size of the pr and pi arrays
using mxRealloc.

Any trailing singleton dimensions specified in the dims argument are
automatically removed from the resulting array. For example, if ndim
equals 5 and dims equals [4 1 7 1 1], the resulting array is given
the dimensions 4-by-1-by-7.

C
Examples

See mxsetdimensions.c in the mx subdirectory of the examples
directory.

See Also mxGetNumberOfDimensions, mxSetM, mxSetN, mxRealloc

2-217

mxSetField (C and Fortran)

Purpose Set structure array field, given field name and index

C Syntax #include "matrix.h"
void mxSetField(mxArray *pm, mwIndex index,

const char *fieldname, mxArray *value);

Fortran
Syntax

mxSetField(pm, index, fieldname, value)
mwPointer pm, value
mwIndex index
character*(*) fieldname

Arguments pm
Pointer to a structure mxArray. Call mxIsStruct to determine
whether pm points to a structure mxArray.

index
Index of the desired element. In C, the first element of an
mxArray has an index of 0, the second element has an index of 1,
and the last element has an index of N-1, where N is the total
number of elements in the structure mxArray. In Fortran, the
first element of an mxArray has an index of 1, the second element
has an index of 2, and the last element has an index of N. See
mxCalcSingleSubscript for details on calculating an index.

fieldname
The name of the field whose value you are assigning. Call
mxGetFieldNameByNumber or mxGetFieldNumber to determine
existing field names.

value
Pointer to the mxArray you are assigning.

Description Use mxSetField to assign a value to the specified element of the
specified field. In pseudo-C terminology, mxSetField performs the
assignment

pm[index].fieldname = value;

2-218

mxSetField (C and Fortran)

Note Inputs to a MEX-file are constant read-only mxArrays and should
not be modified. Using mxSetCell* or mxSetField* to modify the cells
or fields of an argument passed from MATLAB causes unpredictable
results.

In C, calling

mxSetField(pa, index, "fieldname", new_value_pa);

is equivalent to calling

field_num = mxGetFieldNumber(pa, "fieldname");
mxSetFieldByNumber(pa, index, field_num, new_value_pa);

In Fortran, calling

mxSetField(pm, index, 'fieldname', newvalue)

is equivalent to calling

fieldnum = mxGetFieldNumber(pm, 'fieldname')
mxSetFieldByNumber(pm, index, fieldnum, newvalue)

This function does not free any memory allocated for existing data
that it displaces. To free existing memory, call mxFree on the pointer
returned by mxGetField before you call mxSetField.

C
Examples

See mxcreatestructarray.c in the mx subdirectory of the examples
directory.

See Also mxCreateStructArray, mxCreateStructMatrix, mxGetField,
mxGetFieldByNumber, mxGetFieldNameByNumber, mxGetFieldNumber,
mxGetNumberOfFields, mxIsStruct, mxSetFieldByNumber, mxFree

2-219

mxSetFieldByNumber (C and Fortran)

Purpose Set structure array field, given field number and index

C Syntax #include "matrix.h"
void mxSetFieldByNumber(mxArray *pm, mwIndex index,

int fieldnumber, mxArray *value);

Fortran
Syntax

mxSetFieldByNumber(pm, index, fieldnumber, value)
mwPointer pm, value
mwIndex index
integer*4 fieldnumber

Arguments pm
Pointer to a structure mxArray. Call mxIsStruct to determine
whetherpm points to a structure mxArray.

index
The desired element. In C, the first element of an mxArray has
an index of 0, the second element has an index of 1, and the
last element has an index of N-1, where N is the total number
of elements in the structure mxArray. In Fortran, the first
element of an mxArray has an index of 1, the second element
has an index of 2, and the last element has an index of N. See
mxCalcSingleSubscript for details on calculating an index.

fieldnumber
The position of the field whose value you want to extract. In C,
the first field within each element has a fieldnumber of 0, the
second field has a fieldnumber of 1, and so on. The last field
has a fieldnumber of N-1, where N is the number of fields. In
Fortran, the first field within each element has a fieldnumber of
1, the second field has a fieldnumber of 2, and so on. The last
field has a fieldnumber of N.

value
The value you are assigning.

Description Use mxSetFieldByNumber to assign a value to the specified element
of the specified field. mxSetFieldByNumber is almost identical to

2-220

mxSetFieldByNumber (C and Fortran)

mxSetField; however, the former takes a field number as its third
argument and the latter takes a field name as its third argument.

Note Inputs to a MEX-file are constant read-only mxArrays and should
not be modified. Using mxSetCell* or mxSetField* to modify the cells
or fields of an argument passed from MATLAB causes unpredictable
results.

In C, calling

mxSetField(pa, index, "field_name", new_value_pa);

is equivalent to calling

field_num = mxGetFieldNumber(pa, "field_name");
mxSetFieldByNumber(pa, index, field_num, new_value_pa);

In Fortran, calling

mxSetField(pm, index, 'fieldname', newvalue)

is equivalent to calling

fieldnum = mxGetFieldNumber(pm, 'fieldname')
mxSetFieldByNumber(pm, index, fieldnum, newvalue)

This function does not free any memory allocated for existing data
that it displaces. To free existing memory, call mxFree on the pointer
returned by mxGetFieldByNumber before you call mxSetFieldByNumber.

C
Examples

See mxcreatestructarray.c in the mx subdirectory of the examples
directory. For an additional example, see phonebook.c in the refbook
subdirectory of the examples directory.

2-221

mxSetFieldByNumber (C and Fortran)

See Also mxCreateStructArray, mxCreateStructMatrix, mxGetField,
mxGetFieldByNumber, mxGetFieldNameByNumber, mxGetFieldNumber,
mxGetNumberOfFields, mxIsStruct, mxSetField, mxFree

2-222

mxSetImagData (C and Fortran)

Purpose Set imaginary data pointer for mxArray

C Syntax #include "matrix.h"
void mxSetImagData(mxArray *pm, void *pi);

Fortran
Syntax

mxSetImagData(pm, pi)
mwPointer pm, pi

Arguments pm
Pointer to an mxArray

pi
Pointer to the first element of an array. Each element in the array
contains the imaginary component of a value. The array must
be in dynamic memory; call mxCalloc to allocate this dynamic
memory. If pi points to static memory, memory errors will result
when the array is destroyed.

Description mxSetImagData is similar to mxSetPi, except that in C, its pi argument
is a void *. Use this on numeric arrays with contents other than
double.

This function does not free any memory allocated for existing data
that it displaces. To free existing memory, call mxFree on the pointer
returned by mxGetImagData before you call mxSetImagData.

C
Examples

See mxisfinite.c in the mx subdirectory of the examples directory.

See Also mxCalloc, mxFree, mxGetImagData, mxSetPi

2-223

mxSetIr (C and Fortran)

Purpose Set ir array of sparse mxArray

C Syntax #include "matrix.h"
void mxSetIr(mxArray *pm, mwIndex *ir);

Fortran
Syntax

mxSetIr(pm, ir)
mwPointer pm, ir

Arguments pm
Pointer to a sparse mxArray

ir
Pointer to the ir array. The ir array must be sorted in
column-major order.

Description Use mxSetIr to specify the ir array of a sparse mxArray. The ir array
is an array of integers; the length of the ir array should equal the
value of nzmax.

Each element in the ir array indicates a row (offset by 1) at which a
nonzero element can be found. (The jc array is an index that indirectly
specifies a column where nonzero elements can be found. See mxSetJc
for more details on jc.)

For example, suppose you create a 7-by-3 sparse mxArray named
Sparrow containing six nonzero elements by typing

Sparrow = zeros(7,3);
Sparrow(2,1) = 1;
Sparrow(5,1) = 1;
Sparrow(3,2) = 1;
Sparrow(2,3) = 2;
Sparrow(5,3) = 1;
Sparrow(6,3) = 1;
Sparrow = sparse(Sparrow);

2-224

mxSetIr (C and Fortran)

The pr array holds the real data for the sparse matrix, which in Sparrow
is the five 1s and the one 2. If there is any nonzero imaginary data, it
is in a pi array.

Subscript ir pr jc Comments

(2,1) 1 1 0 Column 1; ir is 1 because row is 2.

(5,1) 4 1 2 Column 1; ir is 4 because row is 5.

(3,2) 2 1 3 Column 2; ir is 2 because row is 3.

(2,3) 1 2 6 Column 3; ir is 1 because row is 2.

(5,3) 4 1 Column 3; ir is 4 because row is 5.

(6,3) 5 1 Column 3; ir is 5 because row is 6.

Notice how each element of the ir array is always 1 less than the row
of the corresponding nonzero element. For instance, the first nonzero
element is in row 2; therefore, the first element in ir is 1 (that is, 2
– 1). The second nonzero element is in row 5; therefore, the second
element in ir is 4 (5 – 1).

The ir array must be in column-major order. That means that the ir
array must define the row positions in column 1 (if any) first, then the
row positions in column 2 (if any) second, and so on through column N.
Within each column, row position 1 must appear prior to row position
2, and so on.

mxSetIr does not sort the ir array for you; you must specify an ir array
that is already sorted.

This function does not free any memory allocated for existing data
that it displaces. To free existing memory, call mxFree on the pointer
returned by mxGetIr before you call mxSetIr.

C
Examples

See mxsetnzmax.c in the mx subdirectory of the examples directory. For
an additional example, see explore.c in the mex subdirectory of the
examples directory.

2-225

mxSetIr (C and Fortran)

See Also mxCreateSparse, mxGetIr, mxGetJc, mxSetJc, mxFree

2-226

mxSetJc (C and Fortran)

Purpose Set jc array of sparse mxArray

C Syntax #include "matrix.h"
void mxSetJc(mxArray *pm, mwIndex *jc);

Fortran
Syntax

mxSetJc(pm, jc)
mwPointer pm, jc

Arguments pm
Pointer to a sparse mxArray

jc
Pointer to the jc array

Description Use mxSetJc to specify a new jc array for a sparse mxArray. The jc
array is an integer array having n+1 elements, where n is the number of
columns in the sparse mxArray.

If the jth column of the sparse mxArray has any nonzero elements:

• jc[j] is the index in ir, pr, and pi (if it exists) of the first nonzero
element in the jth column.

• jc[j+1]-1 is the index of the last nonzero element in the jth column.

The number of nonzero elements in the jth column of the sparse
mxArray is

jc[j+1] - jc[j];

For the jth column of the sparse mxArray, jc[j] is the total number of
nonzero elements in all preceding columns. The last element of the jc
array, jc[number of columns], is equal to nnz, which is the number of
nonzero elements in the entire sparse mxArray.

For example, consider a 7-by-3 sparse mxArray named Sparrow
containing six nonzero elements, created by typing

Sparrow = zeros(7,3);

2-227

mxSetJc (C and Fortran)

Sparrow(2,1) = 1;
Sparrow(5,1) = 1;
Sparrow(3,2) = 1;
Sparrow(2,3) = 2;
Sparrow(5,3) = 1;
Sparrow(6,3) = 1;
Sparrow = sparse(Sparrow);

The contents of the ir, jc, and pr arrays are listed in this table.

Subscript ir pr jc Comment

(2,1) 1 1 0 Column 1 contains two
nonzero elements, with rows
designated by ir[0] and ir[1]

(5,1) 4 1 2 Column 2 contains one nonzero
element, with row designated
by ir[2]

(3,2) 2 1 3 Column 3 contains three
nonzero elements, with rows
designated by ir[3],ir[4],
and ir[5]

(2,3) 1 2 6 There are six nonzero elements
in all.

(5,3) 4 1

(6,3) 5 1

As an example of a much sparser mxArray, consider a 1,000-by-8 sparse
mxArray named Spacious containing only three nonzero elements. The
ir, pr, and jc arrays contain the values listed in this table.

2-228

mxSetJc (C and Fortran)

Subscript ir pr jc Comment

(73,2) 72 1 0 Column 1 contains no nonzero
elements.

(50,3) 49 1 0 Column 2 contains one nonzero
element, with row designated
by ir[0].

(64,5) 63 1 1 Column 3 contains one nonzero
element, with row designated
by ir[1].

2 Column 4 contains no nonzero
elements.

2 Column 5 contains one nonzero
element, with row designated
by ir[2].

3 Column 6 contains no nonzero
elements.

3 Column 7 contains no nonzero
elements.

3 Column 8 contains no nonzero
elements.

3 There are three nonzero
elements in all.

This function does not free any memory allocated for existing data
that it displaces. To free existing memory, call mxFree on the pointer
returned by mxGetJc before you call mxSetJc.

C
Examples

See mxsetdimensions.c in the mx subdirectory of the examples
directory. For an additional example, see explore.c in the mex
subdirectory of the examples directory.

See Also mxCreateSparse, mxGetIr, mxGetJc, mxSetIr, mxFree

2-229

mxSetM (C and Fortran)

Purpose Set number of rows in mxArray

C Syntax #include "matrix.h"
void mxSetM(mxArray *pm, mwSize m);

Fortran
Syntax

mxSetM(pm, m)
mwPointer pm
mwSize m

Arguments pm
Pointer to an mxArray

m
The desired number of rows

Description Call mxSetM to set the number of rows in the specified mxArray. The
term rows means the first dimension of an mxArray, regardless of the
number of dimensions. Call mxSetN to set the number of columns.

You typically use mxSetM to change the shape of an existing mxArray.
Note that mxSetM does not allocate or deallocate any space for the pr,
pi, ir, or jc arrays. Consequently, if your calls to mxSetM and mxSetN
increase the number of elements in the mxArray, you must enlarge the
pr, pi, ir, and/or jc arrays. Call mxRealloc to enlarge them.

If your calls to mxSetM and mxSetN end up reducing the number of
elements in the mxArray, you may want to reduce the sizes of the pr,
pi, ir, and/or jc arrays in order to use heap space more efficiently.
However, reducing the size is not mandatory.

C
Examples

See mxsetdimensions.c in the mx subdirectory of the examples
directory. For an additional example, see sincall.c in the refbook
subdirectory of the examples directory.

See Also mxGetM, mxGetN, mxSetN

2-230

mxSetN (C and Fortran)

Purpose Set number of columns in mxArray

C Syntax #include "matrix.h"
void mxSetN(mxArray *pm, mwSize n);

Fortran
Syntax

mxSetN(pm, n)
mwPointer pm
mwSize n

Arguments pm
Pointer to an mxArray

n
The desired number of columns

Description Call mxSetN to set the number of columns in the specified mxArray. The
term columns always means the second dimension of a matrix. Calling
mxSetN forces an mxArray to have two dimensions. For example, if pm
points to an mxArray having three dimensions, calling mxSetN reduces
the mxArray to two dimensions.

You typically use mxSetN to change the shape of an existing mxArray.
Note that mxSetN does not allocate or deallocate any space for the pr,
pi, ir, or jc arrays. Consequently, if your calls to mxSetN and mxSetM
increase the number of elements in the mxArray, you must enlarge the
pr, pi, ir, and/or jc arrays.

If your calls to mxSetM and mxSetN end up reducing the number of
elements in the mxArray, you may want to reduce the sizes of the pr,
pi, ir, and/or jc arrays in order to use heap space more efficiently.
However, reducing the size is not mandatory.

C
Examples

See mxsetdimensions.c in the mx subdirectory of the examples
directory. For an additional example, see sincall.c in the refbook
subdirectory of the examples directory.

See Also mxGetM, mxGetN, mxSetM

2-231

mxSetNzmax (C and Fortran)

Purpose Set storage space for nonzero elements

C Syntax #include "matrix.h"
void mxSetNzmax(mxArray *pm, mwSize nzmax);

Fortran
Syntax

mxSetNzmax(pm, nzmax)
mwPointer pm
mwSize nzmax

Arguments pm
Pointer to a sparse mxArray.

nzmax
The number of elements that mxCreateSparse should allocate to
hold the arrays pointed to by ir, pr, and pi (if it exists). Set nzmax
greater than or equal to the number of nonzero elements in the
mxArray, but set it to be less than or equal to the number of rows
times the number of columns. If you specify an nzmax value of 0,
mxSetNzmax sets the value of nzmax to 1.

Description Use mxSetNzmax to assign a new value to the nzmax field of the specified
sparse mxArray. The nzmax field holds the maximum possible number
of nonzero elements in the sparse mxArray.

The number of elements in the ir, pr, and pi (if it exists) arrays must
be equal to nzmax. Therefore, after calling mxSetNzmax, you must
change the size of the ir, pr, and pi arrays. To change the size of one
of these arrays:

1 Call mxRealloc with a pointer to the array, setting the size to the
new value of nzmax.

2 Call the appropriate mxSet routine (mxSetIr, mxSetPr, or mxSetPi)
to establish the new memory area as the current one.

Two ways of determining how big you should make nzmax are

2-232

mxSetNzmax (C and Fortran)

• Set nzmax equal to or slightly greater than the number of nonzero
elements in a sparse mxArray. This approach conserves precious
heap space.

• Make nzmax equal to the total number of elements in an
mxArray. This approach eliminates (or, at least reduces) expensive
reallocations.

C
Examples

See mxsetnzmax.c in the mx subdirectory of the examples directory.

See Also mxGetNzmax, mxRealloc

2-233

mxSetPi (C and Fortran)

Purpose Set new imaginary data for mxArray

C Syntax #include "matrix.h"
void mxSetPi(mxArray *pm, double *pi);

Fortran
Syntax

mxSetPi(pm, pi)
mwPointer pm, pi

Arguments pm
Pointer to a full (nonsparse) mxArray

pi
Pointer to the first element of an array. Each element in the array
contains the imaginary component of a value. The array must
be in dynamic memory; call mxCalloc to allocate this dynamic
memory. If pi points to static memory, memory leaks and other
memory errors may result.

Description Use mxSetPi to set the imaginary data of the specified mxArray.

Most mxCreate* functions optionally allocate heap space to hold
imaginary data. If you tell an mxCreate* function to allocate heap
space—for example, by setting the ComplexFlag to mxCOMPLEX in C (1 in
Fortran) or by setting pi to a non-NULL value in C (a nonzero value in
Fortran)—you do not ordinarily use mxSetPi to initialize the created
mxArray’s imaginary elements. Rather, you call mxSetPi to replace the
initial imaginary values with new ones.

This function does not free any memory allocated for existing data
that it displaces. To free existing memory, call mxFree on the pointer
returned by mxGetPi before you call mxSetPi.

C
Examples

See mxisfinite.c and mxsetnzmax.c in the mx subdirectory of the
examples directory.

See Also mxGetPi, mxGetPr, mxSetImagData, mxSetPr, mxFree

2-234

mxSetPr (C and Fortran)

Purpose Set new real data for mxArray

C Syntax #include "matrix.h"
void mxSetPr(mxArray *pm, double *pr);

Fortran
Syntax

mxSetPr(pm, pr)
mwPointer pm, pr

Arguments pm
Pointer to a full (nonsparse) mxArray

pr
Pointer to the first element of an array. Each element in the array
contains the real component of a value. The array must be in
dynamic memory; call mxCalloc to allocate this dynamic memory.
If pr points to static memory, memory leaks and other memory
errors can result.

Description Use mxSetPr to set the real data of the specified mxArray.

All mxCreate* calls allocate heap space to hold real data. Therefore,
you do not ordinarily use mxSetPr to initialize the real elements of a
freshly created mxArray. Rather, you call mxSetPr to replace the initial
real values with new ones.

This function does not free any memory allocated for existing data
that it displaces. To free existing memory, call mxFree on the pointer
returned by mxGetPr before you call mxSetPr.

C
Examples

See mxsetnzmax.c in the mx subdirectory of the examples directory.

See Also mxGetPi, mxGetPr, mxSetData, mxSetPi, mxFree

2-235

mxSetPr (C and Fortran)

2-236

Index

IndexA
allocating memory 2-76

B
buffer

defining output 2-13

D
deleting

named matrix from MAT-file 2-19
directory

getting 2-22

E
engClose 2-2
engEvalString 2-3
engGetVariable 2-5
engGetVisible 2-6
engine

data type 2-7
engines

getting and putting matrices into 2-5 2-15
starting 2-2

engOpen 2-9
engPutVariable 2-15
engSetVisible 2-17
errors

control response to 2-62
issuing messages 2-40 2-42

G
getting

directory 2-22

M
MAT-files

deleting named matrix from 2-19
getting and putting matrices into 2-29 2-34

to 2-35
getting next matrix from 2-25
getting pointer to 2-24
opening and closing 2-18 2-32

matClose 2-32
matDeleteMatrix 2-19
matfile

data type 2-20
matGetDir 2-22
matGetFp 2-24
matGetNextVariable 2-25
matGetNextVariableInfo 2-27
matGetVariable 2-29
matGetVariableInfo 2-30
MATLAB engines

starting 2-2
matOpen 2-18
matPutVariable 2-34
matPutVariableAsGlobal 2-35
matrices

putting into engine’s workspace 2-15
putting into MAT-files 2-35

MEX-files
entry point to 2-45

mexCallMATLAB 2-38
mexErrMsgIdAndTxt 2-40 2-65
mexErrMsgTxt 2-42 2-66
mexEvalString 2-44
mexFunction 2-45
mexGetVariable 2-49
mexPrintf 2-57
mexSetTrapFlag 2-62
mwIndex 2-67
mwpointer 2-68
mwSize 2-69
mxaddfield 2-70
mxarray

data type 2-71

Index-1

Index

mxarraytostring 2-73
mxassert 2-74
mxasserts 2-75
mxcalcsinglesubscript 2-76
mxcalloc 2-79
mxchar 2-81
mxclassid 2-82
mxclassidfromclassname 2-85
mxcomplexity 2-86
mxcopycharactertoptr 2-87
mxcopycomplex16toptr 2-88
mxcopycomplex8toptr 2-89
mxcopyinteger1toptr 2-90
mxcopyinteger2toptr 2-91
mxcopyinteger4toptr 2-92
mxcopyptrtocharacter 2-93
mxcopyptrtocomplex16 2-94
mxcopyptrtocomplex8 2-95
mxcopyptrtointeger1 2-96
mxcopyptrtointeger2 2-97
mxcopyptrtointeger4 2-98
mxcopyptrtoptrarray 2-99
mxCopyPtrToReal4 2-100
mxcopyptrtoreal8 2-101
mxcopyreal4toptr 2-102
mxcopyreal8toptr 2-103
mxcreatecellarray 2-104
mxcreatecellmatrix 2-106
mxcreatechararray 2-107
mxcreatecharmatrixfromstrings 2-109
mxcreatedoublematrix 2-111
mxcreatedoublescalar 2-113
mxcreatelogicalarray 2-114
mxcreatelogicalmatrix 2-116
mxcreatelogicalscalar 2-117
mxcreatenumericarray 2-118
mxcreatenumericmatrix 2-122
mxcreatesparse 2-125
mxcreatesparselogicalmatrix 2-127
mxcreatestring 2-128

mxcreatestructarray 2-129
mxcreatestructmatrix 2-131
mxdestroyarray 2-133
mxduplicatearray 2-134
mxfree 2-135
mxgetcell 2-137
mxgetchars 2-139
mxgetclassid 2-140
mxgetclassname 2-141
mxgetdata 2-142
mxgetdimensions 2-143
mxgetelementsize 2-145
mxgeteps 2-146
mxgetfield 2-147
mxgetfieldbynumber 2-150
mxgetfieldnamebynumber 2-153
mxgetfieldnumber 2-155
mxgetimagdata 2-157
mxgetinf 2-158
mxgetir 2-159
mxgetjc 2-161
mxgetlogicals 2-162
mxgetm 2-163
mxgetn 2-164
mxgetnan 2-166
mxgetnumberofdimensions 2-167
mxgetnumberofelements 2-168
mxgetnumberoffields 2-169
mxgetnzmax 2-170
mxgetpi 2-171
mxgetpr 2-172
mxgetscalar 2-173
mxgetstring 2-175
mxiscell 2-177
mxischar 2-178
mxisclass 2-179
mxiscomplex 2-182
mxisdouble 2-183
mxisempty 2-185
mxisfinite 2-186

Index-2

Index

mxisfromglobalws 2-187
mxisinf 2-188
mxisint16 2-189
mxisint32 2-190
mxisint8 2-192
mxislogical 2-193
mxislogicalscalar 2-194
mxislogicalscalartrue 2-195
mxisnan 2-196
mxisnumeric 2-197
mxissingle 2-199
mxissparse 2-200
mxisstruct 2-201
mxisuint16 2-202
mxisuint32 2-203
mxisuint64 2-204
mxisuint8 2-205
mxlogical 2-206
mxmalloc 2-207
mxrealloc 2-209
mxremovefield 2-211
mxsetcell 2-212
mxsetclassname 2-214
mxsetdata 2-215
mxsetdimensions 2-216
mxsetfield 2-218

mxsetfieldbynumber 2-220
mxsetimagdata 2-223
mxsetir 2-224
mxsetjc 2-227
mxsetm 2-230
mxsetn 2-231
mxsetnzmax 2-232
mxsetpi 2-234
mxsetpr 2-235

O
opening MAT-files 2-18 2-32

P
pointer

to MAT-file 2-24
printing 2-54 2-56

S
starting

MATLAB engines 2-2
string

executing statement 2-3

Index-3

MATLAB® 7
Creating Graphical User Interfaces

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

MATLAB Creating Graphical User Interfaces

© COPYRIGHT 2000–2007 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined
in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of
this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government’s
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, SimBiology,
SimHydraulics, SimEvents, and xPC TargetBox are registered trademarks and The
MathWorks, the L-shaped membrane logo, Embedded MATLAB, and PolySpace are
trademarks of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective
holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
November 2000 Online Only New for MATLAB 6.0 (Release 12)
June 2001 Online Only Revised for MATLAB 6.1 (Release 12.1)
July 2002 Online Only Revised for MATLAB 6.6 (Release 13)
June 2004 Online Only Revised for MATLAB 7.0 (Release 14)
October 2004 Online Only Revised for MATLAB 7.0.1 (Release 14SP1)
March 2005 Online Only Revised for MATLAB 7.0.4 (Release 14SP2)
September 2005 Online Only Revised for MATLAB 7.1 (Release 14SP3)
March 2006 Online Only Revised for MATLAB 7.2 (Release 2006a)
May 2006 Online Only Revised for MATLAB 7.2
September 2006 Online Only Revised for MATLAB 7.3 (Release 2006b)
March 2007 Online Only Revised for MATLAB 7.4 (Release 2007a)
September 2007 Online Only Revised for MATLAB 7.5 (Release 2007b)

Contents

About GUIs in MATLAB

1
What Is a GUI? . 1-2

How Does a GUI Work? . 1-4

Where Do I Start? . 1-5

Creating a Simple GUI with GUIDE

2
GUIDE: A Brief Introduction . 2-2

Laying Out a GUI . 2-2
Programming a GUI . 2-2

Example: Simple GUI . 2-3
Simple GUI Overview . 2-3
View Completed Layout and Its GUI M-File 2-4

Laying Out a Simple GUI . 2-5
Opening a New GUI in the Layout Editor 2-5
Setting the GUI Figure Size . 2-8
Adding the Components . 2-9
Aligning the Components . 2-10
Adding Text to the Components . 2-12
Completed Layout . 2-18

Saving the GUI Layout . 2-19

Programming a Simple GUI . 2-21
Adding Code to the M-file . 2-21
Generating Data to Plot . 2-21

v

Programming the Pop-Up Menu . 2-24
Programming the Push Buttons . 2-25

Running the GUI . 2-28

Creating a Simple GUI Programmatically

3
Example: Simple GUI . 3-2

Simple GUI Overview . 3-2
View Completed Example . 3-3

Function Summary . 3-4

Creating a GUI M-File . 3-5

Laying Out a Simple GUI . 3-6
Creating the Figure . 3-6
Adding the Components . 3-6

Initializing the GUI . 3-10

Programming the GUI . 3-13
Programming the Pop-Up Menu . 3-13
Programming the Push Buttons . 3-14
Associating Callbacks with Their Components 3-14

Running the Final GUI . 3-16
Final M-File . 3-16
Running the GUI . 3-19

vi Contents

What Is GUIDE?

4
GUIDE: An Overview . 4-2

GUI Layout . 4-2
GUI Programming . 4-2

GUIDE Tools Summary . 4-3

GUIDE Preferences and Options

5
GUIDE Preferences . 5-2

Setting Prefernces . 5-2
Confirmation Preferences . 5-2
Backward Compatibility Preference 5-4
All Other Preferences . 5-6

GUI Options . 5-9
The GUI Options Dialog Box . 5-9
Resize Behavior . 5-10
Command-Line Accessibility . 5-10
Generate FIG-File and M-File . 5-11
Generate FIG-File Only . 5-13

Laying Out a GUIDE GUI

6
Designing a GUI . 6-3

Starting GUIDE . 6-5

Selecting a GUI Template . 6-7
Accessing the Templates . 6-7
Template Descriptions . 6-8

vii

Setting the GUI Size . 6-16

Adding Components to the GUI . 6-18
Available Components . 6-19
Adding Components to the GUIDE Layout Area 6-22
Defining User Interface Controls . 6-27
Defining Panels and Button Groups 6-43
Defining Axes . 6-48
Adding ActiveX Controls . 6-51
Working with Components in the Layout Area 6-53
Locating and Moving Components . 6-57
Resizing Components . 6-60

Aligning Components . 6-62
Alignment Tool . 6-62
Property Inspector . 6-64
Grid and Rulers . 6-65
Guide Lines . 6-66

Setting Tab Order . 6-67

Creating Menus . 6-70
Menus for the Menu Bar . 6-71
Context Menus . 6-79

Creating Toolbars . 6-84
Creating Toolbars with GUIDE . 6-84
Editing Tool Icons . 6-94
Creating Toolbars Programmatically 6-98

Viewing the Object Hierarchy . 6-100

Designing for Cross-Platform Compatibility 6-101
Default System Font . 6-101
Standard Background Color . 6-102
Cross-Platform Compatible Units . 6-103

viii Contents

Saving and Running a GUIDE GUI

7
Naming a GUI and Its Files . 7-2

The GUI Files . 7-2
File and GUI Names . 7-2
Renaming GUIs and GUI Files . 7-3

Saving a GUI . 7-4
Ways to Save a GUI . 7-4
Saving a New GUI . 7-5
Saving an Existing GUI . 7-8

Running a GUI . 7-10
Executing the M-file . 7-10
From the GUIDE Layout Editor . 7-10
From the Command Line . 7-11
From an M-file . 7-11

Programming a GUIDE GUI

8
Callbacks: An Overview . 8-2

Programming of GUIs Created Using GUIDE 8-2
What Is a Callback? . 8-2
Kinds of Callbacks . 8-2

GUI Files: An Overview . 8-5
M-Files and FIG-Files . 8-5
GUI M-File Structure . 8-6
Adding Callback Templates to an Existing GUI M-File . . . 8-6

Associating Callbacks with Components 8-8
GUI Components . 8-8
Setting Callback Properties Automatically 8-8
Deleting Callbacks from a GUI M-File 8-11

ix

Callback Syntax and Arguments . 8-12
Callback Templates . 8-12
Naming of Callback Functions . 8-13
Changing Callback Names Assigned by GUIDE 8-13
Input Arguments . 8-14
handles Structure . 8-15

Initialization Callbacks . 8-16
Opening Function . 8-16
Output Function . 8-18

Examples: Programming GUIDE GUI Components . . . 8-20
Push Button . 8-20
Toggle Button . 8-21
Radio Button . 8-22
Check Box . 8-23
Edit Text . 8-23
Slider . 8-25
List Box . 8-25
Pop-Up Menu . 8-26
Panel . 8-27
Button Group . 8-28
Axes . 8-30
ActiveX Control . 8-33
Menu Item . 8-41

Managing and Sharing Application Data in
GUIDE

9
Mechanisms for Managing Data . 9-2

Overview . 9-2
GUI Data . 9-2
Application Data . 9-5
UserData Property . 9-6

Sharing Data Among a GUI’s Callbacks 9-8
GUI Data . 9-8
Application Data . 9-11
UserData Property . 9-12

x Contents

Making Multiple GUIs Work Together 9-15
Overview of Data Sharing Techniques 9-15
Example — A GUIDE GUI with a Modal Dialog for User

Input . 9-17
Example — Individual GUIDE GUIs that Work Together as

an Application . 9-23

Examples of GUIDE GUIs

10
GUI with Multiple Axes . 10-2

Multiple Axes Example Outcome . 10-2
Techniques Used in the Example . 10-3
View Completed Layout and Its GUI M-File 10-3
Design of the GUI . 10-3
Plot Push Button Callback . 10-6

List Box Directory Reader . 10-9
List Box Example Outcome . 10-9
View Layout and GUI M-File . 10-10
Implementing the GUI . 10-10
Specifying the Directory to List . 10-11
Loading the List Box . 10-12

Accessing Workspace Variables from a List Box 10-16
Workspace Variable Example Outcome 10-16
Techniques Used in This Example . 10-16
View Completed Layout and Its GUI M-File 10-17
Reading Workspace Variables . 10-18
Reading the Selections from the List Box 10-18

A GUI to Set Simulink Model Parameters 10-21
Set Simulink Model Parameters Example Outcome 10-21
Techniques Used in This Example . 10-22
View Completed Layout and Its GUI M-File 10-22
How to Use the GUI (Text of GUI Help) 10-23
Running the GUI . 10-24
Programming the Slider and Edit Text Components 10-25
Running the Simulation from the GUI 10-28

xi

Removing Results from the List Box 10-29
Plotting the Results Data . 10-30
The GUI Help Button . 10-32
Closing the GUI . 10-33
The List Box Callback and Create Function 10-33

An Address Book Reader . 10-35
Address Book Reader Example Outcome 10-35
Techniques Used in This Example . 10-36
Managing Shared Data . 10-36
View Completed Layout and Its GUI M-File 10-37
Running the GUI . 10-37
Loading an Address Book Into the Reader 10-39
The Contact Name Callback . 10-42
The Contact Phone Number Callback 10-44
Paging Through the Address Book — Prev/Next 10-45
Saving Changes to the Address Book from the Menu 10-46
The Create New Menu . 10-48
The Address Book Resize Function 10-48

Using a Modal Dialog to Confirm an Operation 10-52
Modal Dialog Example Outcome . 10-52
View Completed Layouts and Their GUI M-Files 10-52
Setting Up the Close Confirmation Dialog 10-53
Setting Up the GUI with the Close Button 10-54
Running the GUI with the Close Button 10-55
How the GUI and Dialog Work . 10-56

Laying Out a GUI

11
Designing a GUI . 11-2

Creating and Running the GUI M-File 11-4
File Organization . 11-4
File Template . 11-4
Running the GUI . 11-5

Creating the GUI Figure . 11-7

xii Contents

Adding Components to the GUI . 11-10
Available Components . 11-10
Adding User Interface Controls . 11-13
Adding Panels and Button Groups . 11-28
Adding Axes . 11-33
Adding ActiveX Controls . 11-37

Aligning Components . 11-38
Using the Align Function . 11-38
Examples . 11-40

Setting Tab Order . 11-41
How Tabbing Works . 11-41
Default Tab Order . 11-41
Changing the Tab Order . 11-43

Creating Menus . 11-45
Adding Menu Bar Menus . 11-45
Adding Context Menus . 11-49

Creating Toolbars . 11-56
Using the uitoolbar Function . 11-56
Commonly Used Properties . 11-56
Toolbars . 11-57
Displaying and Modifying the Standard Toolbar 11-60

Designing for Cross-Platform Compatibility 11-62
Default System Font . 11-62
Standard Background Color . 11-63
Cross-Platform Compatible Units . 11-64

Programming the GUI

12
Introduction . 12-2

Initializing the GUI . 12-4
Examples . 12-5

xiii

Callbacks: An Overview . 12-9
What Is a Callback? . 12-9
Kinds of Callbacks . 12-10
Associating Callbacks with Components 12-12

Examples: Programming GUI Components 12-15
Programming User Interface Controls 12-15
Programming Panels and Button Groups 12-23
Programming Axes . 12-25
Programming ActiveX Controls . 12-28
Programming Menu Items . 12-28
Programming Toolbar Tools . 12-31

Managing Application-Defined Data

13
Mechanisms for Managing Data . 13-2

Nested Functions . 13-2
GUI Data . 13-2
Application Data . 13-5
UserData Property . 13-7

Sharing Data Among a GUI’s Callbacks 13-9
Nested Functions . 13-9
GUI Data . 13-13
Application Data . 13-16
UserData Property . 13-18

Managing Callback Execution

14
Callback Interruption . 14-2

Callback Execution . 14-2
How the Interruptible Property Works 14-2
How the Busy Action Property Works 14-3
Example . 14-4

xiv Contents

Examples of GUIs Created Programmatically

15
Introduction . 15-2

GUI with Axes, Menu, and Toolbar 15-3
The Example . 15-3
Techniques Used in the Example . 15-5
View and Run the Completed GUI M-Files 15-5
Creating the Data . 15-6
Creating the GUI and Its Components 15-6
Initializing the GUI . 15-11
Defining the Callbacks . 15-12
Helper Function: Plotting the Plot Types 15-16

Color Palette . 15-17
The Example . 15-17
Techniques Used in the Example . 15-21
View and Run the Completed GUI M-File 15-21
Subfunction Summary . 15-21
M-File Structure . 15-23
GUI Programming Techniques . 15-24

Icon Editor . 15-29
The Example . 15-29
Techniques Used in the Example . 15-32
View and Run the Completed GUI M-Files 15-32
Subfunction Summary . 15-32
M-File Structure . 15-35
GUI Programming Techniques . 15-35

Examples

A
Simple Examples (GUIDE) . A-2

Simple Examples (Programmatic) A-2

xv

Programming GUI Components (GUIDE) A-2

Application-Defined Data (GUIDE) A-2

Application Examples (GUIDE) . A-3

GUI Layout (Programmatic) . A-3

Programming GUI Components (Programmatic) A-3

Application-Defined Data (Programmatic) A-4

Application Examples (Programmatic) A-4

Index

xvi Contents

Introduction to Creating GUIs

Chapter 1, About GUIs in
MATLAB (p. 1-1)

Explains what a GUI is, how
a GUI works, and how to get
started creating a GUI.

Chapter 2, Creating a Simple
GUI with GUIDE (p. 2-1)

Steps you through the process
of creating a simple GUI using
GUIDE.

Chapter 3, Creating a Simple
GUI Programmatically (p. 3-1)

Steps you through the process
of creating a simple GUI
programmatically.

1

About GUIs in MATLAB

What Is a GUI? (p. 1-2) Explains a graphical user interface
(GUI) from a GUI user’s perspective.

How Does a GUI Work? (p. 1-4) Explains how a GUI operates from a
software point of view.

Where Do I Start? (p. 1-5) Describes different techniques for
creating GUIs in MATLAB®.

1 About GUIs in MATLAB

What Is a GUI?
A graphical user interface (GUI) is a graphical display that contains devices,
or components, that enable a user to perform interactive tasks. To perform
these tasks, the user of the GUI does not have to create a script or type
commands at the command line. Often, the user does not have to know the
details of the task at hand.

The GUI components can be menus, toolbars, push buttons, radio buttons, list
boxes, and sliders—just to name a few. In MATLAB, a GUI can also display
data in tabular form or as plots, and can group related components.

The following figure illustrates a simple GUI.

The GUI contains

• An axes component

• A pop-up menu listing three data sets that correspond to MATLAB
functions: peaks, membrane, and sinc

• A static text component to label the pop-up menu

• Three buttons that provide different kinds of plots: surface, mesh, and
contour

1-2

What Is a GUI?

When you click a push button, the axes component displays the selected data
set using the specified plot.

1-3

1 About GUIs in MATLAB

How Does a GUI Work?
Each component, and the GUI itself, is associated with one or more
user-written routines known as callbacks. The execution of each callback is
triggered by a particular user action such as a button push, mouse click,
selection of a menu item, or the cursor passing over a component. You, as the
creator of the GUI, provide these callbacks.

In the GUI described in “What Is a GUI?” on page 1-2, the user selects a data
set from the pop-up menu, then clicks one of the plot type buttons. Clicking
the button triggers the execution of a callback that plots the selected data
in the axes.

This kind of programming is often referred to as event-driven programming.
The event in the example is a button click. In event-driven programming,
callback execution is asynchronous, controlled by events external to the
software. In the case of MATLAB GUIs, these events usually take the form
of user interactions with the GUI.

The writer of a callback has no control over the sequence of events that leads
to its execution or, when the callback does execute, what other callbacks might
be running simultaneously.

1-4

Where Do I Start?

Where Do I Start?
First you have to design your GUI. You have to decide what you want it to do,
how you want the user to interact with it, and what components you need.
“Designing a GUI” on page 6-3 lists references that may be of help.

Next, you must decide what technique you want to use to create your GUI.
MATLAB enables you to create GUIs programmatically or with GUIDE, an
interactive GUI builder. It also provides functions that simplify the creation of
standard dialog boxes. The technique you choose depends on your experience,
your preferences, and the kind of GUI you want to create. This table outlines
some possibilities.

GUI Technique

Dialog box MATLAB provides a selection of
standard dialog boxes that you
can create with a single function
call. For links to these functions,
see “Predefined Dialog Boxes” in
the MATLAB Function Reference
documentation.

GUI containing just a few
components

It is often simpler to create GUIs
that contain only a few components
programmatically. Each component
can be fully defined with a single
function call.

Moderately complex GUIs GUIDE simplifies the creation of
such GUIs.

Complex GUIs with many
components, and GUIs that
require interaction with other GUIs

Creating such GUIs
programmatically lets you control
exact placement of the components
and provides reproducibility.

Once you have decided which technique you want to use, you can continue to
learn about creating GUIs in MATLAB by following the examples in these
topics:

1-5

1 About GUIs in MATLAB

• Chapter 2, “Creating a Simple GUI with GUIDE”

• Chapter 3, “Creating a Simple GUI Programmatically”

1-6

2

Creating a Simple GUI with
GUIDE

GUIDE: A Brief Introduction (p. 2-2) Introduces GUIDE, the graphical
user interface development
environment.

Example: Simple GUI (p. 2-3) Describes the example to be
constructed.

Laying Out a Simple GUI (p. 2-5) Lays out the GUI’s components,
including moving, aligning, and
labeling components.

Saving the GUI Layout (p. 2-19) Saves the GUI and gives it a name.

Programming a Simple GUI (p. 2-21) Generates the data to plot and adds
code for each component to the GUI
M-file to make the GUI work.

Running the GUI (p. 2-28) Runs the GUI and demonstrates
how the components work together.

2 Creating a Simple GUI with GUIDE

GUIDE: A Brief Introduction

In this section...

“Laying Out a GUI” on page 2-2

“Programming a GUI” on page 2-2

Laying Out a GUI
GUIDE, the MATLAB graphical user interface development environment,
provides a set of tools for creating graphical user interfaces (GUIs). These
tools simplify the process of laying out and programming GUIs.

The GUIDE Layout Editor enables you to populate a GUI by clicking and
dragging GUI components — such as buttons, text fields, sliders, axes, and so
on — into the layout area. It also enables you to create menus and context
menus for the GUI.

Other tools, which are accessible from the Layout Editor, enable you to size
the GUI, modify component look and feel, align components, set tab order,
view a hierarchical list of the component objects, and set GUI options.

The following topic, “Laying Out a Simple GUI” on page 2-5, uses some
of these tools to show you the basics of laying out a GUI. “GUIDE Tools
Summary” on page 4-3 describes the tools.

Programming a GUI
When you save your GUI layout, GUIDE automatically generates an M-file
that you can use to control how the GUI works. This M-file provides code
to initialize the GUI and contains a framework for the GUI callbacks—the
routines that execute in response to user-generated events such as a mouse
click. Using the M-file editor, you can add code to the callbacks to perform the
functions you want. “Programming a Simple GUI” on page 2-21 shows you
what code to add to the example M-file to make the GUI work.

2-2

Example: Simple GUI

Example: Simple GUI

In this section...

“Simple GUI Overview” on page 2-3

“View Completed Layout and Its GUI M-File” on page 2-4

Simple GUI Overview
This section shows you how to use GUIDE to create the graphical user
interface (GUI) shown in the following figure.

The GUI contains

• An axes component

• A pop-up menu listing three different data sets that correspond to MATLAB
functions: peaks, membrane, and sinc

• A static text component to label the pop-up menu

• Three push buttons, each of which provides a different kind of plot: surface,
mesh, and contour

2-3

2 Creating a Simple GUI with GUIDE

To use the GUI, select a data set from the pop-up menu, then click one of the
plot-type buttons. Clicking the button triggers the execution of a callback that
plots the selected data in the axes.

Subsequent topics, starting with “Laying Out a Simple GUI” on page 2-5,
guide you through the steps to create this GUI. We recommend that you
create the GUI for yourself, as this is the best way to learn how to use GUIDE.

View Completed Layout and Its GUI M-File
If you are reading this in the MATLAB Help browser, you can click the
following links to display the GUIDE Layout Editor and the MATLAB Editor
with a completed version of this example.

Note The following links execute MATLAB commands and are designed to
work within the MATLAB Help browser. If you are reading this online or
in PDF, you should go to the corresponding section in the MATLAB Help
Browser to use the links.

• Click here to display this GUI in the Layout Editor.

• Click here to display the GUI M-file in the MATLAB Editor.

2-4

Laying Out a Simple GUI

Laying Out a Simple GUI

In this section...

“Opening a New GUI in the Layout Editor” on page 2-5

“Setting the GUI Figure Size” on page 2-8

“Adding the Components” on page 2-9

“Aligning the Components” on page 2-10

“Adding Text to the Components” on page 2-12

“Completed Layout” on page 2-18

Opening a New GUI in the Layout Editor

1 Start GUIDE by typing guide at the MATLAB prompt. This displays the
GUIDE Quick Start dialog shown in the following figure.

2-5

2 Creating a Simple GUI with GUIDE

2 In the Quick Start dialog, select the Blank GUI (Default) template.
Click OK to display the blank GUI in the Layout Editor, as shown in the
following figure.

2-6

Laying Out a Simple GUI

3 Display the names of the GUI components in the component palette. Select
Preferences from the MATLAB File menu. Then select GUIDE > Show
names in component palette, and click OK. The Layout Editor then
appears as shown in the following figure.

2-7

2 Creating a Simple GUI with GUIDE

Setting the GUI Figure Size
Set the size of the GUI by resizing the grid area in the Layout Editor. Click
the lower-right corner and drag it until the GUI is approximately 3 inches
high and 4 inches wide. If necessary, make the window larger.

�������	
�
���
��	�����������

2-8

Laying Out a Simple GUI

Adding the Components

1 Add the three push buttons to the GUI. For each push button, select the
push button from the component palette at the left of the Layout Editor
and drag it into the layout area. Position them approximately as shown in
the following figure.

2 Add the remaining components to the GUI.

• A static text area

• A pop-up menu

• An axes

2-9

2 Creating a Simple GUI with GUIDE

Arrange the components as shown in the following figure. Resize the axes
component to approximately 2-by-2 inches.

Aligning the Components
You can use the Alignment Tool to align components with respect to one
another, if they have the same parent. To align the three push buttons:

1 Select all three push buttons by pressing Ctrl and clicking them.

2 Select Align Objects from the Tools menu to display the Alignment Tool.

2-10

Laying Out a Simple GUI

3 Make these settings in the Alignment Tool, as shown in the following figure:

• 20 pixels spacing between push buttons in the vertical direction.

• Left-aligned in the horizontal direction.

2-11

2 Creating a Simple GUI with GUIDE

4 Click OK. Your GUI now looks like this in the Layout Editor.

Adding Text to the Components
Although the push buttons, pop-up menu, and static text show some text in
the Layout Editor, the text is not appropriate to the GUI being created. This
topic shows you how to modify the default text.

• “Labeling the Push Buttons” on page 2-13

• “Entering Pop-Up Menu Items” on page 2-15

• “Modifying the Static Text” on page 2-17

2-12

Laying Out a Simple GUI

After you have added the appropriate text, the GUI will look like this in the
Layout Editor.

Labeling the Push Buttons
Each of the three push buttons lets the user choose a plot type: surf, mesh,
and contour. This topic shows you how to label the buttons with those choices.

1 Select Property Inspector from the View menu.

2-13

2 Creating a Simple GUI with GUIDE

2 In the layout area, select the top push button by clicking it.

3 In the Property Inspector, select the String property and then replace the
existing value with the word Surf.

4 Click outside the String field. The push button label changes to Surf.

2-14

Laying Out a Simple GUI

5 Select each of the remaining push buttons in turn and repeat steps 3 and 4.
Label the middle push button Mesh, and the bottom button Contour.

Entering Pop-Up Menu Items
The pop-up menu provides a choice of three data sets: peaks, membrane, and
sinc. These data sets correspond to MATLAB functions of the same name.
This topic shows you how to list those data sets as choices in the pop-menu.

1 In the layout area, select the pop-up menu by clicking it.

2 In the Property Inspector, click the button next to String. The String
dialog box displays.

2-15

2 Creating a Simple GUI with GUIDE

3 Replace the existing text with the names of the three data sets: Peaks,
Membrane, and Sinc. Press Enter to move to the next line.

2-16

Laying Out a Simple GUI

4 When you are done, click OK. The first item in your list, Peaks, appears in
the pop-up menu in the layout area.

Modifying the Static Text
In this GUI, the static text serves as a label for the pop-up menu. The user
cannot change this text. This topic shows you how to change the static text
to read Select Data.

1 In the layout area, select the static text by clicking it.

2 In the Property Inspector, click the button next to String. In the String
dialog box that displays, replace the existing text with the phrase
Select Data.

2-17

2 Creating a Simple GUI with GUIDE

3 Click OK. The phrase Select Data appears in the static text component
above the pop-up menu.

Completed Layout
In the Layout Editor, your GUI now looks like this and the next step is to
save the layout. The next topic, “Saving the GUI Layout” on page 2-19, tells
you how to do this.

2-18

Saving the GUI Layout

Saving the GUI Layout
When you save a GUI, GUIDE creates two files, a FIG-file and an M-file. The
FIG-file, with extension .fig, is a binary file that contains a description of the
layout. The M-file, with extension .m, contains the code that controls the GUI.

1 Save and activate your GUI by selecting Run from the Tools menu.

2 GUIDE displays the following dialog box. Click Yes to continue.

3 GUIDE opens a Save As dialog box in your current directory and prompts
you for a FIG-file name.

4 Browse to any directory for which you have write privileges, and then enter
the filename simple_gui for the FIG-file. GUIDE saves both the FIG-file
and the M-file using this name.

5 If the directory in which you save the GUI is not on the MATLAB path,
GUIDE opens a dialog box, giving you the option of changing the current

2-19

2 Creating a Simple GUI with GUIDE

working directory to the directory containing the GUI files, or adding that
directory to the top or bottom of the MATLAB path.

6 GUIDE saves the files simple_gui.fig and simple_gui.m and activates
the GUI. It also opens the GUI M-file in your default editor.

The GUI is active. You can select a data set in the pop-up menu and click
the push buttons. But nothing happens. This is because there is no code
in the M-file to service the pop-up menu and the buttons. The next step
is to program the GUI. The next topic, “Programming a Simple GUI” on
page 2-21, shows you how to do this.

2-20

Programming a Simple GUI

Programming a Simple GUI

In this section...

“Adding Code to the M-file” on page 2-21

“Generating Data to Plot” on page 2-21

“Programming the Pop-Up Menu” on page 2-24

“Programming the Push Buttons” on page 2-25

Adding Code to the M-file
When you saved your GUI in the previous topic, “Saving the GUI Layout” on
page 2-19, GUIDE created two files: a FIG-file simple_gui.fig that contains
the GUI layout, and an M-file simple_gui.m that contains the code that
controls the GUI. But the GUI didn’t do anything because there was no code
in the M-file to make it work. This topic shows you how to add code to the
M-file to make it work. There are three steps:

Generating Data to Plot
This topic shows you how to generate the data to be plotted when the user
clicks a button. This data is generated in the opening function. The opening
function is the first callback in every GUIDE-generated GUI M-file. You
can use it to perform tasks that need to be done before the user has access
to the GUI.

In this example, you add code that creates three data sets to the opening
function. The code uses the MATLAB functions peaks, membrane, and sinc.

1 Display the opening function in the M-file editor. If the GUI M-file,
simple_gui.m, is not already open in your editor, open it by selecting
M-file Editor from the View menu. In the editor, click the function icon

on the toolbar, then select simple_gui_OpeningFcn in the pop-up
menu that displays.

2-21

2 Creating a Simple GUI with GUIDE

The cursor moves to the opening function, which already contains this code:

% --- Executes just before simple_gui is made visible.

function simple_gui_OpeningFcn(hObject, eventdata, handles, varargin)

% This function has no output args, see OutputFcn.

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% varargin command line arguments to simple_gui (see VARARGIN)

% Choose default command line output for simple_gui

handles.output = hObject;

% Update handles structure

guidata(hObject, handles);

% UIWAIT makes simple_gui wait for user response (see UIRESUME)

% uiwait(handles.figure1);

2-22

Programming a Simple GUI

2 Create data for the GUI to plot by adding the following code to the opening
function immediately after the comment that begins % varargin...

% Create the data to plot.
handles.peaks=peaks(35);
handles.membrane=membrane;
[x,y] = meshgrid(-8:.5:8);
r = sqrt(x.^2+y.^2) + eps;
sinc = sin(r)./r;
handles.sinc = sinc;
% Set the current data value.
handles.current_data = handles.peaks;
surf(handles.current_data)

The first six executable lines create the data using the MATLAB functions
peaks, membrane, and sinc. They store the data in the handles structure,
which is passed as an argument to all callbacks. Callbacks for the push
buttons can retrieve the data from the handles structure.

The last two lines create a current data value and set it to peaks, and then
display the surf plot for peaks. The following figure shows how the GUI
now looks when it first displays.

2-23

2 Creating a Simple GUI with GUIDE

Programming the Pop-Up Menu
The pop-up menu enables the user to select the data to plot. When the GUI
user selects one of the three plots, MATLAB sets the pop-up menu Value
property to the index of the selected string. The pop-up menu callback
reads the pop-up menu Value property to determine what item is currently
displayed and sets handles.current_data accordingly.

1 Display the pop-up menu callback in the M-file editor. Right-click the
pop-up menu component in the Layout Editor to display a context menu.
From that menu, select View Callbacks > Callback.

The GUI M-file opens in the editor if it is not already open, and the cursor
moves to the pop-menu callback, which already contains this code:

% --- Executes on selection change in popupmenu1.

function popupmenu1_Callback(hObject, eventdata, handles)

% hObject handle to popupmenu1 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

2 Add the following code to the popupmenu1_Callback after the comment
that begins % handles...

2-24

Programming a Simple GUI

This code first retrieves two pop-up menu properties:

• String — a cell array that contains the menu contents

• Value — the index into the menu contents of the selected data set

It then uses a switch statement to make the selected data set the current
data. The last statement saves the changes to the handles structure.

% Determine the selected data set.
str = get(hObject, 'String');
val = get(hObject,'Value');
% Set current data to the selected data set.
switch str{val};
case 'Peaks' % User selects peaks.

handles.current_data = handles.peaks;
case 'Membrane' % User selects membrane.

handles.current_data = handles.membrane;
case 'Sinc' % User selects sinc.

handles.current_data = handles.sinc;
end
% Save the handles structure.
guidata(hObject,handles)

Programming the Push Buttons
Each of the push buttons creates a different type of plot using the data
specified by the current selection in the pop-up menu. The push button
callbacks get data from the handles structure and then plot it.

2-25

2 Creating a Simple GUI with GUIDE

1 Display the Surf push button callback in the M-file editor. Right-click the
Surf push button in the Layout Editor to display a context menu. From
that menu, select View Callbacks > Callback.

The GUI M-file opens in the editor if it is not already open, and the cursor
moves to the Surf push button callback, which already contains this code:

% --- Executes on button press in pushbutton1.

function pushbutton1_Callback(hObject, eventdata, handles)

% hObject handle to pushbutton1 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

2 Add the following code to the callback immediately after the comment that
begins % handles...

% Display surf plot of the currently selected data.
surf(handles.current_data);

3 Repeat steps 1 and 2 to add similar code to the Mesh and Contour push
button callbacks.

• Add this code to the Mesh push button callback, pushbutton2_Callback:

2-26

Programming a Simple GUI

% Display mesh plot of the currently selected data.
mesh(handles.current_data);

• Add this code to the Contour push button callback,
pushbutton3_Callback:

% Display contour plot of the currently selected data.
contour(handles.current_data);

4 Save the M-file by selecting Save from the File menu.

Your GUI is ready to run. The next topic, “Running the GUI” on page 2-28,
tells you how to do that.

2-27

2 Creating a Simple GUI with GUIDE

Running the GUI
In the previous topic, you programmed the pop-up menu and the push buttons.
You also created data for them to use and initialized the display. Now you can
run your GUI and see how it works.

1 Run your GUI by selecting Run from the Layout Editor Tools menu. If
the GUI is on your MATLAB path or in your current directory, you can also
run it by typing its name, simple_gui, at the prompt. The GUI looks like
this when it first displays:

2-28

Running the GUI

2 In the pop-up menu, select Membrane, then click the Mesh button. The
GUI displays a mesh plot of the MATLAB logo.

3 Try other combinations before closing the GUI.

2-29

2 Creating a Simple GUI with GUIDE

2-30

3

Creating a Simple GUI
Programmatically

Example: Simple GUI (p. 3-2) Describes the example to be
constructed.

Function Summary (p. 3-4) Lists the functions that are used in
the construction of the example.

Creating a GUI M-File (p. 3-5) Creates the file that holds the GUI
script and adds help comments to
the file.

Laying Out a Simple GUI (p. 3-6) Creates the figure and adds the
components.

Initializing the GUI (p. 3-10) Performs various initialization
chores and generates the data to plot

Programming the GUI (p. 3-13) Adds code for each component to the
GUI M-file to make the GUI work.

Running the Final GUI (p. 3-16) Runs the final GUI and demonstrates
how the components work together.

3 Creating a Simple GUI Programmatically

Example: Simple GUI

Simple GUI Overview
This section shows you how to write a script that creates the example
graphical user interface (GUI) shown in the following figure.

The GUI contains

• An axes

• A pop-up menu listing three data sets that correspond to MATLAB
functions: peaks, membrane, and sinc

• A static text component to label the pop-up menu

• Three push buttons, each of which provides a different kind of plot: surface,
mesh, and contour

To use the GUI, the user selects a data set from the pop-up menu, then clicks
one of the plot-type push buttons. Clicking the button triggers the execution
of a callback that plots the selected data in the axes.

3-2

Example: Simple GUI

The next topic, “Function Summary” on page 3-4, summarizes the functions
used to create this example GUI.

Subsequent topics guide you through the process of creating the GUI. This
process begins with “Creating a GUI M-File” on page 3-5. We recommend
that you create the GUI for yourself.

View Completed Example
If you are reading this in the MATLAB Help browser, you can click the
following links to display the example GUI and its M-file.

Note The following links execute MATLAB commands and are designed to
work within the MATLAB Help browser. If you are reading this online or
in PDF, you should go to the corresponding section in the MATLAB Help
Browser to use the links.

• Click here to display the example GUI.

• Click here to display the GUI M-file in the MATLAB Editor.

3-3

3 Creating a Simple GUI Programmatically

Function Summary
MATLAB provides a suite of functions for creating GUIs. This topic introduces
you to the functions you need to create the example GUI.

Functions Used to Create the Simple GUI

Function Description

align Align GUI components such as user interface
controls and axes.

axes Create axes objects.

figure Create figure objects. A GUI is a figure object.

movegui Move GUI figure to specified location on screen.

uicontrol Create user interface control objects, such as
push buttons, static text, and pop-up menus.

Other MATLAB Functions Used to Program the GUI

Function Description

contour Contour graph of a matrix

eps Floating point relative accuracy

get Query object properties

membrane Generate the MATLAB logo

mesh Mesh plot

meshgrid Generate X and Y arrays for 3-D plots

peaks Example function of two variables.

set Set object properties

sin Sine; result in radians

sqrt Square root

surf 3-D shaded surface plot

3-4

Creating a GUI M-File

Creating a GUI M-File
Start by creating an M-file for the example GUI.

1 At the MATLAB prompt, type edit. MATLAB opens the editor.

2 Type or copy the following statement into the editor. This function
statement is the first line in the file.

function simple_gui2

3 Add these comments to the M-file following the function statement. They
are displayed at the command line in response to the help command. They
must be followed by a blank line.

% SIMPLE_GUI2 Select a data set from the pop-up menu, then
% click one of the plot-type push buttons. Clicking the button
% plots the selected data in the axes.
(Leave a blank line here)

4 Add an end statement at the end of the file. This end statement matches
the function statement. Your file now looks like this.

function simple_gui2
% SIMPLE_GUI2 Select a data set from the pop-up menu, then
% click one of the plot-type push buttons. Clicking the button
% plots the selected data in the axes.

end

Note You need the end statement because the example is written using
nested functions. For information about using nested functions, see “Nested
Functions” in the MATLAB Programming documentation.

5 Save the file in your current directory or at a location that is on your
MATLAB path.

The next section, “Laying Out a Simple GUI” on page 3-6, shows you how to
add components to your GUI.

3-5

3 Creating a Simple GUI Programmatically

Laying Out a Simple GUI

In this section...

“Creating the Figure” on page 3-6

“Adding the Components” on page 3-6

Creating the Figure
In MATLAB, a GUI is a figure. This first step creates the figure and positions
it on the screen. It also makes the GUI invisible so that the GUI user cannot
see the components being added or initialized. When the GUI has all its
components and is initialized, the example makes it visible.

% Initialize and hide the GUI as it is being constructed.
f = figure('Visible','off','Position',[360,500,450,285]);

The call to the figure function uses two property/value pairs. The Position
property is a four-element vector that specifies the location of the GUI on the
screen and its size: [distance from left, distance from bottom, width, height].
Default units are pixels.

The next topic, “Adding the Components” on page 3-6, shows you how to add
the push buttons, axes, and other components to the GUI.

Adding the Components
The example GUI has six components: three push buttons, one static text,
one pop-up menu, and one axes. Start by writing statements that add these
components to the GUI. Create the push buttons, static text, and pop-up
menu with the uicontrol function. Use the axes function to create the axes.

1 Add the three push buttons to your GUI by adding these statements to your
M-file following the call to figure.

% Construct the components.
hsurf = uicontrol('Style','pushbutton',...

'String','Surf','Position',[315,220,70,25]);
hmesh = uicontrol('Style','pushbutton',...

'String','Mesh','Position',[315,180,70,25]);

3-6

Laying Out a Simple GUI

hcontour = uicontrol('Style','pushbutton',...
'String','Countour','Position',[315,135,70,25]);

These statements use the uicontrol function to create the push buttons.
Each statement uses a series of property/value pairs to define a push
button.

Property Description

Style In the example, pushbutton specifies the component as a
push button.

String Specifies the label that appears on each push button.
Here, there are three types of plots: Surf, Mesh, Contour.

Position Uses a four-element vector to specify the location of each
push button within the GUI and its size: [distance from
left, distance from bottom, width, height]. Default units
for push buttons are pixels.

Each call returns the handle of the component that is created.

2 Add the pop-up menu and its label to your GUI by adding these statements
to the M-file following the push button definitions.

hpopup = uicontrol('Style','popupmenu',...
'String',{'Peaks','Membrane','Sinc'},...
'Position',[300,50,100,25]);

htext = uicontrol('Style','text','String','Select Data',...
'Position',[325,90,60,15]);

For the pop-up menu, the String property uses a cell array to specify the
three items in the pop-up menu: Peaks, Membrane, Sinc. The static text
component serves as a label for the pop-up menu. Its String property
tells the GUI user to Select Data. Default units for these components
are pixels.

3 Add the axes to the GUI by adding this statement to the M-file. Set
the Units property to pixels so that it has the same units as the other
components.

ha = axes('Units','pixels','Position',[50,60,200,185]);

3-7

3 Creating a Simple GUI Programmatically

4 Align all components except the axes along their centers with the following
statement. Add it to the M-file following all the component definitions.

align([hsurf,hmesh,hcontour,htext,hpopup],'Center','None');

5 Make your GUI visible by adding this command following the align
command.

set(f,'Visible','on')

6 This is what your M-file should now look like:

function simple_gui2
% SIMPLE_GUI2 Select a data set from the pop-up menu, then
% click one of the plot-type push buttons. Clicking the button
% plots the selected data in the axes.

% Create and hide the GUI as it is being constructed.
f = figure('Visible','off','Position',[360,500,450,285]);

% Construct the components.
hsurf = uicontrol('Style','pushbutton','String','Surf',...

'Position',[315,220,70,25]);
hmesh = uicontrol('Style','pushbutton','String','Mesh',...

'Position',[315,180,70,25]);
hcontour = uicontrol('Style','pushbutton',...

'String','Countour',...
'Position',[315,135,70,25]);

htext = uicontrol('Style','text','String','Select Data',...
'Position',[325,90,60,15]);

hpopup = uicontrol('Style','popupmenu',...
'String',{'Peaks','Membrane','Sinc'},...
'Position',[300,50,100,25]);

ha = axes('Units','Pixels','Position',[50,60,200,185]);
align([hsurf,hmesh,hcontour,htext,hpopup],'Center','None');

%Make the GUI visible.
set(f,'Visible','on')

end

3-8

Laying Out a Simple GUI

7 Run your script by typing simple_gui2 at the command line. This is what
your GUI now looks like. Note that you can select a data set in the pop-up
menu and click the push buttons. But nothing happens. This is because
there is no code in the M-file to service the pop-up menu and the buttons.

8 Type help simple_gui2 at the command line. MATLAB displays this
help text.

help simple_gui2
SIMPLE_GUI2 Select a data set from the pop-up menu, then
click one of the plot-type push buttons. Clicking the button
plots the selected data in the axes.

The next topic, “Initializing the GUI” on page 3-10, shows you how to initialize
the GUI.

3-9

3 Creating a Simple GUI Programmatically

Initializing the GUI
When you make the GUI visible, it should be initialized so that it is ready for
the user. This topic shows you how to

• Make the GUI behave properly when it is resized by changing the
component and figure units to normalized. This causes the components to
resize when the GUI is resized. Normalized units map the lower-left corner
of the figure window to (0,0) and the upper-right corner to (1.0, 1.0).

• Generate the data to plot. The example needs three sets of data:
peaks_data, membrane_data, and sinc_data. Each set corresponds to
one of the items in the pop-up menu.

• Create an initial plot in the axes

• Assign the GUI a name that appears in the window title

• Move the GUI to the center of the screen

• Make the GUI visible

1 Replace this code in your M-file:

% Make the GUI visible.
set(f,'Visible','on')

with this code:

% Initialize the GUI.
% Change units to normalized so components resize automatically.
set([f,hsurf,hmesh,hcontour,htext,hpopup],'Units','normalized');
% Generate the data to plot.
peaks_data = peaks(35);
membrane_data = membrane;
[x,y] = meshgrid(-8:.5:8);
r = sqrt(x.^2+y.^2) + eps;
sinc_data = sin(r)./r;
% Create a plot in the axes.
current_data = peaks_data;
surf(current_data);
% Assign the GUI a name to appear in the window title.
set(f,'Name','Simple GUI')

3-10

Initializing the GUI

% Move the GUI to the center of the screen.
movegui(f,'center')
% Make the GUI visible.
set(f,'Visible','on');

2 Verify that your M-file now looks like this:

function simple_gui2
% SIMPLE_GUI2 Select a data set from the pop-up menu, then
% click one of the plot-type push buttons. Clicking the button
% plots the selected data in the axes.

% Create and hide the GUI figure as it is being constructed.
f = figure('Visible','off','Position',[360,500,450,285]);

% Construct the components
hsurf = uicontrol('Style','pushbutton','String','Surf',...

'Position',[315,220,70,25]);
hmesh = uicontrol('Style','pushbutton','String','Mesh',...

'Position',[315,180,70,25]);
hcontour = uicontrol('Style','pushbutton',...

'String','Countour',...
'Position',[315,135,70,25]);

htext = uicontrol('Style','text','String','Select Data',...
'Position',[325,90,60,15]);

hpopup = uicontrol('Style','popupmenu',...
'String',{'Peaks','Membrane','Sinc'},...
'Position',[300,50,100,25]);

ha = axes('Units','Pixels','Position',[50,60,200,185]);
align([hsurf,hmesh,hcontour,htext,hpopup],'Center','None');

% Create the data to plot
peaks_data = peaks(35);
membrane_data = membrane;
[x,y] = meshgrid(-8:.5:8);
r = sqrt(x.^2+y.^2) + eps;
sinc_data = sin(r)./r;

% Initialize the GUI.
% Change units to normalized so components resize

3-11

3 Creating a Simple GUI Programmatically

% automatically.
set([f,hsurf,hmesh,hcontour,htext,hpopup],...

'Units','normalized');
%Create a plot in the axes.
current_data = peaks_data;
surf(current_data);
% Assign the GUI a name to appear in the window title.
set(f,'Name','Simple GUI')
% Move the GUI to the center of the screen.
movegui(f,'center')
% Make the GUI visible.
set(f,'Visible','on');

end

3 Run your script by typing simple_gui2 at the command line. This is what
your GUI should now look like:

The next topic, “Programming the GUI” on page 3-13, shows you how
to program the push buttons and pop-up menu so you can interactively
generate different plots in the axes.

3-12

Programming the GUI

Programming the GUI

In this section...

“Programming the Pop-Up Menu” on page 3-13

“Programming the Push Buttons” on page 3-14

“Associating Callbacks with Their Components” on page 3-14

Programming the Pop-Up Menu
The pop-up menu enables users to select the data to plot. When a GUI
user selects one of the three data sets, MATLAB sets the pop-up menu
Value property to the index of the selected string. The pop-up menu callback
reads the pop-up menu Value property to determine which item is currently
displayed and sets current_data accordingly.

Add the following callback to your file following the initialization code and
before the final end statement.

% Pop-up menu callback. Read the pop-up menu Value property to

% determine which item is currently displayed and make it the

% current data. This callback automatically has access to

% current_data because this function is nested at a lower level.

function popup_menu_Callback(source,eventdata)

% Determine the selected data set.

str = get(source, 'String');

val = get(source,'Value');

% Set current data to the selected data set.

switch str{val};

case 'Peaks' % User selects Peaks.

current_data = peaks_data;

case 'Membrane' % User selects Membrane.

current_data = membrane_data;

case 'Sinc' % User selects Sinc.

current_data = sinc_data;

end

end

3-13

3 Creating a Simple GUI Programmatically

The next topic, “Programming the Push Buttons” on page 3-14, shows you
how to write callbacks for the three push buttons.

Programming the Push Buttons
Each of the three push buttons creates a different type of plot using the
data specified by the current selection in the pop-up menu. The push button
callbacks plot the data in current_data. They automatically have access to
current_data because they are nested at a lower level.

Add the following callbacks to your file following the pop-up menu callback
and before the final end statement.

% Push button callbacks. Each callback plots current_data in the
% specified plot type.

function surfbutton_Callback(source,eventdata)
% Display surf plot of the currently selected data.

surf(current_data);
end

function meshbutton_Callback(source,eventdata)
% Display mesh plot of the currently selected data.

mesh(current_data);
end

function contourbutton_Callback(source,eventdata)
% Display contour plot of the currently selected data.

contour(current_data);
end

The next topic shows you how to associate each callback with its specific
component.

Associating Callbacks with Their Components
When the GUI user selects a data set from the pop-up menu or clicks one
of the push buttons, MATLAB executes the callback associated with that
particular event. But how does MATLAB know which callback to execute?

3-14

Programming the GUI

You must use each component’s Callback property to specify the name of the
callback with which it is associated.

1 To the uicontrol statement that defines the Surf push button, add the
property/value pair

'Callback',{@surfbutton_Callback}

so that the statement looks like this:

hsurf = uicontrol('Style','pushbutton','String','Surf',...
'Position',[315,220,70,25],...
'Callback',{@surfbutton_Callback});

Callback is the name of the property. surfbutton_Callback is the name
of the callback that services the Surf push button.

2 Similarly, to the uicontrol statement that defines the Mesh push button,
add the property/value pair

'Callback',{@meshbutton_Callback}

3 To the uicontrol statement that defines the Contour push button, add
the property/value pair

'Callback',{@contourbutton_Callback}

4 To the uicontrol statement that defines the pop-up menu, add the
property/value pair

'Callback',{@popup_menu_Callback}

The next topic, “Running the Final GUI” on page 3-16, shows the final M-file
and runs the GUI.

3-15

3 Creating a Simple GUI Programmatically

Running the Final GUI

In this section...

“Final M-File” on page 3-16

“Running the GUI” on page 3-19

Final M-File
This is what your final M-file should now look like:

function simple_gui2
% SIMPLE_GUI2 Select a data set from the pop-up menu, then
% click one of the plot-type push buttons. Clicking the button
% plots the selected data in the axes.

% Create and then hide the GUI as it is being constructed.
f = figure('Visible','off','Position',[360,500,450,285]);

% Construct the components.
hsurf = uicontrol('Style','pushbutton','String','Surf',...

'Position',[315,220,70,25],...
'Callback',{@surfbutton_Callback});

hmesh = uicontrol('Style','pushbutton','String','Mesh',...
'Position',[315,180,70,25],...
'Callback',{@meshbutton_Callback});

hcontour = uicontrol('Style','pushbutton',...
'String','Countour',...
'Position',[315,135,70,25],...
'Callback',{@contourbutton_Callback});

htext = uicontrol('Style','text','String','Select Data',...
'Position',[325,90,60,15]);

hpopup = uicontrol('Style','popupmenu',...
'String',{'Peaks','Membrane','Sinc'},...
'Position',[300,50,100,25],...
'Callback',{@popup_menu_Callback});

ha = axes('Units','Pixels','Position',[50,60,200,185]);
align([hsurf,hmesh,hcontour,htext,hpopup],'Center','None');

3-16

Running the Final GUI

% Create the data to plot.
peaks_data = peaks(35);
membrane_data = membrane;
[x,y] = meshgrid(-8:.5:8);
r = sqrt(x.^2+y.^2) + eps;
sinc_data = sin(r)./r;

% Initialize the GUI.
% Change units to normalized so components resize
% automatically.
set([f,ha,hsurf,hmesh,hcontour,htext,hpopup],...
'Units','normalized');
%Create a plot in the axes.
current_data = peaks_data;
surf(current_data);
% Assign the GUI a name to appear in the window title.
set(f,'Name','Simple GUI')
% Move the GUI to the center of the screen.
movegui(f,'center')
% Make the GUI visible.
set(f,'Visible','on');

% Callbacks for simple_gui2. These callbacks automatically
% have access to component handles and initialized data
% because they are nested at a lower level.

% Pop-up menu callback. Read the pop-up menu Value property
% to determine which item is currently displayed and make it
% the current data.

function popup_menu_Callback(source,eventdata)
% Determine the selected data set.
str = get(source, 'String');
val = get(source,'Value');
% Set current data to the selected data set.
switch str{val};
case 'Peaks' % User selects Peaks.

current_data = peaks_data;
case 'Membrane' % User selects Membrane.

current_data = membrane_data;
case 'Sinc' % User selects Sinc.

3-17

3 Creating a Simple GUI Programmatically

current_data = sinc_data;
end

end

% Push button callbacks. Each callback plots current_data in
% the specified plot type.

function surfbutton_Callback(source,eventdata)
% Display surf plot of the currently selected data.

surf(current_data);
end

function meshbutton_Callback(source,eventdata)
% Display mesh plot of the currently selected data.

mesh(current_data);
end

function contourbutton_Callback(source,eventdata)
% Display contour plot of the currently selected data.

contour(current_data);
end

end

3-18

Running the Final GUI

Running the GUI

1 Run the simple GUI by typing the name of the M-file at the command line.

simple_gui2

2 In the pop-up menu, select Membrane, and then click the Mesh button.
The GUI displays a mesh plot of the MATLAB logo.

3 Try other combinations before closing the GUI.

3-19

3 Creating a Simple GUI Programmatically

3-20

Creating GUIs with GUIDE

Chapter 4, What Is GUIDE?
(p. 4-1)

Introduces GUIDE

Chapter 5, GUIDE Preferences
and Options (p. 5-1)

Describes briefly the available
MATLAB preferences and GUI
options.

Chapter 6, Laying Out a GUIDE
GUI (p. 6-1)

Shows you how to start GUIDE
and from there how to populate
the GUI and create menus.
Provides guidance in designing
a GUI for cross-platform
compatibility.

Chapter 7, Saving and Running a
GUIDE GUI (p. 7-1)

Describes the files used to store
the GUI. Steps you through the
process for saving a GUI, and
lists the different ways in which
you can activate a GUI.

Chapter 8, Programming a
GUIDE GUI (p. 8-1)

Explains how user-written
callback routines control GUI
behavior. Shows you how to
associate callbacks with specific
components and explains callback
syntax and arguments. Provides
simple programming examples
for each kind of component.

Chapter 9, Managing and
Sharing Application Data in
GUIDE (p. 9-1)

Explains the mechanisms for
managing application-defined
data and explains how to share
data among a GUIs callbacks.

Chapter 10, Examples of GUIDE
GUIs (p. 10-1)

Illustrates techniques for
programming various behaviors.

4

What Is GUIDE?

GUIDE: An Overview (p. 4-2) Introduces GUIDE, the MATLAB
graphical user interface development
environment.

GUIDE Tools Summary (p. 4-3) Introduces the various tools that
comprise GUIDE.

4 What Is GUIDE?

GUIDE: An Overview

In this section...

“GUI Layout” on page 4-2

“GUI Programming” on page 4-2

GUI Layout
GUIDE, the MATLAB graphical user interface development environment,
provides a set of tools for creating graphical user interfaces (GUIs). These
tools simplify the process of laying out and programming GUIs.

Using the GUIDE Layout Editor, you can populate a GUI by clicking and
dragging GUI components—such as axes, panels, buttons, text fields, sliders,
and so on—into the layout area. You can also create menus and context menus
for the GUI. From the Layout Editor, you can size the GUI, modify component
look and feel, align components, set tab order, view a hierarchical list of the
component objects, and set GUI options.

GUI Programming
GUIDE automatically generates an M-file that controls how the GUI operates.
This M-file provides code to initialize the GUI and contains a framework for
the GUI callbacks—the routines that execute when a user interacts with a
GUI component. Using the M-file editor, you can add code to the callbacks
to perform the functions you want.

Note MATLAB provides a selection of standard dialog boxes that you can
create with a single function call. For information about these dialog boxes
and the functions used to create them, see “Predefined Dialog Boxes” in the
MATLAB Function Reference documentation.

4-2

GUIDE Tools Summary

GUIDE Tools Summary
The GUIDE tools are available from the Layout Editor shown in the figure
below. The tools are called out in the figure and described briefly below.
Subsequent sections show you how to use them.

����	��������

��	���
���

������
����
���

�������
���

��������
���

���������	������

������� �!���

"�	

�������	���
�����	

#������
�������$�%
�����	 "������ &

4-3

4 What Is GUIDE?

Use This
Tool... To...

Layout
Editor

Select components from the component palette, at the left
side of the Layout Editor, and arrange them in the layout
area. See “Adding Components to the GUI” on page 6-18
for more information.

Figure
Resize Tab

Set the size at which the GUI is initially displayed when you
run it. See “Setting the GUI Size” on page 6-16 for more
information.

Menu Editor Create menus and context, i.e., pop-up, menus. See
“Creating Menus” on page 6-70 for more information.

Align
Objects

Align and distribute groups of components. Grids and rulers
also enable you to align components on a grid with an
optional snap-to-grid capability. See “Aligning Components”
on page 6-62 for more information.

Tab Order
Editor

Set the tab and stacking order of the components in your
layout. See “Setting Tab Order” on page 6-67 for more
information.

Toolbar
Editor

Create Toolbars containing predefined and custom push
buttons and toggle buttons. See “Creating Toolbars” on page
6-84 for more information.

Icon Editor Create and modify icons for tools in a toolbar. See “Creating
Toolbars” on page 6-84 for more information.

Property
Inspector

Set the properties of the components in your layout. It
provides a list of all the properties you can set and displays
their current values.

Object
Browser

Display a hierarchical list of the objects in the GUI. See
“Viewing the Object Hierarchy” on page 6-100 for more
information.

Run Save and run the current GUI. See Chapter 7, “Saving and
Running a GUIDE GUI” for more information.

4-4

GUIDE Tools Summary

Use This
Tool... To...

M-File
Editor

Display, in your default editor, the M-file associated with the
GUI. See “GUI Files: An Overview” on page 8-5 for more
information.

Position
Readouts

Continuously display the mouse cursor position and the
positions of selected objects

You can also set preferences that apply to all GUIs at creation, and options
that are GUI-specific. See Chapter 5, “GUIDE Preferences and Options” for
more information.

4-5

4 What Is GUIDE?

4-6

5

GUIDE Preferences and
Options

GUIDE Preferences (p. 5-2) MATLAB preferences for the GUIDE
Layout Editor.

GUI Options (p. 5-9) GUIDE options for individual GUIs.

5 GUIDE Preferences and Options

GUIDE Preferences

In this section...

“Setting Prefernces” on page 5-2

“Confirmation Preferences” on page 5-2

“Backward Compatibility Preference” on page 5-4

“All Other Preferences” on page 5-6

Setting Prefernces
You can set preferences for GUIDE by selecting Preferences from the File
menu. These preferences apply to GUIDE and to all GUIs you create.

The preferences are in different locations within the Preferences dialog box:

Confirmation Preferences
GUIDE provides two confirmation preferences. You can choose whether you
want to display a confirmation dialog box when you

• Activate a GUI from GUIDE

• Export a GUI from GUIDE

5-2

GUIDE Preferences

In the Preferences dialog box, click General > Confirmation Dialogs to
access the GUIDE confirmation preferences. Look for the word GUIDE in the
Tool column.

Prompt to Save on Activate
When you activate a GUI by clicking the Run button in the Layout Editor,
a dialog box informs you of the impending save and lets you choose whether
or not you want to continue.

5-3

5 GUIDE Preferences and Options

Prompt to Save on Export
When you select Export from the Layout Editor File menu, a dialog box
informs you of the impending save and lets you choose whether or not you
want to continue.

Backward Compatibility Preference

Ensure Backward Compatibility (-v6)
GUI FIG-files created or modified with MATLAB 7.0 or a later MATLAB
version are not automatically compatible with Version 6.5 and earlier
versions. GUIDE automatically generates FIG-files, which are a kind of
MAT-file, to hold layout information for GUIs.

5-4

GUIDE Preferences

To make a FIG-file backward compatible, you must select Ensure
backward compatibility (-v6) in the Preferences dialog box under
General > MAT-Files. This is shown in the figure below.

5-5

5 GUIDE Preferences and Options

All Other Preferences
GUIDE provides several other preferences for the Layout Editor interface
and M-file comments. In the Preferences dialog box, click GUIDE to access
these preferences.

The following topics describe the preferences in this dialog:

• “Show Toolbar” on page 5-7

• “Show Names in Component Palette” on page 5-7

• “Show File Extension in Window Title” on page 5-8

• “Show File Path in Window Title” on page 5-8

• “Add Comments for Newly Generated Callback Functions” on page 5-8

5-6

GUIDE Preferences

Show Toolbar
Displays the following toolbar in the Layout Editor window.

Show Names in Component Palette
Displays both icons and names in the component palette, as shown below.
When unchecked, the icons alone are displayed in two columns.

5-7

5 GUIDE Preferences and Options

Show File Extension in Window Title
Displays the GUI FIG-file filename with its file extension, .fig, in the Layout
Editor window title. If unchecked, only the filename is displayed.

Show File Path in Window Title
Displays the full file path in the Layout Editor window title. If unchecked,
the file path is not displayed.

Add Comments for Newly Generated Callback Functions
When this preference is checked, GUIDE includes the comment lines shown
in the following example to all callbacks that are added to the M-file.

% --- Executes during object deletion, before destroying properties.

function figure1_DeleteFcn(hObject, eventdata, handles)

% hObject handle to figure1 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

Some callbacks are added automatically because their associated components
are part of the original GUIDE template that you chose. Other commonly
used callbacks are added automatically when you add components. You can
also add callbacks explicitly by selecting them from View Callbacks on the
View menu or on the component’s context menu.

If this preference is unchecked, GUIDE includes comments only for callbacks
that are automatically included to support the original GUIDE template. No
comments are included for any other callbacks that are added to the M-file.

See “Callback Syntax and Arguments” on page 8-12 for more information
about callbacks and about the arguments described in the comments above.

5-8

GUI Options

GUI Options

In this section...

“The GUI Options Dialog Box” on page 5-9

“Resize Behavior” on page 5-10

“Command-Line Accessibility” on page 5-10

“Generate FIG-File and M-File” on page 5-11

“Generate FIG-File Only” on page 5-13

The GUI Options Dialog Box
You can use the GUI Options dialog box to configure various behaviors that
are specific to the GUI you are creating. These options take effect when you
next save the GUI.

Access the dialog box by selecting GUI Options from the Layout Editor
Tools menu.

The following sections describe the options in this dialog box:

5-9

5 GUIDE Preferences and Options

Resize Behavior
You can control whether users can resize the figure window containing your
GUI and how MATLAB handles resizing. GUIDE provides three options:

• Non-resizable — Users cannot change the window size (default).

• Proportional — MATLAB automatically rescales the components in the
GUI in proportion to the new figure window size.

• Other (Use ResizeFcn) — Program the GUI to behave in a certain way
when users resize the figure window.

The first two options set figure and component properties appropriately and
require no other action. Other (Use ResizeFcn) requires you to write a
callback routine that recalculates sizes and positions of the components based
on the new figure size.

Command-Line Accessibility
You can restrict access to a GUI figure from the command line or from an
M-file by using the GUIDE Command-line accessibility options.

Unless you explicitly specify a figure handle, many commands, such as plot,
alter the current figure, i.e., the figure specified by the root CurrentFigure
property and returned by the gcf command. The current figure is usually the
figure that is most recently created or clicked in. However, a figure can also
become the current figure with the statement

figure(h)

or by setting the CurrentFigure property to the figure’s handle.

The gcf function returns the handle of the current figure.

h = gcf

For a GUI created in GUIDE, set the Command-line accessibility option
to prevent users from inadvertently changing the appearance or content
of a GUI by executing commands at the command line or from an M-file,
such as plot. The following table briefly describes the four options for
Command-line accessibility.

5-10

GUI Options

Option Description

Callback (GUI becomes Current
Figure within Callbacks)

The GUI can be accessed only
from within a GUI callback. The
GUI cannot be accessed from the
command line or from an M-script.
This is the default.

Off (GUI never becomes Current
Figure)

The GUI can not be accessed from
a callback, the command line, or an
M-script, without the handle.

On (GUI may become Current
Figure from Command Line)

The GUI can be accessed from a
callback, from the command line,
and from an M-script.

Other (Use settings from
Property Inspector)

You control accessibility by setting
the HandleVisibility and
IntegerHandle properties from the
Property Inspector.

Generate FIG-File and M-File
Select Generate FIG-file and M-file in the GUI Options dialog box if
you want GUIDE to create both the FIG-file and the GUI M-file (this is
the default). Once you have selected this option, you can select any of the
following items in the frame to configure the M-file:

• “Generate Callback Function Prototypes” on page 5-11

• “GUI Allows Only One Instance to Run (Singleton)” on page 5-12

• “Use System Color Scheme for Background” on page 5-12

See “GUI Files: An Overview” on page 8-5 for information about these files.

Generate Callback Function Prototypes
If you select Generate callback function prototypes in the GUI Options
dialog, GUIDE adds templates for the most commonly used callbacks to the
GUI M-file for most components you add to the GUI. You must then write
the code for these callbacks.

5-11

5 GUIDE Preferences and Options

GUIDE also adds a callback whenever you edit a callback routine from the
Layout Editor’s right-click context menu and when you add menus to the
GUI using the Menu Editor.

See “Callback Syntax and Arguments” on page 8-12 for general information
about callbacks.

Note This option is available only if you first select the Generate FIG-file
and M-File option.

GUI Allows Only One Instance to Run (Singleton)
This option allows you to select between two behaviors for the GUI figure:

• Allow MATLAB to display only one instance of the GUI at a time.

• Allow MATLAB to display multiple instances of the GUI.

If you allow only one instance, MATLAB reuses the existing GUI figure
whenever the command to run the GUI is issued. If a GUI already exists,
MATLAB brings it to the foreground rather than creating a new figure.

If you clear this option, MATLAB creates a new GUI figure whenever you
issue the command to run the GUI.

Note This option is available only if you first select the Generate FIG-file
and M-File option.

Use System Color Scheme for Background
The default color used for GUI components is system dependent. This option
enables you to make the figure background color the same as the default
component background color.

If you select Use system color scheme for background (the default),
GUIDE changes the figure background color to match the color of the GUI
components.

5-12

GUI Options

The following figures illustrate the results with and without system color
matching.

Note This option is available only if you first select the Generate FIG-file
and M-File option.

Generate FIG-File Only
The Generate FIG-file only option enables you to open figures and GUIs
to perform limited editing. These can be any figures and need not be GUIs.
GUIs need not have been generated using GUIDE. This mode provides
limited editing capability and may be useful for GUIs generated in MATLAB
Versions 5.3 and earlier. See the guide function for more information.

GUIDE selects Generate FIG-file only as the default if you do one of the
following:

• Start GUIDE from the command line and provide one or more figure
handles as arguments.

guide(fh)

5-13

5 GUIDE Preferences and Options

In this case, GUIDE selects Generate FIG-file only even though there
may be a corresponding M-file in the same location.

• Start GUIDE from the command line and provide the name of a FIG-file for
which no M-file with the same name exists in the same location.

guide('myfig.fig')

• Use the GUIDE Open Existing GUI tab to open a FIG-file for which no
M-file with the same name exists in the same location.

When you save the figure or GUI with Generate FIG-file only selected,
GUIDE saves only the FIG-file. You must update any corresponding M-files
as appropriate.

If you want GUIDE to manage the GUI M-file for you, change the selection
to Generate FIG-file and M-file before saving the GUI. If there is no
corresponding M-file in the same location, GUIDE creates one. If an M-file
with the same name as the original figure or GUI exists in the same location,
GUIDE overwrites it. To prevent this, save the GUI using Save As from the
File menu and select another filename. You must update the new M-file as
appropriate.

5-14

6

Laying Out a GUIDE GUI

Designing a GUI (p. 6-3) Things to think about when
designing a GUI and references to
other sources.

Starting GUIDE (p. 6-5) Shows you many ways to start
GUIDE.

Selecting a GUI Template (p. 6-7) Describes the templates from which
you can choose when you create a
new GUI.

Setting the GUI Size (p. 6-16) Shows you how to set the size at
which a GUI is initially displayed.

Adding Components to the GUI
(p. 6-18)

Describes the process for adding
components to a GUIDE GUI, and
assigning identifiers to them. It also
shows you how to move, copy, paste,
duplicate, and resize components.

Aligning Components (p. 6-62) Describes various approaches for
aligning components.

Setting Tab Order (p. 6-67) Explains tab order and shows you
how to set it.

Creating Menus (p. 6-70) Shows you how to create both menus
that appear on the figure menu bar
and context menus.

Creating Toolbars (p. 6-84) Provides basic direction for
adding toolbars to your GUI
programmatically.

6 Laying Out a GUIDE GUI

Viewing the Object Hierarchy
(p. 6-100)

Describes use of the Object Browser
to view the hierarchy of objects,
including menus, in your GUI.

Designing for Cross-Platform
Compatibility (p. 6-101)

Provides pointers for creating GUIs
that behave more consistently when
run on different platforms.

6-2

Designing a GUI

Designing a GUI
Before creating the actual GUI, it is important to decide what it is you want
your GUI to do and how you want it to work. It is helpful to draw your GUI on
paper and envision what the user sees and what actions the user takes.

Note MATLAB provides a selection of standard dialog boxes that you can
create with a single function call. For information about these dialog boxes
and the functions used to create them, see “Predefined Dialog Boxes” in the
MATLAB Function Reference documentation.

The GUI used in this example contains an axes component that displays
either a surface, mesh, or contour plot of data selected from the pop-up menu.
The following picture shows a sketch that you might use as a starting point
for the design.

A panel contains three push buttons that enable you to choose the type of plot
you want. The pop-up menu contains three strings — peaks, membrane, and
sinc, which correspond to MATLAB functions. You can select the data to
plot from this menu.

Many Web sites and commercial publications such as the following provide
guidelines for designing GUIs:

6-3

6 Laying Out a GUIDE GUI

• AskTog — Essays on good design and a list of First Principles for good user
interface design. The author, Tognazzini, is a well-respected user interface
designer. http://www.asktog.com/basics/firstPrinciples.html.

• Galitz, Wilbert, O., Essential Guide to User Interface Design. Wiley, New
York, NY, 2002.

• GUI Design Handbook — A detailed guide to the use of GUI controls.
http://www.fast-consulting.com/GUI%20Design%20Handbook
/GDH_FRNTMTR.htm.

• Johnson, J., GUI Bloopers: Don’ts and Do’s for Software Developers and
Web Designers. Morgan Kaufmann, San Francisco, CA, 2000.

• Usability Glossary — An extensive glossary of terms
related to GUI design, usability, and related topics.
http://www.usabilityfirst.com/glossary/main.cgi.

• UsabilityNet — Covers design principles, user-centered
design, and other usability and design-related topics.
http://www.usabilitynet.org/management/b_design.htm.

6-4

http://www.asktog.com/basics/firstPrinciples.html
http://www.fast-consulting.com/GUI%20Design%20Handbook/GDH_FRNTMTR.htm
http://www.usabilityfirst.com/glossary/main.cgi
http://www.usabilitynet.org/management/b_design.htm

Starting GUIDE

Starting GUIDE
There are many ways to start GUIDE. You can start GUIDE from the:

• Command line by typing guide

• Start menu by selecting MATLAB > GUIDE (GUI Builder)

• MATLAB File menu by selecting New > GUI

• MATLAB toolbar by clicking the GUIDE button

However you start GUIDE, it displays the GUIDE Quick Start dialog box
shown in the following figure.

The GUIDE Quick Start dialog box contains two tabs:

• Create New GUI — Asks you to start creating your new GUI by choosing
a template for it. You can also specify the name by which the GUI is saved.

6-5

6 Laying Out a GUIDE GUI

See “Selecting a GUI Template” on page 6-7 for information about the
templates.

• Open Existing GUI — Enables you to open an existing GUI in GUIDE.
You can choose a GUI from your current directory or browse other
directories.

6-6

Selecting a GUI Template

Selecting a GUI Template

In this section...

“Accessing the Templates” on page 6-7

“Template Descriptions” on page 6-8

Accessing the Templates
GUIDE provides several templates that you can modify to create your own
GUIs. The templates are fully functional GUIs; they are already programmed.

You can access the templates in two ways:

• Start GUIDE. See “Starting GUIDE” on page 6-5 for information.

• If GUIDE is already open, select New from the File menu in the Layout
Editor.

In either case, GUIDE displays the GUIDE Quick Start dialog box with the
Create New GUI tab selected as shown in the following figure. This tab
contains a list of the available templates.

6-7

6 Laying Out a GUIDE GUI

To use a template:

1 Select a template in the left pane. A preview displays in the right pane.

2 Optionally, name your GUI now by selecting Save on startup as and
typing the name in the field to the right. GUIDE saves the GUI before
opening it in the Layout Editor. If you choose not to name the GUI at this
point, GUIDE prompts you to save it and give it a name the first time
you run the GUI.

3 Click OK to open the GUI template in the Layout Editor.

Template Descriptions
GUIDE provides four fully functional templates. They are described in the
following sections:

• “Blank GUI” on page 6-9

• “GUI with Uicontrols” on page 6-10

• “GUI with Axes and Menu” on page 6-11

• “Modal Question Dialog” on page 6-14

Note To see how the template GUIs work, you can view their M-file code
and look at their callbacks. You can also modify the callbacks for your own
purposes. To view the M-file for any of these templates, open the template in
the Layout Editor and click the M-file Editor button on the toolbar. For
information about using callbacks, see Chapter 8, “Programming a GUIDE
GUI”.

6-8

Selecting a GUI Template

Blank GUI
The blank GUI template displayed in the Layout Editor is shown in the
following figure.

Select the blank GUI if the other templates are not suitable starting points
for the GUI you are creating, or if you prefer to start with an empty GUI.

6-9

6 Laying Out a GUIDE GUI

GUI with Uicontrols
The following figure shows the template for a GUI with user interface controls
(uicontrols) displayed in the Layout Editor. User interface controls include
push buttons, sliders, radio buttons, check boxes, editable and static text
components, list boxes, and toggle buttons.

When you run the GUI by clicking the Run button , the GUI appears as
shown in the following figure.

6-10

Selecting a GUI Template

When a user enters values for the density and volume of an object, and clicks
the Calculate button, the GUI calculates the mass of the object and displays
the result next to Mass(D*V).

To view the M-file code for these user interface controls, open the template in
the Layout Editor and click the M-file Editor button on the toolbar.

GUI with Axes and Menu
The template for a GUI with axes and menu is shown in the following figure.

6-11

6 Laying Out a GUIDE GUI

6-12

Selecting a GUI Template

When you run the GUI by clicking the Run button on the toolbar, the
GUI displays a plot of five lines, each of which is generated from random
numbers using the MATLAB rand(5) command. The following figure shows
an example.

You can select other plots in the pop-up menu. Clicking the Update button
displays the currently selected plot on the axes.

The GUI also has a File menu with three items:

• Open displays a dialog box from which you can open files on your computer.

• Print opens the Print dialog box. Clicking OK in the Print dialog box
prints the figure.

• Close closes the GUI.

To view the M-file code for these menu choices, open the template in the
Layout Editor and click the M-file Editor button on the toolbar.

6-13

6 Laying Out a GUIDE GUI

Modal Question Dialog
The modal question dialog template displayed in the Layout Editor is shown
in the following figure.

Running the GUI displays the dialog box shown in the following figure:

6-14

Selecting a GUI Template

The GUI returns the text string Yes or No, depending on which button you
click.

The GUI is blocking, which means that the current M-file stops executing
until the GUI restores execution. The GUI is also modal, which means
that the user cannot interact with other MATLAB windows until one of the
buttons is clicked.

Select this template if you want your GUI to return a string or to be modal.

To view the M-file code for these capabilities, open the template in the Layout
Editor and click the M-file Editor button on the toolbar. See “Using a
Modal Dialog to Confirm an Operation” on page 10-52 for an example of using
this template with another GUI. Also see the figure WindowStyle property
for more information.

6-15

6 Laying Out a GUIDE GUI

Setting the GUI Size
Set the size of the GUI by resizing the grid area in the Layout Editor. Click
the lower-right corner and drag it until the GUI is the desired size. If
necessary, make the window larger.

�������	
�
���
��	�����������

If you want to set the position or size of the GUI to an exact value, do the
following:

1 Select Property Inspector from the View menu or click the Property
Inspector button .

6-16

Setting the GUI Size

2 Scroll to the Units property and note whether the current setting is
characters or normalized. Click the button next to Units and then
change the setting to inches from the pop-up menu.

3 In the Property Inspector, click the + sign next to Position. The elements
of the component’s Position property are displayed.

4 Type the x and y coordinates of the point where you want the lower-left
corner of the GUI to appear, and its width and height.

5 Reset the Units property to its previous setting, either characters or
normalized.

Note Setting the Units property to characters (nonresizable GUIs) or
normalized (resizable GUIs) gives the GUI a more consistent appearance
across platforms. See “Cross-Platform Compatible Units” on page 6-103 for
more information.

6-17

6 Laying Out a GUIDE GUI

Adding Components to the GUI

In this section...

“Available Components” on page 6-19

“Adding Components to the GUIDE Layout Area” on page 6-22

“Defining User Interface Controls” on page 6-27

“Defining Panels and Button Groups” on page 6-43

“Defining Axes” on page 6-48

“Adding ActiveX Controls” on page 6-51

“Working with Components in the Layout Area” on page 6-53

“Locating and Moving Components” on page 6-57

“Resizing Components” on page 6-60

Other topics that may be of interest:

• “Aligning Components” on page 6-62

• “Setting Tab Order” on page 6-67

6-18

Adding Components to the GUI

Available Components
The component palette at the left side of the Layout Editor contains the
components that you can add to your GUI. You can display it with or without
names.

When you first open the Layout Editor, the component palette contains only
icons. To display the names of the GUI components, select Preferences from
the File menu, check the box next to Show names in component palette,
and click OK.

See “Creating Menus” on page 6-70 for information about adding menus to a
GUI.

Note This section provides information about using components to lay out a
GUI. For information about programming these components see Chapter 8,
“Programming a GUIDE GUI”.

6-19

6 Laying Out a GUIDE GUI

Component Icon Description

Push Button Push buttons generate an action when clicked.
For example, an OK button might apply settings
and close a dialog box. When you click a push
button, it appears depressed; when you release
the mouse button, the push button appears raised.

Toggle
Button

Toggle buttons generate an action and indicate
whether they are turned on or off. When you click
a toggle button, it appears depressed, showing
that it is on. When you release the mouse button,
the toggle button remains depressed until you
click it a second time. When you do so, the button
returns to the raised state, showing that it is off.
Use a button group to manage mutually exclusive
toggle buttons.

Radio Button Radio buttons are similar to check boxes, but
radio buttons are typically mutually exclusive
within a group of related radio buttons. That
is, when you select one button the previously
selected button is deselected. To activate a radio
button, click the mouse button on the object. The
display indicates the state of the button. Use a
button group to manage mutually exclusive radio
buttons.

Check Box Check boxes can generate an action when checked
and indicate their state as checked or not checked.
Check boxes are useful when providing the
user with a number of independent choices, for
example, displaying a toolbar.

Edit Text Edit text components are fields that enable users
to enter or modify text strings. Use edit text when
you want text as input. Users can enter numbers
but you must convert them to their numeric
equivalents.

6-20

Adding Components to the GUI

Component Icon Description

Static Text Static text controls display lines of text. Static
text is typically used to label other controls,
provide directions to the user, or indicate values
associated with a slider. Users cannot change
static text interactively.

Slider Sliders accept numeric input within a specified
range by enabling the user to move a sliding bar,
which is called a slider or thumb. Users move
the slider by clicking the slider and dragging it,
by clicking in the trough, or by clicking an arrow.
The location of the slider indicates the relative
location within the specified range.

List Box List boxes display a list of items and enable users
to select one or more items.

Pop-Up Menu Pop-up menus open to display a list of choices
when users click the arrow.

Axes Axes enable your GUI to display graphics such
as graphs and images. Like all graphics objects,
axes have properties that you can set to control
many aspects of its behavior and appearance.
See “Axes Properties” in the MATLAB Graphics
documentation and commands such as the
following for more information on axes objects:
plot, surf, line, bar, polar, pie, contour,
and mesh. See Functions — By Category in the
MATLAB Function Reference documentation for
a complete list.

6-21

6 Laying Out a GUIDE GUI

Component Icon Description

Panel Panels arrange GUI components into groups. By
visually grouping related controls, panels can
make the user interface easier to understand. A
panel can have a title and various borders.

Panel children can be user interface controls and
axes as well as button groups and other panels.
The position of each component within a panel
is interpreted relative to the panel. If you move
the panel, its children move with it and maintain
their positions on the panel.

Button Group Button groups are like panels but are used to
manage exclusive selection behavior for radio
buttons and toggle buttons.

ActiveX
Component

ActiveX components enable you to display ActiveX
controls in your GUI. They are available only on
the Microsoft Windows platform.

An ActiveX control can be the child only of a
figure, i.e., of the GUI itself. It cannot be the child
of a panel or button group.

See “ActiveX Control” on page 8-33 in this
document for an example. See “MATLAB COM
Client Support” in the MATLAB External
Interfaces documentation to learn more about
ActiveX controls.

Adding Components to the GUIDE Layout Area
This topic tells you how to place components in the GUIDE layout area and
give each component a unique identifier.

Note See “Creating Menus” on page 6-70 for information about adding menus
to a GUI. See “Creating Toolbars” on page 6-84 for information about working
with the toolbar.

6-22

Adding Components to the GUI

1 Place components in the layout area according to your design.

• Drag a component from the palette and drop it in the layout area.

• Click a component in the palette and move the cursor over the layout
area. The cursor changes to a cross. Click again to add the component in
its default size, or click and drag to size the component as you add it.

The components listed in the following table need additional considerations.

If You Are Adding... Then...

Panels or button groups See “Adding a Component to a
Panel or Button Group” on page
6-25.

ActiveX controls See “Adding ActiveX Controls” on
page 6-51.

See “Grid and Rulers” on page 6-65 for information about using the grid.

2 Assign a unique identifier to each component. Do this by setting the value
of the component Tag properties. See“Assigning an Identifier to Each
Component” on page 6-27 for more information.

3 Specify the look and feel of each component by setting the appropriate
properties. The following topics contain specific information.

• “Defining User Interface Controls” on page 6-27

• “Defining Panels and Button Groups” on page 6-43

• “Defining Axes” on page 6-48

• “Adding ActiveX Controls” on page 6-51

6-23

6 Laying Out a GUIDE GUI

This is an example of a GUI in the Layout Editor. Components in the Layout
Editor are not active. Chapter 7, “Saving and Running a GUIDE GUI”
describes how to generate a functioning GUI.

Using Coordinates to Place Components
The status bar at the bottom of the GUIDE Layout Editor displays:

• Current Point — The current location of the mouse relative to the lower
left corner of the grid area in the Layout Editor.

• Position — The Position property of the selected component, a 4-element
vector: [distance from left, distance from bottom, width, height], where

6-24

Adding Components to the GUI

distances are relative to the parent figure, panel, or button group. All
values are given in pixels. Rulers also display pixels.

If you select a single component and move it, the first two elements of the
position vector (distance from left, distance from bottom) are updated as you
move the component. If you resize the component, the last two elements of
the position vector (width, height) are updated as you change the size. The
first two elements may also change if you resize the component such that the
position of its lower left corner changes. If no components are selected, the
position vector is that of the figure.

For more information, see “Using Coordinate Readouts” on page 6-57.

Adding a Component to a Panel or Button Group
To add a component to a panel or button group, select the component in the
component palette then move the cursor over the desired panel or button
group. The position of the cursor determines the component’s parent.

6-25

6 Laying Out a GUIDE GUI

GUIDE highlights the potential parent as shown in the following figure. The
highlight indicates that if you drop the component or click the cursor, the
component will be a child of the highlighted panel, button group, or figure.

'��(���(�

�����

Note If the component is not entirely contained in the panel or button group,
it appears to be clipped in the Layout Editor. When you run the GUI, the
entire component is displayed and straddles the panel or button group border.
The component is nevertheless a child of the panel and behaves accordingly.
You can use the Object Browser to determine the child objects of a panel or
button group. “Viewing the Object Hierarchy” on page 6-100 tells you how.

Note Assign a unique identifier to each component in your panel or button
group by setting the value of its Tag property. See “Assigning an Identifier to
Each Component” on page 6-27 for more information.

6-26

Adding Components to the GUI

Assigning an Identifier to Each Component
Use the Tag property to assign each component a unique meaningful string
identifier.

When you place a component in the layout area, GUIDE assigns a default
value to the Tag property. Before saving the GUI, replace this value with a
string that reflects the role of the component in the GUI.

The string value you assign Tag is used in the M-file code to identify the
component and must be unique in the GUI. To set Tag:

1 Select Property Inspector from the View menu or click the Property
Inspector button .

2 In the layout area, select the component for which you want to set Tag.

3 In the Property Inspector, select Tag and then replace the value with the
string you want to use as the identifier. In the following figure, Tag is set
to mybutton.

Defining User Interface Controls
User interface controls include push buttons, toggle buttons, sliders, radio
buttons, edit text controls, static text controls, pop-up menus, check boxes,
and list boxes.

To define user interface controls, you must set certain properties. To do this:

1 Use the Property Inspector to modify the appropriate properties. Open the
Property Inspector by selecting Property Inspector from the View menu

or by clicking the Property Inspector button .

6-27

6 Laying Out a GUIDE GUI

2 In the layout area, select the component you are defining.

Subsequent topics describe commonly used properties of user interface
controls and offer a simple example for each kind of control:

• “Commonly Used Properties” on page 6-28

• “Push Button” on page 6-29

• “Slider” on page 6-31

• “Radio Button” on page 6-32

• “Check Box” on page 6-34

• “Edit Text” on page 6-35

• “Static Text” on page 6-36

• “Pop-Up Menu” on page 6-37

• “List Box” on page 6-39

• “Toggle Button” on page 6-41

Note See “Available Components” on page 6-19 for descriptions of these
components. See “Examples: Programming GUIDE GUI Components” on
page 8-20 for basic examples of programming these components.

Commonly Used Properties
The most commonly used properties needed to describe a user interface
control are shown in the following table. Instructions for a particular control
may also list properties that are specific to that control.

Property Value Description

Enable on, inactive, off.
Default is on.

Determines whether the
control is available to
the user

6-28

Adding Components to the GUI

Property Value Description

Max Scalar. Default is 1. Maximum value.
Interpretation depends
on the type of
component.

Min Scalar. Default is 0. Minimum value.
Interpretation depends
on the type of
component.

Position 4-element vector:
[distance from left,
distance from bottom,
width, height].

Size of the component
and its location relative
to its parent.

String String. Can also be a
cell array or character
array of strings.

Component label. For
list boxes and pop-up
menus it is a list of the
items.

Units characters,
centimeters, inches,
normalized, pixels,
points. Default is
characters.

Units of measurement
used to interpret the
Position property
vector

Value Scalar or vector Value of the component.
Interpretation depends
on the type of
component.

For a complete list of properties and for more information about the properties
listed in the table, see Uicontrol Properties in the MATLAB documentation.
Properties needed to control GUI behavior are discussed in Chapter 8,
“Programming a GUIDE GUI”

Push Button
To create a push button with label Button 1, as shown in this figure:

6-29

6 Laying Out a GUIDE GUI

• Specify the push button label by setting the String property to the desired
label, in this case, Button 1.

To display the & character in a label, use two & characters in the string.
The words remove, default, and factory (case sensitive) are reserved.
To use one of these as a label, prepend a backslash (\) to the string. For
example, \remove yields remove.

The push button accommodates only a single line of text. If you specify
more than one line, only the first line is shown. If you create a push
button that is too narrow to accommodate the specified String, MATLAB
truncates the string with an ellipsis.

• If you want to set the position or size of the component to an exact value,
then modify its Position property. See “Locating and Moving Components”
on page 6-57 and “Resizing Components” on page 6-60 for details.

• To add an image to a push button, assign the button’s CData property an
m-by-n-by-3 array of RGB values that defines a truecolor image. You must
do this programmatically in the opening function of the GUI M-file. For

6-30

Adding Components to the GUI

example, the array img defines a 16-by-64-by-3 truecolor image using
random values between 0 and 1 (generated by rand).

img = rand(16,64,3);
set(handles.pushbutton1,'CData',img);

where pushbutton1 is the push button’s Tag property.

Note Create your own icon with the icon editor described in “Icon Editor”
on page 15-29. See ind2rgb for information on converting a matrix X and
corresponding colormap, i.e., an (X, MAP) image, to RGB (truecolor) format.

Slider
To create a slider as shown in this figure:

• Specify the range of the slider by setting its Min property to the minimum
value of the slider and its Max property to the maximum value. The Min
property must be less than Max.

• Specify the value indicated by the slider when it is created by setting the
Value property to the appropriate number. This number must be less than
or equal to Max and greater than or equal to Min. If you specify Value
outside the specified range, the slider is not displayed.

• Control the amount the slider Value changes when a user clicks the arrow
button to produce a minimum step or the slider trough to produce a

6-31

6 Laying Out a GUIDE GUI

maximum step by setting the SliderStep property. Specify SliderStep as
a two-element vector, [min_step,max_step], where each value is in the
range [0, 1] to indicate a percentage of the range.

• If you want to set the position or size of the component to an exact value,
then modify its Position property. See “Locating and Moving Components”
on page 6-57 and “Resizing Components” on page 6-60 for details.

Note On Mac platforms, the height of a horizontal slider is constrained.
If the height you set in the position vector exceeds this constraint, the
displayed height of the slider is the maximum allowed. The height element
of the position vector is not changed.

Note The slider component provides no text description or data entry
capability. Use a “Static Text” on page 6-36 component to label the slider.
Use an “Edit Text” on page 6-35 component to enable a user to provide a
value for the slider.

Radio Button
To create a radio button with label Indent nested functions, as shown
in this figure:

6-32

Adding Components to the GUI

• Specify the radio button label by setting the String property to the desired
label, in this case, Indent nested functions.

To display the & character in a label, use two & characters in the string.
The words remove, default, and factory (case sensitive) are reserved.
To use one of these as a label, prepend a backslash (\) to the string. For
example, \remove yields remove.

The radio button accommodates only a single line of text. If you specify
more than one line, only the first line is shown. If you create a radio
button that is too narrow to accommodate the specified String, MATLAB
truncates the string with an ellipsis.

• Create the radio button with the button selected by setting its Value
property to the value of its Max property (default is 1). Set Value to Min
(default is 0) to leave the radio button unselected. Correspondingly, when
the user selects the radio button, MATLAB sets Value to Max. MATLAB
sets Value to Min when the user deselects it.

• If you want to set the position or size of the component to an exact value,
then modify its Position property. See “Locating and Moving Components”
on page 6-57 and “Resizing Components” on page 6-60 for details.

• To add an image to a radio button, assign the button’s CData property an
m-by-n-by-3 array of RGB values that defines a truecolor image. You must
do this programmatically in the opening function of the GUI M-file. For
example, the array img defines a 16-by-24-by-3 truecolor image using
random values between 0 and 1 (generated by rand).

img = rand(16,24,3);
set(handles.radiobutton1,'CData',img);

6-33

6 Laying Out a GUIDE GUI

Note To manage exclusive selection of radio buttons and toggle buttons,
put them in a button group. See “Button Group” on page 6-46 for more
information.

Check Box
To create a check box with label Display file extension that is initially
checked, as shown in this figure:

• Specify the check box label by setting the String property to the desired
label, in this case, Display file extension.

To display the & character in a label, use two & characters in the string.
The words remove, default, and factory (case sensitive) are reserved.
To use one of these as a label, prepend a backslash (\) to the string. For
example, \remove yields remove.

The check box accommodates only a single line of text. If you specify a
component width that is too small to accommodate the specified String,
MATLAB truncates the string with an ellipsis.

6-34

Adding Components to the GUI

• Create the check box with the box checked by setting the Value property
to the value of the Max property (default is 1). Set Value to Min (default is
0) to leave the box unchecked. Correspondingly, when the user clicks the
check box, MATLAB sets Value to Max when the user checks the box and
to Min when the user unchecks it.

• If you want to set the position or size of the component to an exact value,
then modify its Position property. See “Locating and Moving Components”
on page 6-57 and “Resizing Components” on page 6-60 for details.

Edit Text
To create an edit text component that displays the initial text Enter your
name here, as shown in this figure:

• Specify the text to be displayed when the edit text component is created
by setting the String property to the desired string, in this case, Enter
your name here.

To display the & character in a label, use two & characters in the string.
The words remove, default, and factory (case sensitive) are reserved.
To use one of these as a label, prepend a backslash (\) to the string. For
example, \remove yields remove.

6-35

6 Laying Out a GUIDE GUI

• To enable multiple-line input, specify the Max and Min properties so that
their difference is greater than 1. For example, Max = 2, Min = 0. Max
default is 1, Min default is 0. MATLAB wraps the string and adds a scroll
bar if necessary.

If Max-Min is less than or equal to 1, the edit text component admits only a
single line of input. If you specify a component width that is too small to
accommodate the specified string, MATLAB displays only part of the string.
The user can use the arrow keys to move the cursor over the entire string.

• If you want to set the position or size of the component to an exact value,
then modify its Position property. See “Locating and Moving Components”
on page 6-57 and “Resizing Components” on page 6-60 for details.

Static Text
To create a static text component with text Select a data set, as shown in
this figure:

• Specify the text that appears in the component by setting the component
String property to the desired text, in this case Select a data set.

6-36

Adding Components to the GUI

To display the & character in a list item, use two & characters in the string.
The words remove, default, and factory (case sensitive) are reserved.
To use one of these as a label, prepend a backslash (\) to the string. For
example, \remove yields remove.

If your component is not wide enough to accommodate the specified String,
MATLAB wraps the string.

• If you want to set the position or size of the component to an exact value,
then modify its Position property. See “Locating and Moving Components”
on page 6-57 and “Resizing Components” on page 6-60 for details.

Pop-Up Menu
To create a pop-up menu (also known as a drop-down menu or combo box)
with items one, two, three, and four, as shown in this figure:

• Specify the pop-up menu items to be displayed by setting the String
property to the desired items. Click the

6-37

6 Laying Out a GUIDE GUI

button to the right of the property name to open the Property Inspector
editor.

To display the & character in a menu item, use two & characters in the
string. The words remove, default, and factory (case sensitive) are
reserved. To use one of these as a label, prepend a backslash (\) to the
string. For example, \remove yields remove.

If the width of the component is too small to accommodate one or more of
the specified strings, MATLAB truncates those strings with an ellipsis.

• To select an item when the component is created, set Value to a scalar
that indicates the index of the selected list item, where 1 corresponds to
the first item in the list. If you set Value to 2, the menu looks like this
when it is created:

6-38

Adding Components to the GUI

• If you want to set the position and size of the component to exact values,
then modify its Position property. See “Locating and Moving Components”
on page 6-57 and “Resizing Components” on page 6-60 for details. The
height of a pop-up menu is determined by the font size. The height you
set in the position vector is ignored.

Note The pop-up menu does not provide for a label. Use a “Static Text” on
page 6-36 component to label the pop-up menu.

List Box
To create a list box with items one, two, three, and four, as shown in this
figure:

• Specify the list of items to be displayed by setting the String property to
the desired list. Use the Property Inspector editor to enter the list. You can

open the editor by clicking the button to the right of the property name.

6-39

6 Laying Out a GUIDE GUI

To display the & character in a label, use two & characters in the string.
The words remove, default, and factory (case sensitive) are reserved.
To use one of these as a label, prepend a backslash (\) to the string. For
example, \remove yields remove.

If the width of the component is too small to accommodate one or more of
the specified strings, MATLAB truncates those strings with an ellipsis.

• Specify selection by using the Value property together with the Max and
Min properties.

- To select a single item when the component is created, set Value to
a scalar that indicates the index of the selected list item, where 1
corresponds to the first item in the list.

- To select more than one item when the component is created, set Value
to a vector of indices of the selected items. Value = [1,3] results in the
following selection.

6-40

Adding Components to the GUI

To enable selection of more than one item, you must specify the Max and
Min properties so that their difference is greater than 1. For example,
Max = 2, Min = 0. Max default is 1, Min default is 0.

- If you want no initial selection, set the Max and Min properties to enable
multiple selection, i.e., Max - Min > 1, and then set the Value property
to an empty matrix [].

• If the list box is not large enough to display all list entries, you can set the
ListBoxTop property to the index of the item you want to appear at the
top when the component is created.

• If you want to set the position or size of the component to an exact value,
then modify its Position property. See “Locating and Moving Components”
on page 6-57 and “Resizing Components” on page 6-60 for details.

Note The list box does not provide for a label. Use a “Static Text” on page
6-36 component to label the list box.

Toggle Button
To create a toggle button with label Left/Right Tile, as shown in this figure:

• Specify the toggle button label by setting its String property to the desired
label, in this case, Left/Right Tile.

6-41

6 Laying Out a GUIDE GUI

To display the & character in a label, use two & characters in the string.
The words remove, default, and factory (case sensitive) are reserved.
To use one of these as a label, prepend a backslash (\) to the string. For
example, \remove yields remove.

The toggle button accommodates only a single line of text. If you specify
more than one line, only the first line is shown. If you create a toggle
button that is too narrow to accommodate the specified String, MATLAB
truncates the string with an ellipsis.

• Create the toggle button with the button selected (depressed) by setting
its Value property to the value of its Max property (default is 1). Set
Value to Min (default is 0) to leave the toggle button unselected (raised).
Correspondingly, when the user selects the toggle button, MATLAB sets
Value to Max. MATLAB sets Value to Min when the user deselects it. The
following figure shows the toggle button in the depressed position.

• If you want to set the position or size of the component to an exact value,
then modify its Position property. See “Locating and Moving Components”
on page 6-57 and “Resizing Components” on page 6-60 for details.

• To add an image to a toggle button, assign the button’s CData property
an m-by-n-by-3 array of RGB values that defines a truecolor image. You
must do this programmatically in the opening function of the GUI M-file.
For example, the array img defines a 16-by-64-by-3 truecolor image using
random values between 0 and 1 (generated by rand).

6-42

Adding Components to the GUI

img = rand(16,64,3);
set(handles.togglebutton1,'CData',img);

where togglebutton1 is the toggle button’s Tag property.

Note To manage exclusive selection of radio buttons and toggle buttons,
put them in a button group. See “Button Group” on page 6-46 for more
information.

Defining Panels and Button Groups
Panels and button groups are containers that arrange GUI components into
groups. If you move the panel or button group, its children move with it and
maintain their positions relative to the panel or button group.

To define panels and button groups, you must set certain properties. To do
this:

1 Use the Property Inspector to modify the appropriate properties. Open the
Property Inspector by selecting Property Inspector from the View menu
or by clicking the Property Inspector button .

2 In the layout area, select the component you are defining.

Note See “Available Components” on page 6-19 for descriptions of these
components. See “Examples: Programming GUIDE GUI Components” on
page 8-20 for basic examples of programming these components.

Subsequent topics describe commonly used properties of panels and button
groups and offer a simple example for each component.

6-43

6 Laying Out a GUIDE GUI

• “Commonly Used Properties” on page 6-44

• “Panel” on page 6-44

• “Button Group” on page 6-46

Commonly Used Properties
The most commonly used properties needed to describe a panel or button
group are shown in the following table:

Property Values Description

Position 4-element vector:
[distance from left,
distance from bottom,
width, height].

Size of the component
and its location relative
to its parent.

Title String Component label.

TitlePosition lefttop, centertop,
righttop, leftbottom,
centerbottom,
rightbottom. Default
is lefttop.

Location of title string
in relation to the panel
or button group.

Units characters,
centimeters, inches,
normalized, pixels,
points. Default is
characters.

Units of measurement
used to interpret the
Position property
vector

For a complete list of properties and for more information about the properties
listed in the table, see the Uipanel Properties and Uibuttongroup Properties
in the MATLAB reference documentation. Properties needed to control GUI
behavior are discussed in theChapter 8, “Programming a GUIDE GUI”.

Panel
To create a panel with title My Panel as shown in the following figure:

6-44

Adding Components to the GUI

• Specify the panel title by setting the Title property to the desired string,
in this case My Panel.

To display the & character in the title, use two & characters in the string.
The words remove, default, and factory (case sensitive) are reserved. To
use one of these as a label, prepend a backslash (\) to the string. For
example, \remove yields remove.

• Specify the location of the panel title by selecting one of the available
TitlePosition property values from the pop-up menu, in this case
lefttop. You can position the title at the left, middle, or right of the top or
bottom of the panel.

6-45

6 Laying Out a GUIDE GUI

• If you want to set the position or size of the panel to an exact value, then
modify its Position property. See “Locating and Moving Components” on
page 6-57 and “Resizing Components” on page 6-60 for details.

Note For information about adding components to a panel, see “Adding a
Component to a Panel or Button Group” on page 6-25.

Button Group
To create a button group with title My Button Group as shown in the
following figure:

6-46

Adding Components to the GUI

• Specify the button group title by setting the Title property to the desired
string, in this case My Button Group.

To display the & character in the title, use two & characters in the string.
The words remove, default, and factory (case sensitive) are reserved. To
use one of these as a label, prepend a backslash (\) to the string. For
example, \remove yields remove.

• Specify the location of the button group title by selecting one of the
available TitlePosition property values from the pop-up menu, in this
case lefttop. You can position the title at the left, middle, or right of the
top or bottom of the button group.

• If you want to set the position or size of the button group to an exact value,
then modify its Position property. See “Locating and Moving Components”
on page 6-57 and “Resizing Components” on page 6-60 for details.

Note For information about adding components to a button group, see
“Adding a Component to a Panel or Button Group” on page 6-25.

6-47

6 Laying Out a GUIDE GUI

Defining Axes
Axes enable your GUI to display graphics such as graphs and images using
commands such as: plot, surf, line, bar, polar, pie, contour, and mesh.

To define an axes, you must set certain properties. To do this:

1 Use the Property Inspector to modify the appropriate properties. Open the
Property Inspector by selecting Property Inspector from the View menu
or by clicking the Property Inspector button .

2 In the layout area, select the component you are defining.

Note See“Available Components” on page 6-19 for a description of this
component.

Subsequent topics describe commonly used properties of axes and offer a
simple example.

• “Commonly Used Properties” on page 6-48

• “Axes” on page 6-49

Commonly Used Properties
The most commonly used properties needed to describe an axes are shown
in the following table:

6-48

Adding Components to the GUI

Property Values Description

Position 4-element vector:
[distance from left,
distance from bottom,
width, height].

Size of the component
and its location relative
to its parent.

Units normalized,
centimeters,
characters, inches,
pixels, points.
Default is normalized.

Units of measurement
used to interpret
position vector

For a complete list of properties and for more information about the properties
listed in the table, see Axes Properties in the MATLAB documentation.
Properties needed to control GUI behavior are discussed in Chapter 8,
“Programming a GUIDE GUI”.

See commands such as the following for more information on axes
objects: plot, surf, line, bar, polar, pie, contour and mesh. See
Functions — By Category in the MATLAB Function Reference documentation
for a complete list.

Axes
To create an axes as shown in the following figure:

6-49

6 Laying Out a GUIDE GUI

• Allow for tick marks to be placed outside the box that appears in the Layout
Editor. The axes above looks like this in the layout editor; placement allows
space at the left and bottom of the axes for tick marks. Functions that draw
in the axes update the tick marks appropriately.

6-50

Adding Components to the GUI

• Use the title, xlabel, ylabel, zlabel, and text functions in the GUI
M-file to label an axes component. For example,

xlh = (axes_handle,'Years')

labels the X-axis as Years. The handle of the X-axis label is xlh. See
“Callback Syntax and Arguments” on page 8-12 for information about
determining the axes handle.

The words remove, default, and factory (case sensitive) are reserved. To
use one of these in component text, prepend a backslash (\) to the string.
For example, \remove yields remove.

• If you want to set the position or size of the axes to an exact value, then
modify its Position property. See “Locating and Moving Components” on
page 6-57 and “Resizing Components” on page 6-60 for details.

Adding ActiveX Controls
When you drag an ActiveX component from the component palette into the
layout area, GUIDE opens a dialog box, similar to the following, that lists the
registered ActiveX controls on your system.

Note If MATLAB is not installed locally on your computer — for example, if
you are running MATLAB over a network — you might not find the ActiveX
control described in this example. To register the control, see “Registering
Controls and Servers” in the MATLAB External Interfaces documentation.

6-51

6 Laying Out a GUIDE GUI

1 Select the desired ActiveX control. The right panel shows a preview of
the selected control.

2 Click Create. The control appears as a small box in the Layout Editor.

6-52

Adding Components to the GUI

3 Resize the control to approximately the size of the square shown in the
preview pane. You can do this by clicking and dragging a corner of the
control, as shown in the following figure.

See “ActiveX Control” on page 8-33 for information about programming a
sample ActiveX control and an example.

Working with Components in the Layout Area
This topic provides basic information about selecting, copying, pasting, and
deleting components in the layout area.

• “Selecting Components” on page 6-54

• “Copying, Cutting, and Clearing Components” on page 6-54

• “Pasting and Duplicating Components” on page 6-55

• “Front-to-Back Positioning” on page 6-55

Other topics that may be of interest are

• “Locating and Moving Components” on page 6-57

• “Resizing Components” on page 6-60

• “Aligning Components” on page 6-62

• “Setting Tab Order” on page 6-67

6-53

6 Laying Out a GUIDE GUI

Selecting Components
You can select components in the layout area in the following ways:

• Click a single component to select it.

• Press Ctrl+A to select all child objects of the figure. This does not select
components that are child objects of panels or button groups.

• Click and drag the cursor to create a rectangle that encloses the components
you want to select. If the rectangle encloses a panel or button group, only
the panel or button group is selected, not its children. If the rectangle
encloses part of a panel or button group, only the components within the
rectangle that are child objects of the panel or button group are selected.

• Select multiple components using the Shift and Ctrl keys.

In some cases, a component may lie outside its parent’s boundary. Such a
component is not visible in the Layout Editor but can be selected by dragging
a rectangle that encloses it or by selecting it in the Object Browser. Such a
component is visible in the active GUI.

See “Viewing the Object Hierarchy” on page 6-100 for information about the
Object Browser.

Note You can select multiple components only if they have the same parent.
To determine the child objects of a figure, panel, or button group, use the
Object Browser.

Copying, Cutting, and Clearing Components
Use standard menu and pop-up menu commands, toolbar icons, keyboard
keys, and shortcut keys to copy, cut, and clear components.

Copying. Copying places a copy of the selected components on the clipboard.
A copy of a panel or button group includes its children.

Cutting. Cutting places a copy of the selected components on the clipboard
and deletes them from the layout area. If you cut a panel or button group, you
also cut its children.

6-54

Adding Components to the GUI

Clearing. Clearing deletes the selected components from the layout area. It
does not place a copy of the components on the clipboard. If you clear a panel
or button group, you also clear its children.

Pasting and Duplicating Components

Pasting. Use standard menu and pop-up menu commands, toolbar icons,
and shortcut keys to paste components. GUIDE pastes the contents of the
clipboard to the location of the last mouse click. It positions the upper-left
corner of the contents at the mouse click.

Consecutive pastes place each copy to the lower right of the last one.

Duplicating. Select one or more components that you want to duplicate,
then do one of the following:

• Copy and paste the selected components as described above.

• Select Duplicate from the Edit menu or the pop-up menu. Duplicate
places the copy to the lower right of the original.

• Right-click and drag the component to the desired location. The position
of the cursor when you drop the components determines the parent of all
the selected components. Look for the highlight as described in “Adding a
Component to a Panel or Button Group” on page 6-25.

Front-to-Back Positioning
MATLAB figures maintain separate stacks that control the front-to-back
positioning for different kinds of components:

• User interface controls such as buttons, sliders, and pop-up menus

• Panels, button groups, and axes

• ActiveX controls

You can control the front-to-back positioning of components that overlap only
if those components are in the same stack. For overlapping components that
are in different stacks:

6-55

6 Laying Out a GUIDE GUI

• User interface controls always appear on top of panels, button groups,
axes that they overlap. ActiveX controls appear on top of everything they
overlap.

• Panels, button groups, and axes always appear on top of ActiveX controls.

The Layout Editor provides four operations that enable you to control
front-to-back positioning. All are available from the Layout menu, which is
shown in the following figure.

• Bring to Front — Move the selected object(s) in front of nonselected
objects (available from the right-click context menu, the Layout menu, or
the Ctrl+F shortcut).

• Send to Back — Move the selected object(s) behind nonselected objects
(available from the right-click context menu, the Layout menu, or the
Ctrl+B shortcut).

• Bring Forward — Move the selected object(s) forward by one level, i.e., in
front of the object directly forward of it, but not in front of all objects that
overlay it (available from the Layout menu).

• Send Backward — Move the selected object(s) back by one level, i.e.,
behind the object directly in back of it, but not behind all objects that are
behind it (available from the Layout menu).

Note Changing front-to-back positioning of components also changes their
tab order. See “Setting Tab Order” on page 6-67 for more information.

6-56

Adding Components to the GUI

Locating and Moving Components
You can locate or move components in one of the following ways:

• “Using Coordinate Readouts” on page 6-57

• “Dragging Components” on page 6-58

• “Using Arrow Keys to Move Components” on page 6-58

• “Setting the Component’s Position Property” on page 6-58

Another topic that may be of interest is

• “Aligning Components” on page 6-62

Using Coordinate Readouts
Coordinate readouts indicate where a component is placed and where the
mouse pointer is located. Use these readouts to position and align components
manually. The coordinate readout in the lower right corner of the Layout
Editor shows the position of a selected component or components as [xleft
ybottom width height]. These values are displayed in units of pixels,
regardless of the coordinate units you select for components.

If you drag or resize the component, the readout updates accordingly. The
readout to the left of the component position readout displays the current
mouse position, also in pixels. The following readout example shows a
selected component that has a position of [35, 30, 180, 180], a 180-by-180
pixel object with a lower left corner at x=35 and y=30, and locates the mouse
position at [200, 30].

When you select multiple objects, the Position readout displays numbers for
x, y, width and height only if the objects have the same respective values; in
all other cases it displays 'MULTI'. For example, if you select two checkboxes,
one with Position [250, 140, 76, 20] pixels and the other with position
[250, 190, 68, 20] pixels, the Position readout indicates [250, MULTI,
MULTI, 20].

6-57

6 Laying Out a GUIDE GUI

Dragging Components
Select one or more components that you want to move, then drag them to the
desired position and drop them. You can move components from the figure
into a panel or button group. You can move components from a panel or button
group into the figure or into another panel or button group.

The position of the cursor when you drop the components also determines the
parent of all the selected components. Look for the highlight as described in
“Adding a Component to a Panel or Button Group” on page 6-25.

In some cases, one or more of the selected components may lie outside its
parent’s boundary. Such a component is not visible in the Layout Editor but
can be selected by dragging a rectangle that encloses it or by selecting it in
the Object Browser. Such a component is visible in the active GUI.

See “Viewing the Object Hierarchy” on page 6-100 for information about the
Object Browser.

Note To select multiple components, they must have the same parent. That
is, they must be contained in the same figure, panel, or button group.

Using Arrow Keys to Move Components
Select one or more components that you want to move, then press and hold
the arrow keys until the components have moved to the desired position. Note
that the components remain children of the figure, panel, or button group
from which you move them, even if they move outside its boundaries.

Setting the Component’s Position Property
Select one or more components that you want to move. Then open the Property
Inspector from the View menu or by clicking the Property Inspector button .

1 In the Property Inspector, scroll to the Units property and note whether
the current setting is characters or normalized. Click the button next to
Units and then change the setting to inches from the pop-up menu.

6-58

Adding Components to the GUI

2 Click the + sign next to Position. The Property Inspector displays the
elements of the Position property.

3 If you have selected

• Only one component, type the x and y coordinates of the point where you
want the lower-left corner of the component to appear.

• More than one component, type either the x or the y coordinate to align
the components along that dimension.

4 Reset the Units property to its previous setting, either characters or
normalized.

6-59

6 Laying Out a GUIDE GUI

Note Setting the Units property to characters (nonresizable GUIs) or
normalized (resizable GUIs) gives the GUI a more consistent appearance
across platforms. See “Cross-Platform Compatible Units” on page 6-103 for
more information.

Resizing Components
You can resize components in one of the following ways:

• “Dragging a Corner of the Component” on page 6-60

• “Setting the Component’s Position Property” on page 6-60

Dragging a Corner of the Component
Select the component you want to resize. Click one of the corner handles and
drag it until the component is the desired size.

Setting the Component’s Position Property
Select one or more components that you want to resize. Then open the
Property Inspector from the View menu or by clicking the Property Inspector
button .

1 In the Property Inspector, scroll to the Units property and note whether
the current setting is characters or normalized. Click the button next to
Units and then change the setting to inches from the pop-up menu.

6-60

Adding Components to the GUI

2 Click the + sign next to Position. The Property Inspector displays the
elements of the Position property.

3 Type the width and height you want the components to be.

4 Reset the Units property to its previous setting, either characters or
normalized.

Note To select multiple components, they must have the same parent.
That is, they must be contained in the same figure, panel, or button group.
See “Selecting Components” on page 6-54 for more information. Setting the
Units property to characters (nonresizable GUIs) or normalized (resizable
GUIs) gives the GUI a more consistent appearance across platforms. See
“Cross-Platform Compatible Units” on page 6-103 for more information.

6-61

6 Laying Out a GUIDE GUI

Aligning Components

In this section...

“Alignment Tool” on page 6-62

“Property Inspector” on page 6-64

“Grid and Rulers” on page 6-65

“Guide Lines” on page 6-66

Alignment Tool
The Alignment Tool enables you to position objects with respect to each other
and to adjust the spacing between selected objects. The specified alignment
operations apply to all components that are selected when you press the
Apply button.

Note To select multiple components, they must have the same parent. That
is, they must be contained in the same figure, panel, or button group. See
“Selecting Components” on page 6-54 for more information.

6-62

Aligning Components

The alignment tool provides two types of alignment operations:

• Align — Align all selected components to a single reference line.

• Distribute — Space all selected components uniformly with respect to
each other.

Both types of alignment can be applied in the vertical and horizontal
directions. In many cases, it is better to apply alignments independently to
the vertical and horizontal using two separate steps.

Align Options
There are both vertical and horizontal align options. Each option aligns
selected components to a reference line, which is determined by the bounding
box that encloses the selected objects. For example, the following picture of
the layout area shows the bounding box (indicated by the dashed line) formed
by three selected push buttons.

All of the align options (vertical top, center, bottom and horizontal left, center,
right) place the selected components with respect to the corresponding edge
(or center) of this bounding box.

6-63

6 Laying Out a GUIDE GUI

Distribute Options
Distributing components adds equal space between all components in the
selected group. The distribute options operate in two different modes:

• Equally space selected components within the bounding box (default)

• Space selected components to a specified value in pixels (check Set spacing
and specify a pixel value)

Both modes enable you to specify how the spacing is measured, as indicated
by the button labels on the alignment tool. These options include spacing
measured with respect to the following edges:

• Vertical — inner, top, center, and bottom

• Horizontal — inner, left, center, and right

Property Inspector
The Property Inspector enables you to align components by setting their
Position properties. A component’s Position property is a 4-element vector
that specifies the location of the component on the GUI and its size: [distance
from left, distance from bottom, width, height]. The values are given in the
units specified by the Units property of the component.

1 Select the components you want to align. See “Selecting Components” on
page 6-54 for information.

2 Select Property Inspector from the View menu or click the Property
Inspector button .

3 In the Property Inspector, scroll to the Units property and note its current
setting, then change the setting to inches.

4 Scroll to the Position property. A null value means that the element
differs in value for the different components. This figure shows the
Position property for multiple components of the same size.

6-64

Aligning Components

5 Change the value of x to align their left sides. Change the value of y to
align their bottom edges. For example, setting x to 2.0 aligns the left sides
of the components 2 inches from the left side of the GUI.

6 When the components are aligned, change the Units property back to its
original setting.

Grid and Rulers
The layout area displays a grid and rulers to facilitate component layout.
Grid lines are spaced at 50-pixel intervals by default and you can select from
a number of other values ranging from 10 to 200 pixels. You can optionally
enable snap-to-grid, which causes any object that is moved close to a grid line
to jump to that line. Snap-to-grid works with or without a visible grid.

Use the Grid and Rulers dialog (select Grid and Rulers from the Tools
menu) to:

• Control visibility of rulers, grid, and guide lines

6-65

6 Laying Out a GUIDE GUI

• Set the grid spacing

• Enable or disable snap-to-grid

Guide Lines
The Layout Editor has both vertical and horizontal snap-to guide lines.
Components snap to the line when you move them close to the line.

Guide lines are useful when you want to establish a reference for component
alignment at an arbitrary location in the Layout Editor.

Creating Guide Lines
To create a guide line, click the top or left ruler and drag the line into the
layout area.

6-66

Setting Tab Order

Setting Tab Order
A GUI’s tab order is the order in which components of the GUI acquire focus
when a user presses the Tab key on the keyboard. Focus is generally denoted
by a border or a dotted border.

You can set, independently, the tab order of components that have the same
parent. The GUI figure and each panel and button group in it has its own tab
order. For example, you can set the tab order of components that have the
figure as a parent. You can also set the tab order of components that have a
panel or button group as a parent.

If, in tabbing through the components at the figure level, a user tabs to a panel
or button group, then subsequent tabs sequence through the components of
the panel or button group before returning to the level from which the panel
or button group was reached.

Note Axes cannot be tabbed. From GUIDE, you cannot include ActiveX
components in the tab order.

When you create a GUI, GUIDE sets the tab order at each level to be the
order in which you add components to that level in the Layout Editor. This
may not be the best order for the user.

Note Tab order also affects the stacking order of components. If components
overlap, those that appear lower in the tabbing order, are drawn on top of
those that appear higher in the order. See “Front-to-Back Positioning” on page
6-55 for more information.

6-67

6 Laying Out a GUIDE GUI

The figure in the following GUI contains an axes component, a slider, a panel,
static text, and a pop-up menu. Of these, only the slider, the panel, and the
pop-up menu at the figure level can be tabbed. The panel contains three
push buttons, which can all be tabbed.

6-68

Setting Tab Order

To examine and change the tab order of the panel components, click the panel
background to select it, then select Tab Order Editor in the Tools menu
of the Layout Editor.

The Tab Order Editor displays the panel’s components in their current tab
order. To change the tab order, select a component and press the up or down
arrow to move the component up or down in the list. If you set the tab order
for the three components in the example to be

1 Surf push button

2 Contour push button

3 Mesh push button

the user first tabs to the Surf push button, then to the Contour push button,
and then to the Mesh push button. Subsequent tabs sequence through the
remaining components at the figure level.

6-69

6 Laying Out a GUIDE GUI

Creating Menus

In this section...

“Menus for the Menu Bar” on page 6-71

“Context Menus” on page 6-79

You can create both types of menus using the Menu Editor. Access the Menu
Editor from the Tools menu or click the Menu Editor button .

6-70

Creating Menus

Note In general, programming conventions described for components in
Chapter 8, “Programming a GUIDE GUI” also apply to menu items. See
“Menu Item” on page 8-41 and “Updating a Menu Item Check” on page 8-42
for information about programming and basic examples.

Menus for the Menu Bar
When you create a drop-down menu, GUIDE adds its title to the GUI menu
bar. You can then create menu items for that menu. Each menu item can
have a cascading menu, also known as a submenu, and these items can have
cascading menus, and so on.

Adding Standard Menus to the Menu Bar
The figure MenuBar property controls whether your GUI displays the
MATLAB standard menus on the menu bar. GUIDE initially sets the value
of MenuBar to none. If you want your GUI to display the MATLAB standard
menus, use the Property Inspector to set MenuBar to figure.

• If the value of MenuBar is none, GUIDE automatically adds a menu bar that
displays only the menus you create.

• If the value of MenuBar is figure, the GUI displays the MATLAB standard
menus and GUIDE adds the menus you create to this menu bar.

6-71

6 Laying Out a GUIDE GUI

Creating a Menu

1 Start a new menu by clicking the New Menu button in the toolbar. A menu
title, Untitled 1, appears in the left pane of the dialog box.

Note By default, GUIDE selects the Menu Bar tab when you open the
Menu Editor.

6-72

Creating Menus

2 Click the menu title to display a selection of menu properties in the right
pane.

3 Fill in the Label and Tag fields for the menu. For example, set Label to
File and set Tag to file_menu. Click outside the field for the change to
take effect.

Label is a string that specifies the text label for the menu item. To display
the & character in a label, use two & characters in the string. The words
remove, default, and factory (case sensitive) are reserved. To use one of
these as labels, prepend a backslash (\) to the string. For example, \remove
yields remove.

Tag is a string that is an identifier for the menu object. It is used in the
code to identify the menu item and must be unique in the GUI.

6-73

6 Laying Out a GUIDE GUI

Adding Items to a Menu
Use the New Menu Item tool to create menu items that are displayed in
the drop-down menu.

1 Add an Open menu item under File, by selecting File then clicking the
New Menu Item button in the toolbar. A temporary numbered menu
item label, Untitled, appears.

6-74

Creating Menus

2 Fill in the Label and Tag fields for the new menu item. For example, set
Label to Open and set Tag to menu_file_open. Click outside the field
for the change to take effect.

You can also

• Choose an alphabetic keyboard accelerator for the menu item with the
Accelerator pop-up menu. In combination with Ctrl, this is the keyboard
equivalent for a menu item that does not have a child menu. Note that
some accelerators may be used for other purposes on your system and that
other actions may result.

• Display a separator above the menu item by checking Separator above
this item.

• Display a check next to the menu item when the menu is first opened by
checking Check mark this item. A check indicates the current state of
the menu item. See the example in “Adding Items to the Context Menu”
on page 6-80.

6-75

6 Laying Out a GUIDE GUI

• Enable this item when the menu is first opened by checking Enable this
item. This allows the user to select this item when the menu is first
opened. If you uncheck this option, the menu item appears dimmed when
the menu is first opened, and the user cannot select it.

• Specify a string for the routine, i.e., the Callback, that performs the
action associated with the menu item. If you have not yet saved the GUI,
the default value is %automatic. When you save the GUI, and if you
have not changed this field, GUIDE automatically sets the value using
a combination of the Tag field and the GUI filename. See “Menu Item”
on page 8-41 for more information about specifying this field and for
programming menu items.

The View button displays the callback, if there is one, in an editor. If you
have not yet saved the GUI, GUIDE prompts you to save it.

• Open the Property Inspector, where you can change all menu properties,
by clicking the More options button. For detailed information about the
properties, see Uimenu Properties in the MATLAB documentation.

Note In general, programming conventions described for components in
Chapter 8, “Programming a GUIDE GUI” also apply to menu items. See
“Menu Item” on page 8-41 and “Updating a Menu Item Check” on page 8-42
for programming information and basic examples.

Additional Drop-Down Menus
To create additional drop-down menus, use the New Menu button in the same
way you did to create the File menu. For example, the following figure also
shows an Edit drop-down menu.

6-76

Creating Menus

Cascading Menus
To create a cascading menu, select the menu item that will be the title for the
cascading menu, then click the New Menu Item button. In the example
below, Copy is a cascading menu.

Note See “Menu Item” on page 8-41 for information about programming
menu items.

6-77

6 Laying Out a GUIDE GUI

Laying Out Three Menus
The following Menu Editor illustration shows three menus defined for the
figure menu bar.

When you run the GUI, the menu titles appear in the menu bar.

6-78

Creating Menus

Context Menus
A context menu is displayed when a user right-clicks the object for which the
menu is defined. The Menu Editor enables you to define context menus and
associate them with objects in the layout. The process has three steps:

1 “Creating the Parent Menu” on page 6-79

2 “Adding Items to the Context Menu” on page 6-80

3 “Associating the Context Menu with an Object” on page 6-82

Note See “Menus for the Menu Bar” on page 6-71 for information about
defining menus in general. See “Menu Item” on page 8-41 for information
about defining callback subfunctions for your menus.

Creating the Parent Menu
All items in a context menu are children of a menu that is not displayed on
the figure menu bar. To define the parent menu:

1 Select the Menu Editor’s Context Menus tab and select the New Context
Menu button from the toolbar.

6-79

6 Laying Out a GUIDE GUI

2 Select the menu and specify the Tag field to identify the context menu
(axes_context_menu in this example).

Adding Items to the Context Menu
Use the New Menu Item button to create menu items that are displayed
in the context menu.

1 Add a Blue background color menu item to the menu by selecting
axes_context_menu and clicking the New Menu Item tool. A temporary
numbered menu item label, Untitled, appears.

6-80

Creating Menus

2 Fill in the Label and Tag fields for the new menu item. For example, set
Label to Blue background color and set Tag to blue_background. Click
outside the field for the change to take effect.

You can also

• Display a separator above the menu item by checking Separator above
this item.

• Display a check next to the menu item when the menu is first opened by
checking Check mark this item. A check indicates the current state of

6-81

6 Laying Out a GUIDE GUI

the menu item. See the example in “Adding Items to the Context Menu”
on page 6-80. See “Updating a Menu Item Check” on page 8-42 for a code
example.

• Enable this item when the menu is first opened by checking Enable this
item. This allows the user to select this item when the menu is first
opened. If you uncheck this option, the menu item appears dimmed when
the menu is first opened, and the user cannot select it.

• Specify a string for the routine, i.e., the Callback, that performs the
action associated with the menu item. If you have not yet saved the GUI,
the default value is %automatic. When you save the GUI, and if you
have not changed this field, GUIDE automatically sets the value using
a combination of the Tag field and the GUI filename. See “Menu Item”
on page 8-41 for more information about specifying this field and for
programming menu items.

The View button displays the callback, if there is one, in an editor. If you
have not yet saved the GUI, GUIDE prompts you to save it.

• Open the Property Inspector, where you can change all menu properties, by
clicking the More options button. For detailed information about these
properties, see Uicontextmenu Properties in the MATLAB documentation.

Associating the Context Menu with an Object

1 In the Layout Editor, select the object for which you are defining the
context menu.

2 Use the Property Inspector to set this object’s UIContextMenu property to
the name of the desired context menu.

The following figure shows the UIContextMenu property for the axes object
with Tag property axes1.

6-82

Creating Menus

In the GUI M-file, complete the callback subfunction for each item in the
context menu. Each callback executes when a user selects the associated
context menu item. See “Menu Item” on page 8-41 for information on defining
the syntax.

Note In general, programming conventions described for components in
Chapter 8, “Programming a GUIDE GUI” also apply to menu items. See
“Menu Item” on page 8-41 and “Updating a Menu Item Check” on page 8-42
for programming information and basic examples.

6-83

6 Laying Out a GUIDE GUI

Creating Toolbars

In this section...

“Creating Toolbars with GUIDE” on page 6-84

“Editing Tool Icons” on page 6-94

“Creating Toolbars Programmatically” on page 6-98

Creating Toolbars with GUIDE
You can add a toolbar to a GUI you create in GUIDE with the Toolbar Editor,
which you open from the GUIDE Layout Editor toolbar.

6-84

Creating Toolbars

You can also open the Toolbar Editor from the Tools menu.

6-85

6 Laying Out a GUIDE GUI

The Toolbar Editor gives you interactive access to all the features of the
uitoolbar, uipushtool, and uitoggletool functions. It only operates in the
context of GUIDE; you cannot use it to modify any of the built-in MATLAB
toolbars. However, you can use the Toolbar Editor to add, modify, and delete
a toolbar from any GUI in GUIDE.

Currently, you can add one toolbar to your GUI in GUIDE. However, your
GUI can also include the standard MATLAB figure toolbar. If you need to, you
can create a toolbar that looks like a normal figure toolbar, but customize its
callbacks to make tools (such as pan, zoom, and open) behave in specific ways.

6-86

Creating Toolbars

Note You do not need to use the Toolbar Editor if you simply want your
GUI to have a standard figure toolbar. You can do this by setting the figure’s
Toolbar property to 'figure', as follows:

1 Open the GUI in GUIDE.

2 From the View menu, open Property Inspector.

3 Set the Toolbar property to figure using the drop-down menu.

4 Save the figure

If you later want to remove the figure toolbar, set the Toolbar property to
auto and resave the GUI. This will not remove or hide your custom toolbar
should the GUI have one. See “Creating Toolbars Programmatically” on page
6-98 for more information about creating a toolbar with M-code.

Using the Toolbar Editor
The Toolbar Editor contains three main parts:

• The Toolbar Layout preview area on the top

• The Tool Palette on the left

• Two tabbed property panes on the right

6-87

6 Laying Out a GUIDE GUI

To add a tool, drag an icon from the Tool Palette into the Toolbar Layout
(which initially contains the text prompt shown above), and edit the tool’s
properties in the Tool Properties pane.

6-88

Creating Toolbars

When you first create a GUI, no toolbar exists on it. When you open the
Toolbar Editor and place the first tool, a toolbar is created and a preview of
the tool you just added appears in the top part of the window. If you later
open a GUI that has a toolbar, the Toolbar Editor shows the existing toolbar,
although the Layout Editor does not.

Adding Tools
You can add a tool to a toolbar in three ways:

• Drag and drop tools from the Tool Palette.

• Select a tool in the palette and click the Add button.

• Double-click a tool in the palette.

Dragging allows you to place a tool in any order on the toolbar. The other two
methods place the tool to the right of the right-most tool on the Toolbar
Layout. The new tool is selected (indicated by a dashed box around it) and
its properties are shown in the Tool Properties pane. You can select only
one tool at a time. You can cycle through the Tool Palette using the tab key
or arrow keys on your computer keyboard. You must have placed at least
one tool on the toolbar.

After you place tools from the Tool Palette into the Toolbar Layout area,
the Toolbar Editor shows the properties of the currently selected tool, as the
following illustration shows.

6-89

6 Laying Out a GUIDE GUI

Predefined and Custom Tools
The Toolbar Editor provides two types of tools:

6-90

Creating Toolbars

• Predefined tools, having standard icons and behaviors

• Custom tools, having generic icons and no behaviors

Predefined Tools. The set of icons on the bottom of the Tool Palette
represent standard MATLAB figure tools. Their behavior is built in.
Predefined tools that require an axes (such as pan and zoom) do not exhibit
any behavior in GUIs lacking axes. The callback(s) defining the behavior of
the predefined tool are shown as %default, which calls the same function
that the tool calls in standard figure toolbars and menus (to open files, save
figures, change modes, etc.). You can change %default to some other callback
to customize the tool; GUIDE warns you that you will modify the behavior of
the tool when you change a callback field or click the View button next to it,
and asks if you want to proceed or not.

Custom Tools. The two icons at the top of the Tool Palette create pushtools
and toggletools. These have no built-in behavior except for managing their
appearance when clicked on and off. Consequently, you need to provide your
own callback(s) when you add one to your toolbar. In order for custom tools to
respond to clicks, you need to edit their callbacks to create the behaviors you
desire. Do this by clicking the View button next to the callback in the Tool
Properties pane, and then editing the callback in the Editor window.

Adding and Removing Separators
Separators are vertical bars that set off tools, enabling you to group them
visually. You can add or remove a separator in any of three ways:

• Right-click on a tool’s preview and select Show Separator, which toggles
its separator on and off.

• Check or clear the checkbox Separator to the left in the tool’s property
pane.

• Change the Separator property of the tool from the Property Inspector

After adding a separator, that separator appears in the Toolbar Layout
to the left of the tool. The separator is not a distinct object or icon; it is a
property of the tool.

6-91

6 Laying Out a GUIDE GUI

Moving Tools
You can reorder tools on the toolbar in two ways:

• Drag a tool to a new position.

• Select a tool in the toolbar and click one of the arrow buttons below the
right side of the toolbar.

If a tool has a separator to its left, the separator moves with the tool.

Removing Tools
You can remove tools from the toolbar in three ways:

• Select a tool and press the Delete key.

• Select a tool and click the Delete button on the GUI.

• Right-click a tool and select Delete from the context menu.

You cannot undo any of these actions.

Editing a Tool’s Properties
You edit the appearance and behavior of the currently selected tool using the
Tool Properties pane, which includes controls for setting the most commonly
used tool properties:

• CData — The tool’s icon

• Tag — The internal name for the tool

• Enable — Whether users can click the tool

• Separator — A bar to the left of the icon for setting off and grouping tools

• Clicked Callback — The function called when users click the tool

• Off Callback (uitoggletool only) — The function called when the tool is put
in the off state

• On Callback (uitoggletool only) — The function called when the tool is
put in the on state

6-92

Creating Toolbars

See “Callbacks: An Overview” on page 8-2 for details on programming the tool
callbacks. You can also access these and other properties of the selected tool
with the Property Inspector. To open the Property Inspector, clicki the More
Properties button on the Tool Properties pane.

Editing Tool Icons
To edit a selected toolbar icon, click the Edit button in the Tool Properties
pane, next to CData (icon) or right-click the Toolbar Layout and select
Edit Icon from the context menu. The Icon Editor opens with the tool’s
CData loaded into it. For information about editing icons, see “Using the Icon
Editor” on page 6-95.

Editing Toolbar Properties
If you click an empty part of the toolbar or click the Toolbar Properties
tab, you can edit two of its properties:

• Tag — The internal name for the toolbar

• Visible — Whether the toolbar is displayed in your GUI

The Tag property is initially set to uitoolbar1. The Visible property is set to
on. When on, the Visible property causes the toolbar to be displayed on the
GUI regardless of the setting of the figure’s Toolbar property. If you want to
toggle a custom toolbar as you can built-in ones (from the View menu), you can
create a menu item, a checkbox, or other control to control its Visible property.

To access nearly all the properties for the toolbar in the Property Inspector,
click More Properties.

Testing Your Toolbar
To try out your toolbar, click the Run button in the Layout Editor. MATLAB
asks if you want to save changes to its .fig file first.

Removing a Toolbar
You can remove a toolbar completely—destroying it—from the Toolbar Editor,
leaving your GUI without a toolbar (other than the figure toolbar, which is not
visible by default). The are two ways to remove a toolbar:

6-93

6 Laying Out a GUIDE GUI

• Click the Remove button on the right end of the toolbar.

• Right-click a blank area on the toolbar and select Remove Toolbar from
the context menu.

If you remove all the individual tools in the ways shown in “Removing Tools”
on page 6-92 without removing the toolbar itself, your GUI will contain an
empty toolbar.

Closing the Toolbar Editor
You can close the Toolbar Editor window in two ways:

• Press the OK button.

• Click the Close box in the title bar.

When you close the Toolbar Editor, the current state of your toolbar is saved
with the GUI you are editing. You do not see the toolbar in the Layout Editor;
you need to run the GUI to see or use it.

Editing Tool Icons
GUIDE includes its own Icon Editor, a GUI for creating and modifying icons
such as icons on toolbars. You can access this editor only from the Toolbar
Editor. This figure shows the Icon Editor loaded with a standard Save icon.

6-94

Creating Toolbars

Note There are examples that show how to create your own icon editor. See
the example in “Icon Editor” on page 15-29 and the discussion of sharing data
among multiple GUIs in the portion of the GUI Building documentation.

Using the Icon Editor
The Icon Editor GUI includes the following components:

• Icon file name — The icon image file to be loaded for editing

• Import button — Opens a file dialog to select an existing icon file for
editing

• Drawing tools — A group of four tools on the left side for editing icons

6-95

6 Laying Out a GUIDE GUI

- Pencil tool — Color icon pixels by clicking or dragging

- Eraser tool — Erase pixels to be transparent by clicking or dragging

- Paint bucket tool — Flood regions of same-color pixels with the current
color

- Pick color tool — Click a pixel or color palette swatch to define the
current color

• Icon Edit pane — A n-by-m grid where you color an icon

• Preview pane — A button with a preview of current state of the icon

• Color Palette — Swatches of color that the pencil and paint tools can use

• More Colors button — Opens the Colors dialog box for choosing and
defining colors

• OK button — Dismisses the GUI and returns the icon in its current state

• Cancel button — Closes the GUI without returning the icon

To work with the Icon Editor,

1 Open the Icon Editor for a selected tool’s icon.

2 Using the Pencil tool, color the squares in the grid:

• Click a color cell in the palette.

• That color appears in the Color Palette preview swatch.

• Click in specific squares of the grid to transfer the selected color to
those squares.

• Hold down the left mouse button and drag the mouse over the grid to
transfer the selected color to the squares that you touch.

• Change a color by writing over it with another color.

3 Using the Eraser tool, erase the color in some squares

• Click the Eraser button on the palette.

• Click in specific squares to erase those squares.

6-96

Creating Toolbars

• Click and drag the mouse to erase the squares that you touch.

• Click a another drawing tool to disable the Eraser.

4 Click OK to close the GUI and return the icon you created or click Cancel
to close the GUI without modifying the selected tool’s icon.

The three GUIs are shown operating together below, before saving a
uipushtool icon:

6-97

6 Laying Out a GUIDE GUI

Creating Toolbars Programmatically
As described previously, GUIDE provides tools to enable you to add a
toolbar to a GUI and add tools to it. You can also add a toolbar and tools
programmatically by adding code to the opening function.

6-98

Creating Toolbars

See “Initialization Callbacks” on page 8-16 for information about the opening
function, and see the uitoolbar, uipushtool, and uitoggletool reference
pages for information and examples.

This example creates a toolbar (uitoolbar) and places a toggle tool
(uitoggletool) on it. Add the following code to the GUI’s opening function to
produce the toolbar shown:

ht = uitoolbar(hObject)
a = rand(16,16,3);
htt = uitoggletool(ht,'CData',a,'TooltipString','Hello')

In the opening function, hObject is an input argument that holds the figure
handle. The CData property enables you to display a truecolor image on the
toggle tool.

6-99

6 Laying Out a GUIDE GUI

Viewing the Object Hierarchy
The Object Browser displays a hierarchical list of the objects in the figure,
including both components and menus. As you lay out your GUI, check the
object hierarchy periodically, especially if your GUI contains menus, panes,
or button groups.

The following illustration shows a figure object and its child objects. It also
shows the child objects of the pane and a menu that was created.

To determine a component’s place in the hierarchy, select it in the Layout
Editor. It is automatically selected in the Object Browser. Similarly, if you
select an object in the Object Browser, it is automatically selected in the
Layout Editor.

6-100

Designing for Cross-Platform Compatibility

Designing for Cross-Platform Compatibility

In this section...

“Default System Font” on page 6-101

“Standard Background Color” on page 6-102

“Cross-Platform Compatible Units” on page 6-103

Default System Font
By default, user interface controls (uicontrols) use the default font for the
platform on which they are running. For example, when displaying your GUI
on PCs, uicontrols use MS San Serif. When your GUI runs on a different
platform, it uses that computer’s default font. This provides a consistent look
with respect to your GUI and other application GUIs.

If you have set the FontName property to a named font and want to return
to the default value, you can set the property to the string default. This
ensures that MATLAB uses the system default at run-time.

You can use the Property Inspector to set this property:

Or you can use the set command to set the property in the GUI M-file. For
example, if there is a push button in your GUI and its handle is stored in the
pushbutton1 field of the handles structure, then the statement

set(handles.pushbutton1,'FontName','default')

sets the FontName property to use the system default.

6-101

6 Laying Out a GUIDE GUI

Specifying a Fixed-Width Font
If you want to use a fixed-width font for a user interface control, set its
FontName property to the string fixedwidth. This special identifier ensures
that your GUI uses the standard fixed-width font for the target platform.

You can find the name of the fixed-width font that is used on a given platform
by querying the root FixedWidthFontName property.

get(0,'FixedWidthFontName')

Using a Specific Font Name
You can specify an actual font name (such as Times or Courier) for the
FontName property. However, doing so may cause your GUI to not look as
you intended when run on a different computer. If the target computer does
not have the specified font, it will substitute another font that may not look
good in your GUI or may not be the standard font used for GUIs on that
system. Also, different versions of the same named font may have different
size requirements for a given set of characters.

Standard Background Color
The default component background color is the standard system background
color on which the GUI is running. This color varies on different computer
systems, e.g., the standard shade of gray on the PC differs from that on UNIX,
and may not match the default GUI background color.

If you use the default component background color, you can use that same
color as the background color for your GUI. This provides a consistent look
with respect to your GUI and other application GUIs. To do this in GUIDE,
check Options > Use system color scheme for background on the Layout
Editor Tools menu.

Note This option is available only if you first select the Generate FIG-file
and M-File option.

6-102

Designing for Cross-Platform Compatibility

The following figures illustrate the results with and without system color
matching.

Cross-Platform Compatible Units
Cross-platform compatible GUIs should look correct on computers having
different screen sizes and resolutions. Since the size of a pixel can vary on
different computer displays, using the default figure Units of pixels does not
produce a GUI that looks the same on all platforms.

For this reason, GUIDE defaults the Units property for the figure to
characters.

System-Dependent Units
Character units are defined by characters from the default system font. The
width of a character unit equals the width of the letter x in the system font.
The height of a character unit is the distance between the baselines of two
lines of text. Note that character units are not square.

6-103

6 Laying Out a GUIDE GUI

Units and Resize Behavior
If you set your GUI’s resize behavior from the GUI Options dialog box,
GUIDE automatically sets the units for the GUI’s components in a way that
maintains the intended look and feel across platforms. To specify the resize
behavior option, select GUI Options from the Tools menu, then specify
Resize behavior by selecting Non-resizable, Proportional, or Other
(Use ResizeFcn).

If you choose Non-resizable, GUIDE defaults the component units to
characters. If you choose Proportional, it defaults the component units to
normalized. In either case, these settings enable your GUI to automatically
adjust the size and relative spacing of components as the GUI displays on
different computers.

If you choose Other (Use ResizeFcn), GUIDE defaults the component units
to characters. However, you must provide a ResizeFcn callback to customize
the GUI’s resize behavior.

Note GUIDE does not automatically adjust component units if you modify
the figure’s Resize property programmatically or in the Property Inspector.

At times, it may be convenient to use a more familiar unit of measure, e.g.,
inches or centimeters, when you are laying out the GUI. However, to preserve
the look of your GUI on different computers, remember to change the figure
Units property back to characters, and the components’ Units properties
to characters (nonresizable GUIs) or normalized (resizable GUIs) before
you save the GUI.

6-104

7

Saving and Running a
GUIDE GUI

Naming a GUI and Its Files (p. 7-2) Describes the GUI files and how
they are named.

Saving a GUI (p. 7-4) Describes the various ways of saving
a GUI in GUIDE.

Running a GUI (p. 7-10) Tells you how to run a GUI from
GUIDE and from the command line.

7 Saving and Running a GUIDE GUI

Naming a GUI and Its Files

In this section...

“The GUI Files” on page 7-2

“File and GUI Names” on page 7-2

“Renaming GUIs and GUI Files” on page 7-3

The GUI Files
By default, GUIDE stores a GUI in two files which are generated the first
time you save or run the GUI:

• A FIG-file, with extension .fig, that contains a complete description of the
GUI layout and the GUI components, such as push buttons, axes, panels,
menus, and so on. The FIG-file is a binary file and you cannot modify it
except by changing the layout in GUIDE. Note that a FIG-file is a kind of
MAT-file. See “MAT-Files Preferences” in the MATLAB Desktop Tools and
Development Environment documentation for more information.

• An M-file, with extension .m, that contains the code that controls the GUI,
including the callbacks for its components.

These two files usually reside in the same directory. They correspond to the
tasks of laying out and programming the GUI. When you lay out the GUI in
the Layout Editor, your work is stored in the FIG-file. When you program the
GUI, your work is stored in the corresponding M-file.

Note that if your GUI includes ActiveX components, GUIDE also generates
a file for each ActiveX component. See “ActiveX Control” on page 8-33 for
more information.

For more information about these files, see “GUI Files: An Overview” on
page 8-5.

File and GUI Names
The M-file and the FIG-file that define your GUI must have the same name.
This name is also the name of your GUI.

7-2

Naming a GUI and Its Files

For example, if your files are named mygui.fig and mygui.m, then the
name of the GUI is mygui, and you can run the GUI by typing mygui at the
command line. This assumes that the M-file and FIG-file are in the same
directory and that the directory is in your path.

Names are assigned when you save the GUI the first time. See “Ways to Save
a GUI” on page 7-4 for information about saving GUIs.

Renaming GUIs and GUI Files
To rename a GUI, rename the GUI FIG-file using Save As from the Layout
Editor File menu. When you do this, GUIDE renames both the FIG-file and
the GUI M-file, updates any callback properties that contain the old name
to use the new name, and updates all instances of the file name in the body
of the M-file.

7-3

7 Saving and Running a GUIDE GUI

Saving a GUI

In this section...

“Ways to Save a GUI” on page 7-4

“Saving a New GUI” on page 7-5

“Saving an Existing GUI” on page 7-8

Ways to Save a GUI
You can save a GUI in GUIDE in any of these ways:

• From the GUIDE Quick Start dialog box. Before you select a template,
GUIDE lets you select a name for your GUI. When you click OK, GUIDE
saves the GUI M-file and FIG-file using the name you specify.

• The first time you save the files by

- Clicking the Save icon on the Layout Editor toolbar

- Selecting the Save or Save as options on the File menu

7-4

Saving a GUI

In either case, GUIDE prompts you for a name before saving the GUI.

• The first time you run the GUI by

- Clicking the Run icon on the Layout Editor toolbar

- Selecting Run from the Tools menu

In each case, GUIDE prompts you for a name and saves the GUI files
before activating the GUI.

In all cases, GUIDE creates a template M-file and opens it in your default
editor. See “Naming of Callback Functions” on page 8-13 for more information
about the template M-file.

Note In most cases you should save your GUI to your current directory or
to your path. GUIDE-generated GUIs cannot run correctly from a private
directory. GUI FIG-files that are created or modified with MATLAB 7.0 or
a later MATLAB version, are not automatically compatible with Version
6.5 and earlier versions. To make a FIG-file, which is a kind of MAT-file,
backward compatible, you must check General > MAT-Files > Ensure
backward compatibility (-v6) in the MATLAB Preferences dialog box
before saving the file. Button groups and panels are introduced in MATLAB
7.0, and you should not use them in GUIs that you expect to run in earlier
MATLAB versions.

Saving a New GUI
Follow these steps if you are saving a GUI for the first time, or if you are
using Save as from the File menu.

Note If you select Save as from the File menu or click the Save button
on the toolbar, GUIDE saves the GUI without activating it. However, if

you select Run from the Tools menu or click the Run icon on the toolbar,
GUIDE saves the GUI before activating it.

7-5

7 Saving and Running a GUIDE GUI

1 If you have made changes to the GUI and elect to activate the GUI by
selecting Run from the Tools menu or by clicking the Run icon on the
toolbar, GUIDE displays the following dialog box. Click Yes to continue.

2 If you clicked Yes in the previous step, if you are saving the GUI without
activating it, or if you are using Save as from the File menu, GUIDE opens
a Save As dialog box and prompts you for a FIG-file name.

3 Change the directory if you choose, and then enter the name you want to
use for the FIG-file. Be sure to choose a writable directory. GUIDE saves
both the FIG-file and the M-file using this name.

Note In most cases you should save your GUI to your current directory or
to your path. GUIDE-generated GUIs cannot run correctly from a private
directory.

7-6

Saving a GUI

4 If you choose an existing filename, GUIDE displays a dialog box that asks
you if you want to replace the existing FIG-file. Click Yes to continue.

5 If you chose Yes in the previous step, GUIDE displays a dialog that asks if
you want to replace the existing M-file or append to it. The most common
choice is Replace.

If you choose Append, GUIDE adds callbacks to the existing M-file for
components in the current layout that are not present in the existing M-file.
Before you append the new components, ensure that their Tag properties
do not duplicate Tag values that appear in callback function names in
the existing M-file. See “Assigning an Identifier to Each Component” on
page 6-27 for information about specifying the Tag property. See “Naming
of Callback Functions” on page 8-13 for more information about callback
function names.

7-7

7 Saving and Running a GUIDE GUI

6 If you chose to activate the GUI by selecting Run from the Tools menu or
by clicking the Run button on the toolbar, and if the directory in which
you save the GUI is not on the MATLAB path, GUIDE opens a dialog box,
giving you the option of changing the current working directory to the
directory containing the GUI files, or adding that directory to the top or
bottom of the MATLAB path.

7 After you save the files, GUIDE opens the GUI M-file in your default editor.
If you elected to run the GUI, it also activates the GUI.

Saving an Existing GUI
Follow these steps if you are saving an existing GUI to its current location. See
“Saving a New GUI” on page 7-5 if you are using Save as from the File menu.

If you have made changes to a GUI and choose to save and activate the GUI
by selecting Run from the Tools menu or by clicking the Run button on the
toolbar, GUIDE saves the GUI and then activates it. It does not automatically
open the M-file, even if you added new components.

7-8

Saving a GUI

If you select Save from the File menu or click the Save button on the
toolbar, GUIDE saves the GUI without activating it.

7-9

7 Saving and Running a GUIDE GUI

Running a GUI

In this section...

“Executing the M-file” on page 7-10

“From the GUIDE Layout Editor” on page 7-10

“From the Command Line” on page 7-11

“From an M-file” on page 7-11

Executing the M-file
Generally, you run your GUI by executing the M-file that GUIDE generates.
This M-file contains the commands to load the GUI and provides a framework
for the component callbacks. See “GUI Files: An Overview” on page 8-5 for
more information about the M-file.

When you execute the M-file, a fully functional copy of the GUI displays on
the screen. You can run a GUI:

Note You can display a copy of the GUI figure using the openfig, open,
or hgload function. These commands load FIG-files into the MATLAB
workspace. The displayed GUI is active, and you can manipulate the
components. But nothing happens. This is because no corresponding M-file
has been executed.

From the GUIDE Layout Editor
Run your GUI from the GUIDE Layout Editor by:

• Clicking the button on the Layout Editor toolbar

• Selecting Run from the Tools menu

In either case, if the GUI has changed or has never been saved, GUIDE saves
the GUI files before activating it and opens the GUI M-file in your default
editor. See “Saving a GUI” on page 7-4 for information about this process. See
“GUI Files: An Overview” on page 8-5 for more information about GUI M-files.

7-10

Running a GUI

From the Command Line
Run your GUI from its M-file by executing the GUI M-file. For example, if
your GUI M-file is mygui.m, type

mygui

at the command line. The files must reside on your path or in your current
directory.

If a GUI accepts arguments when it is run, they are passed to the GUI’s
opening function. See “Opening Function” on page 8-16 for more information.

Note Consider whether you want to allow more than one copy of the GUI
to be active at the same time. If you want only one GUI to be active, select
Options > GUI Allows Only One Instance to Run (Singleton) from
the Layout Editor View menu. See “GUI Options” on page 5-9 for more
information.

From an M-file
Run your GUI from an M-file by executing the GUI M-file. For example, if your
GUI M-file is mygui.m, include the following statement in your M-file script.

mygui

The M-file must reside on the MATLAB path or in the current MATLAB
directory where the GUI is run.

If a GUI accepts arguments when it is run, they are passed to the GUI’s
opening function. See “Opening Function” on page 8-16 for more information.

Note Consider whether you want to allow more than one copy of the GUI
to be active at the same time. If you want only one GUI to be active, select
Options from the Layout Editor View menu, then select GUI Allows Only
One Instance to Run (Singleton). See “GUI Options” on page 5-9 for more
information.

7-11

7 Saving and Running a GUIDE GUI

7-12

8

Programming a GUIDE
GUI

Callbacks: An Overview (p. 8-2) Introduces the functions, referred to
as callbacks, that you use to program
GUI behavior.

GUI Files: An Overview (p. 8-5) Describes the files that comprise a
GUI and details the structure of the
GUI M-file which you must program.

Associating Callbacks with
Components (p. 8-8)

Outlines the mechanisms that
GUIDE uses for associating a
callback with a specific component.

Callback Syntax and Arguments
(p. 8-12)

Describes callback naming
conventions and input arguments,
and introduces the handles structure
as a tool for communicating among
a GUI’s callbacks.

Initialization Callbacks (p. 8-16) Describes the functions, provided by
GUIDE, that you can use to initialize
a GUI.

Examples: Programming GUIDE
GUI Components (p. 8-20)

Provides a brief example for
programming each kind of
component.

8 Programming a GUIDE GUI

Callbacks: An Overview

In this section...

“Programming of GUIs Created Using GUIDE” on page 8-2

“What Is a Callback?” on page 8-2

“Kinds of Callbacks” on page 8-2

Programming of GUIs Created Using GUIDE
After you have laid out your GUI, you need to program its behavior. The code
you write controls how the GUI responds to events such as button clicks, slider
movement, menu item selection, or the creation and deletion of components.
This programming takes the form of a set of functions, called callbacks, for
each component and for the GUI figure itself.

What Is a Callback?
A callback is a function that you write and associate with a specific GUI
component or with the GUI figure. It controls GUI or component behavior by
performing some action in response to an event for its component. This kind
of programming is often called event-driven programming.

When an event occurs for a component, MATLAB invokes the component’s
callback that is triggered by that event. As an example, suppose a GUI has
a button that triggers the plotting of some data. When the user clicks the
button, MATLAB calls the callback you associated with clicking that button,
and the callback, which you have programmed, then gets the data and plots it.

A component can be any control device such as a push button, list box, or
slider. For purposes of programming, it can also be a menu or a container such
as a panel or button group. See “Available Components” on page 6-19 for a
list and descriptions of components.

Kinds of Callbacks
The GUI figure and each type of component has specific kinds of callbacks
with which it can be associated. The callbacks that are available for each
component are defined as properties of that component. For example, a push

8-2

Callbacks: An Overview

button has five callback properties: ButtonDownFcn, Callback, CreateFcn,
DeleteFcn, and KeyPressFcn. A panel has four callback properties:
ButtonDownFcn, CreateFcn, DeleteFcn, and ResizeFcn. You can, but are
not required to, create a callback function for each of these properties. The
GUI itself, which is a figure, also has certain kinds of callbacks with which
it can be associated.

Each kind of callback has a triggering mechanism or event that causes it to be
called. The following table lists the callback properties that GUIDE makes
available, their triggering events, and the components to which they apply.

Callback Property Triggering Event Components

ButtonDownFcn Executes when the user presses a
mouse button while the pointer is on
or within five pixels of a component
or figure. If the component is a user
interface control, its Enable property
must be on.

Axes, figure, button
group, panel, user
interface controls

Callback Component action. Executes, for
example, when a user clicks a push
button or selects a menu item.

Context menu,
menu, user interface
controls

CloseRequestFcn Executes before the figure closes. Figure

CreateFcn Component creation. It can be use
to initialize the component when
it is created. It executes after the
component or figure is created, but
before it is displayed.

Axes, figure, button
group, context menu,
menu, panel, user
interface controls

DeleteFcn Component deletion. It can be used to
perform cleanup operations just before
the component or figure is destroyed.

Axes, figure, button
group, context menu,
menu, panel, user
interface controls

KeyPressFcn Executes when the user presses
a keyboard key and the callback’s
component or figure has focus.

Figure, user interface
controls

KeyReleaseFcn Executes when the user releases a
keyboard key and the figure has focus.

Figure

8-3

8 Programming a GUIDE GUI

Callback Property Triggering Event Components

ResizeFcn Executes when a user resizes a panel,
button group, or figure whose figure
Resize property is set to On.

Button group, figure,
panel

SelectionChangeFcn Executes when a user selects a
different radio button or toggle button
in a button group component.

Button group

WindowButtonDownFcn Executes when you press a mouse
button while the pointer is in the figure
window.

Figure

WindowButtonMotionFcn Executes when you move the pointer
within the figure window.

Figure

WindowButtonUpFcn Executes when you release a mouse
button.

Figure

WindowScrollWheelFcn Executes when the mouse wheel is
scrolled while the figure has focus.

Figure

Note User interface controls include push buttons, sliders, radio buttons,
check boxes, editable text boxes, static text boxes, list boxes, and toggle
buttons. They are sometimes referred to as uicontrols.

Check the properties reference page for your component, e.g.,
UicontrolProperties, to get specific information for a given callback
property.

8-4

GUI Files: An Overview

GUI Files: An Overview

In this section...

“M-Files and FIG-Files” on page 8-5

“GUI M-File Structure” on page 8-6

“Adding Callback Templates to an Existing GUI M-File” on page 8-6

M-Files and FIG-Files
By default, the first time you save or run a GUI, GUIDE stores the GUI in
two files:

• A FIG-file, with extension .fig, that contains a complete description of the
GUI layout and the GUI components, such as push buttons, axes, panels,
menus, and so on. The FIG-file is a binary file and you cannot modify it
except by changing the layout in GUIDE. Note that a FIG-file is a kind of
MAT-file. See “MAT-Files Preferences” for more information.

• An M-file, with extension .m, that initially contains initialization code and
templates for some callbacks that are needed to control GUI behavior. You
must add the callbacks you write for your GUI components to this file.

When you save your GUI the first time, GUIDE automatically opens the
M-file in your default editor.

The FIG-file and the M-file, usually reside in the same directory. They
correspond to the tasks of laying out and programming the GUI. When you lay
out the GUI in the Layout Editor, your work is stored in the FIG-file. When
you program the GUI, your work is stored in the corresponding M-file.

If your GUI includes ActiveX components, GUIDE also generates a file for each
ActiveX component. See “ActiveX Control” on page 8-33 for more information.

For more information about naming and saving a GUI, see Chapter 7, “Saving
and Running a GUIDE GUI”. If you want to change the name of your GUI
and its files, see “Renaming GUIs and GUI Files” on page 7-3.

8-5

8 Programming a GUIDE GUI

GUI M-File Structure
The GUI M-file that GUIDE generates is a function file. The name of the
main function is the same as the name of the M-file. For example, if the name
of the M-file is mygui.m, then the name of the main function is mygui. Each
callback in the file is a subfunction of the main function.

When GUIDE generates an M-file, it automatically includes templates for the
most commonly used callbacks for each component. The M-file also contains
initialization code, as well as an opening function callback and an output
function callback. You must add code to the component callbacks for your GUI
to work as you want. You may also want to add code to the opening function
callback and the output function callback. The major sections of the GUI
M-file are ordered as shown in the following table.

Section Description

Comments Displayed at the command line in response to the help
command. Edit these as necessary for your GUI.

Initialization GUIDE initialization tasks. Do not edit this code.

Opening function Performs your initialization tasks before the user has
access to the GUI.

Output function Returns outputs to the MATLAB command line after
the opening function returns control and before control
returns to the command line.

Component and
figure callbacks

Control the behavior of the GUI figure and of
individual components. MATLAB calls a callback in
response to a particular event for a component or for
the figure itself.

Utility/helper
functions

Perform miscellaneous functions not directly
associated with an event for the figure or a component.

Adding Callback Templates to an Existing GUI M-File
When you save the GUI, GUIDE automatically adds templates for some
callbacks to the M-file. However, you may want to add other callbacks to
the M-file.

8-6

GUI Files: An Overview

Within GUIDE, you can add a callback subfunction template to the GUI
M-file in one of two ways. With the component selected for which you want to
add the callback:

• Click the right mouse button to display the Layout Editor context menu.
Select the desired callback from the View callbacks submenu. GUIDE
adds the callback template to the GUI M-file and opens the M-file for
editing at the callback it just added.

• In the View menu, select the desired callback from the View callbacks
submenu. GUIDE adds the callback template to the GUI M-file and opens
the M-file for editing at the callback you just added.

Note In either case, if you select a callback that already exists in the GUI
M-file, GUIDE adds no callback, but opens the M-file for editing at the
callback you select.

For more information, see “Associating Callbacks with Components” on page
8-8.

8-7

8 Programming a GUIDE GUI

Associating Callbacks with Components

In this section...

“GUI Components” on page 8-8

“Setting Callback Properties Automatically” on page 8-8

“Deleting Callbacks from a GUI M-File” on page 8-11

GUI Components
A GUI can have many components and GUIDE provides a way of specifying
which callback should run in response to a particular event for a particular
component. The callback that runs when the user clicks a Yes button is not
the one that runs for the No button. Similarly, each menu item usually
performs a different function.

GUIDE uses each component’s callback properties to associate specific
callbacks with that component.

Note “Kinds of Callbacks” on page 8-2 provides a list of callback properties
and the components to which each applies.

Setting Callback Properties Automatically
GUIDE initially sets the value of the most commonly used callback properties
for each component to %automatic. For example, a push button has five
callback properties, ButtonDownFcn, Callback, CreateFcn, DeleteFcn, and
KeyPressFcn. GUIDE sets only the Callback property, the most commonly
used callback, to %automatic. You can use the Property Inspector to set the
other callback properties to %automatic.

When you next save the GUI, GUIDE replaces %automatic with a MATLAB
expression that is the GUI calling sequence for the callback. Within the
calling sequence, it constructs the callback name, i.e., the subfunction name,
from the component’s Tag property and the name of the callback property.

8-8

Associating Callbacks with Components

The following figure shows an example of a push button’s Callback and Tag
properties in the GUIDE Property Inspector before the GUI is saved.

Note If you change the string %automatic before saving the GUI, GUIDE
does not automatically add a callback for that component or menu item.

When you save the GUI, GUIDE constructs the name of the callback by
appending an underscore (_) and the name of the callback property to the
value of the component’s Tag property. For example, the MATLAB expression
for the Callback property for a push button in the GUI simple_gui with
Tag property pushbutton1 is

simple_gui(pushbutton1_Callback,gcbo,[],guidata(gcbo))

8-9

8 Programming a GUIDE GUI

simple_gui is the name of the GUI M-file as well as the name of the main
function for that GUI. The remaining arguments generate input arguments
for pushbutton1_Callback. Specifically,

• gcbo is a command that returns the handle of the callback object (i.e.,
pushbutton1).

• [] is a place holder for the currently unused eventdata argument.

• guidata(gcbo) returns the handles structure for this GUI.

See “Input Arguments” on page 8-14 for information about the callback input
arguments.

When you save the GUI, GUIDE also opens the GUI M-file in your editor. The
M-file then contains a template for the Callback callback for the component
whose Tag is pushbutton1. If you activate the GUI, clicking the push button
triggers the execution of the Callback callback for the component.

For information about changing the callback name after GUIDE assigns
it, see “Changing Callback Names Assigned by GUIDE” on page 8-13. For
information about adding callback templates to the GUI M-file, see “Adding
Callback Templates to an Existing GUI M-File” on page 8-6.

The next topic, “Callback Syntax and Arguments” on page 8-12, provides more
information about the callback template.

8-10

Associating Callbacks with Components

Deleting Callbacks from a GUI M-File
There are times when you want to delete a callback from a GUI M-file. The
callback may have been automatically generated or you may have added it
yourself. Some common reasons for wanting to delete a callback are:

• You have deleted the component for which the callback was generated.

• You want the component to use other code and you have already edited
the appropriate callback property in the Property Inspector to point to
the other code.

To delete a callback, whether it is automatically generated or whether you
added it explicitly, you must first ensure that the callback is not used. Only
then should you delete the callback.

To ensure that the callback is not used elsewhere in the GUI:

• Search for occurrences of the name of the callback in the GUI M-file.

• Open the GUI in GUIDE and use the Property Inspector to check for the
name of the callback you want to delete in the callback properties of all
the components.

In either case, if you find a reference to the callback, you must either remove
the reference or retain the callback. Once you have assured yourself that the
code is not used by the GUI, manually delete the entire callback subfunction
from the M-file.

8-11

8 Programming a GUIDE GUI

Callback Syntax and Arguments

In this section...

“Callback Templates” on page 8-12

“Naming of Callback Functions” on page 8-13

“Changing Callback Names Assigned by GUIDE” on page 8-13

“Input Arguments” on page 8-14

“handles Structure” on page 8-15

Callback Templates
GUIDE defines conventions for callback syntax and arguments and
implements these conventions in the callback templates it adds to the M-file.
Each template is similar to this one for the Callback subfunction for a push
button.

% --- Executes on button press in pushbutton1.

function pushbutton1_Callback(hObject, eventdata, handles)

% hObject handle to pushbutton1 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

...

The first comment line describes the event that triggers execution of the
callback. This is followed by the function definition line. The remaining
comments describe the input arguments.

Insert your code after the last comment.

Note You can avoid automatic generation of the callback comment lines for
new callbacks. In the Preferences dialog box, select GUIDE and uncheck Add
comments for newly generated callback functions.

8-12

Callback Syntax and Arguments

Naming of Callback Functions
The previous callback example shows the following function definition:

function pushbutton1_Callback(hObject,eventdata,handles)

When GUIDE generates the template, it creates the callback name by
appending an underscore (_) and the name of the callback property to the
component’s Tag property. In the example above, pushbutton1 is the Tag
property for the push button, and Callback is one of the push button’s callback
properties. The Tag property uniquely identifies a component within the GUI.

The first time you save the GUI after adding a component, GUIDE adds
callbacks for that component to the M-file and generates the callback names
using the current value of the Tag property. If you want to change the default
Tag value, you should do it before you save the GUI.

See “Associating Callbacks with Components” on page 8-8 for more
information.

Changing Callback Names Assigned by GUIDE
You can change callback names assigned by GUIDE in either of the following
ways:

• “Changing the Tag Property” on page 8-13

• “Changing the Callback Property” on page 8-14

Note If possible, change callback names for a component immediately after
you add the component to the layout and before you save the GUI.

Changing the Tag Property
You can change Tag properties to give a component’s callbacks more
meaningful names, e.g., you might change the Tag property from pushbutton1
to closebutton. If possible, change the Tag property before saving the
GUI, then GUIDE automatically uses the new value when it names the
callbacks. However, if you change the Tag property after saving the GUI,

8-13

8 Programming a GUIDE GUI

GUIDE updates the following items according to the new Tag, provided that
all components have distinct tags:

• The component’s callback functions in the M-file

• The value of the component’s callback properties, which you can view in
the Property Inspector

• References in the M-file to the field of the handles structure that contains
the component’s handle. See “handles Structure” on page 8-15 for more
information about the handles structure.

Changing the Callback Property
To rename a particular callback subfunction without changing the Tag
property,

• Replace the name string in the callback property with the new name. For
example, if the value of the callback property for a push button in mygui is

mygui('pushbutton1_Callback',gcbo,[],guidata(gcbo))

the string pushbutton1_Callback is the name of the callback
function. Change the name to the desired name, for example,
closebutton_Callback.

• As necessary, update instances of the callback function name in the M-file.

Input Arguments
All callbacks in the GUI M-file have the following input arguments:

• hObject — Handle of the object, e.g., the GUI component, for which the
callback was triggered. For a button group SelectionChangeFcn callback,
hObject is the handle of the selected radio button or toggle button.

• eventdata — Reserved for later use.

• handles — Structure that contains the handles of all the objects in
the figure. It may also contain application-defined data. See “handles
Structure” on page 8-15 for information about this structure.

8-14

Callback Syntax and Arguments

handles Structure
GUIDE creates a handles structure that contains the handles of all the
objects in the figure. For a GUI that contains an edit text, a panel, a pop-up
menu, and a push button, the handles structure originally looks similar to
this. GUIDE uses each component’s Tag property to name the structure
element for its handle.

handles =
figure1: 160.0011

edit1: 9.0020
uipanel1: 8.0017

popupmenu1: 7.0018
pushbutton1: 161.0011

output: 160.0011

GUIDE creates and maintains the handles structure as GUI data. It is
passed as an input argument to all callbacks and enables a GUI’s callbacks to
share property values and application data.

For information about GUI data, see “Mechanisms for Managing Data” on
page 9-2 and the guidata reference page.

For information about adding fields to the handles structure and
instructions for correctly saving the structure, see Chapter 13, “Managing
Application-Defined Data”.

8-15

8 Programming a GUIDE GUI

Initialization Callbacks

In this section...

“Opening Function” on page 8-16

“Output Function” on page 8-18

Opening Function
The opening function is the first callback in every GUI M-file. It is executed
just before the GUI is made visible to the user, but after all the components
have been created, i.e., after the components’ CreateFcn callbacks, if any,
have been run.

You can use the opening function to perform your initialization tasks before
the user has access to the GUI. For example, you can use it to create data or
to read data from an external source. GUI command-line arguments are
passed to the opening function.

• “Function Naming and Template” on page 8-16

• “Input Arguments” on page 8-17

• “Initial Template Code” on page 8-17

Function Naming and Template
GUIDE names the opening function by appending _OpeningFcn to the name
of the M-file. This is an example of an opening function template as it might
appear in the mygui M-file.

% --- Executes just before mygui is made visible.

function mygui_OpeningFcn(hObject, eventdata, handles, varargin)

% This function has no output args, see OutputFcn.

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% varargin command line arguments to mygui (see VARARGIN)

% Choose default command line output for mygui

handles.output = hObject;

8-16

Initialization Callbacks

% Update handles structure

guidata(hObject, handles);

% UIWAIT makes mygui wait for user response (see UIRESUME)

% uiwait(handles.mygui);

Input Arguments
The opening function has four input arguments hObject, eventdata,
handles, and varargin. The first three are the same as described in “Input
Arguments” on page 8-14. the last argument, varargin, enables you to pass
arguments from the command line to the opening function. The opening
function can make such arguments available to the callbacks by adding them
to the handles structure.

For more information about varargin, see the varargin reference page
and“Passing Variable Numbers of Arguments” in the MATLAB Programming
documentation.

All command-line arguments are passed to the opening function via varargin.
If you open the GUI with a property name/property value pair as arguments,
the GUI opens with the property set to the specified value. For example,
my_gui('Position', [71.8 44.9 74.8 19.7]) opens the GUI at the
specified position, since Position is a valid figure property.

If the input argument is not a valid figure property, you must add code to the
opening function to make use of the argument. For an example, look at the
opening function for the Modal Question Dialog GUI template, available
from the GUIDE Quick Start dialog box. The added code enables you to open
the modal dialog with the syntax

mygui('String','Do you want to exit?')

which displays the text 'Do you want to exit?' on the GUI. In this case, it
is necessary to add code to the opening function because 'String' is not a
valid figure property.

Initial Template Code
Initially, the input function template contains these lines of code:

8-17

8 Programming a GUIDE GUI

• handles.output = hObject adds a new element, output, to the handles
structure and assigns it the value of the input argument hObject, which
is the handle of the figure, i.e., the handle of the GUI. This handle is
used later by the output function. For more information about the output
function, see “Output Function” on page 8-18.

• guidata(hObject,handles) saves the handles structure. You must use
guidata to save any changes that you make to the handles structure.
It is not sufficient just to set the value of a handles field. See “handles
Structure” on page 8-15 and “GUI Data” on page 9-2 for more information.

• uiwait(handles.mygui), initially commented out, blocks GUI execution
until uiresume is called or the GUI is deleted. Note that uiwait allows the
user access to other MATLAB windows. Remove the comment symbol for
this statement if you want the GUI to be blocking when it opens.

Output Function
The output function returns, to the command line, outputs that are generated
during its execution. It is executed when the opening function returns control
and before control returns to the command line. This means that you must
generate the outputs in the opening function, or call uiwait in the opening
function to pause its execution while other callbacks generate outputs.

• “Function Naming and Template” on page 8-18

• “Input Arguments” on page 8-19

• “Output Arguments” on page 8-19

Function Naming and Template
GUIDE names the output function by appending _OutputFcn to the name of
the M-file. This is an example of an output function template as it might
appear in the mygui M-file.

% --- Outputs from this function are returned to the command line.

function varargout = mygui_OutputFcn(hObject, eventdata,...

handles)

% varargout cell array for returning output args (see VARARGOUT);

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

8-18

Initialization Callbacks

% Get default command line output from handles structure

varargout{1} = handles.output;

Input Arguments
The output function has three input arguments: hObject, eventdata, and
handles. They are the same as described in “Input Arguments” on page 8-14.

Output Arguments
The output function has one output argument, varargout, which it returns to
the command line. By default, the output function assigns handles.output
to varargout. So the default output is the handle to the GUI, which was
assigned to handles.output in the opening function.

You can change the output by

• Changing the value of handles.output. It can be any valid MATLAB value
including a structure or cell array.

• Adding output arguments to varargout.

varargout is a cell array. It can contain any number of output arguments.
By default, GUIDE creates just one output argument, handles.output. To
create an additional output argument, create a new field in the handles
structure and add it to varargout using a command similar to

varargout{2} = handles.second_output;

8-19

8 Programming a GUIDE GUI

Examples: Programming GUIDE GUI Components

In this section...

“Push Button” on page 8-20

“Toggle Button” on page 8-21

“Radio Button” on page 8-22

“Check Box” on page 8-23

“Edit Text” on page 8-23

“Slider” on page 8-25

“List Box” on page 8-25

“Pop-Up Menu” on page 8-26

“Panel” on page 8-27

“Button Group” on page 8-28

“Axes” on page 8-30

“ActiveX Control” on page 8-33

“Menu Item” on page 8-41

Push Button
This example contains only a push button. Clicking the button, closes the GUI.

This is the push button’s Callback callback. It displays the string Goodbye at
the command line and then closes the GUI.

function pushbutton1_Callback(hObject, eventdata, handles)

8-20

Examples: Programming GUIDE GUI Components

display Goodbye
close(handles.figure1);

Adding an Image to a Push Button or Toggle Button
To add an image to a push button or toggle button, assign the button’s CData
property an m-by-n-by-3 array of RGB values that defines “RGB (Truecolor)
Images”. For example, the array a defines 16-by-64 truecolor image using
random values between 0 and 1 (generated by rand).

a(:,:,1) = rand(16,64);
a(:,:,2) = rand(16,64);
a(:,:,3) = rand(16,64);
set(hObject,'CData',a)

To add the image when the button is created, add the code to the button’s
CreateFcn callback. You may want to delete the value of the button’s String
property, which would usually be used as a label.

See ind2rgb for information on converting a matrix X and corresponding
colormap, i.e., an (X, MAP) image, to RGB (truecolor) format.

Toggle Button
The callback for a toggle button needs to query the toggle button to determine
what state it is in. MATLAB sets the Value property equal to the Max property
when the toggle button is pressed (Max is 1 by default) and equal to the Min
property when the toggle button is not pressed (Min is 0 by default).

The following code illustrates how to program the callback in the GUI M-file.

function togglebutton1_Callback(hObject, eventdata, handles)
button_state = get(hObject,'Value');
if button_state == get(hObject,'Max')
% Toggle button is pressed-take approperiate action

8-21

8 Programming a GUIDE GUI

...
elseif button_state == get(hObject,'Min')
% Toggle button is not pressed-take appropriate action

...
end

You can also change the state of a toggle button programmatically by setting
the toggle button Value property to the value of the Max or Min property. For
example,

set(handles.togglebutton1,'Value','Max')

puts the toggle button with Tag property togglebutton1 in the pressed state.

Note You can use a button group to manage exclusive selection behavior for
toggle buttons. See “Button Group” on page 8-28 for more information.

Radio Button
You can determine the current state of a radio button from within its callback
by querying the state of its Value property, as illustrated in the following
example:

if (get(hObject,'Value') == get(hObject,'Max'))
% Radio button is selected-take approriate action

else
% Radio button is not selected-take approriate action

end

You can also change the state of a radio button programmatically by setting
the radio button Value property to the value of the Max or Min property. For
example,

set(handles.radiobutton1,'Value','Max')

puts the radio button with Tag property radiobutton1 in the selected state.

8-22

Examples: Programming GUIDE GUI Components

Note You can use a button group to manage exclusive selection behavior for
radio buttons. See “Button Group” on page 8-28 for more information.

Check Box
You can determine the current state of a check box from within its callback
by querying the state of its Value property, as illustrated in the following
example:

function checkbox1_Callback(hObject, eventdata, handles)
if (get(hObject,'Value') == get(hObject,'Max'))
% Checkbox is checked-take approriate action

else
% Checkbox is not checked-take approriate action

end

You can also change the state of a check box by programmatically by setting
the check box Value property to the value of the Max or Min property. For
example,

set(handles.checkbox1,'Value','Max')

puts the check box with Tag property checkbox1 in the checked state.

Edit Text
To obtain the string a user types in an edit box, get the String property in
the Callback callback.

function edittext1_Callback(hObject, eventdata, handles)
user_string = get(hObject,'String');
% Proceed with callback

If the edit text Max and Min properties are set such that Max - Min > 1, the
user can enter multiple lines. For example, setting Max to 2, with the default
value of 0 for Min, enables users to enter multiple lines.

8-23

8 Programming a GUIDE GUI

Retrieving Numeric Data from an Edit Text Component
MATLAB returns the value of the edit text String property as a character
string. If you want users to enter numeric values, you must convert the
characters to numbers. You can do this using the str2double command,
which converts strings to doubles. If the user enters nonnumeric characters,
str2double returns NaN.

You can use the following code in the edit text callback. It gets the value of
the String property and converts it to a double. It then checks whether the
converted value is NaN (isnan), indicating the user entered a nonnumeric
character and displays an error dialog (errordlg).

function edittext1_Callback(hObject, eventdata, handles)
user_entry = str2double(get(hObject,'string'));
if isnan(user_entry)
errordlg('You must enter a numeric value','Bad Input','modal')
return

end
% Proceed with callback...

Triggering Callback Execution
If the contents of the edit text component have been changed, clicking inside
the GUI but outside the edit text causes the edit text callback to execute. The
user can also press Enter for an edit text that allows only a single line of text,
or Ctrl+Enter for an edit text that allows multiple lines.

Available Keyboard Accelerators
GUI users can use the following keyboard accelerators to modify the content
of an edit text. These accelerators are not modifiable.

• Ctrl+X — Cut

• Ctrl+C — Copy

• Ctrl+V — Paste

• Ctrl+H — Delete last character

• Ctrl+A — Select all

8-24

Examples: Programming GUIDE GUI Components

Slider
You can determine the current value of a slider from within its callback by
querying its Value property, as illustrated in the following example:

function slider1_Callback(hObject, eventdata, handles)
slider_value = get(hObject,'Value');
% Proceed with callback...

The Max and Min properties specify the slider’s maximum and minimum
values. The slider’s range is Max - Min.

List Box
When the list box Callback callback is triggered, the list box Value property
contains the index of the selected item, where 1 corresponds to the first item
in the list. The String property contains the list as a cell array of strings.

This example retrieves the selected string. It assumes listbox1 is the value
of the Tag property. Note that it is necessary to convert the value returned
from the String property from a cell array to a string.

function listbox1_Callback(hObject, eventdata, handles)
index_selected = get(hObject,'Value');
list = get(hObject,'String');
item_selected = list{index_selected}; % Convert from cell array

% to string

You can also select a list item programmatically by setting the list box Value
property to the index of the desired item. For example,

set(handles.listbox1,'Value',2)

selects the second item in the list box with Tag property listbox1.

Triggering Callback Execution
MATLAB executes the list box’s Callback callback after the mouse button is
released or after certain key press events:

• The arrow keys change the Value property, trigger callback execution, and
set the figure SelectionType property to normal.

8-25

8 Programming a GUIDE GUI

• The Enter key and space bar do not change the Value property but trigger
callback execution and set the figure SelectionType property to open.

If the user double-clicks, the callback executes after each click. MATLAB sets
the figure SelectionType property to normal on the first click and to open on
the second click. The callback can query the figure SelectionType property
to determine if it was a single or double click.

List Box Examples
See the following examples for more information on using list boxes:

• “List Box Directory Reader” on page 10-9 — Shows how to creates a GUI
that displays the contents of directories in a list box and enables users to
open a variety of file types by double-clicking the filename.

• “Accessing Workspace Variables from a List Box” on page 10-16 — Shows
how to access variables in the MATLAB base workspace from a list box GUI.

Pop-Up Menu
When the pop-up menu Callback callback is triggered, the pop-up menu
Value property contains the index of the selected item, where 1 corresponds to
the first item on the menu. The String property contains the menu items as
a cell array of strings.

Note A pop-up menu is sometimes referred to as a drop-down menu or combo
box.

Using Only the Index of the Selected Menu Item
This example retrieves only the index of the item selected. It uses a switch
statement to take action based on the value. If the contents of the pop-up
menu are fixed, then you can use this approach. Else, you can use the index
to retrieve the actual string for the selected item.

function popupmenu1_Callback(hObject, eventdata, handles)
val = get(hObject,'Value');
switch val
case 1

8-26

Examples: Programming GUIDE GUI Components

% User selected the first item
case 2
% User selected the second item
% Proceed with callback...

You can also select a menu item programmatically by setting the pop-up menu
Value property to the index of the desired item. For example,

set(handles.popupmenu1,'Value',2)

selects the second item in the pop-up menu with Tag property popupmenu1.

Using the Index to Determine the Selected String
This example retrieves the actual string selected in the pop-up menu. It
uses the pop-up menu Value property to index into the list of strings. This
approach may be useful if your program dynamically loads the contents of the
pop-up menu based on user action and you need to obtain the selected string.
Note that it is necessary to convert the value returned by the String property
from a cell array to a string.

function popupmenu1_Callback(hObject, eventdata, handles)
val = get(hObject,'Value');
string_list = get(hObject,'String');
selected_string = string_list{val}; % Convert from cell array

% to string
% Proceed with callback...

Panel
Panels group GUI components and can make a GUI easier to understand by
visually grouping related controls. A panel can contain panels and button
groups as well as axes and user interface controls such as push buttons,
sliders, pop-up menus, etc. The position of each component within a panel is
interpreted relative to the lower-left corner of the panel.

Generally, if the GUI is resized, the panel and its components are also
resized. However, you can control the size and position of the panel and its
components. You can do this by setting the GUI Resize behavior to Other
(Use ResizeFcn) and providing a ResizeFcn callback for the panel.

8-27

8 Programming a GUIDE GUI

Note To set Resize behavior for the figure to Other (Use ResizeFcn),
select GUI Options from the Layout Editor Tools menu. See “Cross-Platform
Compatible Units” on page 6-103 for information about the effect of units on
resize behavior.

Button Group
Button groups are like panels except that they manage exclusive selection
behavior for radio buttons and toggle buttons. If a button group contains a
set of radio buttons, toggle buttons, or both, the button group allows only one
of them to be selected. When a user clicks a button, that button is selected
and all others are deselected.

The following figure shows a button group with two radio buttons and two
toggle buttons. Radio Button 1 is selected.

8-28

Examples: Programming GUIDE GUI Components

If a user clicks the other radio button or one of the toggle buttons, it becomes
selected and Radio Button 1 is deselected. The following figure shows the
result of clicking Toggle Button 2.

The button group’s SelectionChangeFcn callback is called whenever a
selection is made. Its hObject input argument contains the handle of the
selected radio button or toggle button.

If you have a button group that contains a set of radio buttons and toggle
buttons and you want:

• An immediate action to occur when a radio button or toggle button is
selected, you must include the code to control the radio and toggle buttons
in the button group’s SelectionChangeFcn callback function, not in the
individual toggle button Callback functions. “Color Palette” on page 15-17
provides a practical example of a SelectionChangeFcn callback.

• Another component such as a push button to base its action on the
selection, then that component’s Callback callback can get the handle
of the selected radio button or toggle button from the button group’s
SelectedObject property.

This example of a SelectionChangeFcn callback uses the Tag property of the
selected object to choose the appropriate code to execute. For GUIDE GUIs,
unlike other callbacks, the hObject argument of the SelectionChangeFcn
callback contains the handle of the selected radio button or toggle button.

function uibuttongroup1_SelectionChangeFcn(hObject,...
eventdata,handles)

8-29

8 Programming a GUIDE GUI

switch get(hObject,'Tag') % Get Tag of selected object
case 'radiobutton1'

% Code for when radiobutton1 is selected.
case 'radiobutton2'

% Code for when radiobutton2 is selected.
case 'togglebutton1'

% Code for when togglebutton1 is selected.
case 'togglebutton2'

% Code for when togglebutton2 is selected.
% Continue with more cases as necessary.
otherwise

% Code for when there is no match.
end

See the uibuttongroup reference page for another example.

Axes
Axes components enable your GUI to display graphics, such as graphs and
images. This topic briefly tells you how to plot to axes components in your
GUI.

• “Plotting to an Axes” on page 8-30

• “Creating Subplots” on page 8-33

Plotting to an Axes
In most cases, you create a plot in an axes from a callback that belongs to
some other component in the GUI. For example, pressing a button might
trigger the plotting of a graph to an axes. In this case, the button’s Callback
callback contains the code that generates the plot.

8-30

Examples: Programming GUIDE GUI Components

The following example contains two axes and two buttons. Clicking one
button generates a plot in one axes and clicking the other button generates a
plot in the other axes. The following figure shows these components as they
might appear in the Layout Editor.

1 Add this code to the Plot 1 push button’s Callback callback. The surf
function produces a 3-D shaded surface plot. The peaks function returns a
square matrix obtained by translating and scaling Gaussian distributions.

surf(handles.axes1,peaks(35));

2 Add this code to the Plot 2 push button’s Callback callback. The contour
function displays the contour plot of a matrix, in this case the output
of peaks.

contour(handles.axes2,peaks(35));

3 Run the GUI by selecting Run from the Tools menu.

8-31

8 Programming a GUIDE GUI

4 Click the Plot 1 button to display the surf plot in the first axes. Click the
Plot 2 button to display the contour plot in the second axes.

See “GUI with Multiple Axes” on page 10-2 for a more complex example that
uses two axes.

Note For information about properties that you can set to control many
aspects of axes behavior and appearance, see “Axes Properties” in the
MATLAB Graphics documentation. For information about plotting in general,
see “Plots and Plotting Tools” in the MATLAB Graphics documentation.

If your GUI contains axes, you should make sure that the Command-line
accessibility option in the GUI Options dialog box is set to Callback (the
default). From the Layout Editor select Tools > GUI Options > Command
Line Accessibility: Callback. See “Command-Line Accessibility” on page
5-10 for more information about how this option works.

8-32

Examples: Programming GUIDE GUI Components

Creating Subplots
Use the subplot function to create axes in a tiled pattern. If your
GUIDE-generated GUI contains components other than the subplots, the
subplots must be contained in a panel.

As an example, the following code uses the subplot function to create an
axes with two subplots in the panel with Tag property uipanel1. This code
is part of the Plot push button Callback callback. Each time you press the
Plot button, the code draws a line in each subplot. a1 and a2 are the handles
of the subplots.

a1=subplot(2,1,1,'Parent',handles.uipanel1);
plot(a1,rand(1,10),'r');
a2=subplot(2,1,2,'Parent',handles.uipanel1);
plot(a2,rand(1,10),'b');

For more information about subplots, see the subplot reference page. For
information about adding panels to your GUI, see “Adding Components to the
GUIDE Layout Area” on page 6-22.

ActiveX Control
This example programs a sample ActiveX control Mwsamp Control. It first
enables a user to change the radius of a circle by clicking on the circle. It then
programs a slider on the GUI to do the same thing.

8-33

8 Programming a GUIDE GUI

• “Programming an ActiveX Control” on page 8-34

• “Programming a User Interface Control to Update an ActiveX Control”
on page 8-37

This topic also discusses:

• “Viewing the Methods for an ActiveX Control” on page 8-38

• “Saving a GUI That Contains an ActiveX Control” on page 8-40

• “Compiling a GUI That Contains an ActiveX Control” on page 8-40

Note See “MATLAB COM Client Support” in the MATLAB External
Interfaces documentation to learn more about ActiveX controls.

Programming an ActiveX Control
The sample ActiveX control Mwsamp Control contains a circle in the
middle of a square. This example programs the control to change the circle
radius when the user clicks the circle, and to update the label to display the
new radius.

1 Add the sample ActiveX control Mwsamp to your GUI and resize it to
approximately the size of the square shown in the preview pane. The
following figure shows the ActiveX control as it appears in the Layout
Editor.

8-34

Examples: Programming GUIDE GUI Components

If you need help adding the component, see “Adding Components to the
GUIDE Layout Area” on page 6-22.

2 Activate the GUI by clicking the button on the toolbar and save the GUI
when prompted. GUIDE displays the GUI shown in the following figure
and opens the GUI M-file.

3 View the ActiveX Properties with the Property Inspector. Select the control
in the Layout Editor, and then select Property Inspector from the View
menu or by clicking the Property Inspector button on the toolbar.

8-35

8 Programming a GUIDE GUI

The following figure shows properties of the mwsamp ActiveX control as they
appear in the Property Inspector. The properties on your system may differ.

This ActiveX control mwsamp has two properties:

• Label, which contains the text that appears at the top of the control

• Radius, the default radius of the circle, which is 20

4 Add the following code to the mswamp control’s Click callback. This code
programs the ActiveX control to change the circle radius when the user
clicks the circle, and updates the label to display the new radius.

hObject.radius = .9*hObject.radius;
hObject.label = ['Radius = ' num2str(hObject.radius)];
refresh(handles.figure1);

To locate the Click callback in the GUI M-file, select View Callbacks from
the View menu and then select Click.

5 Add the following commands to the opening function. This code initializes
the label when you first open the GUI.

handles.activex1.label = ...
['Radius = ' num2str(handles.activex1.radius)];

8-36

Examples: Programming GUIDE GUI Components

Save the M-file. Now, when you open the GUI and click the ActiveX control,
the radius of the circle is reduced by 10 percent and the new value of the
radius is displayed. The following figure shows the GUI after clicking the
circle six times.

If you click the GUI enough times, the circle disappears.

Programming a User Interface Control to Update an ActiveX
Control
This topic continues the previous example by adding a slider to the GUI and
programming the slider to change the circle radius. This example must also
update the slider if the user clicks the circle.

1 Add a slider to your layout and then add the following code to the slider1
Callback callback:

handles.activex1.radius = ...
get(hObject,'Value')*handles.default_radius;

handles.activex1.label = ...
['Radius = ' num2str(handles.activex1.radius)];

refresh(handles.figure1);

The first command

• Gets the Value of the slider, which in this example is a number between
0 and 1, the default values of the slider’s Min and Max properties.

8-37

8 Programming a GUIDE GUI

• Sets handles.activex1.radius equal to the Value times the default
radius.

2 In the opening function, add the default radius to the handles structure.
The activex1_Click callback uses the default radius to update the slider
value if the user clicks the circle.

handles.default_radius = handles.activex1.radius;

3 In the activex1_Click callback, reset the slider’s Value each time the user
clicks the circle in the ActiveX control. The following command causes the
slider to change position corresponding to the new value of the radius.

set(handles.slider1,'Value',...
hObject.radius/handles.default_radius);

When you open the GUI and move the slider by clicking and dragging, the
radius changes to a new value between 0 and the default radius of 20, as
shown in the following figure.

Viewing the Methods for an ActiveX Control
To view the available methods for an ActiveX control, you first need to obtain
the handle to the control. One way to do this is the following:

1 In the GUI M-file, add the command keyboard on a separate line of the
activex1_Click callback. The command keyboard puts MATLAB in

8-38

Examples: Programming GUIDE GUI Components

debug mode and pauses at the activex1_Click callback when you click
the ActiveX control.

2 Run the GUI and click the ActiveX control. The handle to the control is
now set to hObject.

3 To view the methods for the control, enter

methodsview(hObject)

This displays the available methods in a new window, as shown in the
following figure.

Alternatively, you can enter

methods(hObject)

which displays the available methods in the MATLAB Command Window.

8-39

8 Programming a GUIDE GUI

For more information about methods for ActiveX controls, see “Invoking
Methods” in the External Interfaces documentation. See the reference pages
for methodsview and methods for more information about these functions.

Saving a GUI That Contains an ActiveX Control
When you save a GUI that contains ActiveX controls, GUIDE creates a file in
the current directory for each such control. The filename consists of the name
of the GUI followed by an underscore (_) and activexn, where n is a sequence
number. For example, if the GUI is named mygui, then the filename would be
mygui_activex1. The filename does not have an extension.

Compiling a GUI That Contains an ActiveX Control
If you use the MATLAB Compiler mcc command to compile a GUI that
contains an ActiveX control, you must use the -a flag to add the ActiveX
file, which GUIDE saves in the current directory, to the CTF archive. Your
command should be similar to

mcc -m mygui -a mygui_activex1

where mygui_activex1 is the name of the ActiveX file. See the “MATLAB
Compiler” documentation for more information. If you have more than one
such file, use a separate -a flag for each file. You must have installed the
MATLAB Compiler to compile a GUI.

8-40

Examples: Programming GUIDE GUI Components

Menu Item
The Menu Editor generates an empty callback subfunction for every menu
item, including menu titles.

Programming a Menu Title
Because clicking a menu title automatically displays the menu below it, you
may not need to program callbacks at the title level. However, the callback
associated with a menu title can be a good place to enable or disable menu
items below it.

Consider the example illustrated in the following picture.

When a user selects the to file option under the Edit menu’s Copy option,
only the to file callback is required to perform the action.

Suppose, however, that only certain objects can be copied to a file. You can
use the Copy item Callback callback to enable or disable the to file item,
depending on the type of object selected.

Opening a Dialog Box from a Menu Callback
The Callback callback for the to file menu item could contain code such as
the following to display the standard dialog box for saving files.

[file,path] = uiputfile('animinit.m','Save file name');

8-41

8 Programming a GUIDE GUI

'Save file name' is the dialog box title. In the dialog box, the filename field
is set to animinit.m, and the filter set to M-files (*.m). For more information,
see the uiputfile reference page.

Updating a Menu Item Check
A check is useful to indicate the current state of some menu items. If you
selected Check mark this item in the Menu Editor, the item initially
appears checked. Each time the user selects the menu item, the callback for
that item must turn the check on or off. The following example shows you how
to do this by changing the value of the menu item’s Checked property.

if strcmp(get(hObject, 'Checked'),'on')
set(hbject,'Checked','off');

else
set(hObject,'Checked','on');

end

hObject is the handle of the component, for which the callback was triggered.
The strcmp function compares two strings and returns logical 1 (true) if the
two are identical and logical 0 (false) otherwise.

8-42

Examples: Programming GUIDE GUI Components

Use of checks when the GUI is first displayed should be consistent with the
display. For example, if your GUI has an axes that is visible when a user first
opens it and the GUI has a Show axes menu item, be sure to set the menu
item’s Checked property on when you create it so that a check appears next to
the Show axes menu item initially.

Note From the Menu Editor, you can view a menu item’s Callback callback
in your editor by selecting the menu item and clicking the View button.

8-43

8 Programming a GUIDE GUI

8-44

9

Managing and Sharing
Application Data in GUIDE

Mechanisms for Managing Data
(p. 9-2)

Describes various mechanisms for
managing application-defined data.
Explains how GUIDE uses several of
these mechanisms.

Sharing Data Among a GUI’s
Callbacks (p. 9-8)

Shows how each mechanism for
managing data can be used to share
data among a GUI’s callbacks.

Making Multiple GUIs Work
Together (p. 9-15)

Ways and means to communicate
application-defined data between
multiple GUIs

9 Managing and Sharing Application Data in GUIDE

Mechanisms for Managing Data

In this section...

“Overview” on page 9-2

“GUI Data” on page 9-2

“Application Data” on page 9-5

“UserData Property” on page 9-6

Overview
Most GUIs generate or use data that is specific to the application. This topic
describes the three mechanisms for managing application-defined data in the
GUI environment. These mechanisms provide a way for applications to save
and retrieve data stored with the GUI.

The GUI data and application data mechanisms are similar but GUI data
can be simpler to use. GUIDE specifically uses GUI data to manage the
handles structure, but you can use either the GUI data handles structure or
application data to manage application-defined data. The UserData property
can also hold application-defined data.

GUI Data
GUI data is managed using the guidata function. This function can store
a single variable as GUI data. It is also used to retrieve the value of that
variable.

• “About GUI Data” on page 9-2

• “GUI Data in GUIDE” on page 9-3

• “Adding Fields to the handles Structure” on page 9-4

• “Changing GUI Data in an M-File Generated by GUIDE” on page 9-4

About GUI Data
GUI data is always associated with the GUI figure. It is available to all
callbacks of all components of the GUI. If you specify a component handle

9-2

Mechanisms for Managing Data

when you save or retrieve GUI data, MATLAB automatically associates the
data with the component’s parent figure.

GUI data can contain only one variable at any time. Writing GUI data
overwrites the existing GUI data. For this reason, GUI data is usually defined
to be a structure to which you can add fields as you need them.

GUI data provides application developers with a convenient interface to
a figure’s application data:

• You do not need to create and maintain a hard-coded name for the data
throughout your source code.

• You can access the data from within a callback routine using the
component’s handle, without having to find the figure handle. For GUIDE
users, the object handle is automatically passed to each callback as
hObject.

GUI Data in GUIDE
GUIDE uses guidata to create and maintain the handles structure. The
handles structure contains the handles of all components in the GUI. GUIDE
automatically passes the handles structure to every callback as an input
argument.

In a GUI created using GUIDE, you cannot use guidata to manage any
variable other than the handles structure. If you do, you may overwrite the
handles structure and your GUI will not work. If you want to use GUI data to
share application-defined data among callbacks, you must save the data in
fields that you add to the handles structure.

The GUIDE templates use the handles structure to store application-defined
data. See “Selecting a GUI Template” on page 6-7 for information about the
templates.

Note For more information, see “handles Structure” on page 8-15.

9-3

9 Managing and Sharing Application Data in GUIDE

Adding Fields to the handles Structure
To add a field to the handles structure, which is passed as an argument to
every callback in GUIDE.

1 Assign a value to the new field. This adds the field to the structure. For
example

handles.number_errors = 0;

adds the field number_errors to the structure handles and sets it to 0.

2 Use the following command to save the data.

guidata(hObject,handles)

where hObject is the handle of the component for which the callback was
triggered. It is passed automatically to every callback.

Changing GUI Data in an M-File Generated by GUIDE
In a GUIDE-generated M-file, GUI data is always represented by the handles
structure. This example updates the handles structure and then saves it.

1 Assume that the handles structure contains an application-defined field
handles.when whose value is 'now'.

2 In a GUI callback, make the desired change to the handles structure. This
step changes the value of handles.when to 'later', but does not save
the handles structure.

handles.when = 'later';

3 Save the changed version of the handles structure with the command

guidata(hObject,handles)

where hObject, which is passed automatically to every callback, is the
handle of the component for which the callback was triggered. If you do
not save the handles structure with guidata, the change you made to it
in the previous step is lost.

9-4

Mechanisms for Managing Data

Application Data
Application data provides a way for applications to save and retrieve data
associated with a specified object. For a GUI, this is usually the GUI figure
but can also be any component. The data is stored as name/value pairs.
Application data enables you to create what are essentially user-defined
properties for an object.

The following table summarizes the functions that provide access to
application data. For more detailed information, see the individual function
reference pages.

Functions for Managing Application Data

Function Purpose

setappdata Specify named application data for an object. The object
does not have to be a figure. You can specify more than one
named application data for an object. However, each name
must be unique for that object and can be associated with
only one value, usually a structure.

getappdata Retrieve named application data. To retrieve named
application data, you must know the name associated with
the application data and the handle of the object with which
it is associated.

isappdata True if the named application data exists.

rmappdata Remove the named application data.

Creating Application Data in GUIDE
Use the setappdata function to create application data. This example
generates a 35-by-35 matrix of normally distributed random numbers in the
opening function and creates application data mydata to manage it.

function mygui_OpeningFcn(hObject, eventdata, handles, varargin)
matrices.rand_35 = randn(35);
setappdata(hObject,'mydata',matrices);

Because this code appears in the opening function, hObject is the handle of
the GUI figure, and the code associates mydata with the figure.

9-5

9 Managing and Sharing Application Data in GUIDE

Adding Fields to an Application Data Structure in GUIDE
Application data is usually defined as a structure to enable you to add fields
as necessary. In this example, a push button adds a field to the application
data structure mydata created in the previous topic.

1 Use getappdata to retrieve the structure.

From the example in the previous topic, the name of the application data
structure is mydata. It is associated with the figure whose Tag is figure1.
Since the handles structure is passed to every callback, the code can
specify the figure’s handle as handles.figure1.

function mygui_pushbutton1(hObject, eventdata, handles)
matrices = getappdata(handles.figure1,'mydata');

2 Create a new field and assign it a value. For example

matrices.randn_50 = randn(50);

adds the field randn_50 to the matrices structure and sets it to a 50-by-50
matrix of normally distributed random numbers.

3 Use setappdata to save the data. This example uses setappdata to save
the matrices structure as the application data structure mydata.

setappdata(handles.figure1,'mydata',matrices);

UserData Property
All GUI components, including menus, and the figure have a UserData
property. You can assign any valid MATLAB value to the UserData property.
To retrieve the data, a callback must know the handle of the component with
which the data is associated.

1 In this example, an edit text component stores the user-entered string in
its UserData property.

function mygui_edittext1(hObject, eventdata, handles)
mystring = get(hObject,'String');
set(hObject,'UserData',mystring);

9-6

Mechanisms for Managing Data

2 A push button retrieves the string from the edit text component UserData
property. The callback uses the handles structure and the edit text Tag
property, edittext1, to specify the edit text handle.

function mygui_pushbutton1(hObject, eventdata, handles)
string = get(handles.edittext1,'UserData');

9-7

9 Managing and Sharing Application Data in GUIDE

Sharing Data Among a GUI’s Callbacks

In this section...

“GUI Data” on page 9-8

“Application Data” on page 9-11

“UserData Property” on page 9-12

GUI Data
GUI data, which you manage with the guidata function, is accessible to all
callbacks of the GUI. A callback for one component can set a value in GUI
data, which can then be read by a callback for another component. See “GUI
Data” on page 9-2 for more information about GUI data.

GUI Data Example: Passing Data Between Components
This example uses a GUI that contains a slider and an edit text component as
shown in the following figure. A static text component instructs the user to
enter a value in the edit text or click the slider. The example uses GUI data to
initialize and maintain an error counter.

The GUI behavior is as follows:

9-8

Sharing Data Among a GUI’s Callbacks

• When a user moves the slider, the edit text component displays the slider’s
current value.

• When a user types a value into the edit text component, the slider updates
to this value.

• If a user enters a value in the edit text that is out of range for the slider
— that is, a value that is not between 0 and 1 — the application returns a
message in the edit text component indicating how many times the user
has entered an erroneous value.

The commands given in the following steps initialize the error counter and
implement the interchange between the slider and the edit text component.

1 Define the error counter in the opening function. The GUI records
the number of times a user enters an erroneous value in the edit text
component and stores this number in a field of the handles structure.

Start by defining this field, called number_errors, in the opening function
as follows:

handles.number_errors = 0;

Type the preceding statement before the following line, which GUIDE
automatically inserts into the opening function.

guidata(hObject,handles); % Save the updated handles structure.

The guidata command saves the modified handles structure so that it can
be retrieved in the GUI’s callbacks.

2 Set the value of the edit text component String property from the slider
Callback callback. The following command in the slider Callback updates
the value displayed in the edit text component when a user moves the
slider and releases the mouse button.

set(handles.edittext1,'String',...
num2str(get(handles.slider1,'Value')));

The code combines three commands:

• The get command obtains the current value of the slider.

9-9

9 Managing and Sharing Application Data in GUIDE

• The num2str command converts the value to a string.

• The set command sets the String property of the edit text to the
updated value.

3 Set the slider value from the edit text component’s Callback callback. The
edit text Callback sets the slider’s value to the number the user types in,
after checking to see if it is a single numeric value between 0 and 1. If the
value is out of range, then the error count is incremented and the edit text
displays a message telling the user how many times they have entered
an invalid number. Because this code appears in the edit text Callback,
hObject is the handle of the edit text component.

val = str2double(get(hobject,'String'));
% Determine whether val is a number between 0 and 1.
if isnumeric(val) && length(val)==1 && ...

val >= get(handles.slider1,'Min') && ...
val <= get(handles.slider1,'Max')
set(handles.slider1,'Value',val);

else
% Increment the error count, and display it.

handles.number_errors = handles.number_errors+1;
guidata(hObject,handles); % Store the changes.
set(hobject,'String',...
['You have entered an invalid entry ',...

num2str(handles.number_errors),' times.']);
end

If the user types a number between 0 and 1 in the edit text component
and then presses Enter or clicks outside the edit text, the Callback sets
handles.slider1 to the new value and the slider moves to the corresponding
position.

If the entry is invalid — for example, 2.5 — the GUI increments the value
of handles.number_errors and displays a message like the following in the
edit text component:

9-10

Sharing Data Among a GUI’s Callbacks

Application Data
Application data can be associated with any object — a component, menu, or
the figure itself. To access application data, a callback must know the name of
the data and the handle of the component with which it is associated. Use the
functions setappdata, getappdata, isappdata, and rmappdata to manage
application data.

See “Application Data” on page 9-5 for more information about application
data.

Application Data Example: Passing Data Between Components
The previous topic, “GUI Data Example: Passing Data Between Components”
on page 9-8, uses GUI data to initialize and maintain an error counter. This
example shows you how to do the same thing using application data. Refer to
the previous topic for details of the example.

1 Define the error counter in the opening function. Add the following code
to the opening function. This code first creates a structure slider_data,
then assigns it to the named application data slider. Because this code
appears in the opening function, using hObject associates the application
data with the figure.

slider_data.number_errors = 0;
setappdata(hObject,'slider',slider_data);

2 Set the value of the edit text String property from the slider Callback
callback. Before you can do this, you must convert the slider Value property
to a string. Add this statement to the callback.

set(handles.edittext1,'String',num2str(get(hObject,'Value')));

Because this statement appears in the slider Callback, hObject is the
handle of the slider.

9-11

9 Managing and Sharing Application Data in GUIDE

3 Set the slider value from the edit text component’s Callback callback. Add
this code to the callback. It assumes the figure’s Tag property is figure1.

To update the number of errors, the code must first retrieve the named
application data slider, then increment the count. It then saves the
application data and displays the new error count.

val = str2double(get(hObject,'String'));
% Determine whether val is a number between 0 and 1.
if isnumeric(val) && length(val)==1 && ...

val >= get(handles.slider1,'Min') && ...
val <= get(handles.slider1,'Max')
set(handles.slider1,'Value',val);

else
% Retrieve and increment the error count.

slider_data = getappdata(handles.figure1,'slider');
slider_data.number_errors = slider_data.number_errors+1;

% Save the changes.
setappdata(handles.figure1,'slider',slider_data);

% Display new total.
set(hObject,'String',...
['You have entered an invalid entry ',...

num2str(slider_data.number_errors),' times.']);
end

UserData Property
Every GUI component, and the figure itself, has a UserData property that you
can use to store application-defined data. To access UserData, a callback must
know the handle of the component with which the property is associated.

Use the get function to retrieve UserData, and the set function to set it.

UserData Property Example: Passing Data Between
Components
A previous topic, “GUI Data Example: Passing Data Between Components”
on page 9-8, uses GUI data to initialize and maintain an error counter. This
example shows you how to do the same thing using the edit text component’s
UserData property to store the error count. Refer to the GUI data example for
example details.

9-12

Sharing Data Among a GUI’s Callbacks

1 Initialize the edit text component UserData property in the opening
function by adding the following code to the opening function. This code
initializes the data in a structure to allow for other data that may be needed.

data.number_errors = 0;
set(handles.edittext1,'UserData',data.number_errors)

Note Alternatively, you could add a CreateFcn callback for the edit text,
and initialize the error counter there.

2 Set the edit text value from the slider Callback callback. Add this
statement to the callback.

set(handles.edittext1,'String',...
num2str(get(hObject,'Value')));

where hObject is the handle of the slider.

3 Set the slider value from the edit text Callback callback. To do this, add
the following code to the callback.

To update the number or errors, the code must first retrieve the value of the
edit text UserData property, then increment the count. It then saves the
updated error count in the UserData property and displays the new count.

val = str2double(get(hObject,'String'));
% Determine whether val is a number between 0 and 1.
if isnumeric(val) && length(val)==1 && ...

val >= get(handles.slider1,'Min') && ...
val <= get(handles.slider1,'Max')
set(handles.slider1,'Value',val);

else
% Retrieve and increment the error count.

data = get(hObject,'UserData');
data.number_errors = data.number_errors+1;

% Save the changes.
set(hObject,'UserData',data);

% Display new total.
set(hObject,'String',...

9-13

9 Managing and Sharing Application Data in GUIDE

['You have entered an invalid entry ',...
num2str(number_errors),' times.']);
end

Because this code appears in the edit text Callback, hObject is the handle
of the edit text component.

9-14

Making Multiple GUIs Work Together

Making Multiple GUIs Work Together

In this section...

“Overview of Data Sharing Techniques” on page 9-15

“Example — A GUIDE GUI with a Modal Dialog for User Input” on page
9-17

“Example — Individual GUIDE GUIs that Work Together as an Application”
on page 9-23

Overview of Data Sharing Techniques
Although most GUIs created in GUIDE use single figures, you can make
several GUIDE-generated GUIs work together if your application requires
more than a single figure. For example, your GUI may need to use several
dialogs to display and obtain some of the parameters used by the GUI, or your
GUI may include several individual tools that work together, either at the
same time or in succession. This section describes the different techniques
you can use to share data among multiple GUIDE GUIs to make them operate
together. It also provides examples that show you how to use these techniques
to make a set of GUIs cooperate with one another.

GUIs can share data in many ways. In a given application, more than one
technique can be—and often is—used. Without resorting to communicating
via files or workspace variables, you can use any of the approaches described
in this table.

Data Sharing Method How it Works Use for

Property/Value pairs Send data into a newly
invoked or existing GUI
by passing it along as
input arguments.

Communicating data to
new GUIs

9-15

9 Managing and Sharing Application Data in GUIDE

Data Sharing Method How it Works Use for

Output Return data from the
invoked GUI.

Communicating data
back to the invoking
GUI, such as passing
back the handles
structure of the invoked
GUI

Function Handles Pass function handles
as data through one
of the three following
methods.

Exposing functionality
of the GUI within a
GUI or between GUIs

userdata Store data in a
figure or component;
communicate to other
GUIs via handle
references.

Communicating data
within a GUI or
between GUIs

getappdata/setappdata Store data as a
property in a figure
or component;
communicate to other
GUIs via handle
references

Communicating data
within a GUI or across
GUIs

guidata Store data in the
handles structure of
a GUI; communicate to
other GUIs via handle
references.

Communicating data
within a GUI or across
GUIs; a convenient way
to manage application
data

The techniques described in “Sharing Data Among a GUI’s Callbacks” on
page 9-8 that enable you to share data within a GUI—userdata, application
data, and guidata—can also share data between several GUIs as long as the
handles to objects in the first GUI are made available to other GUIs. The rest
of this section provides two examples that illustrate these techniques. The
first example describes how a simple GUI can open and receive data from a
modal dialog. The second, more extensive, example illustrates how the three
components of an icon editor are made to interact.

9-16

Making Multiple GUIs Work Together

Note The examples that follow omit portions of code in order to more clearly
convey data sharing techniques. The omissions are noted by ellipses like
these:

.

.

.

Complete M-files and FIG-files that you can run, view, and modify are
provided for the examples.

Example — A GUIDE GUI with a Modal Dialog for
User Input

• “Opening the Text Change Dialog” on page 9-18

• “Managing the Text Change Dialog” on page 9-19

• “Protecting the Text Change Dialog” on page 9-20

• “Positioning the Text Change Dialog” on page 9-21

• “Initializing the Text Change Dialog’s Text” on page 9-22

• “Canceling the Text Change Dialog” on page 9-22

• “Applying the Text Change” on page 9-23
This simple example demonstrates how data is passed to a modal dialog
invoked from a GUIDE GUI. The dialog displays text data in an edit field in
the dialog. Any changes to it that the user makes are passed back to the
main GUI. That data can be used by the main GUI in various ways. In this
example, the data updates the appearance of one of the components of the
main GUI. The example illustrates how to do many common tasks involved in
making multiple GUIs work together, for example, how to position a second
GUI relative to the main GUI.

The main GUI contains one pushbutton and a static text field giving
instructions. Clicking the button opens a modal dialog box. In it, the button’s
current string displays in an editable text field, and the user can change it. If
the user clicks OK, the value of the text field is returned to the main GUI,

9-17

9 Managing and Sharing Application Data in GUIDE

which sets the string property of its button to be that value. The main GUI
and its modal dialog box are shown in the following figure.

Note The following links execute MATLAB commands and work only within
the MATLAB Help browser. If you are reading this on the Web or in the PDF,
go to the corresponding section in the MATLAB Help Browser to use the links.

• Click here to display the changeme GUIs in the Layout Editor.

• Click here to display the changeme GUI M-files in the editor.

Opening the Text Change Dialog
Clicking the Change Me button causes the Text Change dialog to be invoked.
When invoking the dialog, arguments include a property/value pair with name
'changeme_main' (the main GUI’s name) and value set to the handle to the
main figure. This data enables the dialog to access the main GUI’s data; if it
is missing, the dialog displays an error that describes proper usage and exits.

function buttonChangeMe_Callback(hObject, ...
eventdata, handles)

changeme_dialog('changeme_main', handles.figure);

9-18

Making Multiple GUIs Work Together

Managing the Text Change Dialog
The Text Change dialog should be modal. In the Property Inspector for the
Text Change dialog’s figure, set the 'WindowStyle' property to 'Modal'. This
ensures that the user can interact with no other figures while it is active.

To ensure proper behavior, use uiwait in the OpeningFcn of the dialog.
Invoking uiwait puts off calling the output function until uiresume is called.
This also keeps the invocation call of the GUI from returning until that time:

function changeme_dialog_OpeningFcn(hObject, ...
eventdata, handles, varargin)

.

.

.
uiwait(hObject);
.
.
.

Every callback in which the GUI needs to close should call uiresume. In this
example, it can happen in the CloseRequestFcn for the figure, the Cancel
button, and the OK button:

function buttonCancel_Callback(hObject, ...
eventdata, handles)

uiresume(handles.figure);

function figure_CloseRequestFcn(hObject, ...
eventdata, handles)

uiresume(hObject);

function buttonOK_Callback(hObject, e...
ventdata, handles)

.

.

.
uiresume(handles.figure);

In the OutputFcn, make sure to delete the figure, so that it closes:

function varargout = changeme_dialog_Dialog_OutputFcn(hObject, ...

9-19

9 Managing and Sharing Application Data in GUIDE

eventdata, handles)
varargout{1} = [];
delete(hObject);

Protecting the Text Change Dialog
If the Text Change dialog is not invoked from the main GUI, it displays an
error and exits. The OpeningFcn for the dialog scans the input arguments for
the changeme_main property. If it isn’t found or has a value that is not valid,
the modal dialog displays a message and then destroys itself. To be able to
exit immediately, do not call uiwait until after validating the input. If uiwait
is not called, the dialog immediately calls its OutputFcn and returns. As
described earlier, the OutputFcn closes the figure.

function changeme_dialog_OpeningFcn(hObject, ...
eventdata, handles, varargin)

% Check to see the changeme_main gui is passed in
dontOpen = false;
mainGuiInput = find(strcmp(varargin, 'changeme_main'));
if (isempty(mainGuiInput))

|| (length(varargin) <= mainGuiInput)
|| (~ishandle(varargin{mainGuiInput+1}))

dontOpen = true;
else
.
.
.
end
.
.
.
if dontOpen

disp('---');
disp('Improper input arguments. Pass a property value pair')
disp('whose name is "changeme_main" and value is the handle')
disp('to the changeme_main figure.');
disp('eg:');
disp(' x = changeme_main()');
disp(' changeme_dialog('changeme_main', x)');

9-20

Making Multiple GUIs Work Together

disp('---');
else

uiwait(hObject);
end

Positioning the Text Change Dialog
The Text Change dialog (changeme_dialog) should position itself close to the
invoking figure. To avoid distracting the user, the dialog box appears next
to the main GUI. If the main figure is moved somewhere and the dialog is
invoked, it opens in a different location from where it would have otherwise.
Using the passed-in handle to the main figure, get the main figure’s position
and do some calculations to offset the dialog box to the right and down:

function changeme_dialog_OpeningFcn(hObject, ...
eventdata, handles, varargin)

.

.

.
mainGuiInput = find(strcmp(varargin, 'changeme_main'));
.
.
.
handles.changeMeMain = varargin{mainGuiInput+1};
.
.
.

% Position to be relative to parent:
parentPosition = getpixelposition(handles.changeMeMain);
currentPosition = get(hObject, 'Position');
% Sets the position to be directly centered on the main figure
newX = parentPosition(1) + (parentPosition(3)/2 ...

- currentPosition(3)/2);
newY = parentPosition(2) + (parentPosition(4)/2 ...

- currentPosition(4)/2);
newW = currentPosition(3);
newH = currentPosition(4);

set(hObject, 'Position', [newX, newY, newW, newH]);
.

9-21

9 Managing and Sharing Application Data in GUIDE

.

.

Initializing the Text Change Dialog’s Text
Initialize the Text Change dialog’s text to the Change Me button’s current
text. From the main GUI’s handle that was passed to the modal dialog, get
the main GUI’s handles structure. From that, get the Change Me button and
get its String property. Then set the String property to the edit box’s value
in the dialog’s OpeningFcn:

function changeme_dialog_OpeningFcn(hObject, ...
eventdata, handles, varargin)

mainGuiInput = find(strcmp(varargin, 'changeme_main'));
.
.
.
% Remember the handle, and adjust our position
handles.changeMeMain = varargin{mainGuiInput+1};

% Set the initial text
mainHandles = guidata(handles.changeMeMain);
set(handles.editChangeMe, 'String',

get(mainHandles.buttonChangeMe, 'String'));
.
.
.

Canceling the Text Change Dialog
If Cancel is clicked or the window is closed, do not modify the main GUI.
There is really nothing to do, other than to call uiresume to close the modal
dialog:

function buttonCancel_Callback(hObject, ...
eventdata, handles)

uiresume(handles.figure);

function figure_CloseRequestFcn(hObject, ...
eventdata, handles)

9-22

Making Multiple GUIs Work Together

uiresume(hObject);

Applying the Text Change
If OK is clicked, set the main GUI’s Change Me button label to the value of
the textbox. This is where the main GUI gets modified. The modal dialog’s
OpeningFcn saved the reference to the main GUI in the handles structure.
Now use that reference to get the main GUI’s handles, and from that get the
button’s handle and modify its text:

function buttonOK_Callback(hObject, ...
eventdata, handles)

text = get(handles.editChangeMe, 'String');
main = handles.changeMeMain;
mainHandles = guidata(main);
changeMeButton = mainHandles.buttonChangeMe;
set(changeMeButton, 'String', text);
uiresume(handles.figure);

Example — Individual GUIDE GUIs that Work
Together as an Application
The following example demonstrates creating an icon editor application in
GUIDE. The editor consists of three GUIs:

• The drawing area (Icon Editor)

• The tool selection toolbar (Tool Palette)

• The color picker (Color Palette)

These GUIs share data and expose functionality to one another using several
different techniques.

9-23

9 Managing and Sharing Application Data in GUIDE

9-24

Making Multiple GUIs Work Together

Note The following links execute MATLAB commands and are designed to
work within the MATLAB Help browser. If you are reading this on the Web
or in the PDF, go to the corresponding section in the MATLAB Help Browser
to use the links.

• Click here to display the icon editor GUIs in the Layout Editor.

• Click here to display the icon editor GUI M-files in the MATLAB editor.

Requirements for the GUIs
The Icon Editor application needs to behave as follows:

• When starting Icon Editor, create the Tool Palette and Color Palette.

• Set the initial color on the Color Palette when Icon Editor starts.

• Give the Icon Editor access to the Color Palette’s current color.

• When clicking in the editing area, apply the currently selected tool from
the Tool Palette.

• When the mouse pointer is over the edit area, display the current tool’s
cursor

• Close all windows only when the Icon Editor completes.

Click any item above to jump to that section.

M-file Implementations
This application uses three M-files and FIG-files that were fully implemented
in GUIDE. You can modify and enhance them in the GUIDE environment
should you choose to do so. The FIG-files are:

• guide_iconeditor.fig — Main GUI, for drawing and modifying icon files

• guide_colorpalette.fig — Palette for selecting a current color

• guide_toolpalette.fig — Palette for selecting one of four editing tools

The associated M-files contain the following functions and signatures:

9-25

9 Managing and Sharing Application Data in GUIDE

• guide_iconeditor.m

guide_iconeditor(varargin)
guide_iconeditor_OpeningFcn(hObject, eventdata, handles, varargin)
guide_iconeditor_OutputFcn(hObject, eventdata, handles)
editFilename_CreateFcn(hObject, eventdata, handles)
buttonImport_Callback(hObject, eventdata, handles)
buttonOK_Callback(hObject, eventdata, handles
buttonCancel_Callback(hObject, eventdata, handles)
editFilename_ButtonDownFcn(hObject, eventdata, handles)
editFilename_Callback(hObject, eventdata, handles)
figure_CloseRequestFcn(hObject, eventdata, handles)
figure_WindowButtonDownFcn(hObject, eventdata, handles)
figure_WindowButtonUpFcn(hObject, eventdata, handles)
figure_WindowButtonMotionFcn(hObject, eventdata, handles)
getToolPalette(handles)
getColorPalette(handles)
setColor(hObject, color)
getColor(hObject)
updateCursor(hObject, overicon)
applyCurrentTool(handles)
localUpdateIconPlot(handles)
localGetIconCDataWithNaNs(handles)

• guide_colorpalette.m

guide_colorpalette(varargin)
guide_colorpalette_OpeningFcn(hObject, eventdata, handles, varargin)
guide_colorpalette_OutputFcn(hObject, eventdata, handles)
buttonMoreColors_Callback(hObject, eventdata, handles)
colorCellCallback(hObject, eventdata, handles)
figure_CloseRequestFcn(hObject, eventdata, handles)
localUpdateColor(handles)
setSelectedColor(hObject, color)

• guide_toolPalatte.m

guide_toolpalette(varargin)
guide_toolpalette_OpeningFcn(hObject, eventdata, handles, varargin)
guide_toolpalette_OutputFcn(hObject, eventdata, handles)
toolPencil_CreateFcn(hObject, eventdata, handles)

9-26

Making Multiple GUIs Work Together

toolEraser_CreateFcn(hObject, eventdata, handles)
toolBucket_CreateFcn(hObject, eventdata, handles)
toolPicker_CreateFcn(hObject, eventdata, handles)
toolPalette_SelectionChangeFcn(hObject, eventdata, handles)
figure_CloseRequestFcn(hObject, eventdata, handles)
getIconEditor(handles)
pencilToolCallback(handles, toolstruct, cdata, point)
eraserToolCallback(handles, toolstruct, cdata, point)
bucketToolCallback(handles, toolstruct, cdata, point)
fillWithColor(cdata, rows, cols, color, row, col, seedcolor)
colorpickerToolCallback(handles, toolstruct, cdata, point)

1. When Icon Editor launches, create the Tool Palette and
Color Palette
Starting the Icon Editor GUI should launch the Tool Palette and Color Palette.
These GUIs are its children. The parent and children communicate using the
following techniques:

• Property/Value pairs — Send data into a newly-invoked or existing GUI
by passing it as input arguments.

• Guidata — Store data in the handles structure of a GUI; this can
communicate data within one GUI or across several of them.

• Output — Returned data from the invoked GUI; this is used to
communicate data, such as the handles structure of the invoked GUI, back
to the invoking GUI.

The Icon Editor is passed into the Tool Palette and Color Palette as a
Property/Value (p/v) pair in order to let the Tool Palette make calls back into
Icon Editor. The output value from calling both of the palettes is the handle to
their GUI figures. These figure handles are saved into the handles structure
of Icon Editor:

% in Icon Editor
function guide_Icon Editor_OpeningFcn(hObject, ...

eventdata, handles, varargin)
.

9-27

9 Managing and Sharing Application Data in GUIDE

.

.
handles.colorPalette = guide_colorpalette('iconEditor', hObject);
handles.toolPalette = guide_toolpalette('iconEditor', hObject);
.
.
.
% Update handles structure
guidata(hObject, handles);

The Color Palette needs to remember the Icon Editor for later:

% in colorPalette
function guide_colorpalette_OpeningFcn(hObject, ...

eventdata, handles, varargin)
handles.output = hObject;
.
.
.
handles.iconEditor = [];

iconEditorInput = find(strcmp(varargin, 'iconEditor'));
if ~isempty(iconEditorInput)

handles.iconEditor = varargin{iconEditorInput+1};
end
.
.
.
% Update handles structure
guidata(hObject, handles);

The Tool Palette also needs to remember the Icon Editor:

% in toolPalette
function guide_toolpalette_OpeningFcn(hObject, ...

eventdata, handles, varargin)
handles.output = hObject;
.
.
.
handles.iconEditor = [];

9-28

Making Multiple GUIs Work Together

iconEditorInput = find(strcmp(varargin, 'iconEditor'));
if ~isempty(iconEditorInput)

handles.iconEditor = varargin{iconEditorInput+1};
end
.
.
.
% Update handles structure
guidata(hObject, handles);

2. Set the initial color on the Color Palette when the Icon Editor
starts
After all three GUIs have been created, set the initial color. When the Color
Palette is invoked from the Icon Editor, the Color Palette needs to tell the Icon
Editor how to set the initial color and provides the functionality via a function
handle, which it stores in its handles structure. Color Palette outputs the
handle to its figure, from which its handles structure can be retrieved:

% in colorPalette
function guide_colorpalette_OpeningFcn(hObject, ...

eventdata, handles, varargin)
handles.output = hObject;
.
.
.
% Set the initial palette color to black
handles.mSelectedColor = [0 0 0];

% Publish the function setSelectedColor
handles.setColor = @setSelectedColor;
.
.
.
% Update handles structure
guidata(hObject, handles);

% in colorPalette

9-29

9 Managing and Sharing Application Data in GUIDE

function setSelectedColor(hObject, color)
handles = guidata(hObject);
.
.
.
handles.mSelectedColor =color;
.
.
.
guidata(hObject, handles);

Call the publicized function from the Icon Editor, setting the initial color
to 'red':

% in Icon Editor
function guide_iconeditor_OpeningFcn(hObject, ...

eventdata, handles, varargin)
.
.
.
handles.colorPalette = guide_colorpalette('iconEditor', hObject);
.
.
.
colorPalette = handles.colorPalette;
colorPaletteHandles = guidata(colorPalette);
colorPaletteHandles.setColor(colorPalette, [1 0 0]);
.
.
.
% Update handles structure
guidata(hObject, handles);

3. Give the Icon Editor access to the Color Palette’s current color
The Color Palette initializes the current color data:

%in colorPalette
function guide_colorpalette_OpeningFcn(hObject, ...

eventdata, handles, varargin)
handles.output = hObject;

9-30

Making Multiple GUIs Work Together

.

.

.
handles.mSelectedColor = [0 0 0];
.
.
.
% Update handles structure
guidata(hObject, handles);

The Icon Editor retrieves the inital color from the Color Palette’s guidata via
its handles structure:

% in Icon Editor
function color = getColor(hObject)
handles = guidata(hObject);
colorPalette = handles.colorPalette;
colorPaletteHandles = guidata(colorPalette);
color = colorPaletteHandles.mSelectedColor;

4. When clicking in the editing area, apply the currently
selected tool from the Tool Palette
This example demonstrates how the UserData property of components in your
GUIDE GUI can be used to share data. Every tool in the Tool Palette can
modify the icon being edited, altering CData whatever tool is selected when
the mouse is clicked in the icon editing area. The UserData property of each
tool is used to record the function called when a tool is selected and applied
to the icon editing area. Different tools do different things to the icon data.
The following code shows how the pencil tool works.

In the CreateFcn for the pencil button, add the user data that points to the
function for the pencil tool:

% in toolPalette
function toolPencil_CreateFcn(hObject, eventdata, handles)
set(hObject,'UserData', struct('Callback', @pencilToolCallback));

The currently selected tool is tracked by the Tool Palette in a field in its
handles structure called mCurrentTool, which you can get from other GUIs

9-31

9 Managing and Sharing Application Data in GUIDE

once you have the handles structure of the Tool Palette. The currently selected
tool is set by calling guidata after you click a button in the Tool Palette:

% in toolPalette
function toolPalette_SelectionChangeFcn(hObject, ...

eventdata, handles)
handles.mCurrentTool = hObject;
guidata(hObject, handles);

When you select the pencil tool and click in the icon editing area, the function
of the pencil tool is eventually called by the Icon Editor:

% in iconEditor
function iconEditor_WindowButtonDownFcn(hObject,...

eventdata, handles)
toolPalette = handles.toolPalette;
toolPaletteHandles = guidata(toolPalette);
.
.
.

userData = get(toolPaletteHandles.mCurrentTool, 'UserData');
handles.mIconCData = userData.Callback(toolPaletteHandles, ...

toolPaletteHandles.mCurrentTool, handles.mIconCData, ...);

If you are curious about what the pencil tool does, here is the code that shows
how the pixel value in the icon editing area under the mouse click (the Tool
icon’s CData) is changed to the color currently selected in the Color Palette:

% in toolPalette
function cdata = pencilToolCallback(handles, toolstruct, cdata,...)
iconEditor = handles.iconEditor;
iconEditorHandles = guidata(iconEditor);
x = ...
y = ...
% update color of the selected block
color = iconEditorHandles.getColor(iconEditor);
cdata(y, x,:) = color;

9-32

Making Multiple GUIs Work Together

5. When mouse pointer is in the edit area, display the current
tool’s cursor
Icon Editor must set the cursor with every mouse motion. If the mouse is not
in the editing area, the pointer is the default arrow. Otherwise, it displays the
currently selected tool’s pointer icon. Identify the selected tool through the
Tool Palette’s handles:

% in Icon Editor
function iconEditor_WindowButtonMotionFcn(hObject, ...

eventdata, handles)
.
.
.
rows = size(handles.mIconCData,1);
cols = size(handles.mIconCData,2);
pt = get(handles.icon,'currentpoint');
overicon = (pt(1,1)>=0 && pt(1,1)<=rows) && ...

(pt(1,2)>=0 && pt(1,2)<=cols);
.
.
.
if ~overicon

set(hObject,'pointer','arrow');
else

toolPalette = handles.toolPalette;
toolPaletteHandles = guidata(toolPalette);
tool = toolPaletteHandles.mCurrentTool;
cdata = round(mean(get(tool, 'cdata'),3))+1;
if ~isempty(cdata)

set(hObject,'pointer','custom','PointerShapeCData', ...
cdata(1:16, 1:16),'PointerShapeHotSpot',[16 1]);

end
end
.
.
.

9-33

9 Managing and Sharing Application Data in GUIDE

6. Close all windows only when the Icon Editor completes
When launching Icon Editor, Color Palette and Tool Palette were also invoked
and remembered within the handles structure of Icon Editor. However, Icon
Editor also invokes uiwait to defer output until the GUI is finished, which
complicates the shutdown sequence. Furthermore, neither the Color Palette
nor Tool Palette is permitted to close independently of Icon Editor shutdown.
The only ways out are the OK button, the Cancel button, or closing the Icon
Editor’s window directly. Closing the Color Palette and Tool Palette windows
(by clicking their X box) has to be blocked.

Finally, upon closing, set the output of Icon Editor to be the cdata of the icon.
The opening function for Icon Editor, with uiwait, contains this code:

% in Icon Editor
function guide_iconeditor_OpeningFcn(hObject, eventdata, ...

handles, varargin)

.

.

.
handles.colorPalette = guide_colorpalette();
handles.toolPalette = guide_toolpalette('iconEditor', hObject);
.
.
.
% Update handles structure
guidata(hObject, handles);
uiwait(hObject);

Because Icon Editor calls uiwait to begin with, uiresume must be called
on each exit path:

% in Icon Editor
function buttonOK_Callback(hObject, eventdata, handles)
uiresume(handles.figure);

function buttonCancel_Callback(hObject, eventdata, handles)
% Make sure the return data will be empty if we cancelled
handles.mIconCData =[];
guidata(handles.figure, handles);

9-34

Making Multiple GUIs Work Together

uiresume(handles.figure);

function Icon Editor_CloseRequestFcn(hObject, eventdata, handles)
uiresume(hObject);

To ensure that the Color Palette is not closed any other way, override its
closerequestfcn to do nothing:

% in colorPalette
function figure_CloseRequestFcn(hObject, eventdata, handles)
% Don't close this figure. It must be deleted from Icon Editor

Do the same for Tool Palette:

% in toolPalette
function figure_CloseRequestFcn(hObject, eventdata, handles)
% Don't close this figure. It must be deleted from Icon Editor

Finally, in the output function, destroy all three GUIs:

% in Icon Editor
function varargout = guide_iconeditor_OutputFcn(hObject, ...

eventdata, handles)
% Return the cdata of the icon. If cancelled, this will be empty
varargout{1} = handles.mIconCData;
delete(handles.toolPalette);
delete(handles.colorPalette);
delete(hObject);

9-35

9 Managing and Sharing Application Data in GUIDE

9-36

10

Examples of GUIDE GUIs

GUI with Multiple Axes (p. 10-2) Analyze data and generate frequency
and time domain plots in the GUI
figure.

List Box Directory Reader (p. 10-9) List the contents of a directory,
navigate to other directories, and
define what command to execute
when users double-click on a given
type of file.

Accessing Workspace Variables from
a List Box (p. 10-16)

List variables in the base MATLAB
workspace from a GUI and plot them.
This example illustrates selecting
multiple items and executing
commands in a different workspace.

A GUI to Set Simulink Model
Parameters (p. 10-21)

Set parameters in a Simulink®

model, save and plot the data, and
implement a help button.

An Address Book Reader (p. 10-35) Read data from MAT-files, edit and
save the data, and manage GUI data
using the handles structure.

Using a Modal Dialog to Confirm an
Operation (p. 10-52)

Illustrates use of a modal dialog GUI
to confirm that the user wants to
proceed with an operation.

10 Examples of GUIDE GUIs

GUI with Multiple Axes

In this section...

“Multiple Axes Example Outcome” on page 10-2

“Techniques Used in the Example” on page 10-3

“View Completed Layout and Its GUI M-File” on page 10-3

“Design of the GUI” on page 10-3

“Plot Push Button Callback” on page 10-6

Multiple Axes Example Outcome
This example creates a GUI that contains two axes for plotting data. For
simplicity, this example obtains data by evaluating an expression using
parameters entered by the user.

10-2

GUI with Multiple Axes

Techniques Used in the Example
GUI-building techniques illustrated in this example include

• Controlling which axes is the target for plotting commands.

• Using edit text controls to read numeric input and MATLAB expressions.

View Completed Layout and Its GUI M-File
If you are reading this in the MATLAB Help browser, you can click the
following links to display the GUIDE Layout Editor and the MATLAB Editor
with a completed version of this example. This enables you to see the values
of all component properties and to understand how the components are
assembled to create the GUI. You can also see a complete listing of the code
that is discussed in the following sections.

Note The following links execute MATLAB commands and are designed to
work within the MATLAB Help browser. If you are reading this online or
in PDF, you should go to the corresponding section in the MATLAB Help
Browser to use the links.

• Click here to display this GUI in the Layout Editor.

• Click here to display the GUI M-file in the MATLAB Editor.

Design of the GUI
This GUI requires three input values:

• Frequency one (f1)

• Frequency two (f2)

• A time vector (t)

When the user clicks the Plot button, the GUI puts these values into a
MATLAB expression that is the sum of two sine function:

x = sin(2*pi*f1*t) + sin(2*pi*f2*t)

10-3

10 Examples of GUIDE GUIs

The GUI then calculates the FFT of x and creates two plots — one frequency
domain and one time domain.

Specifying Default Values for the Inputs
The GUI uses default values for the three inputs. This enables users to click
on the Plot button and see a result as soon as the GUI is run. It also helps to
indicate what values the user might enter.

To create the default values, set the String property of the edit text. The
following figure shows the value set for the time vector.

Identifying the Axes
Since there are two axes in this GUI, you must be able to specify which one
you want to target when you issue the plotting commands. To do this, use the
handles structure, which contains the handles of all components in the GUI.

10-4

GUI with Multiple Axes

The field name in the handles structure that contains the handle of any
given component is derived from the component’s Tag property. To make code
more readable (and to make it easier to remember) this example sets the
Tag property to descriptive names.

For example, the Tag of the axes used to display the FFT is set to
frequency_axes. Therefore, within a callback, you access its handle with

handles.frequency_axes

Likewise, the Tag of the time axes is set to time_axes.

See “handles Structure” on page 8-15 for more information on the handles
structure. See “Plot Push Button Callback” on page 10-6 for the details of how
to use the handle to specify the target axes.

GUI Option Settings
There are two GUI option settings that are particularly important for this
GUI:

• Resize behavior: Proportional

• Command-line accessibility: Callback

10-5

10 Examples of GUIDE GUIs

Proportional Resize Behavior. Selecting Proportional as the resize
behavior enables users to change the GUI to better view the plots. The
components change size in proportion to the GUI figure size. This generally
produces good results except when extremes of dimensions are used.

Callback Accessibility of Object Handles. When GUIs include axes,
handles should be visible from within callbacks. This enables you to use
plotting commands like you would on the command line. Note that Callback
is the default setting for command-line accessibility.

See “GUI Options” on page 5-9 for more information.

Plot Push Button Callback
This GUI uses only the Plot button callback; the edit text callbacks are not
needed and have been deleted from the GUI M-file. When a user clicks the
Plot button, the callback performs three basic tasks — it gets user input from
the edit text components, calculates data, and creates the two plots.

Getting User Input
The three edit text boxes provide a way for the user to enter values for the
two frequencies and the time vector. The first task for the callback is to read
these values. This involves:

• Reading the current values in the three edit text boxes using the handles
structure to access the edit text handles.

• Converting the two frequency values (f1 and f2) from string to doubles
using str2double.

• Evaluating the time string using eval to produce a vector t, which the
callback used to evaluate the mathematical expression.

The following code shows how the callback obtains the input.

% Get user input from GUI
f1 = str2double(get(handles.f1_input,'String'));
f2 = str2double(get(handles.f2_input,'String'));
t = eval(get(handles.t_input,'String'));

10-6

GUI with Multiple Axes

Calculating Data
Once the input data has been converted to numeric form and assigned to local
variables, the next step is to calculate the data needed for the plots. See the
fft function for an explanation of how this is done.

Targeting Specific Axes
The final task for the callback is to actually generate the plots. This involves

• Making the appropriate axes current using the axes command and the
handle of the axes. For example,

axes(handles.frequency_axes)

• Issuing the plot command.

• Setting any properties that are automatically reset by the plot command.

The last step is necessary because many plotting commands (including plot)
clear the axes before creating the graph. This means you cannot use the
Property Inspector to set the XMinorTick and grid properties that are used in
this example, since they are reset when the callback executes plot.

When looking at the following code listing, note how the handles structure is
used to access the handle of the axes when needed.

Plot Button Code Listing

function plot_button_Callback(hObject, eventdata, handles)

% hObject handle to plot_button (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Get user input from GUI

f1 = str2double(get(handles.f1_input,'String'));

f2 = str2double(get(handles.f2_input,'String'));

t = eval(get(handles.t_input,'String'));

% Calculate data

x = sin(2*pi*f1*t) + sin(2*pi*f2*t);

10-7

10 Examples of GUIDE GUIs

y = fft(x,512);

m = y.*conj(y)/512;

f = 1000*(0:256)/512;

% Create frequency plot

axes(handles.frequency_axes) % Select the proper axes

plot(f,m(1:257))

set(handles.frequency_axes,'XMinorTick','on')

grid on

% Create time plot

axes(handles.time_axes) % Select the proper axes

plot(t,x)

set(handles.time_axes,'XMinorTick','on')

grid on

10-8

List Box Directory Reader

List Box Directory Reader

In this section...

“List Box Example Outcome” on page 10-9

“View Layout and GUI M-File” on page 10-10

“Implementing the GUI” on page 10-10

“Specifying the Directory to List” on page 10-11

“Loading the List Box” on page 10-12

List Box Example Outcome
This example uses a list box to display the files in a directory. When the user
double clicks on a list item, one of the following happens:

• If the item is a file, the GUI opens the file appropriately for the file type.

• If the item is a directory, the GUI reads the contents of that directory into
the list box.

• If the item is a single dot (.), the GUI updates the display of the current
directory.

• If the item is two dots (..), the GUI changes to the directory up one level
and populates the list box with the contents of that directory.

The following figure illustrates the GUI.

10-9

10 Examples of GUIDE GUIs

View Layout and GUI M-File
If you are reading this in the MATLAB Help browser, you can click the
following links to display the GUIDE Layout Editor and the MATLAB Editor
with a completed version of this example. This enables you to see the values
of all component properties and to understand how the components are
assembled to create the GUI. You can also see a complete listing of the code
that is discussed in the following sections.

Note The following links execute MATLAB commands and are designed to
work within the MATLAB Help browser. If you are reading this online or
in PDF, you should go to the corresponding section in the MATLAB Help
Browser to use the links.

• Click here to display this GUI in the Layout Editor.

• Click here to display the GUI M-file in the editor.

Implementing the GUI
The following sections describe the implementation:

• “Specifying the Directory to List” on page 10-11 — shows how to pass a
directory path as input argument when the GUI is run.

10-10

List Box Directory Reader

• “Loading the List Box” on page 10-12 — describes the subfunction that loads
the contents of the directory into the list box. This subfunction also saves
information about the contents of a directory in the handles structure.

• “The List Box Callback” on page 10-13 — explains how the list box is
programmed to respond to user double clicks on items in the list box.

Specifying the Directory to List
You can specify the directory to list when the GUI is first opened by passing
the string 'create' and a string containing the full path to the directory as
arguments. The syntax for doing this is list_box('create','dir_path'). If
you do not specify a directory (i.e., if you call the GUI M-file with no input
arguments), the GUI then uses the MATLAB current directory.

The default behavior of the GUI M-file that GUIDE generates is to run the
GUI when there are no input arguments or to call a subfunction when the first
input argument is a character string. This example changes this behavior
so that you can call the M-file with

• No input arguments — run the GUI using the MATLAB current directory.

• First input argument is 'dir' and second input argument is a string that
specifies a valid path to a directory — run the GUI, displaying the specified
directory.

• First input argument is not a directory, but is a character string and there
is more than one argument — execute the subfunction identified by the
argument (execute callback).

The following code listing show the setup section of the GUI M-file, which
does one the following:

• Sets the list box directory to the current directory, if no directory is specified.

• Changes the current directory, if a directory is specified.

function lbox2_OpeningFcn(hObject, eventdata, handles, varargin)

% This function has no output args, see OutputFcn.

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% varargin command line arguments to untitled (see VARARGIN)

10-11

10 Examples of GUIDE GUIs

% Choose default command line output for lbox2

handles.output = hObject;

% Update handles structure

guidata(hObject, handles);

if nargin == 3,

initial_dir = pwd;

elseif nargin > 4

if strcmpi(varargin{1},'dir')

if exist(varargin{2},'dir')

initial_dir = varargin{2};

else

errordlg({'Input argument must be a valid',...

'directory'},'Input Argument Error!')

return

end

else

errordlg('Unrecognized input argument',...

'Input Argument Error!');

return;

end

end

% Populate the listbox

load_listbox(initial_dir,handles)

Loading the List Box
This example creates a subfunction to load items into the list box. This
subfunction accepts the path to a directory and the handles structure as
input arguments. It performs these steps:

• Change to the specified directory so the GUI can navigate up and down
the tree as required.

• Use the dir command to get a list of files in the specified directory and to
determine which name is a directory and which is a file. dir returns a
structure (dir_struct) with two fields, name and isdir, which contain
this information.

10-12

List Box Directory Reader

• Sort the file and directory names (sortrows) and save the sorted names
and other information in the handles structure so this information can be
passed to other functions.

The name structure field is passed to sortrows as a cell array, which is
transposed to get one file name per row. The isdir field and the sorted
index values, sorted_index, are saved as vectors in the handles structure.

• Call guidata to save the handles structure.

• Set the list box String property to display the file and directory names and
set the Value property to 1. This is necessary to ensure Value never exceeds
the number of items in String, since MATLAB updates the Value property
only when a selection occurs and not when the contents of String changes.

• Displays the current directory in the text box by setting its String property
to the output of the pwd command.

The load_listbox function is called by the opening function of the GUI M-file
as well as by the list box callback.

function load_listbox(dir_path, handles)
cd (dir_path)
dir_struct = dir(dir_path);
[sorted_names,sorted_index] = sortrows({dir_struct.name}');
handles.file_names = sorted_names;
handles.is_dir = [dir_struct.isdir];
handles.sorted_index = sorted_index;
guidata(handles.figure1,handles)
set(handles.listbox1,'String',handles.file_names,...
'Value',1)

set(handles.text1,'String',pwd)

The List Box Callback
The list box callback handles only one case: a double-click on an item. Double
clicking is the standard way to open a file from a list box. If the selected item
is a file, it is passed to the open command; if it is a directory, the GUI changes
to that directory and lists its contents.

10-13

10 Examples of GUIDE GUIs

Defining How to Open File Types
The callback makes use of the fact that the open command can handle
a number of different file types. However, the callback treats FIG-files
differently. Instead of opening the FIG-file, it passes it to the guide command
for editing.

Determining Which Item the User Selected
Since a single click on an item also invokes the list box callback, it is necessary
to query the figure SelectionType property to determine when the user has
performed a double click. A double-click on an item sets the SelectionType
property to open.

All the items in the list box are referenced by an index from 1 to n, where 1
refers to the first item and n is the index of the nth item. MATLAB saves this
index in the list box Value property.

The callback uses this index to get the name of the selected item from the list
of items contained in the String property.

Determining if the Selected Item is a File or Directory
The load_listbox function uses the dir command to obtain a list of values
that indicate whether an item is a file or directory. These values (1 for
directory, 0 for file) are saved in the handles structure. The list box callback
queries these values to determine if current selection is a file or directory
and takes the following action:

• If the selection is a directory — change to the directory (cd) and call
load_listbox again to populate the list box with the contents of the new
directory.

• If the selection is a file — get the file extension (fileparts) to determine
if it is a FIG-file, which is opened with guide. All other file types are
passed to open.

The open statement is called within a try/catch block to capture errors in an
error dialog (errordlg), instead of returning to the command line.

get(handles.figure1,'SelectionType');
% If double click

10-14

List Box Directory Reader

if strcmp(get(handles.figure1,'SelectionType'),'open')
index_selected = get(handles.listbox1,'Value');
file_list = get(handles.listbox1,'String');
% Item selected in list box
filename = file_list{index_selected};
% If directory
if handles.is_dir(handles.sorted_index(index_selected))

cd (filename)
% Load list box with new directory.
load_listbox(pwd,handles)

else
[path,name,ext,ver] = fileparts(filename);
switch ext

case '.fig'
% Open FIG-file with guide command.
guide (filename)

otherwise
try

% Use open for other file types.
open(filename)

catch
errordlg(lasterr,'File Type Error','modal')

end
end

end
end

Opening Unknown File Types
You can extend the file types that the open command recognizes to include
any file having a three-character extension. You do this by creating an M-file
with the name openxyz, where xyz is the extension. Note that the list box
callback does not take this approach for FIG-files since openfig.m is required
by the GUI M-file. See open for more information.

10-15

10 Examples of GUIDE GUIs

Accessing Workspace Variables from a List Box

In this section...

“Workspace Variable Example Outcome” on page 10-16

“Techniques Used in This Example” on page 10-16

“View Completed Layout and Its GUI M-File” on page 10-17

“Reading Workspace Variables” on page 10-18

“Reading the Selections from the List Box” on page 10-18

Workspace Variable Example Outcome
This GUI uses a list box to display workspace variables, which the user can
then plot.

Techniques Used in This Example

• Populate the list box with the variable names that exist in the base
workspace.

• Display the list box with no items initially selected.

• Enable multiple item selection in the list box.

• Update the list items when the user press a button.

• Evaluate the plotting commands in the base workspace.
The following figure illustrates the layout.

10-16

Accessing Workspace Variables from a List Box

Note that the list box callback is not used in this program because the plotting
actions are initiated by push buttons. In this situation you must do one
of the following:

• Leave the empty list box callback in the GUI M-file.

• Delete the string assigned to the list box Callback property.

View Completed Layout and Its GUI M-File
If you are reading this in the MATLAB Help browser, you can click the
following links to display the GUIDE Layout Editor and the MATLAB Editor
with a completed version of this example. This enables you to see the values
of all component properties and to understand how the components are
assembled to create the GUI. You can also see a complete listing of the code
that is discussed in the following sections.

Note The following links execute MATLAB commands and are designed to
work within the MATLAB Help browser. If you are reading this online or
in PDF, you should go to the corresponding section in the MATLAB Help
Browser to use the links.

10-17

10 Examples of GUIDE GUIs

• Click here to display this GUI in the Layout Editor.

• Click here to display the GUI M-file in the editor.

Reading Workspace Variables
When the GUI initializes, it needs to query the workspace variables and set
the list box String property to display these variable names. Adding the
following subfunction to the GUI M-file accomplishes this using evalin to
execute the who command in the base workspace. The who command returns a
cell array of strings, which are used to populate the list box.

function update_listbox(handles)
vars = evalin('base','who');
set(handles.listbox1,'String',vars)

The function’s input argument is the handles structure generated by the
GUI M-file. This structure contains the handle of the list box, as well as the
handles all other components in the GUI.

The callback for the Update Listbox push button also calls update_listbox.

Reading the Selections from the List Box
This GUI requires the user to select two variables from the workspace and
then choose one of three plot commands to create the graph: plot, semilogx,
or semilogy.

Enabling Multiple Selection
To enable multiple selection in a list box, you must set the Min and Max
properties so that Max - Min > 1. This requires you to change the default
Min and Max values of 0 and 1 to meet these conditions. Use the Property
Inspector to set these properties on the list box.

How Users Select Multiple Items
List box multiple selection follows the standard for most systems:

• Ctrl+click left mouse button — noncontiguous multi-item selection

• Shift+click left mouse button — contiguous multi-item selection

10-18

Accessing Workspace Variables from a List Box

Users must use one of these techniques to select the two variables required
to create the plot.

Returning Variable Names for the Plotting Functions
The get_var_names subroutine returns the two variable names that are
selected when the user clicks on one of the three plotting buttons. The function

• Gets the list of all items in the list box from the String property.

• Gets the indices of the selected items from the Value property.

• Returns two string variables, if there are two items selected. Otherwise
get_var_names displays an error dialog explaining that the user must
select two variables.

Here is the code for get_var_names:

function [var1,var2] = get_var_names(handles)
list_entries = get(handles.listbox1,'String');
index_selected = get(handles.listbox1,'Value');
if length(index_selected) ~= 2
errordlg('You must select two variables',...

'Incorrect Selection','modal')
else
var1 = list_entries{index_selected(1)};
var2 = list_entries{index_selected(2)};

end

Callbacks for the Plotting Buttons
The callbacks for the plotting buttons call get_var_names to get the names of
the variables to plot and then call evalin to execute the plot commands in
the base workspace.

For example, here is the callback for the plot function:

function plot_button_Callback(hObject, eventdata, handles)
[x,y] = get_var_names(handles);
evalin('base',['plot(' x ',' y ')'])

10-19

10 Examples of GUIDE GUIs

The command to evaluate is created by concatenating the strings and
variables that result in the command:

plot(x,y)

10-20

A GUI to Set Simulink Model Parameters

A GUI to Set Simulink Model Parameters

In this section...

“Set Simulink Model Parameters Example Outcome” on page 10-21

“Techniques Used in This Example” on page 10-22

“View Completed Layout and Its GUI M-File” on page 10-22

“How to Use the GUI (Text of GUI Help)” on page 10-23

“Running the GUI” on page 10-24

“Programming the Slider and Edit Text Components” on page 10-25

“Running the Simulation from the GUI” on page 10-28

“Removing Results from the List Box” on page 10-29

“Plotting the Results Data” on page 10-30

“The GUI Help Button” on page 10-32

“Closing the GUI” on page 10-33

“The List Box Callback and Create Function” on page 10-33

Set Simulink Model Parameters Example Outcome
This example illustrates how to create a GUI that sets the parameters of a
Simulink® model. In addition, the GUI can run the simulation and plot the
results. The following picture shows the GUI after running three simulations
with different values for controller gains.

10-21

10 Examples of GUIDE GUIs

Techniques Used in This Example
This example illustrates a number of GUI building techniques:

• Opening and setting parameters on a Simulink model from a GUI.

• Implementing sliders that operate in conjunction with text boxes, which
display the current value as well as accepting user input.

• Enabling and disabling controls, depending on the state of the GUI.

• Managing a variety of shared data using the handles structure.

• Directing graphics output to figures with hidden handles.

• Adding a help button that displays .html files in the MATLAB Help
browser.

View Completed Layout and Its GUI M-File
If you are reading this in the MATLAB Help browser, you can click the
following links to display the GUIDE Layout Editor and the MATLAB Editor
with a completed version of this example. This enables you to see the values
of all component properties and to understand how the components are
assembled to create the GUI. You can also see a complete listing of the code
that is discussed in the following sections.

10-22

A GUI to Set Simulink Model Parameters

Note The following links execute MATLAB commands and are designed to
work within the MATLAB Help browser. If you are reading this online or
in PDF, you should go to the corresponding section in the MATLAB Help
Browser to use the links.

• Click here to display this GUI in the Layout Editor.

• Click here to display the GUI M-file in the editor.

How to Use the GUI (Text of GUI Help)
You can use the F14 Controller Gain Editor to analyze how changing the
gains used in the Proportional-Integral Controller affect the aircraft’s angle of
attack and the amount of G force the pilot feels.

Note that the Simulink diagram f14.mdl must be open to run this GUI. If
you close the F14 Simulink model, the GUI reopens it whenever it requires
the model to execute.

Changing the Controller Gains
You can change gains in two blocks:

• The Proportional gain (Kf) in the Gain block

• The Integral gain (Ki) in the Transfer Function block

You can change either of the gains in one of the two ways:

• Move the slider associated with that gain.

• Type a new value into the Current value edit field associated with that
gain.

The block’s values are updated as soon as you enter the new value in the GUI.

10-23

10 Examples of GUIDE GUIs

Running the Simulation
Once you have set the gain values, you can run the simulation by clicking
the Simulate and store results button. The simulation time and output
vectors are stored in the Results list.

Plotting the Results
You can generate a plot of one or more simulation results by selecting the
row of results (Run1, Run2, etc.) in the Results list that you want to plot
and clicking the Plot button. If you select multiple rows, the graph contains
a plot of each result.

The graph is displayed in a figure, which is cleared each time you click the
Plot button. The figure’s handle is hidden so that only the GUI can display
graphs in this window.

Removing Results
To remove a result from the Results list, select the row or rows you want to
remove and click the Remove button.

Running the GUI
The GUI is nonblocking and nonmodal since it is designed to be used as an
analysis tool.

GUI Options Settings
This GUI uses the following GUI option settings:

• Resize behavior: Non-resizable

• Command-line accessibility: Off

• M-file options selected:

- Generate callback function prototypes

- GUI allows only one instance to run

10-24

A GUI to Set Simulink Model Parameters

Opening the Simulink Block Diagrams
This example is designed to work with the F14 Simulink model. Since the
GUI sets parameters and runs the simulation, the F14 model must be open
when the GUI is displayed. When the GUI M-file runs the GUI, it executes
the model_open subfunction. The purpose of the subfunction is to

• Determine if the model is open (find_system).

• Open the block diagram for the model and the subsystem where the
parameters are being set, if not open already (open_system).

• Change the size of the controller Gain block so it can display the gain value
(set_param).

• Bring the GUI forward so it is displayed on top of the Simulink diagrams
(figure).

• Set the block parameters to match the current settings in the GUI.

Here is the code for the model_open subfunction.

function model_open(handles)

if isempty(find_system('Name','f14')),

open_system('f14'); open_system('f14/Controller')

set_param('f14/Controller/Gain','Position',[275 14 340 56])

figure(handles.F14ControllerEditor)

set_param('f14/Controller Gain','Gain',...

get(handles.KfCurrentValue,'String'))

set_param(...

'f14/Controller/Proportional plus integral compensator',...

'Numerator',...

get(handles.KiCurrentValue,'String'))

end

Programming the Slider and Edit Text Components
This GUI employs a useful combination of components in its design. Each
slider is coupled to an edit text component so that:

• The edit text displays the current value of the slider.

• The user can enter a value into the edit text box and cause the slider to
update to that value.

10-25

10 Examples of GUIDE GUIs

• Both components update the appropriate model parameters when activated
by the user.

Slider Callback
The GUI uses two sliders to specify block gains since these components enable
the selection of continuous values within a specified range. When a user
changes the slider value, the callback executes the following steps:

• Calls model_open to ensure that the Simulink model is open so that
simulation parameters can be set.

• Gets the new slider value.

• Sets the value of the Current value edit text component to match the
slider.

• Sets the appropriate block parameter to the new value (set_param).

Here is the callback for the Proportional (Kf) slider.

function KfValueSlider_Callback(hObject, eventdata, handles)
% Ensure model is open.
model_open(handles)
% Get the new value for the Kf Gain from the slider.
NewVal = get(hObject, 'Value');
% Set the value of the KfCurrentValue to the new value
% set by slider.
set(handles.KfCurrentValue,'String',NewVal)
% Set the Gain parameter of the Kf Gain Block to the new value.
set_param('f14/Controller/Gain','Gain',num2str(NewVal))

Note that, while a slider returns a number and the edit text requires a string,
uicontrols automatically convert the values to the correct type.

The callback for the Integral (Ki) slider follows a similar approach.

Current Value Edit Text Callback
The edit text box enables users to type in a value for the respective parameter.
When the user clicks on another component in the GUI after typing into the
text box, the edit text callback executes the following steps:

10-26

A GUI to Set Simulink Model Parameters

• Calls model_open to ensure that the Simulink model is open so that it can
set simulation parameters.

• Converts the string returned by the edit box String property to a double
(str2double).

• Checks whether the value entered by the user is within the range of the
slider:

If the value is out of range, the edit text String property is set to the value
of the slider (rejecting the number typed in by the user).

If the value is in range, the slider Value property is updated to the new
value.

• Sets the appropriate block parameter to the new value (set_param).

Here is the callback for the Kf Current value text box.

function KfCurrentValue_Callback(hObject, eventdata, handles)
% Ensure model is open.
model_open(handles)
% Get the new value for the Kf Gain.
NewStrVal = get(hObject, 'String');
NewVal = str2double(NewStrVal);
% Check that the entered value falls within the allowable range.
if isempty(NewVal) || (NewVal< -5) || (NewVal>0),

% Revert to last value, as indicated by KfValueSlider.
OldVal = get(handles.KfValueSlider,'Value');
set(hObject, 'String',OldVal)

else % Use new Kf value
% Set the value of the KfValueSlider to the new value.
set(handles.KfValueSlider,'Value',NewVal)
% Set the Gain parameter of the Kf Gain Block
% to the new value.
set_param('f14/Controller/Gain','Gain',NewStrVal)

end

The callback for the Ki Current value follows a similar approach.

10-27

10 Examples of GUIDE GUIs

Running the Simulation from the GUI
The GUI Simulate and store results button callback runs the model
simulation and stores the results in the handles structure. Storing data
in the handles structure simplifies the process of passing data to other
subfunction since this structure can be passed as an argument.

When a user clicks on the Simulate and store results button, the callback
executes the following steps:

• Calls sim, which runs the simulation and returns the data that is used
for plotting.

• Creates a structure to save the results of the simulation, the current
values of the simulation parameters set by the GUI, and the run name
and number.

• Stores the structure in the handles structure.

• Updates the list box String to list the most recent run.

Here is the Simulate and store results button callback.

function SimulateButton_Callback(hObject, eventdata, handles)
[timeVector,stateVector,outputVector] = sim('f14');
% Retrieve old results data structure
if isfield(handles,'ResultsData') &
~isempty(handles.ResultsData)
ResultsData = handles.ResultsData;
% Determine the maximum run number currently used.
maxNum = ResultsData(length(ResultsData)).RunNumber;
ResultNum = maxNum+1;

else % Set up the results data structure
ResultsData = struct('RunName',[],'RunNumber',[],...

'KiValue',[],'KfValue',[],'timeVector',[],...
'outputVector',[]);

ResultNum = 1;
end
if isequal(ResultNum,1),
% Enable the Plot and Remove buttons
set([handles.RemoveButton,handles.PlotButton],'Enable','on')

end

10-28

A GUI to Set Simulink Model Parameters

% Get Ki and Kf values to store with the data and put in the
results list.
Ki = get(handles.KiValueSlider,'Value');
Kf = get(handles.KfValueSlider,'Value');
ResultsData(ResultNum).RunName = ['Run',num2str(ResultNum)];
ResultsData(ResultNum).RunNumber = ResultNum;
ResultsData(ResultNum).KiValue = Ki;
ResultsData(ResultNum).KfValue = Kf;
ResultsData(ResultNum).timeVector = timeVector;
ResultsData(ResultNum).outputVector = outputVector;
% Build the new results list string for the listbox
ResultsStr = get(handles.ResultsList,'String');
if isequal(ResultNum,1)
ResultsStr = {['Run1',num2str(Kf),' ',num2str(Ki)]};

else
ResultsStr = [ResultsStr;...
{['Run',num2str(ResultNum),' ',num2str(Kf),' ', ...
num2str(Ki)]}];

end
set(handles.ResultsList,'String',ResultsStr);
% Store the new ResultsData
handles.ResultsData = ResultsData;
guidata(hObject, handles)

Removing Results from the List Box
The GUI Remove button callback deletes any selected item from the
Results list list box. It also deletes the corresponding run data from the
handles structure. When a user clicks on the Remove button, the callback
executes the following steps:

• Determines which list box items are selected when a user clicks on the
Remove button and removes these items from the list box String property
by setting each item to the empty matrix [].

• Removes the deleted data from the handles structure.

• Displays the string <empty> and disables the Remove and Plot buttons
(using the Enable property), if all the items in the list box are removed.

• Save the changes to the handles structure (guidata).

10-29

10 Examples of GUIDE GUIs

Here is the Remove button callback.

function RemoveButton_Callback(hObject, eventdata, handles)

currentVal = get(handles.ResultsList,'Value');

resultsStr = get(handles.ResultsList,'String');

numResults = size(resultsStr,1);

% Remove the data and list entry for the selected value

resultsStr(currentVal) =[];

handles.ResultsData(currentVal)=[];

% If there are no other entries, disable the Remove and Plot

button

% and change the list string to <empty>

if isequal(numResults,length(currentVal)),

resultsStr = {'<empty>'};

currentVal = 1;

set([handles.RemoveButton,handles.PlotButton],'Enable','off')

end

% Ensure that list box Value is valid, then reset Value and String

currentVal = min(currentVal,size(resultsStr,1));

set(handles.ResultsList,'Value',currentVal,'String',resultsStr)

% Store the new ResultsData

guidata(hObject, handles)

Plotting the Results Data
The GUI Plot button callback creates a plot of the run data and adds a
legend. The data to plot is passed to the callback in the handles structure,
which also contains the gain settings used when the simulation ran. When a
user clicks on the Plot button, the callback executes the following steps:

• Collects the data for each run selected in the Results list, including two
variables (time vector and output vector) and a color for each result run
to plot.

• Generates a string for the legend from the stored data.

• Creates the figure and axes for plotting and saves the handles for use by
the Close button callback.

• Plots the data, adds a legend, and makes the figure visible.

10-30

A GUI to Set Simulink Model Parameters

Plotting Into the Hidden Figure
The figure that contains the plot is created invisible and then made visible
after adding the plot and legend. To prevent this figure from becoming the
target for plotting commands issued at the command line or by other GUIs, its
HandleVisibility and IntegerHandle properties are set to off. However,
this means the figure is also hidden from the plot and legend commands.

Use the following steps to plot into a hidden figure:

• Save the handle of the figure when you create it.

• Create an axes, set its Parent property to the figure handle, and save the
axes handle.

• Create the plot (which is one or more line objects), save these line handles,
and set their Parent properties to the handle of the axes.

• Make the figure visible.

Plot Button Callback Listing
Here is the Plot button callback.

function PlotButton_Callback(hObject, eventdata, handles)

currentVal = get(handles.ResultsList,'Value');

% Get data to plot and generate command string with color

% specified

legendStr = cell(length(currentVal),1);

plotColor = {'b','g','r','c','m','y','k'};

for ctVal = 1:length(currentVal);

PlotData{(ctVal*3)-2} =

handles.ResultsData(currentVal(ctVal)).timeVector;

PlotData{(ctVal*3)-1} =

handles.ResultsData(currentVal(ctVal)).outputVector;

numColor = ctVal - 7*(floor((ctVal-1)/7));

PlotData{ctVal*3} = plotColor{numColor};

legendStr{ctVal} = ...

[handles.ResultsData(currentVal(ctVal)).RunName,'; Kf=',...

num2str(handles.ResultsData(currentVal(ctVal)).KfValue),...

'; Ki=', ...

num2str(handles.ResultsData(currentVal(ctVal)).KiValue)];

end

10-31

10 Examples of GUIDE GUIs

% If necessary, create the plot figure and store in handles

% structure

if ~isfield(handles,'PlotFigure') ||...

~ishandle(handles.PlotFigure),

handles.PlotFigure = ...

figure('Name','F14 Simulation Output',...

'Visible','off','NumberTitle','off',...

'HandleVisibility','off','IntegerHandle','off');

handles.PlotAxes = axes('Parent',handles.PlotFigure);

guidata(hObject, handles)

end

% Plot data

pHandles = plot(PlotData{:},'Parent',handles.PlotAxes);

% Add a legend, and bring figure to the front

legend(pHandles(1:2:end),legendStr{:})

% Make the figure visible and bring it forward

figure(handles.PlotFigure)

The GUI Help Button
The GUI Help button callback displays an HTML file in the MATLAB Help
browser. It uses two commands:

• The which command returns the full path to the file when it is on the
MATLAB path

• The web command displays the file in the Help browser.

This is the Help button callback.

function HelpButton_Callback(hObject, eventdata, handles)
HelpPath = which('f14ex_help.html');
web(HelpPath);

You can also display the help document in a Web browser or load an external
URL. See the Web documentation for a description of these options.

10-32

A GUI to Set Simulink Model Parameters

Closing the GUI
The GUI Close button callback closes the plot figure, if one exists and then
closes the GUI. The handle of the plot figure and the GUI figure are available
from the handles structure. The callback executes two steps:

• Checks to see if there is a PlotFigure field in the handles structure and
if it contains a valid figure handle (the user could have closed the figure
manually).

• Closes the GUI figure

This is the Close button callback.

function CloseButton_Callback(hObject, eventdata, handles)
% Close the GUI and any plot window that is open
if isfield(handles,'PlotFigure') && ...

ishandle(handles.PlotFigure),
close(handles.PlotFigure);

end
close(handles.F14ControllerEditor);

The List Box Callback and Create Function
This GUI does not use the list box callback since the actions performed on list
box items are carried out by push buttons (Simulate and store results,
Remove, and Plot). However, GUIDE automatically inserts a callback stub
when you add the list box and automatically sets the Callback property to
execute this subfunction whenever the callback is triggered (which happens
when users select an item in the list box).

In this case, there is no need for the list box callback to execute, so you should
delete it from the GUI M-file. It is important to remember to also delete
the Callback property string so MATLAB does not attempt to execute the
callback. You can do this using the property inspector:

10-33

10 Examples of GUIDE GUIs

See the description of list box for more information on how to trigger the
list box callback.

Setting the Background to White
The list box create function enables you to determine the background color
of the list box. The following code shows the create function for the list box
that is tagged ResultsList.

function ResultsList_CreateFcn(hObject, eventdata, handles)
% Hint: listbox controls usually have a white background, change
% 'usewhitebg' to 0 to use default. See ISPC and COMPUTER.
usewhitebg = 1;
if usewhitebg

set(hObject,'BackgroundColor','white');
else
set(hObject,'BackgroundColor',...

get(0,'defaultUicontrolBackgroundColor'));
end

10-34

An Address Book Reader

An Address Book Reader

In this section...

“Address Book Reader Example Outcome” on page 10-35

“Techniques Used in This Example” on page 10-36

“Managing Shared Data” on page 10-36

“View Completed Layout and Its GUI M-File” on page 10-37

“Running the GUI” on page 10-37

“Loading an Address Book Into the Reader” on page 10-39

“The Contact Name Callback” on page 10-42

“The Contact Phone Number Callback” on page 10-44

“Paging Through the Address Book — Prev/Next” on page 10-45

“Saving Changes to the Address Book from the Menu” on page 10-46

“The Create New Menu” on page 10-48

“The Address Book Resize Function” on page 10-48

Address Book Reader Example Outcome
This example shows how to implement a GUI that displays names and phone
numbers, which it reads from a MAT-file.

10-35

10 Examples of GUIDE GUIs

Techniques Used in This Example
This example demonstrates the following GUI programming techniques:

• Uses open and save dialogs to provide a means for users to locate and
open the address book MAT-files and to save revised or new address book
MAT-files.

• Defines callbacks written for GUI menus.

• Uses the GUI’s handles structure to save and recall shared data.

• Uses a GUI figure resize function.

Managing Shared Data
One of the key techniques illustrated in this example is how to keep track
of information and make it available to the various subfunctions. This
information includes

• The name of the current MAT-file

• The names and phone numbers stored in the MAT-file

• An index pointer that indicates the current name and phone number, which
must be updated as the user pages through the address book

10-36

An Address Book Reader

• The figure position and size

• The handles of all GUI components

The descriptions of the subfunctions that follow illustrate how to save and
retrieve information from the handles structure. See “handles Structure” on
page 8-15 for background information on this structure.

View Completed Layout and Its GUI M-File
If you are reading this in the MATLAB Help browser, you can click the
following links to display the GUIDE Layout Editor and the MATLAB Editor
with a completed version of this example. This enables you to see the values
of all component properties and to understand how the components are
assembled to create the GUI. You can also see a complete listing of the code
that is discussed in the following sections.

Note The following links execute MATLAB commands and are designed to
work within the MATLAB Help browser. If you are reading this online or
in PDF, you should go to the corresponding section in the MATLAB Help
Browser to use the links.

• Click here to display this GUI in the Layout Editor.

• Click here to display the GUI M-file in the MATLAB Editor.

Running the GUI
The GUI is nonblocking and nonmodal since it is designed to be displayed
while you perform other MATLAB tasks.

GUI Option Settings
This GUI uses the following GUI option settings:

• Resize behavior: User-specified

• Command-line accessibility: Off

• GUI M-file options selected:

10-37

10 Examples of GUIDE GUIs

- Generate callback function prototypes

- Application allows only one instance to run

Calling the GUI
You can call the GUI M-file with no arguments, in which case the GUI uses
the default address book MAT-file, or you can specify an alternate MAT-file
from which the GUI reads information. In this example, the user calls the
GUI with a pair of arguments, address_book('book', 'my_list.mat').
The first argument, 'book', is a key word that the M-file looks for in the
opening function. If the M-file finds the key word, it knows to use the second
argument as the MAT-file for the address book. Calling the GUI with this
syntax is analogous to calling it with a valid property-value pair, such as
('color', 'red'). However, since 'book' is not a valid figure property, in
this example the opening function in the M-file includes code to recognize
the pair ('book', 'my_list.mat').

Note that it is not necessary to use the key word 'book'. You could program
the M-file to accept just the MAT-file as an argument, using the syntax
address_book('my_list.mat'). The advantage of calling the GUI with
the pair ('book', 'my_list.mat') is that you can program the GUI to
accept other user arguments, as well as valid figure properties, using the
property-value pair syntax. The GUI can then identify which property the
user wants to specify from the property name.

The following code shows how to program the opening function to look for the
key word 'book', and if it finds the key word, to use the MAT-file specified by
the second argument as the list of contacts.

function address_book_OpeningFcn(hObject, eventdata,...
handles, varargin)

% Choose default command line output for address_book
handles.output = hObject;
% Update handles structure
guidata(hObject, handles);
% User added code follows
if nargin < 4

% Load the default address book
Check_And_Load([],handles);
% If the first element in varargin is 'book' and

10-38

An Address Book Reader

& the second element is a MATLAB file, then load that file
elseif (length(varargin) == 2 && ...

strcmpi(varargin{1},'book') && ...
(2 == exist(varargin{2},'file')))

Check_And_Load(varargin{2},handles);
else

errordlg('File Not Found','File Load Error')
set(handles.Contact_Name,'String','')
set(handles.Contact_Phone,'String','')

end

Loading an Address Book Into the Reader
There are two ways in which an address book (i.e., a MAT-file) is loaded into
the GUI:

• When running the GUI, you can specify a MAT-file as an argument. If
you do not specify an argument, the GUI loads the default address book
(addrbook.mat).

• The user can select Open under the File menu to browse for other
MAT-files.

Validating the MAT-file
To be a valid address book, the MAT-file must contain a structure called
Addresses that has two fields called Name and Phone. The Check_And_Load
subfunction validates and loads the data with the following steps:

• Loads (load) the specified file or the default if none is specified.

• Determines if the MAT-file is a valid address book.

• Displays the data if it is valid. If it is not valid, displays an error dialog
(errordlg).

• Returns 1 for valid MAT-files and 0 if invalid (used by the Open menu
callback)

• Saves the following items in the handles structure:

- The name of the MAT-file

- The Addresses structure

10-39

10 Examples of GUIDE GUIs

- An index pointer indicating which name and phone number are currently
displayed

Check_And_Load Code Listing
This is the Check_And_Load function.

function pass = Check_And_Load(file,handles)
% Initialize the variable "pass" to determine if this is
% a valid file.
pass = 0;
% If called without any file then set file to the default
% filename.
% Otherwise, if the file exists then load it.
if isempty(file)
file = 'addrbook.mat';
handles.LastFile = file;
guidata(handles.Address_Book,handles)

end
if exist(file) == 2
data = load(file);

end
% Validate the MAT-file
% The file is valid if the variable is called "Addresses"
% and it has fields called "Name" and "Phone"
flds = fieldnames(data);
if (length(flds) == 1) && (strcmp(flds{1},'Addresses'))
fields = fieldnames(data.Addresses);
if (length(fields) == 2) && ...

(strcmp(fields{1},'Name')) && ...
(strcmp(fields{2},'Phone'))

pass = 1;
end

end
% If the file is valid, display it
if pass
% Add Addresses to the handles structure
handles.Addresses = data.Addresses;
guidata(handles.Address_Book,handles)
% Display the first entry

10-40

An Address Book Reader

set(handles.Contact_Name,'String',data.Addresses(1).Name)
set(handles.Contact_Phone,'String',data.Addresses(1).Phone)
% Set the index pointer to 1 and save handles
handles.Index = 1;
guidata(handles.Address_Book,handles)

else
errordlg('Not a valid Address Book','Address Book Error')

end

The Open Menu Callback
The address book GUI contains a File menu that has an Open submenu
for loading address book MAT-files. When selected, Open displays a dialog
(uigetfile) that enables the user to browse for files. The dialog displays only
MAT-files, but users can change the filter to display all files.

The dialog returns both the filename and the path to the file, which is
then passed to fullfile to ensure the path is properly constructed for any
platform. Check_And_Load validates and load the new address book.

Open_Callback Code Listing

function Open_Callback(hObject, eventdata, handles)
[filename, pathname] = uigetfile(...
{'*.mat', 'All MAT-Files (*.mat)'; ...
'*.*','All Files (*.*)'}, ...

'Select Address Book');
% If "Cancel" is selected then return
if isequal([filename,pathname],[0,0])
return

% Otherwise construct the fullfilename and Check and load
% the file
else
File = fullfile(pathname,filename);
% if the MAT-file is not valid, do not save the name
if Check_And_Load(File,handles)
handles.LastFIle = File;
guidata(hObject, handles)

end
end

10-41

10 Examples of GUIDE GUIs

See the “Creating Menus” on page 6-70 section for information on creating
the menu.

The Contact Name Callback
The Contact Name text box displays the name of the address book entry. If
you type in a new name and press enter, the callback performs these steps:

• If the name exists in the current address book, the corresponding phone
number is displayed.

• If the name does not exist, a question dialog (questdlg) asks you if you
want to create a new entry or cancel and return to the name previously
displayed.

• If you create a new entry, you must save the MAT-file with the File > Save
menu.

Storing and Retrieving Data
This callback makes use of the handles structure to access the contents of the
address book and to maintain an index pointer (handles.Index) that enables
the callback to determine what name was displayed before it was changed
by the user. The index pointer indicates what name is currently displayed.
The address book and index pointer fields are added by the Check_And_Load
function when the GUI is run.

If the user adds a new entry, the callback adds the new name to the address
book and updates the index pointer to reflect the new value displayed. The
updated address book and index pointer are again saved (guidata) in the
handles structure.

Contact Name Callback

function Contact_Name_Callback(hObject, eventdata, handles)
% Get the strings in the Contact Name and Phone text box
Current_Name = get(handles.Contact_Name,'string');
Current_Phone = get(handles.Contact_Phone,'string');
% If empty then return
if isempty(Current_Name)
return

10-42

An Address Book Reader

end
% Get the current list of addresses from the handles structure
Addresses = handles.Addresses;
% Go through the list of contacts
% Determine if the current name matches an existing name
for i = 1:length(Addresses)
if strcmp(Addresses(i).Name,Current_Name)
set(handles.Contact_Name,'string',Addresses(i).Name)
set(handles.Contact_Phone,'string',Addresses(i).Phone)
handles.Index = i;
guidata(hObject, handles)
return

end
end
% If it's a new name, ask to create a new entry
Answer=questdlg('Do you want to create a new entry?', ...
'Create New Entry', ...
'Yes','Cancel','Yes');

switch Answer
case 'Yes'
Addresses(end+1).Name = Current_Name; % Grow array by 1
Addresses(end).Phone = Current_Phone;
index = length(Addresses);
handles.Addresses = Addresses;
handles.Index = index;
guidata(hObject, handles)
return

case 'Cancel'
% Revert back to the original number

set(handles.Contact_Name,'String',Addresses(handles.Index).Name
)

set(handles.Contact_Phone,'String',Addresses(handles.Index).Pho
ne)
return

end

10-43

10 Examples of GUIDE GUIs

The Contact Phone Number Callback
The Contact Phone # text box displays the phone number of the entry listed
in the Contact Name text box. If you type in a new number click one of the
push buttons, the callback opens a question dialog that asks you if you want
to change the existing number or cancel your change.

Like the Contact Name text box, this callback uses the index pointer
(handles.Index) to update the new number in the address book and to revert
to the previously displayed number if the user selects Cancel from the
question dialog. Both the current address book and the index pointer are
saved in the handles structure so that this data is available to other callbacks.

If you create a new entry, you must save the MAT-file with the File > Save
menu.

Code Listing

function Contact_Phone_Callback(hObject, eventdata, handles)
Current_Phone = get(handles.Contact_Phone,'string');
% If either one is empty then return
if isempty(Current_Phone)
return

end
% Get the current list of addresses from the handles structure
Addresses = handles.Addresses;
Answer=questdlg('Do you want to change the phone number?', ...
'Change Phone Number', ...
'Yes','Cancel','Yes');

switch Answer
case 'Yes'
% If no name match was found create a new contact
Addresses(handles.Index).Phone = Current_Phone;
handles.Addresses = Addresses;
guidata(hObject, handles)
return

case 'Cancel'
% Revert back to the original number
set(handles.Contact_Phone,...

'String',Addresses(handles.Index).Phone)

10-44

An Address Book Reader

return
end

Paging Through the Address Book — Prev/Next
The Prev and Next buttons page back and forth through the entries in the
address book. Both push buttons use the same callback, Prev_Next_Callback.
You must set the Callback property of both push buttons to call this
subfunction, as the following illustration of the Prev push button Callback
property setting shows.

Determining Which Button Is Clicked
The callback defines an additional argument, str, that indicates which
button, Prev or Next, was clicked. For the Prev button Callback property
(illustrated above), the Callback string includes 'Prev' as the last argument.
The Next button Callback string includes 'Next' as the last argument.
The value of str is used in case statements to implement each button’s
functionality (see the code listing below).

Paging Forward or Backward
Prev_Next_Callback gets the current index pointer and the addresses from
the handles structure and, depending on which button the user presses, the
index pointer is decremented or incremented and the corresponding address
and phone number are displayed. The final step stores the new value for
the index pointer in the handles structure and saves the updated structure
using guidata.

10-45

10 Examples of GUIDE GUIs

Code Listing

function Prev_Next_Callback(hObject, eventdata,handles,str)
% Get the index pointer and the addresses
index = handles.Index;
Addresses = handles.Addresses;
% Depending on whether Prev or Next was clicked,
% change the display
switch str
case 'Prev'
% Decrease the index by one
i = index - 1;
% If the index is less than one then set it equal to the index

% of the last element in the Addresses array
if i < 1
i = length(Addresses);

end
case 'Next'
% Increase the index by one
i = index + 1;
% If the index is greater than the size of the array then
% point to the first item in the Addresses array
if i > length(Addresses)
i = 1;

end
end
% Get the appropriate data for the index in selected
Current_Name = Addresses(i).Name;
Current_Phone = Addresses(i).Phone;
set(handles.Contact_Name,'string',Current_Name)
set(handles.Contact_Phone,'string',Current_Phone)
% Update the index pointer to reflect the new index
handles.Index = i;
guidata(hObject, handles)

Saving Changes to the Address Book from the Menu
When you make changes to an address book, you need to save the current
MAT-file, or save it as a new MAT-file. The File submenus Save and Save
As enable you to do this. These menus, created with the Menu Editor, use
the same callback, Save_Callback.

10-46

An Address Book Reader

The callback uses the menu Tag property to identify whether Save or Save
As is the callback object (i.e., the object whose handle is passed in as the
first argument to the callback function). You specify the menu’s Tag property
with the Menu Editor.

Saving the Addresses Structure
The handles structure contains the Addresses structure, which you must
save (handles.Addresses) as well as the name of the currently loaded
MAT-file (handles.LastFile). When the user makes changes to the name
or number, the Contact_Name_Callback or the Contact_Phone_Callback
updates handles.Addresses.

Saving the MAT-File
If the user selects Save, the save command is called to save the current
MAT-file with the new names and phone numbers.

If the user selects Save As, a dialog is displayed (uiputfile) that enables
the user to select the name of an existing MAT-file or specify a new file. The
dialog returns the selected filename and path. The final steps include

• Using fullfile to create a platform-independent pathname.

• Calling save to save the new data in the MAT-file.

• Updating the handles structure to contain the new MAT-file name.

• Calling guidata to save the handles structure.

Save_Callback Code Listing

function Save_Callback(hObject, eventdata, handles)
% Get the Tag of the menu selected
Tag = get(hObject, 'Tag');
% Get the address array
Addresses = handles.Addresses;
% Based on the item selected, take the appropriate action
switch Tag
case 'Save'
% Save to the default addrbook file
File = handles.LastFile;

10-47

10 Examples of GUIDE GUIs

save(File,'Addresses')
case 'Save_As'
% Allow the user to select the file name to save to
[filename, pathname] = uiputfile(...
{'*.mat';'*.*'}, ...
'Save as');

% If 'Cancel' was selected then return
if isequal([filename,pathname],[0,0])
return

else
% Construct the full path and save
File = fullfile(pathname,filename);
save(File,'Addresses')
handles.LastFile = File;
guidata(hObject, handles)

end
end

The Create New Menu
The Create New menu simply clears the Contact Name and
Contact Phone # text fields to facilitate adding a new name and number.
After making the new entries, the user must then save the address book with
the Save or Save As menus. This callback sets the text String properties
to empty strings:

function New_Callback(hObject, eventdata, handles)
set(handles.Contact_Name,'String','')
set(handles.Contact_Phone,'String','')

The Address Book Resize Function
The address book defines its own resize function. To use this resize
function, you must set the Application Options dialog Resize behavior to
User-specified, which in turn sets the figure’s ResizeFcn property to:

address_book('ResizeFcn',gcbo,[],guidata(gcbo))

Whenever the user resizes the figure, MATLAB calls the ResizeFcn
subfunction in the address book M-file (address_book.m)

10-48

An Address Book Reader

Behavior of the Resize Function
The resize function allows users to make the figure wider, to accommodate
long names and numbers, but does not allow the figure to be made narrower
than its original width. Also, users cannot change the height. These
restrictions do not limit the usefulness of the GUI and simplify the resize
function, which must maintain the proper proportions between the figure
size and the components in the GUI.

When the user resizes the figure and releases the mouse, the resize function
executes. At that point, the resized figure’s dimensions are saved. The
following sections describe how the resize function handles the various
possibilities.

Changing the Width
If the new width is greater than the original width, set the figure to the new
width.

The size of the Contact Name text box changes in proportion to the new
figure width. This is accomplished by:

• Changing the Units of the text box to normalized.

• Resetting the width of the text box to be 78.9% of the figure’s width.

• Returning the Units to characters.

If the new width is less than the original width, use the original width.

Changing the Height
If the user attempts to change the height, use the original height. However,
because the resize function is triggered when the user releases the mouse
button after changing the size, the resize function cannot always determine
the original position of the GUI on screen. Therefore, the resize function
applies a compensation to the vertical position (second element in the figure
Position vector) by adding the vertical position when the mouse is released
to the height when mouse is released and subtracting the original height.

10-49

10 Examples of GUIDE GUIs

When the figure is resized from the bottom, it stays in the same position.
When resized from the top, the figure moves to the location where the mouse
button is released.

Ensuring the Resized Figure Is On Screen
The resize function calls movegui to ensure that the resized figure is on
screen regardless of where the user releases the mouse.

When the GUI is first run, it is displayed at the size and location specified
by the figure Position property. You can set this property with the Property
Inspector when you create the GUI.

Code Listing

function ResizeFcn(hObject, eventdata, handles)
% Get the figure size and position
Figure_Size = get(hObject, 'Position');
% Set the figure's original size in character units
Original_Size = [0 0 94 19.230769230769234];
% If the resized figure is smaller than the
% original figure size then compensate.
if (Figure_Size(3)<Original_Size(3)) | ...

(Figure_Size(4) ~= Original_Size(4))
if Figure_Size(3) < Original_Size(3)

% If the width is too small then reset to origianl width.
set(hObject, 'Position',...

[Figure_Size(1), Figure_Size(2), ...
Original_Size(3), Original_Size(4)])

Figure_Size = get(hObject, 'Position');
end
if Figure_Size(4) ~= Original_Size(4)

% Do not allow the height to change.
set(hObject, 'Position',...

[Figure_Size(1),...
Figure_Size(2)+Figure_Size(4)-Original_Size(4),...
Figure_Size(3), Original_Size(4)])

end
end
% Adjust the size of the Contact Name text box.

10-50

An Address Book Reader

% Set the units of the Contact Name field to 'Normalized'.
set(handles.Contact_Name,'units','normalized')
% Get its Position.
C_N_pos = get(handles.Contact_Name,'Position');
% Reset it so that it's width remains normalized.
% relative to figure.
set(handles.Contact_Name,'Position',...
[C_N_pos(1) C_N_pos(2) 0.789 C_N_pos(4)])

% Return the units to 'Characters'.
set(handles.Contact_Name,'units','characters')
% Reposition GUI on screen.
movegui(hObject, 'onscreen')

10-51

10 Examples of GUIDE GUIs

Using a Modal Dialog to Confirm an Operation

In this section...

“Modal Dialog Example Outcome” on page 10-52

“View Completed Layouts and Their GUI M-Files” on page 10-52

“Setting Up the Close Confirmation Dialog” on page 10-53

“Setting Up the GUI with the Close Button” on page 10-54

“Running the GUI with the Close Button” on page 10-55

“How the GUI and Dialog Work” on page 10-56

Modal Dialog Example Outcome
This example illustrates how to use the modal dialog GUI together with
another GUI that has a Close button. Clicking the Close button displays the
modal dialog, which asks users to confirm that they really want to proceed
with the close operation.

The following figure illustrates the dialog positioned over the GUI application,
awaiting the user’s response.

View Completed Layouts and Their GUI M-Files
If you are reading this in the MATLAB Help Browser, you can click the
following links to display the GUIDE Layout Editor and the MATLAB Editor

10-52

Using a Modal Dialog to Confirm an Operation

with a completed version of this example. This enables you to see the values
of all component properties and to understand how the components are
assembled to create the GUI. You can also see a complete listing of the code
that is discussed in the following sections.

Note The following links execute MATLAB commands and are designed to
work within the MATLAB Help browser. If you are reading this online or
in PDF, you should go to the corresponding section in the MATLAB Help
Browser to use the links.

• Click here to display the GUIs in the Layout Editor.

• Click here to display the GUI M-files in the editor.

Setting Up the Close Confirmation Dialog
To set up the dialog, do the following:

1 Select New from the File menu in the GUIDE Layout Editor.

2 In the GUIDE Quick Start dialog, select the Modal Question Dialog
template and click OK.

3 Right-click the static text, Do you want to create a question
dialog?, in the Layout Editor and select Property Inspector from the
pop-up menu.

4 Scroll down to String in the Property Inspector and change the String
property to Are you sure you want to close?

5 Select Save from the File menu and type modaldlg.fig in the File name
field.

10-53

10 Examples of GUIDE GUIs

The GUI should now appear as in the following figure.

Setting Up the GUI with the Close Button
To set up the second GUI with a Close button, do the following:

1 Select New from the File menu in the GUIDE Layout Editor.

2 In the GUIDE Quick Start dialog, select Blank GUI (Default) and click
OK. This opens the blank GUI in a new Layout Editor window.

3 Drag a push button from the Component palette of the Layout Editor into
the layout area.

4 Right-click the push button and select Property Inspector from the
pop-up menu.

5 Change the String property to Close.

6 Change the Tag property to close_pushbutton.

7 Click the M-file Editor icon on the toolbar of the Layout Editor.

8 Click the Show functions icon on the toolbar of the M-file editor and
select close_pushbutton_Callback from the menu.

The following generated code for the Close button callback should appear
in the M-file editor:

10-54

Using a Modal Dialog to Confirm an Operation

% --- Executes on button press in close_pushbutton.

function close_pushbutton_Callback(hObject, eventdata, handles)

% hObject handle to close_pushbutton (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

9 After these comments, add the following code:

% Get the current position of the GUI from the handles structure

% to pass to the modal dialog.

pos_size = get(handles.figure1,'Position');

% Call modaldlg with the argument 'Position'.

user_response = modaldlg('Title','Confirm Close');

switch user_response

case {'No'}

% take no action

case 'Yes'

% Prepare to close GUI application window

% .

% .

% .

delete(handles.figure1)

end

Running the GUI with the Close Button
Run the GUI with the Close button by clicking the Run button on the Layout
Editor toolbar. The GUI appears as in the following figure:

10-55

10 Examples of GUIDE GUIs

When you click the Close button on the GUI, the modal dialog appears as
shown in the following figure:

Clicking the Yes button closes both the close dialog and the GUI that calls
it. Clicking the No button closes just the dialog.

How the GUI and Dialog Work
This section describes what occurs when you click the Close button on the
GUI:

1 User clicks the Close button. Its callback then

• Gets the current position of the GUI from the handles structure with
the command

pos_size = get(handles.figure1,'Position')

• Calls the modal dialog with the command

user_response = modaldlg('Title','Confirm Close');

This is an example of calling a GUI with a property value pair. In this
case, the figure property is 'Title', and its value is the string 'Confirm
Close'. Opening modaldlg with this syntax displays the text “Confirm
Close” at the top of the dialog.

2 The modal dialog opens with the 'Position' obtained from the GUI that
calls it.

3 The opening function in the modal dialog M-file:

• Makes the dialog modal.

10-56

Using a Modal Dialog to Confirm an Operation

• Executes the uiwait command, which causes the dialog to wait for the
user to click the Yes button or the No button, or click the close box (X) on
the window border.

4 When a user clicks one of the two push buttons, the callback for the push
button

• Updates the output field in the handles structure

• Executes uiresume to return control to the opening function where
uiwait is called.

5 The output function is called, which returns the string Yes or No as an
output argument, and deletes the dialog with the command

delete(handles.figure1)

6 When the GUI with the Close button regains control, it receives the string
Yes or No. If the answer is 'No', it does nothing. If the answer is 'Yes', the
Close button callback closes the GUI with the command

delete(handles.figure1)

10-57

10 Examples of GUIDE GUIs

10-58

Creating GUIs
Programmatically

Chapter 11, Laying Out a GUI
(p. 11-1)

Shows you how to create and
organize the GUI M-file and from
there how to populate the GUI
and construct menus and toolbars.
Provides guidance in designing
a GUI for cross-platform
compatibility.

Chapter 12, Programming the
GUI (p. 12-1)

Explains how user-written
callback routines control GUI
behavior. Shows you how to
associate callbacks with specific
components and explains callback
syntax and arguments. Provides
simple programming examples
for each kind of component.

Chapter 13, Managing
Application-Defined Data
(p. 13-1)

Explains the mechanisms for
managing application-defined
data and explains how to share
data among a GUI’s callbacks.

Chapter 14, Managing Callback
Execution (p. 14-1)

==Type chapter abstract here==

Chapter 15, Examples of GUIs
Created Programmatically
(p. 15-1)

Provides three examples that
illustrate the application of some
programming techniques used to
create GUIs.

11

Laying Out a GUI

Designing a GUI (p. 11-2) Things to think about when
designing a GUI and references to
other sources.

Creating and Running the GUI
M-File (p. 11-4)

Provides information about typical
GUI M-file organization and tells
you how to run the GUI.

Creating the GUI Figure (p. 11-7) Tells you how to create the
GUI figure and introduces some
commonly used figure properties.

Adding Components to the GUI
(p. 11-10)

Describes the code needed for adding
and labeling GUI components and
introduces some of the commonly
used properties.

Aligning Components (p. 11-38) Tells you how to align components.

Setting Tab Order (p. 11-41) Explains tab order and shows you
how to set it.

Creating Menus (p. 11-45) Shows you how to create menus that
appear on the figure menu bar and
context menus.

Creating Toolbars (p. 11-56) Shows you how to add toolbars to
your GUI and tools to your toolbars.

Designing for Cross-Platform
Compatibility (p. 11-62)

Provides pointers for creating GUIs
that behave more consistently when
run on different platforms.

11 Laying Out a GUI

Designing a GUI
Before creating the actual GUI, it is important to decide what it is you want
your GUI to do and how you want it to work. It is helpful to draw your GUI on
paper and envision what the user sees and what actions the user takes.

Note MATLAB provides a selection of standard dialog boxes that you can
create with a single function call. For information about these dialog boxes
and the functions used to create them, see “Predefined Dialog Boxes” in the
MATLAB Function Reference documentation.

The GUI used in this example contains an axes component that displays
either a surface, mesh, or contour plot of data selected from the pop-up menu.
The following picture shows a sketch that you might use as a starting point
for the design.

A panel contains three push buttons that enable you to choose the type of plot
you want. The pop-up menu contains three strings—peaks, membrane, and
sinc, which correspond to MATLAB functions and generate data to plot. You
can select the data to plot from this menu.

11-2

Designing a GUI

Many Web sites and commercial publications such as the following provide
guidelines for designing GUIs:

• AskTog — Essays on good design and a list of First Principles for good user
interface design. The author, Tognazzini, is a well-respected user interface
designer. http://www.asktog.com/basics/firstPrinciples.html.

• Galitz, Wilbert, O., Essential Guide to User Interface Design. Wiley, New
York, NY, 2002.

• GUI Design Handbook — A detailed guide to the use of GUI controls.
http://www.fast-consulting.com/GUI%20Design%20Handbook/
GDH_FRNTMTR.htm.

• Johnson, J., GUI Bloopers: Don’ts and Do’s for Software Developers and
Web Designers. Morgan Kaufmann, San Francisco, CA, 2000.

• Usability Glossary — An extensive glossary of terms
related to GUI design, usability, and related topics.
http://www.usabilityfirst.com/glossary/main.cgi.

• UsabilityNet — Covers design principles, user-centered
design, and other usability and design-related topics.
http://www.usabilitynet.org/management/b_design.htm.

11-3

http://www.asktog.com/basics/firstPrinciples.html
http://www.fast-consulting.com/GUI%20Design%20Handbook/GDH_FRNTMTR.htm
http://www.usabilityfirst.com/glossary/main.cgi
http://www.usabilitynet.org/management/b_design.htm

11 Laying Out a GUI

Creating and Running the GUI M-File

In this section...

“File Organization” on page 11-4

“File Template” on page 11-4

“Running the GUI” on page 11-5

Note For an example of creating an M-file, see Chapter 3, “Creating a Simple
GUI Programmatically” in the “Getting Started” part of this document.

File Organization
Typically, a GUI M-file has the following ordered sections. You can help to
maintain the organization by adding comments that name the sections when
you first create them.

1 Comments displayed in response to the MATLAB help command.

2 Initialization tasks such as data creation and any processing that is needed
to construct the components. See “Initializing the GUI” on page 12-4 for
more information.

3 Construction of figure and components. For more information, see
“Creating the GUI Figure” on page 11-7 and “Adding Components to the
GUI” on page 11-10.

4 Initialization tasks that require the components to exist, and output return.
See “Initializing the GUI” on page 12-4 for more information.

5 Callbacks for the components. Callbacks are the routines that execute in
response to user-generated events such as mouse clicks and key strokes.
See Chapter 12, “Programming the GUI” for more information.

6 Utility functions.

File Template
This is a template for a GUI M-file:

11-4

Creating and Running the GUI M-File

function varargout = mygui(varargin)
% MYGUI Brief description of GUI.
% Comments displayed at the command line in response
% to the help command.

% (Leave a blank line following the help.)

% Initialization tasks

% Construct the components

% Initialization tasks

% Callbacks for MYGUI

% Utility functions for MYGUI

end

The end statement that matches the function statement is necessary
because this document treats GUI creation using nested functions. Chapter
12, “Programming the GUI” addresses this topic.

Save the file in your current directory or at a location that is on your MATLAB
path.

Running the GUI
You can display your GUI at any time by executing its M-file. For example,
if your GUI M-file is mygui.m, type

mygui

at the command line. Provide run-time arguments as appropriate. The files
must reside on your path or in your current directory.

When you execute the GUI M-file, a fully functional copy of the GUI displays
on the screen. You can manipulate components that it contains, but nothing
happens unless the M-file includes code to initialize the GUI and callbacks

11-5

11 Laying Out a GUI

to service the components. Chapter 12, “Programming the GUI” tells you
how to do this.

11-6

Creating the GUI Figure

Creating the GUI Figure
In MATLAB, a GUI is a figure. Before you add components to it, create the
figure explicitly and obtain a handle for it. In the initialization section of your
file, use a statement such as the following to create the figure:

fh = figure;

where fh is the figure handle.

Note If you create a component when there is no figure, MATLAB creates a
figure automatically but you do not know the figure handle.

When you create the figure, you can also specify properties for the figure. The
most commonly used figure properties are shown in the following table:

Property Values Description

MenuBar figure, none. Default is
figure.

Display or hide the MATLAB
standard menu bar menus.
If none and there are no
user-created menus, the
menu bar itself is removed.

Name String Title displayed in the figure
window. If NumberTitle is
on, this string is appended to
the figure number.

NumberTitle on, off. Default is on. Determines whether the
string ’Figure n' (where
n is the figure number) is
prefixed to the figure window
title specified by Name.

Position 4-element vector: [distance
from left, distance from
bottom, width, height].

Size of the GUI figure and
its location relative to the
lower-left corner of the
screen.

11-7

11 Laying Out a GUI

Property Values Description

Resize on, off. Default is on. Determines if the user can
resize the figure window with
the mouse.

Toolbar auto, none, figure. Default
is auto.

Display or hide the default
figure toolbar.

• none — do not display the
figure toolbar.

• auto — display the figure
toolbar, but remove it if
a user interface control
(uicontrol) is added to
the figure.

• figure — display the
figure toolbar.

Units pixels, centimeters,
characters, inches,
normalized, points, Default
is pixels.

Units of measurement used
to interpret position vector

Visible on, off. Default is on. Determines whether a figure
is displayed on the screen.

For a complete list of properties and for more information about the properties
listed in the table, see the Figure Properties reference page in the MATLAB
reference documentation.

The following statement names the figure My GUI, positions the figure on
the screen, and makes the GUI invisible so that the user cannot see the
components as they are added or initialized. All other properties assume
their defaults.

f = figure('Visible','off','Name','My GUI',...
'Position',[360,500,450,285]);

11-8

Creating the GUI Figure

The Position property is a four-element vector that specifies the location of
the GUI on the screen and its size: [distance from left, distance from bottom,
width, height]. Default units are pixels.

If the figure were visible, it would look like this:

The next topic, “Adding Components to the GUI” on page 11-10, shows you
how to add push buttons, axes, and other components to the GUI. “Creating
Menus” on page 11-45 shows you how to create toolbar and context menus.
“Creating Toolbars” on page 11-56 shows you how to add your own toolbar
to a GUI.

11-9

11 Laying Out a GUI

Adding Components to the GUI

In this section...

“Available Components” on page 11-10

“Adding User Interface Controls” on page 11-13

“Adding Panels and Button Groups” on page 11-28

“Adding Axes” on page 11-33

“Adding ActiveX Controls” on page 11-37

Available Components
Components include user interface controls such as push buttons and sliders,
containers such as panels and button groups, axes, and ActiveX controls. This
topic tells you how to populate your GUI with these components.

Note MATLAB provides a selection of standard dialog boxes that you can
create with a single function call. For information about these dialog boxes
and the functions used to create them, see “Predefined Dialog Boxes” in the
MATLAB Function Reference documentation.

The following table describes the available components and the function used
to create each. Subsequent topics provide specific information about adding
the components.

Component Function Description

ActiveX actxcontrol ActiveX components enable you to
display ActiveX controls in your
GUI. They are available only on the
Microsoft Windows platform.

“Axes” on page
11-35

axes Axes enable your GUI to display
graphics such as graphs and images.

11-10

Adding Components to the GUI

Component Function Description

“Button Group”
on page 11-32

uibuttongroup Button groups are like panels, but are
used to manage exclusive selection
behavior for radio buttons and toggle
buttons.

“Check Box” on
page 11-16

uicontrol Check boxes can generate an action
when checked and indicate their state
as checked or not checked. Check
boxes are useful when providing the
user with a number of independent
choices, for example, displaying a
toolbar.

“Edit Text” on
page 11-17

uicontrol Edit text components are fields that
enable users to enter or modify text
strings. Use an edit text when you
want text as input. Users can enter
numbers, but you must convert them
to their numeric equivalents.

“List Box” on
page 11-18

uicontrol List boxes display a list of items and
enable users to select one or more
items.

“Panel” on page
11-30

uipanel Panels arrange GUI components into
groups. By visually grouping related
controls, panels can make the user
interface easier to understand. A
panel can have a title and various
borders.

Panel children can be user interface
controls and axes, as well as button
groups and other panels. The position
of each component within a panel is
interpreted relative to the panel. If
you move the panel, its children move
with it and maintain their positions
on the panel.

11-11

11 Laying Out a GUI

Component Function Description

“Pop-Up Menu”
on page 11-20

uicontrol Pop-up menus open to display a list of
choices when users click the arrow.

“Push Button”
on page 11-21

uicontrol Push buttons generate an action
when clicked. For example, an OK
button might apply settings and close
a dialog box. When you click a push
button, it appears depressed; when
you release the mouse button, the
push button appears raised.

“Radio Button”
on page 11-23

uicontrol Radio buttons are similar to check
boxes, but radio buttons are typically
mutually exclusive within a group of
related radio buttons. That is, when
you select one button the previously
selected button is deselected. To
activate a radio button, click the
mouse button on the object. The
display indicates the state of the
button. Use a button group to manage
mutually exclusive radio buttons.

“Slider” on page
11-24

uicontrol Sliders accept numeric input within
a specified range by enabling the
user to move a sliding bar, which is
called a slider or thumb. Users move
the slider by clicking the slider and
dragging it, by clicking in the trough,
or by clicking an arrow. The location
of the slider indicates the relative
location within the specified range.

11-12

Adding Components to the GUI

Component Function Description

“Static Text” on
page 11-26

uicontrol Static text controls display lines of
text. Static text is typically used
to label other controls, provide
directions to the user, or indicate
values associated with a slider.
Users cannot change static text
interactively.

“Toggle Button”
on page 11-27

uicontrol Toggle buttons generate an action
and indicate whether they are turned
on or off. When you click a toggle
button, it appears depressed, showing
that it is on. When you release the
mouse button, the toggle button
remains depressed until you click it
a second time. When you do so, the
button returns to the raised state,
showing that it is off. Use a button
group to manage mutually exclusive
radio buttons.

Components are sometimes referred to by the name of the function used to
create them. For example, a push button is created using the uicontrol
function, and it is sometimes referred to as a uicontrol. A panel is created
using the uipanel function and may be referred to as a uipanel.

Adding User Interface Controls
Use the uicontrol function to create user interface controls. These include
push buttons, toggle buttons, sliders, radio buttons, edit text controls, static
text controls, pop-up menus, check boxes, and list boxes.

Note See “Available Components” on page 11-10 for descriptions of these
components. See “Programming User Interface Controls” on page 12-15 for
basic examples of programming these components.

11-13

11 Laying Out a GUI

A syntax for the uicontrol function is

uich = uicontrol(parent,'PropertyName',PropertyValue,...)

where uich is the handle of the resulting user interface control. If you do
not specify parent, the component parent is the current figure as specified
by the root CurrentFigure property. See the uicontrol reference page for
other valid syntaxes.

Subsequent topics describe commonly used properties of user interface
controls and offer a simple example for each kind of control:

• “Commonly Used Properties” on page 11-14

• “Check Box” on page 11-16

• “Edit Text” on page 11-17

• “List Box” on page 11-18

• “Pop-Up Menu” on page 11-20

• “Push Button” on page 11-21

• “Radio Button” on page 11-23

• “Slider” on page 11-24

• “Static Text” on page 11-26

• “Toggle Button” on page 11-27

Commonly Used Properties
The most commonly used properties needed to describe a user interface
control are shown in the following table:

Property Values Description

Max Scalar. Default is 1. Maximum value.
Interpretation depends
on the Style property.

Min Scalar. Default is 0. Minimum value.
Interpretation depends
on the Style property.

11-14

Adding Components to the GUI

Property Values Description

Position 4-element vector: [distance
from left, distance from
bottom, width, height].
Default is [20, 20, 60, 20].

Size of the component and
its location relative to its
parent.

String String. Can be a cell
array or character array or
strings.

Component label. For list
boxes and pop-up menus it is
a list of the items. To display
the & character in a label,
use two & characters in the
string. The words remove,
default, and factory (case
sensitive) are reserved. To
use one of these as a label,
prepend a backslash (\) to
the string. For example,
\remove yields remove.

Style pushbutton,
togglebutton,
radiobutton, checkbox,
edit, text, slider,
listbox, popupmenu.
Default is pushbutton.

Type of user interface
control object.

Units pixels, centimeters,
characters, inches,
normalized, points,
Default is pixels.

Units of measurement used
to interpret position vector

Value Scalar or vector Value of the component.
Interpretation depends on
the Style property.

For a complete list of properties and for more information about the properties
listed in the table, see Uicontrol Properties in the MATLAB Function
Reference documentation. Properties needed to control GUI behavior are
discussed in Chapter 12, “Programming the GUI” .

11-15

11 Laying Out a GUI

Check Box
The following statement creates a check box with handle cbh.

cbh = uicontrol(fh,'Style','checkbox',...
'String','Display file extension',...
'Value',1,'Position',[30 20 130 20]);

The first argument, fh, specifies the handle of the parent figure. You can also
specify the parent as a panel or button group. See “Panel” on page 11-30 and
“Button Group” on page 11-32 for more information.

The Style property, checkbox, specifies the user interface control as a check
box.

The String property labels the check box as Display file extension. The
check box accommodates only a single line of text. If you specify a component
width that is too small to accommodate the specified String, MATLAB
truncates the string with an ellipsis.

The Value property specifies whether the box is checked. Set Value to the
value of the Max property (default is 1) to create the component with the
box checked. Set Value to Min (default is 0) to leave the box unchecked.
Correspondingly, when the user clicks the check box, MATLAB sets Value to
Max when the user checks the box and to Min when the user unchecks it.

The Position property specifies the location and size of the list box. In this
example, the list box is 130 pixels wide and 20 high. It is positioned 30 pixels
from the left of the figure and 20 pixels from the bottom. The statement
assumes the default value of the Units property, which is pixels.

11-16

Adding Components to the GUI

Note You can also use an image as a label. See “Adding an Image to a Push
Button” on page 11-22 for more information.

Edit Text
The following statement creates an edit text component with handle eth:

eth = uicontrol(fh,'Style','edit',...
'String','Enter your name here.',...
'Position',[30 50 130 20]);

The first argument, fh, specifies the handle of the parent figure. You can also
specify the parent as a panel or button group. See “Panel” on page 11-30 and
“Button Group” on page 11-32 for more information.

The Style property, edit, specifies the user interface control as an edit text
component.

The String property defines the text that appears in the component.

To enable multiple-line input, Max - Min must be greater than 1, as in the
following statement. MATLAB wraps the string if necessary.

eth = uicontrol(fh,'Style','edit',...
'String','Enter your name and address here.',...
'Max',2,'Min',0,...
'Position',[30 20 130 80]);

11-17

11 Laying Out a GUI

If Max-Min is less than or equal to 1, the edit text component admits only a
single line of input. If you specify a component width that is too small to
accommodate the specified string, MATLAB displays only part of the string.
The user can use the arrow keys to move the cursor over the entire string.

The Position property specifies the location and size of the edit text
component. In this example, the edit text is 130 pixels wide and 20 high. It is
positioned 30 pixels from the left of the figure and 50 pixels from the bottom.
The statement assumes the default value of the Units property, which is
pixels.

List Box
The following statement creates a list box with handle lbh:

lbh = uicontrol(fh,'Style','listbox',...
'String',{'one','two','three','four'},...
'Value',1,'Position',[30 80 130 20]);

The first argument, fh, specifies the handle of the parent figure. You can also
specify the parent as a panel or button group. See “Panel” on page 11-30 and
“Button Group” on page 11-32 for more information.

11-18

Adding Components to the GUI

The Style property, listbox, specifies the user interface control as a list box.

The String property defines the list items. You can specify the items in any of
the formats shown in the following table.

String Property
Format

Example

Cell array of strings {'one' 'two' 'three'}

Padded string matrix ['one ';'two ';'three']

String vector separated
by vertical slash (|)
characters

['one|two|three']

If you specify a component width that is too small to accommodate one or more
of the specified strings, MATLAB truncates those strings with an ellipsis.

The Value property specifies the item or items that are selected when the
component is created. To select a single item, set Value to a scalar that
indicates the index of the selected list item, where 1 corresponds to the first
item in the list.

To select more than one item, set Value to a vector of indices of the selected
items. To enable selection of more than one item, Max - Min must be greater
than 1, as in the following statement:

lbh = uicontrol(fh,'Style','listbox',...
'String',{'one','two','three','four'},...
'Max',2,'Min',0,'Value',[1 3],,...
'Position',[30 20 130 80]);

If you want no initial selection:

11-19

11 Laying Out a GUI

1 Set the Max and Min properties to enable multiple selection

2 Set the Value property to an empty matrix [].

If the list box is not large enough to display all list entries, you can set the
ListBoxTop property to the index of the item you want to appear at the top
when the component is created.

The Position property specifies the location and size of the list box. In this
example, the list box is 130 pixels wide and 80 high. It is positioned 30 pixels
from the left of the figure and 20 pixels from the bottom. The statement
assumes the default value of the Units property, which is pixels.

The list box does not provide for a label. Use a static text component to label
the list box.

Pop-Up Menu
The following statement creates a pop-up menu (also known as a drop-down
menu or combo box) with handle pmh:

pmh = uicontrol(fh,'Style','popupmenu',...
'String',{'one','two','three','four'},...
'Value',1,'Position',[30 80 130 20]);

The first argument, fh, specifies the handle of the parent figure. You can also
specify the parent as a panel or button group. See “Panel” on page 11-30 and
“Button Group” on page 11-32 for more information.

The Style property, popupmenu, specifies the user interface control as a
pop-up menu.

11-20

Adding Components to the GUI

The String property defines the menu items. You can specify the items in
any of the formats shown in the following table.

String Property
Format

Example

Cell array of strings {'one' 'two' 'three'}

Padded string matrix ['one ';'two ';'three']

String vector separated
by vertical slash (|)
characters

['one|two|three']

If you specify a component width that is too small to accommodate one or more
of the specified strings, MATLAB truncates those strings with an ellipsis.

The Value property specifies the index of the item that is selected when the
component is created. Set Value to a scalar that indicates the index of the
selected menu item, where 1 corresponds to the first item in the list. In the
statement, if Value is 2, the menu looks like this when it is created:

The Position property specifies the location and size of the pop-up menu. In
this example, the pop-up menu is 130 pixels wide. It is positioned 30 pixels
from the left of the figure and 80 pixels from the bottom. The height of a
pop-up menu is determined by the font size; the height you set in the position
vector is ignored. The statement assumes the default value of the Units
property, which is pixels.

The pop up menu does not provide for a label. Use a static text component to
label the pop-up menu.

Push Button
The following statement creates a push button with handle pbh:

pbh = uicontrol(fh,'Style','pushbutton','String','Button 1',...
'Position',[50 20 60 40]);

11-21

11 Laying Out a GUI

The first argument, fh, specifies the handle of the parent figure. You can also
specify the parent as a panel or button group. See “Panel” on page 11-30 and
“Button Group” on page 11-32 for more information.

The Style property, pushbutton, specifies the user interface control as a push
button. Because pushbutton is the default style, you can omit the 'Style'
property from the statement.

The String property labels the push button as Button 1. The push button
allows only a single line of text. If you specify more than one line, only the
first line is shown. If you specify a component width that is too small to
accommodate the specified String, MATLAB truncates the string with an
ellipsis.

The Position property specifies the location and size of the push button. In
this example, the push button is 60 pixels wide and 40 high. It is positioned
50 pixels from the left of the figure and 20 pixels from the bottom. This
statement assumes the default value of the Units property, which is pixels.

Adding an Image to a Push Button. To add an image to a push button,
assign the button’s CData property an m-by-n-by-3 array of RGB values
that defines a truecolor image. For example, the array img defines 16-by-64
truecolor image using random values between 0 and 1 (generated by rand).

img(:,:,1) = rand(16,64);
img(:,:,2) = rand(16,64);
img(:,:,3) = rand(16,64);

11-22

Adding Components to the GUI

pbh = uicontrol(fh,'Style','pushbutton',...
'Position',[50 20 100 45],...
'CData',img);

Note Create your own icon with the icon editor described in “Icon Editor”
on page 15-29. See ind2rgb for information on converting a matrix X and
corresponding colormap, i.e., an (X, MAP) image, to RGB (truecolor) format.

Radio Button
The following statement creates a radio button with handle rbh:

rbh = uicontrol(fh,'Style','radiobutton',...
'String','Indent nested functions.',...
'Value',1,'Position',[30 20 150 20]);

The first argument, fh, specifies the handle of the parent figure. You can also
specify the parent as a panel or button group. Use a button group to manage
exclusive selection of radio buttons and toggle buttons. See “Panel” on page
11-30 and “Button Group” on page 11-32 for more information.

The Style property, radiobutton, specifies the user interface control as a
radio button.

The String property labels the radio button as Indent nested functions.
The radio button allows only a single line of text. If you specify more than

11-23

11 Laying Out a GUI

one line, only the first line is shown. If you specify a component width that
is too small to accommodate the specified String, MATLAB truncates the
string with an ellipsis.

The Value property specifies whether the radio button is selected when the
component is created. Set Value to the value of the Max property (default is
1) to create the component with the radio button selected. Set Value to Min
(default is 0) to leave the radio button unselected.

The Position property specifies the location and size of the radio button. In
this example, the radio button is 150 pixels wide and 20 high. It is positioned
30 pixels from the left of the figure and 20 pixels from the bottom. The
statement assumes the default value of the Units property, which is pixels.

Note You can also use an image as a label. See “Adding an Image to a Push
Button” on page 11-22 for more information.

Slider
The following statement creates a slider with handle sh:

sh = uicontrol(fh,'Style','slider',...
'Max',100,'Min',0,'Value',25,...
'SliderStep',[0.05 0.2],...
'Position',[30 20 150 30]);

11-24

Adding Components to the GUI

The first argument, fh, specifies the handle of the parent figure. You can also
specify the parent as a panel or button group. See “Panel” on page 11-30 and
“Button Group” on page 11-32 for more information.

The Style property, slider, specifies the user interface control as a slider.

The Max property is the maximum value of the slider. The Min property is the
minimum value of the slider and must be less than Max.

The Value property specifies the value indicated by the slider when it is
created. Set Value to a number that is less than or equal to Max and greater
than or equal to Min. If you specify Value outside the specified range, the
slider is not rendered.

The SliderStep property controls the amount the slider Value changes when
a user clicks the arrow button to produce a minimum step or the slider trough
to produce a maximum step. Specify SliderStep as a two-element vector,
[min_step,max_step], where each value is in the range [0, 1].

The example provides a 5 percent minimum step and a 20 percent maximum
step. The default, [0.01 0.10], provides a 1 percent minimum step and a
10 percent maximum step.

The Position property specifies the location and size of the slider. In this
example, the slider is 150 pixels wide and 30 high. It is positioned 30 pixels
from the left of the figure and 20 pixels from the bottom. The statement
assumes the default value of the Units property, which is pixels.

Note On Mac platforms, the height of a horizontal slider is constrained. If
the height you set in the position vector exceeds this constraint, the displayed
height of the slider is the maximum allowed. The height element of the
position vector is not changed.

11-25

11 Laying Out a GUI

The slider component provides no text description. Use static text components
to label the slider.

Static Text
The following statement creates a static text component with handle sth:

sth = uicontrol(fh,'Style','text',...
'String','Select a data set.',...
'Position',[30 50 130 20]);

The first argument, fh, specifies the handle of the parent figure. You can also
specify the parent as a panel or button group. See “Panel” on page 11-30 and
“Button Group” on page 11-32 for more information.

The Style property, text, specifies the user interface control as a static text
component.

The String property defines the text that appears in the component. If you
specify a component width that is too small to accommodate the specified
String, MATLAB wraps the string.

The Position property specifies the location and size of the static text
component. In this example, the static text is 130 pixels wide and 20 high.
It is positioned 30 pixels from the left of the figure and 50 pixels from the
bottom. The statement assumes the default value of the Units property,
which is pixels.

11-26

Adding Components to the GUI

Toggle Button
The following statement creates a toggle button with handle tbh:

tbh = uicontrol(fh,'Style','togglebutton',...
'String','Left/Right Tile',...
'Value',0,'Position',[30 20 100 30]);

The first argument, fh, specifies the handle of the parent figure. You can also
specify the parent as a panel or button group. Use a button group to manage
exclusive selection of radio buttons and toggle buttons. See “Panel” on page
11-30 and “Button Group” on page 11-32 for more information.

The Style property, togglebutton, specifies the user interface control as
a toggle button.

The String property labels the toggle button as Left/Right Tile. The toggle
button allows only a single line of text. If you specify more than one line,
only the first line is shown. If you specify a component width that is too
small to accommodate the specified String, MATLAB truncates the string
with an ellipsis.

The Value property specifies whether the toggle button is selected when the
component is created. Set Value to the value of the Max property (default is
1) to create the component with the toggle button selected (depressed). Set
Value to Min (default is 0) to leave the toggle button unselected (raised). The
following figure shows the toggle button in the depressed position.

11-27

11 Laying Out a GUI

The Position property specifies the location and size of the toggle button. In
this example, the toggle button is 100 pixels wide and 30 high. It is positioned
30 pixels from the left of the figure and 20 pixels from the bottom. The
statement assumes the default value of the Units property, which is pixels.

Note You can also use an image as a label. See “Adding an Image to a Push
Button” on page 11-22 for more information.

Adding Panels and Button Groups
Panels and button groups are containers that arrange GUI components into
groups. If you move the panel or button group, its children move with it and
maintain their positions relative to the panel or button group.

Note See “Available Components” on page 11-10 for descriptions of these
components.

Use the uipanel and uibuttongroup functions to create these components.

A syntax for panels is

ph = uipanel(fh,'PropertyName',PropertyValue,...)

where ph is the handle of the resulting panel. The first argument, fh, specifies
the handle of the parent figure. You can also specify the parent as a panel or
button group. See the uipanel reference page for other valid syntaxes.

A syntax for button groups is

bgh = uibuttongroup('PropertyName',PropertyValue,...)

11-28

Adding Components to the GUI

where bgh is the handle of the resulting button group. For button groups,
you must use the Parent property to specify the component parent. See the
uibuttongroup reference page for other valid syntaxes.

For both panels and button groups, if you do not specify a parent, the
component parent is the current figure as specified by the root CurrentFigure
property.

Subsequent topics describe commonly used properties of panels and button
groups and offer a simple example for each component.

• “Commonly Used Properties” on page 11-29

• “Panel” on page 11-30

• “Button Group” on page 11-32

Commonly Used Properties
The most commonly used properties needed to describe a panel or button
group are shown in the following table:

Property Values Description

Parent Handle Handle of the component’s parent
figure, panel, or button group.

Position 4-element vector:
[distance from left,
distance from bottom,
width, height].
Default is [0, 0, 1,
1].

Size of the component and its
location relative to its parent.

11-29

11 Laying Out a GUI

Property Values Description

Title String Component label. To display
the & character in a label, use
two & characters in the string.
The words remove, default,
and factory (case sensitive) are
reserved. To use one of these as a
label, prepend a backslash (\) to
the string. For example, \remove
yields remove.

TitlePosition lefttop, centertop,
righttop,
leftbottom,
centerbottom,
rightbottom. Default
is lefttop.

Location of title string in relation
to the panel or button group.

Units normalized,
centimeters,
characters, inches,
pixels, points.
Default is normalized.

Units of measurement used to
interpret position vector

For a complete list of properties and for more information about the properties
listed in the table, see Uipanel Properties and Uibuttongroup Properties
in the MATLAB Function Reference documentation. Properties needed to
control GUI behavior are discussed in Chapter 12, “Programming the GUI”.

Panel
The following statement creates a panel with handle ph. Use a panel to group
components in the GUI.

ph = uipanel('Parent',fh,'Title','My Panel',...
'Position',[.25 .1 .5 .8]);

11-30

Adding Components to the GUI

The Parent property specifies the handle fh of the parent figure. You can also
specify the parent as a panel or button group.

The Title property labels the panel as My Panel.

The statement assumes the default TitlePosition property, which is
lefttop.

The Units property is used to interpret the Position property. This panel
assumes the default Units property, normalized. This enables the panel to
resize automatically if the figure is resized.

The Position property specifies the location and size of the panel. In this
example, the panel is 50 percent of the width of the figure and 80 percent of
its height. It is positioned 25 percent of the figure width from the left of the
figure and 10 percent of the figure height from the bottom. As the figure is
resized the panel retains these proportions.

The following statements add two push buttons to the panel with handle
ph. The Position property of each component within a panel is interpreted
relative to the panel.

pbh1 = uicontrol(ph,'Style','pushbutton','String','Button 1',...
'Units','normalized',...
'Position',[.1 .55 .8 .3]);

pbh2 = uicontrol(ph,'Style','pushbutton','String','Button 2',...

11-31

11 Laying Out a GUI

'Units','normalized',...
'Position',[.1 .15 .8 .3]);

See “Push Button” on page 11-21 for more information about adding push
buttons.

Button Group
The following statement creates a button group with handle bgh. Use a button
group to exclusively manage radio buttons and toggle buttons.

bgh = uibuttongroup('Parent',fh,'Title','My Button Group',...
'Position',[.1 .2 .8 .6]);

The Parent property specifies the handle fh of the parent figure. You can also
specify the parent as a panel or button group.

The Title property labels the button group as My Button Group.

11-32

Adding Components to the GUI

The statement assumes the default TitlePosition property, which is
lefttop.

The Units property is used to interpret the Position property. This button
group assumes the default Units property, normalized. This enables the
button group to resize automatically if the figure is resized.

The Position property specifies the location and size of the button group. In
this example, the button group is 80 percent of the width of the figure and 60
percent of its height. It is positioned 10 percent of the figure width from the
left of the figure and 20 percent of the figure height from the bottom. As the
figure is resized the button group retains these proportions.

The following statements add two radio buttons to the button group with
handle bgh.

rbh1 = uicontrol(bgh,'Style','radiobutton','String','Red',...
'Units','normalized',...
'Position',[.1 .6 .3 .2]);

rbh2 = uicontrol(bgh,'Style','radiobutton','String','Blue',...
'Units','normalized',...
'Position',[.1 .2 .3 .2]);

By default, MATLAB automatically selects the first radio button added to
a button group. You can use the radio button Value property to explicitly
specify the initial selection. See “Radio Button” on page 11-23 for information.

Adding Axes
Axes enable your GUI to display graphics such as graphs and images using
commands such as: plot, surf, line, bar, polar, pie, contour, and mesh.

11-33

11 Laying Out a GUI

Note See “Available Components” on page 11-10 for a description of this
component.

Use the axes function to create an axes. A syntax for this function is

ah = axes('PropertyName',PropertyValue,...)

where ah is the handle of the resulting axes. You must use the Parent
property to specify the axes parent. If you do not specify Parent, the parent is
the current figure as specified by the root CurrentFigure property. See the
axes reference page for other valid syntaxes.

Subsequent topics describe commonly used properties of axes and offer a
simple example.

• “Commonly Used Properties” on page 11-34

• “Axes” on page 11-35

Commonly Used Properties
The most commonly used properties needed to describe an axes are shown
in the following table:

Property Values Description

HandleVisibility on, callback, off. Default is
on.

Determines if an object’s handle
is visible in its parent’s list
of children. For axes, set
HandleVisibility to callback
to protect them from command
line operations.

Parent Handle Handle of the component’s
parent figure, panel, or button
group.

11-34

Adding Components to the GUI

Property Values Description

Position 4-element vector: [distance
from left, distance from bottom,
width, height].

Size of the component and its
location relative to its parent.

Units normalized, centimeters,
characters, inches, pixels,
points. Default is normalized.

Units of measurement used to
interpret position vector

For a complete list of properties and for more information about the properties
listed in the table, see Axes Properties in the MATLAB Function Reference
documentation. Properties needed to control GUI behavior are discussed in
Chapter 12, “Programming the GUI”.

See commands such as the following for more information on axes objects:
plot, surf, line, bar, polar, pie, contour and mesh. See “Functions — By
Category” in the MATLAB Function Reference documentation for a complete
list.

Axes
The following statement creates an axes with handle ah:

ah = axes('Parent',fh,'Position',[.15 .15 .7 .7]);

11-35

11 Laying Out a GUI

The Parent property specifies the handle fh of the parent figure. You can also
specify the parent as a panel or button group.

The Units property is used to interpret the Position property. This axes
assumes the default Units property, normalized. This enables the axes to
resize automatically if the figure is resized.

The Position property specifies the location and size of the axes. In this
example, the axes is 70 percent of the width of the figure and 70 percent of
its height. It is positioned 15 percent of the figure width from the left of the
figure and 15 percent of the figure height from the bottom. As the figure is
resized the axes retains these proportions.

MATLAB automatically adds the tick marks. Most functions that draw in the
axes update the tick marks appropriately.

11-36

Adding Components to the GUI

Adding ActiveX Controls
ActiveX components enable you to display ActiveX controls in your GUI. They
are available only on the Microsoft Windows platform.

An ActiveX control can be the child only of a figure, i.e., of the GUI itself. It
cannot be the child of a panel or button group.

See “Creating an ActiveX Control” in the MATLAB External Interfaces
documentation for information about adding an ActiveX control to a figure.
See “MATLAB COM Client Support” in the MATLAB External Interfaces
documentation for general information about ActiveX controls.

11-37

11 Laying Out a GUI

Aligning Components

In this section...

“Using the Align Function” on page 11-38

“Examples” on page 11-40

Using the Align Function
Use the align function to align user interface controls and axes. This function
enables you to align the components vertically and horizontally. You can also
distribute the components evenly, or specify a fixed distance between them.

A syntax for the align function is

align(HandleList,'HorizontalAlignment',...
'VerticalAlignment')

where HorizontalAlignment can be None, Left, Center, Right, Distribute,
or Fixed and VerticalAlignment can be None, Top, Middle, Bottom,
Distribute, or Fixed. All handles in HandleList must have the same parent.
See the align reference page for information about other syntaxes.

The following code creates three push buttons that are somewhat randomly
placed. Each subsequent example starts with these same three push buttons
and aligns them in different ways. Components are aligned with reference to
their bounding box, shown as a blue dashed line in the figures.

b1 = uicontrol(fh,'Posit',[30 10 60 30],'String','Button 1');
b2 = uicontrol(fh,'Posit',[50 50 60 30],'String','Button 2');
b3 = uicontrol(fh,'Posit',[10 80 60 30],'String','Button 3');

11-38

Aligning Components

11-39

11 Laying Out a GUI

Examples

• “Aligning Components Horizontally” on page 11-40

• “Aligning Components Horizontally While Distributing Them Vertically”
on page 11-40

• “Aligning Components Vertically While Distributing Them Horizontally”
on page 11-40

Aligning Components Horizontally
The following statement moves the push buttons horizontally to the right of
their bounding box. It does not alter their vertical positions. The figure shows
the original bounding box.

align([b1 b2 b3],'Right','None');

Aligning Components Horizontally While Distributing Them
Vertically
The following statement moves the push buttons horizontally to the center
of their bounding box and adjusts their vertical placement to create a fixed
distance of 7 points between the boxes. The push buttons appear in the center
of the original bounding box. The bottom push button remains at the bottom
of the original bounding box.

align([b1 b2 b3],'Center','Fixed',7);

11-40

Setting Tab Order

Setting Tab Order

In this section...

“How Tabbing Works” on page 11-41

“Default Tab Order” on page 11-41

“Changing the Tab Order” on page 11-43

How Tabbing Works
A GUI’s tab order is the order in which components of the GUI acquire focus
when a user presses the keyboard Tab key. Focus is generally denoted by
a border or a dotted border.

Tab order is determined separately for the children of each parent. For
example, child components of the GUI figure have their own tab order. Child
components of each panel or button group also have their own tab order.

If, in tabbing through the components at one level, a user tabs to a panel or
button group, then the tabbing sequences through the components of the
panel or button group before returning to the level from which the panel or
button group was reached. For example, if a GUI figure contains a panel that
contains three push buttons and the user tabs to the panel, then the tabbing
sequences through the three push buttons before returning to the figure.

Note You cannot tab to axes and static text components. You cannot
determine programmatically which component has focus.

Default Tab Order
The default tab order for each level is the order in which you create the
components at that level.

The following code creates a GUI that contains a pop-up menu with a static
text label, a panel with three push buttons, and an axes.

fh = figure('Position',[200 200 450 270]);
pmh = uicontrol(fh,'Style','popupmenu',...

11-41

11 Laying Out a GUI

'String',{'peaks','membrane','sinc'},...
'Position',[290 200 130 20]);

sth = uicontrol(fh,'Style','text','String','Select Data',...
'Position',[290 230 60 20]);

ph = uipanel('Parent',fh,'Units','pixels',...
'Position',[290 30 130 150]);

ah = axes('Parent',fh,'Units','pixels',...
'Position',[40 30 220 220]);

bh1 = uicontrol(ph,'Style','pushbutton',...
'String','Contour','Position',[20 20 80 30]);

bh2 = uicontrol(ph,'Style','pushbutton',...
'String','Mesh','Position',[20 60 80 30]);

bh3 = uicontrol(ph,'Style','pushbutton',...
'String','Surf','Position',[20 100 80 30]);

You can obtain the default tab order for a figure, panel, or button group by
retrieving its Children property. For the example, the statement is

ch = get(ph,'Children')

where ph is the handle of the panel. This statement returns a vector
containing the handles of the children, the three push buttons.

ch =

11-42

Setting Tab Order

4.0076
3.0076
2.0076

These handles correspond to the push buttons as shown in the following table:

Handle
Handle
Variable Push Button

4.0076 bh3 Surf

3.0076 bh2 Mesh

2.0076 bh1 Contour

The default tab order of the push buttons is the reverse of the order of the
child vector: Contour > Mesh > Surf.

Note The get function returns only those children whose handles are visible,
i.e., those with their HandleVisibility property set to on. Use allchild to
retrieve children regardless of their handle visibility.

In the example GUI figure, the default order is pop-up menu followed by the
panel’s Contour, Mesh, and Surf push buttons (in that order), and then
back to the pop-up menu. You cannot tab to the axes component or the static
text component.

Try modifying the code to create the pop-up menu following the creation of the
Contour push button and before the Mesh push button. Now execute the
code to create the GUI and tab through the components. This code change
does not alter the default tab order. This is because the pop-up menu does
not have the same parent as the push buttons. The figure is the parent of the
panel and the pop-up menu.

Changing the Tab Order
Use the uistack function to change the tab order of components that have the
same parent. A convenient syntax for uistack is

11-43

11 Laying Out a GUI

uistack(h,stackopt,step)

where h is a vector of handles of the components whose tab order is to be
changed.

stackopt represents the direction of the move. It must be one of the strings:
up, down, top, or bottom, and is interpreted relative to the column vector
returned by the statement:

ch = get(ph,'Children')

ch =
4.0076
3.0076
2.0076

If the tab order is currently Contour > Mesh > Surf, the statement

uistack(bh2,up,1)

moves bh2 (Surf) up one place in the vector of children and changes the tab
order to Contour > Surf > Mesh.

ch = get(ph,'Children')

now returns

ch =
3.0076
4.0076
2.0076

step is the number of levels changed. The default is 1.

Note Tab order also affects the stacking order of components. If components
overlap, those that appear lower in the child order, are drawn on top of
those that appear higher in the order. If the push buttons in the example
overlapped, the Contour push button would be on top.

11-44

Creating Menus

Creating Menus

In this section...

“Adding Menu Bar Menus” on page 11-45

“Adding Context Menus” on page 11-49

Adding Menu Bar Menus
Use the uimenu function to add a menu bar menu to your GUI. A syntax
for uimenu is

mh = uimenu(parent,'PropertyName',PropertyValue,...)

Where mh is the handle of the resulting menu or menu item. See the uimenu
reference page for other valid syntaxes.

These topics discuss use of the MATLAB standard menu bar menus and
describe commonly used menu properties and offer some simple examples.

• “Displaying Standard Menu Bar Menus” on page 11-45

• “Commonly Used Properties” on page 11-46

• “Menu Bar Menu” on page 11-47

Displaying Standard Menu Bar Menus
Displaying the standard menu bar menus is optional.

If you use the standard menu bar menus, any menus you create are added to
it. If you choose not to display the standard menu bar menus, the menu bar
contains only the menus that you create. If you display no standard menus
and you create no menus, the menu bar itself is not displayed.

11-45

11 Laying Out a GUI

Use the figure MenuBar property to display or hide the MATLAB standard
menus shown in the preceding figure. Set MenuBar to figure (the default) to
display the standard menus. Set MenuBar to none to hide them.

set(fh,'MenuBar','figure'); % Display standard menu bar menus.
set(fh,'MenuBar','none'); % Hide standard menu bar menus.

In these statements, fh is the handle of the figure.

Commonly Used Properties
The most commonly used properties needed to describe a menu bar menu are
shown in the following table.

Property Values Description

Accelerator Alphabetic
character

Keyboard equivalent. Available
for menu items that do not have
submenus.

Checked off, on. Default is
off.

Menu check indicator

Enable on, off. Default is
on.

Controls whether a menu item
can be selected. When set to
off, the menu label appears
dimmed.

HandleVisibility on, off. Default is
on.

Determines if an object’s handle
is visible in its parent’s list
of children. For menus, set
HandleVisibility to off to
protect menus from operations
not intended for them.

11-46

Creating Menus

Property Values Description

Label String Menu label.

To display the & character in a
label, use two & characters in
the string.

The words remove, default,
and factory (case sensitive) are
reserved. To use one of these
as a label, prepend a backslash
(\) to the string. For example,
\remove yields remove.

Position Scalar. Default is 1. Position of a menu item in the
menu.

Separator off, on. Default is
off.

Separator line mode

For a complete list of properties and for more information about the properties
listed in the table, see Uimenu Properties in the MATLAB Function Reference
documentation. Properties needed to control GUI behavior are discussed in
Chapter 12, “Programming the GUI”.

Menu Bar Menu
The following statements create a menu bar menu with two menu items.

mh = uimenu(fh,'Label','My menu');
eh1 = uimenu(mh,'Label','Item 1');
eh2 = uimenu(mh,'Label','Item 2','Checked','on');

fh is the handle of the parent figure.

mh is the handle of the parent menu.

The Label property specifies the text that appears in the menu.

The Checked property specifies that this item is displayed with a check next
to it when the menu is created.

11-47

11 Laying Out a GUI

If your GUI displays the standard menu bar, the new menu is added to it.

If your GUI does not display the standard menu bar, MATLAB creates a menu
bar if none exists and then adds the menu to it.

The following statement adds a separator line preceding the second menu
item.

set(eh2,'Separator','on');

The following statements add two menu subitems to Item 1, assign each
subitem a keyboard accelerator, and disable the first subitem.

seh1 = uimenu(eh1,'Label','Choice 1','Accelerator','C',...
'Enable','off');

seh2 = uimenu(eh1,'Label','Choice 2','Accelerator','H');

11-48

Creating Menus

The Accelerator property adds keyboard accelerators to the menu items.
Some accelerators may be used for other purposes on your system and other
actions may result.

The Enable property disables the first subitem Choice 1 so a user cannot
select it when the menu is first created. The item appears dimmed.

Note After you have created all menu items, set their HandleVisibility
properties off by executing the following statements:

menuhandles = findall(figurehandle,'type','uimenu');
set(menuhandles,'HandleVisibility','off')

See “Programming Menu Items” on page 12-28 for information about
programming menu items.

Adding Context Menus
Context menus appear when the user right-clicks on a figure or GUI
component. Follow these steps to add a context menu to your GUI:

1 Create the context menu object using the uicontextmenu function.

2 Add menu items to the context menu using the uimenu function.

3 Associate the context menu with a graphics object using the object’s
UIContextMenu property.

Subsequent topics describe commonly used context menu properties and
explain each of these steps:

11-49

11 Laying Out a GUI

• “Commonly Used Properties” on page 11-50

• “Creating the Context Menu Object” on page 11-51

• “Adding Menu Items to the Context Menu” on page 11-52

• “Associating the Context Menu with Graphics Objects” on page 11-53

• “Forcing Display of the Context Menu” on page 11-54

Commonly Used Properties
The most commonly used properties needed to describe a context menu object
are shown in the following table. These properties apply only to the menu
object and not to the individual menu items.

Property Values Description

HandleVisibility on, off. Default is
on.

Determines if an object’s handle is visible in
its parent’s list of children. For menus, set
HandleVisibility to off to protect menus
from operations not intended for them.

Parent Figure handle Handle of the context menu’s parent figure.

Position 2-element vector:
[distance from
left, distance from
bottom]. Default is
[0 0].

Distances from the bottom left corner of the
parent figure to the top left corner of the
context menu. This property is used only when
you programmatically set the context menu
Visible property to on.

Visible off, on. Default is
off

• Indicates whether the context menu is
currently displayed. While the context menu
is displayed, the property value is on; when
the context menu is not displayed, its value
is off.

• Setting the value to on forces the posting of
the context menu. Setting to off forces the
context menu to be removed. The Position
property determines the location where the
context menu is displayed.

11-50

Creating Menus

For a complete list of properties and for more information about the properties
listed in the table, see the Uicontextmenu Properties reference page in the
MATLAB Function Reference documentation. Properties needed to control
GUI behavior are discussed in Chapter 12, “Programming the GUI”.

Creating the Context Menu Object
Use the uicontextmenu function to create a context menu object. The syntax
is

handle = uicontextmenu('PropertyName',PropertyValue,...)

The parent of a context menu must always be a figure. Use the context menu
Parent property to specify its parent. If you do not specify Parent, the parent
is the current figure as specified by the root CurrentFigure property.

The following code creates a figure and a context menu whose parent is the
figure.

fh = figure('Position',[300 300 400 225]);
cmenu = uicontextmenu('Parent',fh,'Position',[10 215]);

At this point, the figure is visible, but not the menu.

11-51

11 Laying Out a GUI

Note “Forcing Display of the Context Menu” on page 11-54 explains the use
of the Position property.

Adding Menu Items to the Context Menu
Use the uimenu function to add items to the context menu. The items appear
on the menu in the order in which you add them. The following code adds
three items to the context menu created above.

mh1 = uimenu(cmenu,'Label','Item 1');
mh2 = uimenu(cmenu,'Label','Item 2');
mh3 = uimenu(cmenu,'Label','Item 3');

If you could see the context menu, it would look like this:

You can use any applicable Uimenu Properties such as Checked or Separator
when you define context menu items. See the uimenu reference page and
“Adding Menu Bar Menus” on page 11-45 for information about using uimenu
to create menu items. Note that context menus do not have an Accelerator
property.

Note After you have created the context menu and all its items, set their
HandleVisibility properties to off by executing the following statements:

cmenuhandles = findall(figurehandle,'type','uicontextmenu');
set(cmenuhandles,'HandleVisibility','off')
menuitemhandles = findall(cmenuhandles,'type','uimenu');
set(menuitemhandles,'HandleVisibility','off')

11-52

Creating Menus

Associating the Context Menu with Graphics Objects
You can associate a context menu with the figure itself and with all
components that have a UIContextMenu property. This includes axes, panel,
button group, all user interface controls (uicontrols).

The following code adds a panel and an axes to the figure. The panel contains
a single push button.

ph = uipanel('Parent',fh,'Units','pixels',...
'Position',[20 40 150 150]);

bh1 = uicontrol(ph,'String','Button 1',...
'Position',[20 20 60 40]);

ah = axes('Parent',fh,'Units','pixels',...
'Position',[220 40 150 150]);

This code associates the context menu with the figure and with the axes by
setting the UIContextMenu property of the figure and the axes to the handle
cmenu of the context menu.

set(fh,'UIContextMenu',cmenu); % Figure
set(ah,'UIContextMenu',cmenu); % Axes

11-53

11 Laying Out a GUI

Right-click on the figure or on the axes. The context menu appears with its
upper-left corner at the location you clicked. Right-click on the panel or its
push button. The context menu does not appear.

Forcing Display of the Context Menu
If you set the context menu Visible property on, the context menu is
displayed at the location specified by the Position property, without the user
taking any action. In this example, the context menu Position property is
[10 215].

set(cmenu,'Visible','on');

11-54

Creating Menus

The context menu is displayed 10 pixels from the left of the figure and 215
pixels from the bottom.

If you set the context menu Visible property to off, or if the user clicks the
GUI outside the context menu, the context menu disappears.

11-55

11 Laying Out a GUI

Creating Toolbars

In this section...

“Using the uitoolbar Function” on page 11-56

“Commonly Used Properties” on page 11-56

“Toolbars” on page 11-57

“Displaying and Modifying the Standard Toolbar” on page 11-60

Using the uitoolbar Function
Use the uitoolbar function to add a custom toolbar to your GUI. Use the
uipushtool and uitoggletool functions to add push tools and toggle tools
to a toolbar. A push tool functions as a push button. A toggle tool functions
as a toggle button. You can add push tools and toggle tools to the standard
toolbar or to a custom toolbar.

Syntaxes for the uitoolbar, uipushtool, and uitoggletool functions include

tbh = uitoolbar(h,'PropertyName',PropertyValue,...)
pth = uipushtool(h,'PropertyName',PropertyValue,...)
tth = uitoggletool(h,'PropertyName',PropertyValue,...)

where tbh, pth, and tth are the handles, respectively, of the resulting toolbar,
push tool, and toggle tool. See the uitoolbar, uipushtool, and uitoggletool
reference pages for other valid syntaxes.

Subsequent topics describe commonly used properties of toolbars and toolbar
tools, offer a simple example, and discuss use of the MATLAB standard
toolbar:

Commonly Used Properties
The most commonly used properties needed to describe a toolbar and its tools
are shown in the following table.

11-56

Creating Toolbars

Property Values Description

CData 3-D array of values
between 0.0 and 1.0

n-by-m-by-3 array of RGB
values that defines a truecolor
image displayed on either a
push button or toggle button.

HandleVisibility on, off. Default is
on.

Determines if an object’s
handle is visible in its
parent’s list of children. For
toolbars and their tools, set
HandleVisibility to off to
protect them from operations
not intended for them.

Separator off, on. Default is
off.

Draws a dividing line to left of
the push tool or toggle tool

State off, on. Default is
off.

Toggle tool state. on is the
down, or depressed, position.
off is the up, or raised,
position.

TooltipString String Text of the tooltip associated
with the push tool or toggle
tool.

For a complete list of properties and for more information about the properties
listed in the table, see the Uitoolbar Properties, Uipushtool Properties, and
Uitoggletool Properties reference pages in the MATLAB Function Reference
documentation. Properties needed to control GUI behavior are discussed in
Chapter 12, “Programming the GUI”.

Toolbars
The following statements add a toolbar to a figure, and then add a push tool
and a toggle tool to the toolbar. By default, the tools are added to the toolbar,
from left to right, in the order they are created.

% Create the toolbar
th = uitoolbar(fh);

11-57

11 Laying Out a GUI

% Add a push tool to the toolbar
a = [.20:.05:0.95]
img1(:,:,1) = repmat(a,16,1)'
img1(:,:,2) = repmat(a,16,1);
img1(:,:,3) = repmat(flipdim(a,2),16,1);
pth = uipushtool(th,'CData',img1,...

'TooltipString','My push tool',...
'HandleVisibility','off')

% Add a toggle tool to the toolbar
img2 = rand(16,16,3);
tth = uitoggletool(th,'CData',img2,'Separator','on',...

'TooltipString','Your toggle tool',...
'HandleVisibility','off')

fh is the handle of the parent figure.

th is the handle of the parent toolbar.

CData is a 16-by-16-by-3 array of values between 0 and 1. It defines the
truecolor image that is displayed on the tool. If your image is larger than 16
pixels in either dimension, it may be clipped or cause other undesirable effects.
If the array is clipped, only the center 16-by-16 part of the array is used.

Note Create your own icon with the icon editor described in “Icon Editor” on
page 15-29. See the ind2rgb reference page for information on converting
a matrix X and corresponding colormap, i.e., an (X, MAP) image, to RGB
(truecolor) format.

11-58

Creating Toolbars

TooltipString specifies the tooltips for the push tool and the toggle tool as
My push tool and Your toggle tool, respectively.

In this example, setting the toggle tool Separator property to on creates a
dividing line to the left of the toggle tool.

You can change the order of the tools by modifying the child vector of the
parent toolbar. For this example, execute the following code to reverse the
order of the tools.

oldOrder = allchild(th);
newOrder = flipud(oldOrder);
set(th,'Children',newOrder);

This code uses flipud because the Children property is a column vector.

Use the delete function to remove a tool from the toolbar. The following
statement removes the toggle tool from the toolbar. The toggle tool handle
is tth.

delete(tth)

If necessary, you can use the findall function to determine the handles of the
tools on a particular toolbar.

11-59

11 Laying Out a GUI

Note After you have created a toolbar and its tools, set their
HandleVisibility properties off by executing statements similar to the
following:

set(toolbarhandle,'HandleVisibility','off')
toolhandles = get(toolbarhandle,'Children');
set(toolhandles,'HandleVisibility','off')

Displaying and Modifying the Standard Toolbar
You can choose whether or not to display the MATLAB standard toolbar on
your GUI. You can also add or delete tools from the standard toolbar.

Displaying the Standard Toolbar
Use the figure Toolbar property to display or hide the MATLAB standard
toolbar. Set Toolbar to figure to display the standard toolbar. Set Toolbar
to none to hide it.

set(fh,'Toolbar','figure'); % Display the standard toolbar
set(fh,'Toolbar','none'); % Hide the standard toolbar

In these statements, fh is the handle of the figure.

The default figure Toolbar setting is auto. This setting displays the figure
toolbar, but removes it if you add a user interface control (uicontrol) to the
figure.

11-60

Creating Toolbars

Modifying the Standard Toolbar
Once you have the handle of the standard toolbar, you can add tools, delete
tools, and change the order of the tools.

Add a tool the same way you would add it to a custom toolbar. The following
code retrieves the handle of the MATLAB standard toolbar and adds to the
toolbar a toggle tool similar to the one defined in “Toolbars” on page 11-57. fh
is the handle of the figure.

tbh = findall(fh,'Type','uitoolbar');
tth = uitoggletool(tbh,'CData',rand(20,20,3),...

'Separator','on',...
'HandleVisibility','off');

To remove a tool from the standard toolbar, determine the handle of the tool
to be removed, and then use the delete function to remove it. The following
code deletes the toggle tool that was added to the standard toolbar above.

delete(tth)

If necessary, you can use the findall function to determine the handles of the
tools on the standard toolbar.

11-61

11 Laying Out a GUI

Designing for Cross-Platform Compatibility

In this section...

“Default System Font” on page 11-62

“Standard Background Color” on page 11-63

“Cross-Platform Compatible Units” on page 11-64

Default System Font
By default, user interface controls (uicontrols) use the default font for the
platform on which they are running. For example, when displaying your GUI
on PCs, user interface controls use MS San Serif. When your GUI runs on
a different platform, they use that computer’s default font. This provides a
consistent look with respect to your GUI and other application GUIs on the
same platform.

If you have set the FontName property to a named font and want to return
to the default value, you can set the property to the string default. This
ensures that MATLAB uses the system default at run-time.

You can use the set command to set this property. For example, if there is a
push button with handle pbh1 in your GUI, then the statement

set(pbh1,'FontName','default')

sets the FontName property to use the system default.

Specifying a Fixed-Width Font
If you want to use a fixed-width font for a user interface control, set its
FontName property to the string fixedwidth. This special identifier ensures
that your GUI uses the standard fixed-width font for the target platform.

You can find the name of the fixed-width font that is used on a given platform
by querying the root FixedWidthFontName property.

get(0,'FixedWidthFontName')

11-62

Designing for Cross-Platform Compatibility

Using a Specific Font Name
You can specify an actual font name (such as Times or Courier) for the
FontName property. However, doing so may cause your GUI to appear
differently than you intended when run on a different computer. If the target
computer does not have the specified font, it substitutes another font that
may not look good in your GUI or may not be the standard font used for GUIs
on that system. Also, different versions of the same named font may have
different size requirements for a given set of characters.

Standard Background Color
MATLAB uses the standard system background color of the system on which
the GUI is running as the default component background color. This color
varies on different computer systems, e.g., the standard shade of gray on
the PC differs from that on UNIX, and may not match the default GUI
background color.

You can make the GUI background color match the default component
background color. The following statements retrieve the default component
background color and assign it to the figure.

defaultBackground = get(0,'defaultUicontrolBackgroundColor');
set(figurehandle,'Color',defaultBackground)

The figure Color property specifies the figure’s background color.

11-63

11 Laying Out a GUI

The following figures illustrate the results with and without system color
matching.

Cross-Platform Compatible Units
Cross-platform compatible GUIs should look correct on computers having
different screen sizes and resolutions. Since the size of a pixel can vary on
different computer displays, using the default figure Units of pixels does not
produce a GUI that looks the same on all platforms. Setting the figure and
components Units properties appropriately can help to determine how well
the GUI transports to different platforms.

Units and Resize Behavior
The choice of units is also tied to the GUI’s resize behavior. The figure Resize
and ResizeFcn properties control the resize behavior of your GUI.

Resize determines if you can resize the figure window with the mouse. The
on setting means you can resize the window, off means you cannot. When you
set Resize to off, the figure window does not display any resizing controls
to indicate that it cannot be resized.

11-64

Designing for Cross-Platform Compatibility

ResizeFcn enables you to customize the GUI’s resize behavior and is valid
only if you set Resize to on. ResizeFcn is the handle of a user-written
callback that is executed when a user resizes the GUI. It controls the resizing
of all components in the GUI.

The following table shows appropriate Units settings based on the resize
behavior of your GUI. These settings enable your GUI to automatically adjust
the size and relative spacing of components as the GUI displays on different
computers and when the GUI is resized.

Component Default Units
Resize = on
ResizeFcn = [] Resize = off

Figure pixels characters characters

User interface controls
(uicontrol) such
as push buttons,
sliders, and edit text
components

pixels normalized characters

Axes normalized normalized characters

Panel normalized normalized characters

Button group normalized normalized characters

Note The default settings shown in the table above are not the same as the
GUIDE default settings. GUIDE default settings depend on the GUIDE
Resize behavior option and are the same as those shown in the last two
columns of the table.

About Some Units Settings

Characters. Character units are defined by characters from the default
system font. The width of a character unit equals the width of the letter x in
the system font. The height of a character unit is the distance between the
baselines of two lines of text. Note that character units are not square.

11-65

11 Laying Out a GUI

Normalized. Normalized units represent a percentage of the size of the
parent. The value of normalized units lies between 0 and 1. For example, if
a panel contains a push button and the button units setting is normalized,
then the push button Position setting [.2 .2 .6 .25] means that the left side
of the push button is 20 percent of the panel width from the left side of the
panel; the bottom of the button is 20 percent of the panel height from the
bottom of the panel; the button itself is 60 percent of the width of the panel
and 25 percent of its height.

Using Familiar Units of Measure. At times, it may be convenient to use a
more familiar unit of measure, e.g., inches or centimeters, when you are laying
out the GUI. However, to preserve the look of your GUI on different computers,
remember to change the figure Units property back to characters, and
the components’ Units properties to characters (nonresizable GUIs) or
normalized (resizable GUIs) before you save the M-file.

11-66

12

Programming the GUI

Introduction (p. 12-2) Reviews file organization for a
typical GUI M-file and provides
links to related functions and to
information about nested functions.

Initializing the GUI (p. 12-4) Explains different tasks that you
might perform to initialize the GUI.

Callbacks: An Overview (p. 12-9) Introduces the functions, referred to
as callbacks, that you use to program
GUI behavior, and tells you how to
associate callbacks with components.

Examples: Programming GUI
Components (p. 12-15)

Provides a brief example for
programming each kind of
component.

12 Programming the GUI

Introduction
After you have laid out your GUI, you need to program its behavior. This
chapter addresses the programming of GUIs created programmatically.
Specifically, it discusses data creation, GUI initialization, and the use of
callbacks to control GUI behavior.

The following ordered list shows these topics within the organization of the
typical GUI M-file.

1 Comments displayed in response to the MATLAB help command.

2 Initialization tasks such as data creation and any processing that is needed
to construct the components. See “Initializing the GUI” on page 12-4 for
information.

3 Construction of figure and components. See Chapter 11, “Laying Out a
GUI” for information.

4 Initialization tasks that require the components to exist, and output return.
See “Initializing the GUI” on page 12-4 for information.

5 Callbacks for the components. Callbacks are the routines that execute in
response to user-generated events such as mouse clicks and key strokes.
See “Callbacks: An Overview” on page 12-9 and “Examples: Programming
GUI Components” on page 12-15 for information.

6 Utility functions.

Discussions in this chapter assume the use of nested functions. For
information about using nested functions, see “Nested Functions” in the
MATLAB Programming documentation.

See “Functions — By Category” in the MATLAB Function Reference
documentation for a list of functions that are provided for GUI creation.

12-2

Introduction

Note MATLAB provides a selection of standard dialog boxes that you can
create with a single function call. For information about these dialog boxes
and the functions used to create them, see “Predefined Dialog Boxes” in the
MATLAB Function Reference documentation.

12-3

12 Programming the GUI

Initializing the GUI
Many kinds of tasks can be thought of as initialization tasks. This is a
sampling of some of them:

• Define variables for supporting input and output arguments. See
“Declaring Variables for Input and Output Arguments” on page 12-5.

• Define default values for input and output arguments.

• Define custom property values used for constructing the components. See
“Defining Custom Property/Value Pairs” on page 12-5.

• Process command line input arguments.

• Create variables and data to be used by functions that are nested below the
initialization section of the M-file. See “Nested Functions” in the MATLAB
Programming documentation.

• Define variables for data to be shared between GUIs.

• Return user output if it is requested.

• Update or initialize components.

• Make changes needed to refine the look and feel of the GUI.

• Make changes needed for cross-platform compatibility. See “Designing for
Cross-Platform Compatibility” on page 11-62.

• Make the GUI invisible while the components are being created and
initialized. See “Making the Figure Invisible” on page 12-6.

• Make the GUI visible when you are ready for the user to see it.

Group these tasks together rather than scattering them throughout the
code. If an initialization task is long or complex, consider creating a utility
function to do the work.

Typically, some initialization tasks appear in the M-file before the components
are constructed. Others appear after the components are constructed.
Initialization tasks that require the components must appear following their
construction.

12-4

Initializing the GUI

Examples
These are some initialization examples taken from the examples discussed in
Chapter 15, “Examples of GUIs Created Programmatically”. If MATLAB is
running on your system, you can use these links to see the complete M-files:

• Color Palette

• Icon Editor

Declaring Variables for Input and Output Arguments
These are typical declarations for input and output arguments. They are
taken from example “Icon Editor” on page 15-29.

mInputArgs = varargin; % Command line arguments when invoking
% the GUI

mOutputArgs = {}; % Variable for storing output when GUI
% returns

See the varargin reference page and the Icon Editor M-file for more
information.

Defining Custom Property/Value Pairs
The example “Icon Editor” on page 15-29 defines property value pairs to be
used as input arguments.

The example defines the properties in a cell array, mPropertyDefs, and then
initializes the properties.

mPropertyDefs = {...

'iconwidth', @localValidateInput, 'mIconWidth';

'iconheight', @localValidateInput, 'mIconHeight';

'iconfile', @localValidateInput, 'mIconFile'};

mIconWidth = 16; % Use input property 'iconwidth' to initialize

mIconHeight = 16; % Use input property 'iconheight' to initialize

mIconFile = fullfile(matlabroot,'toolbox/matlab/icons/');

% Use input property 'iconfile' to initialize

12-5

12 Programming the GUI

Each row of the cell array defines one property. It specifies, in order, the name
of the property, the routine that is called to validate the input, and the name
of the variable that holds the property value.

The fullfile function builds a full filename from parts.

The following statements each start the Icon Editor. The first one could be
used to create a new icon. The second one could be used to edit an existing
icon file.

cdata = iconEditor('iconwidth',16,'iconheight',25)
cdata = iconEditor('iconfile','eraser.gif');

iconEditor calls a routine, processUserIputs, during the initialization to

• Identify each property by matching it to the first column of the cell array

• Call the routine named in the second column to validate the input

• Assign the value to the variable named in the third column

See the complete Icon Editor M-file for more information.

Making the Figure Invisible
When you create the GUI figure, make it invisible so that you can display it
for the user only when it is complete. Making it invisible during creation
also enhances performance.

To make the GUI invisible, set the figure Visible property to off. This
makes the entire figure window invisible. The statement that creates the
figure might look like this:

hMainFigure = figure(...
'Units','characters',...
'MenuBar','none',...
'Toolbar','none',...
'Position',[71.8 34.7 106 36.15],...
'Visible','off');

12-6

Initializing the GUI

Just before returning to the caller, you can make the figure visible with a
statement like the following:

set(hMainFigure,'Visible','on')

Most components have Visible properties. You can also use these properties
to make individual components invisible.

Returning Output to the User
If your GUI function provides for an argument to the left of the equal sign, and
the user specifies such an argument, then you want to return the expected
output. The code that provides this output usually appears just before the
GUI returns.

In the example shown here, taken from the Icon Editor example M-file,

1 A call to uiwait blocks execution until uiresume is called or the current
figure is deleted.

2 While execution is blocked, the GUI user creates the desired icon.

3 When the user signals completion of the icon by clicking OK, the routine
that services the OK push button calls uiresume and control returns to the
statement following the call to uiwait.

4 The GUI then returns the completed icon to the user as output of the GUI.

% Make the GUI blocking.
uiwait(hMainFigure);

% Return the edited icon CData if it is requested.
mOutputArgs{1} = mIconCData;
if nargout>0

[varargout{1:nargout}] = mOutputArgs{:};
end

mIconData contains the icon that the user created or edited. mOutputArgs is a
cell array defined to hold the output arguments. nargout indicates how many
output arguments the user has supplied. varargout contains the optional

12-7

12 Programming the GUI

output arguments returned by the GUI. See the complete Icon Editor M-file
for more information.

12-8

Callbacks: An Overview

Callbacks: An Overview

In this section...

“What Is a Callback?” on page 12-9

“Kinds of Callbacks” on page 12-10

“Associating Callbacks with Components” on page 12-12

What Is a Callback?
The callback functions you provide control how the GUI responds to events
such as button clicks, slider movement, menu item selection, or the creation
and deletion of components. There is a set of callbacks for each component
and for the GUI figure itself.

The callback routines usually appear in the M-file following the initialization
code and the creation of the components. See “File Organization” on page
11-4 for more information.

A callback is a function that you write and associate with a specific component
in the GUI or with the GUI figure itself. The callbacks control GUI or
component behavior by performing some action in response to an event for its
component. The event can be a mouse click on a push button, menu selection,
key press, etc. This kind of programming is often called event-driven
programming.

When an event occurs for a component, MATLAB invokes the component
callback that is associated with that event. As an example, suppose a GUI has
a push button that triggers the plotting of some data. When the user clicks the
button, MATLAB calls the callback you associated with clicking that button,
and then the callback, which you have programmed, gets the data and plots it.

A component can be any control device such as an axes, push button, list box,
or slider. For purposes of programming, it can also be a menu, toolbar tool, or
a container such as a panel or button group. See “Available Components” on
page 11-10 for a list and descriptions of components.

12-9

12 Programming the GUI

Kinds of Callbacks
The GUI figure and each type of component has specific kinds of callbacks
with which you can associate it. The callbacks that are available for each
component are defined as properties of that component. For example, a push
button has five callback properties: ButtonDownFcn, Callback, CreateFcn,
DeleteFcn, and KeyPressFcn. A panel has four callback properties:
ButtonDownFcn, CreateFcn, DeleteFcn, and ResizeFcn. You can, but are
not required to, create a callback function for each of these properties. The
GUI itself, which is a figure, also has certain kinds of callbacks with which
it can be associated.

Each kind of callback has a triggering mechanism or event that causes it to
be called. The following table lists the callback properties that are available,
their triggering events, and the components to which they apply.

Callback Property Triggering Event Components

ButtonDownFcn Executes when the user
presses a mouse button
while the pointer is on
or within five pixels of a
component or figure.

Axes, figure,
button group,
panel, user
interface controls

Callback Control action. Executes,
for example, when a user
clicks a push button or
selects a menu item.

Context menu,
menu user
interface controls

ClickedCallback Control action. Executes
when the push tool or
toggle tool is clicked. For
the toggle tool, this is
independent of its state.

Push tool, toggle
tool

CloseRequestFcn Executes when the figure
closes.

Figure

12-10

Callbacks: An Overview

Callback Property Triggering Event Components

CreateFcn Initializes the component
when it is created.
It executes after the
component or figure is
created, but before it is
displayed.

Axes, button
group, context
menu, figure,
menu, panel,
push tool, toggle
tool, toolbar, user
interface controls

DeleteFcn Performs cleanup
operations just before
the component or figure is
destroyed.

Axes, button
group, context
menu, figure,
menu, panel,
push tool, toggle
tool, toolbar, user
interface controls

KeyPressFcn Executes when the user
presses a keyboard key and
the callback’s component or
figure has focus.

Figure, user
interface controls

KeyReleaseFcn Executes when the user
releases a keyboard key
and the figure has focus.

Figure

OffCallback Control action. Executes
when the state of a toggle
tool is changed to off.

Toggle tool

OnCallback Control action. Executes
when the state of a toggle
tool is changed to on.

Toggle tool

ResizeFcn Executes when a user
resizes a panel, button
group, or figure whose
figure Resize property is
set to On.

Figure, button
group, panel

12-11

12 Programming the GUI

Callback Property Triggering Event Components

SelectionChangeFcn Executes when a user
selects a different radio
button or toggle button in a
button group component.

Button group

WindowButtonDownFcn Executes when you press
a mouse button while the
pointer is in the figure
window.

Figure

WindowButtonMotionFcn Executes when you move
the pointer within the
figure window.

Figure

WindowButtonUpFcn Executes when you release
a mouse button.

Figure

WindowScrollWheelFcn Executes when the mouse
wheel is scrolled while the
figure has focus.

Figure

Note User interface controls include push buttons, sliders, radio buttons,
check boxes, editable text boxes, static text boxes, list boxes, and toggle
buttons. They are sometimes referred to as uicontrols.

Check the properties reference page for your component, e.g., Uicontrol
Properties, to get specific information for a given callback property.

Associating Callbacks with Components
A GUI can have many components and each component’s properties provide a
way of specifying which callback should run in response to a particular event
for that component. The callback that runs when the user clicks a Yes button
is not the one that runs for the No button. Each menu item also performs a
different function and needs its own callback.

12-12

Callbacks: An Overview

You associate a callback with a specific component by setting the value of the
appropriate component callback property to the callback. This is usually done
in the component definition.

You can specify a component callback property value as any of the following:

• String that is a valid MATLAB expression or the name of an M-file.

• Cell array of strings. This example uses a cell array of strings to specify
pushbutton_callback as the callback routine to be executed when a user
clicks Button 1.

pbh = uicontrol(fh,'Style','pushbutton','String','Button 1',...
'Position',[50 20 60 40],...
'Callback',{'pushbutton_callback',width,...});

Callback is the name of the callback property. The first element of the cell
array is the name of the callback routine, subsequent elements are input
arguments to the callback.

The corresponding function definition would look like this:

function pushbutton_callback(width,...)

See “Defining Callbacks as a Cell Array of Strings — Special Case” in the
MATLAB Graphics documentation for more information.

• Function handle or cell array containing a function handle and
additional arguments. This example uses a function handle to specify
pushbutton_callback as the callback routine to be executed when a user
clicks Button 1.

pbh = uicontrol(fh,'Style','pushbutton','String','Button 1',...
'Position',[50 20 60 40],...
'Callback',{@pushbutton_callback,width,...});

Callback is the name of the callback property. The first element of the cell
array is the handle of the callback routine, subsequent elements are input
arguments to the callback.

Because the callback is specified as a handle, MATLAB automatically
passes two additional arguments, the handle of the component for which
the event was triggered and eventdata, as the first two arguments of the

12-13

12 Programming the GUI

callback. The second element of the cell array, width in the example above,
becomes the third argument of the callback.

The corresponding function definition would contain these two additional
arguments:

function pushbutton_callback(hObject,eventdata,width,...)

See “Introduction” in the MATLAB Graphics documentation for more
information.

When an appropriate event occurs, it triggers execution of the MATLAB
expression, the script or function contained in the M-file, the specified
function, or the function associated with the function handle. The same is
true for menus, toolbar tools, and for the figure itself.

See “Kinds of Callbacks” on page 12-10 for a list of the available callbacks for
each component. See the component property pages for information about
specific callback properties.

12-14

Examples: Programming GUI Components

Examples: Programming GUI Components

In this section...

“Programming User Interface Controls” on page 12-15

“Programming Panels and Button Groups” on page 12-23

“Programming Axes” on page 12-25

“Programming ActiveX Controls” on page 12-28

“Programming Menu Items” on page 12-28

“Programming Toolbar Tools” on page 12-31

Programming User Interface Controls
The examples assume that callback properties are specified using function
handles, enabling MATLAB to pass arguments hObject, which is the handle
of the component for which the event was triggered, and eventdata. See
“Associating Callbacks with Components” on page 12-12 for more information.

• “Check Box” on page 12-16

• “Edit Text” on page 12-16

• “List Box” on page 12-18

• “Pop-Up Menu” on page 12-19

• “Push Button” on page 12-20

• “Radio Button” on page 12-21

• “Slider” on page 12-21

• “Toggle Button” on page 12-22

Note See “Available Components” on page 11-10 for descriptions of these
components. See “Adding User Interface Controls” on page 11-13 for
information about adding these components to your GUI.

12-15

12 Programming the GUI

Check Box
You can determine the current state of a check box from within any of its
callbacks by querying the state of its Value property, as illustrated in the
following example:

function checkbox1_Callback(hObject,eventdata)
if (get(hObject,'Value') == get(hObject,'Max'))

% Checkbox is checked-take approriate action
else

% Checkbox is not checked-take approriate action
end

hObject is the handle of the component for which the event was triggered.

You can also change the state of a check box by programmatically by setting
the check box Value property to the value of the Max or Min property. For
example,

set(cbh,'Value','Max')

puts the check box with handle cbh in the checked state.

Edit Text
To obtain the string a user types in an edit box, use any of its callbacks to get
the value of the String property. This example uses the Callback callback.

function edittext1_Callback(hObject,eventdata)
user_string = get(hObject,'String');

% Proceed with callback

If the edit text Max and Min properties are set such that Max - Min > 1, the
user can enter multiple lines. For example, setting Max to 2, with the default
value of 0 for Min, enables users to enter multiple lines. If you originally
specify String as a character string, multiline user input is returned as a 2-D
character array with each row containing a line. If you originally specify
String as a cell array, multiline user input is returned as a 2-D cell array of
strings.

hObject is the handle of the component for which the event was triggered.

12-16

Examples: Programming GUI Components

Retrieving Numeric Data from an Edit Text Component. MATLAB
returns the value of the edit text String property as a character string. If
you want users to enter numeric values, you must convert the characters to
numbers. You can do this using the str2double command, which converts
strings to doubles. If the user enters nonnumeric characters, str2double
returns NaN.

You can use code similar to the following in an edit text callback. It gets
the value of the String property and converts it to a double. It then checks
whether the converted value is NaN (isnan), indicating the user entered a
nonnumeric character and displays an error dialog box (errordlg).

function edittext1_Callback(hObject,eventdata)
user_entry = str2double(get(hObject,'string'));
if isnan(user_entry)
errordlg('You must enter a numeric value','Bad Input','modal')
return

end

% Proceed with callback...

Triggering Callback Execution. If the contents of the edit text component
have been changed, clicking inside the GUI, but outside the edit text, causes
the edit text callback to execute. The user can also press Enter for an edit
text that allows only a single line of text, or Ctrl+Enter for an edit text that
allows multiple lines.

Available Keyboard Accelerators. GUI users can use the following
keyboard accelerators to modify the content of an edit text. These accelerators
are not modifiable.

• Ctrl+X – Cut

• Ctrl+C – Copy

• Ctrl+V – Paste

• Ctrl+H – Delete last character

• Ctrl+A – Select all

12-17

12 Programming the GUI

List Box
When the list box Callback callback is triggered, the list box Value property
contains the index of the selected item, where 1 corresponds to the first item
in the list. The String property contains the list as a cell array of strings.

This example retrieves the selected string. Note that it is necessary to convert
the value of the String property from a cell array to a string.

function listbox1_Callback(hObject,eventdata)
index_selected = get(hObject,'Value');
list = get(hObject,'String');
item_selected = list{index_selected}; % Convert from cell array

% to string

hObject is the handle of the component for which the event was triggered.

You can also select a list item programmatically by setting the list box Value
property to the index of the desired item. For example,

set(lbh,'Value',2)

selects the second item in the list box with handle lbh.

Triggering Callback Execution. MATLAB executes the list box Callback
callback after the mouse button is released or after certain key press events:

• The arrow keys change the Value property, trigger callback execution, and
set the figure SelectionType property to normal.

• The Enter key and space bar do not change the Value property, but trigger
callback execution and set the figure SelectionType property to open.

If the user double-clicks, the callback executes after each click. MATLAB sets
the figure SelectionType property to normal on the first click and to open on
the second click. The callback can query the figure SelectionType property
to determine if it was a single or double click.

List Box Examples. See the following examples for more information on
using list boxes:

12-18

Examples: Programming GUI Components

• “List Box Directory Reader” on page 10-9 — Shows how to creates a GUI
that displays the contents of directories in a list box and enables users to
open a variety of file types by double-clicking the filename.

• “Accessing Workspace Variables from a List Box” on page 10-16 — Shows
how to access variables in the MATLAB base workspace from a list box GUI.

Pop-Up Menu
When the pop-up menu Callback callback is triggered, the pop-up menu
Value property contains the index of the selected item, where 1 corresponds to
the first item on the menu. The String property contains the menu items as
a cell array of strings.

Note A pop-up menu is sometimes referred to as a drop-down menu or combo
box.

Using Only the Index of the Selected Menu Item. This example retrieves
only the index of the item selected. It uses a switch statement to take action
based on the value. If the contents of the pop-up menu are fixed, then you can
use this approach. Else, you can use the index to retrieve the actual string
for the selected item.

function popupmenu1_Callback(hObject,eventdata)
val = get(hObject,'Value');
switch val
case 1 % User selected the first item
case 2 % User selected the second item

% Proceed with callback...

hObject is the handle of the component for which the event was triggered.

You can also select a menu item programmatically by setting the pop-up menu
Value property to the index of the desired item. For example,

set(pmh,'Value',2)

selects the second item in the pop-up menu with handle pmh.

12-19

12 Programming the GUI

Using the Index to Determine the Selected String. This example
retrieves the actual string selected in the pop-up menu. It uses the pop-up
menu Value property to index into the list of strings. This approach may be
useful if your program dynamically loads the contents of the pop-up menu
based on user action and you need to obtain the selected string. Note that it
is necessary to convert the value returned by the String property from a
cell array to a string.

function popupmenu1_Callback(hObject,eventdata)
val = get(hObject,'Value');
string_list = get(hObject,'String');
selected_string = string_list{val}; % Convert from cell array

% to string
% Proceed with callback...

hObject is the handle of the component for which the event was triggered.

Push Button
This example contains only a push button. Clicking the button, closes the GUI.

This is the push button’s Callback callback. It displays the string Goodbye at
the command line and then closes the GUI.

function pushbutton1_Callback(hObject,eventdata)
display Goodbye
close(gcbf)

gcbf returns the handle of the figure containing the object whose callback
is executing.

12-20

Examples: Programming GUI Components

Radio Button
You can determine the current state of a radio button from within its
Callback callback by querying the state of its Value property, as illustrated
in the following example:

function radiobutton_Callback(hObject,eventdata)
if (get(hObject,'Value') == get(hObject,'Max'))
% Radio button is selected-take approriate action

else
% Radio button is not selected-take approriate action

end

Radio buttons set Value to Max when they are on (when selected) and Min
when off (not selected). hObject is the handle of the component for which the
event was triggered.

You can also change the state of a radio button programmatically by setting
the radio button Value property to the value of the Max or Min property. For
example,

set(rbh,'Value','Max')

puts the radio button with handle rbh in the selected state.

Note You can use a button group to manage exclusive selection behavior for
radio buttons. See “Button Group” on page 12-23 for more information.

Slider
You can determine the current value of a slider from within its Callback
callback by querying its Value property, as illustrated in the following
example:

function slider1_Callback(hObject,eventdata)
slider_value = get(hObject,'Value');

% Proceed with callback...

12-21

12 Programming the GUI

The Max and Min properties specify the slider’s maximum and minimum
values. The slider’s range is Max - Min. hObject is the handle of the
component for which the event was triggered.

Toggle Button
The callback for a toggle button needs to query the toggle button to determine
what state it is in. MATLAB sets the Value property equal to the Max property
when the toggle button is pressed (Max is 1 by default). It sets the Value
property equal to the Min property when the toggle button is not pressed
(Min is 0 by default).

The following code illustrates how to program the callback in the GUI M-file.

function togglebutton1_Callback(hObject,eventdata)
button_state = get(hObject,'Value');
if button_state == get(hObject,'Max')
% Toggle button is pressed-take approperiate action

...
elseif button_state == get(hObject,'Min')
% Toggle button is not pressed-take appropriate action

...
end

hObject is the handle of the component for which the event was triggered.

You can also change the state of a toggle button programmatically by setting
the toggle button Value property to the value of the Max or Min property. For
example,

set(tbh,'Value','Max')

puts the toggle button with handle tbh in the pressed state.

Note You can use a button group to manage exclusive selection behavior for
toggle buttons. See “Button Group” on page 12-23 for more information.

12-22

Examples: Programming GUI Components

Programming Panels and Button Groups
These topics provide basic code examples for panels and button group
callbacks.

The examples assume that callback properties are specified using function
handles, enabling MATLAB to pass arguments hObject, which is the handle
of the component for which the event was triggered, and eventdata. See
“Associating Callbacks with Components” on page 12-12 for more information.

• “Panel” on page 12-23

• “Button Group” on page 12-23

Panel
Panels group GUI components and can make a GUI easier to understand by
visually grouping related controls. A panel can contain panels and button
groups, as well as axes and user interface controls such as push buttons,
sliders, pop-up menus, etc. The position of each component within a panel is
interpreted relative to the lower-left corner of the panel.

Generally, if the GUI is resized, the panel and its components are also
resized. However, you can control the size and position of the panel and its
components. You can do this by setting the GUI Resize property to on and
providing a ResizeFcn callback for the panel.

Note See “Cross-Platform Compatible Units” on page 11-64 for information
about the effect of units on resize behavior.

Button Group
Button groups are like panels except that they manage exclusive selection
behavior for radio buttons and toggle buttons. If a button group contains a
set of radio buttons, toggle buttons, or both, the button group allows only one
of them to be selected. When a user clicks a button, that button is selected
and all other buttons are deselected.

12-23

12 Programming the GUI

The following figure shows a button group with two radio buttons and two
toggle buttons. Radio Button 1 is selected.

If a user clicks the other radio button or one of the toggle buttons, it becomes
selected and Radio Button 1 is deselected. The following figure shows the
result of clicking Toggle Button 2.

The button group SelectionChangeFcn callback is called whenever a selection
is made. If you have a button group that contains a set of radio buttons and
toggle buttons and you want:

• An immediate action to occur when a radio button or toggle button is
selected, you must include the code to control the radio and toggle buttons
in the button group’s SelectionChangeFcn callback function, not in the
individual toggle button Callback functions. “Color Palette” on page 15-17
provides a practical example of a SelectionChangeFcn callback.

12-24

Examples: Programming GUI Components

• Another component such as a push button to base its action on the
selection, then that component’s Callback callback can get the handle
of the selected radio button or toggle button from the button group’s
SelectedObject property.

This example of a SelectionChangeFcn callback uses the Tag property of the
selected object to choose the appropriate code to execute. The Tag property
of each component is a string that identifies that component and must be
unique in the GUI.

function uibuttongroup1_SelectionChangeFcn(hObject,eventdata)

switch get(eventdata.NewValue,'Tag') % Get Tag of selected object.

case 'radiobutton1'

% Code for when radiobutton1 is selected.

case 'radiobutton2'

% Code for when radiobutton2 is selected.

case 'togglebutton1'

% Code for when togglebutton1 is selected.

case 'togglebutton2'

% Code for when togglebutton2 is selected.

% Continue with more cases as necessary.

otherwise

% Code for when there is no match.

end

The hObject and eventdata arguments are available to the callback only
if the value of the callback property is specified as a function handle. See
theSelectionChangeFcn property on the Uibuttongroup Properties reference
page for information about eventdata. See the uibuttongroup reference page
and “Color Palette” on page 15-17 for other examples.

Programming Axes
Axes components enable your GUI to display graphics, such as graphs and
images. This topic briefly tells you how to plot to an axes in your GUI.

In most cases, you create a plot in an axes from a callback that belongs to
some other component in the GUI. For example, pressing a button might
trigger the plotting of a graph to an axes. In this case, the button’s Callback
callback contains the code that generates the plot.

12-25

12 Programming the GUI

The following example contains two axes and two push buttons. Clicking the
first button generates a contour plot in one axes and clicking the other button
generates a surf plot in the other axes. The example generates data for the
plots using the peaks function, which returns a square matrix obtained by
translating and scaling Gaussian distributions.

1 Save this code in an M-file named two_axes.m.

function two_axes
fh = figure;
bh1 = uicontrol(fh,'Position',[20 290 60 30],...

'String','Plot 1',...
'Callback',@button1_plot);

bh2 = uicontrol(fh,'Position',[20 100 60 30],...
'String','Plot 2',...
'Callback',@button2_plot);

ah1 = axes('Parent',fh,'units','pixels',...
'Position',[120 220 170 170]);

ah2 = axes('Parent',fh,'units','pixels',...
'Position',[120 30 170 170]);

%--
function button1_plot(hObject,eventdata)

contour(ah1,peaks(35));
end
%--
function button2_plot(hObject,eventdata)

surf(ah2,peaks(35));
end

end

12-26

Examples: Programming GUI Components

2 Run the GUI by typing two_axes at the command line. This is what the
example looks like before you click the push buttons.

3 Click the Plot 1 button to display the contour plot in the first axes. Click
the Plot 2 button to display the surf plot in the second axes.

12-27

12 Programming the GUI

See “GUI with Multiple Axes” on page 10-2 for a more complex example that
uses two axes.

If your GUI contains axes, you should ensure that their HandleVisibility
properties are set to callback. This allows callbacks to change the contents
of the axes and prevents command line operations from doing so. The default
is on.

For more information about:

• Properties that you can set to control many aspects of axes behavior and
appearance, see “Axes Properties” in the MATLAB Graphics documentation.

• Creating axes in a tiled pattern, see the subplot function reference page.

• Plotting in general, see “Plots and Plotting Tools” in the MATLAB Graphics
documentation.

Programming ActiveX Controls
For information about programming ActiveX controls, see the following topics
in the MATLAB External Interfaces documentation.

• “Control and Server Events”

• “Writing Event Handlers”

See “MATLAB COM Client Support” in the MATLAB External Interfaces
documentation for general information.

Programming Menu Items

• “Programming a Menu Title” on page 12-28

• “Opening a Dialog Box from a Menu Callback” on page 12-29

• “Updating a Menu Item Check” on page 12-30

Programming a Menu Title
Because clicking a menu title automatically displays the menu below it, you
may not need to program callbacks at the title level. However, the callback

12-28

Examples: Programming GUI Components

associated with a menu title can be a good place to enable or disable menu
items below it.

Consider the example illustrated in the following picture.

When a user selects Edit > Copy > to file, no Copy callback is needed to
perform the action. Only the Callback callback associated with the to file
item is required.

Suppose, however, that only certain objects can be copied to a file. You can
use the Copy item Callback callback to enable or disable the to file item,
depending on the type of object selected.

The following code disables the to file item by setting its Enable property
off. The menu item would then appear dimmed.

set(tofilehandle,'Enable','off')

Setting Enable to on, would then enable the menu item.

Opening a Dialog Box from a Menu Callback
The Callback callback for the to file menu item could contain code such as
the following to display the standard dialog box for saving files.

[file,path] = uiputfile('animinit.m','Save file name');

12-29

12 Programming the GUI

'Save file name' is the dialog box title. In the dialog box, the filename field
is set to animinit.m, and the filter set to M-files (*.m). For more information,
see the uiputfile reference page.

Note MATLAB provides a selection of standard dialog boxes that you can
create with a single function call. For information about these dialog boxes
and the functions used to create them, see “Predefined Dialog Boxes” in the
MATLAB Function Reference documentation.

Updating a Menu Item Check
A check is useful to indicate the current state of some menu items. If you set
the Checked property to on when you create the menu item, the item initially
appears checked. Each time the user selects the menu item, the callback for
that item must turn the check on or off. The following example shows you how
to do this by changing the value of the menu item’s Checked property.

function menu_copyfile(hObject,eventdata)
if strcmp(get(hObject,'Checked'),'on')

set(hObject,'Checked','off');
else

set(hObject,'Checked','on');
end

hObject is the handle of the component for which the event was triggered. Its
use here assumes the menu item’s Callback property specifies the callback
as a function handle. See “Associating Callbacks with Components” on page
12-12 for more information.

The strcmp function compares two strings and returns logical 1 (true) if the
two are identical, and logical 0 (false) otherwise.

Use of checks when the GUI is first displayed should be consistent with the
display. For example, if your GUI has an axes that is visible when a user first
opens it and the GUI has a Show axes menu item, be sure to set the menu
item’s Checked property on when you create it so that a check appears next to
the Show axes menu item initially.

12-30

Examples: Programming GUI Components

Programming Toolbar Tools

• “Push Tool” on page 12-31

• “Toggle Tool” on page 12-33

Push Tool
The push tool ClickedCallback property specifies the push tool control
action. The following example creates a push tool and programs it to open a
standard color selection dialog box. You can use the dialog box to set the
background color of the GUI.

1 Copy the following code into an M-file and save it in your current directory
or on your path as color_gui.m. Run the script by typing color_gui at
the command line.

function color_gui
fh = figure('Position',[250 250 250 150],'Toolbar','none');
th = uitoolbar('Parent',fh);
pth = uipushtool('Parent',th,'Cdata',rand(20,20,3),...

'ClickedCallback',@color_callback);
%---

function color_callback(hObject,eventdata)
color = uisetcolor(fh,'Pick a color');
end

end

12-31

12 Programming the GUI

2 Click the push tool to display the color selection dialog box and click a
color to select it.

3 Click OK on the color selection dialog box. The GUI background color
changes to the color you selected—in this case, green.

12-32

Examples: Programming GUI Components

Note Create your own icon with the icon editor described in “Icon Editor” on
page 15-29. See the ind2rgb reference page for information on converting
a matrix X and corresponding colormap, i.e., an (X, MAP) image, to RGB
(truecolor) format.

Toggle Tool
The toggle tool OnCallback and OffCallback properties specify the toggle
tool control actions that occur when the toggle tool is clicked and its State
property changes to on or off. The toggle tool ClickedCallback property
specifies a control action that takes place whenever the toggle tool is clicked,
regardless of state.

The following example uses a toggle tool to toggle a plot between surface
and mesh views of the peaks data. The example also counts the number of
times you have clicked the toggle tool.

The surf function produces a 3-D shaded surface plot. The mesh function
creates a wireframe parametric surface. peaks returns a square matrix
obtained by translating and scaling Gaussian distributions

12-33

12 Programming the GUI

1 Copy the following code into an M-file and save it in your current
directory or on your path as toggle_plots.m. Run the script by typing
toggle_plots at the command line.

function toggle_plots
counter = 0;
fh = figure('Position',[250 250 300 340],'Toolbar','none');
ah = axes('Parent',fh,'Units','pixels',...

'Position',[35 85 230 230]);
th = uitoolbar('Parent',fh);
tth = uitoggletool('Parent',th,'Cdata',rand(20,20,3),...

'OnCallback',@surf_callback,...
'OffCallback',@mesh_callback,...
'ClickedCallback',@counter_callback);

sth = uicontrol('Style','text','String','Counter: ',...
'Position',[35 20 45 20]);

cth = uicontrol('Style','text','String',num2str(counter),...
'Position',[85 20 30 20]);

%---
function counter_callback(hObject,eventdata)
counter = counter + 1;
set(cth,'String',num2str(counter))
end

%---
function surf_callback(hObject,eventdata)
surf(ah,peaks(35));
end

%---
function mesh_callback(hObject,eventdata)
mesh(ah,peaks(35));
end

end

12-34

Examples: Programming GUI Components

12-35

12 Programming the GUI

2 Click the toggle tool to display the initial plot. The counter increments to 1.

3 Continue clicking the toggle tool to toggle between surf and mesh plots of
the peaks data.

12-36

13

Managing
Application-Defined
Data

Mechanisms for Managing Data
(p. 13-2)

Describes various mechanisms for
managing application-defined data.
Explains how GUIDE uses one of
these mechanisms, GUI data.

Sharing Data Among a GUI’s
Callbacks (p. 13-9)

Shows how each mechanism for
managing data can be used to share
data among a GUI’s callbacks.

13 Managing Application-Defined Data

Mechanisms for Managing Data

In this section...

“Nested Functions” on page 13-2

“GUI Data” on page 13-2

“Application Data” on page 13-5

“UserData Property” on page 13-7

Nested Functions
Use nested function to create your GUI M-files. They enable callback
functions to share data freely without it having to be passed as arguments.

1 Construct components, define variables, and generate data in the
initialization segment of your code.

2 Nest the GUI callbacks and utility functions at a level below the
initialization.

The callbacks and utility functions automatically have access to the data and
the component handles because they are defined at a higher level.

Note For information about using nested functions, see “Nested Functions” in
the MATLAB Programming documentation.

GUI Data
Most GUIs generate or use data that is specific to the application. These
mechanisms provide a way for applications to save and retrieve data stored
with the GUI.

The GUI data and application data mechanisms are similar, but GUI data
can be simpler to use. The figure and component UserData properties can
also hold application-defined data.

13-2

Mechanisms for Managing Data

GUI data is managed using the guidata function. This function can store
a single variable as GUI data. It is also used to retrieve the value of that
variable.

• “About GUI Data” on page 13-3

• “Creating and Updating GUI Data” on page 13-3

• “Adding Fields to a GUI Data Structure” on page 13-4

Note If your M-file was originally created by GUIDE, see “Changing GUI
Data in an M-File Generated by GUIDE” on page 9-4.

About GUI Data
GUI data is always associated with the GUI figure. It is available to all
callbacks of all components of the GUI. If you specify a component handle
when you save or retrieve GUI data, MATLAB automatically associates the
data with the component’s parent figure.

GUI data can contain only one variable at any time. Writing GUI data with
a different variable overwrites the existing GUI data. For this reason, GUI
data is usually defined to be a structure to which you can add fields as you
need them.

You can access the data from within a callback routine using the component’s
handle, without having to find the figure handle. If you specify a
component’s callback properties as function handles, the component handle is
automatically passed to each callback as hObject. See “Associating Callbacks
with Components” on page 12-12 for more information.

Because there can be only one GUI data variable and it is associated with the
figure, you do not need to create and maintain a hard-coded name for the
data throughout your source code.

Creating and Updating GUI Data

1 Create a structure and add to it the fields you want. For example,

13-3

13 Managing Application-Defined Data

mydata.iteration_counter = 0;
mydata.number_errors = 0;

2 Save the structure as GUI data. MATLAB associates GUI data with
the figure, but you can use the handle of any component in the figure to
retrieve or save it.

guidata(figurehandle,mydata);

3 To change GUI data from a callback, get a copy of the structure, update the
desired field, and then save the GUI data.

mydata = guidata(hObject); % Get the GUI data.
mydata.iteration_counter = mydata.iteration_counter +1;
guidata(hObject,mydata); % Save the GUI data.

Note To use hObject, you must specify a component’s callback properties
as function handles. When you do, the component handle is automatically
passed to each callback as hObject. See “Associating Callbacks with
Components” on page 12-12 for more information.

Adding Fields to a GUI Data Structure
To add a field to a GUI data structure:

1 Get a copy of the structure with a command similar to the following
where hObject is the handle of the component for which the callback was
triggered.

mydata = guidata(hObject)

2 Assign a value to the new field. This adds the field to the structure. For
example,

mydata.iteration_state = 0;

adds the field iteration_state to the structure mydata and sets it to 0.

3 Use the following command to save the data.

13-4

Mechanisms for Managing Data

guidata(hObject,mydata)

where hObject is the handle of the component for which the callback was
triggered. MATLAB associates a new copy of the mydata structure with the
component’s parent figure.

Application Data
Application data provides a way for applications to save and retrieve data
associated with a specified object. For a GUI, this is usually the GUI figure
but can also be any component. The data is stored as name/value pairs.
Application data enables you to create what are essentially user-defined
properties for an object.

The following table summarizes the functions that provide access to
application data. For more detailed information, see the individual function
reference pages.

Functions for Managing Application Data

Function Purpose

setappdata Specify named application data for an object. The
object does not have to be a figure. You can specify
more than one named application data for an object.
However, each name must be unique for that object
and can be associated with only one value, usually
a structure.

getappdata Retrieve named application data. To retrieve
named application data, you must know the name
associated with the application data and the handle
of the object with which it is associated.

13-5

13 Managing Application-Defined Data

Functions for Managing Application Data (Continued)

Function Purpose

isappdata True if the named application data exists on the
specified object.

rmappdata Remove named application data from the specified
object.

Creating Application Data
Use the setappdata function to create application data. This example
generates a 35-by-35 matrix of normally distributed random numbers and
creates application data mydata, associated with the figure, to manage it.

matrices.rand_35 = randn(35);
setappdata(figurehandle,'mydata',matrices);

By using nested functions and creating the figure at the top level, the figure
handle is accessible to all callbacks and utility functions nested at lower
levels. For information about using nested functions, see “Nested Functions”
in the MATLAB Programming documentation.

Adding Fields to an Application Data Structure
Application data is usually defined as a structure to enable you to add fields
as necessary. This example adds a field to the application data structure
mydata created in the previous topic.

1 Use getappdata to retrieve the structure.

From the example in the previous topic, the name of the application data
structure is mydata. It is associated with the figure.

matrices = getappdata(figurehandle,'mydata');

13-6

Mechanisms for Managing Data

2 Create a new field and assign it a value. For example

matrices.randn_50 = randn(50);

adds the field randn_50 to the matrices structure and sets it to a 50-by-50
matrix of normally distributed random numbers.

3 Use setappdata to save the data. This example uses setappdata to save
the matrices structure as the application data structure mydata.

setappdata(figurehandle,'mydata',matrices);

UserData Property
Each GUI component and the figure itself has a UserData property. You
can assign any valid MATLAB value to a UserData property. To retrieve
the data, a callback must know the handle of the component with which the
data is associated.

1 In this example, an edit text component stores the user-entered string in
its UserData property.

function edittext1_callback(hObject,eventdata)
mystring = get(hObject,'String');
set(hObject,'UserData',mystring);

2 A push button retrieves the string from the edit text component UserData
property.

function pushbutton1_callback(hObject,eventdata)
string = get(edittexthandle,'UserData');

Specify UserData as a structure if you want to store multiple fields.

13-7

13 Managing Application-Defined Data

Note By using nested functions and creating the figure and the components
at the top level, their handles are accessible to all callbacks and utility
functions nested at lower levels. For information about using nested functions,
see “Nested Functions” in the MATLAB Programming documentation. To
use hObject, you must specify a component’s callback properties as function
handles. When you do, the component handle is automatically passed to each
callback as hObject. See “Associating Callbacks with Components” on page
12-12 for more information.

13-8

Sharing Data Among a GUI’s Callbacks

Sharing Data Among a GUI’s Callbacks

In this section...

“Nested Functions” on page 13-9

“GUI Data” on page 13-13

“Application Data” on page 13-16

“UserData Property” on page 13-18

See “Mechanisms for Managing Data” on page 13-2 for general information
about these methods.

Nested Functions
You can use GUI data, application data, and the UserData property to share
data among a GUI’s callbacks. In many cases nested functions enables you to
share data among callbacks without using the other data forms.

Nested Functions Example: Passing Data Between Components
This example uses a GUI that contains a slider and an edit text component as
shown in the following figure. A static text component instructs the user to
enter a value in the edit text or click the slider. The example initializes and
maintains an error counter as well as the old and new values of the slider
in a nested functions environment.

13-9

13 Managing Application-Defined Data

The GUI behavior is as follows:

• When a user moves the slider, the edit text component displays the slider’s
current value and prints a message to the command line, similar to the
following, indicating how many units the slider moved.

You moved the slider 25 units.

• When a user types a value into the edit text component and then presses
Enter or clicks outside the component, the slider updates to this value an d
the edit text component prints a message to the command line indicating
how many units the slider moved.

• If a user enters a value in the edit text component that is out of range for
the slider—that is, a value that is not between the slider’s Min and Max
properties—the application returns a message in the edit text indicating
how many times the user has entered an erroneous value.

The following code constructs the components, initializes the error counter
and the previous and new slider values in the initialization section of the
function, and uses two callbacks to implement the interchange between the
slider and the edit text component. Copy this code into an M-file and save it
in your current directory or on your path as slider_gui.m. Run the script by
typing slider_gui at the command line.

function slider_gui
fh = figure('Position',[250 250 350 350]);
sh = uicontrol(fh,'Style','slider',...

'Max',100,'Min',0,'Value',25,...
'SliderStep',[0.05 0.2],...
'Position',[300 25 20 300],...
'Callback',@slider_callback);

eth = uicontrol(fh,'Style','edit',...
'String',num2str(get(sh,'Value')),...
'Position',[30 175 240 20],...

13-10

Sharing Data Among a GUI’s Callbacks

'Callback',@edittext_callback);
sth = uicontrol(fh,'Style','text',...

'String','Enter a value or click the slider.',...
'Position',[30 215 240 20]);

number_errors = 0;
previous_val = 0;
val = 0;
% --
% Set the value of the edit text component String property
% to the value of the slider.

function slider_callback(hObject,eventdata)
previous_val = val;
val = get(hObject,'Value');
set(eth,'String',num2str(val));
sprintf('You moved the slider %d units.',abs(val - previous_val))

end
% --
% Set the slider value to the number the user types in
% the edit text or display an error message.

function edittext_callback(hObject,eventdata)
previous_val = val;
val = str2double(get(hObject,'String'));
% Determine whether val is a number between the
% slider's Min and Max. If it is, set the slider Value.
if isnumeric(val) && length(val) == 1 && ...

val >= get(sh,'Min') && ...
val <= get(sh,'Max')
set(sh,'Value',val);
sprintf('You moved the slider %d units.',abs(val - previous_val)

else
% Increment the error count, and display it.

number_errors = number_errors+1;
set(hObject,'String',...

['You have entered an invalid entry ',...
num2str(number_errors),' times.']);

val = previous_val;
end

end
end

13-11

13 Managing Application-Defined Data

Because the components are constructed at the top level, their handles are
immediately available to the callbacks that are nested at a lower level of the
routine. The same is true of the error counter number_errors, the previous
slider value previous_val, and the new slider value val. There is no need to
pass these variables as arguments.

Both callbacks use the input argument hObject to get and set properties of
the component that triggered execution of the callback. This argument is
available to the callbacks because the components’ Callback properties are
specified as function handles. See “Associating Callbacks with Components”
on page 12-12 for more information.

Slider Callback. The slider callback, slider_callback, uses the edit text
component handle, eth, to set the edit text 'String' property to the value the
user typed.

The slider Callback saves the previous value, val, of the slider in
previous_val before assigning the new value to val. These variables are
known to both callbacks because they are initialized at a higher level. They
can be retrieved and set by either callback.

previous_val = val;
val = get(hObject,'Value');

The following statements in the slider Callback update the value displayed
in the edit text component when a user moves the slider and releases the
mouse button.

val = get(hObject,'Value');
set(eth,'String',num2str(val));

The code combines three commands:

• The get command obtains the current value of the slider.

• The num2str command converts the value to a string.

• The set command sets the String property of the edit text component
to the updated value.

13-12

Sharing Data Among a GUI’s Callbacks

Edit Text Callback. The edit text Callback, edittext_callback, uses the
slider handle, sh, to determine the slider’s Max and Min properties and to set
the slider Value property, which determine’s the position of the slider thumb.

The edit text Callback uses the following code to set the slider’s value to
the number the user types in, after checking to see if it is a single numeric
value within the allowed range.

if isnumeric(val) && length(val) == 1 && ...
val >= get(sh,'Min') && ...
val <= get(sh,'Max')
set(sh,'Value',val);

If the value is out of range, the if statement continues by incrementing the
error counter, number_errors, and displaying a message telling the user how
many times they have entered an invalid number.

else
number_errors = number_errors+1;
set(hObject,'String',...
['You have entered an invalid entry ',...
num2str(number_errors),' times.']);

end

GUI Data
GUI data, which you manage with the guidata function, is accessible to all
callbacks of the GUI. A callback for one component can set a value in GUI
data, which can then be read by a callback for another component. See “GUI
Data” on page 13-2 for more information.

GUI Data Example: Passing Data Between Components
The previous topic, “Nested Functions Example: Passing Data Between
Components” on page 13-9, uses nested function capabilities to initialize and
maintain an error counter as well as the old and new values of the slider. This
example shows you how to initialize and maintain the old and new values of
the slider using GUI data and make them available to the both callbacks.
Refer to the previous topic for details of the example.

13-13

13 Managing Application-Defined Data

The following code is similar to the previous topic but uses GUI data to
initialize and maintain the old and new slider values in the edit text and slider
Callbacks. Copy this code into an M-file and save it in your current directory
or on your path as slider_gui.m. Run the script by typing slider_gui at
the command line.

function slider_gui
fh = figure('Position',[250 250 350 350]);
sh = uicontrol(fh,'Style','slider',...

'Max',100,'Min',0,'Value',25,...
'SliderStep',[0.05 0.2],...
'Position',[300 25 20 300],...
'Callback',@slider_callback);

eth = uicontrol(fh,'Style','edit',...
'String',num2str(get(sh,'Value')),...
'Position',[30 175 240 20],...
'Callback',@edittext_callback);

sth = uicontrol(fh,'Style','text',...
'String','Enter a value or click the slider.',...
'Position',[30 215 240 20]);

number_errors = 0;
slider.val = 25;
guidata(fh,slider);
% --
% Set the value of the edit text component String property
% to the value of the slider.

function slider_callback(hObject,eventdata)
slider = guidata(fh); % Get GUI data.
slider.previous_val = slider.val;
slider.val = get(hObject,'Value');
set(eth,'String',num2str(slider.val));
sprintf('You moved the slider %d units.',...

abs(slider.val - slider.previous_val))
guidata(fh,slider) % Save GUI data before returning.

end
% --
% Set the slider value to the number the user types in
% the edit text or display an error message.

function edittext_callback(hObject,eventdata)
slider = guidata(fh); % Get GUI data.

13-14

Sharing Data Among a GUI’s Callbacks

slider.previous_val = slider.val;
slider.val = str2double(get(hObject,'String'));

% Determine whether slider.val is a number between the
% slider's Min and Max. If it is, set the slider Value.
if isnumeric(slider.val) && length(slider.val) == 1 && ...

slider.val >= get(sh,'Min') && ...
slider.val <= get(sh,'Max')
set(sh,'Value',slider.val);
sprintf('You moved the slider %d units.',...

abs(slider.val - slider.previous_val))
else
% Increment the error count, and display it.

number_errors = number_errors+1;
set(hObject,'String',...

['You have entered an invalid entry ',...
num2str(number_errors),' times.']);

slider.val = slider.previous_val;
end
guidata(fh,slider); % Save the changes as GUI data.

end
end

Slider Values. In this example, both the slider callbackslider_callback
and the edit text callback edittext_callback retrieve the GUI data structure
slider which hold previous and current values of the slider. They then save
the value, slider.val to slider.previous_val before retrieving the new
value and assigning it to slider.val. Before returning, each callback saves
the slider structure to GUI data.

slider = guidata(fh); % Get GUI data.
slider.previous_val = slider.val;
slider.val = ...;
...

guidata(fh,slider) % Save GUI data before returning.

Both callbacks use the guidata function to retrieve and save the slider
structure as GUI data.

13-15

13 Managing Application-Defined Data

Application Data
Application data can be associated with any object—a component, menu, or
the figure itself. To access application data, a callback must know the name of
the data and the handle of the component with which it is associated. Use the
functions setappdata, getappdata, isappdata, and rmappdata to manage
application data.

See “Application Data” on page 13-5 for more information about application
data.

Application Data Example: Passing Data Between Components
The earlier topic, “Nested Functions Example: Passing Data Between
Components” on page 13-9, uses nested function capabilities to initialize and
maintain an error counter as well as the old and new values of the slider. This
example shows you how to initialize and maintain the old and new values of
the slider using application data (appdata) and make them available to the
both callbacks. Refer to the earlier topic for details of the example.

The following code is similar to the earlier topic but uses application data
to initialize and maintain the old and new slider values in the edit text
and slider Callbacks. Copy this code into an M-file and save it in your
current directory or on your path as slider_gui.m. Run the script by typing
slider_gui at the command line.

function slider_gui
fh = figure('Position',[250 250 350 350]);
sh = uicontrol(fh,'Style','slider',...

'Max',100,'Min',0,'Value',25,...
'SliderStep',[0.05 0.2],...
'Position',[300 25 20 300],...
'Callback',@slider_callback);

eth = uicontrol(fh,'Style','edit',...
'String',num2str(get(sh,'Value')),...
'Position',[30 175 240 20],...
'Callback',@edittext_callback);

sth = uicontrol(fh,'Style','text',...
'String','Enter a value or click the slider.',...
'Position',[30 215 240 20]);

number_errors = 0;

13-16

Sharing Data Among a GUI’s Callbacks

slider_data.val = 25;
% Create appdata with name 'slider'.
setappdata(fh,'slider',slider_data);
% --
% Set the value of the edit text component String property
% to the value of the slider.

function slider_callback(hObject,eventdata)
% Get 'slider' appdata.
slider_data = getappdata(fh,'slider');
slider_data.previous_val = slider_data.val;
slider_data.val = get(hObject,'Value');
set(eth,'String',num2str(get(slider_data.val)));
sprintf('You moved the slider %d units.',...

abs(slider_data.val - slider_data.previous_val))
% Save 'slider' appdata before returning.
setappdata(fh,'slider',slider_data)

end
% --
% Set the slider value to the number the user types in
% the edit text or display an error message.

function edittext_callback(hObject,eventdata)
% Get 'slider' appdata.
slider_data = getappdata(fh,'slider');
slider_data.previous_val = slider_data.val;
slider_data.val = str2double(get(hObject,'String'));
% Determine whether val is a number between the
% slider's Min and Max. If it is, set the slider Value.
if isnumeric(slider_data.val) && ...

length(slider_data.val) == 1 && ...
slider_data.val >= get(sh,'Min') && ...
slider_data.val <= get(sh,'Max')
set(sh,'Value',slider_data.val);

else
% Increment the error count, and display it.

number_errors = number_errors+1;
set(hObject,'String',...

['You have entered an invalid entry ',...
num2str(number_errors),' times.']);

slider_data.val = slider_data.previous_val;
end

13-17

13 Managing Application-Defined Data

% Save appdata before returning.
setappdata(fh,'slider',slider_data);

end
end

Slider Values. In this example, both the slider callbackslider_callback
and the edit text callback edittext_callback retrieve the application data
structure slider_data which holds previous and current values of the slider.
They then save the value, slider_data.val to slider_data.previous_val
before retrieving the new value and assigning it to slider_data.val. Before
returning, each callback saves the slider_data structure in the slider
application data.

% Get 'slider' appdata.
slider_data = getappdata(fh,'slider');
slider_data.previous_val = slider_data.val;
slider_data.val = ...;
...
% Save 'slider' appdata before returning.
setappdata(fh,'slider',slider_data)

Both callbacks use the getappdata and setappdata functions to retrieve and
save the slider_data structure as slider application data.

UserData Property
Every GUI component, and the figure itself, has a UserData property that you
can use to store application-defined data. To access UserData, a callback must
know the handle of the component with which a specific UserData property
is associated.

Use the get function to retrieve UserData, and the set function to set it.

UserData Property Example: Passing Data Between
Components
The previous topic, “Nested Functions Example: Passing Data Between
Components” on page 13-9, uses nested function capabilities to initialize and
maintain an error counter. This example shows you how to do the same thing
using the edit text component’s UserData property to store the error count.
Refer to the earlier example for example details.

13-18

Sharing Data Among a GUI’s Callbacks

The following code is the same as in the earlier topic but uses the UserData
property to initialize and increment the error counter.

function slider_gui
fh = figure('Position',[250 250 350 350]);
sh = uicontrol(fh,'Style','slider',...

'Max',100,'Min',0,'Value',25,...
'SliderStep',[0.05 0.2],...
'Position',[300 25 20 300],...
'Callback',@slider_callback);

eth = uicontrol(fh,'Style','edit',...
'String',num2str(get(sh,'Value')),...
'Position',[30 175 240 20],...
'Callback',@edittext_callback);

sth = uicontrol(fh,'Style','text',...
'String','Enter a value or click the slider.',...
'Position',[30 215 240 20]);

number_errors = 0;
slider.val = 25;
% Set edit text UserData property to slider structure.
set(eth,'UserData',slider)
% --
% Set the value of the edit text component String property
% to the value of the slider.

function slider_callback(hObject,eventdata)
% Get slider from edit text UserData.
slider = get(eth,'UserData');
slider.previous_val = slider.val;
slider.val = get(hObject,'Value');
set(eth,'String',num2str(slider.val));
sprintf('You moved the slider %d units.',...

abs(slider.val - slider.previous_val))
% Save slider in UserData before returning.
set(eth,'UserData',slider)

end
% --
% Set the slider value to the number the user types in
% the edit text or display an error message.

function edittext_callback(hObject,eventdata)
% Get slider from edit text UserData.

13-19

13 Managing Application-Defined Data

slider = get(eth,'UserData');
slider.previous_val = slider.val;
slider.val = str2double(get(hObject,'String'));
% Determine whether slider.val is a number between the
% slider's Min and Max. If it is, set the slider Value.
if isnumeric(slider.val) && ...

length(slider.val) == 1 && ...
slider.val >= get(sh,'Min') && ...
slider.val <= get(sh,'Max')
set(sh,'Value',slider.val);
sprintf('You moved the slider %d units.',...

abs(slider.val - slider.previous_val))
else
% Increment the error count, and display it.

data = get(hObject,'UserData');
data.number_errors = data.number_errors+1;
set(hObject,'UserData',data); % Save the changes.
set(hObject,'String',...

['You have entered an invalid entry ',...
num2str(number_errors),' times.']);

slider.val = slider.previous_val;
end
% Save slider structure in UserData before returning.
set(eth,'UserData',slider)

end
end

Slider Values. In this example, both the slider callbackslider_callback
and the edit text callback edittext_callback retrieve the structure slider
from the edit text UserData property. The slider structure holds previous
and current values of the slider. The callbacks then save the value slider.val
to slider.previous_val before retrieving the new value and assigning it to
slider.val. Before returning, each callback saves the slider structure in
the edit textUserData property.

% Get slider structure from edit text UserData.
slider = get(eth,'UserData',slider);
slider.previous_val = slider.val;
slider.val = ...;
...

13-20

Sharing Data Among a GUI’s Callbacks

% Save slider structure in UserData before returning.
set(eth,'UserData',slider)

Both callbacks use the get and set functions to retrieve and save the slider
structure in the edit text UserData property.

13-21

13 Managing Application-Defined Data

13-22

14

Managing Callback
Execution

Callback Interruption (p. 14-2) Explains callback interruption using
the Interruptible and BusyAction
properties.

14 Managing Callback Execution

Callback Interruption

In this section...

“Callback Execution” on page 14-2

“How the Interruptible Property Works” on page 14-2

“How the Busy Action Property Works” on page 14-3

“Example” on page 14-4

Callback Execution
Callback execution is event driven and callbacks from different GUIs share
the same event queue. In general, callbacks are triggered by user events
such as a mouse click or key press. Because of this, you cannot predict, when
a callback is requested, whether or not another callback is executing or, if
one is, which callback it is.

If a callback is executing and the user triggers an event for which a callback
is defined, that callback attempts to interrupt the callback that is already
executing. When this occurs, MATLAB processes the callbacks according
to these factors:

• The Interruptible property of the object whose callback is already
executing. The Interruptible property specifies whether the executing
callback can be interrupted.

• The BusyAction property of the object whose callback has just been
triggered and wants to execute. The BusyAction property specifies whether
a callback should be queued to await execution or be canceled.

How the Interruptible Property Works
An object’s Interruptible property can be either on (the default) or off.

If theInterruptible property of the object whose callback is executing is on,
the callback can be interrupted. However, it is interrupted only when it, or
a function it triggers, calls drawnow, figure, getframe, pause, or waitfor.
Before performing their defined tasks, these functions process any events in
the event queue, including any waiting callbacks. If the executing callback, or

14-2

Callback Interruption

a function it triggers, calls none of these functions, it cannot be interrupted
regardless of the value of its object’s Interruptible property.

If the Interruptible property of the object whose callback is executing
is off, the callback cannot be interrupted with the following exceptions. If
the interrupting callback is a DeleteFcn or CreateFcn callback or a figure’s
CloseRequest or ResizeFcn callback, it interrupts an executing callback
regardless of the value of the executing callback object’s Interruptible
property. These callbacks too can interrupt only when a drawnow, figure,
getframe, pause, or waitfor function executes.

The callback properties to which Interruptible can apply depend on the
objects for which the callback properties are defined:

• For figures, only callback routines defined for the ButtonDownFcn,
KeyPressFcn, KeyReleaseFcn, WindowButtonDownFcn,
WindowButtonMotionFcn, WindowButtonUpFcn, and
WindowScrollWheelFcn are affected by the Interruptible
property.

• For GUI components, Interruptible is applies to the ButtonDownFcn,
Callback, KeyPressFcn, SelectionChangeFcn, ClickedCallback,
OffCallback, and OnCallback properties, for the components for which
these properties are defined.

How the Busy Action Property Works
An object’s BusyAction property can be either queue (the default) or cancel.
The BusyAction property of the interrupting callback’s object is taken into
account only if the Interruptible property of the executing callback’s object
is off, i.e., the executing callback is not interruptible.

If a noninterruptible callback is executing and an event (such as a mouse
click) triggers a new callback, MATLAB uses the value of the new callback
object’s BusyAction property to decide whether to queue the requested
callback or cancel it.

• If the BusyAction value is queue, the requested callback is added to the
event queue and executes in its turn when the executing callback finishes
execution.

14-3

14 Managing Callback Execution

• If the value is cancel, the event is discarded and the requested callback
does not execute.

If an interruptible callback is executing, the requested callback runs when
the executing callback terminates or calls drawnow, figure, getframe, pause,
or waitfor. The BusyAction property of the requested callback’s object has
no effect.

Example
This example demonstrates control of callback interruption using the
Interruptible and BusyAction properties. It creates two GUIs:

• The first GUI contains two push buttons, Wait (interruptible) whose
Interruptible property is set to on, and Wait (noninterruptible)whose
Interruptible property is set to off. Clicking either button triggers the
button’s Callback callback, which creates and updates a waitbar.

This code creates the two Wait buttons and specifies the callbacks that
service them.

h_interrupt = uicontrol(h_panel1,'Style','pushbutton',...
'Position',[30,110,120,30],...
'String','Wait (interruptible)',...
'Interruptible','on',...
'Callback',@wait_interruptible);

14-4

Callback Interruption

h_noninterrupt = uicontrol(h_panel1,'Style','pushbutton',...
'Position',[30,40,120,30],...
'String','Wait (noninterruptible)',...
'Interruptible','off',...
'Callback',@wait_noninterruptible);

• The second GUI contains two push buttons, Surf Plot (queue) whose
BusyAction property is set to queue, and Mesh Plot (cancel)whose
BusyAction property is set to cancel. Clicking either button triggers the
button’s Callback callback to generate a plot in the axes.

This code creates the two plot buttons and specifies the callbacks that
service them.

hsurf_queue = uicontrol(h_panel2,'Style','pushbutton',...
'Position',[30,200,110,30],...
'String','Surf Plot (queue)',...
'TooltipString','BusyAction = queue',...
'BusyAction','queue',...
'Callback',@surf_queue);

hmesh_cancel = uicontrol(h_panel2,'Style','pushbutton',...
'Position',[30,130,110,30],...

14-5

14 Managing Callback Execution

'String','Mesh Plot (cancel)',...
'BusyAction','cancel',...
'TooltipString','BusyAction = cancel',...
'Callback',@mesh_cancel);

Using the Example GUIs
Click here to run the example GUIs.

Note This link executes MATLAB commands and is designed to work within
the MATLAB Help browser. If you are reading this online or in PDF, you
should go to the corresponding section in the MATLAB Help Browser to use
the link.

To see the interplay of the Interruptible and BusyAction properties:

1 Click one of the Wait buttons in the first GUI. Both buttons create and
update a waitbar.

2 While the waitbar is active, click either the Surf Plot or the Mesh Plot
button in the second GUI. The Surf Plot button creates a surf plot using
peaks data. The Mesh Plot button creates a mesh plot using the same data.

The following topics describe what happens when you click specific
combinations of buttons:

• “Clicking a Wait Button” on page 14-6

• “Clicking a Plot Button” on page 14-7

Clicking a Wait Button.

The Wait buttons are the same except for their Interruptible
properties. Their Callback callbacks, which are essentially the same,
call the utility function create_update_waitbar which calls waitbar
to create and update a waitbar. The Wait (Interruptible) button
Callback callback,wait_interruptible, can be interrupted each time
waitbar calls drawnow. The Wait (Noninterruptible) button Callback

14-6

Callback Interruption

callback,wait_noninterruptible, cannot be interrupted (except by specific
callbacks listed in “How the Interruptible Property Works” on page 14-2).

This is the Wait (Interruptible) button Callback
callback,wait_interruptible:

function wait_interruptible(hObject,eventdata)
% Disable the other push button.
set(h_noninterrupt,'Enable','off')
% Clear the axes in the other GUI.
cla(h_axes2,'reset')
% Create and update the waitbar.
create_update_waitbar
% Enable the other push button
set(h_noninterrupt,'Enable','on')

end

The callback first disables the other push button and clears the axes in the
second GUI. It then calls the utility function create_update_waitbar to
create and update a waitbar. When create_update_waitbar returns, it
enables the other button.

Clicking a Plot Button. What happens when you click a Plot button
depends on which Wait button you clicked first and the BusyAction property
of the Plot button.

• If you click Surf Plot, whose BusyAction property is queue, MATLAB
queues the Surf Plot callback surf_queue.

If you clicked the Wait (interruptible) button first, surf_queue runs
and displays the surf plot when the waitbar issues a call to drawnow,
terminates, or is destroyed.

If you clicked the Wait (noninterruptible) button first, surf_queue runs
only when the waitbar terminates or is destroyed.

This is the surf_queue callback:

function surf_queue(hObject,eventdata)
h_plot = surf(h_axes2,peaks_data);

end

14-7

14 Managing Callback Execution

• If you click Mesh Plot , whose BusyAction property is cancel, after
having clicked Wait (noninterruptible), MATLAB discards the button
click event and does not queue the mesh_cancel callback.

If you click Mesh Plot after having clicked Wait (interruptible), the
Mesh Plot BusyAction property has no effect. MATLAB queues the
Mesh Plot callback, mesh_cancel. It runs and displays the mesh plot
when the waitbar issues a call to drawnow, terminates, or is destroyed.

This is the mesh_plot callback:

function mesh_cancel(hObject,eventdata)
h_plot = surf(h_axes2,peaks_data);

end

View the Complete GUI M-File
If you are reading this in the MATLAB Help browser, you can click here to
display a complete listing of the code used in this example in the MATLAB
Editor.

Note This link executes MATLAB commands and is designed to work within
the MATLAB Help browser. If you are reading this online or in PDF, you
should go to the corresponding section in the MATLAB Help Browser to use
the links.

14-8

15

Examples of GUIs Created
Programmatically

Introduction (p. 15-2) Introduces the examples and lists
the programming techniques they
illustrate.

GUI with Axes, Menu, and Toolbar
(p. 15-3)

Creates a GUI that displays a
user-selected plot in an axes.

Color Palette (p. 15-17) Creates a color palette that can
be embedded in a host GUI. The
color palette enables a user to select
colors.

Icon Editor (p. 15-29) Creates an icon editor that enables
a user to create and edit icons. It
embeds the color palette from the
previous example.

15 Examples of GUIs Created Programmatically

Introduction
This chapter provides three examples that illustrate the application of certain
techniques in programmatically created GUIs.

• “GUI with Axes, Menu, and Toolbar” on page 15-3

• “Color Palette” on page 15-17

• “Icon Editor” on page 15-29

Each example lists the techniques it illustrates. These techniques include:

• Creation of a dialog that does not return until the user makes a choice

• Passing input arguments to the GUI when it is opened

• Obtaining output from the GUI when it returns

• Shielding the GUI from accidental changes

• Running the GUI across multiple platforms

• Making a GUI modal

• Sharing data among multiple GUIs

• Creating menus and context menus

• Creating toolbars

• Using an external utility function

• Achieving proper resize behavior

The examples all use nested functions. For information about using
nested functions, see “Nested Functions” in the MATLAB Programming
documentation.

15-2

GUI with Axes, Menu, and Toolbar

GUI with Axes, Menu, and Toolbar

In this section...

“The Example” on page 15-3

“Techniques Used in the Example” on page 15-5

“View and Run the Completed GUI M-Files” on page 15-5

“Creating the Data” on page 15-6

“Creating the GUI and Its Components” on page 15-6

“Initializing the GUI” on page 15-11

“Defining the Callbacks” on page 15-12

“Helper Function: Plotting the Plot Types” on page 15-16

The Example
This example creates a GUI that displays a user-selected plot in an axes. The
GUI contains the following components:

• Axes

• Pop-up menu with a list of five plots

• Push button for updating the contents of the axes

• Menu bar File menu with three items: Open, Print, and Close

• Toolbar with two buttons that enable a user to open files and print the plot.

15-3

15 Examples of GUIs Created Programmatically

When you run the GUI, it initially displays a plot of five random numbers
generated by the MATLAB rand(5) command, as shown in the following
figure.

You can select other plots in the pop-up menu. Clicking the Update button
displays the currently selected plot on the axes.

The GUI File menu has three items:

• Open displays a dialog from which you can open files on your computer.

• Print opens the Print dialog. Clicking Yes in the Print dialog prints the
plot.

• Close closes the GUI.

15-4

GUI with Axes, Menu, and Toolbar

The GUI toolbar has two buttons:

• The Open button performs the same function as the Open menu item. It
displays a dialog from which you can open files on your computer.

• The Print button performs the same function as the Print menu item. It
opens the Print dialog. Clicking Yes in the Print dialog prints the plot.

Techniques Used in the Example
This example illustrates the following techniques:

• Passing input arguments to the GUI when it is opened

• Obtaining output from the GUI when it returns

• Shielding the GUI from accidental changes

• Running the GUI across multiple platforms

• Creating menus

• Creating toolbars

• Achieving proper resize behavior

Note This example uses nested functions. For information about using
nested functions, see “Nested Functions” in the MATLAB Programming
documentation.

View and Run the Completed GUI M-Files
If you are reading this in the MATLAB Help browser, you can click the
following links to display the MATLAB Editor with complete listings of the
code used in this example.

Note The following links execute MATLAB commands and are designed to
work within the MATLAB Help browser. If you are reading this online or
in PDF, you should go to the corresponding section in the MATLAB Help
Browser to use the links.

15-5

15 Examples of GUIs Created Programmatically

• Click here to display the main GUI M-file in the MATLAB Editor.

• Click here to display the utility iconRead M-file in the MATLAB Editor.

• Click here to run the GUI with axes, menu, and toolbar.

Creating the Data
The example defines two variables mOutputArgs and mPlotTypes.

mOutputArgs is a cell array that holds output values should the user request
them. The example later assigns a default value to this argument.

mOutputArgs = {}; % Variable for storing output when GUI returns

mPlotTypes is a 5-by-2 cell array that holds the data to be plotted in the axes.
The first column contains the strings that are used to populate the pop-up
menu. The second column contains the functions, as anonymous function
handles, that create the plots.

mPlotTypes = {... % Example plot types shown by this GUI

'plot(rand(5))', @(a)plot(a,rand(5));

'plot(sin(1:0.01:25))', @(a)plot(a,sin(1:0.01:25));

'bar(1:.5:10)', @(a)bar(a,1:.5:10);

'plot(membrane)', @(a)plot(a,membrane);

'surf(peaks)', @(a)surf(a,peaks)};

Because the data is created at the top level of the GUI function, it is available
to all callbacks and other functions in the GUI.

See “Anonymous Functions” in the MATLAB Programming documentation
for information about using anonymous functions.

Creating the GUI and Its Components
Like the data, the components are created at the top level so that their
handles are available to all callbacks and other functions in the GUI.

• “The Main Figure” on page 15-7

• “The Axes” on page 15-7

• “The Pop-Up Menu” on page 15-8

15-6

GUI with Axes, Menu, and Toolbar

• “The Update Push Button” on page 15-9

• “The File Menu and Its Menu Items” on page 15-9

• “The Toolbar and Its Tools” on page 15-10

The Main Figure
The following statement creates the figure for GUI.

hMainFigure = figure(... % The main GUI figure

'MenuBar','none', ...

'Toolbar','none', ...

'HandleVisibility','callback', ...

'Color', get(0,...

'defaultuicontrolbackgroundcolor'));

• The figure function creates the GUI figure.

• Setting the MenuBar and Toolbar properties to none, prevents the standard
menu bar and toolbar from displaying.

• Setting the HandleVisibility property to callback ensures that the
figure can be accessed only from within a GUI callback, and cannot be
drawn into or deleted from the command line.

• The Color property defines the background color of the figure. In this
case, it is set to be the same as the default background color of uicontrol
objects, such as the Update push button. The factory default background
color of uicontrol objects is the system default and can vary from system
to system. This statement ensures that the figure’s background color
matches the background color of the components.

See the Figure Properties reference page for information about figure
properties and their default values.

The Axes
The following statement creates the axes.

hPlotAxes = axes(... % Axes for plotting the selected plot
'Parent', hMainFigure, ...
'Units', 'normalized', ...
'HandleVisibility','callback', ...

15-7

15 Examples of GUIs Created Programmatically

'Position',[0.11 0.13 0.80 0.67]);

• The axes function creates the axes. Setting the axes Parent property to
hMainFigure makes it a child of the main figure.

• Setting the Units property to normalized ensures that the axes resizes
proportionately when the GUI is resized.

• The Position property is a 4-element vector that specifies the location of
the axes within the figure and its size: [distance from left, distance from
bottom, width, height]. Because the units are normalized, all values are
between 0 and 1.

Note If you specify the Units property, then the Position property, and
any other properties that depend on the value of the Units property, should
follow the Units property specification.

See the Axes Properties reference page for information about axes properties
and their default values.

The Pop-Up Menu
The following statement creates the pop-up menu.

hPlotsPopupmenu = uicontrol(... % List of available types of plot

'Parent', hMainFigure, ...

'Units','normalized',...

'Position',[0.11 0.85 0.45 0.1],...

'HandleVisibility','callback', ...

'String',mPlotTypes(:,1),...

'Style','popupmenu');

• The uicontrol function creates various user interface controls based on the
value of the Style property. Here the Style property is set to popupmenu.

• For a pop-up menu, the String property defines the list of items in the
menu. Here it is defined as a 5-by-1 cell array of strings derived from the
cell array mPlotTypes.

15-8

GUI with Axes, Menu, and Toolbar

See the Uicontrol Properties reference page for information about properties
of uicontrol objects and their default values.

The Update Push Button
This statement creates the Update push button as a uicontrol object.

hUpdateButton = uicontrol(... % Button for updating selected plot

'Parent', hMainFigure, ...

'Units','normalized',...

'HandleVisibility','callback', ...

'Position',[0.6 0.85 0.3 0.1],...

'String','Update',...

'Callback', @hUpdateButtonCallback);

• The uicontrol function creates various user interface controls based on
the value of the Style property. This statement does not set the Style
property because its default is pushbutton.

• For a push button, the String property defines the label on the button.
Here it is defined as the string Update.

• Setting the Callback property to @hUpdateButtonCallback defines the
name of the callback function that services the push button. That is,
clicking the push button triggers the execution of the named callback. This
callback function is defined later in the script.

See the Uicontrol Properties reference page for information about properties
of uicontrol objects and their default values.

The File Menu and Its Menu Items
These statements define the File menu and the three items it contains.

hFileMenu = uimenu(... % File menu
'Parent',hMainFigure,...
'HandleVisibility','callback', ...
'Label','File');

hOpenMenuitem = uimenu(... % Open menu item
'Parent',hFileMenu,...
'Label','Open',...
'HandleVisibility','callback', ...

15-9

15 Examples of GUIs Created Programmatically

'Callback', @hOpenMenuitemCallback);
hPrintMenuitem = uimenu(... % Print menu item

'Parent',hFileMenu,...
'Label','Print',...
'HandleVisibility','callback', ...
'Callback', @hPrintMenuitemCallback);

hCloseMenuitem = uimenu(... % Close menu item
'Parent',hFileMenu,...
'Label','Close',...
'Separator','on',...
'HandleVisibility','callback', ...
'Callback', @hCloseMenuitemCallback');

• The uimenu function creates both the main menu, File, and the items it
contains. For the main menu and each of its items, set the Parent property
to the handle of the desired parent to create the menu hierarchy you want.
Here, setting the Parent property of the File menu to hMainFigure makes
it the child of the main figure. This statement creates a menu bar in the
figure and puts the File menu on it.

For each of the menu items, setting its Parent property to the handle of the
parent menu, hFileMenu, causes it to appear on the File menu.

• For the main menu and each item on it, the Label property defines the
strings that appear in the menu.

• Setting the Separator property to on for the Close menu item causes a
separator line to be drawn above this item.

• For each of the menu items, the Callback property specifies the callback
that services that item. In this example, no callback services the File menu
itself. These callbacks are defined later in the script.

See the Uicontrol Properties reference page for information about properties
of uicontrol objects and their default values.

The Toolbar and Its Tools
These statements define the toolbar and the two buttons it contains.

hToolbar = uitoolbar(... % Toolbar for Open and Print buttons

'Parent',hMainFigure, ...

'HandleVisibility','callback');

15-10

GUI with Axes, Menu, and Toolbar

hOpenPushtool = uipushtool(... % Open toolbar button

'Parent',hToolbar,...

'TooltipString','Open File',...

'CData',iconRead(fullfile(matlabroot,...

'toolbox\matlab\icons\opendoc.mat')),...

'HandleVisibility','callback', ...

'ClickedCallback', @hOpenMenuitemCallback);

hPrintPushtool = uipushtool(... % Print toolbar button

'Parent',hToolbar,...

'TooltipString','Print Figure',...

'CData',iconRead(fullfile(matlabroot,...

'toolbox\matlab\icons\printdoc.mat')),...

'HandleVisibility','callback', ...

'ClickedCallback', @hPrintMenuitemCallback);

• The uitoolbar function creates the toolbar on the main figure.

• The uipushtool function creates the two push buttons on the toolbar.

• The uipushtool TooltipString property assigns a tool tip that displays
when the GUI user moves the mouse pointer over the button and leaves
it there.

• The CData property specifies a truecolor image that displays on the button.
For these two buttons, the utility iconRead function supplies the image. If
you are reading this in the MATLAB Help browser, click here to display
this utility M-file in the MATLAB Editor.

• For each of the uipushtools, the ClickedCallback property specifies the
callback that executes when the GUI user clicks the button. Note that the
Open push button and the Print push button use the same callbacks
as their counterpart menu items.

See “Creating Toolbars” on page 11-56 for more information.

Initializing the GUI
These statements create the plot that appears in the GUI when it first
displays, and, if the user provides an output argument when running the
GUI, define the output that is returned to the user .

% Update the plot with the initial plot type

15-11

15 Examples of GUIs Created Programmatically

localUpdatePlot();

% Define default output and return it if it is requested by users

mOutputArgs{1} = hMainFigure;

if nargout>0

[varargout{1:nargout}] = mOutputArgs{:};

end

• The localUpdatePlot function plots the selected plot type in the axes. For
a pop-up menu, the uicontrol Value property specifies the index of the
selected menu item in the String property. Since the default value is 1,
the initial selection is 'plot(rand(5))'. The localUpdatePlot function
is a helper function that is defined later in the script, at the same level
as the callbacks.

• The default output is the handle of the main figure.

Defining the Callbacks
This topic defines the callbacks that service the components of the GUI.
Because the callback definitions are at a lower level than the component
definitions and the data created for the GUI, they have access to all data
and component handles.

Although the GUI has six components that are serviced by callbacks, there
are only four callback functions. This is because the Open menu item and the
Open toolbar button share the same callbacks. Similarly, the Print menu
item and the Print toolbar button share the same callbacks.

• “Update Button Callback” on page 15-13

• “Open Menu Item Callback” on page 15-13

• “Print Menu Item Callback” on page 15-14

• “Close Menu Item Callback” on page 15-15

Note These are the callbacks that were specified in the component definitions,
“Creating the GUI and Its Components” on page 15-6.

15-12

GUI with Axes, Menu, and Toolbar

Update Button Callback
The hUpdateButtonCallback function services the Update push button.
Clicking the Update button triggers the execution of this callback function.

function hUpdateButtonCallback(hObject, eventdata)
% Callback function run when the Update button is pressed

localUpdatePlot();
end

The localUpdatePlot function is a helper function that plots the selected plot
type in the axes. It is defined later in the script, “Helper Function: Plotting
the Plot Types” on page 15-16.

Note MATLAB automatically passes hUpdateButtonCallback two
arguments, hObject and eventdata, because the Update push button
component Callback property, @hUpdateButtonCallback, is defined as a
function handle. hObject contains the handle of the component that triggered
execution of the callback. eventdata is reserved for future use. The function
definition line for your callback must account for these two arguments.

Open Menu Item Callback
The hOpenMenuitemCallback function services the Open menu item and
the Open toolbar button . Selecting the menu item or clicking the toolbar
button triggers the execution of this callback function.

function hOpenMenuitemCallback(hObject, eventdata)
% Callback function run when the Open menu item is selected

file = uigetfile('*.m');
if ~isequal(file, 0)

open(file);
end

end

15-13

15 Examples of GUIs Created Programmatically

The hOpenMenuitemCallback function first calls the uigetfile function to
open the standard dialog box for retrieving files. This dialog box lists all
M-files. If uigetfile returns a filename, the function then calls the open
function to open it.

Print Menu Item Callback
The hPrintMenuitemCallback function services the Print menu item and
the Print toolbar button . Selecting the menu item or clicking the toolbar
button triggers the execution of this callback function.

function hPrintMenuitemCallback(hObject, eventdata)
% Callback function run when the Print menu item is selected

printdlg(hMainFigure);
end

15-14

GUI with Axes, Menu, and Toolbar

The hPrintMenuitemCallback function calls the printdlg function. This
function opens the standard dialog box for printing the current figure.

Close Menu Item Callback
The hCloseMenuitemCallback function services the Close menu item. It
executes when the GUI user selects Close from the File menu.

function hCloseMenuitemCallback(hObject, eventdata)
% Callback function run when the Close menu item is selected

selection = ...
questdlg(['Close ' get(hMainFigure,'Name') '?'],...

['Close ' get(hMainFigure,'Name') '...'],...
'Yes','No','Yes');

if strcmp(selection,'No')
return;

end

delete(hMainFigure);

15-15

15 Examples of GUIs Created Programmatically

end

The hCloseMenuitemCallback function calls the questdlg function to create
and open the question dialog box shown in the following figure.

If the user clicks the No button, the callback returns. If the user clicks the
Yes button, the callback deletes the GUI.

See “Helper Function: Plotting the Plot Types” on page 15-16 for a description
of the localUpdatePlot function.

Helper Function: Plotting the Plot Types
The example defines the localUpdatePlot function at the same level as the
callback functions. Because of this, localUpdatePlot has access to the same
data and component handles.

function localUpdatePlot
% Helper function for plotting the selected plot type

mPlotTypes{get(hPlotsPopupmenu, 'Value'), 2}(hPlotAxes);
end

The localUpdatePlot function uses the pop-up menu Value property to
identify the selected menu item from the first column of the mPlotTypes
5-by-2 cell array, then calls the corresponding anonymous function from
column two of the cell array to create the plot in the axes.

15-16

Color Palette

Color Palette

In this section...

“The Example” on page 15-17

“Techniques Used in the Example” on page 15-21

“View and Run the Completed GUI M-File” on page 15-21

“Subfunction Summary” on page 15-21

“M-File Structure” on page 15-23

“GUI Programming Techniques” on page 15-24

The Example
This example creates a GUI, colorPalette, that enables a user to select a color
from a color palette or display the standard color selection dialog box. Another
example, “Icon Editor” on page 15-29, embeds the colorPalette, as the child of
a panel, in a GUI you can use to design an icon.

15-17

15 Examples of GUIs Created Programmatically

The colorPalette function populates a GUI figure or panel with a color
palette. The figure below shows the palette as the child of a figure.

The Components
The colorPalette includes the following components:

• An array of color cells defined as toggle buttons

• An Eraser toggle button with the icon

• A button group that contains the array of color cells and the eraser button.
The button group provides exclusive management of these toggle buttons.

• A More Colors push button

• A preview of the selected color, below the color cells, defined as a text
component

15-18

Color Palette

• Text components to specify the red, blue, and green color values

Using the Color Palette
These are the basic steps for using the color palette.

1 Clicking a color cell toggle button:

• Displays the selected color in the preview area.

• The red, green, and blue values for the newly selected color are displayed
in the R, G, and B fields to the right of the preview area.

• Causes colorPalette to return a function handle that the host GUI can
use to get the currently selected color.

2 Clicking the Eraser toggle button, causes colorPalette to return a value,
NaN, that the host GUI can use to remove color from a data point.

3 Clicking the More Colors button displays the standard dialog box for
setting a color.

15-19

15 Examples of GUIs Created Programmatically

Calling the colorPalette Function
You can call the colorPalette function with a statement such as

mGetColorFcn = colorPalette('Parent',hPaletteContainer)

The colorPalette function accepts property value pairs as input arguments.
Only the custom property Parent is supported. This property specifies the
handle of the parent figure or panel that contains the color palette. If the call
to colorPalette does not specify a parent, it uses the current figure, gcf.
Unrecognized property names or invalid values are ignored.

colorPalette returns a function handle that the host GUI can call to get the
currently selected color. The host GUI can use the returned function handle
at any time before the color palette is destroyed. For more information,
see “Sharing Data Between Two GUIs” on page 15-26 for implementation
details. “Icon Editor” on page 15-29 is an example of a host GUI that uses
the colorPalette.

15-20

Color Palette

Techniques Used in the Example
This example illustrates the following techniques:

• Retrieving output from the GUI when it returns.

• Supporting custom input property/value pairs with data validation.

• Sharing data between two GUIs

See “Icon Editor” on page 15-29 for examples of these and other programming
techniques.

Note This example uses nested functions. For information about using
nested functions, see “Nested Functions” in the MATLAB Programming
documentation.

View and Run the Completed GUI M-File
If you are reading this in the MATLAB Help browser, you can click the
following link to display the MATLAB Editor with a complete listing of the
code that is discussed in the following sections.

Note The following link executes MATLAB commands and is designed to
work within the MATLAB Help browser. If you are reading this online or
in PDF, you should go to the corresponding section in the MATLAB Help
Browser to use the link.

• Click here to display the main GUI M-file in the MATLAB Editor.

• Click here to run the colorPalette GUI.

Subfunction Summary
The color palette example includes the callbacks listed in the following table.

15-21

15 Examples of GUIs Created Programmatically

Function Description

colorCellCallback Called by hPalettePanelSelectionChanged when any
color cell is clicked.

eraserToolCallback Called by hPalettePanelSelectionChanged when the
Eraser button is clicked.

hMoreColorButtonCallback Executes when the More Colors button is clicked. It calls
uisetcolor to open the standard color-selection dialog
box, and calls localUpdateColor to update the preview.

hPalettePanelSelectionChanged Executes when the GUI user clicks on a new color. This
is the SectionChangeFcn callback of the uibuttongroup
that exclusively manages the tools and color cells that it
contains. It calls the appropriate callback to service each
of the tools and color cells.

Note Three eventdata fields are defined for use with button groups
(uibuttongroup). These fields enable you to determine the previous and
current radio or toggle button selections maintained by the button group.
See SelectionChangeFcn in the Uibuttongroup Properties reference page
for more information.

The example also includes the helper functions listed in the following table.

15-22

Color Palette

Function Description

layoutComponent Dynamically creates the Eraser tool and the color
cells in the palette. It calls localDefineLayout.

localUpdateColor Updates the preview of the selected color.

getSelectedColor Returns the currently selected color which is
then returned to the colorPalette caller.

localDefineLayout Calculates the preferred color cell and tool sizes
for the GUI. It calls localDefineColors and
localDefineTools

localDefineTools Defines the tools shown in the palette. In this
example, the only tool is the Eraser button.

localDefineColors Defines the colors that are shown in the array
of color cells.

processUserInputs Determines if the property in a property/value
pair is supported. It calls localValidateInput.

localValidateInput Validates the value in a property/value pair.

M-File Structure
The colorPalette is programmed using nested functions. Its M-file is organized
in the following sequence:

1 Comments displayed in response to the help command.

2 Data creation. Because the example uses nested functions, defining this
data at the top level makes the data accessible to all functions without
having to pass them as arguments.

3 Command line input processing.

4 GUI figure and component creation.

5 GUI initialization.

6 Return output if it is requested.

15-23

15 Examples of GUIs Created Programmatically

7 Callback definitions. These callbacks, which service the GUI components,
are subfunctions of the colorPalette function and so have access to the
data and component handles created at the top level, without their having
to be passed as arguments.

8 Helper function definitions. These helper functions are subfunctions of
the colorPalette function and so have access to the data and component
handles created at the top level, without their having to be passed as
arguments.

Note For information about using nested functions, see “Nested Functions” in
the MATLAB Programming documentation.

GUI Programming Techniques
This topic explains the following GUI programming techniques as they are
used in the creation of the colorPalette.

• “Passing Input Arguments to a GUI” on page 15-24

• “Passing Output to a Caller on Returning” on page 15-26

• “Sharing Data Between Two GUIs” on page 15-26

See “Icon Editor” on page 15-29 for additional examples of these and other
programming techniques.

Passing Input Arguments to a GUI
Inputs to the GUI are custom property/value pairs. colorPalette allows one
such property: Parent. The names are case insensitive. The colorPalette
syntax is

mGetColorFcn = colorPalette('Parent',hPaletteContainer)

Definition and Initialization of the Properties. The colorPalette
function first defines a variable mInputArgs as varargin to accept the user
input arguments.

15-24

Color Palette

mInputArgs = varargin; % Command line arguments when invoking
% the GUI

The colorPalette function then defines the valid custom properties in a
3-by-3 cell array.

mPropertyDefs = {... % The supported custom property/value

% pairs of this GUI

'parent', @localValidateInput, 'mPaletteParent';

• The first column contains the property name.

• The second column contains a function handle for the function,
localValidateInput, that validates the input property values.

• The third column is the local variable that holds the value of the property.

colorPalette then initializes the properties with default values.

mPaletteParent = []; % Use input property 'parent' to initialize

Processing the Input Arguments. The processUserInputs helper
function processes the input property/value pairs. colorPalette calls
processUserInputs before it creates the components, to determine the parent
of the components.

% Process the command line input arguments supplied when
% the GUI is invoked
processUserInputs();

1 processUserInputs sequences through the inputs, if any, and tries
to match each property name to a string in the first column of the
mPropertyDefs cell array.

2 If it finds a match, processUserInputs assigns the value that was input
for the property to its variable in the third column of the mPropertyDefs
cell array.

3 processUserInputs then calls the helper function specified in the second
column of the mPropertyDefs cell array to validate the value that was
passed in for the property.

15-25

15 Examples of GUIs Created Programmatically

Passing Output to a Caller on Returning
If a host GUI calls the colorPalette function with an output argument, it
returns a function handle that the host GUI can call to get the currently
selected color.

The host GUI calls colorPalette only once. The call creates the color palette
in the specified parent and then returns the function handle. The host GUI
can call the returned function at any time before the color palette is destroyed.

The data definition section of the colorPalette M-file creates a cell array to
hold the output:

mOutputArgs = {}; % Variable for storing output when GUI returns

Just before returning, colorPalette assigns the function handle,
mgetSelectedColor, to the cell array mOutputArgs and then assigns
mOutputArgs to varargout to return the arguments.

mOutputArgs{} = @getSelectedColor;
if nargout>0

[varargout{1:nargout}] = mOutputArgs{:};
end

Sharing Data Between Two GUIs
The iconEditor embeds a GUI, the colorPalette, to enable the user to select
colors for the icon cells. The colorPalette returns a function handle the
iconEditor. The iconEditor can then call the returned function at any time to
get the selected color.

The colorPalette GUI. The colorPalette function defines a cell array,
mOutputArgs, to hold its output arguments.

mOutputArgs = {}; % Variable for storing output when GUI returns

15-26

Color Palette

Just before returning, colorPalette assigns mOutputArgs the function
handle for its getSelectedColor helper function and then assigns
mOutputArgs to varargout to return the arguments.

% Return user defined output if it is requested
mOutputArgs{1} =@getSelectedColor;
if nargout>0

[varargout{1:nargout}] = mOutputArgs{:};
end

The iconEditor executes the colorPalette’s getSeclectedColor function
whenever it invokes the function that colorPalette returns to it.

function color = getSelectedColor
% function returns the currently selected color in this
% colorPlatte

color = mSelectedColor;

The iconEditor GUI. The iconEditor function calls colorPalette only once
and specifies its parent to be a panel in the iconEditor.

% Host the ColorPalette in the PaletteContainer and keep the
% function handle for getting its selected color for editing
% icon.
mGetColorFcn = colorPalette('parent', hPaletteContainer);

This call creates the colorPalette as a component of the iconEditor and then
returns a function handle that iconEditor can call to get the currently
selected color.

The iconEditor’s localEditColor helper function calls mGetColorFcn,
the function returned by colorPalette, to execute the colorPalette’s
getSelectedColor function.

function localEditColor
% helper function that changes the color of an icon data
% point to that of the currently selected color in
% colorPalette

if mIsEditingIcon
pt = get(hIconEditAxes,'currentpoint');
x = ceil(pt(1,1));

15-27

15 Examples of GUIs Created Programmatically

y = ceil(pt(1,2));
color = mGetColorFcn();

% update color of the selected block
mIconCData(y, x,:) = color;

localUpdateIconPlot();
end

end

15-28

Icon Editor

Icon Editor

In this section...

“The Example” on page 15-29

“Techniques Used in the Example” on page 15-32

“View and Run the Completed GUI M-Files” on page 15-32

“Subfunction Summary” on page 15-32

“M-File Structure” on page 15-35

“GUI Programming Techniques” on page 15-35

The Example
This example creates a GUI that enables the user to create or edit an icon.
The figure below shows the editor.

15-29

15 Examples of GUIs Created Programmatically

The Components
The GUI includes the following components:

• A edit text that instructs the user or contains the name of the file to be
edited. The edit text is labeled using a static text.

• A push button to the right of the edit text enables the user to select an
existing icon file for editing.

• A panel containing an axes. The axes displays a 16-by-16 grid for drawing
an icon.

• A panel containing a button that shows a preview of the icon as it is being
created.

• A color palette that is created in a separate script and embedded in this
GUI. See “Color Palette” on page 15-17.

15-30

Icon Editor

• A panel, configured as a line, that separates the icon editor from the OK
and Cancel buttons.

• An OK push button that causes the GUI to return the icon as an
m-by-n-by-3 array and closes the GUI.

• A Cancel push button that closes the GUI without returning the icon.

Using the Icon Editor
These are the basic steps to create an icon:

1 Start the icon editor with a command such as

myicon = iconEditor('iconwidth',32,'iconheight',56);

where the iconwidth and iconheight properties specify the icon size in
pixels.

2 Color the squares in the grid.

• Click a color cell in the palette. That color is then displayed in the
palette preview.

• Click in specific squares of the grid to transfer the selected color to
those squares.

• Hold down the left mouse button and drag the mouse over the grid to
transfer the selected color to the squares that you touch.

• Change a color by writing over it with another color.

3 Erase the color in some squares.

• Click the Eraser button on the palette.

• Click in specific squares to erase those squares.

• Click and drag the mouse to erase the squares that you touch.

• Click a color cell to disable the Eraser.

4 Click OK to close the GUI and return, in myicon, the icon you created –
as a 32-by-65-by-3 array. Click Cancel to close the GUI and return an
empty array [] in myicon.

15-31

15 Examples of GUIs Created Programmatically

Techniques Used in the Example
This example illustrates the following GUI programming techniques:

• Creating a GUI that does not return a value until the user makes a choice.

• Retrieving output from the GUI when it returns.

• Supporting custom input property/value pairs with data validation.

• Protecting a GUI from being changed from the command line.

• Creating a GUI that runs on multiple platforms

• Sharing data between two GUIs

• Achieving the proper resize behavior

Note This example uses nested functions. For information about using
nested functions, see “Nested Functions” in the MATLAB Programming
documentation.

View and Run the Completed GUI M-Files
If you are reading this in the MATLAB Help browser, you can click the
following links to display the MATLAB Editor with a complete listing of the
code that is discussed in the following sections.

Note The following links execute MATLAB commands and are designed to
work within the MATLAB Help browser. If you are reading this online or
in PDF, you should go to the corresponding section in the MATLAB Help
Browser to use the links.

• Click here to display the main GUI M-file in the MATLAB Editor.

• Click here to display the utility iconRead M-file in the MATLAB Editor.

• Click here to run the iconEditor GUI.

Subfunction Summary
The icon editor example includes the callbacks listed in the following table.

15-32

Icon Editor

Function Description

hMainFigureWindowButtonDownFcn Executes when the user clicks
a mouse button anywhere
in the GUI figure. It calls
localEditColor.

hMainFigureWindowButtonUpFcn Executes when the user releases
the mouse button.

hMainFigureWindowButtonMotionFcn Executes when the user drags
the mouse anywhere in the figure
with a button pressed. It calls
localEditColor.

hIconFileEditCallback Executes after the user manually
changes the filename of the
icon to be edited. It calls
localUpdateIconPlot.

hIconFileEditButtondownFcn Executes the first time the user
clicks the Icon file edit box.

hOKButtonCallback Executes when the user clicks the
OK push button.

hCancelButtonCallback Executes when the user clicks the
Cancel push button.

hIconFileButtonCallback Executes when the user clicks the
Icon file push button . It calls
localUpdateIconPlot.

The example also includes the helper functions listed in the following table.

15-33

15 Examples of GUIs Created Programmatically

Function Description

localEditColor Changes the color of an icon
data point to the currently
selected color. Call the function
mGetColorFcn returned by the
colorPalette function. It also calls
localUpdateIconPlot.

localUpdateIconPlot Updates the icon preview. It also
updates the axes when an icon is
read from a file.

processUserInputs Determines if the property in a
property/value pair is supported. It
calls localValidateInput.

localValidateInput Validates the value in a
property/value pair.

prepareLayout Makes changes needed for look and
feel and for running on multiple
platforms.

15-34

Icon Editor

M-File Structure
The iconEditor is programmed using nested functions. Its M-file is organized
in the following sequence:

1 Comments displayed in response to the help command.

2 Data creation. Because the example uses nested functions, defining this
data at the top level makes the data accessible to all functions without
having to pass them as arguments.

3 GUI figure and component creation.

4 Command line input processing.

5 GUI initialization.

6 Block execution of the program until the GUI user clicks OK or Cancel.

7 Return output if requested.

8 Callback definitions. These callbacks, which service the GUI components,
are subfunctions of the iconEditor function and so have access to the
data and component handles created at the top level, without their having
to be passed as arguments.

9 Helper function definitions. These helper functions are subfunctions of the
iconEditor function and so have access to the data and component handles
created at the top level, without their having to be passed as arguments.

Note For information about using nested functions, see “Nested Functions” in
the MATLAB Programming documentation.

GUI Programming Techniques
This topic explains the following GUI programming techniques as they are
used in the creation of the iconEditor.

• “Returning Only After the User Makes a Choice” on page 15-36

• “Passing Input Arguments to a GUI” on page 15-37

15-35

15 Examples of GUIs Created Programmatically

• “Retrieving Output on Return from a GUI” on page 15-38

• “Protecting a GUI from Inadvertent Access” on page 15-39

• “Running a GUI on Multiple Platforms” on page 15-40

• “Making a GUI Modal” on page 15-41

• “Sharing Data Between Two GUIs” on page 15-42

• “Achieving Proper Resize Behavior” on page 15-43

Returning Only After the User Makes a Choice
At the end of the initialization code, and just before returning, iconEditor calls
uiwait with the handle of the main figure to make the GUI blocking.

% Make the GUI blocking
uiwait(hMainFigure);

% Return the edited icon CData if it is requested
mOutputArgs{1} =hMainFigure;
mOutputArgs{2} =mIconCData;
if nargout>0

[varargout{1:nargout}] = mOutputArgs{:};
end

Placement of the call to uiwait is important. Calling uiwait stops the
sequential execution of the iconEdit M-file after the GUI is initialized and
just before the file would return the edited icon data.

When the user clicks the OK button, its callback, hOKButtonCallback, calls
uiresume which enables the M-file to resume execution where it stopped and
return the edited icon data.

function hOKButtonCallback(hObject, eventdata)
% Callback called when the OK button is pressed

uiresume;
delete(hMainFigure);

end

15-36

Icon Editor

When the user clicks the Cancel button, its callback,
hOCancelButtonCallback, effectively deletes the icon data then
calls uiresume. This enables the M-file to resume execution where it stopped
but it returns a null matrix.

function hCancelButtonCallback(hObject, eventdata)
% Callback called when the Cancel button is pressed

mIconCData =[];
uiresume;
delete(hMainFigure);

end

Passing Input Arguments to a GUI
Inputs to the GUI are custom property/value pairs. iconEdit allows three
such properties: IconWidth, IconHeight, and IconFile. The names are
caseinsensitive.

Definition and Initialization of the Properties. The iconEdit first defines
a variable mInputArgs as varargin to accept the user input arguments.

mInputArgs = varargin; % Command line arguments when invoking
% the GUI

The iconEdit function then defines the valid custom properties in a 3-by-3
cell array.

mPropertyDefs = {... % Supported custom property/value

% pairs of this GUI

'iconwidth', @localValidateInput, 'mIconWidth';

'iconheight', @localValidateInput, 'mIconHeight';

'iconfile', @localValidateInput, 'mIconFile'};

• The first column contains the property name.

• The second column contains a function handle for the function,
localValidateInput, that validates the input property values.

• The third column is the local variable that holds the value of the property.

iconEdit then initializes the properties with default values.

15-37

15 Examples of GUIs Created Programmatically

mIconWidth = 16; % Use input property 'iconwidth' to initialize

mIconHeight = 16; % Use input property 'iconheight' to initialize

mIconFile = fullfile(matlabroot,'/toolbox/matlab/icons/');

The values of mIconWidth and mIconHeight are interpreted as pixels. The
fullfile function builds a full filename from parts.

Processing the Input Arguments. The processUserInputs helper function
processes the input property/value pairs. iconEdit calls processUserInputs
after the layout is complete and just before it needs the inputs to initialize
the GUI.

% Process the command line input arguments supplied when
% the GUI is invoked
processUserInputs();

1 processUserInputs sequences through the inputs, if any, and tries
to match each property name to a string in the first column of the
mPropertyDefs cell array.

2 If it finds a match, processUserInputs assigns the value that was input
for the property to its variable in the third column of the mPropertyDefs
cell array.

3 processUserInputs then calls the helper function specified in the second
column of the mPropertyDefs cell array to validate the value that was
passed in for the property.

Retrieving Output on Return from a GUI
If you call iconEditor with an output argument, it returns a truecolor image
as an n-by-m-by-3 array.

The data definition section of the M-file creates a cell array to hold the output:

mOutputArgs = {}; % Variable for storing output when GUI returns

Following the call to uiwait, which stops the sequential execution of the
M-file, iconEdit assigns the constructed icon array, mIconEdit, to the cell
array mOutputArgs and then assigns mOutputArgs to varargout to return the
arguments.

15-38

Icon Editor

mOutputArgs{} =mIconCData;
if nargout>0

[varargout{1:nargout}] = mOutputArgs{:};
end

This code is the last that iconEditor executes before returning. It
executes only after clicking the OK or Cancel button triggers execution of
hOKButtonCallback or hCancelButtonCallback, which call uiresume to
resume execution.

Protecting a GUI from Inadvertent Access
The prepareLayout utility function protects the iconEditor from inadvertently
being altered from the command line by setting the HandleVisibility
properties of all the components. The iconEditor calls prepareLayout with
the handle of the main figure, in the initialization section of the M-file.

% Make changes needed for proper look and feel and running on
% different platforms
prepareLayout(hMainFigure);

prepareLayout first uses findall to retrieve the handles of all objects
contained in the figure. The list of retrieved handles includes the
colorPalette, which is embedded in the iconEditor, and its children.
The figure’s handle is passed to prepareLayout as the input argument
topContainer.

allObjects = findall(topContainer);

prepareLayout then sets the HandleVisibility properties of all those
objects that have one to Callback.

% Make GUI objects available to callbacks so that they cannot
% be changed accidentally by other MATLAB commands
set(allObjects(isprop(allObjects,'HandleVisibility')),...

'HandleVisibility','Callback');

Setting HandleVisibility to Callback causes the GUI handles to be visible
from within callback routines or functions invoked by callback routines, but
not from within functions invoked from the command line. This ensures
that command-line users cannot inadvertently alter the GUI when it is the
current figure.

15-39

15 Examples of GUIs Created Programmatically

Running a GUI on Multiple Platforms
The prepareLayout utility function sets various properties of all the GUI
components to enable the GUI to retain the correct look and feel on multiple
platforms. The iconEditor calls prepareLayout with the handle of the main
figure, in the initialization section of the M-file.

% Make changes needed for proper look and feel and running on
% different platforms
prepareLayout(hMainFigure);

First, prepareLayout uses findall to retrieve the handles of all objects
contained in the figure. The list of retrieved handles also includes the
colorPalette, which is embedded in the iconEditor, and its children. The
figure’s handle is passed to findall as the input argument topContainer.

function prepareLayout(topContainer)
...
allObjects = findall(topContainer);

Background Color. The default component background color is the standard
system background color on which the GUI is running. This color varies on
different computer systems, e.g., the standard shade of gray on the PC differs
from that on UNIX, and may not match the default GUI background color.

The prepareLayout function sets the background color of the GUI to be the
same as the default component background color. This provides a consistent
look within the GUI, as well as with other application GUIs.

It first retrieves the default component background color from the root object.
Then sets the GUI background color using the figure’s Color property.

defaultColor = get(0,'defaultuicontrolbackgroundcolor');
if isa(handle(topContainer),'figure')

...

% Make figure color match that of GUI objects
set(topContainer, 'Color',defaultColor);

end

15-40

Icon Editor

Selecting Units. The prepareLayout function decides what units to use
based on the GUI’s resizability. It uses strcmpi to determine the value of the
GUI’s Resize property. Depending on the outcome, it sets the Units properties
of all the objects to either Normalized or Characters.

% Make the GUI run properly across multiple platforms by using
% the proper units
if strcmpi(get(topContainer, 'Resize'),'on')

set(allObjects(isprop(allObjects,'Units')),...
'Units','Normalized');

else
set(allObjects(isprop(allObjects,'Units')),...

'Units','Characters');
end

For a resizable figure, normalized units map the lower-left corner of the
figure and of each component to (0,0) and the upper-right corner to (1.0,1.0).
Because of this, component size is automatically adjusted to its parent’s size
when the GUI is displayed.

For a nonresizable figure, character units automatically adjusts the size and
relative spacing of components as the GUI displays on different computers.

Character units are defined by characters from the default system font. The
width of a character unit equals the width of the letter x in the system font.
The height of a character unit is the distance between the baselines of two
lines of text. Note that character units are not square.

Making a GUI Modal
iconEditor is a modal figure. Modal figures remain stacked above all normal
figures and the MATLAB command window. This forces the user to respond
without being able to interact with other windows. iconEditor makes the main
figure modal by setting its WindowStyle property to modal.

hMainFigure = figure(...
...

'WindowStyle','modal',...

See the Figure Properties in the MATLAB Function Reference documentation
for more information about using the WindowStyle property.

15-41

15 Examples of GUIs Created Programmatically

Sharing Data Between Two GUIs
The iconEditor embeds a GUI, the colorPalette, to enable the user to select
colors for the icon cells. The colorPalette returns the selected color to the
iconEditor via a function handle.

The colorPalette GUI. Like the iconEditor, the colorPalette defines a cell
array, mOutputArgs, to hold its output arguments.

mOutputArgs = {}; % Variable for storing output when GUI returns

Just before returning, colorPalette assigns mOutputArgs the function
handle for its getSelectedColor helper function and then assigns
mOutputArgs to varargout to return the arguments.

% Return user defined output if it is requested
mOutputArgs{1} =@getSelectedColor;
if nargout>0

[varargout{1:nargout}] = mOutputArgs{:};
end

The iconEditor executes the colorPalette’s getSeclectedColor function
whenever it invokes the function that colorPalette returns to it.

function color = getSelectedColor
% function returns the currently selected color in this
% colorPlatte

color = mSelectedColor;

The iconEditor GUI. The iconEditor function calls colorPalette only once
and specifies its parent to be a panel in the iconEditor.

% Host the ColorPalette in the PaletteContainer and keep the
% function handle for getting its selected color for editing
% icon.
mGetColorFcn = colorPalette('parent', hPaletteContainer);

This call creates the colorPalette as a component of the iconEditor and then
returns a function handle that iconEditor can call to get the currently
selected color.

15-42

Icon Editor

The iconEditor’s localEditColor helper function calls mGetColorFcn,
the function returned by colorPalette, to execute the colorPalette’s
getSelectedColor function.

function localEditColor
% helper function that changes the color of an icon data
% point to that of the currently selected color in
% colorPalette

if mIsEditingIcon
pt = get(hIconEditAxes,'currentpoint');
x = ceil(pt(1,1));
y = ceil(pt(1,2));
color = mGetColorFcn();
% update color of the selected block
mIconCData(y, x,:) = color;
localUpdateIconPlot();

end
end

Achieving Proper Resize Behavior
The prepareLayout utility function sets the Units properties of all the GUI
components to enable the GUI to resize correctly on multiple platforms. The
iconEditor calls prepareLayout with the handle of the main figure, in the
initialization section of the M-file.

prepareLayout(hMainFigure);

First, prepareLayout uses findall to retrieve the handles of all objects
contained in the figure. The list of retrieved handles includes the
colorPalette, which is embedded in the iconEditor, and its children. The
figure’s handle is passed to findall as the input argument topContainer.

function prepareLayout(topContainer)
...
allObjects = findall(topContainer);

Then, prepareLayout uses strcmpi to determine if the GUI is resizable.
Depending on the outcome, it sets the Units properties of all the objects to
either Normalized or Characters.

15-43

15 Examples of GUIs Created Programmatically

if strcmpi(get(topContainer, 'Resize'),'on')
set(allObjects(isprop(allObjects,'Units')),...

'Units','Normalized');
else

set(allObjects(isprop(allObjects,'Units')),...
'Units','Characters');

end

Note The iconEditor is resizable because it accepts the default value, on, of
the figure Resize property.

Resizable Figure. Normalized units map the lower-left corner of the figure
and of each component to (0,0) and the upper-right corner to (1.0,1.0). Because
of this, when the GUI is resized, component size is automatically changed
relative its parent’s size.

Nonresizable Figure. Character units automatically adjusts the size and
relative spacing of components as the GUI displays on different computers.

Character units are defined by characters from the default system font. The
width of a character unit equals the width of the letter x in the system font.
The height of a character unit is the distance between the baselines of two
lines of text. Note that character units are not square.

15-44

A

Examples

Use this list to find examples in the documentation.

A Examples

Simple Examples (GUIDE)
“Example: Simple GUI” on page 2-3
“Using a Modal Dialog to Confirm an Operation” on page 10-52

Simple Examples (Programmatic)
“Example: Simple GUI” on page 3-2

Programming GUI Components (GUIDE)
“Push Button” on page 8-20
“Toggle Button” on page 8-21
“Radio Button” on page 8-22
“Check Box” on page 8-23
“Edit Text” on page 8-23
“Slider” on page 8-25
“List Box” on page 8-25
“Pop-Up Menu” on page 8-26
“Panel” on page 8-27
“Button Group” on page 8-28
“Axes” on page 8-30
“ActiveX Control” on page 8-33
“Menu Item” on page 8-41

Application-Defined Data (GUIDE)
“GUI Data Example: Passing Data Between Components” on page 9-8
“Application Data Example: Passing Data Between Components” on page
9-11
“UserData Property Example: Passing Data Between Components” on
page 9-12

A-2

Application Examples (GUIDE)

Application Examples (GUIDE)
“GUI with Multiple Axes” on page 10-2
“List Box Directory Reader” on page 10-9
“Accessing Workspace Variables from a List Box” on page 10-16
“A GUI to Set Simulink Model Parameters” on page 10-21
“An Address Book Reader” on page 10-35

GUI Layout (Programmatic)
“File Template” on page 11-4
“Check Box” on page 11-16
“Edit Text” on page 11-17
“List Box” on page 11-18
“Pop-Up Menu” on page 11-20
“Push Button” on page 11-21
“Radio Button” on page 11-23
“Slider” on page 11-24
“Static Text” on page 11-26
“Toggle Button” on page 11-27
“Panel” on page 11-30
“Button Group” on page 11-32
“Adding Axes” on page 11-33
“Adding ActiveX Controls” on page 11-37

Programming GUI Components (Programmatic)
“Check Box” on page 12-16
“Edit Text” on page 12-16
“List Box” on page 12-18
“Pop-Up Menu” on page 12-19
“Push Button” on page 12-20
“Radio Button” on page 12-21
“Slider” on page 12-21

A-3

A Examples

“Toggle Button” on page 12-22
“Panel” on page 12-23
“Button Group” on page 12-23
“Programming Axes” on page 12-25
“Programming ActiveX Controls” on page 12-28
“Programming Menu Items” on page 12-28
“Programming Toolbar Tools” on page 12-31

Application-Defined Data (Programmatic)
“Nested Functions Example: Passing Data Between Components” on page
13-9
“GUI Data Example: Passing Data Between Components” on page 13-13
“Application Data Example: Passing Data Between Components” on page
13-16
“UserData Property Example: Passing Data Between Components” on
page 13-18

Application Examples (Programmatic)
“GUI with Axes, Menu, and Toolbar” on page 15-3
“Color Palette” on page 15-17
“Icon Editor” on page 15-29

A-4

Index

IndexA
ActiveX controls

adding to layout 6-51
programming 8-33 12-28

aligning components
in GUIDE 6-62

Alignment Tool
GUIDE 6-62

application data
appdata functions 9-5 13-5

application-defined data
application data 9-5 13-5
GUI data 9-2 13-2
in GUIDE GUIs 9-1
UserData property 9-6 13-7

axes
multiple in GUI 10-2

axes, plotting when hidden 10-31

B
background color

system standard for GUIs 6-102 11-63
backward compatibility

GUIs to Version 6 5-4
button groups 6-22 11-11

adding components 6-25

C
callback

arguments 8-10
callback templates (GUIDE)

add comments 5-8
callbacks

sharing data 9-8
check boxes 8-23 12-16
color of GUI background 5-12
command-line accessibility of GUIs 5-10

compatibility across platforms
GUI design 6-101

component identifier
assigning in GUIDE 6-27

component palette
show names 5-7

components for GUIs
GUIDE 6-19

components in GUIDE
aligning 6-62
copying 6-54
cutting and clearing 6-54
front-to-back positioning 6-55
moving 6-57
pasting and duplicating 6-55
resizing 6-60
selecting 6-54
tab order 6-67

confirmation
exporting a GUI 5-2
GUI activation 5-2

context menus
associating with an object 6-82
creating in GUIDE 6-70
creating with GUIDE 6-79
menu items 6-80
parent menu 6-79

cross-platform compatibility
GUI background color 6-102 11-63
GUI design 6-101
GUI fonts 6-101 11-62
GUI units 6-103 11-64

D
data

sharing among GUI callbacks 9-8
default system font

in GUIs 6-101 11-62

Index-1

Index

E
edit text 8-23 12-16
exporting a GUI

confirmation 5-2

F
FIG-file

generate in GUIDE 5-13
generated by GUIDE 5-11

files
GUIDE GUI 7-2

fixed-width font
in GUIs 6-102 11-62

fonts
using specific in GUIs 6-102 11-63

function prototypes
GUIDE option 5-11

G
GUI

adding components with GUIDE 6-18
application-defined data (GUIDE) 9-1
command-line arguments 8-16
compatibility with Version 6 5-4
designing 6-3
GUIDE options 5-9
help button 10-32
laying out in GUIDE 6-1
naming in GUIDE 7-2
opening function 8-16
renaming in GUIDE 7-3
resize function 10-48
resizing 5-10
running 7-10
saving in GUIDE 7-4
standard system background color 6-102

11-63
using default system font 6-101 11-62

with multiple axes 10-2
GUI components

aligning in GUIDE 6-57
GUIDE 6-19
how to add in GUIDE 6-22
moving in GUIDE 6-57
tab order in GUIDE 6-67

GUI data
application-defined data 9-2 13-2

GUI export
confirmation 5-2

GUI files
in GUIDE 7-2

GUI layout in GUIDE
copying components 6-54
cutting and clearing components 6-54
moving components 6-57
pasting and duplicating components 6-55
selecting components 6-54

GUI object hierarchy
viewing in GUIDE 6-100

GUI options (GUIDE)
function prototypes 5-11
singleton 5-11
system color background 5-11

GUI size
setting with GUIDE 6-16

GUI template
selecting in GUIDE 6-7

GUI units
cross-platform compatible 6-103 11-64

GUIDE
adding components to GUI 6-18
application examples 10-1
application-defined data 9-1
command-line accessibility of GUIs 5-10
coordinate readouts 6-57
creating menus 6-70
generate FIG-file only 5-13
generated M-file 5-11

Index-2

Index

grids and rulers 6-65
GUI background color 5-12
GUI files 7-2
how to add components 6-22
Object Browser 6-100
preferences 5-2
renaming files 7-3
resizing GUIs 5-10
saving a GUI 7-4
selecting template 6-7
starting 6-5
tool summary 4-3
toolbar editor 6-87
what is 4-2

GUIDE callback templates
add comments 5-8

GUIDE GUIs
figure toolbars for 6-86

H
handles structure

adding fields 9-4 13-4
help button for GUIs 10-32
hidden figure, accessing 10-31

I
identifier

assigning to GUI component 6-27

L
Layout Editor

show component names 5-7
Layout Editor window

show file extension 5-8
show file path 5-8

list boxes 8-25 12-18
example 10-9

M
M-file

generated by GUIDE 5-11
menu item

check 8-42 12-30
menus

callbacks 8-41 12-28
context menus in GUIDE 6-79
creating in GUIDE 6-70
drop-down menus 6-71
menu bar menus 6-71
menu items 6-74 6-80
parent of context menu 6-79
pop-up 8-26 12-19
specifying properties 6-73

moving components
in GUIDE 6-57

N
naming a GUI

in GUIDE 7-2

O
Object Browser (GUIDE) 6-100
opening .fig files 10-15
options

GUIDE GUIs 5-9

P
panels 6-22 11-11

adding components 6-25
pop-up menus 8-26 12-19
preferences

GUIDE 5-2

R
radio buttons 8-22 12-21

Index-3

Index

renaming GUIDE GUIs 7-3
resize function for GUI 10-48
resizing components

in GUIDE 6-60
resizing GUIs 5-10
running a GUI 7-10

S
saving GUI

in GUIDE 7-4
shortcut menus

creating in GUIDE 6-79
single instance 5-12
singleton GUI

GUIDE option 5-11
size of GUI

setting with GUIDE 6-16
sliders 6-21 11-12
system color background

GUIDE option 5-11

T
tab order

components in GUIDE 6-67
Tab Order Editor 6-67
Tag property

assigning in GUIDE 6-27
template for GUI

selecting in GUIDE 6-7
toggle buttons 8-21 12-22
toolbar

show in GUIDE Layout Editor 5-7
Toolbar Editor

using 6-87
toolbar menus

creating with GUIDE 6-71
toolbars

creating 6-84

U
units for GUIs

cross-platform compatible 6-103 11-64
UserData property

application-defined data 9-6 13-7

Index-4

MATLAB® 7
Data Analysis

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

MATLAB Data Analysis

© COPYRIGHT 2005–2007 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined
in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of
this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government’s
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, SimBiology,
SimHydraulics, SimEvents, and xPC TargetBox are registered trademarks and The
MathWorks, the L-shaped membrane logo, Embedded MATLAB, and PolySpace are
trademarks of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective
holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
September 2005 Online only New for MATLAB 7.1 (Release 14SP3)
March 2006 Online only Revised for Version 7.2 (Release 2006a)
September 2006 Online only Revised for Version 7.3 (Release 2006b)
March 2007 Online only Revised for Version 7.4 (Release 2007a)
September 2007 Online only Revised for Version 7.5 (Release 2007b)

Contents

Preparing Data for Analysis

1
MATLAB for Data Analysis . 1-3

Introduction . 1-3
Calculations on Vectors and Matrices 1-4
MATLAB GUIs for Data Analysis . 1-4
Related Toolboxes . 1-5

Importing and Exporting Data . 1-7

Plotting Data . 1-8
Introduction . 1-8
Example — Loading and Plotting Data 1-8

Removing and Interpolating Missing Values 1-11
Representing Missing Data Values 1-11
Calculating with NaNs . 1-11
Removing NaNs from the Data . 1-12
Interpolating Missing Data . 1-13

Removing Outliers . 1-14

Filtering Data . 1-16
Introduction . 1-16
Filter Function . 1-16
Example 1 — Moving Average Filter 1-17
Example 2 — Discrete Filter . 1-18

Detrending Data . 1-21
Introduction . 1-21
Example — Removing Linear Trends from Data 1-21

Finite Differences . 1-25

v

Descriptive Statistics . 1-26
Functions for Calculating Descriptive Statistics 1-26
Example — Using MATLAB Data Statistics 1-29

Linear Regression Analysis

2
Linear Regression . 2-2

Introduction . 2-2
Residuals and Goodness of Fit . 2-3
When to Use the Curve Fitting Toolbox 2-3

Correlation Analysis . 2-5
Introduction . 2-5
Covariance . 2-6
Correlation Coefficients . 2-7

Interactive Fitting . 2-9
The Basic Fitting GUI . 2-9
Preparing for Basic Fitting . 2-9
Opening the Basic Fitting GUI . 2-10
Example — Using Basic Fitting GUI 2-11

Programmatic Fitting . 2-22
MATLAB Functions for Polynomial Models 2-22
Linear Model with Nonpolynomial Terms 2-26
Multiple Regression . 2-28
Example — Data Fitting Using MATLAB Functions 2-29

Fourier Analysis

3
Introduction . 3-2

Function Summary . 3-3

vi Contents

Calculating Fourier Transforms . 3-4
Introduction . 3-4
Example — FFT of a Column Vector 3-5

Example — Sunspot Periodicity . 3-7

Magnitude and Phase of Transformed Data 3-11

FFT Length Versus Performance . 3-13

Time Series Objects and Methods

4
Introduction . 4-2

Time Series Data Sample . 4-3

Example — Time Series Objects and Methods 4-6
Creating Time Series Objects . 4-6
Viewing Time Series Objects . 4-8
Modifying Time Series Units and Interpolation Method . . 4-11
Defining Events . 4-12
Creating Time Series Collection Objects 4-12
Resampling a Time Series Collection Object 4-14
Adding a Data Sample to a Time Series Collection

Object . 4-15
Removing and Interpolating Missing Data 4-16
Removing a Time Series from a Time Series Collection . . . 4-18
Changing a Numerical Time Vector to Date Strings 4-18
Plotting Time Series Collection Members 4-19

Time Series Constructor . 4-21
Time Vector Format . 4-21
Time Series Constructor Syntax . 4-22
Time Series Properties . 4-24

Time Series Methods . 4-31

vii

General Methods . 4-31
Data and Time Manipulation Methods 4-32
Event Methods . 4-33
Arithmetic Operation Methods . 4-34
Statistical Methods . 4-35

Time Series Collection Constructor 4-36
Introduction . 4-36
Time Series Collection Constructor Syntax 4-36
Time Series Collection Properties . 4-38

Time Series Collection Methods . 4-40
General Time Series Collection Methods 4-40
Data and Time Manipulation Methods 4-40

Time Series Tools

5
Introduction . 5-2

Opening Time Series Tools . 5-2
Getting Help . 5-3
Time Series Tools Window . 5-3
Time Series Tools Workflow . 5-5
Generating Reusable M-Code . 5-6

Importing and Exporting Data . 5-7
Types of Data You Can Import . 5-7
How to Import Data . 5-7
Changes to Data Representation During Import 5-9
Importing Multivariate Data . 5-10
Importing Data with Missing Values 5-11
Exporting Data from Time Series Tools 5-12

Plotting Time Series . 5-13
Types of Plots in Time Series Tools 5-13
Creating a Plot . 5-14
Customizing Line and Marker Styles 5-15
Editing Plot Appearance . 5-15
Time Plots . 5-17

viii Contents

Spectral Plots . 5-18
Histograms . 5-20
Correlation Plots . 5-21
XY Plots . 5-26

Selecting Data for Analysis . 5-28
Selecting Data Using Rules . 5-28
Selecting Data Graphically . 5-28
Excluding Data from Analysis . 5-30

Editing Data, Time, Attributes, and Events 5-31
Displaying the Data Table . 5-31
Editing Data and Time . 5-32
Defining Data Attributes . 5-34
Assigning Quality Codes to Data . 5-36
Defining Events . 5-37

Processing and Manipulating Time Series 5-41

Example — Time Series Tools . 5-42
Loading Data into the MATLAB Workspace 5-42
Starting Time Series Tools . 5-42
Enabling M-Code Generation . 5-42
Importing Data into Time Series Tools 5-43
Creating a Time Plot . 5-46
Resampling Time Series . 5-51
Comparing Data on an XY Plot . 5-53
Viewing Generated M-Code . 5-55
Exporting Time Series to the Workspace 5-57

Index

ix

x Contents

1

Preparing Data for Analysis

The following sections summarize MATLAB® data-analysis capabilities, and
provide information about preparing your data for analysis.

MATLAB for Data Analysis (p. 1-3) Provides an overview of data
analysis using MATLAB

Importing and Exporting Data
(p. 1-7)

Explains where to get information
about importing and exporting data

Plotting Data (p. 1-8) Provides information about
MATLAB plots, and includes an
example of loading data from a text
file and creating a time plot

Removing and Interpolating Missing
Values (p. 1-11)

Describes using NaNs to represent
missing data, as well as removing or
interpolating these values

Removing Outliers (p. 1-14) Describes how to identify and remove
values that seem inconsistent with
the majority of the data

Filtering Data (p. 1-16) Describes how to smooth and shape
data using filters

Detrending Data (p. 1-21) Describes how to remove the mean
or a best-fit line from the data

1 Preparing Data for Analysis

Finite Differences (p. 1-25) Summarizes MATLAB functions for
computing finite differences

Descriptive Statistics (p. 1-26) Summarizes MATLAB functions for
calculating descriptive statistics and
provides an example of using the
Data Statistics dialog box

1-2

MATLAB for Data Analysis

MATLAB for Data Analysis

In this section...

“Introduction” on page 1-3

“Calculations on Vectors and Matrices” on page 1-4

“MATLAB GUIs for Data Analysis” on page 1-4

“Related Toolboxes” on page 1-5

Introduction
MATLAB provides functions and GUIs to perform a variety of common
data-analysis tasks, such as plotting data, computing descriptive statistics,
and performing linear correlation analysis, data fitting, and Fourier analysis.

Typically, the first step to any data analysis is to plot the data. After
examining the plot, you can determine which portions of the data to include in
the analysis. You can also use the plot to evaluate if your data contains any
features that might distort or confuse the analysis results, and then process
your data to work only with the regions of interest.

This chapter describes the common techniques you can use to ready your data
for analysis. When you work with empirical data, it is often necessary to
treat it by doing the following:

• Removing or interpolating missing values. For more information, see
“Removing and Interpolating Missing Values” on page 1-11.

• Removing outliers. For more information, see “Removing Outliers” on page
1-14.

• Smoothing the data using a first-order filter, a transfer function, or an ideal
filter. For more information, see “Filtering Data” on page 1-16.

• Removing the mean or a linear trend (detrending). For more information,
see “Detrending Data” on page 1-21.

• Differencing the data. For more information, see “Finite Differences” on
page 1-25.

1-3

1 Preparing Data for Analysis

After isolating the data of interest, you can proceed with the core
data-analysis tasks, which might include basic data fitting (see Chapter 2,
“Linear Regression Analysis”) and Fourier analysis (see Chapter 3, “Fourier
Analysis”). If your data analysis requires more advanced or specialized
functionality, see “Related Toolboxes” on page 1-5 to learn about the toolboxes
available from The MathWorks.

If you are working with time series data, MATLAB provides the timeseries
and tscollection objects and methods that enable you to efficiently
represent and manipulate time series data. For more information about
creating and working with these objects, see Chapter 4, “Time Series Objects
and Methods”. Alternatively, you can use the MATLAB Time Series Tools
graphical user interface (GUI) to import, plot, and analyze time series. For
more information, see Chapter 5, “Time Series Tools”.

Calculations on Vectors and Matrices
Whereas some MATLAB functions support only vector inputs, others accept
matrices.

When your data is a vector, the result is the same whether the vector has a
rowwise or columnwise orientation.

However, when your data is a matrix, MATLAB performs calculations
independently for each column. This means that when you pass a matrix
as an argument to the function max, for example, the result is a row vector
containing maximum data values for each column in the matrix.

Note When your data is a matrix where each row contains a data set, you
must transpose the matrix before proceeding with the data-analysis tasks to
make the data sets have a columnwise orientation. For example, to transpose
a real matrix A, use the syntax A'.

MATLAB GUIs for Data Analysis
In addition to the various MATLAB functions for performing data analysis,
MATLAB provides four graphical user interfaces (GUIs) that facilitate

1-4

MATLAB for Data Analysis

common data-analysis tasks. The following table lists these GUIs and tells
you how to get more information about each one.

MATLAB GUIs for Data Analysis

GUI Description More Information

MATLAB
Figure
window

For plotting variables in the
MATLAB workspace and
editing plot properties

MATLAB Graphics
documentation

Data
Statistics
dialog box

For calculating and plotting
descriptive statistics

“Example — Using MATLAB
Data Statistics” on page 1-29

Basic
Fitting
dialog box

For basic data fitting using
polynomial and spline
models, as well as plotting
fitted data and residuals

“Interactive Fitting” on page
2-9

Time Series
Tools

For plotting and
manipulating time series
data

Chapter 5, “Time Series
Tools”

Related Toolboxes
The following table summarizes the toolboxes that extend MATLAB
data-analysis capabilities. For the latest information about these and other
MathWorks products, point your Web browser to

www.mathworks.com

Toolboxes That Extend MATLAB Data Analysis

Toolbox Description

Bioinformatics Toolbox Import, analyze, and visualize genomic,
proteomic, and microarray data.

Curve Fitting Toolbox Interactively model one-dimensional data.

Financial Toolbox Analyze financial data and develop financial
algorithms.

1-5

http://www.mathworks.com/
http://www.mathworks.com/products/bioinfo/
http://www.mathworks.com/products/curvefitting/
http://www.mathworks.com/products/finance/

1 Preparing Data for Analysis

Toolboxes That Extend MATLAB Data Analysis (Continued)

Toolbox Description

Image Processing
Toolbox

Perform image processing, analysis, and
algorithm development.

Model-Based Calibration
Toolbox

Calibrate complex powertrain systems.

Neural Network Toolbox Design and simulate neural networks.

Optimization Toolbox Fit nonlinear models to data.

Signal Processing
Toolbox

Perform signal processing, analysis, and
algorithm development.

Spline Toolbox Create and manipulate spline approximation
models of data.

Statistics Toolbox Analyze and model data, simulate systems, and
develop statistical algorithms.

System Identification
Toolbox

Create linear dynamic models from measured
input-output data.

Wavelet Toolbox Analyze and synthesize signals and images
using wavelet techniques.

1-6

http://www.mathworks.com/products/image/
http://www.mathworks.com/products/mbc/
http://www.mathworks.com/products/neuralnet/
http://www.mathworks.com/products/optimization/
http://www.mathworks.com/products/signal/
http://www.mathworks.com/products/splines/
http://www.mathworks.com/products/statistics/
http://www.mathworks.com/products/sysid/
http://www.mathworks.com/products/wavelet/

Importing and Exporting Data

Importing and Exporting Data
The first step in analyzing data is to import it into MATLAB. The MATLAB
Programming documentation provides detailed information about supported
data formats and the functions for bringing data into MATLAB.

The easiest way to import data into MATLAB is to use the MATLAB Import
Wizard, as described in the MATLAB Programming documentation. With the
Import Wizard, you can import the following types of data sources:

• Text files, such as .txt and .dat

• MAT-files

• Spreadsheet files, such as .xls

• Graphics files, such as .gif and .jpg

• Audio and video files, such as .avi and .wav

The MATLAB Import Wizard processes the data source and recognizes data
delimiters, as well as row or column headers, to facilitate the process of data
selection.

After you finish analyzing your data, you might have created new variables.
You can export these variables to a variety of file formats. For more
information about exporting data from the MATLAB workspace, see the
MATLAB Programming documentation.

When working with time series data, it is easiest to use the Time Series Tools
GUI to import the data and create timeseries objects. The Import Wizard in
Time Series Tools also makes it easy to import or define a time vector for your
data. For more information, see “Importing and Exporting Data” on page 5-7.

1-7

1 Preparing Data for Analysis

Plotting Data

In this section...

“Introduction” on page 1-8

“Example — Loading and Plotting Data” on page 1-8

Introduction
After you import data into MATLAB, it is a good idea to plot the data so that
you can explore its features. An exploratory plot of your data enables you
to identify discontinuities and potential outliers, as well as the regions of
interest.

The MATLAB Graphics documentation fully describes the MATLAB figure
window, which displays the plot. It also discusses the various plot tools that
are available in MATLAB to help you annotate and edit plot properties.

If you are working with time series data, see Chapter 5, “Time Series Tools”,
for detailed information about working with time series plots.

Example — Loading and Plotting Data
In this example, you perform the following tasks on the data in a
space-delimited text file:

• “Loading the Data” on page 1-8

• “Plotting the Data” on page 1-9

This example uses sample data in count.dat that consists of three sets
of hourly traffic counts, recorded at three different town intersections over
a 24-hour period. Each data column in the file represents data for one
intersection.

Loading the Data
Import data into MATLAB using the load function:

load count.dat

1-8

Plotting Data

Loading this data creates a 24-by-3 matrix called count in the MATLAB
workspace.

You can get the size of the data matrix by

[n,p] = size(count)
n =

24
p =

3

where n represents the number of rows, and p represents the number of
columns.

Plotting the Data
Create a time vector, t, containing integers from 1 to n:

t = 1:n;

Use the following commands to plot the data as a function of time, and to
annotate the plot:

plot(t,count),
legend('Location 1','Location 2','Location 3',2)
xlabel('Time'), ylabel('Vehicle Count')

1-9

1 Preparing Data for Analysis

Traffic Counts at Three Intersections

1-10

Removing and Interpolating Missing Values

Removing and Interpolating Missing Values

In this section...

“Representing Missing Data Values” on page 1-11

“Calculating with NaNs” on page 1-11

“Removing NaNs from the Data” on page 1-12

“Interpolating Missing Data” on page 1-13

Representing Missing Data Values
In MATLAB, missing or unavailable data values are represented by the
special value NaN, which stands for Not-a-Number.

The IEEE floating-point arithmetic convention defines NaN as the result of
an undefined operation, such as 0/0.

Calculating with NaNs
When you perform calculations on a MATLAB variable that contains NaNs,
the NaN values are propagated to the final result. This might render the result
useless.

For example, consider a matrix containing the 3-by-3 magic square with its
center element replaced with NaN:

a = magic(3); a(2,2) = NaN

a =
8 1 6
3 NaN 7
4 9 2

1-11

1 Preparing Data for Analysis

Compute the sum for each column in the matrix:

sum(a)

ans =
15 NaN 15

Notice that the sum of the elements in the middle column is a NaN value
because that column contains a NaN.

If you do not want to have NaNs in your final results, you must remove these
values from your data. For more information, see “Removing NaNs from
the Data” on page 1-12.

Removing NaNs from the Data
You can use the MATLAB function isnan to identify NaNs in the data, and
then remove them using the techniques in the following table.

Note You must use the function isnan to identify NaNs because, by IEEE
arithmetic convention, the logical comparison NaN == NaN always produces
0 (i.e., it never evaluates to true). Therefore, you cannot use x(x==NaN) =
[] to remove NaNs from your data.

Code Description

i = find(~isnan(x));

x = x(i)

Find the indices of elements in a
vector x that are not NaNs. Keep only
the non-NaN elements.

x = x(~isnan(x)); Remove NaNs from a vector x.

x(isnan(x)) = []; Remove NaNs from a vector x
(alternative method).

X(any(isnan(X),2),:) = []; Remove any rows containing NaNs
from a matrix X.

1-12

Removing and Interpolating Missing Values

If you frequently need to remove NaNs, you might want to write a short M-file
function that you can call:

function X = exciseRows(X)
X(any(isnan(X),2),:) = [];

The following command computes the correlation coefficients of X after all
rows containing NaNs are removed:

C = corrcoef(excise(X));

For more information about correlation coefficients, see “Correlation Analysis”
on page 2-5.

Interpolating Missing Data
You can use interpolation to find intermediate points in your data. The
simplest function for performing interpolation is interp1, which is a 1-D
interpolation function.

By default, the interpolation method is 'linear', which fits a straight line
between a pair of existing data points to calculate the intermediate value. The
complete set of available methods, which you can specify as arguments in the
interp1 function, includes the following:

• 'nearest' — Nearest neighbor interpolation

• 'linear' — Linear interpolation

• 'spline' — Piecewise cubic spline interpolation

• 'pchip' or 'cubic' — Shape-preserving piecewise cubic interpolation

• 'v5cubic' — Cubic interpolation from MATLAB 5, which does not use
'extrapolate' and uses 'spline' when X is not equally spaced

For more information about interp1, see the MATLAB documentation or
type at the MATLAB prompt

help interp1

1-13

1 Preparing Data for Analysis

Removing Outliers
When you examine a data plot, you might find that some points appear to
dramatically differ from the rest of the data. In some cases, it is reasonable
to consider such points outliers, or data values that do not appear to be
consistent with the rest of the data.

The following example illustrates how to remove outliers from three data sets
in the 24-by-3 matrix count. In this case, an outlier is defined as a value that
is more than three standard deviations away from the mean.

Caution Be cautious about changing data unless you are confident that
you understand the source of the problem you want to correct. Removing an
outlier has a greater effect on the standard deviation than on the mean of the
data. Deleting one such point leads to a smaller new standard deviation,
which might result in making some remaining points appear to be outliers!

% Import the sample data
load count.dat;
% Calculate the mean and the standard deviation
% of each data column in the matrix
mu = mean(count)
sigma = std(count)

MATLAB displays

mu =
32.0000 46.5417 65.5833

sigma =
25.3703 41.4057 68.0281

1-14

Removing Outliers

When an outlier is considered to be more than three standard deviations away
from the mean, you can use the following syntax to determine the number of
outliers in each column of the count matrix:

[n,p] = size(count);
% Create a matrix of mean values by
% replicating the mu vector for n rows
MeanMat = repmat(mu,n,1);
% Create a matrix of standard deviation values by
% replicating the sigma vector for n rows
SigmaMat = repmat(sigma,n,1);
% Create a matrix of zeros and ones, where ones indicate
% the location of outliers
outliers = abs(count - MeanMat) > 3*SigmaMat;
% Calculate the number of outliers in each column
nout = sum(outliers)

MATLAB returns the following number of outliers in each column:

nout =
1 0 0

There is one outlier in the first data column of count and none in the other
two columns.

To remove an entire row of data containing the outlier, type

count(any(outliers,2),:) = [];

Here, any(outliers,2) returns a 1 when any of the elements in the outliers
vector is a nonzero number, and the argument 2 specifies that any works down
the second dimension of the count matrix—its columns.

1-15

1 Preparing Data for Analysis

Filtering Data

In this section...

“Introduction” on page 1-16

“Filter Function” on page 1-16

“Example 1 — Moving Average Filter” on page 1-17

“Example 2 — Discrete Filter” on page 1-18

Introduction
MATLAB provides functions for working with difference equations and filters
to shape the variations in the raw data. These functions operate on both
vectors and matrices. You can filter data to smooth out high-frequency
fluctuations or remove periodic trends of a specific frequency.

A vector input represents a single, sampled data signal (or sequence). For a
matrix input, each signal corresponds to a column in the matrix and each
data sample is a row.

Filter Function
The function

y = filter(b,a,x)

creates filtered data y by processing the data in vector x with the filter
described by vectors a and b.

The filter function is a general tapped delay-line filter, described by the
difference equation

a y n b x n b x n b N x n Nb b() () () () () () () ()1 1 2 1 1= + − + + − +…
 − − − − − +a y n a N y n Na a() () () ()2 1 1…

Here, n is the index of the current sample, Na is the order of the polynomial

described by vector a, and Nb is the order of the polynomial described by

1-16

Filtering Data

vector b. The output y(n) is a linear combination of current and previous
inputs, x(n) x(n – 1)..., and previous outputs, y(n – 1) y(n – 2)... .

Example 1 — Moving Average Filter
You can smooth the data in count.dat using a moving-average filter to see the
average traffic flow over a 4-hour window (covering the current hour and the
previous 3 hours). This is represented by the following difference equation:

y n x n x n x n x n() () () () ()= + − + − + −1
4

1
4

1
4

1
41 2 3

The corresponding vectors are

a = 1;
b = [1/4 1/4 1/4 1/4];

Enter the following syntax to load the sample data:

load count.dat

This adds the matrix count to the workspace.

Extract the first column of count and assign it to the vector x:

x = count(:,1);

The 4-hour moving average of the data is calculated by

y = filter(b,a,x);

Compare the original data and the smoothed data with an overlaid plot of
the two curves:

t = 1:length(x);
plot(t,x,'-.',t,y,'-'), grid on
legend('Original Data','Smoothed Data',2)

The filtered data, represented by the solid line in the plot, is the 4-hour moving
average of the count data. The original data is represented by the dashed line.

1-17

1 Preparing Data for Analysis

Plot of Original and Smoothed Data

Example 2 — Discrete Filter
You use the discrete filter to shape the data by applying a transfer function to
the input signal.

Depending on your objectives, the transfer function you choose might alter
both the amplitude and the phase of the variations in the data at different
frequencies to produce either a smoother or a rougher output.

1-18

Filtering Data

Taking the z-transform of the following difference equation

a y n b x n b x n b N x n Nb b() () () () () () () ()1 1 2 1 1= + − + + − +…
 − − − − − +a y n a N x n Na a() () () ()2 1 1…

results in the following transfer function:

Y z H z X z
b b z b N z

a a z a N
b

Nb

() () ()
() () ()

() () (
= =

+ +
+ +

−
− − +

−
1

1 1

1
1 2

1 2

…

… aa
Nz

X z
a)

()− +1

Here Y(z) is the z-transform of the filtered output y(n). The coefficients b and
a are unchanged by the z-transform.

In digital signal processing (DSP), it is customary to write transfer functions

as rational expressions in z−1 and to order the numerator and denominator

terms in ascending powers of z−1 .

Consider the following transfer function:

H z
b z

a z

z

z
()

()

() .
−

−

−

−

−= = +
+

1
1

1

1

1
2 3

1 0 2

To apply this transfer function to the data in count.dat:

1 Load the matrix count into the workspace:

load count.dat;

2 Extract the first column and assign it to x:

x = count(:,1);

3 Enter the coefficients of the denominator ordered in ascending powers of

z−1 to represent 1 0 2 1+ −. z :

a = [1 0.2];

1-19

1 Preparing Data for Analysis

4 Enter the coefficients of the numerator to represent 2 2 1+ −z :

b = [2 3];

5 Call the filter function:

y = filter(b,a,x);

6 Compare the original data and the shaped data with an overlaid plot of
the two curves:

t = 1:length(x);
plot(t,x,'-.',t,y,'-'), grid on
legend('Original Data','Shaped Data',2)

As you can see from the plot, this filter primarily modifies the amplitude
of the original data.

Plot of Original and Shaped Data

1-20

Detrending Data

Detrending Data

In this section...

“Introduction” on page 1-21

“Example — Removing Linear Trends from Data” on page 1-21

Introduction
The MATLAB function detrend subtracts the mean or a best-fit line (in
the least-squares sense) from your data. If your data contains several data
columns, MATLAB detrends each data column separately.

Removing a trend from the data enables you to focus your analysis on the
fluctuations in the data about the trend. A linear trend typically indicates a
systematic increase or decrease in the data. This might be caused by sensor
drift, for example.

You must decide whether it makes sense to remove trend effects in the data
based on the objectives of your analysis.

Example — Removing Linear Trends from Data
This example shows how to remove a linear trend from daily closing stock
prices to emphasize the price fluctuations about the overall increase. This
data is available in the predict_ret_data.mat file.

You can follow along with the steps in this example to perform the following
tasks:

• “Loading and Plotting Data” on page 1-22

• “Detrending Data and Plotting Results” on page 1-23

1-21

1 Preparing Data for Analysis

Loading and Plotting Data

1 Load the sample data:

load predict_ret_data.mat

This adds the variable sdata to the workspace, which contains the daily
stock prices.

2 View the contents of the column vector sdata:

sdata

The last data value is a NaN, which must be removed before detrending
the data.

3 Identify and remove the NaN value from sdata:

sdata(any(isnan(sdata),2),:) = []

For more information about removing NaNs, see “Removing NaNs from the
Data” on page 1-12.

4 Plot the data:

plot(t, sdata,'+')
legend('Original Data',1);
xlabel('Time (days)');
ylabel('Stock Price (dollars)');

1-22

Detrending Data

Daily Closing Stock Prices

Notice the systematic increase in the stock prices when this data was
collected.

Detrending Data and Plotting Results

1 Remove a best-fit line (in the least-squares sense) from sdata and save the
results to a new variable, detrend_sdata:

detrend_sdata=detrend(sdata);

2 Plot the detrended data in a new MATLAB Figure window:

figure
plot(detrend_sdata,'-')
legend('Detrended Data',2)
xlabel('Time (days)');
ylabel('Detrended Stock Price (dollars)');

1-23

1 Preparing Data for Analysis

Stock Prices with the Removed Linear Trend

Notice that the data is now centered about 0 and the linear drift is removed
from the data.

1-24

Finite Differences

Finite Differences
MATLAB provides three functions for finite difference calculations.

Function Description

del2 Discrete Laplacian of a matrix

diff Differences between successive elements of a vector;
numerical partial derivatives of a vector

gradient Numerical partial derivatives of a matrix

The diff function computes the difference between successive elements in a
numeric vector. That is, diff(X) is [X(2)-X(1) X(3)-X(2)...X(n)-X(n-1)].
You might want to perform this operation on your data if you are more
interested in analyzing the changes in the values, rather than the absolute
values.

For a vector A,

A = [9 -2 3 0 1 5 4];
diff(A)

ans =
-11 5 -3 1 4 -1

Besides computing the first difference, you can use diff to determine certain
characteristics of vectors. For example, you can use diff to determine
whether the vector values are monotonically increasing or decreasing, or
whether a vector has equally spaced elements.

The following table provides examples for using diff with a vector x.

Test Description

any(diff(x)==0) Tests whether there are any repeated elements
in X

all(diff(x)>0) Tests whether the values are monotonically
increasing

all(diff(diff(x))==0) Tests for equally spaced vector elements

1-25

1 Preparing Data for Analysis

Descriptive Statistics

In this section...

“Functions for Calculating Descriptive Statistics” on page 1-26

“Example — Using MATLAB Data Statistics” on page 1-29

If you need more advanced statistics functionality, you might want to use
the Statistics Toolbox. For more information see the Statistics Toolbox
documentation.

Functions for Calculating Descriptive Statistics
You can use the following MATLAB functions to calculate the descriptive
statistics for your data.

Note For matrix data, MATLAB calculates descriptive statistics for each
column independently.

Statistics Function Summary

Function Description

max Maximum value

mean Average or mean value

median Median value

min Smallest value

mode Most frequent value

1-26

Descriptive Statistics

Statistics Function Summary (Continued)

Function Description

std Standard deviation

var Variance, which measures the spread or dispersion of the
values

The following examples apply MATLAB functions to calculate descriptive
statistics:

• “Example 1 — Calculating Maximum, Mean, and Standard Deviation”
on page 1-27

• “Example 2 — Subtracting the Mean” on page 1-29

Example 1 — Calculating Maximum, Mean, and Standard
Deviation
This example shows how to use MATLAB functions to calculate the maximum,
mean, and standard deviation values for a 24-by-3 matrix called count.
MATLAB computes these statistics independently for each column in the
matrix.

% Load the sample data
load count.dat
% Find the maximum value in each column
mx = max(count)
% Calculate the mean of each column
mu = mean(count)
% Calculate the standard deviation of each column
sigma = std(count)

1-27

1 Preparing Data for Analysis

MATLAB responds with

mx =
114 145 257

mu =
32.0000 46.5417 65.5833

sigma =
25.3703 41.4057 68.0281

To get the row numbers where the maximum data values occur in each data
column, you can specify a second output parameter indx to return the row
index. For example:

[mx,indx] = max(count)

MATLAB responds with this result:

mx =
114 145 257

indx =
20 20 20

Here, the variable mx is a row vector that contains the maximum value in each
of the three data columns. The variable indx contains the row indices in each
column that correspond to the maximum values.

To find the minimum value in the entire count matrix, you can reshape this
24-by-3 matrix into a 72-by-1 column vector by using the syntax count(:).
Then, to find the minimum value in the single column, you can use the
following syntax:

min(count(:))

ans =
7

1-28

Descriptive Statistics

Example 2 — Subtracting the Mean
You can subtract the mean from each column of the matrix by using the
following syntax:

% Get the size of the count matrix
[n,p] = size(count)
% Compute the mean of each column
mu = mean(count)
% Create a matrix of mean values by
% replicating the mu vector for n rows
MeanMat = repmat(mu,n,1)
% Subtract the column mean from each element
% in that column
x = count - MeanMat

Note Subtracting the mean from the data is also called detrending. For
more information about removing the mean or the best-fit line from the data,
see “Detrending Data” on page 1-21.

Example — Using MATLAB Data Statistics
MATLAB provides the Data Statistics dialog box to help you calculate and
plot descriptive statistics with the data. This example shows how to use
MATLAB Data Statistics to calculate and plot statistics for a 24-by-3 matrix,
called count.

This section contains the following topics:

• “Calculating and Plotting Descriptive Statistics” on page 1-30

• “Formatting Data Statistics on Plots” on page 1-33

• “Saving Statistics to the MATLAB Workspace” on page 1-35

• “Generating an M-file” on page 1-36

Note MATLAB Data Statistics is available only for 2-D plots.

1-29

1 Preparing Data for Analysis

Calculating and Plotting Descriptive Statistics

1 Load and plot the data:

load count.dat
[n,p] = size(count);
% Define the x-values
t = 1:n;
% Plot the data and annotate the graph
plot(t,count)
legend('Location 1','Location 2','Location 3',2)
xlabel('Time'), ylabel('Vehicle Count')

Note The legend contains the name of each data set, as specified by the
legend function: Location 1, Location 2, and Location 3. A data set
refers to each column of data in the array you plotted. If you do not name
the data sets, MATLAB assigns them default names: data 1, data 2, and
so on.

1-30

Descriptive Statistics

2 In the Figure window, select Tools > Data Statistics .

This opens the Data Statistics dialog box, which displays descriptive
statistics for the X- and Y-data of the Location 1 data set.

Note The Data Statistics GUI calculates the range, which is the difference
between the minimum and maximum values in the selected data set. The
Data Statistics GUI does not display the range on the plot.

1-31

1 Preparing Data for Analysis

3 Select a different data set in the Statistics for list: Location 2.

This displays the statistics for the X and Y data of the Location 2 data set.

4 Select the check box for each statistic you want to display on the plot.

For example, to plot the mean of Location 2, select the mean check box
in the Y column.

1-32

Descriptive Statistics

This plots a horizontal line to represent the mean of Location 2 and
updates the plot legend to include this statistic.

Formatting Data Statistics on Plots
The Data Statistics GUI uses colors and line styles to distinguish statistics
from the data on the plot. This portion of the example shows how to customize
the display of descriptive statistics on a plot, such as the color, line width,
line style, or marker.

Note Do not edit display properties of statistics until you finish plotting all
the statistics with the data. If you add or remove statistics after editing plot
properties, the changes to plot properties are lost.

To modify the display of data statistics on a plot:

1 In the MATLAB Figure window, click the (Edit Plot) button in the
toolbar.

This enables plot editing.

1-33

1 Preparing Data for Analysis

2 Double-click the statistic on the plot for which you want to edit display
properties. For example, double-click the horizontal line representing the
mean of Location 2.

This opens the Property Editor below the MATLAB Figure window, where
you can modify the appearance of the line used to represent this statistic.

3 In the Property Editor, specify the Line and Marker styles, sizes, and
colors.

Tip Alternatively, right-click the statistic on the plot, and select an option
from the shortcut menu.

1-34

Descriptive Statistics

Saving Statistics to the MATLAB Workspace
This portion of the example shows how to save statistics in the Data Statistics
GUI to the MATLAB workspace.

Note When your plot contains multiple data sets, you must save statistics
for each data set individually. To display statistics for a different data set,
select it from the Statistics for list in the Data Statistics GUI.

1 In the Data Statistics dialog box, click the Save to workspace button.

2 In the Save Statistics to Workspace dialog box, specify to save statistics
for either X data, Y data, or both. Then, enter the corresponding variable
names.

In this example, save only the Y data. Enter the variable name as
Loc2countstats.

3 Click OK.

This saves the descriptive statistics to a structure. The new variable is
added to the MATLAB workspace.

1-35

1 Preparing Data for Analysis

To view the new structure variable, type the variable name at the MATLAB
prompt:

Loc2countstats

Loc2countstats =

min: 9
max: 145

mean: 46.5417
median: 36

mode: 9
std: 41.4057

range: 136

Generating an M-file
This portion of the example shows how to generate an M-file that reproduces
the format of the plot and the plotted statistics with new data.

1 In the Figure window, select File > Generate M-File.

This creates a function M-file and displays it in the MATLAB Editor. The
code in the M-file shows you how to programmatically reproduce what you
did interactively with the Data Statistics GUI and the Property Editor.

2 Change the name of the function on the first line of the M-file from
createfigure to something more specific, like countplot. Save the file to
your current directory with the file name countplot.m.

3 Generate some new, random count data:

randcount = 300*rand(24,3);

4 Reproduce the plot with the new data and the recomputed statistics:

countplot(t,randcount)

1-36

Descriptive Statistics

1-37

1 Preparing Data for Analysis

1-38

2

Linear Regression Analysis

Linear Regression (p. 2-2) MATLAB data-fitting capabilities

Correlation Analysis (p. 2-5) Covariance and correlation
coefficients

Interactive Fitting (p. 2-9) The Basic Fitting GUI

Programmatic Fitting (p. 2-22) MATLAB functions for regression
modeling

2 Linear Regression Analysis

Linear Regression

In this section...

“Introduction” on page 2-2

“Residuals and Goodness of Fit” on page 2-3

“When to Use the Curve Fitting Toolbox” on page 2-3

Introduction
MATLAB allows you to model your data using linear regression. A model
is a relationship between independent and dependent variables. Linear
regression produces a model that is linear in the model coefficients. The most
common type of linear regression is a least-squares fit, which can fit both
lines and polynomials.

Before you model the relationship between pairs of quantities, it is a good idea
to perform correlation analysis to establish if a relationship exists between
these quantities. For more information, see “Correlation Analysis” on page
2-5.

MATLAB provides the Basic Fitting GUI for fitting your data, which enables
you to calculate model coefficients and plot the model on top of the data. For
an example of using this GUI, see “Example — Using Basic Fitting GUI” on
page 2-11. You can also use the MATLAB functions polyfit and polyval to
fit your data to a model that is linear in the coefficients. For an example
of using these functions, see “Example — Data Fitting Using MATLAB
Functions” on page 2-29.

If you need to fit nonlinear data using MATLAB, you can try transforming the
variables in your model to make the model linear, use the nonlinear algorithm
fminsearch, or use the Curve Fitting Toolbox (see the Curve Fitting Toolbox
documentation).

In this chapter, you learn how to do the following:

• Use correlation analysis to determine whether two quantities are related to
justify fitting the data.

2-2

Linear Regression

• Fit a linear model to the data.

• Plot the model and the data on the same plot.

• Evaluate the goodness of fit using a plot of the residuals.

Residuals and Goodness of Fit
Residuals are defined as the difference between the observed values of the
dependent variable and the values that are predicted by the model. When
you fit a model that is appropriate for your data, the residuals approximate
independent random errors.

To calculate fit parameters for a linear model, MATLAB minimizes the
sum of the squares of the residuals to produce a good fit. This is called a
least-squares fit.

You can gain insight into the “goodness” of a fit by visually examining a plot
of the residuals: if the residual plot has a pattern, this indicates that the
model does not properly fit the data.

Notice that the “goodness” of a fit must be determined in the context of your
data. For example, if your goal of fitting the data is to extract coefficients
that have physical meaning, then it is important that your model reflect the
physics of the data. In this case, understanding what your data represents
and how it was measured is just as important as evaluating the goodness of fit.

When to Use the Curve Fitting Toolbox
The Curve Fitting Toolbox extends core MATLAB functionality by enabling
the following data-fitting capabilities:

• Linear and nonlinear parametric fitting, including standard linear least
squares, nonlinear least squares, weighted least squares, constrained least
squares, and robust fitting procedures

• Nonparametric fitting

• Statistics for determining the goodness of fit

• Extrapolation, differentiation, and integration

• GUI that facilitates data sectioning and smoothing

2-3

2 Linear Regression Analysis

• Saving fit results in various formats, including M-files, MAT-files, and
workspace variables

For more information, see the Curve Fitting Toolbox documentation.

2-4

Correlation Analysis

Correlation Analysis

In this section...

“Introduction” on page 2-5

“Covariance” on page 2-6

“Correlation Coefficients” on page 2-7

Introduction
Before you fit a function to model the relationship between two measured
quantities, it is a good idea to determine if a relationship exists between
these quantities.

Correlation is a method for establishing the degree of probability that a
linear relationship exists between two measured quantities. When there is
no correlation between the two quantities, then there is no tendency for the
values of one quantity to increase or decrease with the values of the second
quantity.

MATLAB provides the following three functions for computing correlation
coefficients and covariance. In typical data analysis applications, where you
are mostly interested in the degree of relationship between variables, you
need only to calculate correlation coefficients. That is, it is not necessary to
calculate the covariance independently.

Function Description

corrcoef Correlation coefficient matrix

cov Covariance matrix

xcorr (in
Signal
Processing
Toolbox)

Cross-correlation sequence of a random process (includes
autocorrelation)

2-5

2 Linear Regression Analysis

Covariance
Use the MATLAB cov function to explicitly calculate the covariance matrix
for a data matrix (where each column represents a separate quantity).

In typical data analysis applications, where you are mostly interested in the
degree of relationship between variables, you can calculate the correlation
coefficients directly without calculating the covariance first.

The covariance matrix has the following properties:

• cov(X) is symmetrical.

• diag(cov(X)) is a vector of variances for each data column, which represent
a measure of the spread or dispersion of data in the corresponding column.

• sqrt(diag(cov(X))) is a vector of standard deviations.

• The off-diagonal elements of the covariance matrix represent the covariance
between the individual data columns.

Here, X can be a vector or a matrix. For an m-by-n matrix, the covariance
matrix is n-by-n.

For an example of calculating the covariance, load the sample data in
count.dat that contains a 24-by-3 matrix:

load count.dat

Calculate the covariance matrix for this data:

cov(count)

MATLAB responds with the following result:

ans =
1.0e+003 *

0.6437 0.9802 1.6567
0.9802 1.7144 2.6908
1.6567 2.6908 4.6278

2-6

Correlation Analysis

The covariance matrix for this data has the following form:

σ σ σ

σ σ σ

σ σ σ

σ σ

2
11

2
12

2
13

2
21

2
22

2
23

2
31

2
32

2
33

2 2

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=ij ji

Here, σ2
ij is the covariance between column i and column j of the data.

Because the count matrix contains three columns, the covariance matrix
is 3-by-3.

Note In the special case when a vector is the argument of cov, the function
returns the variance.

Correlation Coefficients
The correlation coefficient matrix represents the normalized measure of the
strength of linear relationship between variables.

Correlation coefficients rk are given by

r

x x x x

x x
k

t
t

N

t k

t
t

N
=

−() −()

−()
=

+

=

∑

∑
1

2

1

where xt is a data value at time step t, k is the lag, and the overall mean is
given by

x
x
N

t

t

N
=

=
∑

1

2-7

2 Linear Regression Analysis

The MATLAB function corrcoef produces a matrix of correlation coefficients
for a data matrix (where each column represents a separate quantity). The
correlation coefficients range from -1 to 1, where

• Values close to 1 suggest that there is a positive linear relationship between
the data columns.

• Values close to -1 suggest that one column of data has a negative linear
relationship to another column of data (anticorrelation).

• Values close to or equal to 0 suggest there is no linear relationship between
the data columns.

For an m-by-n matrix, the correlation-coefficient matrix is n-by-n. The
arrangement of the elements in the correlation coefficient matrix corresponds
to the location of the elements in the covariance matrix, as described in
“Covariance” on page 2-6.

For an example of calculating correlation coefficients, load the sample data in
count.dat that contains a 24-by-3 matrix:

load count.dat

Type the following syntax to calculate the correlation coefficients:

corrcoef(count)

This results in the following 3-by-3 matrix of correlation coefficients:

ans =
1.0000 0.9331 0.9599
0.9331 1.0000 0.9553
0.9599 0.9553 1.0000

Because all correlation coefficients are close to 1, there is a strong correlation
between each pair of data columns in the count matrix.

2-8

Interactive Fitting

Interactive Fitting

In this section...

“The Basic Fitting GUI” on page 2-9

“Preparing for Basic Fitting” on page 2-9

“Opening the Basic Fitting GUI” on page 2-10

“Example — Using Basic Fitting GUI” on page 2-11

The Basic Fitting GUI
The MATLAB Basic Fitting GUI allows you to interactively:

• Model data using a spline interpolant, a shape-preserving interpolant, or a
polynomial up to the tenth degree

• Plot one or more fits together with data

• Plot the residuals of the fits

• Compute model coefficients

• Compute the norm of the residuals (a measure of the goodness of fit)

• Use the model to interpolate or extrapolate outside of the data

• Save coefficients and computed values to the MATLAB workspace for use
outside of the GUI

• Generate an M-file to recompute fits and reproduce plots with new data

Note The Basic Fitting GUI is only available for 2-D plots. For more
advanced fitting and regression analysis, see the Curve Fitting Toolbox and
the Statistics Toolbox.

Preparing for Basic Fitting
The Basic Fitting GUI sorts your data in ascending order before fitting. If
your data set is large and the values are not sorted in ascending order, it will
take longer for the Basic Fitting GUI to preprocess your data before fitting.

2-9

http://www.mathworks.com/products/curvefitting/
http://www.mathworks.com/products/statistics/

2 Linear Regression Analysis

You can speed up the Basic Fitting GUI by first sorting your data in MATLAB.
To create sorted vectors x_sorted and y_sorted from data vectors x and
y, use the MATLAB sortfunction:

[x_sorted, i] = sort(x);
y_sorted = y(i);

Opening the Basic Fitting GUI
To use the Basic Fitting GUI, you must first plot your data in a figure window,
using any MATLAB plotting command that produces (only) x and y data.

To open the Basic Fitting GUI, select Tools > Basic Fitting from the menus
at the top of the figure window.

The GUI consists of three panels:

• For selecting a model and plotting options

2-10

Interactive Fitting

• For examining and exporting model coefficients and norms of residuals

• For examining and exporting interpolated and extrapolated values

To expand or collapse the panels, use the arrow button in the lower right
corner of the interface.

Example — Using Basic Fitting GUI
The example in this section shows you how to use the Basic Fitting GUI.

• “Loading and Plotting Data” on page 2-11

• “Fitting Data” on page 2-12

• “Viewing and Saving Fit Parameters” on page 2-16

• “Interpolating and Extrapolating Values” on page 2-17

• “Generating an M-file” on page 2-20

Loading and Plotting Data
The file census.mat contains U.S. population data for the years 1790 through
1990.

To load and plot the data, type the following commands at the MATLAB
prompt:

load census
plot(cdate,pop,'ro')

The load command adds the following two variables to the MATLAB
workspace:

• cdate is a column vector containing the years from 1790 to 1990 in
increments of 10. This is the predictor variable.

• pop is a column vector with U.S. population for each year in cdate. This is
the response variable.

The data vectors are sorted in ascending order, by year. The plot shows the
population as a function of year.

2-11

2 Linear Regression Analysis

Now you are ready to fit the data.

Fitting Data

1 Open the Basic Fitting dialog box by selecting Tools > Basic Fitting in
the Figure window.

2 In the Plot fits area of the Basic Fitting dialog box, select the cubic check
box to fit a cubic polynomial to the data.

MATLAB displays the following warning:

Polynomial is badly conditioned. Removing
repeated data points or centering and scaling
may improve results.

2-12

Interactive Fitting

The warning indicates that the computed coefficients for the model will
be highly sensitive to random errors in the response (in this case, the
measured population). To improve model accuracy, it is helpful to transform
the predictors (in this case, the dates) by normalizing their center and
scale. This is done by computing the z-scores:

z
x= − μ
σ

where x is the predictor data, μ is the mean of x, and σ is the standard
deviation of x. This centers the data at 0, with a standard deviation of 1.

To perform this transformation on the predictor data, select the Center
and scale x data check box.

After centering and scaling, model coefficients are computed for the y
data as a function of z. These are different (and more robust) than the
coefficients computed for y as a function of x. The form of the model, and the
norm of the residuals, is unchanged. The Basic Fitting GUI automatically
rescales the z-scores so that the fit is displayed on the same scale as the
original x data.

The Basic Fitting GUI calls the MATLAB functions polyfit and polyval
to compute and display the fit. To understand the way in which the
centered and scaled data is used as an intermediary to create the final plot,
type the following at the MATLAB command prompt:

load census
x = cdate;
y = pop;
z = (x-mean(x))/std(x); % Compute z-scores of x data

plot(x,y,'ro') % Plot data
hold on

zfit = linspace(z(1),z(end),100);
pz = polyfit(z,y,3); % Compute conditioned fit
yfit = polyval(pz,zfit);

xfit = linspace(x(1),x(end),100);

2-13

2 Linear Regression Analysis

plot(xfit,yfit,'b-') % Plot conditioned fit vs. x data

3 Select the following options:

• Display the model equation in the plot

• Display the residuals as a subplot

• Display the norm of the residuals in the plot

The resulting display is shown in the following figure:

2-14

Interactive Fitting

The cubic fit is a poor predictor before the year 1790, where it indicates a
decreasing population. The model seems to approximate the data reasonably
well after 1790, but a pattern in the residuals shows that the model does not
meet the assumption of normal error, which is a basis for the least-squares
fitting carried out by the Basic Fitting GUI.

For comparison, try fitting another equation to the census data by selecting it
in the Plot fits area.

Tip You can change the default plot settings or rename data sets with the
Property Editor.

2-15

2 Linear Regression Analysis

Viewing and Saving Fit Parameters

In the Basic Fitting dialog box, click the arrow button to display the
estimated coefficients and the norm of the residuals in the Numerical
results panel.

To view a specific fit, select it from the Fit list. This displays the coefficients
in the Basic Fitting dialog box, but does not plot the fit in the figure window.

Note If you also want to display a fit on the plot, you must select the
corresponding Plot fits check box.

2-16

Interactive Fitting

Save the fit data to the MATLAB workspace by clicking the Save to
workspace button on the Numerical results panel. This opens the
following dialog box:

Click OK to save the fit parameters as a MATLAB structure:

fit
fit =

type: 'polynomial degree 3'
coeff: [0.9210 25.1834 73.8598 61.7444]

You can now use the fit results in MATLAB programming, outside of the
Basic Fitting GUI.

Interpolating and Extrapolating Values
Suppose you wish to use the cubic model to interpolate the U.S. population in
1965 (not in the original data).

In the Basic Fitting dialog box, click the button to specify a vector of x
values at which to evaluate the current fit.

2-17

2 Linear Regression Analysis

1 In the Enter value(s)... field, type the following value:

1965

Note Use unscaled and uncentered x values. You do not need to center
and scale first, even though you selected to scale x values to obtain the
coefficients in “Fitting Data” on page 2-12. Basic Fitting makes the
necessary adjustments behind the scenes.

2 Click Evaluate.

The x values and the corresponding values for f(x) computed from the fit
and displayed in a table, as shown below:

2-18

Interactive Fitting

3 Select the Plot evaluated results check box to display the interpolated
value:

4 Save the interpolated population in 1965 to the MATLAB workspace by
clicking Save to workspace.

This opens the following dialog box, where you specify the variable names:

2-19

2 Linear Regression Analysis

Generating an M-file
After completing a Basic Fitting session, you can generate an M-file that
recomputes fits and reproduces plots with new data.

1 In the Figure window, select File > Generate M-File.

This creates a function M-file and displays it in the MATLAB Editor. The
code in the M-file shows you how to programmatically reproduce what you
did interactively with the Basic Fitting dialog box.

2 Change the name of the function on the first line of the M-file from
createfigure to something more specific, like censusplot. Save the file to
your current directory with the file name censusplot.m

3 Generate some new, randomly perturbed census data:

randpop = pop + 10*randn(size(pop));

4 Reproduce the plot with the new data and recompute the fit:

censusplot(cdate,randpop,1965)

2-20

Interactive Fitting

2-21

2 Linear Regression Analysis

Programmatic Fitting

In this section...

“MATLAB Functions for Polynomial Models” on page 2-22

“Linear Model with Nonpolynomial Terms” on page 2-26

“Multiple Regression” on page 2-28

“Example — Data Fitting Using MATLAB Functions” on page 2-29

MATLAB Functions for Polynomial Models
MATLAB provides two functions for modeling your data with a polynomial.

Polynomial Fit Functions

Function Description

polyfit polyfit(x,y,n) finds the coefficients of a polynomial
p(x) of degree n that fits the y data by minimizing the
sum of the squares of the deviations of the data from
the model (least-squares fit).

polyval polyval(p,x) returns the value of a polynomial of
degree n that was determined by polyfit, evaluated
at x.

For example, suppose you measure a quantity y at several values of time t:

t = [0 0.3 0.8 1.1 1.6 2.3];
y = [0.6 0.67 1.01 1.35 1.47 1.25];
plot(t,y,'o')

2-22

Programmatic Fitting

Plot of y Versus t

You can try modeling this data using a second-degree polynomial function:

y a t a t a= + +2
2

1 0

The unknown coefficients a0 , a1 , and a2 are computed by minimizing the
sum of the squares of the deviations of the data from the model (least-squares
fit).

To find the polynomial coefficients, type the following at the MATLAB prompt:

p=polyfit(t,y,2)

MATLAB calculates the polynomial coefficients in descending powers:

p =
-0.2942 1.0231 0.4981

2-23

2 Linear Regression Analysis

The second-degree polynomial model of the data is given by the following
equation:

y t t= − + +0 2942 1 0231 0 49812. . .

To plot the model with the data, evaluate the polynomial at uniformly spaced
times t2 and overlay the original data on a plot:

t2 = 0:0.1:2.8; % Define a uniformly spaced time vector
y2=polyval(p,t2); % Evaluate the polynomial at t2
figure
plot(t,y,'o',t2,y2) % Plot the fit on top of the data

% in a new Figure window

Plot of Data (Points) and Model (Line)

Use the following syntax to calculate the residuals:

y2=polyval(p,t); % Evaluate model at the data time vector
res=y-y2; % Calculate the residuals by subtracting
figure, plot(t,res,'+') % Plot the residuals

2-24

Programmatic Fitting

Plot of the Residuals

Notice that the second-degree fit roughly follows the basic shape of the data,
but does not capture the smooth curve on which the data seems to lie. There
appears to be a pattern in the residuals, which indicates that a different
model might be necessary. A fifth-degree polynomial (shown next) does a
better job of following the fluctuations in the data.

2-25

2 Linear Regression Analysis

Fifth-Degree Polynomial Fit

Note If you are trying to model a physical situation, it is always important
to consider whether a model of a specific order is meaningful in your situation.

Linear Model with Nonpolynomial Terms
When a polynomial function does not produce a satisfactory model of your
data, you can try using a linear model with nonpolynomial terms. For
example, consider the following function that is linear in the parameters a0,
a1, and a2, but nonlinear in the t data:

y a a e a tet t= + +− −
0 1 2

2-26

Programmatic Fitting

You can compute the unknown coefficients a0 , a1 , and a2 by constructing
and solving a set of simultaneous equations and solving for the parameters.
The following syntax accomplishes this by forming a design matrix, where
each column represents a variable used to predict the response (a term in the
model) and each row corresponds to one observation of those variables:

% Enter t and y as columnwise vectors
t = [0 0.3 0.8 1.1 1.6 2.3]';
y = [0.6 0.67 1.01 1.35 1.47 1.25]';

% Form the design matrix
X = [ones(size(t)) exp(-t) t.*exp(-t)];

% Calculate model coefficients
a = X\y

a =
1.3983

- 0.8860
0.3085

Therefore, the model of the data is given by

y e tet t= − +− −1 3983 0 8860 0 3085. . .

Now evaluate the model at regularly spaced points and plot the model with
the original data, as follows:

T = (0:0.1:2.5)';
Y = [ones(size(T)) exp(-T) T.*exp(-T)]*a;
plot(T,Y,'-',t,y,'o'), grid on

2-27

2 Linear Regression Analysis

Linear Fit with Nonpolynomial Terms

Multiple Regression
When y is a function of more than one independent variable, the matrix
equations that express the relationships among the variables must be
expanded to accommodate the additional data. This is called multiple
regression.

Suppose you measure a quantity y for several values of x1 and x2. Enter these
variables in the MATLAB Command Window, as follows:

x1 = [.2 .5 .6 .8 1.0 1.1]';
x2 = [.1 .3 .4 .9 1.1 1.4]';
y = [.17 .26 .28 .23 .27 .24]';

A model of this data is of the form

y a a x a x= + +0 1 1 2 2

2-28

Programmatic Fitting

Multiple regression solves for unknown coefficients a0 , a1 , and a2 by
minimizing the sum of the squares of the deviations of the data from the
model (least-squares fit).

Construct and solve the set of simultaneous equations by forming a design
matrix, X, and solving for the parameters by using the backslash operator:

X = [ones(size(x1)) x1 x2];
a = X\y

a =
0.1018
0.4844

-0.2847

The least-squares fit model of the data is

y x x= + −0 1018 0 4844 0 28471 2. . .

To validate the model, find the maximum of the absolute value of the deviation
of the data from the model:

Y = X*a;
MaxErr = max(abs(Y - y))

MaxErr =
0.0038

This value is much smaller than any of the data values, indicating that this
model accurately follows the data.

Example — Data Fitting Using MATLAB Functions
In this example, you use MATLAB functions to accomplish the following:

• “Calculating Correlation Coefficients” on page 2-31

• “Fitting a Polynomial to the Data” on page 2-31

• “Plot and Calculate Confidence Bounds” on page 2-33

2-29

2 Linear Regression Analysis

This example uses the data in census.mat, which contains U.S. population
data for the years 1790 to 1990.

To load and plot the data, type the following commands at the MATLAB
prompt:

load census
plot(cdate,pop,'ro')

This adds the following two variables to the MATLAB workspace:

• cdate is a column vector containing the years 1790 to 1990 in increments
of 10.

• pop is a column vector with the U.S. population numbers corresponding to
each year in cdate.

The following plot of the data shows a strong pattern, which indicates a high
correlation between the variables.

U.S. Population from 1790 to 1990

2-30

Programmatic Fitting

Calculating Correlation Coefficients
In this portion of the example, you determine the statistical correlation
between the variables cdate and pop to justify modeling the data. For more
information about correlation coefficients, see “Correlation Analysis” on page
2-5.

Type the following syntax at the MATLAB prompt:

corrcoef(cdate,pop)

MATLAB calculates the following correlation-coefficient matrix:

ans =

1.0000 0.9597
0.9597 1.0000

The diagonal matrix elements represent the perfect correlation of each
variable with itself and are equal to 1. The off-diagonal elements are very
close to 1, indicating that there is a strong statistical correlation between
the variables cdate and pop.

Fitting a Polynomial to the Data
This portion of the example applies the polyfit and polyval MATLAB
functions to model the data:

% Calculate fit parameters
[p,ErrorEst] = polyfit(cdate,pop,2);
% Evaluate the fit
pop_fit = polyval(p,cdate,ErrorEst);
% Plot the data and the fit
plot(cdate,pop_fit,'-',cdate,pop,'+');
% Annotate the plot
legend('Polynomial Model','Data');
xlabel('Census Year');
ylabel('Population (millions)');

2-31

2 Linear Regression Analysis

The following figure shows that the quadratic-polynomial fit provides a good
approximation to the data:

Quadratic Polynomial Fit to the Census Data

To calculate the residuals for this fit, type the following syntax at the
MATLAB prompt:

res = pop - pop_fit;
figure, plot(cdate,res,'+')

2-32

Programmatic Fitting

Residuals for the Quadratic Polynomial Model

Notice that the plot of the residuals exhibits a pattern, which indicates that a
second-degree polynomial might not be appropriate for modeling this data.

Plot and Calculate Confidence Bounds
Confidence bounds are confidence intervals for a predicted response. The
width of the interval indicates the degree of certainty of the fit.

This example applies polyfit and polyval to the census sample data to
produce confidence bounds for a second-order polynomial model.

2-33

2 Linear Regression Analysis

The following syntax uses an interval of ±2Δ , which corresponds to a 95%
confidence interval for large samples:

% Evaluate the fit and the prediction error estimate (delta)
[pop_fit,delta] = polyval(p,cdate,ErrorEst);
% Plot the data, the fit, and the confidence bounds
plot(cdate,pop,'+',...

cdate,pop_fit,'g-',...
cdate,pop_fit+2*delta,'r:',...
cdate,pop_fit-2*delta,'r:');

% Annotate the plot
xlabel('Census Year');
ylabel('Population (millions)');
grid on

The 95% interval indicates that you have a 95% chance that a new observation
will fall within the bounds.

Quadratic Polynomial Fit with Confidence Bounds

2-34

3

Fourier Analysis

The following sections describe how to perform Fourier analysis in MATLAB
for gaining insight into periodic signals.

Introduction (p. 3-2) Provides an overview of MATLAB
Fourier analysis capabilities

Function Summary (p. 3-3) Summarizes functions for
computing and manipulating
Fourier transforms

Calculating Fourier Transforms
(p. 3-4)

Describes how to calculate a Fourier
transform and provides an example

Example — Sunspot Periodicity
(p. 3-7)

Shows how to determine the
periodicity in sunspot data

Magnitude and Phase of
Transformed Data (p. 3-11)

Describes how to calculate the
magnitude and phase of transformed
data

FFT Length Versus Performance
(p. 3-13)

Describes how to improve
performance by changing the
length of the Fourier transform

3 Fourier Analysis

Introduction
Fourier analysis is particularly useful in areas such as signal and image
processing, filtering, convolution, frequency analysis, and power spectrum
estimation.

Fourier analysis provides insight into the periodicities in data by representing
the data using a linear combination of sinusoidal components with different
frequencies. The amplitude and phase of each sinusoidal component in the
sum determines the relative contribution of that frequency component to
the entire signal.

For discretely-sampled data, Fourier analysis is performed using the discrete
Fourier transform (DFT). MATLAB calculates the DFT of a data sequence by
applying the fast Fourier transform (FFT) algorithms; the FFT is an efficient
computational method and not a different kind of transform.

To learn about more advanced power-spectrum methods, see the Signal
Processing Toolbox documentation.

3-2

Function Summary

Function Summary
MATLAB provides the following functions for computing and working with
Fourier transforms.

FFT Function Summary

Function Description

abs Absolute value and complex magnitude

angle Phase angle

cplxpair Sort numbers into complex conjugate pairs

fft One-dimensional discrete Fourier transform, computed
with a fast Fourier transform (FFT) algorithm

fft2 Two-dimensional discrete Fourier transform

fftn N-dimensional discrete Fourier transform

fftshift Shift DC component of the discrete Fourier transform
to the center of spectrum

ifft Inverse one-dimensional discrete Fourier transform

ifft2 Inverse two-dimensional discrete Fourier transform

ifftn Inverse N-dimensional discrete Fourier transform

ifftshift Inverse FFT shift

nextpow2 Next higher power of 2

unwrap Unwrap phase angle in radians

3-3

3 Fourier Analysis

Calculating Fourier Transforms

In this section...

“Introduction” on page 3-4

“Example — FFT of a Column Vector” on page 3-5

Introduction
MATLAB performs Fourier analysis by computing the discrete Fourier
transform (DFT) using the fast Fourier transform (FFT) algorithms, which
improve computational performance.

Consider an input sequence x(n) of length N. The DFT of this sequence is
given by the vector X(k), as follows:

X k x n e k N
j k

n
N

n

N
() ()

()
= ≤ ≤

− − −⎛
⎝⎜

⎞
⎠⎟

=
∑

2 1
1

1
1

π

You use the fft function in MATLAB to compute the spectrum. The length
of X(k) is the same as the length of x(n). Notice that the value of X(1) equals
the sum of the data values in x(n).

Note Traditional Fourier equations have summations from 0 to N – 1.
However, because the first element of a MATLAB vector has the index of 1,
the summations in the above equations are from 1 to N and are equivalent to
traditional equations.

For a discrete input sequence, there is an upper limit on the frequency at
which you can get meaningful information about the periodicities in the data.
The highest frequency that can be uniquely fit to the data, called the Nyquist
frequency, equals one cycle every two successive measurements. This makes
sense because you cannot get information about the variations in the data at
frequencies higher than the sampling rate—the rate at which you measured
successive data values. For example, suppose that your data consists of daily
temperature measurements in your town; here, 1 cycle (the time between

3-4

Calculating Fourier Transforms

two successive measurements) equals 1 day and the Nyquist frequency is
0.5 cycle/day. In this situation, you can only determine variations in the
temperature from one day to the next. If you want to study temperature
fluctuations during the day, you must collect the data at more frequent
intervals.

The lowest frequency that can be uniquely fit to the data, called the
fundamental frequency, is one cycle for the entire length of the data vector.

The inverse DFT of a transformed sequence is given by:

x n
N

X k e
j k

n
N

k

N
() ()

()
= ≤ ≤

− −⎛
⎝⎜

⎞
⎠⎟

=
∑1 2 1

1

1

π
 1 n N

You use the ifft function in MATLAB to synthesize the signal from its
spectrum.

When x(n) is real, you can rewrite the synthesis equation as a sum of sine and
cosine functions with real coefficients:

x n
N

a k
k n

N
b k

k n

k

N
() () cos

()()
()sin

()()= − −⎛
⎝⎜

⎞
⎠⎟

+ − −

=
∑1 2 1 1 2 1 1

1

π π
NN

⎛
⎝⎜

⎞
⎠⎟

where

a k
b k X k

n N

()
() [()]

=
= −

≤ ≤

real[X(k)]
imag

1

Example — FFT of a Column Vector
Consider the following column vector:

x = [4 3 7 -9 1 0 0 0]';

In this example, the length of the input sequence N = 8 . The Nyquist
frequency is 1 cycle every 2 observations, or 0.5. The index of the component

3-5

3 Fourier Analysis

k at the Nyquist frequency is determined by setting the frequency to the
Nyquist frequency value:

f
k
N

= = − =ω
π2

1
0 5.

Compute the FFT of x as follows:

y = fft(x)

MATLAB responds with the following FFT vector:

y =
6.0000
11.4853 - 2.7574i
-2.0000 -12.0000i
-5.4853 +11.2426i
18.0000
-5.4853 -11.2426i
-2.0000 +12.0000i
11.4853 + 2.7574i

Notice that although the input sequence x is real, y is complex. The first
element of y is the sum of the data values. The fifth element corresponds
to the contribution at the Nyquist frequency. The last three values of y
correspond to negative frequencies and, for the real sequence x, they are
complex conjugates of three components in the first half of y.

3-6

Example — Sunspot Periodicity

Example — Sunspot Periodicity
In this example, you use the MATLAB fft function to analyze the variations
in sunspot activity. You will use data collected by astronomers for almost
300 years of a quantity called the Wolfer number, which measures both the
number and the size of sunspots.

Load and plot the sunspot data:

load sunspot.dat
year = sunspot(:,1);
wolfer = sunspot(:,2);
plot(year,wolfer)
title('Sunspot Data')

Sunspot Data

3-7

3 Fourier Analysis

Take the FFT of the sunspot data:

Y = fft(wolfer);

The result of this transform is the complex vector Y. The magnitude of Y
squared is called the estimated power spectrum. A plot of the estimated power
spectrum versus frequency is called a periodogram.

Because the first component of Y, which is simply the sum of the data, has
a large magnitude, the following syntax removes it before generating the
periodogram:

N = length(Y);
Y(1) = [];
power = abs(Y(1:N/2)).^2;
nyquist = 1/2;
freq = (1:N/2)/(N/2)*nyquist;
plot(freq,power), grid on
xlabel('cycles/year')
title('Periodogram')

3-8

Example — Sunspot Periodicity

Periodogram of Sunspot Data

The frequency scale is in cycles/year, which is inconvenient because for
estimating the period of one cycle in years. Therefore, plot the power versus
period (where period = 1./freq) from 0 to 40 years/cycle:

period = 1./freq;
plot(period,power), axis([0 40 0 2e7]), grid on
ylabel('Power')
xlabel('Period(Years/Cycle)')

3-9

3 Fourier Analysis

Power Spectrum Versus Period of Sunspot Data

In order to determine the cycle more precisely, use the following syntax:

[mp,index] = max(power);
period(index)

ans =
11.0769

This plot confirms the cyclical nature of sunspot activity, which reaches a
maximum about every 11 years.

3-10

Magnitude and Phase of Transformed Data

Magnitude and Phase of Transformed Data
Important information about a transformed data sequence includes its
magnitude and phase. The MATLAB functions abs and angle calculate this
information.

To try this, create a time vector t, and use this vector to create a sequence x
consisting of two sinusoids at different frequencies:

t = 0:1/100:10-1/100;
x = sin(2*pi*15*t) + sin(2*pi*40*t);

Now use the fft function to compute the DFT of the sequence. The following
code calculates the magnitude and phase of the transformed sequence. It also
uses the abs function to obtain the magnitude of the data, the angle function
to obtain the phase information, and the unwrap function to remove phase
jumps greater than π to their 2*pi complement:

y = fft(x);
m = abs(y);
p = unwrap(angle(y));

Now create a frequency vector for the x-axis and plot the magnitude and
phase:

f = (0:length(y)-1)'*100/length(y);
subplot(2,1,1), plot(f,m),
ylabel('Abs. Magnitude'), grid on
subplot(2,1,2), plot(f,p*180/pi)
ylabel('Phase [Degrees]'), grid on
xlabel('Frequency [Hertz]')

The magnitude plot is perfectly symmetrical about the Nyquist frequency of
50 Hz. The useful information in the signal is found in the range 0 to 50 Hz.
For more information about the Nyquist frequency, see “Calculating Fourier
Transforms” on page 3-4.

3-11

3 Fourier Analysis

Magnitude and Phase Information in Transformed Data

3-12

FFT Length Versus Performance

FFT Length Versus Performance
The execution time for the fft depends on the length of the transform.

You can add a second argument to fft to specify a number of points n in
the transform:

y = fft(x,n)

With this syntax, fft pads x with 0s if it is shorter than n, or truncates it if it
is longer than n. If you do not specify n, fft defaults to the length of the input
sequence. fft is fastest for powers of 2. It is almost as fast for lengths that
have only small prime factors. It is typically several times slower for lengths
that are prime or have large prime factors.

The inverse FFT function ifft also accepts a transform length argument.

3-13

3 Fourier Analysis

3-14

4

Time Series Objects and
Methods

The following sections describe how to analyze time series data using
MATLAB objects and methods.

Introduction (p. 4-2) Summarizes the MATLAB
timeseries and tscollection
objects

Time Series Data Sample (p. 4-3) Defines a data sample for the
timeseries constructor

Example — Time Series Objects and
Methods (p. 4-6)

Provides an example of creating
and performing basic operations
on timeseries and tscollection
objects

Time Series Constructor (p. 4-21) Describes the timeseries
constructor syntax and object
properties

Time Series Methods (p. 4-31) Summarizes commonly used
timeseries methods

Time Series Collection Constructor
(p. 4-36)

Describes the tscollection
constructor syntax and object
properties

Time Series Collection Methods
(p. 4-40)

Summarizes commonly used
tscollection methods

4 Time Series Objects and Methods

Introduction
MATLAB provides methods for analyzing time series data. These methods
operate on the following MATLAB objects:

• timeseries — Stores data and time values, as well as the metadata
information that includes units, events, data quality, and interpolation
method

• tscollection — Stores a collection of timeseries objects that share a
common time vector, convenient for performing operations on synchronized
time series with different units

In this chapter, you learn how to

• Use time series constructors to instantiate time series classes

• Modify object properties using set methods or dot notation

• Call time series functions and methods

To get a quick overview of programming with timeseries and tscollection
objects, follow the steps in “Example — Time Series Objects and Methods”
on page 4-6.

If you prefer to work with a graphical user interface (GUI), use MATLAB
Time Series Tools to work with time series data. For more information about
Time Series Tools, see Chapter 5, “Time Series Tools”.

Note If you are new to programming with timeseries and tscollection
objects, you might want to start by working with Time Series Tools and
enabling the Record M-Code feature. This generates reusable M-code
based on the operations you perform in the GUI. For more information, see
“Generating Reusable M-Code” on page 5-6.

4-2

Time Series Data Sample

Time Series Data Sample
To properly understand the description of timeseries object properties and
methods in this documentation, it is important to clarify some terms related
to storing data in a timeseries object—the difference between a data value
and a data sample.

A data value is a single, scalar value recorded at a specific time. A data
sample consists of one or more values associated with a specific time in the
timeseries object. The number of data samples in a time series is the same
as the length of the time vector.

For example, consider data that consists of three sensor signals: two signals
represent the position of an object in meters, and the third represents its
velocity in meters/second.

To enter the data matrix, type the following at the MATLAB prompt:

x = [-0.2 -0.3 13;
-0.1 -0.4 15;
NaN 2.8 17;
0.5 0.3 NaN;

-0.3 -0.1 15]

The NaN value represents a missing data value. MATLAB displays the
following 5-by-3 matrix:

x=
-0.2000 -0.3000 13.0000
-0.1000 -0.4000 15.0000
NaN 2.8000 17.0000
0.5000 0.3000 NaN

-0.3000 -0.1000 15.0000

The first two columns of x contain quantities with the same units and
you can create a multivariate timeseries object to store these two time
series. For more information about creating timeseries objects, see “Time
Series Constructor Syntax” on page 4-22. The following command creates a
timeseries object ts_pos to store the position values:

ts_pos = timeseries(x(:,1:2), 1:5, 'name', 'Position')

4-3

4 Time Series Objects and Methods

MATLAB responds by displaying the following properties of ts_pos:

Time Series Object: Position

Time vector characteristics

Length 5
Start time 1 seconds
End time 5 seconds

Data characteristics

Interpolation method linear
Size [5 2]
Data type double

The Length of the time vector, which is 5 in this example, equals the number
of data samples in the timeseries object. Find the size of the data sample in
ts_pos by typing the following at the MATLAB prompt:

getdatasamplesize(ts_pos)

ans =

1 2

Similarly, you can create a second timeseries object to store the velocity data:

ts_vel = timeseries(x(:,3), 1:5, 'name', 'Velocity');

Find the size of each data sample in ts_vel by typing the following:

getdatasamplesize(ts_vel)

ans =

1 1

Notice that ts_vel has one data value in each data sample and ts_pos has
two data values in each data sample.

4-4

Time Series Data Sample

Note In general, when the time series data is an M-by-N-by-P-by-...
multidimensional array with M samples, the size of each data sample is
N-by-P-by-... .

If you want to perform operations on the ts_pos and ts_vel timeseries
objects while keeping them synchronized, group them in a time series
collection. For more information, see “Time Series Collection Constructor
Syntax” on page 4-36.

4-5

4 Time Series Objects and Methods

Example — Time Series Objects and Methods

In this section...

“Creating Time Series Objects” on page 4-6

“Viewing Time Series Objects” on page 4-8

“Modifying Time Series Units and Interpolation Method” on page 4-11

“Defining Events” on page 4-12

“Creating Time Series Collection Objects” on page 4-12

“Resampling a Time Series Collection Object” on page 4-14

“Adding a Data Sample to a Time Series Collection Object” on page 4-15

“Removing and Interpolating Missing Data” on page 4-16

“Removing a Time Series from a Time Series Collection” on page 4-18

“Changing a Numerical Time Vector to Date Strings” on page 4-18

“Plotting Time Series Collection Members” on page 4-19

Creating Time Series Objects
This portion of the example illustrates how to create several timeseries
objects from an array. For more information about the timeseries object, see
“Time Series Constructor” on page 4-21.

The sample data provided with this example consists of a 24-by-3 matrix
of double values, where each column represents the hourly traffic counts
at three town intersections.

This adds the variable count to the MATLAB workspace:

%% Import the sample data
load count.dat

To view the count matrix, type

count

4-6

Example — Time Series Objects and Methods

MATLAB responds by displaying the following 24-by-3 matrix:

11 11 9
7 13 11

14 17 20
11 13 9
43 51 69
38 46 76
61 132 186
75 135 180
38 88 115
28 36 55
12 12 14
18 27 30
18 19 29
17 15 18
19 36 48
32 47 10
42 65 92
57 66 151
44 55 90
114 145 257
35 58 68
11 12 15
13 9 15
10 9 7

4-7

4 Time Series Objects and Methods

Create three timeseries objects to store the data collected at each
intersection:

count1 = timeseries(count(:,1), 1:24,'name', 'intersection1');
count2 = timeseries(count(:,2), 1:24,'name', 'intersection2');
count3 = timeseries(count(:,3), 1:24,'name', 'intersection3');

Note In the above construction, timeseries objects have both a variable
name (e.g., count1) and an internal object name (e.g., intersection1).
The variable name is used with MATLAB functions. The object name is a
property of the object, accessed with object methods. For more information on
timeseries object properties and methods, see “Time Series Properties” on
page 4-24 and “Time Series Methods” on page 4-31.

Each time series has a time vector in units of seconds, starting at 1 second and
increasing up to 24 seconds in 1-second increments. The software assumes
this increment when you do not explicitly specify one. You will change
the time units to hours in “Modifying Time Series Units and Interpolation
Method” on page 4-11.

Note If you want to create a timeseries object that groups the three data
columns in count, use the following syntax:

count_ts = timeseries(count, 1:24,'name','traffic_counts')

This is useful when all time series have the same units and you want to keep
them synchronized during calculations.

Viewing Time Series Objects
After creating a timeseries object, as described in “Creating Time Series
Objects” on page 4-6, you can view it in either the Array Editor or Time
Series Tools.

To view a timeseries object like count1 in the Array Editor, use any one of
several methods:

4-8

Example — Time Series Objects and Methods

• Type open('count1') at the command prompt.

• Select count1 in the Workspace Browser and click the Open selection
button .

• Double-click count1 in the Workspace Browser.

• Right-click count1 in the Workspace Browser and select Open selection
from the context menu.

To view count1 in Time Series Tools, right-click count1 in the Workspace
Browser and choose Open in Time Series Tools from the context menu.

When a timeseries object is opened in either the Array Editor or Time Series
Tools, it is displayed with the Time Series Editor:

4-9

4 Time Series Objects and Methods

For information on using the Time Series Editor, see “Editing Data, Time,
Attributes, and Events” on page 5-31.

4-10

Example — Time Series Objects and Methods

Modifying Time Series Units and Interpolation
Method
After creating a timeseries object, as described in “Creating Time Series
Objects” on page 4-6, you can modify its units and interpolation method using
dot notation.

To view the current properties of count1, type

get(count1)

MATLAB responds by displaying the current property values of the count1
timeseries object:

Events: []
Name: 'intersection1'
Data: [24x1 double]
DataInfo: [1x1 tsdata.datametadata]
Time: [24x1 double]
TimeInfo: [1x1 tsdata.timemetadata]
Quality: []
QualityInfo: [1x1 tsdata.qualmetadata]
IsTimeFirst: true
TreatNaNasMissing: true

To view the current DataInfo properties, use dot notation:

count1.DataInfo

Change the data units and the default interpolation method for count1, as
follows:

count1.DataInfo.Units = 'cars';
% Specify new data units

count1.DataInfo.Interpolation = tsdata.interpolation('zoh');
% Set the interpolation method to zero-order hold

To verify that the DataInfo properties have been modified, type

count1.DataInfo

4-11

4 Time Series Objects and Methods

MATLAB confirms the change by displaying

Time Series Data Meta Data Object
Unit cars
Interpolation Method zoh

Modify the time units to be 'hours' for the three time series:

count1.TimeInfo.Units = 'hours';
count2.TimeInfo.Units = 'hours';
count3.TimeInfo.Units = 'hours';

Defining Events
This portion of the example illustrates how to define events for a timeseries
object by using the tsdata.event auxiliary object. Events mark the data at
specific times. When you plot the data, event markers are displayed on the
plot. Events also provide a convenient way to synchronize multiple time series.

Use the following syntax to add two events to the data that mark the times of
the AM commute and PM commute:

%% Construct and add the first event to all time series
e1 = tsdata.event('AMCommute',8);

% Construct the first event at 8 AM
e1.Units = 'hours'; % Specify the time units of the time
count1 = addevent(count1,e1); % Add the event to count1
count2 = addevent(count2,e1); % Add the event to count2
count3 = addevent(count3,e1); % Add the event to count3
%% Construct and add the second event to all time series
e2 = tsdata.event('PMCommute',18);

% Construct the first event at 6 PM
e2.Units = 'hours'; % Specify the time units of the time
count1 = addevent(count1,e2); % Add the event to count1
count2 = addevent(count2,e2); % Add the event to count2
count3 = addevent(count3,e2); % Add the event to count3

Creating Time Series Collection Objects
This portion of the example illustrates how to create a tscollection object.
Each individual time series in a collection is called a member. For more

4-12

Example — Time Series Objects and Methods

information about the tscollection object, see “Time Series Collection
Constructor” on page 4-36.

Note Typically, you use the tscollection object to group synchronized time
series that have different units. In this simple example, all time series have
the same units and the tscollection object does not provide an advantage
over grouping the three time series in a single timeseries object. For an
example of how to group several time series in one timeseries object, see
“Creating Time Series Objects” on page 4-6.

Use the following syntax to create a tscollection object named count_coll
and use the constructor syntax to immediately add two of the three time series
currently in the MATLAB workspace (you will add the third time series later):

tsc = tscollection({count1 count2},'name', 'count_coll')

MATLAB responds with

Time Series Collection Object: count_coll
Time vector characteristics
Start time 1 hours
End time 24 hours
Member Time Series Objects:

intersection1
intersection2

Note The time vectors of the timeseries objects you are adding to the
tscollection must match.

Notice that the Name property of the timeseries objects is used to name the
collection members as intersection1 and intersection2.

Add the third timeseries object in the workspace to the tscollection by
using the following syntax:

tsc = addts(tsc, count3)

4-13

4 Time Series Objects and Methods

MATLAB now lists all three members in the collection:

Time Series Collection Object: count_coll
Time vector characteristics
Start time 1 hours
End time 24 hours
Member Time Series Objects:

intersection1
intersection2
intersection3

Resampling a Time Series Collection Object
This portion of the example illustrates how to resample each member in a
tscollection using a new time vector. The resampling operation is used to
either select existing data at specific time values, or to interpolate data at
finer intervals. If the new time vector contains time values that did not exist
in the previous time vector, the new data values are calculated using the
default interpolation method you associated with the time series.

To resample the time series to include data values every 2 hours instead of
every hour and save it as a new tscollection object, enter the following
syntax:

tsc1 = resample(tsc,1:2:24)

In some cases you might need a finer sampling of information than you
currently have and it is reasonable to obtain it by interpolating data values.
For example, the following syntax interpolates values at each half-hour mark:

tsc1 = resample(tsc,1:0.5:24)

To add values at each half-hour mark, the default interpolation method of
a time series is used. For example, the new data points in intersection1
are calculated by using the zero-order hold interpolation method, which
holds the value of the previous sample constant. You set the interpolation
method for intersection1 as described in “Modifying Time Series Units and
Interpolation Method” on page 4-11.

The new data points in intersection2 and intersection3 are calculated
using linear interpolation, which is the default method.

4-14

Example — Time Series Objects and Methods

Adding a Data Sample to a Time Series Collection
Object
This portion of the example illustrates how to add a data sample to a
tscollection.

You can use the following syntax to add a data sample to the intersection1
collection member at 3.25 hours (i.e., 15 minutes after the hour):

tsc1 = addsampletocollection(tsc1,'time',3.25,...
'intersection1',5)

There are three members in the tsc1 collection, and adding a data sample
to one member adds a data sample to the other two members at 3.25 hours.
However, because you did not specify the data values for intersection2 and
intersection3 in the new sample, the missing values are represented by
NaNs for these members. To learn how to remove or interpolate missing data
values, see “Removing and Interpolating Missing Data” on page 4-16.

tsc1 Data from 2.0 to 3.5 Hours

Hours Intersection 1 Intersection 2 Intersection 3

2.0 7 13 11

2.5 7 15 15.5

3.0 14 17 20

3.25 5 NaN NaN

3.5 14 15 14.5

To view all intersection1 data (including the new sample at 3.25 hours), type

tsc1.intersection1

Similarly, to view all intersection2 data (including the new sample at 3.25
hours containing a NaN value), type

tsc1.intersection2

4-15

4 Time Series Objects and Methods

Removing and Interpolating Missing Data
MATLAB uses NaNs to represent missing data in a time series. This portion of
the example illustrates how to either remove the missing data or interpolate
it by using the interpolation method you specified for that time series. In
“Adding a Data Sample to a Time Series Collection Object” on page 4-15, you
added a new data sample to the tsc1 collection at 3.25 hours.

There are three members in the tsc1 collection, and adding a data sample
to one member adds a data sample to the other two members at 3.25 hours.
However, because you did not specify the data values for the intersection2
and intersection3 members at 3.25 hours, they currently contain missing
values that are represented by NaNs.

Removing Missing Data
You can use the following syntax to find and remove the data samples
containing NaN values in the tsc1 collection:

tsc1 = delsamplefromcollection(tsc1,'index',...
find(isnan(tsc1.intersection2.Data)));

This command searches one tscollection member at a time—in this case,
intersection2. When a missing value is located in intersection2, the data
at that time is removed from all members of the tscollection.

Note You can use the following dot-notation syntax to access the Data
property of the intersection2 member in the tsc1 collection:

tsc1.intersection2.Data

For a complete list of timeseries properties, see “Time Series Properties”
on page 4-24.

4-16

Example — Time Series Objects and Methods

Interpolating Missing Data
For the sake of this example, you must reintroduce NaN values in
intersection2 and intersection3 (which you removed):

tsc1 = addsampletocollection(tsc1,'time',3.25,...
'intersection1',5);

To interpolate the missing values in tsc1 using the current time vector
(tsc1.Time), type the following syntax:

tsc1 = resample(tsc1,tsc1.Time)

This replaces the NaN values in intersection2 and intersection3 by using
linear interpolation—the default interpolation method for these time series.

Note Dot notation tsc1.Time is used to access the Time property of the tsc1
collection. For a complete list of tscollection properties, see “Time Series
Collection Properties” on page 4-38.

To view intersection2 data after interpolation, for example, type

tsc1.intersection2

New tsc1 Data from 2.0 to 3.5 Hours

Hours Intersection 1 Intersection 2 Intersection 3

2.0 7 13 11

2.5 7 15 15.5

3.0 14 17 20

4-17

4 Time Series Objects and Methods

New tsc1 Data from 2.0 to 3.5 Hours (Continued)

Hours Intersection 1 Intersection 2 Intersection 3

3.25 5 16 17.3

3.5 14 15 14.5

Removing a Time Series from a Time Series Collection
To remove the intersection3 time series from the tscollection object
tsc1, type:

tsc1 = removets(tsc1,'intersection3')

MATLAB now lists two time series as members in the collection:

Time Series Collection Object: count_coll
Time vector characteristics
Start time 1 hours
End time 24 hours
Member Time Series Objects:

intersection1
intersection2

Changing a Numerical Time Vector to Date Strings
This portion of the example illustrates how to convert the display format of
a numerical time vector to MATLAB date strings. For a complete list of the
MATLAB date-string formats supported for timeseries and tscollection
objects, see “Time Vector Format” on page 4-21.

To convert a numerical time vector to date strings, you must set the StartDate
field of the TimeInfo property. All values in the time vector are converted to
date strings using StartDate as a reference date.

For example, suppose the reference date occurs on December 25, 2004:

tsc1.TimeInfo.StartDate = 'DEC-25-2004 00:00:00';

4-18

Example — Time Series Objects and Methods

To verify that the time vector now uses date strings, type the following
command to look at the sixth element of the intersection2 member:

tsc1.intersection2(6)

MATLAB responds with

Time Series Object: unnamed
Time vector characteristics

Length 1
Start date 25-Dec-2004 03:15:00
End date 25-Dec-2004 03:15:00

Data characteristics
Interpolation method linear
Size [1 1]
Data type double

Time Data Quality

25-Dec-2004 03:15:00 16

This result shows that the sixth element of intersection2 has an
interpolated data value of 16 cars at 3.25 hours (or 3:15:00).

Plotting Time Series Collection Members
You can plot the two remaining members in the tsc1 collection by using the
following command sequence:

plot(tsc1.intersection1); hold on;
plot(tsc1.intersection2)

4-19

4 Time Series Objects and Methods

Time Plot of Two Time Series in a Collection

This plot shows the two time series in the collection: intersection1 and
intesection2. intersection1 uses the zero-order hold interpolation method
and therefore has a jagged curve. In contrast, intersection2 uses a linear
interpolation method. The vertical axis is labeled as intersection2 because
this was the last time series plotted.

The filled circles on the plot indicate events, as specified in “Defining Events”
on page 4-12.

4-20

Time Series Constructor

Time Series Constructor

In this section...

“Time Vector Format” on page 4-21

“Time Series Constructor Syntax” on page 4-22

“Time Series Properties” on page 4-24

Time Vector Format
You can specify the time vector of the timeseries object either as numerical
(double) values or as valid MATLAB date strings.

When the timeseries TimeInfo.StartDate property is empty, the numerical
Time values are measured relative to 0 (or another numerical value) in
specified units. In this case, the time vector is described as relative (that is, it
contains time values that are not associated with a specific start date).

When TimeInfo.StartDate is nonempty, the time values are date strings
measured relative to StartDate in specified units. In this case, the time
vector is described as absolute (that is, it contains time values that are
associated with a specific calendar date). For more information, see “Time
Series Properties” on page 4-24.

MATLAB supports the following date-string formats for time series
applications.

Date-String Format Usage Example

dd-mmm-yyyy HH:MM:SS 01-Mar-2000 15:45:17

dd-mmm-yyyy 01-Mar-2000

mm/dd/yy 03/01/00

mm/dd 03/01

HH:MM:SS 15:45:17

HH:MM:SS PM 3:45:17 PM

HH:MM 15:45

4-21

4 Time Series Objects and Methods

Date-String Format Usage Example

HH:MM PM 3:45 PM

mmm.dd,yyyy HH:MM:SS Mar.01,2000 15:45:17

mmm.dd,yyyy Mar.01,2000

mm/dd/yyyy 03/01/2000

For an example of how to represent a numerical time vector relative to
calendar dates, see “Changing a Numerical Time Vector to Date Strings”
on page 4-18.

Time Series Constructor Syntax
Before implementing the various MATLAB functions and methods specifically
designed to handle time series data, you must create a timeseries object
to store the data.

The following table summarizes the syntax when using the timeseries
constructor. For an example of using the constructor, see “Creating Time
Series Objects” on page 4-6.

Time Series Syntax Descriptions

Syntax Description

ts = timeseries Creates an empty timeseries
object. The size of this object is
0-by-1.

ts = timeseries(Data) Creates a timeseries object with
the specified Data.

ts has a default time vector
ranging from 0 to N-1 with 1-second
increments, where N is the number
of samples. The default name of the
timeseries object is 'unnamed'.

4-22

Time Series Constructor

Time Series Syntax Descriptions (Continued)

Syntax Description

ts = timeseries('Name') Creates an empty timeseries
object with the name specified
by a string Name. This name can
differ from the timeseries variable
name.

ts = timeseries(Data,Time) Creates a timeseries object with
the specified Data array and Time.

When time values are date strings,
you must specify Time as a cell
array of date strings.

4-23

4 Time Series Objects and Methods

Time Series Syntax Descriptions (Continued)

Syntax Description

ts =
timeseries(Data,Time,Quality)

The Quality attribute is an integer
vector containing values -128
to 127 that specifies the quality
in terms of codes defined by
QualityInfo.Code.

For more information about
QualityInfo, see “Time Series
Properties” on page 4-24.

ts = timeseries(Data,...,
'Parameter',Value,...)

Optionally enter the following
parameter-value pairs after
the Data, Time, and Quality
arguments. You can specify the
following parameters:

• Name

• IsTimeFirst

• IsDatenum

Name and IsTimeFirst are
described in “Time Series
Properties” on page 4-24.

When set to true, IsDatenum
specifies that Time values are dates
in the format of MATLAB serial
dates.

Time Series Properties
The following table lists the properties of the timeseries object. You can
specify the Data, IsTimeFirst, Name, Quality, and Time properties as input
arguments in the constructor. To assign other properties, use the set function
or dot notation.

4-24

Time Series Constructor

Note To get property information from the command line, type help
timeseries/tsprops at the MATLAB prompt.

For an example of editing timeseries object properties, see “Modifying Time
Series Units and Interpolation Method” on page 4-11.

Time Series Property Descriptions

Property Description

Data Time series data, where each data sample
corresponds to a specific time.

The data can be a scalar, a vector, or a
multidimensional array. Either the first or last
dimension of the data must align with Time.

By default, NaNs represent missing or unspecified
data. Set the TreatNaNasMissing property
to determine how missing data is treated in
calculations.

4-25

4 Time Series Objects and Methods

Time Series Property Descriptions (Continued)

Property Description

DataInfo Contains fields for storing contextual information
about Data:

• Unit — String that specifies data units.

• Interpolation — A tsdata.interpolation
object that specifies the interpolation method for
this time series.

Fields in the tsdata.interpolation object
include:

- Fhandle: Function handle to a user-defined
interpolation function.

- Name: String that specifies the name of the
interpolation method. Predefined interpolation
methods include 'linear' and 'zoh'
(zero-order hold). 'linear' is the default.

• UserData — Any user-defined information
entered as a string.

4-26

Time Series Constructor

Time Series Property Descriptions (Continued)

Property Description

Events An array of tsdata.event objects that stores event
information for this timeseries object. You add
events using the addevent method.

Fields in the tsdata.event object include the
following:

• EventData — Any user-defined information about
the event

• Name — String that specifies the name of the event

• Time — Time value when this event occurs,
specified as a real number or a date string relative
to StartDate

• Units — Time units

• StartDate — A reference date specified in
MATLAB date string format. StartDate is empty
when you have a numerical time vector.

4-27

4 Time Series Objects and Methods

Time Series Property Descriptions (Continued)

Property Description

IsTimeFirst Logical value (true or false) that specifies whether
the first or last dimension of the Data array aligns
with the time vector.

You can set this property when the Data array is
square and it is ambiguous which dimension aligns
with time. By default, the first Data dimension that
matches the length of the time vector is aligned with
Time.

When you set this property to

• true, the first dimension of the data array is
aligned with the time vector.

• false, the last dimension of the data array is
aligned with the time vector.

After a time series is created, this property is
read-only.

Name timeseries object name entered as a string. This
name can differ from the name of the timeseries
variable in the MATLAB workspace.

Quality An integer vector or array containing values -128
to 127 that specifies the quality in terms of codes
defined by the QualityInfo.Code field.

When Quality is a vector, it must have the same
length as the time vector. In this case, each Quality
value applies to the corresponding data sample.

When Quality is an array, it must have the same
size as the data array. In this case, each Quality
value applies to the corresponding value of the data
array.

4-28

Time Series Constructor

Time Series Property Descriptions (Continued)

Property Description

QualityInfo Provides a lookup table that converts numerical
Quality codes to readable descriptions.
QualityInfo fields include the following:

• Code — Integer vector containing values -128 to
127 that defines the “dictionary” of quality codes,
which you can assign to each Data value by using
the Quality property

• Description — Cell vector of strings, where each
element provides a readable description of the
associated quality Code

• UserData — Stores any additional user-defined
information

The length of Code and Description must match.

Time Vector of time values.

When TimeInfo.StartDate is empty, the numerical
Time values are measured relative to 0 in specified
units. When TimeInfo.StartDate is defined, the
time values are date strings measured relative to
StartDate in specified units.

The length of Time must match either the first or
the last dimension of Data.

4-29

4 Time Series Objects and Methods

Time Series Property Descriptions (Continued)

Property Description

TimeInfo Uses the following fields to store contextual
information about Time:

• Units — Time units with the following
values: 'weeks', 'days', 'hours', 'minutes',
'seconds', 'milliseconds', 'microseconds',
and 'nanoseconds'

• Start — Start time

• End — End time (read-only)

• Increment — Interval between two subsequent
time values

• Length — Length of the time vector (read-only)

• Format — String defining the date string display
format. See the MATLAB datestr function
reference page for more information.

• StartDate — Date string defining the
reference date. See the MATLAB setabstime
(timeseries) function reference page for more
information.

• UserData — Stores any additional user-defined
information

TreatNaNasMissing Logical value that specifies how to treat NaN values
in Data:

• true — (Default) Treat all NaN values as missing
data except during statistical calculations.

• false — Include NaN values in statistical
calculations, in which case NaN values are
propagated to the result.

4-30

Time Series Methods

Time Series Methods

In this section...

“General Methods” on page 4-31

“Data and Time Manipulation Methods” on page 4-32

“Event Methods” on page 4-33

“Arithmetic Operation Methods” on page 4-34

“Statistical Methods” on page 4-35

General Methods
Use the following methods to query and set object properties, and plot the
data.

Methods for Querying Properties

Method Description

get (timeseries) Query timeseries object property values.

getdatasamplesize Return the size of each data sample in a
timeseries object.

getqualitydesc Return data quality descriptions based on
the Quality property values assigned to a
timeseries object.

isempty (timeseries) Evaluate to true for an empty timeseries
object.

length (timeseries) Return the length of the time vector.

plot (timeseries) Plot the timeseries object.

set (timeseries) Set timeseries property values.

4-31

4 Time Series Objects and Methods

Methods for Querying Properties (Continued)

Method Description

size (timeseries) Return the size property of a timeseries
object.

tstool Open the Time Series Tools GUI.

Data and Time Manipulation Methods
Use the following methods to add or delete data samples, and manipulate
the timeseries object.

Methods for Manipulating Data and Time

Method Description

addsample Add a data sample to a timeseries object.

ctranspose
(timeseries)

Transpose a timeseries object.

delsample Delete a sample from a timeseries object.

detrend (timeseries) Subtract the mean or best-fit line and remove
all NaNs from time series data.

filter (timeseries) Shape frequency content of time series data
using a 1-D digital filter.

getabstime
(timeseries)

Extract a date-string time vector from a
timeseries object into a cell array.

getinterpmethod Get the interpolation method for a timeseries
object.

getsampleusingtime
(timeseries)

Extract specified data samples from an
existing timeseries object into a new
timeseries object.

idealfilter
(timeseries)

Apply an ideal pass or notch (noncausal) filter
to a timeseries object.

4-32

Time Series Methods

Methods for Manipulating Data and Time (Continued)

Method Description

resample (timeseries) Select or interpolate data in a timeseries
object using a new time vector.

setabstime
(timeseries)

Set the time values in the time vector as date
strings.

setinterpmethod Set interpolation method for a timeseries
object.

synchronize Synchronize and resample two timeseries
objects using a common time vector.

transpose (timeseries) Transpose a timeseries object.

vertcat (timeseries) Vertical concatenation for timeseries objects.

Event Methods
To construct an event object, use the constructor tsdata.event. For an
example of defining events for a time series, see “Defining Events” on page
4-12.

Methods That Define and Use Events

Method Description

addevent Add one or more events to a timeseries
object.

delevent Delete one or more events from a timeseries
object.

gettsafteratevent Create a new timeseries object by extracting
the samples from an existing time series that
occur after or at a specified event.

gettsafterevent Create a new timeseries object by extracting
the samples that occur after a specified event
from an existing time series.

4-33

4 Time Series Objects and Methods

Methods That Define and Use Events (Continued)

Method Description

gettsatevent Create a new timeseries object by extracting
the samples that occur at the same time as a
specified event from an existing time series.

gettsbeforeatevent Create a new timeseries object by extracting
the samples that occur before or at a specified
event from an existing time series.

gettsbeforeevent Create a new timeseries object by extracting
the samples that occur before a specified event
from an existing time series.

gettsbetweenevents Create a new timeseries object by extracting
the samples that occur between two specified
events from an existing time series.

Arithmetic Operation Methods
Use the following operators to arithmetically combine timeseries objects.

Methods to Arithmetically Combine Time Series

Operation Description

+ Add the corresponding data values of timeseries
objects.

- Subtract the corresponding data values of
timeseries objects.

.* Element-by-element multiplication of timeseries
data.

* Matrix-multiply timeseries data.

./ Right element-by-element division of timeseries
data.

/ Right matrix division of timeseries data.

4-34

Time Series Methods

Methods to Arithmetically Combine Time Series (Continued)

Operation Description

.\ Element-by-element left-array divide of timeseries
data.

\ Left matrix division of timeseries data.

Statistical Methods
Use the following methods to calculate descriptive statistics for a timeseries
object.

Methods for Calculating Descriptive Statistics

Method Description

iqr (timeseries) Return the interquartile range of timeseries data.

max (timeseries) Return the maximum value of timeseries data.

mean (timeseries) Return the mean of timeseries data.

median
(timeseries)

Return the median of timeseries data.

min (timeseries) Return the minimum of timeseries data.

std (timeseries) Return the standard deviation of timeseries data.

sum (timeseries) Return the sum of timeseries data.

var (timeseries) Return the variance of timeseries data.

4-35

4 Time Series Objects and Methods

Time Series Collection Constructor

In this section...

“Introduction” on page 4-36

“Time Series Collection Constructor Syntax” on page 4-36

“Time Series Collection Properties” on page 4-38

Introduction
The MATLAB object, called tscollection, is a MATLAB variable that groups
several time series with a common time vector. The timeseries objects that
you include in the tscollection object are called members of this collection.

MATLAB provides several methods for convenient analysis and manipulation
of timeseries in a tscollection object.

Time Series Collection Constructor Syntax
Before you implement the MATLAB methods specifically designed to operate
on a collection of timeseries objects, you must create a tscollection object
to store the data.

The following table summarizes the syntax for using the tscollection
constructor. For an example of using this constructor, see “Creating Time
Series Collection Objects” on page 4-12.

4-36

Time Series Collection Constructor

Time Series Collection Syntax Descriptions

Syntax Description

tsc = tscollection(ts) Creates a tscollection object tsc that
includes one or more timeseries objects.

The ts argument can be one of the
following:

• Single timeseries object in the
MATLAB workspace

• Cell array of timeseries objects in the
MATLAB workspace

The timeseries objects share the same
time vector in the tscollection.

tsc = tscollection(Time) Creates an empty tscollection object
with the time vector Time.

When time values are date strings, you
must specify Time as a cell array of date
strings.

tsc = tscollection(Time,
TimeSeries, 'Parameter',
Value, ...)

Optionally enter the following
parameter-value pairs after the
Time and TimeSeries arguments:

• Name (see “Time Series Collection
Properties” on page 4-38)

• IsDatenum

When set to true, IsDatenum specifies
that Time values are dates in the format
of MATLAB serial dates.

4-37

4 Time Series Objects and Methods

Time Series Collection Properties
This table lists the properties of the tscollection object. You can specify the
Name, Time, and TimeInfo properties as input arguments in the tscollection
constructor.

Time Series Collection Property Descriptions

Property Description

Name tscollection object name entered as a string. This
name can differ from the name of the tscollection
variable in the MATLAB workspace.

4-38

Time Series Collection Constructor

Time Series Collection Property Descriptions (Continued)

Property Description

Time A vector of time values.

When TimeInfo.StartDate is empty, the numerical
Time values are measured relative to 0 in specified
units. When TimeInfo.StartDate is defined, the time
values represent date strings measured relative to
StartDate in specified units.

The length of Time must match either the first or
the last dimension of the Data property of each
tscollection member.

TimeInfo Uses the following fields to store contextual information
about Time:

• Units — Time units with the following
values: 'weeks', 'days', 'hours', 'minutes',
'seconds', 'milliseconds', 'microseconds', and
'nanoseconds'

• Start — Start time

• End — End time (read-only)

• Increment — Interval between two subsequent time
values. The increment is NaN when times are not
uniformly sampled.

• Length — Length of the time vector (read-only)

• Format — String defining the date string display
format. See the MATLAB datestr function
reference page for more information.

• StartDate — Date string defining the reference
date. See the MATLAB setabstime (timeseries)
function reference page for more information.

• UserData — Stores any additional user-defined
information

4-39

4 Time Series Objects and Methods

Time Series Collection Methods

In this section...

“General Time Series Collection Methods” on page 4-40

“Data and Time Manipulation Methods” on page 4-40

General Time Series Collection Methods
Use the following methods to query and set object properties, and plot the
data.

Methods for Querying Properties

Method Description

get (tscollection) Query tscollection object property values.

isempty (tscollection) Evaluate to true for an empty tscollection
object.

length (tscollection) Return the length of the time vector.

plot (timeseries) Plot the time series in a collection.

set (tscollection) Set tscollection property values.

size (tscollection) Return the size of a tscollection object.

tstool Open the Time Series Tools GUI.

Data and Time Manipulation Methods
Use the following methods to add or delete data samples, and manipulate the
tscollection object.

4-40

Time Series Collection Methods

Methods for Manipulating Data and Time

Method Description

addts Add a timeseries object to a tscollection
object.

addsampletocollection Add data samples to a tscollection object.

delsamplefromcollection Delete one or more data samples from a
tscollection object.

getabstime
(tscollection)

Extract a date-string time vector from a
tscollection object into a cell array.

getsampleusingtime
(tscollection)

Extract data samples from an existing
tscollectionobject into a new
tscollection object.

gettimeseriesnames Return a cell array of time series names in a
tscollection object.

horzcat (tscollection) Horizontal concatenation of tscollection
objects. Combines several timeseries
objects with the same time vector into one
time series collection.

removets Remove one or more timeseries objects
from a tscollection object.

resample (tscollection) Select or interpolate data in a tscollection
object using a new time vector.

setabstime
(tscollection)

Set the time values in the time vector of a
tscollection object as date strings.

settimeseriesnames Change the name of the selected timeseries
object in a tscollection object.

vertcat (tscollection) Vertical concatenation of tscollection
objects. Joins several tscollection objects
along the time dimension.

4-41

4 Time Series Objects and Methods

4-42

5

Time Series Tools

The following sections describe how to use the MATLAB Time Series Tools
graphical user interface (GUI) for analyzing time series data.

Introduction (p. 5-2) Summarizes the Time Series Tools
window and workflow

Importing and Exporting Data
(p. 5-7)

Describes supported data sources
and instructions for importing and
exporting data in Time Series Tools

Plotting Time Series (p. 5-13) Describes how to work with time
plots, histograms, spectral plots,
correlation plots, and XY plots

Selecting Data for Analysis (p. 5-28) Provides instructions for selecting
data on which to focus your analysis

Editing Data, Time, Attributes, and
Events (p. 5-31)

Describes how to edit data, time,
units, interpolation method, quality
codes, and events for time series

Processing and Manipulating Time
Series (p. 5-41)

Provides instructions for processing
time series, including filtering,
interpolating, resampling, and
algebraically manipulating data

Example — Time Series Tools
(p. 5-42)

Provides an example of importing,
plotting, and analyzing time series

5 Time Series Tools

Introduction

In this section...

“Opening Time Series Tools” on page 5-2

“Getting Help” on page 5-3

“Time Series Tools Window” on page 5-3

“Time Series Tools Workflow” on page 5-5

“Generating Reusable M-Code” on page 5-6

Opening Time Series Tools
To open Time Series Tools, type the following at the MATLAB prompt:

tstool

You can also open Time Series Tools using the MATLAB Start button by
selecting Start > MATLAB > Time Series Tools.

For a description of the Time Series Tools GUI, see “Time Series Tools
Window” on page 5-3.

To learn how to import data into Time Series Tools, see “Importing and
Exporting Data” on page 5-7.

You can also start Time Series Tools and simultaneously import the following
kinds of objects from the MATLAB workspace:

• timeseries

• tscollection

• Simulink® logged signals

Note You cannot import Simulink logged signals that contain a / in their
Name property at any point in the signal hierarchy.

5-2

Introduction

Syntax for Loading Data from the MATLAB Workspace

MATLAB Object Syntax Description

timeseries tstool(tsname) tsname is the name of a
timeseries object.

tscollection tstool(tscname) tscname is the name of a
tscollection object.

Simulink
logged-signal data

tstool(sldata) sldata is the name of a signal
logged in a Simulink model.

Getting Help
Time Series Tools provides extensive context-sensitive help directly from
the GUI.

In the Time Series Tools window, the context-sensitive help pane is available
on the right to assist you with the primary tasks. To toggle between displaying

or hiding the help pane, click the (Help) button in the toolbar. You can
resize the help pane by dragging the vertical divider to the left or to the right.

Context-sensitive help is also available via the Help button in Time Series
Tools dialog boxes.

Time Series Tools Window
The Time Series Tools window consists of the following three areas:

• Time Series Session tree

Organizes time series data and plots (or Views).

The Simulink Time Series node is shown only when you have installed
Simulink.

• Options and Settings pane

After you select a node in the tree, this pane displays options and settings
pertaining to the node you selected in the tree.

• Context-Sensitive Help pane

5-3

http://www.mathworks.com/access/helpdesk/help/toolbox/simulink/ug/?f15-14248.html

5 Time Series Tools

Provides information and instructions about entering the options and
settings currently shown in Time Series Tools. You can toggle between

displaying or hiding this help by clicking the button in the toolbar. You
can change the width of the help pane by dragging the vertical divider to
the left or to the right.

To learn about other help available in Time Series Tools, see “Getting Help”
on page 5-3.

The following figure shows the three main areas of the Time Series Tools GUI:

5-4

Introduction

Time Series Tools Workflow
When you analyze data using Time Series Tools, your workflow might include
the following tasks:

1 Import data from an Excel workbook, MAT-file, or MATLAB workspace.

For more information, see “Importing and Exporting Data” on page 5-7.

2 Create a time plot to gain insight into the data features.

For more information, see “Creating a Plot” on page 5-14.

3 Select data subset for analysis.

For more information, see “Selecting Data for Analysis” on page 5-28.

4 Edit the data by

• Identifying and removing outliers or “dead time” (see “Selecting Data
Using Rules” on page 5-28).

• Manually correcting errors (see “Editing Data, Time, Attributes, and
Events” on page 5-31).

5 Process the data by

• Interpolating or removing missing values.

• Detrending data by subtracting a mean value or a linear trend.

• Filtering to smooth and shape the data.

• Algebraically manipulating existing time series to create a new time
series.

• Resampling data using a specified time vector by selecting or
interpolating values.

For more information, see “Processing and Manipulating Time Series” on
page 5-41.

6 Generating correlation plots, spectral plots, histograms, and XY plots.

For more information, see “Plotting Time Series” on page 5-13.

5-5

5 Time Series Tools

7 Exporting data from Time Series Tools to the MATLAB workspace or to a
file.

For more information, see “Exporting Data from Time Series Tools” on
page 5-12.

Generating Reusable M-Code
You can enable automatic generation of reusable M-code while you perform
operations that modify data in Time Series Tools. To do this, select File >
Record M-Code in the Time Series Tools window.

If you are new to programming with MATLAB timeseries methods, you
can use the generated M-code to get syntax examples. For more information
about programming with MATLAB timeseries objects, see Chapter 4, “Time
Series Objects and Methods”.

For an example of automatically generating and viewing M-code, see
“Example — Time Series Tools” on page 5-42.

Note The scope of the Record M-Code feature is restricted to recording
actions on the time series data itself. It does not generate code to import
data or reproduce time series plots.

5-6

Importing and Exporting Data

Importing and Exporting Data

In this section...

“Types of Data You Can Import” on page 5-7

“How to Import Data” on page 5-7

“Changes to Data Representation During Import” on page 5-9

“Importing Multivariate Data” on page 5-10

“Importing Data with Missing Values” on page 5-11

“Exporting Data from Time Series Tools” on page 5-12

Types of Data You Can Import
You can import data into Time Series Tools from

• A Microsoft Excel workbook, a text file, or a MAT-file.

• An array in the MATLAB workspace.

• A timeseries or tscollection object in the MATLAB workspace.

For more information about creating these objects, see Chapter 4, “Time
Series Objects and Methods”.

• Simulink logged-signal data from a Simulink model.

Note You cannot import a timeseries or tscollection object from a
MAT-file.

How to Import Data
This section includes the following topics:

• “Importing Time Series and Time Series Collection Objects” on page 5-8

• “Importing Data from External Files” on page 5-8

• “Using the Import Wizard” on page 5-8

5-7

http://www.mathworks.com/access/helpdesk/help/toolbox/simulink/ug/?f15-14248.html

5 Time Series Tools

Importing Time Series and Time Series Collection Objects
If you have already encapsulated time series data in a timeseries or
tscollection object in the MATLAB workspace, you can open Time Series
Tools and import the data in a single operation. Simply right-click the object
name in the Workspace Browser and choose Open in Time Series Tools
from the context menu.

Importing Data from External Files
Once you have opened Time Series Tools, use the following commands to
import data from external files. Each command opens a dialog box. You can
get detailed information about options by clicking Help.

Data Source Import Command

Microsoft Excel worksheet
(.xls)

Select File > Create Time Series from
File to open the Import Wizard.

Text file (.csv, .txt, .dat) Select File > Create Time Series from
File to open the Import Wizard.

MAT-file array (.mat) Select File > Create Time Series from
File to open the Import Wizard.

MATLAB workspace array Select File > Import from Workspace >
Array Data to open the Import Wizard.

timeseries or tscollection
object in the MATLAB
workspace

Select File > Import from Workspace >
Time Series Objects or Collections.

Simulink logged signal Select File > Import from Workspace >
Simulink Data Logs.

Using the Import Wizard
When in Time Series Tools, you import data from the MATLAB workspace or
an external file using the Import Wizard. The Import Wizard lets you select
the data to import when analyzing a portion of an Excel worksheet or specific
columns or rows in a MATLAB array.

After you select the data, you can specify to import time values from a file or
define a uniformly spaced time vector in the Import Wizard. For an example

5-8

Importing and Exporting Data

of importing data from an Excel worksheet, see “Importing Data into Time
Series Tools” on page 5-43.

Each time series you import is added as a data node to the Time Series
Session tree.

Note The Import Wizard in Time Series Tools imports data as timeseries
objects. This is different from the Import Wizard you access from the MATLAB
Command Window, which imports data as MATLAB vectors and matrices.

For instructions about working with the Import Wizard, click Help in the
Import Wizard window. You can also get help on specific fields in the Wizard
as follows:

1 Right-click the text label of a field for which you want to get help.

2 Select What’s This from the shortcut menu.

Changes to Data Representation During Import
When you import data into Time Series Tools, a copy of the data is imported
without affecting the original data source.

The data copy is changed during import, as follows:

• Rowwise data is transposed to become columnwise with the time vector
in the first column.

• Data with more than two dimensions is reshaped to two dimensions such
that dimensions three and higher become additional columns. For example,
a 2-by-3-by-5 data array becomes a 2-by-15 data array.

• Non-double data, such as int, logical, and fixed-point, is converted to
double.

• Missing data values are replaced by NaNs.

• A sparse matrix is converted to a full matrix.

5-9

5 Time Series Tools

Caution When you export data from Time Series Tools to a file or to the
MATLAB workspace, please note that its representation might differ from
what you imported into Time Series Tools. For more information about
exporting data, see “Exporting Data from Time Series Tools” on page 5-12.

Importing Multivariate Data
When your data consists of several related variables measured at the same
time, you might want to group this data so that you can plot variables together
or perform calculations on all variables simultaneously.

There are two ways to represent multivariate data in Time Series Tools:

• Create a time series collection with a common time vector, where each time
series is a member of the collection.

• Import a data array into a single timeseries object, where each time
series is stored as a column.

Choosing How to Represent Multivariate Data
How you choose to represent your data depends on whether the variables have
the same or different units.

When your data contains different measurements of the same quantity (same
units), you can store all measurements as separate columns in a single time
series. Plotting such a time series displays all columns on the same axes and
distinguishes the data sets by line and marker styles. For more information,
see “Customizing Line and Marker Styles” on page 5-15.

When your data contains different quantities, measured in different units,
you might want to distinguish these quantities on plots and during analysis.
In this case, we recommend that you store each quantity as a separate time
series and then group them into a time series collection. For example, if you
are working with stock-price data in a portfolio, you might represent each
stock as a separate time series and group them in a collection. When you plot
this collection, each member is plotted on separate axes. However, when
you perform data-analysis operations on the collection, such as filtering or

5-10

Importing and Exporting Data

interpolation, these operations are applied to all time series in the collection
simultaneously.

Creating a Time Series Collection
You can create a time series collection in the MATLAB Command Window, as
described in Chapter 4, “Time Series Objects and Methods”, and then import
the collection into Time Series Tools. Alternatively, you can use the Import
Wizard to facilitate creating the timeseries objects and then group them into
a collection in the MATLAB Command Window.

The following procedure describes one way to create a time series collection
using data from a file.

Note At each step, you can click the Help button in the GUI to access
context-sensitive help.

1 To import each variable in the Microsoft Excel worksheet or MATLAB
array as a separate time series in Time Series Tools, select File > Import
from Workspace > Array Data. This opens the Import Wizard.

2 After importing the data, select the Time Series node in the tree and
export these time series to the MATLAB workspace.

3 In the MATLAB Command Window, combine individual time series into
a time series collection object. For an example of creating a time series
collection, see “Creating Time Series Collection Objects” on page 4-12.

4 In Time Series Tools, select File > Import from Workspace > Time
Series Objects or Collections and import the collection from the
MATLAB workspace.

Importing Data with Missing Values
When you import data from a Microsoft Excel worksheet into Time Series
Tools that contains missing values, the missing data is automatically replaced
with NaNs. NaNs are ignored in Time Series Tools calculations.

To remove or interpolate missing values:

5-11

5 Time Series Tools

1 Select a time series or a collection in the Time Series Session tree
containing missing values.

2 Select Data > Interpolate or Data > Remove Missing Data, depending
on the operation you want to perform. This opens the Process Data dialog
box.

3 Click Help to access context-sensitive help on specific options in the dialog
box.

Exporting Data from Time Series Tools
Importing data into Time Series Tools creates a copy of the original data.
After you finish analyzing the data in Time Series Tools, you must export it to
a file or to the MATLAB workspace to make it available for other processing
in MATLAB.

To export a time series or a collection, select the desired node in the Time
Series Session tree. Then, do one of the following:

• Export to a file (Microsoft Excel worksheet or MAT-file):

Select File > Export > To File.

When you export a time series collection, the individual time series are
extracted into separate Microsoft Excel worksheets.

• Export to the MATLAB workspace:

Select File > Export > To Workspace.

5-12

Plotting Time Series

Plotting Time Series

In this section...

“Types of Plots in Time Series Tools” on page 5-13

“Creating a Plot” on page 5-14

“Customizing Line and Marker Styles” on page 5-15

“Editing Plot Appearance” on page 5-15

“Time Plots” on page 5-17

“Spectral Plots” on page 5-18

“Histograms” on page 5-20

“Correlation Plots” on page 5-21

“XY Plots” on page 5-26

Types of Plots in Time Series Tools
You can generate the following types of plots in Time Series Tools.

Plot Type Description

Time Plot Plots data as a function of time to help you see
important features, such as outliers, discontinuities,
trends, and periodicities.

Histogram Plots the number of data values that occur in
specified data ranges, called bins.

Spectral Plot Shows data periodicities by plotting the estimated
power spectral density as a function of frequency.

Correlation Plot Shows the autocorrelation of a time series or
cross-correlation between two time series.

XY Plot Shows the relationship between two time series by
plotting the data values of one on the x-axis and the
data values of the other on the y-axis.

5-13

5 Time Series Tools

Creating a Plot
You can create a plot in Time Series Tools is by dragging and dropping a Time
Series data node in the Time Series Session tree onto a Views node.

The following figure shows an example of how to create a spectral plot by
dragging the onboard time series onto the Spectral Plots node:

This opens the spectral plot in the Time Series Plots window and adds a tree
node under Spectral Plots. The Time Series Plots window is similar to the
MATLAB Figure window but includes additional commands in the toolbar
and the Tools menu.

Tip To change the default plot name, right-click the plot node and select
Rename and enter the new name.

Subplots. To create subplots in a single figure window, drag several time
series onto the same plot node. If a time series contains several columns
of data, all data columns are plotted on the same axes. See “Editing Plot
Appearance” on page 5-15 for information on interactively modifying the
appearance of subplots.

5-14

Plotting Time Series

XY and cross-correlation plots. These plots require two time series. To
create these plots, drag one time series onto a plot node and then drag a
second time series onto the same plot node.

Customizing Line and Marker Styles
When you plot several time series on the same axes, or a single timeseries
object that contains multiple columns of data, you can specify how to visually
distinguish between the different sets of data in the plot.

To distinguish data by color, type of marker, or line style, select Plot > Set
Line Properties in the Time Series Tools window. This opens the Line Styles
dialog box. Click Help to learn how to work with this dialog box.

Note Your changes are applied to all open plots.

For an example of setting line styles, see “Creating a Time Plot” on page 5-46.

Editing Plot Appearance
After you create a plot, you can modify the plot appearance using the Property
Editor as follows:

• Change the range of the horizontal and vertical axes.

• Show statistical annotations on the plot, such as the mean and standard
deviation.

The kinds of statistical quantities you can display vary depending on the
type of plot.

5-15

5 Time Series Tools

The following figure shows the location of the Property Editor relative to
the plot window:

To display the Property Editor for any Time Series Tools plot:

1 Select the plot in the Time Series Session tree.

2 In Time Series Tools, click the Edit Plot button. This displays the plot
window on top with the Property Editor below the plot.

3 In the Property Editor, click Help to get information about options and
settings.

5-16

Plotting Time Series

Note The Property Editor options change depending on the type of plot and
the plot item you select, such as lines or plot legends.

Subplots. You can change subplot indices interactively. To do so, click on a
plotted line in a time series view and drag and drop it from one subplot to
another. To create a new subplot, drag and drop the plotted line below the
bottom axes.

Time Plots
By plotting data as a function of time, you can quickly gain insight into the
following data features:

• Outliers, or values that do not appear to be consistent with the rest of
the data

• Discontinuities

• Trends

• Periodicities

• Time intervals containing the data of interest

These features, when considered in the context of the data, enable you to
plan your analysis strategy. For more information about creating a time plot,
see “Creating a Plot” on page 5-14.

After you create the plot, you can use the Property Editor to

• Define Y-axis scale.

• Display statistical annotations on the plot, such as mean, standard
deviation, and median.

• Define X-axis scale (or domain).

In the Property Editor, click Help to get information about options and
settings.

5-17

5 Time Series Tools

The Time Plot window contains the following toolbar commands specific to
working with time series data.

Time Plot Commands

Button Description

Select Data — Enables you to click and drag a rectangular
region on the time plot to select the data inside the region.

Move Time Series — Enables you to click and drag a time
series to translate a time series on the plot and recalculate
the data and time values.

When you translate a time series in time, its time vector is
shifted by a constant offset. If you had associated any events
with this time series, the events are not shifted with the time
series. For more information about editing event times, see
“Defining Events” on page 5-37.

Rescale Time Series — Rescales both axes of the time plot to
the original view.

Select Interval — Enables you to click and drag to select data
corresponding to one or more time intervals. You can select
multiple disconnected intervals.

Spectral Plots
You use a spectral plot (or periodogram) to determine the frequencies of the
periodic variations in the data and to filter the data. For more information
about creating a periodogram, see “Creating a Plot” on page 5-14.

The periodogram is the unbiased estimate of the power spectral density of a
time series, calculated as the scaled absolute value of the (FFT)2 of the time
series. The corresponding frequency vector is computed in cycles per unit time
and has the same length as the power vector. The periodogram is scaled so
that the variance equals the mean of the periodogram.

The periodogram is useful for picking out periodic components in the presence
of noise; a peak in the periodogram indicates an important contribution to
variance frequencies near the value that corresponds to the peak.

5-18

Plotting Time Series

After you create the plot, you can use the Property Editor to

• Define Y-axis scale.

• Display the variance for a selected frequency range on the plot.

The periodogram is scaled so that the variance equals the mean of the
periodogram.

• Define frequency scale.

In the Property Editor, click Help to get information about options and
settings.

Filtering the Data
You can use the spectral plot to apply an ideal pass or stop filter to the data.

You use the ideal notch (stop) filter when you want to attenuate the variations
in the data for a specific frequency range. Alternatively, you use the ideal pass
filter to allow only the variations in a specific frequency range. These filters
are “ideal” in the sense that they are not realizable; an ideal filter is noncausal
and the ends of the filter amplitude are perfectly flat in the frequency domain.

To apply an ideal filter:

1 In the Spectral Plot window, click the Select Frequency Interval(s)
button in the toolbar.

2 Click and drag on the plot to select a frequency interval. The selected
interval appears in a different color.

3 Decide if you want to select another frequency interval.

• If yes, repeat step 2. The previously selected remains selected.

• If no, go to step 4.

4 Right-click a selected region on the plot and select one of the following
from the shortcut menu:

• To allow only the variations in the selected frequency range, select Pass.

• To remove the variations in the selected frequency range, select Notch.

5-19

5 Time Series Tools

Histograms
The histogram plot shows the distribution of data by counting the number
of data values within a specific range of values and displaying each range as
a rectangular bin. The heights of the bins represent the numbers of values
that fall within each range. For more information about creating a histogram,
see “Creating a Plot” on page 5-14.

You can use a histogram plot to select data values that fall in a specific range
to exclude or include them in your analysis. If you want to interpolate specific
data values, you can select them in a histogram plot first, and then replace
them with NaNs. For more information, see “Removing or Replacing Data with
NaNs” on page 5-21. Then, you can interpolate all values tagged as NaNs using
the selected interpolation method. For more information about specifying an
interpolation method, see “Defining Data Attributes” on page 5-34.

Note Time Series Tools generates a histogram plot of a time series by
applying the MATLAB hist function.

After you create the plot, you can use the Property Editor to

• Define Y-axis scale.

• Display statistical annotations on the plot, including the mean and the
median.

• Define data bins.

In the Property Editor, click Help to get information about options and
settings.

Selecting Data

1 In the Histogram window, click the Select Y Range Interval button
in the toolbar.

2 Click and drag a rectangular region on the plot to select a data interval.
The selected interval appears in a different color.

5-20

Plotting Time Series

3 Decide if you want to select another data range.

• If yes, repeat step 2. The previously selected remains selected.

• If no, you are done.

Removing or Replacing Data with NaNs
After you select the data, as described in “Selecting Data” on page 5-20, you
can delete it or replace it with NaNs. If you want to interpolate specific data
values, you must replace the selected data with NaNs first.

To delete data, right-click the selected region and select Remove Selection
from the shortcut menu.

To replace data with NaNs, right-click the selected region and select Replace
with NaNs from the shortcut menu.

Correlation Plots
You can create autocorrelation plots (correlograms) and cross-correlation plots
in Time Series Tools. A correlation plot shows correlation coefficients on the
vertical axis, and lag values on the horizontal axis.

A lag is defined as the number of time steps by which a time series is shifted
relative to itself (when autocorrelated), or relative to the corresponding time
values of another time series (when crosscorrelated). Notice that a lag is not
a time shift (in specified time units). However, you can interpret a lag as a
time shift when the time series is uniformly sampled (autocorrelation), or
when both time series are uniformly sampled with the same time interval
(cross-correlation).

This section includes the following topics:

• “Autocorrelation of a Time Series” on page 5-22

• “Cross-Correlation of Time Series” on page 5-23

• “Interpreting Correlation Plots” on page 5-25

• “Cross-Correlation Algorithm” on page 5-26

5-21

5 Time Series Tools

Note If your data is sampled at irregular time intervals, resample it on
a uniform time vector before creating correlation plots. This is because
correlation analysis only considers the number of time steps between data
values, and not the actual time elapsed between successive measurements.
For more information about resampling time series, see “Processing and
Manipulating Time Series” on page 5-41.

Autocorrelation of a Time Series
The autocorrelation function is an important diagnostic tool for analyzing time
series in the time domain. You use the autocorrelation plot, or correlogram, to
better understand the evolution of a process through time by the probability of
relationship between data values separated by a specific number of time steps.

The correlogram plots correlation coefficients on the vertical axis, and lag
values on the horizontal axis. To learn more about correlation coefficients, see
“Correlation Coefficients” on page 2-7.

To create a correlogram, drag and drop a time series into a Correlations
node. Then explore the plot by editing the lag range in the Property Editor.

If a time series contains multiple data columns, your plot contains
cross-correlations of the various data columns. For more information, see
“Cross-Correlation of Time Series” on page 5-23.

Note A correlogram is not useful when the data contains a trend; data at all
lags will appear to be correlated because a data value on one side of the mean
tends to be followed by a large number of values on the same side of the mean.
You must remove any trend in the data before you create a correlogram. For
more information about accessing detrending functionality, see “Processing
and Manipulating Time Series” on page 5-41.

5-22

Plotting Time Series

Cross-Correlation of Time Series
Cross-correlation is a measure of the degree of the linear relationship between
two time series. A high correlation between time series at a specific lag might
indicate a time delay in the system.

Note Before creating a cross-correlation plot, make sure that both time
series have the same uniform time vector.

To create a cross-correlation plot, successively drag and drop the first time
series and the second time series into the same Correlations node in the
Time Series Session tree. Then explore the plot by varying the lag range in
the Property Editor.

A cross-correlation plot of two time series, where each contains a single
column of data, shows the degree of linear relationship between the data
values in the two time series at various lags. For example, the following
figure shows a cross-correlation plot of two time series, intersection1 and
intersection2. There is a high correlation when there is no lag in the data,
as well as for lags of about -11 and 11.

5-23

5 Time Series Tools

Cross-Correlation of Two Time Series

A cross-correlation plot of two time series, where each contains multiple data
columns, is displayed as a grid of subplots. The number of subplots equals the
number of columns of data in the first time series multiplied by the number of
columns of data in the second time series.

When you autocorrelate a time series with multiple data columns, the
resulting plot also contains subplots. The diagonal of the subplot is the
autocorrelation of a specific data column. The off-diagonal subplots are
cross-correlation plots of the various columns. The subplot indices correspond
to the indices of the data columns being correlated. For example, the figure
below shows a correlation plot of the time series counts with three data
columns.

5-24

Plotting Time Series

Cross-Correlation of Multiple Data Columns in a Time Series

Interpreting Correlation Plots
The following table describes the degree of relationship between the data
values at a given lag for various correlation values.

Correlation Value Meaning

Close to 1 There is a relationship between data
values at a specific lag: an increase
in one corresponds to an increase in
the other.

0 The variations in the data show no
relationships at this lag.

Close to -1 There is an anticorrelation between
the data values at a specific lag:
a decrease in one data value
corresponds to an increase in the
other data value.

5-25

5 Time Series Tools

Cross-Correlation Algorithm
When computing the cross-correlation of two vector-valued time series x
and y, Time Series Tools uses an algorithm that is functionally equivalent
to calling xcorr from Signal Processing Toolbox with the 'biased' option,
after the time series means have been removed. Unlike xcorr, however, the
cross-correlation estimate in Time Series Tools also works for matrix-valued
time series X and Y, where it computes the cross-correlation of X(:,i) against
Y(:,j) for all combinations of columns i and j. Note that Time Series Tools
do not actually use the xcorr code, but rather a simplified version which
works under these restricted assumptions.

XY Plots
An XY plot plots the data values of one time series against the data values
of another time series at corresponding times. Any relationship between the
two time series is evident from a pattern on the plot. For example, when
the points on the XY plot form a straight line, there is a linear relationship
between the data values of the two time series plotted. The XY plot does not
show any time information.

Note To generate an XY plot, both time series must have the same time
vectors.

To create an XY plot, successively drag and drop the first time series and the
second time series into the same XY Plots node in the Time Series Session
tree.

When you are plotting two time series where each contains a single column of
data, the XY plot includes a single set of axes. The pairs of data values from
the same position in the column of data; that is, the third data point from
one column is plotted against the third data point from the other column.
For an example of generating such an XY plot, see “Comparing Data on an
XY Plot” on page 5-53.

An XY plot of two time series, where each contains one or multiple data
columns, is displayed as a grid of subplots. The number of subplots equals the
number of columns of data in the first time series multiplied by the number

5-26

Plotting Time Series

of columns of data in the second time series. The subplot indices correspond
to the indices of the data columns.

The following figure shows an XY plot, where the data values in time series
count are plotted on the X-axis against the corresponding data values of
intersection1 on the Y-axis. Because count contains three data columns
and intersection1 contains one data column, the XY plot window shows
three subplots.

XY Plot Where One Time Series Contains Three Data Columns

5-27

5 Time Series Tools

Selecting Data for Analysis

In this section...

“Selecting Data Using Rules” on page 5-28

“Selecting Data Graphically” on page 5-28

“Excluding Data from Analysis” on page 5-30

Selecting Data Using Rules
You can select data using logical expressions in the Select Data Using Rules
dialog box, which you access from a time plot. For more information about
creating a time plot, see “Creating a Plot” on page 5-14.

To open the Select Data Using Rules dialog box, right-click inside the time
plot and choose Select Data from the shortcut menu. Click Help in the
dialog box to get information about specific options.

You can define up to four kinds of data-selection conditions:

• Bounds — Upper and lower bounds for time and data values

• Outliers — Condition for detecting outliers, or data values that are outside
a specified confidence level

• MATLAB expression — A logical MATLAB expression that selects specific
data values

• Flatlines – Condition for detecting a specified number of successive data
points with a constant value

Tip To learn how to exclude data from analysis based on your selection, see
“Excluding Data from Analysis” on page 5-30.

Selecting Data Graphically
This section describes how to select data in a time plot by using the mouse. For
more information on creating a time plot, see “Creating a Plot” on page 5-14.

5-28

Selecting Data for Analysis

You can select data using two modes:

• Data mode — Enables you to select data values in a rectangular region
on the time plot.

For more information, see “Selecting Data in a Rectangular Region” on
page 5-29.

• Time mode — Enables you to select data values in one or more time
intervals on the time plot.

For more information, see “Selecting Data in a Time Interval” on page 5-29.

Tip To learn how you can select specific data values in a histogram plot,
see “Selecting Data” on page 5-20.

Selecting Data in a Rectangular Region

1 In the Time Plot window, click the Select Data button in the toolbar.

2 Click and drag a rectangular region on the plot that encloses the data you
want to select.

The data values are selected when you release the mouse button.

3 Decide if you want to select another region.

• If yes, repeat step 2. This does not clear the previous selection.

• If no, you can continue by excluding data from analysis (see “Excluding
Data from Analysis” on page 5-30).

Selecting Data in a Time Interval

1 In the Time Plot window, click the Select Time Interval(s) button in
the toolbar.

5-29

5 Time Series Tools

2 Click the start of a region that encloses the time interval where you want
to select data, and then drag it. The selected time interval appears in
a different color.

3 Decide if you want to select another time interval.

• If yes, repeat step 2. This does not clear the previous selection.

• If no, you can continue by excluding data from analysis (see “Excluding
Data from Analysis” on page 5-30).

Excluding Data from Analysis
After you select the data, you can either exclude or keep the selected values.
The following table summarizes how to do this.

Task Operation

Exclude selected data from analysis Right-click the selected data in
the time plot and select Remove
Observations from the shortcut
menu.

When there are multiple data
columns in a single time series, this
removes the entire data sample at
that time.

Exclude unselected data from
analysis

Right-click the selected data in
the time plot and select Keep
Observations from the shortcut
menu.

5-30

Editing Data, Time, Attributes, and Events

Editing Data, Time, Attributes, and Events

In this section...

“Displaying the Data Table” on page 5-31

“Editing Data and Time” on page 5-32

“Defining Data Attributes” on page 5-34

“Assigning Quality Codes to Data” on page 5-36

“Defining Events” on page 5-37

Displaying the Data Table
To display the time series in an editable table, select the time series node in
the Time Series Session tree.

In the following figure, the time series intersection1 is selected in the tree
and its data table is shown on the right. The Time column contains time
values and the intersection1:1 column contains the corresponding data
values in the first column and only data column of intersection1.

If intersection1 had multiple data columns, they would appear in the
table and numbered as intersection1:2, intersection1:3, and so on. The
data column headers are also used as plot labels to distinguish time series in
plots. For more information about creating plots, see “Plotting Time Series”
on page 5-13.

5-31

5 Time Series Tools

Note To toggle between displaying and hiding the help pane in Time Series

Tools, click the button in the toolbar.

Editing Data and Time
After you display the time series data, as described in “Displaying the Data
Table” on page 5-31, you can edit specific data and time values, define a
uniform time vector, and add or remove data samples.

5-32

Editing Data, Time, Attributes, and Events

Edit Time or Data Values
To edit a specific time or data value, double-click that cell in the table and
enter the new value. Press Enter.

Note When entering time values, you must use the current display format of
your time vector. For more information, see “Time Vector Format” on page
4-21.

Define a Uniform Time Vector
To define a uniformly-increasing time vector, click Uniform Time Vector
below the data table. This opens the Define Uniform Time Vector dialog box.

Here, you specify the start and end time of the time vector, the time units, and
the display format. The time interval is calculated automatically by dividing
the total time range by the number of data samples. You can get more
instructions by clicking Help in the Define Uniform Time Vector dialog box.

When you are done specifying the time vector, the new time values replace the
previous time values in the data table.

Add Data Samples
To insert a row in the data table, click any cell in a row and click the Add
Row button. Enter the time and the corresponding data values.

Delete Data Samples
To delete a row in the data table, select one or more rows with the mouse
and click the Delete Row(s) button.

5-33

5 Time Series Tools

Defining Data Attributes
The following attributes are defined for time series:

• Units — Stored as metadata for each time series.

• Interpolation method — Default method used to fill in missing data or to
resample data on a new time vector.

• Quality codes — Used to annotate the quality of each value in the data
table.

Click the Attributes button below the data table to open the Define Data
Attributes dialog box. For information about displaying the data table, see
“Displaying the Data Table” on page 5-31.

Units and Interpolation Method
Data units are stored as metadata for the currently selected time series. If
this time series contains multiple data columns, all data is assigned the
same units.

In the Units & Interpolation tab, enter a string in the Data units field. For
example, enter N/m^2.

The interpolation method you select here is used by default for this time
series to fill in missing data or to resample the data on a new time vector.

In the Units & Interpolation tab, select one of the following Interpolation
methods:

• Linear — A 1-D interpolation method that implements the MATLAB
function interp1 to fit a straight line between a pair of existing data points
to calculate the missing value.

• Zero-order hold — Calculates the missing value by setting it equal to the
last available data value. In other words, this methods “holds” the last
value constant until the next available measurement.

5-34

Editing Data, Time, Attributes, and Events

Quality Codes
You can define quality codes to annotate the quality of each value in the
data table. Each quality attribute consists of a numerical code and a brief
description. For information about assigning quality codes to specific data
values, see “Assigning Quality Codes to Data” on page 5-36.

Tip To save time, first define the quality attribute that applies to most of your
data values. It is automatically assigned to all data values. Then, define the
attributes that occur less frequently and set them manually in the Quality
column of the data table.

1 In the Define Data Attributes dialog box, click the Quality Codes tab.

2 Click the Add Code button. This adds an empty row in the Quality Codes
table.

3 Click the empty cell in the Code column and type an integer from 0 to 127.

4 Press the Tab key. This highlights the cell in the Description. Type one
or two words that briefly describe the numerical code, such as Validated.

5-35

5 Time Series Tools

5 To add another quality code, repeat steps 2 to 4. Or click OK to close the
dialog box. This also assigns the first quality code you defined to all data
values in the table.

The following figure shows two quality codes: Validated and Not validated.

Note To delete a quality attribute, select it and click Delete Code.

Assigning Quality Codes to Data
After you define quality codes, as described in “Quality Codes” on page
5-35, the quality code you defined first is automatically assigned to all data
values in the data table. For information about displaying the data table, see
“Displaying the Data Table” on page 5-31.

To assign a different quality code to a specific data value, click the
corresponding cell in the Quality column and select a different value from
the drop-down list.

5-36

Editing Data, Time, Attributes, and Events

Defining Events
Events are stored as metadata for each time series. Time series events mark
the data at a specific time in the data table and on a plot. For information
about displaying the data table, see “Displaying the Data Table” on page 5-31.

You can also use events as reference points when shifting time series in time.
For more information about synchronizing time series, see “Processing and
Manipulating Time Series” on page 5-41.

To define events for the selected time series:

1 Make sure that the Show event table check box is selected. This check
box is located below the data table:

5-37

5 Time Series Tools

2 Click the Add event button below the event table. This opens the Define
New Event dialog box.

3 In the Name field, enter the name of the event, such as AMCommute.

4 In the Time/Date field, enter or edit the time of the event in the
appropriate display format. For information about time-vector formats, see
“Time Vector Format” on page 4-21.

5-38

Editing Data, Time, Attributes, and Events

Tip To facilitate entering a date string, click the (Browse) button to
open the Specify Date/Time dialog box. Select the month, year, and day.
Then enter the Time in HH:MM:SS format.

5 Click OK.

The following figure shows two events in the event table: AMCommute and
PMCommute. The data table also contains both events and AMCommute is
shown at 6.0 hours.

Events are displayed as markers on time series plots. The following figure
shows the AMCommute marker (at 6.0 hours) and PMCommute marker (at
18.0 hours) on a time plot.

5-39

5 Time Series Tools

Time Plot with Event Markers

5-40

Processing and Manipulating Time Series

Processing and Manipulating Time Series
The following table summarizes the operations you can perform on individual
time series or time series collection. These commands are available from the
Data menu in Time Series Tools after you select a time series or collection
node in the Time Series Session tree.

Note If you are viewing a time plot, these operations are available by
right-clicking inside the time plot and selecting a command from the shortcut
menu. For more information about plotting data, see “Plotting Time Series”
on page 5-13.

Each command opens a dialog box where you can get detailed instructions
by clicking the Help button.

Data Analysis Commands

Command Description

Data > Remove
Missing Data

Delete the times that contain missing data.

Data > Detrend Subtract a constant or a linear trend from the
data.

Data > Filter Smooth and shape the time series data.

Data > Interpolate Interpolate missing values.

Data > Resample Select or interpolate data values using a specified
time vector.

Data > Transform
Algebraically

Create a new time series by algebraically
manipulating existing time series.

This command is available only when you select
an individual time series in the tree.

Data > Descriptive
Statistics

Get summary statistics for each time series.

5-41

5 Time Series Tools

Example — Time Series Tools

In this section...

“Loading Data into the MATLAB Workspace” on page 5-42

“Starting Time Series Tools” on page 5-42

“Enabling M-Code Generation” on page 5-42

“Importing Data into Time Series Tools” on page 5-43

“Creating a Time Plot” on page 5-46

“Resampling Time Series” on page 5-51

“Comparing Data on an XY Plot” on page 5-53

“Viewing Generated M-Code” on page 5-55

“Exporting Time Series to the Workspace” on page 5-57

Loading Data into the MATLAB Workspace
Type the following command at the MATLAB prompt to load the hourly traffic
counts at three road intersections, collected over a 24-hour period:

load count.dat

This adds the variable count to the MATLAB workspace.

Starting Time Series Tools
To start Time Series Tools, type

tstool

This opens the Time Series Tools window. For more information about this
GUI, see “Time Series Tools Window” on page 5-3.

Enabling M-Code Generation
In this portion of the example, you will enable automatic M-code generation in
Time Series Tools to capture reusable M-code as a MATLAB function.

5-42

Example — Time Series Tools

1 In the Time Series Tools window, select File > Record M-Code. This
opens the Record M-Code dialog box.

2 Click the button and select the folder where you want to store the
M-file.

3 In the Log file name field, either select the name of a recently used file,
or type a new name. The file name creates the function name you call in
your M-code to reuse this function.

4 To begin capturing M-code, click Record. The M-code is recorded until you
stop recording, as described in “Viewing Generated M-Code” on page 5-55.

Tip You can close this dialog box without interrupting the recording operation
by clicking Close. To reopen the dialog box, select File > Record M-Code in
the Time Series Tools window.

Note The scope of the Record M-Code feature is restricted to recording
actions on the time series data itself. It does not generate code to import
data or reproduce time series plots.

Importing Data into Time Series Tools
This portion of the example shows how to create three time series from the
24-by-3 count array you loaded into the MATLAB workspace.

5-43

5 Time Series Tools

Note To get help on a specific field in the Import Wizard, right-click the field
label and select What’s This from the shortcut menu.

1 In the Time Series Tools window, select File > Import from Workspace
> Array Data. This opens the Import Wizard.

2 In the Import from list, select MATLAB workspace and click Next.

3 In Step 2 of the Import Wizard, select the count variable. The Import
Wizard infers from the data that it is arranged in columns.

5-44

Example — Time Series Tools

4 In the Specify Time Vector area, select hours from the Units list. In the
Start Time field, type 1 to start the time vector at 1 hour. The Import
Wizard has already filled in the remaining options to define a uniformly
spaced time vector with a length of 24 and an interval of 1.

5 Click Next.

6 In Step 3 of the Import Wizard, select Create several time series
using: common name+number. In the Enter common name field, type
intersection.

7 Click Finish. This adds three time series to the Time Series Session tree:
intersection1, intersection2, and intersection3 (as shown below).

5-45

5 Time Series Tools

Creating a Time Plot
To explore the data, you can create a time plot of the three time series in the
Time Series Tools window.

1 In the Time Series Session tree, drag and drop the intersection1 time
series into the Time Plots node. This creates a time plot in a new window
with the default name View1.

5-46

Example — Time Series Tools

2 In the Time Series Session tree, drag and drop the intersection2 and
intersection3 time series into View1 to add them to the plot.

5-47

5 Time Series Tools

3 To display all three time series on the same axes, click the View1
node in the Time Series Tools window. Change the subplot indices for
intersection2 and intersection3 to [1] and press Enter.

5-48

Example — Time Series Tools

This displays all time series on the same axes, as follows:

4 To change the appearance of the time series in the plot, go to the main
Time Series Tools window and select Plot > Set Line Properties. This
opens the Line Styles dialog box.

5 In the Line Styles dialog box, click Line Style to distinguish the time
series, shown as follows.

5-49

5 Time Series Tools

The plot now looks like this.

5-50

Example — Time Series Tools

Resampling Time Series
You can select or interpolate time series data using a specified time vector.
When the new time vector contains time values that are not present in
the original time vector, the intermediate data values are calculated using
the interpolation method you associated with this time series. Linear
interpolation is used by default. For more information about specifying the
interpolation method, see “Defining Data Attributes” on page 5-34.

This portion of the example shows

• “Resampling on a Uniform Time Vector” on page 5-51

• “Resampling by Finding a Common Time Vector” on page 5-53

Note You can only resample one time series at a time.

Resampling on a Uniform Time Vector
First, you resample the time series intersection1 to include values every
2 hours.

5-51

5 Time Series Tools

1 Right-click inside the time plot you created in “Creating a Time Plot” on
page 5-46 and select Resample Data from the shortcut menu. This opens
the Resample Data dialog box.

2 In the Define Time Series area, select only intersection1 and clear
the rest.

3 In the Specify New Time Vector area, click Uniform time vector with
time interval and specify the time interval as 2 hours. Click OK.

Tip To verify that intersection1 is resampled, select it in the Time Series
Session tree and examine the data table. It should have a time vector that
starts at 1 hour and increases in increments of 2 hours.

5-52

Example — Time Series Tools

Resampling by Finding a Common Time Vector
In some cases, you might want one time series to have the same time vector as
another time series on the overlapping region of time values. This is especially
useful when you want a specific time series to inherit a nonuniformly spaced
time vector.

In this example, you resample intersection2 on the same time vector as
intersection1.

1 Right-click inside the time plot you created in “Creating a Time Plot” on
page 5-46 and select Resample Data from the shortcut menu. This opens
the Resample Data dialog box.

2 In the Define Time Series area, select only intersection2 and clear
the rest.

3 In the Specify New Time Vector area, click Use time vector from time
series and select intersection1 from the list. Click OK.

To verify that intersection2 is resampled, select it in the Time Series
Session tree and examine the data table. It should have a time vector that
starts at 1 hour and increases in increments of 2 hours.

Comparing Data on an XY Plot
The XY plot is useful for visually determining a relationship between the data
values of time series at corresponding times. For example, when the points
on an XY plot form a straight line, there is a linear relationship between the
two time series.

In this portion of the example, you examine the relationship between the
corresponding data values of intersection1 and intersection2 by using
an XY plot.

1 In the Time Series Session tree, drag and drop the intersection1 time
series into the XY Plots node. This creates a new plot node with the
default name View2.

5-53

5 Time Series Tools

2 Drag and drop the intersection2 time series into the View2 node. This
creates the following XY plot.

5-54

Example — Time Series Tools

3 To show the best-fit line on the XY plot, click the Define Statistical
Annotations tab in the Property Editor and select the Best fit line check
box. Then, click the line to display the line equation on the plot.

Viewing Generated M-Code
You can now view the M-code that Time Series Tools generated while you
performed the previous steps in this example.

To view the M-file:

1 In the Time Series Tools window, select File > Record M-Code to open the
Record M-Code dialog box.

2 Click Stop to open the M-file with the generated M-code in the MATLAB
Editor.

5-55

5 Time Series Tools

Automatically Generated M-Code

You can reuse this M-code by calling the tstoollog function, which has the
same name as this M-file. You specified the file name when you enabled
M-code generation in this example, as described in “Enabling M-Code
Generation” on page 5-42.

Examine the code of the tstoollog function to confirm that it takes two time
series as input arguments and resamples them using a uniform time vector
with the range 1 to 24 and intervals of 2.

Note The scope of the Record M-Code feature is restricted to recording
actions on the time series data itself. It does not generate code to import
data or reproduce time series plots.

5-56

Example — Time Series Tools

Exporting Time Series to the Workspace
You can export individual time series, as well as time series collections, from
Time Series Tools to the MATLAB workspace. You can also export time series
to a Microsoft Excel worksheet or a MAT-file.

In this portion of the example, you will export the time series intersection1
as a variable to the MATLAB workspace. This time series differs from
the original data you imported into Time Series Tools because it has been
resampled, as described in “Resampling Time Series” on page 5-51.

1 Click the interesection1 node in the Time Series Session tree to select it.

2 Select File > Export > To Workspace. The variable intersection1 is
now listed in the MATLAB workspace.

Note If the MATLAB workspace is hidden, select Desktop > Workspace
from the MATLAB window to display it.

5-57

5 Time Series Tools

5-58

Index

A
attributes of time series 5-31
autocorrelation of time series 5-22

B
Basic Fitting 2-9
Basic Fitting dialog box

usage example 2-11

C
condition

data 2-12
confidence bounds 2-33
correlation analysis 2-5
correlation coefficients 2-7
correlation plots 5-21

interpreting 5-25
covariance 2-6
cross-correlation of time series 5-23 5-26
curve fitting. See data fitting
Curve Fitting Toolbox 2-3
customizing time series plots 5-15

D
Data

badly conditioned 2-12
center and scale 2-12

data analysis
MATLAB GUIs for 1-4
of matrix data 1-4
plotting data 1-8
preparing data for 1-1
related toolboxes 1-5

data filtering. See filtering
data fitting 2-1

confidence bounds 2-33
example using functions 2-29

functions 2-22
multiple regression 2-28
nonpolynomial 2-26
polynomial 2-22
residuals 2-3

data statistics. See statistics
Data Statistics dialog box 1-29

generating an M-file 1-36 2-20
saving statistics 1-35
usage example 1-29

descriptive statistics 1-26
detrending data 1-21

in Time Series Tools 5-41
difference equations 1-16
discrete filter 1-18
discrete Fourier transform. See Fourier

transforms

E
editing time series 5-31
events in time series 5-31
exporting data

from MATLAB 1-7
from Time Series Tools 5-7

F
fast Fourier transform. See Fourier transforms
filter function 1-16
filtering

detrending data 1-21
difference equations 1-16
discrete filter 1-18
filter function 1-16
in Time Series Tools 5-41
moving average 1-17

finite differences 1-25
Fourier analysis 3-1

calculating sunspot periodicity 3-7

Index-1

Index

calculating the FFT 3-4
calculation performance 3-13
phase and magnitude 3-11

functions
for data fitting 2-22
for data statistics 1-26
for Fourier analysis 3-3

G
goodness of fit 2-3
GUIs

for data fitting 1-4
for plotting 1-4
for statistics 1-4
for time series analysis 1-4

H
histogram 5-20

used to select data 5-20

I
importing data

into MATLAB 1-7
into Time Series Tools 5-7

interpolating missing data 1-13
define method for time series 5-34
in Time Series Tools 5-41

isnan function 1-12

L
linear regression 2-1
load function 1-8

M
M-code from Time Series Tools 5-6
magnitude of Fourier transform 3-11

maximum 1-26
mean 1-26
median 1-26
methods

for timeseries object 4-31
for tscollection object 4-40

minimum 1-26
missing data

in calculations 1-11
in time series 5-11
interpolating 1-11
removing 1-11
removing in Time Series Tools 5-41
representing by NaNs 1-11

mode 1-26
moving-average filter 1-17
multiple regression 2-28

N
NaNs

in calculations 1-11
removing from data 1-12

nonpolynomial fit 2-26

O
objects for time series analysis 4-2
outliers

removing 1-14

P
periodogram 5-18

filtering data from 5-19
phase of Fourier transform 3-11
plot function 1-9
plotting data

in MATLAB 1-8
in Time Series Tools 5-13

polyfit function 2-22

Index-2

Index

polynomial regression 2-22
polyval function 2-22
properties

of timeseries object 4-24
of tscollection object 4-38

Property Editor
in Time Series Tools 5-15

Q
quality codes for time series data 5-35

R
range 1-26
regression 2-1

multiple 2-28
nonpolynomial 2-26
polynomial 2-22

removing
missing data 1-12
NaNs 1-12
outliers 1-14

resampling
in Time Series Tools 5-41
tscollection object 4-14

residuals 2-3

S
Simulink logged signals 5-7
spectral plot 5-18

filtering data from 5-19
standard deviation 1-26
statistics

formatting on plots 1-33
functions 1-26
in Time Series Tools 5-41
MATLAB Data Statistics 1-29
removing NaNs 1-12
removing outliers 1-14

showing on plots 1-30
sunspot periodicity

calculating using Fourier transforms 3-7

T
time plot 5-17
time series analysis

autocorrelation 5-22
cross-correlation 5-23 5-26
example using methods 4-6
example using Time Series Tools 5-42
methods 4-1
multivariate data 5-10
using Time Series Tools 5-1

Time Series Tools
customizing plots 5-15
define time series units 5-31
defining data quality 5-35
defining events 5-37
defining interpolation method 5-34
detrending data 5-41
editing data 5-31
filtering data 5-41
generating M-code 5-6
getting help 5-3
Import Wizard 5-8
importing data 5-7
interpolating data 5-41
opening 5-2
plot Property Editor 5-15
plotting data 5-13
removing missing data 5-41
resampling data 5-41
selecting data 5-28
transforming data algebraically 5-41
usage example 5-42
viewing statistics 5-41
window 5-3
workflow 5-5

Index-3

Index

time vector
format 4-21
uniform 5-33

timeseries object
constructor 4-22
creating 4-21
definition of data sample 4-3
methods 4-31
properties 4-24

tools
MATLAB Basic Fitting 2-9
MATLAB Data Statistics 1-29
Time Series Tools 5-1

transfer-function filter 1-18
tscollection object

constructor 4-36
creating 4-36
methods 4-40

properties 4-38

U
uniform time vector 5-33

V
variance 1-26

W
workflow

in Time Series Tools 5-5

X
XY plot 5-26

Index-4

MATLAB® 7
Desktop Tools and Development Environment

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

MATLAB Desktop Tools and Development Environment

© COPYRIGHT 1984–2007 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined
in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of
this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government’s
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, SimBiology,
SimHydraulics, SimEvents, and xPC TargetBox are registered trademarks and The
MathWorks, the L-shaped membrane logo, Embedded MATLAB, and PolySpace are
trademarks of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective
holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
June 2004 First printing New for MATLAB 7.0 (Release 14). Formerly part of Using

MATLAB.
October 2004 Online only Revised for MATLAB 7.0.1 (Release 14SP1)
March 2005 Online only Revised for MATLAB 7.0.4 (Release 14SP2)
March 2005 Second printing Revised for MATLAB 7.0.4 (Release 14SP2)
June 2005 Third printing Minor revision for MATLAB 7.0.4 (Release 14SP2)
September 2005 Online only Revised for MATLAB 7.1 (Release 14SP3)
March 2006 Online only Revised for MATLAB 7.2 (Release 2006a)
September 2006 Online only Revised for MATLAB 7.3 (Release 2006b)
March 2007 Online only Revised for MATLAB 7.4 (Release 2007a)
September 2007 Online only Revised for MATLAB 7.5 (Release 2007b)

Contents

Startup and Shutdown

1
Starting MATLAB on Windows Platforms 1-2

Starting MATLAB from the Windows Desktop or a DOS
Window . 1-2

Starting MATLAB from an M-File or Other File Type in
Windows . 1-2

Utility to Change Windows File Associations 1-5
Changing File Associations for MATLAB from Windows . . 1-5

Starting MATLAB on UNIX Platforms 1-6

Starting MATLAB on Macintosh Platforms 1-7
Starting MATLAB from the Macintosh Desktop 1-7
Starting MATLAB from an M-File or Other File Type on

Macintosh Platforms . 1-7

Startup Directory for MATLAB . 1-8
What Is the Startup Directory? . 1-8
Startup Directory (Folder) on Windows Platforms 1-8
Startup Directory on UNIX Platforms 1-9
Changing the Startup Directory . 1-9

Startup Options . 1-12
About Startup Options . 1-12
Using the Startup File for MATLAB, startup.m 1-12
Adding Startup Options for Windows Platforms 1-13
Adding Startup Options for UNIX Platforms 1-14
Commonly Used Startup Options . 1-14

Toolbox Path Caching in MATLAB 1-17
About Toolbox Path Caching . 1-17
Using the Cache File Upon Startup 1-17
Updating the Cache and Cache File 1-17
Additional Diagnostics with Toolbox Path Caching 1-20

v

Other Startup Topics . 1-21
Error Log Reporter . 1-21
Passing Perl Variables on Startup . 1-21
Startup and Calling Java from MATLAB 1-22

Quitting MATLAB . 1-23
Ways to Quit MATLAB . 1-23
Confirm Quitting MATLAB . 1-23
Running a Script When Quitting MATLAB 1-24
Abnormal Termination . 1-24

Desktop

2
Overview of the Desktop . 2-3

About the Desktop . 2-3
Summary of Desktop Tools . 2-5

Arranging the Desktop . 2-6
Modifying the Desktop Configuration 2-6
Opening and Arranging Tools . 2-6
Opening and Arranging Documents 2-8
Saving Desktop Layouts . 2-13

Examples of Desktop Arrangements 2-15
About These Examples . 2-16
Tool Outside of Desktop and Other Tools Grouped Inside

Desktop Example . 2-16
Maximized Tool in Desktop Example 2-18
Minimized Tools in Desktop Example 2-20
Tiled Documents in Desktop Example 2-24
No Empty Document Tiles Example 2-26
Maximized Documents Outside of the Desktop Example . . 2-27
Floating (Cascaded) Figures in Desktop Example 2-28
Undocked Tools and Documents Example 2-30

Shortcuts for MATLAB — Easily Run a Group of
Statements . 2-32
What Is a Shortcut? . 2-32

vi Contents

Examples of Useful Shortcuts . 2-32
Creating Shortcuts . 2-33
Running Shortcuts . 2-35
Shortcuts Toolbar . 2-35
Organizing and Editing Shortcuts . 2-38

Keyboard Shortcuts . 2-40
Keyboard Shortcuts (Accelerators or Hot Keys) and

Mnemonics . 2-40
Go To First Letter (Type Ahead) Feature in Desktop Tool

Lists . 2-42
Default Button and Active Button (Button with Focus) . . . 2-42

Other Desktop Features . 2-44
Start Button for Accessing Tools . 2-44
Menus and Context Menus . 2-46
Toolbars . 2-47
Status Bar . 2-49
Sizing, Arranging, and Sorting Columns in Tools 2-49
Selecting Multiple Items . 2-50
Cut, Copy, Paste, and Move . 2-51
Macintosh Differences in the Desktop 2-52
Printing and Page Setup Options for Desktop Tools 2-52
Web Browser . 2-55
Accessing The MathWorks on the Web 2-56

Preferences . 2-59
Setting Preferences . 2-59
Summary of Preferences . 2-60
Preferences File — matlab.prf . 2-61

Fonts Preferences for Desktop Tools 2-62
Setting Desktop Fonts . 2-62
Desktop Code Font and Desktop Text Font 2-63
Custom Fonts Preferences . 2-67
Changing the Font — Example . 2-68
Antialiasing for Desktop Fonts on Linux/UNIX 2-69
Making Fonts Available to MATLAB 2-69

Colors Preferences for Desktop Tools 2-70
Setting Colors Used in Desktop Tools 2-70
Desktop Tool Colors . 2-72

vii

Syntax Highlighting Colors . 2-73
Other Colors . 2-75
See Also . 2-75

General Preferences for MATLAB 2-76
Setting General Preferences for MATLAB 2-76
Default Behavior of the Delete Function 2-78
MAT-Files Preferences . 2-79
Confirmation Dialogs Preferences . 2-81
Multithreading Preferences . 2-84

Accessibility . 2-85
Software Accessibility Support . 2-85
Documentation Accessibility Support 2-86
Assistive Technologies . 2-87
Installation Notes for Accessibility Support 2-88
Troubleshooting . 2-91

Running Functions — Command Window and
History

3
The Command Window . 3-3

About the Command Window . 3-3
Opening the Command Window . 3-3
Command Window Prompt . 3-4
Getting Started Message Bar in the Command Window . . 3-5

Running Functions and Programs, and Entering
Variables . 3-7
Running Statements at the Command Line Prompt 3-7
Running External Programs . 3-9
Evaluating or Opening a Selection . 3-12
Displaying Hyperlinks in the Command Window 3-13

Controlling Input . 3-15
Case and Space Sensitivity . 3-15
Syntax Highlighting . 3-16
Matching Delimiters (Parentheses) 3-17

viii Contents

Cut, Copy, Paste, and Undo Features 3-17
Enter Multiple Lines Without Running Them 3-18
Entering Multiple Functions in a Line 3-18
Entering Long Statements (Line Continuation) 3-18
Recalling Previous Lines . 3-19
Tab Completion in the Command Window 3-20
Keyboard Shortcuts in the Command Window 3-26
Navigating Above the Command Line 3-29

Controlling Output . 3-30
Echoing Execution . 3-30
Suppressing Output . 3-30
Paging of Output in the Command Window 3-30
Formatting and Spacing Numeric Output 3-31
Clearing the Command Window . 3-32
Printing Command Window Contents 3-33
Keeping a Session Log . 3-33

Searching in the Command Window 3-34
Introduction . 3-34
Find Dialog Box . 3-34
Incremental Search . 3-35

Preferences for the Command Window 3-40
Text, Display, Accessibility, and Tab Size Preferences 3-40
Keyboard Preferences . 3-43

Command History Window . 3-49
Overview . 3-49
Viewing Statements in the Command History Window . . . 3-50
Using Statements from the Command History Window . . . 3-51
Searching in the Command History Window 3-52
Printing the Command History Window 3-57
Deleting Entries from the Command History Window 3-57

Preferences for Command History 3-59
Introduction . 3-59
Settings . 3-59
Saving . 3-60
See Also . 3-60

ix

Help for Using MATLAB

4
Help Browser Overview . 4-3

About the Help Browser . 4-3
Opening the Help Browser . 4-3
Resizing the Help Browser . 4-5
Types of Documentation . 4-7
Accessing Documentation on the Web 4-8
Adding Help Files . 4-9
Documentation in Other Languages 4-9

Finding Information with the Help Browser 4-10
Help Navigator . 4-10
Contents in the Help Browser . 4-10
Index for the Help Browser . 4-13
Search Documentation and Demos with the Help

Browser . 4-16
Favorites . 4-24

Viewing Documentation in the Help Browser 4-26
About the Display Pane . 4-26
Browse to Other Pages . 4-27
Links . 4-28
Find Text in Displayed Pages . 4-28
Copy Information . 4-29
Evaluate a Selection . 4-29
Open a Selection . 4-29
Help on Selection . 4-29
View the Page Source (HTML) . 4-29
View the Page Location . 4-30

Demos in the Help Browser . 4-31
About Demos . 4-31
Using Demos . 4-32
Adding Your Own Demos . 4-36

Preferences for the Help Browser 4-37
Product Filter . 4-37
PDF Reader — Specifying Its Location 4-38
General — Keep Contents Synchronized 4-38

x Contents

Help Fonts and Colors Preferences 4-39

Printed Documentation . 4-42
About Printed Manuals . 4-42
Printing a Page from the Help Browser 4-42
Printing the PDF Version of Documentation 4-42

Help Functions . 4-44
About Help Functions . 4-44
Summary Table of Help Functions . 4-44
View Function Reference Pages — the doc Function 4-45
Getting Help in the Command Window — the help

Function . 4-46

Getting Pop-Up Help for Functions 4-49

Other Forms of Help . 4-51
Documentation for Other Products 4-51
Product-Specific Help Features . 4-51
User-Contributed M-Files . 4-51
Technical Support . 4-52
Newsgroup for MathWorks Products 4-52
Other Resources for MATLAB Information 4-53
Version and License Information . 4-53
Provide Feedback . 4-54

Workspace, Search Path, and File Operations

5
MATLAB Workspace . 5-2

About the MATLAB Workspace . 5-2
Opening the Workspace Browser . 5-3
Viewing and Editing Values in the Current Workspace . . . 5-3
Saving the Current Workspace . 5-5
Loading a Saved Workspace and Importing Data 5-7
Changing and Copying Variable Names 5-8
Deleting Workspace Variables . 5-8
Viewing Base and Function Workspaces Using the

Stack . 5-9

xi

Creating Plots from the Workspace Browser 5-9
Opening Variables and Objects for Viewing and Editing . . 5-9
Preferences for the Workspace Browser 5-10

Viewing and Editing Workspace Variables with the
Array Editor . 5-12
About the Array Editor . 5-12
Opening the Array Editor . 5-12
Viewing and Editing Cell Arrays, Structures, and

Multidimensional Arrays . 5-14
Navigating and Editing Shortcut Keys for the Array

Editor . 5-16
Changing Array Size, Content, and Format of Elements in

the Array Editor . 5-17
Cut, Copy, Paste, and Clear Contents in the Array

Editor . 5-18
Insert and Delete in the Array Editor 5-21
Undo and Redo in the Array Editor 5-21
Exchanging Data with the Command Window 5-21
Exchanging Data with Excel . 5-21
Creating Graphs and Variables from the Current

Selection . 5-21
Preferences for the Array Editor . 5-22

Search Path . 5-23
About the Search Path . 5-23
How the Search Path Determines Which Function to

Use . 5-24
How MATLAB Finds the Search Path, pathdef.m 5-25
Viewing and Setting the Search Path 5-26
Using the Path in Future Sessions 5-31
Recovering from Problems with the Search Path 5-33

File Management Operations . 5-35
About MATLAB File Operations . 5-35
Current Directory Field . 5-35
Current Directory Browser . 5-36
Viewing and Making Changes to Directories 5-38
Creating, Renaming, Copying, and Removing Directories

and Files . 5-43
Opening and Running Files . 5-47
Finding Files and Content Within Files 5-49
Comparing Files . 5-54

xii Contents

Accessing Source Control Features 5-54
Preferences for the Current Directory Browser 5-54

Editing and Debugging M-Files

6
Begin with Existing Code . 6-3

Create M-Files from Command Window and History 6-3
Use Existing M-Files and Examples 6-3

Ways to Edit, Evaluate, and Debug M-Files 6-5

Starting, Customizing, and Closing the
Editor/Debugger . 6-7
Starting the Editor/Debugger . 6-7
Creating a New File in the Editor/Debugger 6-8
Opening Existing Files in the Editor/Debugger 6-9
Arranging Editor/Debugger Documents 6-11
Preferences for the Editor/Debugger 6-11
Creating and Editing Other Text File Types 6-12
Closing the Editor/Debugger . 6-13

Entering Statements in the Editor/Debugger 6-14
Use Command Window Features in the Editor/Debugger . . 6-14
Changing the Case of Selected Text 6-14
Undo and Redo . 6-15
Adding Comments . 6-15
Tab Completion in the Editor/Debugger 6-21

Appearance of an M-File — Making Files More
Readable . 6-28
Syntax Highlighting . 6-28
Indenting . 6-29
Function Indenting . 6-29
Line and Column Numbers . 6-30
Highlight Current Line . 6-30
Right-Hand Text Limit . 6-31
View Function or Subfunction . 6-31

xiii

Code Folding—Expanding and Collapsing M-File
Constructs . 6-31

Split Screen Display . 6-38

Navigating in an M-File . 6-42
Going to a Line Number . 6-42
Going to a Function (Subfunctions and Nested

Functions) . 6-42
Going to a Bookmark . 6-43
Navigating Back and Forward in Files 6-44
Opening a Selection in an M-File . 6-48

Finding Text in Files . 6-49
Finding Text in the Current File . 6-49
Finding and Replacing Text in the Current File 6-49
Finding Files or Text in Multiple Files 6-51
Incremental Search . 6-51

Comparing Files — File Comparison Tool 6-54
What Is the File Comparison Tool? 6-54
Running the File Comparison Tool 6-54
Increase or Decrease Line Lengths Shown 6-56
Exchange Positions . 6-57
Show Updated Files . 6-57
Find Text in Files . 6-57
Compare to Other Files . 6-57
Perform New and View Previous Comparisons 6-57
Alternative Ways to Access the Tool 6-58

Keyboard Shortcuts in the Editor/Debugger 6-59

Saving, Printing, and Closing Files in the
Editor/Debugger . 6-62
Saving Files . 6-62
Printing M-Files . 6-64
Closing M-Files . 6-64

Running M-Files in the Editor/Debugger 6-66
Running M-Files with No Input Arguments in the

Editor/Debugger . 6-66

xiv Contents

Using Configurations — Running M-Files with Input
Arguments in the Editor/Debugger 6-67

Create and Run a Configuration for an M-file 6-67
Create and Run Multiple Configurations for an M-File . . . 6-72
Find Configurations . 6-75
Remove Configurations . 6-78
Reassociate and Rename Configurations 6-79
See Also — Other Ways to Run M-Files from the

Editor/Debugger . 6-83

Finding Errors, Debugging, and Correcting M-Files . . 6-84

M-Lint Code Analyzer . 6-87
What Is M-Lint? . 6-87
Ways to Use M-Lint . 6-87
M-Lint Automatic Code Analyzer in the

Editor/Debugger . 6-88
Suppressing M-Lint Indicators and Messages 6-98

Debugging Process and Features . 6-103
Ways to Debug M-Files . 6-103
Preparing for Debugging . 6-103
Setting Breakpoints . 6-107
Running an M-File with Breakpoints 6-111
Stepping Through an M-File . 6-112
Examining Values . 6-114
Correcting Problems and Ending Debugging 6-118
Conditional Breakpoints . 6-126
Breakpoints in Anonymous Functions 6-128
Error Breakpoints . 6-129

Using Cells for Rapid Code Iteration and Publishing
Results . 6-133
What Are Cells? . 6-133
Rapid Code Iteration Overview . 6-133
Defining Cells . 6-135
Navigating and Evaluating with Cells 6-139
Using Cells in Function M-Files . 6-144

xv

Tuning and Managing M-Files

7
Directory Reports in Current Directory Browser 7-2

Accessing and Using Directory Reports 7-2
TODO/FIXME Report . 7-4
Help Report . 7-6
Contents Report . 7-9
Dependency Report . 7-13
Coverage Report . 7-15

M-Lint Code Check Report . 7-16
Running the M-Lint Code Check Directory Report 7-16
Making Changes Based on M-Lint Messages 7-18
Other Ways to Access M-Lint . 7-26

Profiling for Improving Performance 7-27
What Is Profiling? . 7-27
Profiling Process and Guidelines . 7-28
Using the Profiler . 7-29
Profile Summary Report . 7-33
Profile Detail Report . 7-35
The profile Function . 7-42

Publishing Results

8
Publishing to HTML, XML, LaTeX, Word, and

PowerPoint Using Cells . 8-2
About Publishing M-Files . 8-2
Publishing Scripts and Functions—Differences 8-3
Example of Publishing Without Text Markup 8-4
Example of Publishing with Text Markup 8-6

Marking Up Text in Cells for Publishing 8-11
Overview of Text Markup . 8-11
Text Markup for Cell Breaks, Headings, and Formatted

Comments . 8-12

xvi Contents

Text Markup for Indented Text, Lists, and Graphics 8-14
Text Markup for HTML, LaTeX, and TeX Equation Output

Types . 8-17
Text Markup for Bold, Italic, and Monospaced Text

Formats . 8-20
Text Markup for Inline Links . 8-22

Publishing M-Files Using Cells . 8-24
How to Publish an M-File . 8-24
About Published M-Files . 8-25
Modifying Published Output Using Preferences 8-26

Notebook for Publishing to Word . 8-27
Using Notebook to Create an M-book 8-27
See Also Publishing Using Cells . 8-27
Creating or Opening an M-Book . 8-28
Entering MATLAB Commands in an M-Book 8-34
Protecting the Integrity of Your Workspace in M-Books . . . 8-34
Ensuring Data Consistency in M-Books 8-35
Debugging and Notebook . 8-35

Defining MATLAB Commands as Input Cells for
Notebook . 8-36
Defining Commands as Input Cells for Notebook 8-36
Defining Cell Groups for Notebook 8-37
Defining Autoinit Input Cells for Notebook 8-38
Defining Calc Zones for Notebook . 8-38
Converting an Input Cell to Text with Notebook 8-39

Evaluating MATLAB Commands with Notebook 8-41
Evaluating Input Commands with Notebook 8-41
Evaluating Cell Groups with Notebook 8-42
Evaluating a Range of Input Cells with Notebook 8-43
Evaluating a Calc Zone with Notebook 8-44
Evaluating an Entire M-Book . 8-44
Using a Loop to Evaluate Input Cells Repeatedly with

Notebook . 8-45
Converting Output Cells to Text with Notebook 8-46
Deleting Output Cells with Notebook 8-46

Printing and Formatting an M-Book 8-47
Printing an M-Book . 8-47

xvii

Modifying Styles in the M-Book Template 8-47
Choosing Loose or Compact Format for Notebook 8-48
Controlling Numeric Output Format for Notebook 8-49
Controlling Graphic Output for Notebook 8-49

Configuring Notebook . 8-53

Notebook Feature Reference . 8-54
Bring MATLAB to Front . 8-54
Define Autoinit Cell . 8-55
Define Calc Zone . 8-55
Define Input Cell . 8-56
Evaluate Calc Zone . 8-56
Evaluate Cell . 8-57
Evaluate Loop . 8-58
Evaluate M-Book . 8-58
Group Cells . 8-58
Hide Cell Markers . 8-59
Notebook Options . 8-59
Purge Selected Output Cells . 8-60
Toggle Graph Output for Cell . 8-60
Undefine Cells . 8-60
Ungroup Cells . 8-61

Source Control Interface

9
Source Control Interface on Windows 9-3

Setting Up the Source Control Interface on Windows . . 9-4
Create Projects in Source Control System 9-4
Specify Source Control System in MATLAB 9-6
Register Source Control Project with MATLAB 9-7
Add Files to Source Control . 9-9

Checking Files Into and Out of Source Control from
MATLAB on Windows . 9-11
Check Files Into Source Control . 9-11
Check Files Out of Source Control . 9-12

xviii Contents

Undoing the Checkout . 9-13

Additional Source Control Actions on Windows 9-14
Getting the Latest Version of Files for Viewing or

Compiling . 9-14
Removing Files from the Source Control System 9-15
Showing File History . 9-16
Comparing the Working Copy of a File to the Latest Version

in Source Control . 9-18
Viewing Source Control Properties of a File 9-20
Starting the Source Control System 9-21

Performing Source Control Actions from the
Editor/Debugger, Simulink, or Stateflow on
Windows . 9-23

Troubleshooting Source Control Problems on
Windows . 9-24
Source Control Error: Provider Not Present or Not Installed

Properly . 9-24
Restriction Against @ Character . 9-25
Add to Source Control Is the Only Action Available 9-25
More Solutions for Source Control Problems 9-25

Source Control Interface on UNIX 9-26

Specifying the Source Control System on UNIX 9-27
MATLAB Alternative . 9-27
Function Alternative . 9-28
Setting a View and Checking Out a Directory with

ClearCase on UNIX . 9-29

Checking Files Into the Source Control System on
UNIX . 9-30
Checking In One or More Files Using the Current Directory

Browser . 9-30
Checking In One File Using the Editor/Debugger, Simulink,

or Stateflow . 9-31
Function Alternative . 9-32

xix

Checking Files Out of the Source Control System on
UNIX . 9-33
Checking Out One or More Files Using the Current

Directory Browser . 9-33
Checking Out a Single File Using the Editor/Debugger,

Simulink, or Stateflow . 9-34
Function Alternative . 9-34

Undoing the Checkout on UNIX . 9-36
Impact of Undoing a File Checkout 9-36
Undoing the Checkout for One or More Files Using the

Current Directory Browser . 9-36
Undoing the Checkout for a Single File Using the

Editor/Debugger, Simulink, or Stateflow 9-36
Function Alternative . 9-37

Index

xx Contents

1

Startup and Shutdown

This set of topics includes options for customizing the startup and shutdown.

Starting MATLAB on Windows
Platforms (p. 1-2)

Ways to start MATLAB®, including
from a desktop icon, or from a file in
Windows Explorer. Associating file
types with MATLAB.

Starting MATLAB on UNIX
Platforms (p. 1-6)

MATLAB startup on UNIX.

Starting MATLAB on Macintosh
Platforms (p. 1-7)

Ways to start MATLAB on a
Macintosh, including from a
MATLAB file type in the Finder.

Startup Directory for MATLAB
(p. 1-8)

Ways to change the directory in
which MATLAB starts.

Startup Options (p. 1-12) Instruct MATLAB to perform
operations upon startup via a
startup file or the matlab function.

Toolbox Path Caching in MATLAB
(p. 1-17)

About the cache file and updating
the cache file.

Other Startup Topics (p. 1-21) Error Log Reporter, passing Perl
variables, and calling Java from
MATLAB.

Quitting MATLAB (p. 1-23) End a MATLAB session. Instruct
MATLAB to perform specified
operations upon shutdown.

1 Startup and Shutdown

Starting MATLAB on Windows Platforms

In this section...

“Starting MATLAB from the Windows Desktop or a DOS Window” on
page 1-2

“Starting MATLAB from an M-File or Other File Type in Windows” on
page 1-2

“Utility to Change Windows File Associations” on page 1-5

“Changing File Associations for MATLAB from Windows” on page 1-5

Starting MATLAB from the Windows Desktop or a
DOS Window
To start MATLAB on a Microsoft Windows platform, select the
Start > Programs > MATLAB > R2007b > MATLAB R2007b, or
double-click the MATLAB R2007b shortcut icon on your Windows desktop.
The shortcut was automatically created when you installed MATLAB. If
you have trouble starting MATLAB, see troubleshooting information in the
Installation Guide for Windows.

To start MATLAB from a DOS window, cd to the directory in which you want
to start MATLAB and type matlab at the DOS prompt.

After starting MATLAB, the desktop opens. Desktop components that were
open when you last shut down MATLAB will be opened on startup. For more
information, see Chapter 2, “Desktop”.

Starting MATLAB from an M-File or Other File Type
in Windows
On Windows platforms, you can start MATLAB from a Windows Explorer
window by double-clicking a file with one of these extensions: .fig, .m, .mat,
and .mdl. MATLAB starts and opens in an appropriate tool. If MATLAB is
already running, the file opens in an appropriate tool in the existing session.

This startup feature is based on your Windows file type associations.
When you installed MATLAB for Windows, you specified the file types to

1-2

Starting MATLAB on Windows Platforms

associate with MATLAB. For example, if you accepted the default options,
double-clicking an M-file in Windows Explorer opens the file in the MATLAB
Editor/Debugger.

Other default options associate MEX-files and P-files with MATLAB in
Windows Explorer, which assigns the file types a MATLAB icon. However,
double-clicking a file with a .mex (.mexw32 or .mexw64), or .p extension does
not run or open the file in MATLAB.

File Type and Resulting Action

File Type Result

FIG-file Opens file in figure window

M-file Opens file in Editor/Debugger

MAT-file Opens Import Wizard to load the data into the MATLAB
workspace

MDL-file Opens file in Simulink® model window

MEX-file Displays MATLAB icon in Windows Explorer

P-file Displays MATLAB icon in Windows Explorer

Other applications you use can change Windows file associations. For
example, Microsoft Access might associate files having a .mat extension.
Then, double-clicking a MAT-file opens Access rather than MATLAB.

If you double-click a FIG-file, M-file, MAT-file, or MDL-file and it does not
open in MATLAB, try this instead:

1 In Windows Explorer, right-click a file with one of the extensions listed in
the preceding table, for example, myfile.mat.

2 From the context menu, select Open With. If MATLAB is one of the
choices, select it to open myfile.mat in MATLAB. If MATLAB is not one of
the choices, you will need to associate the file type with MATLAB using one
of these techniques:

• “Utility to Change Windows File Associations” on page 1-5

• “Changing File Associations for MATLAB from Windows” on page 1-5

1-3

1 Startup and Shutdown

After associating a file type with MATLAB, you can open other applications
using that file type via the context menu. For example, right-click
myfile.mat, and from the context menu, select Open With. Microsoft
Access will be one of the options.

File associations for Windows Explorer do not affect what happens when you
open one of these file types from within MATLAB. MATLAB acts on the file

1-4

Starting MATLAB on Windows Platforms

using the MATLAB tool associated with that file type. For example, even if
you associate .mat files with Microsoft Access, when you open a MAT-file from
within MATLAB, it opens the Import Wizard to load the data.

Utility to Change Windows File Associations
If you are viewing this topic in the MATLAB Help browser, you can run one
of the utilities provided here to create Windows associations for common
MATLAB file types. This requires you to have permission to write to the
HKEY_CLASSES_ROOT registry key, which typically requires power user or
administrator privileges.

• Run utility to associate MATLAB with FIG-files

• Run utility to associate MATLAB with M-files

• Run utility to associate MATLAB with MAT-files

• Run utility to associate MATLAB with MDL-files

• Run utility to associate MATLAB with MEX-files

• Run utility to associate MATLAB with P-files

• Run utility to associate MATLAB with all of these file types: FIG, M, MAT,
MDL. MEX, and P

The file type icon in Windows Explorer might not reflect the change
immediately.

Changing File Associations for MATLAB from
Windows
You can associate file types with MATLAB from Windows Explorer. This is
useful if you want associate file types other than those offered by the above
utilities. For example, you can double-click .xml files to open them in the
MATLAB Editor/Debugger.

The following examples show one way to change file associations in
Windows. Note that these instructions might not exactly apply to your
version of Windows. If you encounter differences or problems, try to delete
the association before using these instructions, or see your Windows
documentation.

1-5

1 Startup and Shutdown

Assume that when you double-click a .mat file in Windows Explorer, it opens
in Microsoft Access, but you want the file to open in MATLAB.

1 In Windows Explorer, select Tools > Folder Options.

2 In the resulting Folder Options dialog box, select the File Types tab. From
the Registered file types list, select the MAT extension. (If you do not see
MAT in the list, click New to add it.)

Under Details for ’MAT’ extension, click Change.

3 In the resulting Open With dialog box, select MATLAB from the list.

If MATLAB is not listed, click Browse. Then look for and select
matlab.exe, and click Open. The file is located in the folder in which
you installed MATLAB. An example of the default location is C:\Program
Files\MATLAB\R2007b\bin.

4 In the Open With dialog box, click OK. In the Folder Options dialog box,
click Close.

Starting MATLAB on UNIX Platforms
To start MATLAB on a UNIX platform, type MATLAB at the operating system
prompt.

If you did not set up symbolic links in the installation procedure, you must
enter the full pathname to start MATLAB, matlabroot/bin/matlab, where
matlabroot is the name of your MATLAB installation directory. If you have
trouble starting MATLAB, see troubleshooting information in the Installation
Guide for UNIX.

After starting MATLAB, the desktop opens. Desktop components that were
open when you last shut down MATLAB will be opened on startup. For more
information, see Chapter 2, “Desktop”. If the DISPLAY environment variable is
not set or is invalid, the desktop will not display.

1-6

Starting MATLAB on Macintosh Platforms

Starting MATLAB on Macintosh Platforms

In this section...

“Starting MATLAB from the Macintosh Desktop” on page 1-7

“Starting MATLAB from an M-File or Other File Type on Macintosh
Platforms” on page 1-7

Starting MATLAB from the Macintosh Desktop
To start MATLAB on Macintosh platforms, double-click the MATLAB icon on
the desktop. If there isn’t a MATLAB icon on the desktop, you can find it in
the MATLAB folder within the Applications folder. MATLAB starts, assuming
you accepted the defaults for the license manager to automatically start at
system startup.

Note On Macintosh systems, you cannot perform a remote login, that is, you
cannot run MATLAB remotely. For example, you cannot rlogin.

Starting MATLAB from an M-File or Other File Type
on Macintosh Platforms
On Macintosh platforms, you can start MATLAB from the Finder by
double-clicking a file with one of these extensions: .fig, .m, .mat, and .mdl.
MATLAB starts and opens in an appropriate tool. If MATLAB is already
running, the file opens in an appropriate tool in the existing session—see File
Type and Resulting Action on page 1-3.

1-7

1 Startup and Shutdown

Startup Directory for MATLAB

In this section...

“What Is the Startup Directory?” on page 1-8

“Startup Directory (Folder) on Windows Platforms” on page 1-8

“Startup Directory on UNIX Platforms” on page 1-9

“Changing the Startup Directory” on page 1-9

What Is the Startup Directory?
The startup directory is the current directory in MATLAB when it starts. The
default startup directory depends on your platform and installation. You can
specify a different startup directory.

Startup Directory (Folder) on Windows Platforms
When you start MATLAB from a Windows shortcut icon, MATLAB sets the
default startup directory to My Documents\MATLAB or Documents\MATLAB on
Vista. This is a location where you can conveniently work with your personal
MATLAB files. It offers these features:

• Because the MATLAB subfolder is the default startup directory, the current
directory is automatically the one containing the files your work with.

• So that the files you work with are on the search path, MATLAB
automatically adds the MATLAB subfolder to the top of the search path upon
startup. If the MATLAB subfolder does not exist, MATLAB creates it.

• This location also utilizes the benefits provided by the Windows (or Vista)
standard location for storing personal files, My Documents (or Documents).
Files in the MATLAB subfolder are available to you when you use other
machines, if your profile is set to roam. Because each user has their own
My Documents or Documents folder, other users, even those using your
machine, cannot access files in your MATLAB subfolder.

• When you upgrade to a newer version of MATLAB, MATLAB automatically
continues to use the same MATLAB subfolder and your existing files, with all
of the above benefits.

1-8

Startup Directory for MATLAB

Startup Directory on UNIX Platforms
On UNIX platforms, the default startup directory is the directory you
are in on your UNIX file system when you start MATLAB, for example,
/home/$user/matlab. MATLAB automatically adds this matlab directory to
the top of the MATLAB search path upon startup.

Changing the Startup Directory
You can start MATLAB in a directory other than the default.

For Windows Platforms Only
To change the startup directory on Windows platforms,

1 Right-click the MATLAB shortcut icon and select Properties from the
context menu.

The Properties dialog box for MATLAB opens to the Shortcut pane.

2 The Target field contains the full path to start MATLAB.

By default, the startup directory is My Documents\MATLAB or
Documents\MATLAB on Vista; for more information, see “Startup Directory
(Folder) on Windows Platforms” on page 1-8.

In the Start in field, specify the full path to the directory in which you
want MATLAB to start, and click OK.

1-9

1 Startup and Shutdown

�����������������	�
��������������

��������������	������	����	������������������
���������������������
�����������	
����
���

The next time you start MATLAB using that shortcut icon, the current
directory will be the one you specified in step 2.

1-10

Startup Directory for MATLAB

You can make multiple shortcuts to start MATLAB, each with its own startup
directory, and with each startup directory having different startup options.

For All Platforms
To change the startup directory,

1 Create a startup.m file — see “Using the Startup File for MATLAB,
startup.m” on page 1-12.

2 In the startup.m file, include the cd function to change to the new directory.

3 Put the startup.m file in the default startup directory for your platform, as
noted in “Startup Directory (Folder) on Windows Platforms” on page 1-8
or “Startup Directory on UNIX Platforms” on page 1-9. Alternatively, put
startup.m in the current startup directory.

1-11

1 Startup and Shutdown

Startup Options

In this section...

“About Startup Options” on page 1-12

“Using the Startup File for MATLAB, startup.m” on page 1-12

“Adding Startup Options for Windows Platforms” on page 1-13

“Adding Startup Options for UNIX Platforms” on page 1-14

“Commonly Used Startup Options” on page 1-14

About Startup Options
You can define startup options that instruct MATLAB to perform certain
operations when you start it. You specify these options using a startup file
(startup.m) or as options to the matlab startup command.

Using the Startup File for MATLAB, startup.m
At startup, MATLAB automatically executes the master M-file matlabrc.m
and, if it exists, startup.m. The file matlabrc.m, which is in the
matlabroot/toolbox/local directory, is reserved for use by The MathWorks
and by the system manager on multiuser systems.

The file startup.m is for you to specify startup options. For example, you can
modify the default search path, predefine variables in your workspace, or
define Handle Graphics® defaults. Creating a startup.m file with the lines

addpath /home/$user/mytools
cd /home/$user/mytools

adds /home/$user/mytools to your default search path and makes mytools
the current directory upon startup.

Location of startup.m
Place the startup.m file in the default or current startup directory, which
is where MATLAB first looks for it. For more information, see “Startup
Directory for MATLAB” on page 1-8.

1-12

Startup Options

Adding Startup Options for Windows Platforms
You can add selected startup options (also called command flags or switches
for the command line) to the target path for your Windows shortcut for
MATLAB. Or you can add them to the command line when you start MATLAB
in a DOS window. On Windows systems a startup option is preceded by
either a hyphen (-) or a slash (/). For example, -nosplash and /nosplash are
equivalent ways of specifying the nosplash option for Windows users.

Startup Options in Windows Shortcut
To use startup options in the Windows shortcut for MATLAB, follow these
steps:

1 Right-click the MATLAB shortcut icon and select Properties from
the context menu. The Properties dialog box for MATLAB opens to the
Shortcut pane.

2 In the Target field, after the target path for matlab.exe, add the startup
option, and click OK. For example, adding -r "filename" runs the M-file
filename after startup.

This example instructs MATLAB to automatically run the file results after
startup, where results.m is in the startup directory or on the MATLAB
search path. The statement in the Target field might appear as

C:\Program Files\MATLAB\bin\matlab.exe -r "results"

Include the statement in double quotation marks ("statement"). Use only
the filename, not the file extension or pathname. For example, MATLAB
produces an error when you run

... matlab.exe -r "D:\results.m"

Use semicolons or commas to separate multiple statements. This example
changes the format to short, and then runs the M-file results:

... matlab.exe -r "format('short');results"

Separate multiple options with spaces. This example starts MATLAB without
displaying the splash screen, and then runs the M-file results:

1-13

1 Startup and Shutdown

... matlab.exe -nosplash -r "results"

Startup Options in DOS Window
When you start MATLAB in a DOS window, include startup options after
the matlab command.

This example uses the nosplash startup option to start MATLAB without the
splash screen, and adds the -r option to run the results function located in
the startup directory, after starting MATLAB in a DOS window:

matlab -nosplash -r "results"

Adding Startup Options for UNIX Platforms
Include startup options (also called command flags or command line switches)
after the matlab command. On UNIX systems a startup option is preceded by
a hyphen (-). For example, to start MATLAB without the splash screen, type

matlab -nosplash

Commonly Used Startup Options
The following table provides a list of some commonly used startup options
for both Windows and UNIX platforms. For more information, including a
complete list of startup options, see the matlab (Windows) reference page or
the matlab (UNIX) reference page.

Platform Option Description

All -c licensefile Set LM_LICENSE_FILE to licensefile. It can have the
form port@host.

All -h or -help Display startup options (without starting MATLAB).

All -logfile
"logfilename"

Automatically write output from MATLAB to the
specified log file.

1-14

Startup Options

Platform Option Description

UNIX -nodesktop Start MATLAB without bringing up the MATLAB
desktop. Use this option to run without an X-window,
for example, in VT100 mode, or in batch processing
mode. Note that if you pipe to MATLAB using the >
constructor, the nodesktop option is used automatically.

With nodesktop, you can still use most development
environment tools by starting them via a function. For
example, use preferences to open the Preferences
dialog box and helpbrowser to open the Help browser.

Do not use nodesktop to provide a command-line
interface. If you prefer a command-line interface,
select Desktop > Desktop Layout > Command
Window > Only.

Windows -minimize Start MATLAB with the desktop minimized. Any
desktop tools or documents that were undocked when
MATLAB was last closed will not be minimized upon
startup.

UNIX -nojvm Start MATLAB without loading the Java VM. This
minimizes memory usage and improves initial startup
speed, but restricts functionality. With nojvm, you
cannot use the desktop, or any tools that require Java.

For example, you cannot set preferences if you start
MATLAB with the -nojvm option. However, you can
start MATLAB once without the -nojvm option, set the
preference, and quit MATLAB. MATLAB remembers
that preference when you start it again, even if you
use the -nojvm option.

1-15

1 Startup and Shutdown

Platform Option Description

All -nosplash Start MATLAB without displaying the MATLAB splash
screen.

All -r "statement" Automatically run the specified MATLAB statement
immediately after MATLAB starts. This is sometimes
referred to as calling MATLAB in batch mode. Files you
run must be in the MATLAB startup directory or on
the MATLAB search path. Do not include pathnames
or file extensions. Enclose the statement in double
quotation marks ("statement").

1-16

Toolbox Path Caching in MATLAB

Toolbox Path Caching in MATLAB

In this section...

“About Toolbox Path Caching” on page 1-17

“Using the Cache File Upon Startup” on page 1-17

“Updating the Cache and Cache File” on page 1-17

“Additional Diagnostics with Toolbox Path Caching” on page 1-20

About Toolbox Path Caching
For performance reasons, MATLAB caches toolbox directory information
across sessions. The caching features are mostly transparent to you. However,
if MATLAB does not see the latest versions of your M-files or if you receive
warnings about the toolbox path cache, you might need to update the cache.

Using the Cache File Upon Startup
Upon startup, MATLAB gets information from a cache file to build the toolbox
directory cache. Because of the cache file, startup is faster, especially if you
run MATLAB from a network server or if you have many toolbox directories.
When you end a session, MATLAB updates the cache file.

MATLAB does not use the cache file at startup if you clear the Enable
toolbox path cache check box in File > Preferences > General. Instead,
it creates the cache by reading from the operating system directories, which
is slower than using the cache file.

Updating the Cache and Cache File

How the Toolbox Path Cache Works
MATLAB caches (essentially, stores in a known files list) the names and
locations of files in matlabroot/toolbox directories. These directories are
for MathWorks supplied files that should not change except for product
installations and updates. Caching those directories provides better
performance during a session because MATLAB does not actively monitor
those directories.

1-17

1 Startup and Shutdown

We strongly recommend that you save any M-files you create and any
MathWorks supplied M-files that you edit in a directory that is not
in the matlabroot/toolbox directory tree. If you keep your files in
matlabroot/toolbox directories, they may be overwritten when you install
a new version of MATLAB.

When to Update the Cache
When you add files to matlabroot/toolbox directories, the cache and
the cache file need to be updated. MATLAB updates the cache and cache
file automatically when you install toolboxes or toolbox updates using
the MATLAB installer. MATLAB also updates the cache and cache file
automatically when you use MATLAB tools, such as when you save files from
the MATLAB Editor/Debugger to matlabroot/toolbox directories.

When you add or remove files in matlabroot/toolbox directories by some
other means, MATLAB might not recognize those changes. For example,
when you

• Save new files in matlabroot/toolbox directories using an external editor

• Use operating system features and commands to add or remove files in
matlabroot/toolbox directories

MATLAB displays this message:

Undefined function or variable

You need to update the cache so MATLAB will recognize the changes you
made in matlabroot/toolbox directories.

Steps to Update the Cache
To update the cache and the cache file,

1 Select File > Preferences > General.

The General Preferences pane is displayed.

2 Click Update Toolbox Path Cache and click OK.

1-18

Toolbox Path Caching in MATLAB

Function Alternative
To update the cache, use rehash toolbox. To also update the cache file, use
rehash toolboxcache. For more information, see rehash.

1-19

1 Startup and Shutdown

Additional Diagnostics with Toolbox Path Caching
To display information about startup time when you start MATLAB, select
the Enable toolbox path cache diagnostics check box in General
Preferences.

1-20

Other Startup Topics

Other Startup Topics

In this section...

“Error Log Reporter” on page 1-21

“Passing Perl Variables on Startup” on page 1-21

“Startup and Calling Java from MATLAB” on page 1-22

Error Log Reporter
Upon startup, if MATLAB detects an error log generated by a serious problem
encountered during the previous session, an Error Log Reporter prompts
you to e-mail the log to The MathWorks for analysis. Click Send Report
to e-mail the log, or click Help for more information. After sending the
log, a confirmation message appears in the Command Window. For more
information, see “Abnormal Termination” on page 1-24.

Passing Perl Variables on Startup
You can pass Perl variables to MATLAB on startup by using the -r option of
the matlab function. For example, assume a MATLAB function test that
takes one input variable:

function test(x)

To start MATLAB with the function test, use the command

matlab -r "test(10)"

On some platforms, you might need to use double quotation marks:

matlab -r "test(10)"

This command starts MATLAB and runs test with the input argument 10.

To pass a Perl variable instead of a constant as the input parameter, follow
these steps.

1 Create a Perl script such as

1-21

1 Startup and Shutdown

#!/usr/local/bin/perl
$val = 10;
system('matlab -r "test(' . ${val} . ')"');

2 Invoke the Perl script at the prompt using a Perl interpreter.

For more information, see the matlab (Windows) or matlab (UNIX) reference
page.

Startup and Calling Java from MATLAB
When MATLAB starts, it constructs the Java class path using
librarypath.txt as well as classpath.txt. If you call Java from MATLAB,
see more about this in “The Java Class Path” and “Locating Native Method
Libraries” in the MATLAB External Interfaces documentation.

1-22

Quitting MATLAB

Quitting MATLAB

In this section...

“Ways to Quit MATLAB” on page 1-23

“Confirm Quitting MATLAB” on page 1-23

“Running a Script When Quitting MATLAB” on page 1-24

“Abnormal Termination” on page 1-24

Ways to Quit MATLAB
To quit MATLAB at any time, do one of the following:

• Click the Close box in the MATLAB desktop.

• Select Exit MATLAB from the desktop File menu.

• Type quit at the Command Window prompt.

MATLAB closes after

• Prompting you to confirm quitting, if that preference is specified (see
“Confirm Quitting MATLAB” on page 1-23)

• Prompting you to save any unsaved files

• Running the finish.m script, if it exists in the current directory or on the
MATLAB path (see “Running a Script When Quitting MATLAB” on page
1-24)

Confirm Quitting MATLAB
To set a preference that displays a confirmation dialog box when you quit
MATLAB, select File > Preferences > General > Confirmation Dialogs,
select the Confirm before quitting check box, and click OK. MATLAB then
displays the following dialog box when you quit.

1-23

1 Startup and Shutdown

For more information, see “Confirmation Dialogs Preferences” on page 2-81.

You can also display your own quitting confirmation dialog box using a
finish.m script, as described in the following section.

Running a Script When Quitting MATLAB
When MATLAB quits, it runs the script finish.m, if finish.m exists in the
current directory or anywhere on the MATLAB search path. You create the
file finish.m. It contains statements to run when MATLAB terminates, such
as saving the workspace or displaying a confirmation dialog box. There are
two sample files in matlabroot/toolbox/local that you can use as the basis
for your own finish.m file:

• finishsav.m — Includes a save function so the workspace is saved to
a MAT-file when MATLAB quits.

• finishdlg.m — Displays a confirmation dialog box that allows you to
cancel quitting.

For more information, see the finish reference page.

Abnormal Termination
In the event MATLAB experiences a segmentation violation (segv) or another
serious problem, save your files and workspace if possible, exit MATLAB,
and restart.

Upon startup, if MATLAB detects an error log generated by a serious problem
during the previous session, an Error Log Reporter prompts you to e-mail
the log to The MathWorks for analysis. If the problem occurs repeatedly,

1-24

Quitting MATLAB

make note of what seems to cause it and look for information about it in the
MathWorks Bug Reports database.

There are some situations where the Error Log Reporter will not open, for
example, when you start MATLAB with a -r option or run in deployed
mode. If you experience segmentation violations but do not see the Error
Log Reporter on subsequent startups, you can instead e-mail the reports by
following the instructions at the end of the segmentation violation message in
the Command Window.

Crash Recovery and Multithreading
When multithreaded computation is enabled, if MATLAB experiences a
segmentation violation or other serious problem, it cannot try to return
control to the Command Window. You do not have an opportunity to view a
segmentation violation message in the Command Window as you might when
multithreaded computation is not enabled. Instead, your platform’s vendor,
for example, Microsoft or Apple, provides an error dialog box. MATLAB then
terminates.

Upon the next MATLAB startup after a fatal problem, the “Error Log
Reporter” on page 1-21 prompts you to e-mail the log to The MathWorks.

1-25

http://www.mathworks.com/support/bugreports/

1 Startup and Shutdown

1-26

2

Desktop

If you have an active Internet connection, you can watch the Working in
the Development Environment video demo for an overview of the major
functionality. The easiest way to learn to use the desktop is just by working
with it. If you have problems or questions, refer to the following sections.

Overview of the Desktop (p. 2-3) Basic summary of the desktop and
its tools.

Arranging the Desktop (p. 2-6) Open and arrange desktop tools and
documents to suit your needs.

Examples of Desktop Arrangements
(p. 2-15)

Scan the examples to see various
ways to arrange the desktop.

Shortcuts for MATLAB — Easily
Run a Group of Statements (p. 2-32)

Use MATLAB shortcuts, an easy way
to run a group of MATLAB functions
from the desktop.

Keyboard Shortcuts (p. 2-40) Use the keyboard as an alternative
to a mouse or other pointing device
to access desktop features.

Other Desktop Features (p. 2-44) Use the Start button, toolbars,
menus and context menus, and
status bar. Select multiple items,
cut, copy, and paste, set up pages
for printing, use a MATLAB Web
browser, and access the MathWorks
Web site from MATLAB.

Preferences (p. 2-59) Specify options for tools such as
fonts, colors, and more.

2 Desktop

Fonts Preferences for Desktop Tools
(p. 2-62)

Use desktop font preferences to
specify the font characteristics for
MATLAB desktop tools.

Colors Preferences for Desktop Tools
(p. 2-70)

Set desktop color preferences for
desktop tools, including syntax
highlighting.

General Preferences for MATLAB
(p. 2-76)

Set options for toolbox path caching,
figure window printing, delete
function behavior, MAT-file save
format, confirmation dialogs, source
control system, and multithreaded
computation.

Accessibility (p. 2-85) Use assistive technologies and
accessibility features when working
with MathWorks software.

2-2

Overview of the Desktop

Overview of the Desktop

In this section...

“About the Desktop” on page 2-3

“Summary of Desktop Tools” on page 2-5

About the Desktop
In general, when you start MATLAB, it displays the MATLAB desktop, a set
of tools (graphical user interfaces or GUIs) for managing files, variables, and
applications associated with MATLAB.

The first time you start MATLAB, the desktop appears with the default
layout, as shown in the following illustration. You can change the desktop
arrangement to meet your needs, including resizing, moving, and closing tools.
For details, see “Arranging the Desktop” on page 2-6.

Some tools, such as the Editor/Debugger and Array Editor, support multiple
document windows within them. Similarly, you can group multiple figure
windows together. For information about working with documents in the
desktop, see “Opening and Arranging Documents” on page 2-8.

2-3

2 Desktop

�	��������� �����
�������	������

��!������	�	"��
�	�	�	"�����
���
���	�����

#����������
�����������������
������

���������� ��
������	� �������
���
����������	� �

$�
���������	�
��%�
��������
�������
��������
�

&��
��
��

'� ������������
%�������	"�
�	������

�	������������
��!	���
����
�����������

(
	�)����������
%���������*�	�)
�������������
�
��������

2-4

Overview of the Desktop

Summary of Desktop Tools
The following tools are managed by the MATLAB desktop, although not all of
them appear by default when you first start. If you prefer a command-line
interface, you can often use equivalent functions to accomplish the same
result. To perform the equivalent of the GUI tasks in M-files, you must
use the equivalent function. Instructions for using equivalent functions to
perform the task are provided with the documentation for each tool and are
typically labeled as Function Alternatives.

Desktop Tool Description

Array Editor View array contents in a table format and edit the values.

Command History View a log of or search for the statements you entered in the
Command Window, copy them, execute them, and more.

Command Window Run MATLAB statements.

Current Directory Browser View files, perform file operations such as open, find files and file
content, and manage and tune your files.

Editor/Debugger Create, edit, debug, and analyze M-files (files containing
MATLAB statements).

Figures Create, modify, view, and print MATLAB figures.

File Comparisons View line-by-line differences between two files.

Help Browser View and search the documentation and demos for all your
MathWorks products.

Profiler Improve the performance of your M-files.

Start Button Run tools and access documentation for all your MathWorks
products, and create and use MATLAB shortcuts.

“Web Browser” on page 2-55 View HTML and related files produced by MATLAB.

Workspace Browser View and make changes to the contents of the workspace.

2-5

2 Desktop

Arranging the Desktop

In this section...

“Modifying the Desktop Configuration” on page 2-6

“Opening and Arranging Tools” on page 2-6

“Opening and Arranging Documents” on page 2-8

“Saving Desktop Layouts” on page 2-13

See also “Examples of Desktop Arrangements” on page 2-15.

Modifying the Desktop Configuration
You can modify the desktop configuration to best meet your needs. Because
the desktop uses many standard graphical user interface (GUI) conventions,
it is easy to learn about arranging the desktop just by using it.

The desktop manages tools differently from documents. The Command
History and Editor/Debugger are examples of tools, and an M-file is an
example of a document, which appears in the Editor/Debugger tool.

Opening and Arranging Tools
This table summarizes actions for arranging desktop tools. For further
information, click the “see more details online” links.

Tool Action Steps to Perform

Opening desktop tools To maximize your work area, keep open only those tools you use. To
open a tool, select the tool name from the Desktop menu. Opened
tools have a check mark before them in the menu. The tool appears
in the location it occupied the last time it was open. The sizes of
other tools adjust to accommodate the newly opened tool. See more
details online.

2-6

Arranging the Desktop

Tool Action Steps to Perform

Navigating among
desktop tools

The Window menu displays all open desktop tools and documents,
as well as opened tools for other MathWorks products. Select an
entry in the Window menu to go directly to that tool or document.
Another way to access an undocked desktop tool is by selecting its
entry in the Windows task bar, or the equivalent for your platform.
See also “Keyboard Shortcuts” on page 2-40 and more details online.

Closing desktop tools To close a desktop tool, select the item in the Desktop menu, which
clears the check mark in the menu and closes the tool. Or click the
Close box (X) in the title bar for the tool, or select File > Close for
the tool. See more details online.

Resizing tools To resize tools in the MATLAB desktop, drag the separator bar,
which is the bar between tools. You can hide the title bars for tools
in the desktop so the tools use less space—select Desktop > Titles,
and then hover over a title bar to see a tooltip containing the name of
the tool. See more details online.

Moving tools within the
desktop

To move a tool in the MATLAB desktop, drag the title bar of the tool
toward where you want the tool to be located. As you drag the tool,
an outline of it appears. When the outline nears a position where
you can keep it, the outline snaps to that location. Release the mouse
button. The tool stays at the new location. Other tools in the desktop
resize to accommodate the new configuration. The inside edges of
the desktop container and tools all act as if they are “sticky,” so you
can position a tool along any inside edge. See more details online.

Moving tools out of the
desktop (undocking)

Move a tool out of the desktop to make it larger or easier to
work with. To move a tool outside the MATLAB desktop (called
undocking), select the tool to make it active, and then select
Desktop > Undock > Toolname. The tool appears outside the
MATLAB desktop and an entry for it appears in the Windows task
bar or the equivalent for your platform. Tools within the desktop
resize accordingly. Another way to undock is by using the Undock
button in the tool’s title bar. See more details online.

Moving tools into the
desktop (docking)

To move a tool that is outside the MATLAB desktop into the
desktop, click the Dock button in the tool’s menu bar, or select
Desktop > Dock Toolname. See more details online.

2-7

2 Desktop

Tool Action Steps to Perform

Grouping tools together You can group tools so that they overlay each other in the MATLAB
desktop. To group tools together, drag the title bar of one tool in the
desktop on top of the title bar of another tool in the desktop. To make
a tool active, click its name in the title bar. See more details online.

Maximizing tools in the
desktop

To resize the active tool so it occupies the entire MATLAB
desktop, double-click the tool’s title bar; to return to the layout
prior to maximizing, double-click the title bar of the maximized
tool. Alternatively, use the menus: select Desktop > Maximize
Toolname. To return to the layout prior to maximizing, select
Desktop > Restore Toolname. You can also use the Maximize
button and Restore button in the tool’s title bar. This feature is
not supported on Macintosh platforms.

Minimizing tools in the
desktop

You can minimize any tool in the desktop, which creates a button
along an edge of the desktop that represents the tool. Select
Desktop > Minimize Toolname. You can also use the Minimize
button in the tool’s title bar. The tool’s button appears along the
edge indicated by the minimize arrow in the menu item or on the
button. To move the tool’s button to a different edge, right-click the
button, and from the context menu, select an edge. To view or use
a minimized tool, hover over or click the button—this temporarily
opens the tool in the desktop. Once you are finished using the tool,
click the button or another tool and the tool is again shown only as
a button along the edge. To return the tool to the desktop layout
position it occupied before being minimized, double-click the button.
Alternatively, restore it by right-clicking the button and selecting
Restore > Toolname, or use the Restore button in the tool’s title
bar. This feature is not supported on Macintosh platforms.

Opening and Arranging Documents
Open a document, such as an M-file or a variable, and it opens in its tool,
for example, the Editor/Debugger or Array Editor. The following example
illustration shows a desktop arrangement that includes Editor/Debugger
and Array Editor documents. See instructions in “Summary of Actions for
Arranging Documents” on page 2-11.

2-8

Arranging the Desktop

Example of Documents in the Desktop
Some common actions for working with documents in the desktop are

• Use the document bar to go to open documents.

• Use the Window menu or equivalent toolbar buttons to position documents.

• Close or undock a tool, including all documents in the tool.

• Undock a document from its tool.

• Use the document Close box with the Ctrl key to close the document
without saving it and without displaying the unsaved document dialog box.

See also “Examples of Desktop Arrangements” on page 2-15.

2-9

2 Desktop

+��
��������
%����� ����
����
����������

(
	�)�����
	���	�
��%����
 ���������
���
�

,��	�	��������������	��	�����
���
���	� ����������	����

(
����������)������	"�����
�-#�	��.'�%� �/�
	��
��	� ��

����������������

+����)���������
�������
�����
���
���������

2-10

Arranging the Desktop

Summary of Actions for Arranging Documents
This table summarizes actions for arranging documents in their tool. For
further information, click the click the “see more details online” links.

Document Action Overview

Opening
documents

When you open a MATLAB document, it opens in the associated tool. If
the tool is not already open, it opens when you open the document and
appears in the position it occupied when last used. Figures open undocked,
regardless of the last position occupied.

How to open a document depends on the document type:

• M-file: Select File > Open and select the M-file. It opens in the
Editor/Debugger.

• Workspace variable: In the Workspace browser, double-click the
variable. It opens in the Array Editor.

• HTML file: In the Current Directory browser, double-click the file. It
opens in the MATLAB Web Browser.

• Figure: Type plot or use another graphics function. The plot appears
in a figure window.

There are many additional ways to open documents. See more details
online.

2-11

2 Desktop

Document Action Overview

Navigating among
documents — the
document bar

When more than one document is open within a tool, each document is
either maximized (the default), or arranged so that multiple documents
are visible at once. Click a document that is in view to make it the active
document. See also “Keyboard Shortcuts” on page 2-40.

Use the document bar to go to a document that is open but not in view.
The names of all open documents appear in the document bar. Select a
document name in the document bar to make that document active. To
show the document bar if it is not open, select Desktop > Document
Bar > Bar Position and select the position for it, for example, Right. See
more details online.

Entries for undocked documents appear in the Windows task bar, or the
equivalent for your platform. Click the task bar entry for a document to
make that document active.

Positioning,
moving, and
resizing documents

To position open documents within their tool, select an arrangement from
the Window menu when the tool is active, or by using the equivalent
toolbar button for Maximize, Float, Left/Right Tile, Top/Bottom
Tile, and Tile. You can also define a specific grid arrangement using
Window > Tile.... On the Macintosh platform, the tile option might not be
available in the Window menu so use the Tile button instead.

With the tile arrangements, you refine the document position by moving
the pointer over the handle () on the separator bar. A Close box then
appears. When you click the Close box between two open documents, both
documents stay open, but one moves on top of the other. When you click
the Close box between a document and an empty tile, the empty tile closes.

To move a document in a tiled arrangement, drag the title bar of a
document to another tile. To resize tiled documents, drag the separator
bar between the documents. See also the Editor/Debugger’s “Split Screen
Display” on page 6-38, which allows you to view two different parts of
the same file simultaneously.

To move or resize maximized documents, you move or resize their tool.

See more details online.

2-12

Arranging the Desktop

Document Action Overview

Closing documents To close a document, click the Close box in the document’s title bar.
After closing all the documents in a tool, the tool remains open with no
documents in it. If you select the Close box for the tool, all documents
in that tool close.

In the Editor/Debugger, when you close a file that has unsaved changes, a
prompt appears asking if you want to save the document. To close a file
without saving changes and without seeing the save prompt, use Ctrl
when you click the document’s Close box. See more details online.

Moving documents
and tools out
of the desktop
(undocking)

To undock all documents in a tool from the desktop, click the Undock
button in the tool’s title bar. The tool and its documents move outside of
the desktop. See more details online.

To undock a document from its tool, click the Undock button for the
document. The Undock button is either in the document’s title bar, menu
bar, or toolbar, depending on the document type and whether or not the
document is within the desktop or is in its tool outside of the desktop.

Undocked documents have entries in the Windows task bar (or the
equivalent for your platform).

Docking documents
and tools

When you dock a document, it moves to the position in the tool that it
occupied before you undocked the document. To dock a document, click the
Dock button in the document’s menu bar. See more details online.

Grouping
documents in a
tool outside the
desktop

To group all of the documents for a tool together outside of the desktop,
undock the tool from the desktop, not just the documents.

If you have already undocked all of the documents and closed the empty
tool that had contained them, select Desktop > Dock All in Editor, for
example. This moves all the documents into the tool in the desktop. Then
undock the tool.

Saving Desktop Layouts
When you end a session, MATLAB saves the desktop layout. The next time
you start MATLAB, the desktop is restored to the way you last had it.

2-13

2 Desktop

To use a predefined layout, select Desktop > Desktop Layout, and choose a
configuration. See more details in the online documentation.

To save your own layouts for later reuse, select Desktop > Save Layout
and provide a name. To reuse a saved layout, select the name from
Desktop > Desktop Layout. See more details in the online documentation.

2-14

Examples of Desktop Arrangements

Examples of Desktop Arrangements

In this section...

“About These Examples” on page 2-16

“Tool Outside of Desktop and Other Tools Grouped Inside Desktop Example”
on page 2-16

“Maximized Tool in Desktop Example” on page 2-18

“Minimized Tools in Desktop Example” on page 2-20

“Tiled Documents in Desktop Example” on page 2-24

“No Empty Document Tiles Example” on page 2-26

“Maximized Documents Outside of the Desktop Example” on page 2-27

“Floating (Cascaded) Figures in Desktop Example” on page 2-28

“Undocked Tools and Documents Example” on page 2-30

2-15

2 Desktop

About These Examples
Scan the illustrations in the following examples for a desktop arrangement
similar to what you want, and then follow the brief instructions to achieve the
arrangement. There are many different ways to accomplish the result; these
instructions present just one way. The instructions might not apply exactly,
depending on how your desktop looks before you start.

Tool Outside of Desktop and Other Tools Grouped
Inside Desktop Example
This example shows two ways you can increase the size of a tool. One way
is to move a tool outside of the desktop to increase its size. Here, the Help
browser was moved outside of the desktop and made larger. To move a tool
outside of the desktop, click the Undock button in the tool’s title bar when
the tool is in the desktop.

Another way to increase the size of a tool is by grouping tools together inside
the desktop, and then accessing a tool via the tool’s name in the title bar. Here
the Command Window, Command History, Workspace browser, and Current
Directory browser are grouped together. To achieve this, drag the title bar of
one tool on top of the title bar of the tool(s) you want to group it with.

2-16

Examples of Desktop Arrangements

0�
��%�����	�������)����������)���������!	��
��
� ���������!	��	� �����������	���������������

�������
��	���������)������� �����
�� ��������!	�	� ���
� ��������
��)	� ��	����� 	!������
�
(
	�)������
1�������	�����
�	�
��%�������)����������
����	!��

2-17

2 Desktop

Maximized Tool in Desktop Example
This example shows a way you can temporarily increase the size of a tool so
that it occupies the entire area of the desktop. In this example, the Command
Window in the default desktop layout is temporarily maximized by clicking
the Maximize button in the tool’s title bar.

'����
�����)����
������
���	�	"�������
����������
�������(�������2	����
���	�������	���������

�����������)��������

In this example, the maximized Command Window is being returned to its
size and position in the default desktop layout by clicking the Restore button

in the title bar.

2-18

Examples of Desktop Arrangements

���	�	"��������(�������2	��������������	���������

����)��������
3����	� �����(�������2	�����������	�����	����	 	��
��	"�����

����	���	���������)����

2-19

2 Desktop

Minimized Tools in Desktop Example
Minimize a tool in the desktop to give the remaining desktop tools more space
in the desktop. Minimizing is available on Windows and UNIX platforms. In
this example, the Command History in the default layout is being minimized
to the left edge of the desktop.

�	�	�	"���
���
����
�����
������
(������
0	����
�	�����

In this illustration, the Command History has been minimized and appears
as a button along the left edge.

2-20

Examples of Desktop Arrangements

2�����	�	�	"���������
��������������(�������2	�����	����	�������
��
	������������%����%����������������)����%����

This illustration shows the minimized Command History being temporarily
opened, as a result of clicking or hovering over the button.

2-21

2 Desktop

0�!���!�����
	�)�����%������������	�	�	"������
����������	
��!	����������������
�
�������
�	��������	
���	��
��������	
�������
��������������
�
������������
�%��������	�	�	"���� �	��

After using the Command History and clicking the button, or moving on to
another tool, the Command History again becomes minimized as a button
along the left edge.

This illustration shows the Command History being returned to the position
and size it occupied in the desktop prior to being minimized by clicking the
Restore button .

2-22

Examples of Desktop Arrangements

4������%������������	�	�	"������
��	 ��5�
	�)�����������������������������
����	
����
�
�������
�������������	"���������	�	���	������	���������)����%�����	�������	�	�	"���

2-23

2 Desktop

Tiled Documents in Desktop Example
When you open a document (for example, an M-file), it also opens the tool (for
example, the Editor/Debugger) if the tool is not already opened. Subsequent
documents of the same type open in the tool and you can then arrange the
documents within the tool. You can move a document on top of another
document, so that the one on top hides the one(s) beneath it, or you can show
multiple documents at once. This example shows two M-files side-by-side, as
a result of selecting Window > Left/Right Tile (or the toolbar button).

When tools and documents are docked, you might want to save space by
hiding toolbars and document bars. In this illustration, the desktop shortcuts
toolbar is hidden. Select Desktop > Toolbar name to hide (or show) a
toolbar. To see or move the document bar, select Desktop > Document
Bar > Bar Position, and choose its location, for example, Top.

2-24

Examples of Desktop Arrangements

����������������
%��	���	�����
�������������%��	������������
�� ���������#�	��.'�%� ��

$�
������%��������������
	��
������ ����������������
������������.3	 ����	
��

2-25

2 Desktop

No Empty Document Tiles Example
To see more than two documents at once, select the Tile button and move the
pointer across the gird that appears to select the number of tiles you want.
The following “Before” illustration has four tiles, but only three documents
are open. (The empty tile is gray.) You can move a document to any empty tile
by dragging its title bar to the new location. To close an empty tile, position
the pointer over the handle on the separator bar. It becomes a Close box, as
shown here, which you click to close the empty tile. After clicking the Close
box, the empty tile closes and the neighboring document expands as shown in
the following “After” illustration. Similarly, click the Close box between two
tiles containing documents, and one document becomes hidden. Note that
preferences to show line numbers and M-Lint indicators have been cleared to
provide more horizontal space.

���

�	
����������
�������������
�	��������	
��%������

(
���������������	
�
��	� ���������
�
���������������%��

���
�

����������
�
������	
���

2-26

Examples of Desktop Arrangements

Maximized Documents Outside of the Desktop
Example
This example illustrates a way to provide a large area for multiple documents,
in this case, M-files maximized in the undocked Editor/Debugger.

Some common actions for working with documents outside of the desktop are

• Group all Editor/Debugger documents together — select Desktop > Dock
All in Editor from any Editor/Debugger document.

• Move all Editor/Debugger documents outside of the desktop — select
Desktop > Undock Editor when the Editor/Debugger is the active
window.

• Make a document occupy the full area in the Editor/Debugger —
click the Maximize button in the Editor/Debugger toolbar, or select
Window > Maximize.

• Display the cell toolbar — select Desktop > Cell Toolbar. This menu item
is available only when the current document is an M-file.

2-27

2 Desktop

• Access any document in the Editor/Debugger using the document bar.
To show the document bar on the left side of the Editor/Debugger,
select Desktop > Bar Position > Document Bar > Left from the
Editor/Debugger.

Floating (Cascaded) Figures in Desktop Example
This example illustrates multiple figures in the desktop. By default, figures
open outside the desktop. Click the Dock button in each figure’s menu bar to
move the figures into the desktop.

You can float (also called cascade) the figures by selecting Window > Float, or
clicking the Float button . To get even more screen area for the figures, hide
the document bar as shown in this example — select Desktop > Document
Bar > Bar Position > Hide.

2-28

Examples of Desktop Arrangements

'��)��	 ����	���������)�����������������
�������	��������� ��������	��	�����	 ���� ����
�������������%��	���	�����

2-29

2 Desktop

Undocked Tools and Documents Example
You can use tools and documents outside of the desktop. One way to
achieve this is to first undock the tool from the desktop by selecting
Desktop > Undock Toolname. Then undock documents from the undocked
tool by selecting Desktop > Undock Documentname from the tool. If you
undock all documents from a tool, an “empty” tool window remains.

In this example, one of the Editor/Debugger documents, collatz.m,
includes the name of the tool with it; the other Editor/Debugger document,
lengthofline.m, does not. Contrast this with the Array Editor documents,
where neither document window includes the name of the tool. This is
because the Array Editor was undocked from the desktop, the variables
were undocked from the Array Editor, and the “empty” Array Editor window
was closed. The tool’s undocked documents remain open. If you closed the
Editor/Debugger, the lengthofline.m document would remain open. To close
all undocked documents and their tools at once, select Window > Close All
Documents from an undocked document window.

2-30

Examples of Desktop Arrangements

2-31

2 Desktop

Shortcuts for MATLAB — Easily Run a Group of Statements

In this section...

“What Is a Shortcut?” on page 2-32

“Examples of Useful Shortcuts” on page 2-32

“Creating Shortcuts” on page 2-33

“Running Shortcuts” on page 2-35

“Shortcuts Toolbar” on page 2-35

“Organizing and Editing Shortcuts” on page 2-38

What Is a Shortcut?
A MATLAB shortcut is an easy way to run a group of MATLAB statements
that you use regularly. First you create a shortcut that contains all the
statements. Then you select and run the shortcut to execute all the statements
it contains. Create, run, and organize shortcuts from the Start > Shortcuts
menu or the desktop Shortcuts toolbar.

Differences Between Shortcuts and M-Files
A shortcut is like an M-file script, but unlike an M-file, a shortcut does not
have to be on the MATLAB search path or in the current directory when you
run it. In addition, you can run the shortcut by selecting it from the Start
button or desktop Shortcuts toolbar, which are readily accessible.

Although shortcuts run MATLAB statements, they are not M-files and are
not stored as M-files.

Examples of Useful Shortcuts
These are some examples of useful types of shortcuts:

• If you frequently run the same group of functions, consider creating a
shortcut for them. An example of this is setting up your environment
when you start working if you do not use a startup file, or if there are
statements you do not want to include in the startup file. Some users

2-32

Shortcuts for MATLAB — Easily Run a Group of Statements

create a shortcut for even a single function they use frequently, such as
clc to clear the Command Window.

• Create a shortcut to set the same properties for figures you create, such as
adding a legend and setting the background color.

• Create a shortcut for a long statement, such as changing the current
directory (cd) when the pathnames are long.

• Create a shortcut for a statement you do not easily remember but need to
use.

Creating Shortcuts
This is an example of a shortcut you might create for a project you work on,
the Sea Temperature project. When you work on that project, you might want
to set up your environment in a certain way by running a series of statements.
You create a shortcut called sea_temp_env, which contains the statements.
Then when you work on the project, you run the shortcut to execute all of the
statements with a single click. The statements are

more on
format long e
cd d:/mymfiles/sea_temp_project
clear
workspace
filebrowser
clc

To create a shortcut, perform the following steps:

1 From the Start button, select Shortcuts > New Shortcut.

The Shortcut Editor dialog box appears.

2 Create the shortcut by completing the dialog box.

a Provide a shortcut name in the Label field, for example,
sea_temp_environment.

b Put the MATLAB statements in the Callback field as shown in the
following illustration. Either type them in, or copy and paste or drag
them from a desktop tool. Edit the statements as needed. The field uses

2-33

2 Desktop

the Editor/Debugger preferences for key bindings, colors, and fonts.
Note that if you copy the statements from the Command Window, the
prompt appears in the shortcut, but MATLAB removes the prompt when
you save the shortcut.

c Assign a category, which is like a directory for organizing shortcuts.
Specify sea_temp_project. To add the shortcut to the shortcuts toolbar,
select the Toolbar Shortcuts category.

d Use the default shortcuts icon , or select your own.

e Click Save. MATLAB automatically removes any Command Window
prompts (>>) in the Callback field upon saving the shortcuts.

3 MATLAB adds the shortcut to the Shortcuts entry in the Start button,
and to the Shortcuts toolbar, if you selected that Category.

After creating a shortcut, run it by selecting it from its category in the
Start button. You can also run it from the Shortcuts toolbar if you selected
the Toolbar Shortcuts category.

MATLAB maintains shortcut information in the file shortcuts.xml. Type
prefdir, and MATLAB displays the location of the file. Most likely, you
will not need to access this file, as MATLAB updates the file automatically.

2-34

Shortcuts for MATLAB — Easily Run a Group of Statements

For more information on the options in the Shortcut Editor dialog box, click
the Help button.

Additional Ways to Create Shortcuts
You can also use these methods to create shortcuts:

• Add shortcuts to and run them from the desktop Shortcuts toolbar. See
“Shortcuts Toolbar” on page 2-35.

• From the Command History window, create a shortcut by selecting
statements, right-clicking, and selecting Create Shortcut from the context
menu. By default, shortcuts created from the Command History window
are assigned to the Toolbar Shortcuts category, meaning they will appear
on the Shortcuts toolbar.

• From the Help browser, select Favorites > Add to Favorites, complete
the Favorites Editor dialog box, and the shortcut appears in the shortcuts
Help Browser Favorites category. You can also access Help Browser
Favorites shortcuts from the Help browser Favorites menu.

• Drag statements from a desktop tool, such as the Command History, onto
the Start button.

Running Shortcuts
To run a shortcut, select the shortcut name, for example,
sea_temp_environment, from the Start > Shortcuts menu or from one of
its category submenus. All of the statements in the shortcut Callback field
execute. It is as if you ran those statements from the Command Window,
although they are not reflected in the Command History window.

If you added a shortcut to the Shortcuts toolbar, you can run it by clicking its
icon on the shortcuts toolbar.

Shortcuts Toolbar
The Shortcuts toolbar is an alternative to creating and running
shortcuts via the Start button. To show or hide the shortcuts toolbar, use
Desktop > Shortcuts Toolbar. To create and run shortcuts via the desktop
Shortcuts toolbar, perform these steps:

2-35

2 Desktop

1 Select statements from the Command History window, the Command
Window, or an M-file.

2 Drag the selection to the desktop Shortcuts toolbar. The following
illustration shows two statements being dragged from the Command
Window.

3 The Shortcut Editor dialog box appears. The Callback field contains the
selected statements, which you can edit as needed. If prompts (>>) from the
Command Window appear, note that MATLAB automatically removes them
when you save the shortcut. The Category field is Toolbar Shortcuts,
which you must retain in order for the shortcut to appear on the toolbar.

Provide the Label, select an Icon, and click Save.

The shortcut icon and label appear on the toolbar. If you have more
shortcuts on the toolbar than can be displayed at once, use the drop-down
list to access all of them. For more information, click the Help button in
the Shortcut Editor dialog box.

2-36

Shortcuts for MATLAB — Easily Run a Group of Statements

4 Click the icon on the Shortcuts toolbar to run the shortcut. You can also
run the shortcut from the Start button by selecting it in the Toolbar
Shortcuts category.

You can also add a shortcut to the desktop Shortcuts toolbar by right-clicking
the toolbar and selecting New Shortcut. Complete the resulting Shortcut
Editor dialog box. Assuming you maintain the Toolbar Shortcuts category,
the shortcut appears on the toolbar. To change the order of the shortcuts on
the toolbar, select Start > Shortcuts > Organize Shortcuts and move the
shortcuts within the Toolbar Shortcuts category.

How to Add and What’s New Shortcuts
The Shortcuts toolbar includes two shortcuts provided with MATLAB. The
How to Add shortcut provides help about shortcuts and adding them to the
Shortcuts toolbar. What’s New displays the Release Notes documentation.

To remove the How to Add or What’s New shortcut from the Shortcuts
toolbar, choose a different category. For instructions, see “Organizing and
Editing Shortcuts” on page 2-38.

If you do not want to keep these shortcuts, remove each one by right-clicking
its toolbar shortcut button and selecting Delete from the context menu. Click
OK in the confirmation dialog box to remove the shortcut.

Shortcut Labels on Toolbar
You can hide the shortcut labels on the toolbar. Right-click in the Shortcuts
toolbar. From the context menu, select Show Labels, which clears the check
mark next to the item. The shortcut icons appear on the toolbar without labels.

2-37

2 Desktop

When you move the mouse over a shortcut icon, its label appears as a tooltip.
To make labels display in the toolbar, right-click the toolbar and select Show
Labels, which adds a check mark next to the item and displays the labels.

Organizing and Editing Shortcuts
To create categories for shortcuts, and to move, edit, and delete shortcuts,
perform these steps:

1 Select Shortcuts > Organize Shortcuts from the Start button.
Alternatively, access it via the shortcuts toolbar context menu.

The Shortcuts Organizer dialog box appears. When a shortcut category is
selected in the dialog box, the Edit Shortcut button is replaced by the
Rename Category button.

2 Use the buttons in the dialog box to edit and organize shortcuts and
categories. You can also right-click an item and select an action from the
context menu.

2-38

Shortcuts for MATLAB — Easily Run a Group of Statements

Changes take effect immediately.

3 Click Close.

For more information about using the Shortcuts Organizer dialog box, click
the Help button.

2-39

2 Desktop

Keyboard Shortcuts

In this section...

“Keyboard Shortcuts (Accelerators or Hot Keys) and Mnemonics” on page
2-40

“Go To First Letter (Type Ahead) Feature in Desktop Tool Lists” on page
2-42

“Default Button and Active Button (Button with Focus)” on page 2-42

Keyboard Shortcuts (Accelerators or Hot Keys) and
Mnemonics
You can access many of the menu items using shortcut keys (sometimes called
accelerators or hot keys) for your platform. For example, use the Ctrl+X
shortcut to perform a cut on Windows platforms. Many of the menu items
show the shortcuts. Additional standard shortcuts for your platform usually
work but only one is listed with each menu item.

See additional shortcuts for the Command Window at “Keyboard Shortcuts
in the Command Window” on page 3-26, and for the Editor/Debugger at
“Keyboard Shortcuts in the Editor/Debugger” on page 6-59.

Instructions in the documentation specify shortcuts using the Windows
Ctrl+ key convention, but with Macintosh key bindings selected, you can
use the Command key instead. On the Macintosh, to make full use of all
keyboard shortcuts, you need to select the Full Access system preference
for Keyboard Shortcuts.

You can also use mnemonics to access menu items and buttons, such as Alt+F
to open the File menu. This is not supported on the Macintosh platform.
Mnemonics are listed with the menu item or button. For example, on the File
menu, the F in File is underlined, which indicates that Alt+F opens the
menu. In the Profiler, the R in the Run this code toolbar field is underlined,
indicating that Alt+R moves the cursor to this field.

Note that some versions of Windows do not automatically show the mnemonics
on the menu. For example, you might need to hold down the Alt key while the
tool is selected in order to see the mnemonics on the menus and buttons. In

2-40

Keyboard Shortcuts

Windows 2000, go to Display Control Panel, select Effects, and clear the
item Hide keyboard navigation indicators until I use the Alt key. See
your Windows documentation for details.

Following are some general shortcuts that are not listed on menu items.

Key Result

Enter The equivalent of double-clicking, Enter performs the default action
for a selection. For example, press Enter while a statement in the
Command History window is selected to run that statement in the
Command Window.

For buttons in tools and dialog boxes, Enter executes the default button
(the button with a border around it). If there is no default button, press
the space bar to execute the active button (the button with a dotted
outline inside it). See “Default Button and Active Button (Button with
Focus)” on page 2-42 for an illustration.

Esc (escape) Cancels the current action. For example, if you select the Edit menu,
the menu items display. Pressing Esc retracts the menu items. Pressing
Esc in a dialog box is the same as selecting the Cancel button.

Tab Advances to the next button or field in a tool or dialog box.

In the Command Window, completes a statement if the tab completion
preference is selected.

Space bar For buttons in tools and dialog boxes, activates the active button. See
“Default Button and Active Button (Button with Focus)” on page 2-42
for an illustration of selecting default and active buttons using keys.

+ or - or * on numeric
keypad

Use these keys on the numeric keypad to expand and collapse items in
tree views. The Help browser Help Navigator pane and the Command
History window use tree views. Use + to expand the selected item,
use - to collapse the selected item, and use * to recursively expand it,
meaning open all items contained in the selected item.

Alt+S Displays the Start button menu (except on Macintosh platforms).

Alt+Y Provides access to the current directory field in the toolbar (except on
Macintosh platforms).

Ctrl+Tab Moves to the next open tool in the desktop, or to the next open group of
tools tabbed together.

2-41

2 Desktop

Key Result

Ctrl+Shift+Tab Moves to the previous open tool or group of tabbed tools in the desktop.

Ctrl+Page Down Moves to the next tool within a group of tools tabbed together. In a
group of documents, moves to next document.

Ctrl+Page Up Moves to the previous tool within a group of tools tabbed together. In a
group of documents, moves to previous document.

Ctrl+F6 Moves to the next tool or document (only for Windows and Solaris
platforms).

Ctrl+Shift+F6 Moves to the previous tool or document (only for Windows and Solaris
platforms).

Alt+F4 Closes the desktop, thereby quitting MATLAB. Or outside the desktop,
closes the active window (except on Macintosh platforms).

For additional shortcuts available in the various desktop tools, see the
documentation for each tool. For example, see “Keyboard Shortcuts in
the Command Window” on page 3-26 and “Keyboard Shortcuts in the
Editor/Debugger” on page 6-59.

Go To First Letter (Type Ahead) Feature in Desktop
Tool Lists
In the Current Directory browser and Command History window, you can
type a letter to move directly to the next item in the list that starts with the
letter you typed. This is sometimes referred to as type ahead.

Default Button and Active Button (Button with Focus)
These illustrations demonstrate the default versus active button in a dialog
box.

2-42

Keyboard Shortcuts

2-43

2 Desktop

Other Desktop Features

In this section...

“Start Button for Accessing Tools” on page 2-44

“Menus and Context Menus” on page 2-46

“Toolbars” on page 2-47

“Status Bar” on page 2-49

“Sizing, Arranging, and Sorting Columns in Tools” on page 2-49

“Selecting Multiple Items” on page 2-50

“Cut, Copy, Paste, and Move” on page 2-51

“Macintosh Differences in the Desktop” on page 2-52

“Printing and Page Setup Options for Desktop Tools” on page 2-52

“Web Browser” on page 2-55

“Accessing The MathWorks on the Web” on page 2-56

Start Button for Accessing Tools
The MATLAB Start button provides easy access to tools, demos, and
documentation for all your MathWorks products. From it, you can also create
and run MATLAB shortcuts, which are groups of MATLAB statements.

Using the Start Button

1 Click the Start button to view a menu of product categories and desktop
tools installed on your system. As an alternative, press Alt+S to view the
Start button contents (except on Macintosh platforms). In the following
illustration, MATLAB is selected.

2-44

Other Desktop Features

2 From the menu and submenu items, select an item to open it. Use the icons
to quickly locate a type of product or tool — see the following description
of icons.

For example, select Start > MATLAB > GUIDE (GUI Builder) to open
that tool.

Icons in the Start Button. Icons help you quickly locate a particular type of
product or tool. This table describes the action performed when you select an
entry with one of these icons in the Start button.

Icon Description of Action When Opened

Documentation for that product opens in the Help browser.

Demos for the product are listed in the Help browser
Demos pane.

Selected tool opens.

2-45

2 Desktop

Icon Description of Action When Opened

Block library opens.

Document opens in your system Web browser.

Customizing the Start Button
You can add your own toolboxes to the Start button. Select Start > Desktop
Tools > View Source Files to open the Start Button Configuration Files
dialog box. For more information, click the Help button in the dialog box.

Menus and Context Menus

Merged Menus
When you use a tool in the desktop, its menu appears at the top of the
desktop. When you work in a different tool in the desktop, you still use the
menu at the top of the desktop, but the menu content changes to support that
tool. When you undock a tool from the desktop, access its menu at the top
of the undocked tool.

Context Menus
Many of the features in MATLAB desktop tools are available from context
menus, also known as pop-up or right-click menus. To access a context menu,
right-click a selection or an area, or press Ctrl+Shift+F10. The context menu
for the selection or tool appears, presenting the available actions. For example,
following is the context menu for a selection in the Command History window.

If a context menu does not appear, try right-clicking in a different part of
the tool. When a context menu item is gray, the item does not apply to the
current selection or area.

2-46

Other Desktop Features

Toolbars
The toolbar in the desktop provides easy access to frequently used operations.
Position the pointer over a button for a second or two and a tooltip appears
that describes the item.

2-47

2 Desktop

Some tools also have their own toolbars, which are located within the tool’s
own window. For example, the Current Directory browser has its own toolbar.
When you undock one of these tools, the undocked tool includes the toolbar.

To hide a toolbar, or to show it again after hiding it, use the appropriate
toolbar item in the Desktop menu. As an alternative, right-click a toolbar or
menu bar and select a toolbar from the context menu to hide or show it.

For figure windows, use the toolbar item in its View menu.

Current Directory Field
The current directory field in the desktop toolbar shows the MATLAB current
working directory. You can change the current directory using this field and
any of these methods:

• Type the new current directory directly in the field.

• Use the drop-down list to change to a previously used current directory. To
specify the number of entries maintained each session, use the History
preference you access via File > Preferences > Current Directory.

• Use the Browse for folder button ... to select a new current directory.

• Use the Go Up One Level button to move the current directory up one
level.

The same current directory field also appears in the Current Directory
browser when the Current Directory browser is undocked from the desktop.
Use the Current Directory browser to perform many additional file operations.
For more information, see “File Management Operations” on page 5-35.

2-48

Other Desktop Features

Status Bar
Along the bottom of the desktop is the status bar. It displays messages,
such as when MATLAB is busy executing statements or when the Profiler
is on. Some tools, such as the Editor/Debugger, display additional status
information, such as the current line number. Not all status information
appears on the status bar — many MATLAB functions and tools provide
status information that is not reported to the status bar.

You can construct your own functions to provide status information. See the
timer function, and search for other specific terms describing the status of
interest.

Sizing, Arranging, and Sorting Columns in Tools
Some desktop tools present information in columns, such as the Current
Directory browser.

To change the column width, drag the separator bar between two column
headings in a tool. When a column is too narrow to show all the information
in it, position the pointer over an item and the full value for that item displays
like a tooltip.

To rearrange the columns in a tool, drag the column header to a different
position. To sort the information by a particular column, click the column
header. For example, in the Current Directory browser, click the Last
Modified date to sort the items in date order. Some columns also allow you
to reverse the sort order by clicking the column header again. A small gray
arrow in the header indicates the current sort order — for example, an up
arrow in the Last Modified Date column header indicates an ascending sort
order, meaning the oldest files are at the top of the list.

2-49

2 Desktop

Selecting Multiple Items
In many desktop tools, you can select multiple items and then select an action
to perform on all the selected items. Select multiple items using the standard
practices for your platform.

For example, if your platform is Windows, do the following to select multiple
items:

1 Click the first item you want to select.

2 Hold the Ctrl key and then click the next item you want to select. Repeat
this step until you have selected all the items you want. To select contiguous
items, select the first item, hold the Shift key, and then select the last item.

Now you can perform an action on the selected items, such as delete.

To clear one of multiple selected items, use Ctrl+click. To clear all selected
items, click outside of the selection.

2-50

Other Desktop Features

Cut, Copy, Paste, and Move
You can cut and copy a selection from a desktop tool to the clipboard and then
paste it from the clipboard into another tool or application. Use the Edit
menu, toolbar, context menus, or standard keyboard shortcuts. For example,
you can copy a selection of statements from the Command History window
and paste them into some MATLAB desktop tools.

Use Paste to move items copied to the clipboard from other applications.
The Paste to Workspace item in the Edit menu opens the selection on the
clipboard in the Import Wizard. You can use this to copy data from another
application, such as Excel, into MATLAB. For details, see the “Using the
Import Wizard”.

When editing in the Command Window and Editor/Debugger, to move text to
a new location, select the text and drag it. To copy text, press Ctrl and drag
the selected text to the new location.

To undo the most recent cut, copy, or paste command, select Undo from the
Edit menu. Use Redo to reverse the Undo. For some tools, you can undo
multiple times in succession.

See also the clipboard function.

Drag and Drop
You can also move or copy a selection from one tool to another by dragging the
selection. For example, make a selection in the Command History window
and drag it to the Command Window, which pastes it there. Edit the lines
in the Command Window, if needed, and then press the Enter key to run
the lines from the Command Window.

Another example is to drag a filename from the Current Directory browser
to the Editor/Debugger to open that file in the Editor/Debugger. If you drag
editable text, for example, text in the Editor/Debugger, the text is cut rather
than copied. Use Ctrl and drag to copy rather than cut editable text.

On Windows platforms, you can drag items from external applications into
MATLAB. For example, dragging text from a Microsoft Word document into
the Editor/Debugger cuts and pastes it into the open file. Dragging an M-file
from Windows Explorer to the Command Window runs the file. Similarly, you

2-51

2 Desktop

can drag selections from desktop tools to other applications. For example, you
can drag text from the Editor/Debugger to Microsoft Word.

Macintosh Differences in the Desktop
MATLAB on the Macintosh platform sometimes uses Macintosh GUI
conventions, which might be different from what is stated in the MATLAB
documentation, but the intended action should be clear. For example, if
you select File > Save on the Macintosh, the Save dialog box that appears
presents the options Don’t Save and Save. On Windows and UNIX
platforms, the Save dialog box presents the options Yes, No, and Cancel.

The standard Macintosh mouse is a single-button device. Other platforms
use a mouse with more than one button. MATLAB takes advantage of
these buttons. The documentation does not usually present the equivalent
Macintosh instruction. When the documentation instruction is right-click,
use Ctrl+click on the Macintosh. When the documentation instruction is
middle-click, use Command+click on the Macintosh.

Printing and Page Setup Options for Desktop Tools
You can print from all desktop tools except the Current Directory browser, but
there are some differences in usage.

To print, select File > Print from the tool. A Print dialog box opens. The
Properties button in the Print dialog box is enabled for the Web and Help
browsers and the Profiler, but is not enabled for the other desktop tools.

To specify standard page setup options for your platform when you print
from the Command History, Workspace browser, and Array Editor, select
File > Page Setup. A standard page setup dialog box for your platform opens.

MATLAB provides special page setup options for printing from the Command
Window and Editor/Debugger. The setup options are essentially the same for
both tools, with minor variations. This section covers their use:

• “Specifying Page Setup Options” on page 2-53

• “Layout Options for Page Setup” on page 2-54

• “Header Options for Page Setup” on page 2-54

2-52

Other Desktop Features

• “Fonts Options for Page Setup” on page 2-54

Specifying Page Setup Options
To specify page setup options, perform these steps:

1 In the tool you want to print from, for example, the Command Window,
select File > Page Setup.

The Page Setup dialog box opens for that tool.

2 Click the Layout, Header, or Fonts tab in the dialog box and set those
options for that tool, as detailed in subsequent sections.

3 Click OK.

4 After specifying the options, select File > Print in the tool you want to
print from, for example, the Command Window.

The contents from the tool are printed, using the options you specified in
Page Setup.

2-53

2 Desktop

Layout Options for Page Setup
You can specify the following layout options. A preview area shows you the
effects of your selections:

• Print header — Print the header specified in the Header pane.

• Print line numbers — Print line numbers.

• Wrap lines — Wrap any lines that are longer than the printed page width.

• Syntax highlighting — For keywords and comments that are highlighted
in the Command Window, specify how they are to appear in print. Options
are black and white text (that is, no highlighting), colored text (for use with
a color printer), or styled text. For styled text, keywords appear in bold,
comments appear in italics, and all other text appears in the normal style.
Only keywords and comments you input in the Command Window are
highlighted; output is not highlighted.

Header Options for Page Setup
If you want to print a header, select the Layout tab and then select Print
header. Then select the Header tab and specify how the elements of the
header are to appear. A preview area shows you the effects of your selections:

• Page number — Format for the page number, for example # of n

• Border — Border style for the header, for example, Shaded box

• Layout — Layout style for the header. For example, Standard one line
includes the date, time, and page number all on one line

Fonts Options for Page Setup
Specify the font to be used for the printed contents:

1 From Choose font, select the element, either Body or Header, where Body
text is everything except the Header.

2 Select the font to use for that element. For example, select Use Command
Window font for Body text if you want the printed text to be the same as
the font that appears in the Command Window. This is the font specified in
File > Preferences > Fonts > Custom for the Command Window.

2-54

Other Desktop Features

3 Repeat for the other element. If you did not select Print header on
the Layout pane, you do not need to specify the Header font. As an
example, for Header text, select Use custom font and then specify the font
characteristics — type, style, and size. After you specify a custom font, the
Sample area shows how the font will look.

Web Browser
Some tools in MATLAB and related products display HTML documents in
the MATLAB Web Browser. For example, after using the Editor/Debugger’s
cell features to publish an M-file to HTML, you view the HTML file in the
MATLAB Web Browser. Because the MATLAB Web Browser is a desktop tool,
you can dock it and perform other desktop operations on it.

To display an HTML document in the Web Browser, double-click the document
name in the Current Directory browser or use the web function. The web
function supports arguments that display documents in your system browser,
for example, Netscape, or in the Help browser.

2-55

2 Desktop

The toolbar buttons and menu items in the Web Browser are similar to those
found in the Help browser display pane. For more information, see “Viewing
Documentation in the Help Browser” on page 4-26.

One feature of the Web Browser not found in the Help browser is the Location
field. In the Web Browser, type a URL in the field to display that Web page.

Like any Web browser, the MATLAB Web Browser might not support all of
the HTML or related features used in a particular Web site or HTML page.
For example, the MATLAB Web Browser does not support the display of
.bmp (bitmap) image files. Instead use .gif or .jpeg formats for image files
in HTML pages. As another example, it does not support HTML pages you
generate directly from Microsoft Word and PowerPoint.

Internet Connection and Fonts for Web Browser — Web
Preferences
To specify a proxy server to connect from the MATLAB Web Browser to the
Internet, use Web preferences. You might need to specify this preference if
you have a firewall, for example. If you have a firewall and do not specify the
proxy settings, links from the Web Browser to URLs will not work.

Select File > Preferences > Web. By default, the check box Use a proxy
server to connect to the Internet is not selected. This is for when you have
a direct connection to the Internet.

To specify a proxy server, select the check box and specify the Proxy host and
Proxy port. See your system administrator for the information you need to
specify the proxy settings. As an example, 172.16.10.8 illustrates the format
for host, and 3128 is the type of value you enter for port.

Fonts for Web Browser. To modify the font used in the Web Browser, select
File > Preferences > Fonts. The Web Browser uses the font settings you
specify for HTML Proportional Text tool. For more information about setting
fonts, click the Help button in the preference pane for Fonts.

Accessing The MathWorks on the Web
You can access popular MathWorks Web pages from the MATLAB desktop.
Select one of the following items from the Help > Web Resources menu.

2-56

Other Desktop Features

For most items, the selected Web page then opens in your default system
Web browser, for example, Netscape:

• The MathWorks Web Site — Home page of the MathWorks Web site
(http://www.mathworks.com).

• Products & Services — MathWorks Products and Services page
(http://www.mathworks.com/products/) with information about the full
family of products.

• Support — MathWorks Support page
(http://www.mathworks.com/support) where you can
look for solutions to problems you are having, or report new problems.

• MathWorks Account

- Login in or Create Account — Login page for MathWorks Account
(http://www.mathworks.com/accesslogin/). If you are registered,
your main account page displays. Otherwise, you are directed to a page
where you register online. Registration allows you to view your product
registration and license information and helps you stay up to date on
the latest MATLAB developments.

- Get Passcodes and Manage Licenses — If you have a MathWorks
Account, displays your Licenses page.

- Get Product Trials — If you have a MathWorks Account, provides
access to trial versions of products.

• MATLAB Central — MATLAB Central Web site
(http://www.mathworks.com/matlabcentral/) for the MATLAB user
community. It includes MATLAB contest entries and results, a MATLAB
screen saver, and these technical resources:

- MATLAB File Exchange — Code library of files contributed by
MathWorks customers and employees, available for free download and
use with MathWorks products.

- MATLAB Newsgroup Access — Provides access to the Usenet
newsgroup for MATLAB and related products, comp.soft-sys.matlab,
where you can post and answer questions, as well as view the archives.

• MATLAB Newsletters — Access to online versions of News and Notes and
MATLAB Digest. News and Notes is published twice a year and contains
feature articles, technical notes, and product information for MATLAB

2-57

http://www.mathworks.com
http://www.mathworks.com/products/
http://www.mathworks.com/support
http://www.mathworks.com/accesslogin/
http://www.mathworks.com/matlabcentral/

2 Desktop

users. MATLAB Digest, an electronic bulletin consisting of technical notes,
solutions, and timely announcements to the user community, is issued more
frequently. See http://www.mathworks.com/company/newsletters.

Check for Updates
This features allows you to easily determine if more recent versions of your
MathWorks products are available. Select Help > Check for Updates. A
dialog box appears, listing the version numbers of all MathWorks products
installed on your system. Click Check for Updates in the dialog box, which
accesses the MathWorks Web site and reports back for each product if a newer
version is available or if your version is the latest.

Terms of Use and Patents
Access the terms of use and patent information for MathWorks products.

2-58

http://www.mathworks.com/company/newsletters

Preferences

Preferences

In this section...

“Setting Preferences” on page 2-59

“Summary of Preferences” on page 2-60

“Preferences File — matlab.prf” on page 2-61

Setting Preferences
Use preferences to specify options for MATLAB tools, as follows:

1 Select File > Preferences.

2 In the left pane of the Preferences dialog box, preferences appear for
MATLAB tools as well as for any other MathWorks products installed on
your system.

Choose a tool and click the + to display more preferences for that tool.
From the expanded list, select the entry you want. The right pane shows
the preferences for that item.

3 Change settings. Click Apply or OK to set the preferences. Preferences
take effect immediately. They remain persistent across MATLAB sessions.

Note that some tools allow you to control these settings from within the tool
without setting a preference. Use that method if you only want the change to
apply to the current session.

Function Alternative
Open the Preferences dialog box using the preferences function.

2-59

2 Desktop

Summary of Preferences

Preference What You Can Specify

General Preferences Toolbox path caching, figure window printing, delete function
behavior, MAT-file save formats, confirmation dialogs, source
control, and multithreaded computation.

Keyboard Key bindings, tab completion, and delimiter matching for the
Command Window and the Editor/Debugger.

Fonts Font type, style, and size for desktop tools. Customize for any tool.

Colors Colors for text, background, syntax highlighting, and hyperlinks
in desktop tools.

M-Lint Show or hide M-Lint messages in the Editor/Debugger M-Lint
automatic code analyzer and in the M-Lint Code Check Report.

Command Window Numeric format and display, accessibility, and tab size.

Command History Display, filtering, and saving.

Editor/Debugger Editor type, startup options, display, tab size and indenting,
language, including M-Lint messages, publishing, and autosave.

Help Product filter and synchronization.

Web Internet proxy server settings.

Current Directory Number of entries in history and display options.

Array Editor Numeric format, use of Enter key, and decimal separator.

Workspace Statistical calculation options.

GUIDE Display options for GUI-building tool.

Time Series Tools Property Editor dialog and x-axes warning dialog.

Figure Copy Template Application, text, line, uicontrols, axis, format, background color,
and size.

Other products Preferences for other installed MathWorks products.

2-60

Preferences

Preferences File — matlab.prf
Preferences are stored in a preferences file, matlab.prf. Type prefdir in the
Command Window to see the full pathname for the preferences directory that
contains matlab.prf. The preference directory also contains related files.

On Macintosh platforms, the directory might be in a hidden folder, for
example, myname/.matlab/R2007b. To access the directory, select Go > Go
to Folder in the Mac OS Finder. In the resulting dialog box, type the path
returned by prefdir and press Enter.

The matlab.prf file is loaded when MATLAB starts and is overwritten when
you close MATLAB.

The exact name of the preferences directory that MATLAB uses depends on
the release. When you install a new version of MATLAB, MATLAB tries to
use your existing preferences from the previous version, where possible. For
more information on the preference directory filename and the preference
migration process, see the reference page for prefdir.

2-61

2 Desktop

Fonts Preferences for Desktop Tools

In this section...

“Setting Desktop Fonts” on page 2-62

“Desktop Code Font and Desktop Text Font” on page 2-63

“Custom Fonts Preferences” on page 2-67

“Changing the Font — Example” on page 2-68

“Antialiasing for Desktop Fonts on Linux/UNIX” on page 2-69

“Making Fonts Available to MATLAB” on page 2-69

Setting Desktop Fonts
Use desktop font preferences to specify the font characteristics for MATLAB
desktop tools. The font characteristics are

• Name (also called family or type), for example, select SansSerif

• Style, for example, select bold

• Size in points, for example, type 11 points

Select File > Preferences > Fonts to set fonts for desktop tools. You can
specify the font to be used by all tools that primarily display code such as the
Command Window, and specify the font to be used by all other desktop tools.
Or you can separately specify the font for any desktop tool.

Select the font characteristics from the lists shown. For font size, not all
entries are shown. You can type in a size, including one not shown.

You can set some font options differently for printing — see “Printing and
Page Setup Options for Desktop Tools” on page 2-52.

For information about making additional fonts available to MATLAB, see
“Making Fonts Available to MATLAB” on page 2-69.

2-62

Fonts Preferences for Desktop Tools

Desktop Code Font and Desktop Text Font
You specify separate font characteristics for tools that primarily display
code (Desktop code font), such as the Command Window, and tools that
primarily display text (Desktop text font), such as the Current Directory

2-63

2 Desktop

browser. Many users prefer that code display in a monospace font to provide
better alignment, and prefer a more narrow font style for text information.
With the desktop code font preference, you set just one preference to apply
a monospace style to all tools that display code (except the Help and Web
Browsers). Similarly, you can set just one preference to apply a text font to
all desktop tools that display text.

The following illustrations show how the Editor/Debugger would look using a
monospace font and a proportional font. Note that a monospace font is useful
when you care about alignment, but a proportional font uses less space.

2-64

Fonts Preferences for Desktop Tools

Default Font Settings
Default settings are listed in the following table. Note that Lucida Console
approximates the fixedsys font available in earlier versions of MATLAB.

2-65

2 Desktop

Font Type
Default Characteristics and
Sample Tools Using Font Type by Default

Desktop code font Monospaced, Plain, 10 point • Command History

• Command Window

• Editor/Debugger (which also
applies to the Shortcuts Editor)

Desktop text font SansSerif, Plain, 10 point • Array Editor

• Current Directory browser
(which also applies to the Path
browser)

• Help Navigator

• HTML Proportional Text. This
is the font used for noncode text
in the Web browser (including,
for example, HTML reports
generated from cell publishing),
Profiler, and Help browser
display pane. While you can
select the font name, you
cannot change the font style
(for example, to bold or italic)
for HTML Proportional Text.
Changes to size affect noncode
and code text.

• Workspace browser

When you change a font characteristic for Desktop code font, the
characteristic takes effect for all tools that use the desktop code font. The
same is true when you change a font characteristic for Desktop text font.

After changing a characteristic, a sample in the dialog box shows how it will
look. Click Apply or OK to make the change take effect in the desktop tools.

See Also
“Preferences” on page 2-59

2-66

Fonts Preferences for Desktop Tools

Custom Fonts Preferences
If you do not want to use the current settings for “Desktop Code Font and
Desktop Text Font” on page 2-63, you can specify that a tool use the code font,
the text font, or a different font. Select File > Preferences > Fonts. Click +
and select Custom. The Fonts Custom Preferences pane appears.

Select a tool from the Desktop tools list. The type of font it uses, code or
text, appears under Font to Use. In the illustration shown, the Command
Window uses the Desktop code font, which is defined in the Fonts pane
as described in the previous section.

2-67

2 Desktop

To change the font characteristics the selected tool uses, select a different radio
button. For Custom, you then specify the font characteristics for that tool.

Changing the Font — Example
This example changes the default settings (see “Default Font Settings” on
page 2-65) for the desktop code font, changes the Command History font
preference so that it uses the desktop text font instead of the code font, and
specifies a custom font for the Current Directory browser:

1 Change the characteristics for the desktop code font. On the Fonts pane,
set the Desktop code font to Times New Roman, Plain, 14 point. Use
the default for the Desktop text font, SansSerif, Plain, 10 point. Click
Apply.

2 Make the Command History window use the desktop text font. Select
Fonts, click +, select Custom, and then select Command History from
Desktop tools. Select the Desktop text radio button.

3 Apply a custom font to the Current Directory browser. Select Current
Directory from Desktop tools. Select the Custom radio button. Select
Arial Narrow and Plain, and type 11 in the size field. Click OK.

The following table details the results of the changes.

Tool Font Type Font Characteristics

Command Window Desktop code Times New Roman, Plain, 14
point

Command History Desktop text SansSerif, Plain, 10 point

Editor/Debugger Desktop code Times New Roman, Plain, 14
point

Help Navigator Desktop text SansSerif, Plain, 10 point

HTML Proportional
Text

Desktop text SansSerif, Plain, 10 point

Current Directory Custom Arial Narrow, Plain, 11 point

2-68

Fonts Preferences for Desktop Tools

Tool Font Type Font Characteristics

Workspace Desktop text SansSerif, Plain, 10 point

Array Editor Desktop text SansSerif, Plain, 10 point

See Also
For help about how MATLAB stores preferences and help for other
preferences, see “Preferences” on page 2-59.

Antialiasing for Desktop Fonts on Linux/UNIX
To give the desktop a smoother appearance in Linux/UNIX, select the
antialiasing preference on the Preference > Fonts pane. The preference
apply to all fonts.

Note The antialiasing option is not necessary on Windows or Mac, because
MATLAB follows the operating system’s font settings on these platforms.

Making Fonts Available to MATLAB
On Windows platforms, desktop components (such as the Command Window
and Workspace browser), figure windows, and uicontrols support only
TrueType and OpenType fonts. Some graphics objects can render bitmapped
fonts as well, such as xlabel, ylabel, title, and text.

To make a new compatible font available to MATLAB, install the font by
selecting Start > Control Panel > Fonts in the Windows desktop, and then
selecting File > Install New Font. Restart MATLAB so that it can use the
font.

2-69

2 Desktop

Colors Preferences for Desktop Tools

In this section...

“Setting Colors Used in Desktop Tools” on page 2-70

“Desktop Tool Colors” on page 2-72

“Syntax Highlighting Colors” on page 2-73

“Other Colors” on page 2-75

“See Also” on page 2-75

Setting Colors Used in Desktop Tools
Desktop color preferences specify the colors used in MATLAB
desktop tools and the colors that convey syntax highlighting. Select
File > Preferences > Colors to set color preferences for desktop tools. You
can set some color options differently for printing — see “Printing and Page
Setup Options for Desktop Tools” on page 2-52.

2-70

Colors Preferences for Desktop Tools

���������
�������������������%��) �����
�
���������
�����
�������������)�%��
�����������
������
�������������
������

$���	������
��
����
����
	�)�
	�����
(������
2	����
���
0�
�
%����
�����������

2-71

2 Desktop

Desktop Tool Colors
Use Desktop tool colors to change the color of the text and background in
the desktop tools. The colors also apply to the Import Wizard. The colors do
not apply to the HTML display pane nor to the Web Browser.

Select the check box Use system colors if you want the desktop to use the
same text and background colors that your platform (for example, Windows)
uses for other applications.

To specify different text and background colors, follow these steps:

1 Clear the Use system colors check box.

2 Click the arrow next to the Text color and choose a new color from the
palette shown.

When you choose a color, the Sample area in the dialog box updates to
show you how it will look.

3 Click the arrow next to the Background color and choose a new color.

If you use a gray background color, a selection in an inactive window will
not be visible.

4 Click Apply or OK to see the changes in the desktop tools.

Click Restore Default Colors to return to the default settings for desktop
tool colors, as well as for syntax highlighting colors.

The following illustration shows how the Current Directory browser looks
with blue-green text and a beige background. These colors are only discernible
in the online version of this documentation.

2-72

Colors Preferences for Desktop Tools

Gray Background Color
For some UNIX platforms, there is a gray background color for desktop tools,
such as the Editor/Debugger. This occurs when the preference for Desktop
tool colors is set to Use system colors, and the system’s window manager
uses gray as the background color default. To change the color, clear the check
box for Use system colors and then select a new Background color from
the palette.

Syntax Highlighting Colors
In the Command Window, Command History, Editor/Debugger, and Shortcuts
callback area, MATLAB conveys syntax information via different colors to
help you easily identify elements, such as if/else statements. This is known
as syntax highlighting.

In the Command Window, only the input you type is highlighted; output from
running MATLAB functions is not highlighted. In the Editor/Debugger, you
can specify syntax highlighting preferences for use with files in M, C/C++,
Java, and HTML. For details, click the Help button in the Preferences
dialog box for the Editor/Debugger to see Language Preferences in the online
documentation.

Use preferences to specify the syntax highlighting colors. When you choose a
color, the Sample area in the dialog box updates to show you how it will look.

2-73

2 Desktop

The default colors are listed here:

• Keywords — Flow control functions, such as for and if, as well as the
continuation ellipsis (...), are colored blue.

• Comments — All lines beginning with a %, designating the lines as
comments in MATLAB, are colored green. Similarly, the block comment
symbols, %{ and %}, as well as the code in between, appear in green. Text
following the continuation ellipsis on a line is also green because it is
a comment.

• Strings — Type a string and it is colored maroon. When you complete the
string with the closing quotation mark ('), it becomes purple. Note that for
functions you enter using command syntax instead of function syntax, the
arguments are highlighted as strings. This is to alert you that in command
notation, variables are passed as literal strings rather than as their values.
For more information, see “MATLAB Command Syntax” in the MATLAB
Programming documentation.

• Unterminated strings — A single quote without a matching single quote,
and whatever follows the quote, are colored maroon. This might alert you
to a possible error.

• System commands — Commands such as ! (shell escape) are colored gold.

• Errors — Error text that appears after you run code, including any
hyperlinks, is colored red.

Click Restore Default Colors to return to the default settings for syntax
highlighting colors and desktop tool colors.

2-74

Colors Preferences for Desktop Tools

Other Colors
Specify the color for Hyperlinks, which applies to links in the Command
Window and Help browser Index pane. If you use a dark background color for
those tools, be sure to use a light or other contrasting color for hyperlinks so
that you can see them.

With the M-Lint autofix highlight preference selected, code that M-Lint can
automatically correct is highlighted in the Editor/Debugger. Use the palette
to change the highlight color. For more information, see “M-Lint Automatic
Code Analyzer in the Editor/Debugger” on page 6-88.

See Also
For information about other preferences and how MATLAB stores preferences,
see “Preferences” on page 2-59.

2-75

2 Desktop

General Preferences for MATLAB

In this section...

“Setting General Preferences for MATLAB” on page 2-76

“Default Behavior of the Delete Function” on page 2-78

“MAT-Files Preferences” on page 2-79

“Confirmation Dialogs Preferences” on page 2-81

“Multithreading Preferences” on page 2-84

Setting General Preferences for MATLAB
Select File > Preferences > General from any desktop tool to access
General Preferences.

2-76

General Preferences for MATLAB

These preferences apply to all relevant tools in MATLAB.

• Toolbox path caching preference — see “Toolbox Path Caching in MATLAB”
on page 1-17

• Figure window printing — see “Printing and Exporting” in MATLAB
Graphics documentation

• “Default Behavior of the Delete Function” on page 2-78

2-77

2 Desktop

• “MAT-Files Preferences” on page 2-79

• “Confirmation Dialogs Preferences” on page 2-81

• Chapter 9, “Source Control Interface”

• “Multithreading Preferences” on page 2-84

Default Behavior of the Delete Function
Files you delete using the delete function are permanently removed by
default. There is no opportunity to retrieve them.

You can use this preference to instead move deleted files to the Recycle Bin
on Windows, to the Trash Can on Macintosh, or to a tmp directory on UNIX
platforms. Then, you can recover any accidentally deleted files from these
locations. Deleted files in these locations are not automatically removed; you
must remove them using operating system features, such as Empty Recycle
Bin on Windows. When you select this preference, delete might run slower.

Function Alternative
The MATLAB delete preference actually sets the state of the recycle function
upon startup and when you change the preference. You can override the
behavior of the preference by setting the recycle function state. For example,
regardless of the preference setting, when you run

recycle('off')
delete('thisfile.m')

MATLAB permanently removes thisfile.m from the current directory. Files
you subsequently remove using delete are also permanently removed, unless
you reapply the preference to recycle or run recycle('on'). Regardless of the
state of the recycle function when you end a session, the next time you start
MATLAB, the setting for the preference is honored. For more information, see
the recycle and delete reference pages.

Note that this preference and the recycle function do not apply to files
you delete using the Current Directory browser. For more information, see
“Cutting or Deleting Files and Directories” on page 5-45.

2-78

General Preferences for MATLAB

MAT-Files Preferences
The MAT-file save format sets the default version compatibility option
MATLAB uses when saving MAT-files. Use these options if you use multiple
versions of MATLAB or share MAT-files with others who run a different
version of MATLAB. The setting applies when you use the save function as
well as when you useSave menu items for MAT-files, such as File > Save
Workspace As from any desktop tool.

The MAT-file preference also applies to saving FIG-files, which include plots,
as well as GUIs you create with GUIDE.

Options are

• MATLAB Version 7.3 or later (save -v7.3)—Starting in MATLAB
Version 7.3, you can save data that is larger than 2 GB on platforms that

2-79

2 Desktop

allow it, which is the primary purpose of this option. Using this option is
equivalent to running save -v7.3. This format of the resulting MAT-file is
HDF5-based. You cannot load these MAT-files into any versions prior to
MATLAB Version 7.3; in those cases, use one of the other two options.

• MATLAB Version 7 or later (save -v7)—Starting in MATLAB Version 7,
MATLAB compresses the data when saving a MAT-file, thereby reducing
the storage space required. When you load the MAT-file, MATLAB
automatically uncompresses the data. In addition, MATLAB uses Unicode
character encoding for strings when you save a MAT-file, making the data
accessible to other MATLAB users, regardless of the default character
encoding scheme used by their systems. MAT-files saved with this option
work in all MATLAB 7 versions. Using this option is equivalent to running
save -v7.

• MATLAB Version 5 or later (save -v6)—Releases of MATLAB prior to
Version 7 did not save compressed MAT-files. They also did not use Unicode
character encoding, which sometimes prevented the exchange of MAT-files
among users, particularly when they used localized systems. Specify this
option to save MAT-files for use with versions prior to MATLAB Version 7.
Using this option is equivalent to running save -v6.

Like other preferences, the MAT-file save format preference gets its initial
value from the preference file for the previous installed version. For example,
if the setting in your MATLAB 7.4 preference is -v6, when you upgrade from
MATLAB Version 7.4 (R2007a) to MATLAB Version 7.5 (R2007b), the initial
value in Version 7.5 is -v6.

If you upgrade from a version prior to MATLAB Version 7.3, or if you do not
have a previous MATLAB version installed, the initial value is -v7.

Note For more information about MAT-file save formats, including
restrictions, see Version Compatibility Options and Remarks in the save
reference page.

Function Alternative
You can override the MAT-file save format preference by using the save
function with a specified version compatibility option. For occasional use, this

2-80

General Preferences for MATLAB

might be more convenient than changing the preference. For example, use
save with the-v6 option to ensure compatibility with MATLAB versions prior
to Version 7. For more information, see the save reference page.

Confirmation Dialogs Preferences
These preferences instruct MATLAB to display or not display specific
confirmation dialog boxes.

When the check box for a confirmation dialog is selected and you perform the
action it refers to, the confirmation dialog box appears. If you clear that check
box, the dialog box does not appear when you perform the action.

2-81

2 Desktop

When the confirmation dialog box does appear, it includes a Do not show
this prompt again check box. If you select the check box in the dialog box, it
automatically clears the check box for the confirmation preference.

For example, select the check box Warn before deleting Command History
items. Then select Edit > Delete Selection in the Command History,
MATLAB displays the following confirmation dialog box.

If you select the Do not show this prompt again check box and click OK,
the confirmation dialog box will not appear the next time you delete items
from the Command History window. In addition, the Warn before deleting
Command History items check box in the Confirmations Dialogs
preferences pane is cleared.

The following table summarizes the confirmation dialog boxes.

Confirmation Dialogs
Check Box Item

About the Confirmation
Dialog Box For More Information

Warn before deleting
Command History items

Appears when you delete entries
from the Command History
window.

“Deleting Entries from the
Command History Window” on
page 3-57

Warn before clearing the
Command Window

Appears when you clear the
Command Window content using
menu items. Does not appear
when you use the clc function.

“Clearing the Command
Window” on page 3-32

2-82

General Preferences for MATLAB

Confirmation Dialogs
Check Box Item

About the Confirmation
Dialog Box For More Information

Prompt when editing files
that do not exist

Appears when you type edit
filename, if filename does not
exist in the current directory or
on the MATLAB path.

“Function Alternative” on page
6-9

Prompt to exit debug
mode when saving file

Appears when you try to save
a modified file while in debug
mode.

“Ending Debugging” on page
6-119

Prompt to save on activate Appears when you have unsaved
changes to a figure and M-file,
and then activate the GUI, by
clicking the Run button, for
example.

“GUIDE Preferences” in the
GUIDE documentation

Prompt to save on export Appears when you have unsaved
changes to a figure and M-file,
and then select File > Export.

“GUIDE Preferences” in the
GUIDE documentation

Confirm before exiting
MATLAB

Appears when you quit MATLAB. Quitting MATLAB

Warn about missing
search databases

Appears if you have help
files in the Help browser for
non-MathWorks products and
the search database for those
files has not been updated for
the version of MATLAB you are
running.

Contact the provider of the help
files to obtain the correct version
of the search database. Without
the most current version, you
can use the help files in the Help
browser, but the Help browser
search will not include those files
in search results.

Confirm when deleting
variables

Appears when you delete
variables from the workspace
using menu items. Does not
appear with the clear function.

“Deleting Workspace Variables”
on page 5-8

2-83

2 Desktop

Multithreading Preferences
If you run MATLAB on a multiple-CPU system (multiprocessor or multicore),
you can use multithreaded computation, which can improve performance for
some operations. For more information, see .

2-84

Accessibility

Accessibility

In this section...

“Software Accessibility Support” on page 2-85

“Documentation Accessibility Support” on page 2-86

“Assistive Technologies” on page 2-87

“Installation Notes for Accessibility Support” on page 2-88

“Troubleshooting” on page 2-91

Software Accessibility Support
MathWorks products includes a number of modifications to make them more
accessible to all users. Software accessibility support for blind and visually
impaired users includes

• Support for screen readers and screen magnifiers, as described in “Assistive
Technologies” on page 2-87

• Command-line alternatives for most graphical user interface (GUI) options

• Keyboard access to GUI components

• A clear indication of the current cursor focus

• Information available to assistive technologies about user interface
elements, including the identity, operation, and state of the element

• Nonreliance on color coding as the sole means of conveying information
about working with a GUI

• Noninterference with user-selected contrast and color selections and other
individual display attributes, as well as noninterference for other operating
system-level accessibility features

• Consistent meaning for bitmapped images used in GUIs

• HTML documentation that is accessible to screen readers

Keyboard access to the user interface includes support for “sticky keys,” which
allow you to press key combinations (such as Ctrl+C) sequentially rather
than simultaneously.

2-85

2 Desktop

Except for scopes and real-time data acquisition, the MathWorks software
does not use flashing or blinking text, objects, or other elements having a
flash or blink frequency greater than 2 Hz and lower than 55 Hz.

The MathWorks believes that its products do not rely on auditory cues as the
sole means of conveying information about working with a GUI. However,
if you do encounter any issues in this regard, please report them to the
MathWorks Technical Support group.

http://www.mathworks.com/contact_TS.html

Documentation Accessibility Support
Documentation is available in HTML format for all MathWorks products in
this release.

Accessing the Documentation
To access the documentation with a screen reader, go to the documentation
area on the MathWorks Web site at

http://www.mathworks.com/access/helpdesk/help/helpdesk.html

Navigating the Documentation
Note that the first page that opens lists the products. To get the
documentation for a specific product, click the link for that product.

The table of contents is in a separate frame. You can use a document’s table of
contents to navigate through the sections of that document.

Because you will be using a general Web browser, you will not be able to use
the search feature included in the MATLAB Help browser. You will have
access to an index for the specific document you are using. The cross-product
index of the MATLAB Help browser is not available when you are using a
general Web browser.

Products
The documentation for all products is in HTML and can be read with a screen
reader. However, for most products, most equations and most graphics are
not accessible.

2-86

http://www.mathworks.com/contact_TS.html%0D
http://www.mathworks.com/access/helpdesk/help/helpdesk.html%0D

Accessibility

The following product documentation has been modified (as described below)
to enhance its accessibility for people using a screen reader such as JAWS:

• MATLAB (many sections, but not the function reference pages (however,
M-file help is accessible))

• Excel Link

• Optimization Toolbox

• Signal Processing Toolbox

• Statistics Toolbox

Documentation Modifications
Modifications to the documentation include the following:

• Describing illustrations in text (either directly or via links)

• Providing text to describe the content of tables (as necessary)

• Restructuring information in tables to be easily understood when a screen
reader is used

• Providing text links in addition to any image mapped links

Equations
Equations that are integrated in paragraphs are generally explained in words.
However, most complex equations that are represented as graphics are not
currently explained with alternative text.

Assistive Technologies

Note To take advantage of accessibility support features, you must use
MathWorks products on a Microsoft Windows platform.

Tested Assistive Technologies
The MathWorks has tested the following assistive technologies:

2-87

2 Desktop

• JAWS 5.0, 6.0, and 7.0 for Windows (screen reader) from Freedom Scientific

• Built-in accessibility aids from Microsoft, including the Magnifier and
“sticky keys”

Use of Other Assistive Technologies
Although The MathWorks has not tested other assistive technologies, such as
other screen readers or ZoomText Xtra (screen magnifier) from Ai Squared,
The MathWorks believes that most of the accessibility support built into its
products should work with most assistive technologies that are generally
similar to the ones tested.

If you use other assistive technologies than the ones tested, The MathWorks
is very interested in hearing from you about your experiences.

Installation Notes for Accessibility Support

Note If you are not using a screen reader such as JAWS, you can skip this
section.

This section describes the installation process for setting up your MATLAB
environment to work effectively with JAWS.

Use the regular MATLAB installation script to install the products for which
you are licensed. The installation script has been modified to improve its
accessibility for all users.

Note Java Access Bridge 2.0 is installed automatically when you install
MATLAB.

After you complete the product installation, there are some additional steps
you need to perform to ensure JAWS works effectively with MathWorks
products.

2-88

Accessibility

Setting Up JAWS
Make sure that JAWS is installed on your machine. If it is, there is probably a
shortcut to it on the Windows desktop.

Setting up JAWS involves these tasks:

1 Add the Access Bridge to your Windows path (for networked installations
only).

2 Create the accessibility.properties file.

These tasks are described in more detail below.

(For Networked Installations Only) Add Access Bridge to Your Path.
If you are running MATLAB in a networked installation environment (that is,
if the MATLAB Installer was not run on your machine), you need to take the
following steps to add Access Bridge to your Windows path.

Note This procedure assumes your Windows Start button is set to Classic
mode. To set Classic mode, from the Start button, select Settings. Next
select Task Bar and Menu. Then select the Start Menu tab and make sure
the Classic Start Menu option is enabled. Click OK and you are done.

1 From the Start button, select Settings, next select Control Panel. Scroll
down and click the System icon to display the System Properties dialog box.

2 In the System Properties dialog box, select the Advanced tab.

3 Click Environment Variables.

4 Under System variables, select the Path option.

5 Click the Edit button.

6 To the start of the Path environment variable, add the directory that
contains matlab.exe; for example:

C:\matlab\bin\win32;

2-89

2 Desktop

Be sure to include that semicolon between the end of this directory name
and the text that was already there.

7 Click OK three times.

8 If JAWS is already running, exit and restart.

Note JAWS must be started with these path changes in effect to work
properly with MATLAB.

Create the accessibility.properties File.

1 Create a text file that contains the following two lines:

screen_magnifier_present=true
assistive_technologies=com.sun.java.accessibility.AccessBridge

2 Use the filename accessibility.properties.

3 Move the accessibility.properties file into

matlabroot\sys\java\jre\win32\jre1.5.0_07\lib\

JAWS Pronunciation Dictionary. As a convenience, The MathWorks
provides a pronunciation dictionary for JAWS. This dictionary is in a file
called MATLAB.jdf.

During installation, the file is copied to your system under the MATLAB root
directory at sys\Jaws\matlab.jdf.

To use the dictionary, you must copy it to the \SETTINGS\ENU folder located
beneath the JAWS root installation directory.

You need to restart JAWS and MATLAB for the settings to take effect.

Testing
After you install JAWS and set up your environment as described above, you
should test to ensure JAWS is working properly:

2-90

Accessibility

1 Start JAWS.

2 Start MATLAB.

JAWS should start talking to you as you select menu items and work with the
MATLAB user interface in other ways.

Troubleshooting
This section identifies workarounds for some possible issues you may
encounter related to accessibility support in MathWorks products.

JAWS Does Not Detect When the MATLAB Installation Has
Started
When you select setup.exe, the Windows copying dialog box opens and you
are informed. After the files have been copied, the installation splash screen
opens, and then the installer starts. However, JAWS does not inform you that
the installer has begun: the installer either starts up below other windows
or applications or it is minimized. Since the installer is not an active item,
nothing is read.

Therefore, check the Windows applications bar for the installer. After you go
to the installer, you can use JAWS to perform the installation.

JAWS Stops Speaking
When many desktop components are open, JAWS with MATLAB sometimes
stops speaking.

If this happens, close most of the desktop components, exit MATLAB, and
restart.

Command Output Not Read
In the MATLAB Command Window, JAWS does not automatically read the
results of commands.

To read command output, first select File > Preferences > Command
Window, select the option Use arrow keys for navigation instead of
command history recall, and click OK. Then, in the Command Window,

2-91

2 Desktop

press the arrow keys to move to the command output and use JAWS
keystrokes to read the output.

With this preference set, you cannot use arrow keys to recall previous
commands. Instead use the following key bindings:

• Windows key bindings:

- Previous history: Ctrl+up arrow

- Next history: Ctrl+down arrow

• Emacs key bindings:

- Previous history: Ctrl+p

- Next history: Ctrl+n

To return to using the up and down arrow keys to recall previous commands,
clear the preference.

Some GUI Menus Are Treated as Check Boxes
For some GUIs (for example, the figure window), menus are treated by JAWS
as though they are check boxes, whether or not they actually are.

You can choose a menu item for such GUIs by using accelerator keys (e.g.,
Ctrl+N to select New Figure), if one is associated with a menu item. You can
also use mnemonics for menu navigation (e.g., Alt+E).

Note that check boxes that you encounter by tabbing through the elements of
a GUI are handled properly.

Text Ignored in Some GUIs
For some dialog boxes, JAWS reads the dialog box title and any buttons, but
ignores any text in the dialog box.

Also, in parts of some GUIs, such as some text-entry fields, JAWS ignores the
label of the field. However, JAWS will read any text in the text box.

2-92

3

Running Functions —
Command Window and
History

If you have an active Internet connection, you can watch the Working in the
Development Environment video demo and the Command History video demo
for an overview of the major functionality. The Command Window is where
you run (execute) MATLAB statements, while the Command History is a
log of the statements you have run.

The Command Window (p. 3-3) Access the Command Window.

Running Functions and Programs,
and Entering Variables (p. 3-7)

Enter statements at the prompt.
Run M-files, interrupt programs,
run external programs, and examine
errors. Evaluate and open selections.

Controlling Input (p. 3-15) Consider case sensitivity, enter long
statements, edit statements, and use
syntax highlighting and keyboard
shortcuts.

Controlling Output (p. 3-30) Suppress, page and format output,
clear and print contents, and save a
session.

Searching in the Command Window
(p. 3-34)

Use the Find dialog or incremental
search features to find content in the
Command Window.

3 Running Functions — Command Window and History

Preferences for the Command
Window (p. 3-40)

Specify options for text, display, tab
size, accessibility, and indenting
for the Command Window and the
Editor/Debugger.

Command History Window (p. 3-49) View session histories. Run
statements, copy entries, search, and
print the history. Set preferences.

Preferences for Command History
(p. 3-59)

Specify how often to automatically
save the history file and the types of
statements to exclude.

3-2

The Command Window

The Command Window

In this section...

“About the Command Window” on page 3-3

“Opening the Command Window” on page 3-3

“Command Window Prompt” on page 3-4

“Getting Started Message Bar in the Command Window” on page 3-5

About the Command Window
The Command Window is one of the main tools you use to enter data, run
MATLAB functions and other M-files, and display results. If you have an
active Internet connection, you can Working in the Development Environment
video demo for an overview of the major functionality.

Opening the Command Window
When the Command Window is not open, access it by selecting Command
Window from the Desktop menu. Alternatively, open the Command Window
with the commandwindow function.

If you prefer a simple command line interface without the other MATLAB
desktop tools, select Desktop > Desktop Layout > Command Window
Only. For more information, see “Arranging the Desktop” on page 2-6.

3-3

3 Running Functions — Command Window and History

Command Window Prompt
The Command Window prompt, >>, is where you enter statements. For
example, you can enter a MATLAB function with arguments, or assign
values to variables. The prompt indicates that MATLAB is ready to accept
input from you. When you see the prompt, you can enter a variable or run a
statement. This prompt is also known as the command line.

When MATLAB displays the K>> prompt in the Command Window, MATLAB
is in debug mode. Type dbquit to return to normal mode. For more
information, see Chapter 6, “Editing and Debugging M-Files”

MATLAB displays the EDU>> prompt for the MATLAB Student Version.

3-4

The Command Window

Getting Started Message Bar in the Command
Window
Just below the Command Window menu bar is a message bar that includes
links to a video, demos, and information on getting started with MATLAB.
If you want to remove the message bar in the Command Window, click the
Close box in the right corner of the bar.

If after having closed it, you want to display the information bar again, use
“Preferences for the Command Window” on page 3-40.

In addition to the message bar, there are numerous other ways to access
the documentation and demos, including using the Help menu in most
tools. Furthermore, if you place your cursor in a function name, you can
right-click and then choose Help on Selection from the context menu to
see documentation for that function. The reference page for that function
opens in a popup window, or if the reference page does not exist, the M-file
help appears. For more information help on selection, see “Getting Pop-Up

3-5

3 Running Functions — Command Window and History

Help for Functions” on page 4-49—for more general information on help, see
Chapter 4, “Help for Using MATLAB”.

3-6

Running Functions and Programs, and Entering Variables

Running Functions and Programs, and Entering Variables

In this section...

“Running Statements at the Command Line Prompt” on page 3-7

“Running External Programs” on page 3-9

“Evaluating or Opening a Selection” on page 3-12

“Displaying Hyperlinks in the Command Window” on page 3-13

Running Statements at the Command Line Prompt

Entering Variables and Running Functions
At the prompt, enter data and run functions. For example, to create A, a
3-by-3 matrix, type

A = [1 2 3; 4 5 6; 7 8 10]

When you press the Enter or Return key after typing the line, MATLAB
responds with

A =

1 2 3
4 5 6
7 8 10

To run a function, type the function including all arguments and press Enter
or Return. MATLAB displays the result. For example, type

magic(2)

and MATLAB returns

ans =
1 3
4 2

3-7

3 Running Functions — Command Window and History

Definition of a Statement. All of the information you type before pressing
Enter or Return is known as a statement. This can include:

• Variable assignments: For example, a = 3

• Commands: M-files provided with MATLAB or toolboxes that do not accept
input arguments, for example, clc, which clears the Command Window.

• Scripts: M-files (MATLAB program files) you write that do not take input
arguments or return output arguments, for example, myfile.m.

• Functions and their arguments: M-files that can accept input arguments
and return output arguments, for example, magic.

Some functions support a form that does not require an input argument,
thereby operating as commands. For convenience, the term function is used to
refer to both functions and commands.

When you enter program control statements, such as if ... end, the
prompt does not appear until you complete the set of functions. In the
following example, you press Enter at the end of each line, but the prompt
does not appear until you complete the set of statements with end.

Running M-Files
Run M-files, files that contain code in the MATLAB language, the same way
that you would run any other MATLAB function. Type the name of the M-file
in the Command Window and press Enter or Return. The M-file must be in

3-8

Running Functions and Programs, and Entering Variables

the MATLAB current directory or on the MATLAB search path — for details,
see “Search Path” on page 5-23. You can also use the run function and specify
the full pathname to an M-file script.

To determine the name of the M-file currently running, use mfilename.

Examining Errors
If an error message appears when you run an M-file, click the underlined
portion of the error message, or position the cursor within the filename
and press Ctrl+Enter. The offending M-file opens in the Editor/Debugger,
scrolled to the line containing the error.

Processing Order
In MATLAB, you can only run one process at a time. If MATLAB is busy
running one function, any further statements you issue are buffered in a
queue. The next statement will run when the previous one finishes.

Interrupting a Running Program
You can stop a running program by pressing Ctrl+C or Ctrl+Break at any
time. On Macintosh platforms, you can also use Command+. (the Command
key and the period key) to stop the program. For certain operations, stopping
the program might generate errors in the Command Window.

For M-files that run a long time, or that call built-ins or MEX-files that run a
long time, Ctrl+C does not always effectively stop execution. Typically, this
happens on Windows rather than UNIX platforms. If you experience this
problem, you can help MATLAB break execution by including a drawnow,
pause, or getframe function in your M-file, for example, within a large loop.
Note that Ctrl+C might be less responsive if you started MATLAB with the
-nodesktop option (an option only for UNIX platforms).

Running External Programs
The exclamation point character, !, sometimes called bang, is a shell escape
and indicates that the rest of the input line is a command to the operating
system. Use it to invoke utilities or call other executable programs without
quitting MATLAB. On UNIX, for example,

3-9

3 Running Functions — Command Window and History

!vi yearlystats.m

invokes the vi editor for a file named yearlystats.m. After the external
program completes or you quit the program, the operating system returns
control to MATLAB. Add & to the end of the line, such as

!dir &

on Windows platforms to display the output in a separate window or to run
the application in background mode. For example

!excel.exe &

opens Excel and returns control to the Command Window so you can continue
running MATLAB statements.

The maximum length of the argument list provided as input to the bang (!)
command is determined by any restrictions maintained within the operating
system. If you are running the Windows 2003 Server, for example, the length
of the argument list input to the bang command cannot exceed 512 characters.

See the reference pages for the unix, dos, and system functions for details
about running external programs that return results and status.

Note To execute operating system commands with specific environment
variables, include all commands to the operating system within the system
call. Separate the commands using & (ampersand) for DOS, and ; (semicolon)
for UNIX. This applies to the MATLAB ! (bang), dos, unix, and system
functions. Another approach is to set environment variables before starting
MATLAB.

On Macintosh platforms, you cannot run AppleScript directly from MATLAB.
However, you can run the Macintosh OS X osascript function from the
MATLAB unix or ! (bang) function to run AppleScript from MATLAB.

3-10

Running Functions and Programs, and Entering Variables

UNIX System Path and Running UNIX Programs from MATLAB
To run a UNIX program from MATLAB if its directory is not on the UNIX
system path MATLAB uses, take one of the actions described here.

Change Current Directory in MATLAB. Change the current directory in
MATLAB to the directory that contains the program you want to run.

Modify the UNIX System Path MATLAB Uses. Add the directories to the
system path from the shell. The exact steps depend on your shell. This is
an example using sh:

1 At the system command prompt, type

export PATH="$PATH:<mydirectory>"

where <mydirectory> is the directory that contains the program you want
to run.

2 Start MATLAB.

3 In MATLAB, type

!echo $PATH

The directory containing the file is added to the system path that MATLAB
uses. This change applies only to the current session of the terminal window.

Automatically Modify System Path at MATLAB Startup. If you want
to add a directory to the PATH environment variable each time you start
MATLAB, perform these steps:

1 In a text editor, open the file MATLAB/bin/matlab. This file is used to
start MATLAB.

2 Add this line to the beginning of the matlab file

export PATH="$PATH:<mydirectory>"

where <mydirectory> is the directory you want to add to the path.

If you run a tsch shell instead of a bash shell, use setenv instead of export.

3-11

3 Running Functions — Command Window and History

3 Save the file.

The matlab file will modify the PATH environment variable, and then start
MATLAB.

Evaluating or Opening a Selection
Make a selection in the Command Window and press Enter or Return. The
selection is appended to whatever is at the prompt, and MATLAB executes it.

Similarly, you can select a statement from any MATLAB desktop tool,
right-click, and select Evaluate Selection from the context menu.
Alternatively, after making a selection, use the shortcut key, F9, or for some
tools, press Enter or Return. For example, you can scroll up in the Command
Window, select a statement you entered previously, and then press Enter to
run it. If you try to evaluate a selection while MATLAB is busy, for example,
running an M-file, execution waits until the current operation is done.

You can open a function, file, variable, or Simulink model from the Command
Window. Select the name in the Command Window, and then right-click and
select Open Selection from the context window. This runs the open function
for the item you selected so that it opens in the appropriate tool:

• M-files and other text files open in the Editor/Debugger.

• Figure files (.fig) open in a figure window.

• Variables open in the Array Editor.

• Models open in Simulink.

See the open reference page for details about what action occurs if there are
name conflicts. If no action exists to work with the selected item, Open
selection calls edit.

Function Alternative
Use open or edit to open a file in the Editor/Debugger. Use type to display
the M-file in the Command Window.

3-12

Running Functions and Programs, and Entering Variables

Displaying Hyperlinks in the Command Window
You can use MATLAB commands to create hyperlinks in the Command
Window. The created hyperlink can:

• Open a Web page in a MATLAB browser using an href string.

• Transfer files via the file transfer protocol (FTP).

• Run a MATLAB M-file using the matlabcolon (matlab:) command.

Hyperlinks to Web Pages
When creating a hyperlink to a Web page, append a full hypertext string on
a single line as input to the disp or fprintf command. For example, the
command

disp('The MathWorks Web Site')

displays the hyperlink

The MathWorks Web Site

in the Command Window.

When you click this link, a MATLAB Web browser opens and displays the
requested page.

Transferring Files via FTP
To create a link to an FTP site, enter the site address as input to the disp
command as shown below.

disp('The MathWorks FTP Site')

This command displays

The MathWorks FTP Site

as a link in the Command Window.

When you click this link, a MATLAB browser opens and displays the
requested FTP site.

3-13

http://www.mathworks.com
ftp://ftp.mathworks.com

3 Running Functions — Command Window and History

Running MATLAB Functions by Hyperlink
Use matlab: to run a specified statement when you click a hyperlink in the
Command Window. For example

disp('Generate magic square')

displays

When you click the link Generate magic square, MATLAB runs magic(4).
Alternatively, you can press Ctrl+Enter if the cursor is positioned in the link
text. You can use the disp, error, fprintf, or warning function with this
feature. Change the hyperlink color using Colors Preferences — see “Colors
Preferences for Desktop Tools” on page 2-70. For more information, including
examples, see the matlabcolon (matlab:) reference page.

3-14

Controlling Input

Controlling Input

In this section...

“Case and Space Sensitivity” on page 3-15

“Syntax Highlighting” on page 3-16

“Matching Delimiters (Parentheses)” on page 3-17

“Cut, Copy, Paste, and Undo Features” on page 3-17

“Enter Multiple Lines Without Running Them” on page 3-18

“Entering Multiple Functions in a Line” on page 3-18

“Entering Long Statements (Line Continuation)” on page 3-18

“Recalling Previous Lines” on page 3-19

“Tab Completion in the Command Window” on page 3-20

“Keyboard Shortcuts in the Command Window” on page 3-26

“Navigating Above the Command Line” on page 3-29

Case and Space Sensitivity

Uppercase and Lowercase for Variables
With respect to case, MATLAB requires an exact match for variable names.
For example, if you have a variable a, you cannot refer to that variable as A.

Uppercase and Lowercase for Files and Functions
With respect to functions, filenames, objects, and classes on the search path
or in the current directory, MATLAB prefers an exact match with regard to
case. MATLAB runs a function if you do not enter the function name using
the exact case, but displays a warning the first time you do this.

To avoid ambiguity and warning messages, always match the case exactly. It
is a best practice to use lowercase only when running and naming functions.
This is especially useful when you use both Windows and UNIX platforms
because their file systems behave differently with regard to case.

3-15

3 Running Functions — Command Window and History

Note that if you use the help function, function names are shown in all
uppercase, for example, PLOT, solely to distinguish them. Some functions for
interfacing to Java do use mixed case and the M-file help and documentation
accurately reflect that.

Examples. The directory first is at the top of the search path and contains
the file A.m. If you type a instead of A, MATLAB runs A.m but issues a
warning. When you type a again during that session, MATLAB runs A.m but
does not show the warning.

Add the directory second after first on the search path, with the file a.m in
second. The directory first contains A.m, while second contains a.m Type a.
MATLAB runs a.m but displays a warning the first time you do this.

Spaces in Expressions
Blank spaces around operators such as -, :, and (), are optional, but they
can improve readability. For example, MATLAB interprets the following
statements the same way.

y = sin (3 * pi) / 2
y=sin(3*pi)/2

Syntax Highlighting
Some entries appear in different colors to help you better find elements, such
as matching if/else statements. This is known as syntax highlighting. You
can change the colors using preferences. Note that output does not appear
with syntax highlighting, except for errors. For more information, see “Colors
Preferences for Desktop Tools” on page 2-70.

3-16

Controlling Input

Matching Delimiters (Parentheses)
You can set a preference for MATLAB to notify you about matched and
unmatched delimiters. For example, when you type a parenthesis, bracket,
or brace, MATLAB highlights the matched delimiter in the pair. To set
these preferences, select File > Preferences > Keyboard > Delimiter
Matching. This feature is also available in the Editor/Debugger.

For more information, see “Delimiter Matching” on page 3-46.

Cut, Copy, Paste, and Undo Features
Use the Cut, Copy, Paste, Undo, and Redo features from the Edit menu
when working in the Command Window. You can also access some of these
features in the context menu for the Command Window.

Undo applies to some of the actions listed in Edit menu. You can undo
multiple times in succession until there are no remaining actions to undo.
Select Edit > Redo to reverse an undo.

If you use Enter, you cannot edit a line after entering it, even though you
have not completed the flow. In that event, use Ctrl+C to end the flow, and
then enter the statements again.

3-17

3 Running Functions — Command Window and History

Enter Multiple Lines Without Running Them
To enter multiple lines before running any of them, use Shift+Enter or
Shift+Return after typing a line. This is useful, for example, when entering
a set of statements containing keywords, such as if ... end. The cursor
moves down to the next line, which does not show a prompt, where you can
type the next line. Continue for more lines. Then press Enter or Return
to run all of the lines.

This allows you to edit any of the lines you entered before you pressing Enter
or Return.

Entering Multiple Functions in a Line
To enter multiple functions on a single line, separate the functions with a
comma (,) or semicolon (;). Using the semicolon instead of the comma will
suppress the output for the command preceding it. For example, put three
functions on one line to build a table of logarithms by typing

format short; x = (1:10)'; logs = [x log10(x)]

and then press Enter or Return. The functions run in left-to-right order.

Entering Long Statements (Line Continuation)
If a statement does not fit on one line, enter three periods (...) , also called
dots, stops, or an ellipsis, at the end of the line to indicate it continues on
the next line. Then press Enter or Return. Continue typing the statement
on the next line. You can repeat the ellipsis to add a line break after each
line until you complete the statement. When you finish the statement, press
Enter or Return.

For items in single quotation marks, such as strings, you must complete the
string in the line on which it was started. For example, completing a string as
shown here

headers = ['Author Last Name, Author First Name, ' ...
'Author Middle Initial']

results in

3-18

Controlling Input

headers =
Author Last Name, Author First Name, Author Middle Initial

MATLAB produces an error when you do not complete the string, as shown
here:

headers = ['Author Last Name, Author First Name, ...
Author Middle Initial']

??? headers = ['Author Last Name, Author First Name, ...
Error: Missing variable or function.

Note that MATLAB ignores anything appearing after the ... on a line, and
continues processing on the next line. This effectively creates a comment out
of the text following the ... on a line. For more information, see “Commenting
Out Part of a Statement” on page 6-19.

Recalling Previous Lines
Use the arrow, tab, and control keys on your keyboard to recall, edit, and
reuse functions you typed earlier. For example, suppose you mistakenly enter

rho = (1+ sqt(5))/2

Because you misspelled sqrt, MATLAB responds with

Undefined function or variable 'sqt'.

Instead of retyping the entire line, press the up arrow key. The previously
typed line is redisplayed. Use the left arrow key to move the cursor, add the
missing r, and press Enter or Return to run the line. Repeated use of the
up arrow key recalls earlier lines, from the current and previous sessions.
Using the up arrow key, you can recall any line maintained in the Command
History window.

Similarly, specify the first few characters of a line you entered previously and
press the up arrow key to recall the previous line. For example, type the
letters plo and then press the up arrow key. This displays the last line that
started with plo, as in the most recent plot function. Press the up arrow key

3-19

3 Running Functions — Command Window and History

again to display the next most recent line that began with plo, and so on.
Then press Enter or Return to run the line. This feature is case sensitive.

If the up arrow key moves the cursor up but does not recall previous lines,
clear the accessibility preference. For more information, see “Accessibility”
on page 3-43.

Another way to view and access commands from the current and previous
MATLAB sessions is with the Command History window — see “Command
History Window” on page 3-49.

Tab Completion in the Command Window
MATLAB helps you automatically complete the names of these items as you
type them in the Command Window:

• Function or model on the search path or in the current directory

• Filename or directory

• Variable, including structures, in the current workspace

• Handle Graphics property for figure in the current workspace

Type the first few characters of the item name and then press the Tab key.
To use tab completion, you must have the tab completion preference for the
Command Window selected. For details, see “Keyboard Preferences” on page
3-43.

Tab completion is also available in the Editor/Debugger, but there are some
slight differences in usage. See “Tab Completion in the Editor/Debugger”
on page 6-21.

These examples demonstrate how to use tab completion in the Command
Window:

• “Basic Example — Unique Completion” on page 3-21

• “Multiple Possible Completions” on page 3-21

• “Tab Completion for Directories and Filenames” on page 3-24

• “Tab Completion for Structures” on page 3-24

3-20

Controlling Input

• “Tab Completion for Properties” on page 3-25

Basic Example — Unique Completion
This example illustrates a basic use for tab completion. After creating a
variable, costs_march, type

costs

and press Tab. MATLAB automatically completes the name of the variable,
displaying

costs_march

Then complete the statement, adding any arguments, operators, or options,
and press Return or Enter to run it. In this example, if you just press
Enter, MATLAB displays the contents of costs_march. If MATLAB does not
complete the name costs_march but instead moves the cursor to the right,
you do not have the preference set for tab completion. If MATLAB displays No
Completions Found, costs_march does not exist in the current workspace.

You can use tab completion anywhere in the line, not just at the beginning.
For example, if you type

a = cost

and press Tab, MATLAB completes costs_march. You can also select co or
position the cursor after co and press Tab to complete costs_march.

Multiple Possible Completions
If there is more than one name that starts with the characters you typed,
when you press the Tab key, MATLAB displays a list of all names that start
with those characters. For example, type

cos

and press Tab. MATLAB displays

3-21

3 Running Functions — Command Window and History

The resulting list of possible completions includes the variable name you
created, costs_march, but also includes functions that begin with cos,
including cosets from Communications Toolbox, if it is installed on the
system and on the MATLAB search path. MATLAB completes variable names
in the currently selected workspace, and the names of functions and models
on the MATLAB search path or in the current directory.

Continue typing to make your entry unique. For example, type the next
character, such as t in the example. MATLAB selects the first item in the list
that matches what you typed, in this case, costs_march. Press Enter (or
Return) or Tab to select that item, which completes the name at the prompt.
In the example, MATLAB displays costs_march at the prompt. Add any
arguments, and press Enter again to run the statement.

You can navigate the list of possible completions using up and down arrow
keys, and Page Up and Page Down keys. You can clear the list without
selecting anything by pressing Escape. Note that the list of possible
completions might include items that are not valid commands, such as private
functions.

3-22

Controlling Input

Narrowing Completions Shown. You can narrow the list of completions
shown by typing a character and then pressing Tab if the Command Window
preference Tab key narrows completions is selected. This is particularly
useful for large lists. For example, type cam and press Tab to see the possible
completions. There is a scroll bar with the list because there are too many
completions to be seen at once.

Type p and press Tab again. MATLAB narrows the list, showing only all
possible camp completions.

3-23

3 Running Functions — Command Window and History

Continue narrowing the list in the same way. For the above example, type o
and press Tab to further narrow the list. Press Enter or Return to select
an item, which completes the name at the prompt.

Tab Completion for Directories and Filenames
Tab completion works for directories and filenames in MATLAB functions.
For example, type

edit d:/

and press Tab.

MATLAB displays the list of directories and files in d, from which you can
choose one. For example, type

mym

and press Tab.

MATLAB displays

edit d:/mymfiles/

where mymfiles is the only directory on your d drive whose name begins with
mym. Continue using tab completion to display and complete directory names
or filenames until you finish the edit statement.

Tab completion for directories and filenames is not supported for functions
you write.

Tab Completion for Structures
For structures in the current workspace, after the period separator, press
Tab. For example, type

mystruct.

and press Tab to display all fields of mystruct. If you type a structure and
include the start of a unique field after the period, pressing Tab completes
that structure and field entry.

3-24

Controlling Input

For example, type

mystruct.n

and press Tab, which completes the entry mystruct.name, where mystruct
contains no other fields that begin with n.

Tab Completion for Properties
Complete property names for figures in the current workspace using tab
completion, as in this graphics example. Here, f is a figure. Type

set(f, 'pap

and press Tab. MATLAB displays

Select a property from the list. For example, type

u

and press Enter. MATLAB completes the property, including the closing
quote.

set(f, 'paperunits'

Continue adding to the statement, as in this example

set(f, 'paperunits', 'c

and press Tab. MATLAB automatically completes the property

3-25

3 Running Functions — Command Window and History

set(f, 'paperUnits', 'centimeters'

because centimeters is the only possible completion.

Keyboard Shortcuts in the Command Window
Following is the list of arrow and control keys that serve as shortcuts for using
the Command Window. In addition to these shortcut keys (sometimes called
hot keys), you can use shortcuts for menu items, which you can view on the
menus, as well as general desktop shortcuts described in “Keyboard Shortcuts”
on page 2-40. If you select the Emacs (MATLAB standard) preference for
key bindings (see “Command Window Key Bindings” on page 3-44 for an
explanation), you can also use the Ctrl+key combinations shown in the table.

Key or
Mouse
Action for
Windows
Preference

Control
Key for
MATLAB
standard
(Emacs)
Preference

Key or Mouse
Action for
Macintosh
Preference Operation

Ctrl+P Recall previous line — for details, see
“Recalling Previous Lines” on page 3-19.
See also “Command History Window” on
page 3-49, which is a log of previously
used functions, and “Keeping a Session
Log” on page 3-33.

With the Accessibility preference
selected, moves the cursor up a line when
it is above the prompt. In that event,
use Ctrl+ to recall previous lines for
Windows and Macintosh key bindings.

3-26

Controlling Input

Key or
Mouse
Action for
Windows
Preference

Control
Key for
MATLAB
standard
(Emacs)
Preference

Key or Mouse
Action for
Macintosh
Preference Operation

Ctrl+N Recall next line — for details, see
“Recalling Previous Lines” on page 3-19.
Works only after using the up arrow or
Ctrl+P.

With the Accessibility preference
selected, moves the cursor down a line
when it is above the prompt. In that
event, use Ctrl+ to recall previous lines
for Windows and Macintosh key bindings.

Ctrl+Home None Home Move to top of Command Window.

Ctrl+End None End Move to end of Command Window.

None None Cmd+Home Move cursor and scroll to top of Command
Window.

None None Cmd+End Move cursor and scroll to end of Command
Window.

None None Shift+Cmd+Home Select to top of Command Window.

None None Shift+Cmd+End Select to end of Command Window.

Ctrl+B Move back one character.

Ctrl+F Move forward one character.

Ctrl+ None Option+ Move left one word.

Ctrl+ None Option+ Move right one word.

Home Ctrl+A Cmd+ Move to beginning of current statement.
With Macintosh key bindings, move to
beginning of current line.

End Ctrl+E Cmd+ Move to end of current statement. With
Macintosh key bindings, move to end of
current line.

3-27

3 Running Functions — Command Window and History

Key or
Mouse
Action for
Windows
Preference

Control
Key for
MATLAB
standard
(Emacs)
Preference

Key or Mouse
Action for
Macintosh
Preference Operation

Esc Ctrl+U Esc Clear the command line when cursor is
at the command line. Otherwise, move
cursor to command line.

Delete Ctrl+D Forward Delete Delete character after cursor.

Backspace Ctrl+H Delete Delete character before cursor.

None Ctrl+K None Cut contents (kill) from cursor to end of
current line.

Insert None None Change to overwrite mode from insert
mode, or change to insert mode from
overwrite mode. View current mode in
the status bar: OVR is gray for insert
mode. In overwrite mode, what you type
replaces existing text and the cursor is a
wide block. (Not supported on Macintosh
platforms.)

Double-click None Double-click Select current word. To select additional
words, hold mouse after second click and
continue dragging left or right.

None None Shift+Option+ Select to previous word.

None None Shift+Option+ Select to next word.

Triple-click None None Select current line. To select additional
lines, hold mouse after second click and
continue dragging up or down.

Shift+Home None Shift+Cmd+ Select from cursor to beginning of
statement. With Macintosh key bindings,
select to beginning of line.

3-28

Controlling Input

Key or
Mouse
Action for
Windows
Preference

Control
Key for
MATLAB
standard
(Emacs)
Preference

Key or Mouse
Action for
Macintosh
Preference Operation

Shift+End None Shift+Cmd+ Select from cursor to end of statement.
With Macintosh key bindings, select to
end of line.

Enter in
selection

None None Append selection to statement at
command line and execute it.

Ctrl+Enter
in hyperlink

None Ctrl+Enter in
hyperlink

Open hyperlink displayed in Command
Window. For example, in the hyperlink
of an error message, opens the file in the
Editor/Debugger at that line number.

Navigating Above the Command Line
To look at or copy information in the Command Window that is above the
command line (>> prompt), use the mouse and scroll bar, key combinations
such as Ctrl+Home, and search features. By default, the up and down arrow
keys recall statements so you cannot use them to move the cursor when it
is above the command line.

To use the up and down arrow keys to move the cursor when it is above the
command line, select File > Preferences > Command Window, and select
the Accessibility preference.

3-29

3 Running Functions — Command Window and History

Controlling Output

In this section...

“Echoing Execution” on page 3-30

“Suppressing Output” on page 3-30

“Paging of Output in the Command Window” on page 3-30

“Formatting and Spacing Numeric Output” on page 3-31

“Clearing the Command Window” on page 3-32

“Printing Command Window Contents” on page 3-33

“Keeping a Session Log” on page 3-33

Echoing Execution
To display each function within a statement as it executes, run echo on. For
details, see the echo reference page.

Suppressing Output
If you end a statement with a semicolon (;) and then press Enter or Return,
MATLAB runs the statement but does not display any output. This is
particularly useful when you generate large matrices. For example, running

A = magic(100);

creates A but does not show the resulting matrix in the Command Window.

Paging of Output in the Command Window
If output in the Command Window is lengthy, it might not fit within the
screen and display too quickly for you to see it without scrolling back to it. To
avoid that problem, use the more function to control the paging of output in
the Command Window. By default, more is off.

After you type more on, MATLAB displays only a page (a screen full) of
output, pauses, and displays

3-30

Controlling Output

--more--

indicating there is more output to display. Press one of the following keys.

Key Action

Enter or Return To advance to the next line

Space Bar To advance to the next page

q To stop displaying the output

You can scroll in the Command Window to see input and output that are no
longer in view. As an alternative to scrolling, you can use the up and down
arrow keys if the Command Window Accessibility preference is selected.

Formatting and Spacing Numeric Output
By default, numeric output in the Command Window is displayed as 5-digit
scaled, fixed-point values, called the short format. To change the numeric
format of output for the current and future sessions, set the Command
Window preference for text display. The text display format affects only how
numbers are shown, not how MATLAB computes or saves them.

Function Alternative
Use the format function to control the output format of the numeric values
displayed in the Command Window. The format you specify applies until you
change it or until the end of the session. More advanced alternatives are
listed in the “See Also” section of the format reference page.

Examples of Formats
Here are a few examples of the various formats and the output produced from
the following two-element vector x.

x = [4/3 1.2345e-6]

format short
1.3333 0.0000

format short e

3-31

3 Running Functions — Command Window and History

1.3333e+000 1.2345e-006

format +
++

A complete list and description of available formats is in the reference page
for format. For more control over the output format, use the sprintf and
fprintf functions.

Controlling Spacing
To control spacing in the output, use the Command Window preference for
text display or the format function. Use

format compact

to suppress blank lines, allowing you to view more information in the
Command Window. To include the blank lines, which can help make output
more readable, use

format loose

Clearing the Command Window
Select Clear Command Window from the Edit menu or context menu
to clear it. This does not clear the workspace, but only clears the view.
Afterwards, you still can use the up arrow key to recall previous functions.
A confirmation dialog box appears if you select the preference for it; see
preferences for “Confirmation Dialogs Preferences” on page 2-81 for more
information.

Function Alternative
Use clc to clear the Command Window. Similar to clc is the home function,
which moves the prompt to provide a clear screen, but does not clear the
text so you can still scroll up to see it.

3-32

Controlling Output

Printing Command Window Contents
To print the complete contents of the Command Window, select File > Print.
To print only a selection, first make the selection in the Command Window
and then select File > Print Selection.

Specify printing options for the Command Window by selecting File > Page
Setup. For example, you can print with a header. For more information, see
“Printing and Page Setup Options for Desktop Tools” on page 2-52.

Keeping a Session Log

The diary Function
The diary function creates a copy of your MATLAB session in a disk file,
including keyboard input and system responses, but excluding graphics. You
can view and edit the resulting text file using any text editor, such as the
Editor/Debugger. To create a file on your disk called sept23.out that contains
all the functions you enter, as well as MATLAB output, enter

diary('sept23.out')

To stop recording the session, use

diary('off')

To view the file, run

edit('sept23.out')

Other Session Logs
There are two other means of viewing session information:

• The Command History window, which contains a log of all functions
executed in the current and previous sessions.

• The logfile startup option — see “Startup Options” on page 1-12.

3-33

3 Running Functions — Command Window and History

Searching in the Command Window

In this section...

“Introduction” on page 3-34

“Find Dialog Box” on page 3-34

“Incremental Search” on page 3-35

Introduction
You can search for specified text that appears in the Command Window,
where the text was either part of input you supplied, or output displayed by
MATLAB. After finding the desired text, you can copy and paste it to the
prompt in the Command Window to run it, or into an M-file or other file.

See also “Recalling Previous Lines” on page 3-19, “Tab Completion in the
Command Window” on page 3-20, and “Keyboard Shortcuts in the Command
Window” on page 3-26 for techniques to reuse previous statements and
navigate in the Command Window. To find files and text in files, see “Finding
Files and Content Within Files” on page 5-49.

Find Dialog Box
Select Find from the Edit menu to search for specified text in the Command
Window using the Find dialog box. Complete the dialog box. The search
begins at the current cursor position. MATLAB finds the text you specified
and highlights it. Click Find Next or Find Previous to find another
occurrence, or use the keyboard shortcuts F3 and Shift+F3.

3-34

Searching in the Command Window

MATLAB beeps when a search for Find Next reaches the end of the
Command Window, or when a search for Find Previous reaches the top
of the Command Window. If you have Wrap around selected, it continues
searching after beeping.

Note that you can only search for text currently displayed in the Command
Window. To increase the amount of information maintained in the Command
Window, increase the setting for the command session scroll buffer size in
Command Window Preferences, and do not clear the Command Window.

Change the selection in the Look in field to search for the specified text in
other MATLAB desktop tools.

Incremental Search
With the incremental search feature, the cursor moves to the next or previous
occurrence of the specified text in the Command Window. It is similar to the
Emacs search feature. To use the incremental search feature in the Command
Window,

1 Position the cursor where you want the search to begin.

2 How you begin the incremental search depends on your setting for the
Command Window key bindings preference:

• Press Ctrl+S for Emacs, or

• Press Ctrl+Shift+S for Windows

3 To look for the previous occurrence, press Ctrl+R or Ctrl+Shift+R instead.

An incremental search field, Inc Search, appears at the bottom of the
Command Window and is preceded by F for a forward search, or R when
you are looking for the previous occurrence (reverse search).

3-35

3 Running Functions — Command Window and History

4 In the Inc Search field, type the text you want to find. For example, look
for Boston.

As you type the first letter, b, the first occurrence of that letter in the
Command Window after the current cursor position is highlighted. For the
example shown, the first occurrence of b is highlighted, the b in Berlin.
Note that incremental search allows for case sensitivity — see “Case
Sensitivity in Incremental Search” on page 3-38.

3-36

Searching in the Command Window

When you type the next letter, the first occurrence of the text becomes
highlighted. In the example, when you add the letter o to the b so that the
Inc Search field now has bo, the bo in Boston becomes highlighted.

• If you mistype in the Inc Search field, use the Back Space key to
remove the last letters and make corrections.

• After finding the bo, you can press Ctrl+W to complete that word. In
this example, Boston appears in the Inc Search field.

5 To find the next occurrence of Boston in the Command Window, press
Ctrl+S. To find the previous occurrence of the text, press Ctrl+R

6 If MATLAB beeps, it means either that the text was not found, or the
search wrapped past the end (or beginning) of the Command Window and
continued at the beginning (or end).

3-37

3 Running Functions — Command Window and History

• When the text is not found, Failing appears in the incremental search
field. Modify the search term in the incremental search field and try
again. Use Ctrl+G to automatically remove characters back to the last
successful search. For example, if plode fails, Ctrl+G removes the de
from the search term because plo does exist in the Command Window.

7 To end the incremental search, press Esc or Enter, or any other key that is
not a character or number.

The Inc Search field no longer appears. The cursor is at the position
where the text was last found, with the search text highlighted.

Incremental search is also available in the Editor/Debugger — see
“Incremental Search” on page 6-51.

Case Sensitivity in Incremental Search
When you enter lowercase letters in the Inc Search field, for example, b,
incremental search looks for both lowercase and uppercase instances of the
letters, for example b and B. However, if you enter uppercase letters, for
example, B, incremental search only looks for instances that match the case
you entered.

3-38

Searching in the Command Window

In the example, enter bO in the Inc Search field and incremental search does
not find any matching text.

3-39

3 Running Functions — Command Window and History

Preferences for the Command Window

In this section...

“Text, Display, Accessibility, and Tab Size Preferences” on page 3-40

“Keyboard Preferences” on page 3-43

See also:

• “Fonts Preferences for Desktop Tools” on page 2-62

• “Confirmation Dialogs Preferences” on page 2-81

Text, Display, Accessibility, and Tab Size Preferences
To set these preferences for the Command Window, select File > Preferences
and then select Command Window in the left pane of the Preferences dialog
box.

3-40

Preferences for the Command Window

Text Display
Specify the format, that is, how output appears in the Command Window.

Numeric format. Specify the output format of numeric values displayed in
the Command Window. This affects only how numbers are displayed, not how
MATLAB computes or saves them. The format reference page includes the
list of available formats, with examples.

3-41

3 Running Functions — Command Window and History

Numeric display. Specify spacing of output in the Command Window. To
suppress blank lines, use compact. To display blank lines, use loose. For
more information, see the reference page for format.

Display

Wrap lines. Select to make a single line of input or output in the Command
Window break into multiple lines in order to fit within the current width of
the Command Window. This is useful for console mode. With this option
selected, an entire line is visible without scrolling, and the horizontal scroll
bar does not appear because it is not needed.

Show getting started message bar. Select to display the getting started
message bar in the Command Window. It appears beneath the menu bar and
contains links to a video, documentation, and demos. For more information,
see “Getting Started Message Bar in the Command Window” on page 3-5

Limit matrix display width to eighty columns. When selected, MATLAB
displays only 80 columns of matrix output, regardless of the width of the
Command Window. Clear the check box if you make the Command Window
wider than 80 columns and want matrix output to fill the width of the
Command Window. See also the display reference page.

To determine the number of columns and rows that will display in the
Command Window, given its current size, use

get(0,'CommandWindowSize')

With the matrix display width preference cleared, the number of columns is
based on the width of the Command Window. With the preference set to 80
columns, the number of columns is always 80.

Number of lines in command window scroll buffer. Set the number of
lines maintained in the Command Window, from 1,000 to 25,000. This is the
number of lines you can see when you scroll vertically. A larger buffer means
you can view more lines and it provides a larger base for search features,
but requires more memory.

3-42

Preferences for the Command Window

This preference setting does not impact the number of lines you can recall
when you use the up arrow key in the Command Window. Using the up
arrow key, you can recall all lines shown in the Command History window,
regardless of how many lines you can see in the Command Window.

Accessibility
Select this option to use the up and down arrow keys to move the cursor when
it is above the command line. With this preference selected, use the Ctrl+ up
arrow or down arrow key to recall statements for Windows and Macintosh
key bindings, or Ctrl+P and Ctrl+N for MATLAB standard (Emacs) key
bindings.

Clear this preference to use the up and down arrow keys to recall statements.
Use the mouse and other features to move the cursor when above the
command line.

Tab key

Tab size. Number of spaces assigned to a tab stop when displaying output.
The default is four spaces, except on UNIX platforms where the default is eight
spaces. This does not apply when the tab completion preference is selected.

Keyboard Preferences
To set key binding, tab completion, and delimiter matching preferences for the
Command Window and the Editor/Debugger, select File > Preferences and
then select Keyboard in the left pane of the Preferences dialog box.

3-43

3 Running Functions — Command Window and History

• “Command Window Key Bindings” on page 3-44

• “Editor/Debugger Key Bindings” on page 3-45

• “Tab Completion” on page 3-45

• “Tabs and Indents” on page 3-46

• “Delimiter Matching” on page 3-46

Command Window Key Bindings
Specify the keyboard shortcuts (key bindings) to be used at the command line.

3-44

Preferences for the Command Window

MATLAB standard (Emacs). Allows you to use the control keys listed in
“Keyboard Shortcuts in the Command Window” on page 3-26, which should be
familiar to existing MATLAB users and Emacs users. For example, Ctrl+A
moves the cursor to the beginning of the line.

Windows. Allows you to use standard Windows control keys. For example,
Ctrl+A is the shortcut for Edit > Select All, which selects the entire contents
of the Command Window.

Macintosh. This option is available only on Macintosh platforms. It allows
you to use Macintosh keys, such as the Command key instead of the Ctrl key.

Editor/Debugger Key Bindings
Specify the keyboard shortcuts (key bindings) to be used by the
Editor/Debugger. The Editor/Debugger key bindings are also used by other
tools, for example, the Callback field in the Shortcut Editor dialog box.

Select Windows, Emacs, or Macintosh (available only on Macintosh
platforms), depending on which convention you want the Editor/Debugger to
follow for accelerators and shortcuts. The accelerators on the menus change
after you change this option.

For example, when you select Windows key bindings, the shortcut to paste
a selection is Ctrl+V. When you select Emacs key bindings, the shortcut to
paste a selection is Ctrl+Y. When you select Macintosh key bindings, the
shortcut to paste a selection is Command+V. You can see the accelerator on
the Edit menu for the Paste item.

Tab Completion

Enable in Command Window. Select the check box to use tab completion
when typing functions in the Command Window. Clear the check box if you
do not want to use the tab completion feature. In that event, when you press
the Tab key, MATLAB moves the cursor to the next tab stop rather than
completing a function — see also the preference for “Tab size” on page 3-43.

3-45

3 Running Functions — Command Window and History

Enable in Editor/Debugger. Select the check box to use tab completion
when typing functions in the Editor/Debugger. Clear the check box if you do
not want to use the tab completion feature. In that event, when you press
the Tab key, MATLAB moves the cursor to the next tab stop rather than
completing a function — see also in the online documentation.

Tab key narrows completions. Select this check box to narrow the list of
possible completions shown by typing another character and pressing Tab.
For details, see “Narrowing Completions Shown” on page 3-23.

Tabs and Indents
The links go to the panes where you can view and set preferences for

• Tab key size in the Command Window, which is used when the tab
completion preference is not set

• Tab key size and indenting preferences in the Editor/Debugger

Delimiter Matching
To set these preferences, select File > Preferences > Keyboard > Delimiter
Matching . These preferences apply to the Command Window and the
Editor/Debugger.

With these preferences selected, MATLAB alerts you to matched and
unmatched delimiters based on the MATLAB language syntax rules. For
example, when you type a parenthesis or another delimiter, MATLAB
highlights the matched parenthesis or delimiter in the pair.

Delimiter pairs are parentheses (), brackets [], and braces { }. For the
Editor/Debugger , paired language keywords are also matched. Paired
language keywords include for, if, while, else, and end statements.

In the following illustration, MATLAB underlines the left parenthesis in the
pair when you move over the right parenthesis using an arrow key.

3-46

Preferences for the Command Window

If the matching delimiter is not visible on the screen, a pop-up window appears
and shows the line containing the matching delimiter. In the Editor/Debugger,
the line number is included. Click in the pop-up window to go to that line.

Match while typing. Select the check box if you want to be alerted to
matches and mismatches in pairs of delimiters as you type them. Then choose
how you want MATLAB to alert you to matches by selecting an entry from
Show match with. When you type a closing (or opening) delimiter in the
Command Window or Editor/Debugger, MATLAB alerts you based on the
option you choose:

• Balance — The corresponding delimiter is highlighted briefly.

• Underline — Both delimiters in the pair are underlined briefly.

• Highlight — Both delimiters in the pair are highlighted briefly.

Choose how you want MATLAB to alert you to mismatches using Show
mismatch with. When you type a closing delimiter that does not have an
opening match, MATLAB alerts you based on the option you choose:

• Beep — MATLAB beeps.

• Strikethrough — The delimiter you typed is briefly crossed out.

• None — There is no action.

3-47

3 Running Functions — Command Window and History

Match on arrow key. Select the check box if you want to be alerted to
matches and mismatches in pairs of delimiters when you use an arrow key to
move the cursor over a delimiter. Then choose how you want MATLAB to alert
you to matches by selecting an entry from Show match with. When you
move the arrow over a closing (or opening) delimiter in the Command Window
or Editor/Debugger, MATLAB alerts you based on the option you choose:

• Underline — Both delimiters in the pair are underlined briefly.

• Highlight — Both delimiters in the pair are highlighted briefly.

Choose how you want MATLAB to alert you to mismatches by selecting an
entry from Show mismatch with. When you move an arrow key over a
delimiter that does not have a match, MATLAB alerts you based on the option
you choose:

• Beep — MATLAB beeps.

• Strikethrough — The delimiter is briefly crossed out.

• None — There is no alert.

3-48

Command History Window

Command History Window

In this section...

“Overview” on page 3-49

“Viewing Statements in the Command History Window” on page 3-50

“Using Statements from the Command History Window” on page 3-51

“Searching in the Command History Window” on page 3-52

“Printing the Command History Window” on page 3-57

“Deleting Entries from the Command History Window” on page 3-57

Overview
The Command History window displays a log of the statements most recently
run in the Command Window. If you have an active Internet connection, you
can watch the Command History video demo for an overview of the major
functionality.

To show or hide the Command History window, use the Desktop menu.
Alternatively, use commandhistory to open the MATLAB Command History
window when it is closed, or to select it when it is open. For details, see
“Arranging the Desktop” on page 2-6.

3-49

3 Running Functions — Command Window and History

MATLAB provides other options for viewing a history of statements. See
also the following sections:

• “Recalling Previous Lines” on page 3-19, which describes using the up
arrow in the Command Window

• The diary function reference page

• “Startup Options” on page 1-12, which includes the logfile startup option

Viewing Statements in the Command History
Window
The Command History window lists statements you ran in the current session
and in previous sessions. The time and date for each session appear at the top
of the history of statements for that session. Use the scroll bar or the up and
down arrow keys to move through the Command History window.

Click - to hide the history for a session, and click + to show it. Select a
timestamp to select all entries for that session. With a timestamp selected,
you can press the + or - key on the numeric keypad to show and hide entries.

The Command History window and the Command Window’s statement recall
feature save to the file history.m, which is stored in the same directory as
MATLAB preferences. Type prefdir in the Command Window to see the
location of the file. The history.m file is loaded when MATLAB starts, and
it stores a maximum of 20,000 bytes, deleting the oldest entries as needed
to maintain that size.

MATLAB automatically saves the history.m file throughout the session
according to the Saving preference you specified. You can choose to
automatically exclude certain statements from being written to the history.m
file with the Settings preference. For details, see “Preferences for Command
History” on page 3-59.

3-50

Command History Window

Using Statements from the Command History
Window
You can select entries in the Command History window and then perform the
following actions for the selected entries.

Action How to Perform the Action

Run statements in the
Command Window

Double-click an entry (entries) in the Command History window to
execute the statement(s) in the entries. For example, double-click
edit myfile to open myfile.m in the Editor/Debugger. You can
also run the statements in an entry by right-clicking the entry
and selecting Evaluate Selection from the context menu, or by
selecting an entry and pressing Enter or Return.

Edit and run statements
in the Command Window

Select an entry or entries and then select Copy from the
context menu. Paste the selection into the Command Window.
Alternatively, drag the selection to the Command Window.

Then in the Command Window, edit the statements, and press
Enter or Return to execute them.

Copy statements to
another window

Select an entry or entries and then select Copy from the
context menu. Paste the selection into an open M-file in the
Editor/Debugger or any application. Alternatively, drag the
selection from the Command History window to an open M-file
or another application.

Create an M-file from
statement(s)

Select an entry or entries and then right-click and select Create
M-File from the context menu. The Editor/Debugger opens a
new M-file that contains the statements you selected from the
Command History window.

Create a shortcut from
statement(s)

Select an entry or entries and then right-click and select Create
Shortcut from the context menu. Alternatively, drag the selection
to the Shortcuts toolbar. The Shortcut Editor opens and the
selected statements appear in the Callback field. For more
information, see “Shortcuts for MATLAB — Easily Run a Group of
Statements” on page 2-32.

3-51

3 Running Functions — Command Window and History

Searching in the Command History Window
There are two types of search in the Command History window:

• “Finding Next Entry By Letter” on page 3-52

• “Finding Text” on page 3-56

After finding an entry, you can copy and paste it into an M-file or any file, or
you can right-click and select Evaluate Selection to run the entry.

Finding Next Entry By Letter
Type a letter in the Command History window. The Command History
window searches backwards to find the last previous entry that begins with
that letter as illustrated in this example:

1 Position the cursor at anywhere in the Command History window.

3-52

Command History Window

2 Type the first letters of the entry you want to find. For example, type my.

The Command History window searches backwards and selects the
previous entry that begins with the letters you typed; in this example, you
typed my, and the Command History finds myfor.

As you begin typing that a small yellow-background pop-up window, Search
history for:, appears at the top of the Command History window. This
window keeps track of your search target as you type additional letters
to narrow the focus of your search.

If the search finds a matching entry in a sessions that is collapsed, it
expands the session and selects the entry.

���������
��������� ����(��� ��
���������������	�	���
�
������

3 Now type an s to extend the search to mys. The Command History window
continues to search backwards, stopping next at the function mysurf.

3-53

3 Running Functions — Command Window and History

Finding Multiple Occurrences of the Entry. You can use the up and down
arrow keys to search for the next or the previous occurrence of the entry you
just found.

When you press Ctrl and the up or down arrow key, each occurrence of the
entry remains highlighted while you search for additional instances.

3-54

Command History Window

To highlight all instances of the entry, press Ctrl+A. In the example below, all
instances of entries beginning with my are highlighted.

3-55

3 Running Functions — Command Window and History

Finding Text
Select Find from the Edit menu to search for specified text using the Find
dialog box. Complete the dialog box. The search begins at the current cursor
position. MATLAB finds the text you specified and highlights it. Click Find
Next or Find Previous to find another occurrence, or use the keyboard
shortcuts F3 and Shift+F3. Find looks for visible entries only, that is, it does
not find entries in collapsed nodes.

3-56

Command History Window

MATLAB beeps when a search for Find Next reaches the end of the
Command History window, or when a search for Find Previous reaches the
top of the Command History window. If you have Wrap around selected, it
continues searching after beeping.

Change the selection in the Look in field to search for the specified text in
other MATLAB desktop tools.

Printing the Command History Window
To print the contents of the Command History window, select File > Print or
Print Selection. Specify options for printing by selecting File > Page Setup.
For example, you can print the history with a header. For more information,
see “Printing and Page Setup Options for Desktop Tools” on page 2-52.

The printed version is sized to fit the page. If there is a long statement in
the Command History, the reduced page size might be difficult to read. As
a workaround, either use Print Selection, where the long statement is not
part of the selection, or remove any extremely long statements from the
Command History before printing it.

Deleting Entries from the Command History Window
Delete entries from the Command History window when you feel there are
too many and it becomes inconvenient to find the ones you want. All entries
remain until you delete them or until the history.m file exceeds its maximum
size, when MATLAB automatically deletes the oldest entries—see “Viewing
Statements in the Command History Window” on page 3-50.

3-57

3 Running Functions — Command Window and History

To delete entries in the Command History window, first select the entries to
delete, using one of these methods:

• Select a single entry.

• Shift+click or Ctrl+click to select multiple entries.

• Select the timestamp for a session to select all entries for that session.
Then use Shift+click or Ctrl+click to select multiple timestamps with all
of their entries.

Then right-click and select Delete selection from the context menu, or press
the Delete key. A confirmation dialog box might appear; see preferences for
“Confirmation Dialogs Preferences” on page 2-81 for more information.

To delete all entries, select Edit > Clear Command History, or select Clear
Entire History from the context menu.

After deleting entries from the Command History window, you will not be able
to recall those statements in the Command Window as described in “Recalling
Previous Lines” on page 3-19.

3-58

Preferences for Command History

Preferences for Command History

In this section...

“Introduction” on page 3-59

“Settings” on page 3-59

“Saving” on page 3-60

“See Also” on page 3-60

Introduction
Using Command History preferences, you can choose to exclude statements
from the history.m file and specify how often to save it. The history.m
file is used for both the Command History window and statement recall in
the Command Window.

To set preferences for the history.m file, select File > Preferences, and then
select Command History in the Preferences dialog box.

Settings
Specify the types of statements to exclude from the history.m file. Note that
when you exclude statements from the history.m file, you cannot recall them
in the Command Window as described in “Recalling Previous Lines” on page
3-19, nor can you view them in the Command History window.

Save Exit/Quit Commands
Select the check box to save exit and quit commands in the history.m file.

Save Consecutive Duplicate Commands
Select the check box if you want consecutive executions of the same statement
to be saved to the history.m file.

For example, with this option selected, run magic(5), and then run magic(5)
again. The history.m file saves two consecutive entries for magic(5). With
this option cleared, for the same example, the command history file saves only

3-59

3 Running Functions — Command Window and History

one entry for magic(5). If you then run magic(10), the command history file
saves both entries, magic(5) followed by magic(10).

Saving
Use Saving preferences to specify how often to automatically save the
history.m file during a MATLAB session.

Save History File On Quit
Select this option to save the history.m file when you end the MATLAB
session. If the session does not end via a normal termination, that is, via the
exit or quit functions, File > Exit MATLAB, or the MATLAB desktop Close
box, the history file is not saved for that session.

Save After n Commands
Select this option to save the history.m file after n statements are added to
the file. For example, when you select the option and set n to 10, after every
10 statements are added, the history file is automatically saved. Use this
option if you don’t want to risk losing entries to the saved history because of
an abnormal termination, such as a power failure.

Don’t Save History File
Select this option if you do not want to save the history.m file. This feature is
useful when multiple users share the same machine and do not want other
users to view the statements they have run.

Note that any entries already in the history.m file remain. Prior to setting
this preference, you might want to remove any existing entries. Follow the
instructions in “Deleting Entries from the Command History Window” on
page 3-57.

See Also
Additional preferences that relate to the Command History are

• “Fonts Preferences for Desktop Tools” on page 2-62

• “Confirmation Dialogs Preferences” on page 2-81

3-60

4

Help for Using MATLAB

The primary means for getting help is the Help browser, which provides
documentation for all your installed products. Other forms of help are
available including M-file help and Technical Support solutions. If you have
an active Internet connection, you can watch the Help and Documentation
video demo for an overview of the major functionality.

Help Browser Overview (p. 4-3) Get information about your
MathWorks products using the Help
browser.

Finding Information with the Help
Browser (p. 4-10)

Use the contents listing of the online
documentation, a global index, and
full-text search of documentation
and demos.

Viewing Documentation in the Help
Browser (p. 4-26)

After finding documentation, view
the documentation and perform
other operations in the display pane.

Demos in the Help Browser (p. 4-31) Run demonstration programs, and
view and copy the M-file code behind
them.

Preferences for the Help Browser
(p. 4-37)

Specify fonts used in the Help
browser and limit the documentation
and demos included using the
product filter.

Printed Documentation (p. 4-42) Print from the Help browser
or from the PDF version of the
documentation, or purchase printed
documentation.

4 Help for Using MATLAB

Help Functions (p. 4-44) Use functions to get information,
such as help and doc.

Getting Pop-Up Help for Functions
(p. 4-49)

Get pop-up help (help on selection)
for functions from within the
Editor/Debugger and the Command
Window.

Other Forms of Help (p. 4-51) Use product-specific help features,
download M-files, contact Technical
Support, see documentation for
other MathWorks products, view a
list of other books, and participate in
a MATLAB newsgroup.

4-2

Help Browser Overview

Help Browser Overview

In this section...

“About the Help Browser” on page 4-3

“Opening the Help Browser” on page 4-3

“Resizing the Help Browser” on page 4-5

“Types of Documentation” on page 4-7

“Accessing Documentation on the Web” on page 4-8

“Adding Help Files” on page 4-9

“Documentation in Other Languages” on page 4-9

About the Help Browser
The Help browser is an HTML browser integrated with the MATLAB desktop.
Use the Help browser to search and view documentation and demonstrations
for MATLAB and all other installed MathWorks products. MATLAB
automatically installs the documentation and demos for a product when you
install that product.

Opening the Help Browser
To open the Help browser, click the Help button in the desktop toolbar,
type helpbrowser in the Command Window, or use the Help menu in any
tool. There are two panes:

• The Help Navigator, on the left, for finding information, includes a Search
for field, and Contents, Index, Search Results, and Demos tabs. For
more information, see “Finding Information with the Help Browser” on
page 4-10.

• The display pane, on the right, for viewing documentation and demos.

4-3

4 Help for Using MATLAB

��%��	�������
��������������������!	��
�	����������������	���	������	���

+��������
����%��
����	������������

�	�������������	��
	�������	��
��������

'� �������������%����
��6���������	�����������������

4-4

Help Browser Overview

Resizing the Help Browser
To adjust the relative width of the two panes, drag the separator bar between
them. You can also change the font in either of the panes — see “Help Fonts
and Colors Preferences” on page 4-39.

Once you find the documentation you want, you can close the Help Navigator
pane so there is more screen space to view the information itself. This is
shown in the following figure. To close the Help Navigator pane, click the
Close box in the pane’s upper right corner. To open the Help Navigator
pane from the display pane, click the Help Navigator button on the toolbar.
Alternatively, use the View menu.

4-5

4 Help for Using MATLAB

4-6

Help Browser Overview

Types of Documentation
The Help browser and help functions provide access to the following types
of information for all installed MathWorks products. The icons shown here
appear in the Help browser contents listing to help you quickly identify
documentation by type.

Icon
Type of
Documentation Description and When to Use

Getting Started Review Getting Started documentation before you begin
using a product or feature for the first time. Then,
to learn more, go to the user guides, reference pages,
demos, and examples.

or

or

Product MATLAB, toolboxes, and related products use orange
book icons . Simulink, blocksets, and related products
use blue book icons . Link and Target products use
green book icons .

Index of Examples Accessible via the Help browser Contents listing, this
is an index of the major examples included in the Help
browser documentation.

User Guides (blue) User guide material contains overviews as well as
detailed instructions. Consult it after reviewing Getting
Started material.

Reference Pages
(orange)

Each function has a reference page that provides the
syntax, description, examples, and other information
for that function. Each reference page includes links to
related functions and additional information. Reference
pages are also provided for blocks and properties.

Release Notes An overview of new products and features in a release.
Release Notes also include upgrade information,
links to fixed and known problems, and compatibility
considerations. Review the Release Notes for all your
products when you first start using a new release.
Release Notes for the current version include the release
notes for multiple prior versions.

4-7

4 Help for Using MATLAB

Icon
Type of
Documentation Description and When to Use

Printable
Documentation

Most products provide access to the online
documentation in a printable format, PDF. Access PDF
files via the Help browser and print them from your
PDF reader, such as Adobe Acrobat. Most PDF files
reside only on the MathWorks Web site, so you need an
Internet connection to view them.

none Demos MathWorks products come with demonstrations that
run key features of the product. Many of the demos run
MATLAB code. Use the Help browser Demos pane or
Search Results to access demos for the products you
have installed.

none M-File Help Get M-file help in the Command Window to quickly
access basic information for a function or model. It
provides a brief description of a function and its syntax.
It is called M-file help because the text of the help is a
series of comments at the top of the M-file for a function.

Accessing Documentation on the Web
You can access all product documentation on the MathWorks Web site at
http://www.mathworks.com/access/helpdesk/help/helpdesk.shtml.
These are some uses for the Web site version of the documentation:

• Access documentation for products you have not installed.

• Access documentation for the most current version. If you do not see
the information you are looking for in the Help browser and know you
are not running the most current version of MATLAB, the most current
version of the documentation, which is on the Web site, might include more
information. Note, though, that the documentation on the Web site might
refer to features that are not part of your earlier-version product.

• Access documentation for a prior version of some products (Release 13 with
Service Pack 2). Note that the release notes on this page include release
notes for multiple prior versions. For example, you can find information
about MATLAB Version 6.0 (Release 12) new features and changes.

4-8

http://www.mathworks.com/access/helpdesk/help/helpdesk.shtml
http://www.mathworks.com/access/helpdesk_r13/help/helpdesk.html

Help Browser Overview

• Access documentation via your system Web browser, such as when you are
not running MATLAB or if you prefer your system Web browser.

To determine the URL for a page in the Help browser, see “View the Page
Location” on page 4-30

PDF documentation is available only on the Web site.

You cannot read MATLAB documentation files from the MATLAB installation
media. You also cannot use a Web browser to read the documentation files
installed with MATLAB because the files are compressed JAR files.

Adding Help Files
You can add your own HTML help files so that they appear in the Help
browser. For details, see in the online documentation.

Documentation in Other Languages
The MathWorks documentation is available in English. Japanese versions of
MATLAB include documentation that has been translated into Japanese. For
more information, go to http://www.cybernet.co.jp/matlab.

4-9

http://www.cybernet.co.jp/matlab

4 Help for Using MATLAB

Finding Information with the Help Browser

In this section...

“Help Navigator” on page 4-10

“Contents in the Help Browser” on page 4-10

“Index for the Help Browser” on page 4-13

“Search Documentation and Demos with the Help Browser” on page 4-16

“Favorites” on page 4-24

Help Navigator
The Help Navigator is in the left pane of the Help browser. It provides a
table of contents, an index, and a search feature to help you find information.

Contents in the Help Browser
To list the documentation titles and tables of contents for products you
installed, click the Contents tab in the Help Navigator pane. To show
documentation for only some of the installed products, use the product filter.

4-10

Finding Information with the Help Browser

Product Roadmap
When you select a product in the Contents pane (any entry with a book
icon), such as MATLAB or Communications Toolbox, a roadmap of the
documentation for that product appears in the display pane. The roadmap
includes links to commonly used documentation sections, including

4-11

4 Help for Using MATLAB

• Function and block references pages

• An index of major examples in the documentation

• The PDF version of the documentation, which is suitable for printing (this
is the only direct access from MATLAB to the printable documentation)

Navigate the Contents Listing
In the Contents listing, you can

• Click the + to the left of an item to show the first page of that document or
section in the display pane and expand the listing for that item in the Help
Navigator pane. You can alternatively: double-click the item, press the
right arrow key, or press + on the numeric keypad.

• Click the - to the left of an item to collapse the listings for that item. You
can alternatively: double-click the item, press the left arrow key, or press -
on the numeric keypad.

• Select an item to show the first page of that document or section in the
display pane.

• Press * on the numeric keypad to show all subentries for the selection.

• Use the down and up arrow keys to move through the list of items.

Icons in the Contents Listing
Icons for entries in the top levels of the Contents pane listing represent the
type of documentation so you can quickly find the kind of information you need
for a product. See the table for icons in “Types of Documentation” on page 4-7.

Synchronize the Contents Listing and Demos Listing with the
Display Pane
By default, the topic highlighted in the Contents pane matches the title of the
page appearing in the display pane. The Contents pane listing is said to be
synchronized with the displayed document. This feature is useful if you access
documentation with a method other than the Contents pane, for example,
using a link in a page in the display pane, or selecting a search result. With
synchronization, you know what book and section the displayed page is part of,
and where that section fits within the overall book. Note that synchronization

4-12

Finding Information with the Help Browser

only applies to the major headings in a document. For pages that begin with
lower level headings, the Contents pane listing does not synchronize.

You can turn off synchronization. To do so, use preferences. See “General —
Keep Contents Synchronized” on page 4-38.

Synchronization applies to the Contents and Demos panes. The page shown
in the display pane does not necessarily correspond to the selection in the
Index, or Search Results panes. However, if you return to the Contents
pane (or Demos pane), the displayed page synchronizes with the Contents
(or Demos) pane.

This example illustrates synchronization for after performing a search.
When you enter "interactive plotting" in the Search for field, the
Search Results pane displays a list of results in the Help Navigator,
with the first documentation result selected. The display pane shows the
page corresponding to that first result, Plotting Tools Interactive
Plotting. When you click the Contents tab, the tree automatically expands
to show MATLAB > Graphics > Plots and Plotting Tools and selects the
Plotting Tools Interactive Plotting entry.

This example illustrates synchronization for demos. When you run

demo('matlab', 'graphics')

the Demos pane appears, with the MATLAB Graphics entry selected.

Index for the Help Browser
To find specific index entries (selected keywords) in the MathWorks
documentation for installed products, use the Index in the Help Navigator
pane.

4-13

4 Help for Using MATLAB

1 Click the Index tab.

2 Type a word or words in the Enter index term field. As you type, the
Index pane displays matching entries and their subentries (indented).
It might take a moment for the display to appear. The index is not case

4-14

Finding Information with the Help Browser

sensitive. If there is not a matching entry, it displays the page for the letter
that your entry begins with.

The product whose documentation includes the matching index entry
is listed next to the index entry, which is useful when there are multiple
matching index entries. You might have to make the Help Navigator
pane wider to see the product.

3 Select a blue index entry from the list (where blue represents a hyperlink)
to display the page to which the term refers. Multiple links per entry are
denoted by numbers in brackets following the term. (Black index entries
are headings and do not link to any page.)

When you select an entry, its color becomes red. The page whose entry
you selected appears in the display pane, scrolled to the location that the
entry references.

4 To see more matching entries, scroll through the list.

Tips for Using the Index

• To see entries for selected products only, select File > Preferences > Help
and set the product filter.

• To see entries for all installed products, select File > Preferences > Help,
and clear the Enable product filter check box.

• For more or different results, type a different term or reverse the order of
the words you type. For example, if you are looking for an entry about tab
completion for Editor/Debugger, a subentry does not exist. Instead type
tab completion and there is a subentry Editor/Debugger.

• After selecting an entry, search for specified text in the displayed page
using the Find tool, accessible from the Find button on the display pane
toolbar.

• When there are multiple matching entries, refer to the product associated
with each entry, which appears in the second column of the Index results.
You might need to make the pane wider to see it.

4-15

4 Help for Using MATLAB

• For different but related results, try using the Search for field—for
instructions, see “Search Documentation and Demos with the Help
Browser” on page 4-16.

• See “Specifying Colors for the Help Browser” on page 4-41 for information
about changing the color of hyperlinks in the Index.

Search Documentation and Demos with the Help
Browser

• “Searching in the Help Browser” on page 4-16

• “Wildcards in Search (Partial Word)” on page 4-21

• “Exact Phrases in Search” on page 4-21

• “Boolean Operators in Search” on page 4-21

• “More About Search” on page 4-22

• “Get Fewer Results” on page 4-22

• “Get More Results” on page 4-23

Searching in the Help Browser
To look for a specific word or phrase in the documentation or demos, use the
Search for field in the Help Navigator.

4-16

Finding Information with the Help Browser

1 To limit (or extend) the products whose documentation and demos are
searched, set the product filter.

4-17

4 Help for Using MATLAB

2 In the Search for field, type the word or words you want to find and click
Go (or press Enter or Return). Some techniques for honing your search
are

• Exact Phrase — Search for an exact phrase by enclosing words in
quotation marks, for example, "plot tools". For more information, see
“Exact Phrases in Search” on page 4-21.

• Wildcard (Partial Word) — Search for variations of a word, also called
partial word searching, by using the wildcard symbol (*) in place of
letters in a word, for example, plot* tools. For more information, see
“Wildcards in Search (Partial Word)” on page 4-21.

• Boolean Operators — Add the Boolean operators AND, OR, and NOT
between search words to include or exclude words. By default, search
assumes an AND between all search words and exact phrases. For more
information, see “Boolean Operators in Search” on page 4-21.

The documents and demos containing all of the search words are listed in
the Search Results tab. Two sets of results appear: Documentation and
Demo. The number of results for each appears in parentheses at the top
of the listing, and the total number for both sets of results appears in the
lower left corner of the Help browser. Both sets of results have additional
columns that list the Product, and for documentation, another column
lists the Section. You might need to make the Help Navigator pane
wider to see all columns.

3 Select an entry from the list of results. By default, the first documentation
entry is automatically selected. If there are no documentation results, but
there are demo results, the first demo entry is automatically selected.

The selected page appears in the display pane with all occurrences of the
search words and exact phrases highlighted, using a different color for each
search word or phrase. Highlights remain until you view another page or
until you click the Refresh button in the toolbar.

In the display pane, use the Find tool, accessible from the Find button
on the toolbar, to find a specified word in that page.

4 Search results are ordered by relevance. For example, for documentation,
reference pages that match the search term appear first, followed by titles

4-18

Finding Information with the Help Browser

that contain all search words, with pages containing a single instance of
each search word appearing last. Change the display of search results to
more easily find the most relevant results:

• Sort by column — Change the order of the results by clicking a column
heading. For example, click Product to group results by product. Click
Title to sort titles alphabetically. A triangular icon indicates the column
on which you most recently sorted. Click the heading again to sort by the
column but in the reverse order.

After changing the order of results, to see results ordered by relevance,
click Go to rerun the search.

• Reorder columns — Change the location of a column by dragging its
heading to a new position. For example, you can drag the Product
column to the middle for documentation results.

• Resize columns — Make columns wider or narrower by dragging the
separator bar between the column headings. Similarly, make the Help
Navigator wider or narrower.

5 For more results, you can search for the words in the Technical Support
database of bug reports, solutions, and notes on the MathWorks Web site
by clicking the link at the bottom of the Search results pane.

4-19

4 Help for Using MATLAB

Function Alternative. From the Command Window, use docsearch to open
the Help browser to the Search pane and search for the specified term. For
example

docsearch('publish* html')

finds all pages that contain the word publish or its variations, such as
publishing, published, and so on, and also contains the word html.

docsearch('"plot tools"')

finds all pages containing the exact phrase plot tools.

4-20

Finding Information with the Help Browser

For details, see the docsearch reference page.

Wildcards in Search (Partial Word)
You can use the wildcard character (*) in place of letters or digits in your
search terms. For example, plot* finds various forms of the word plot, such
as plot, plots, and plotting. The search term p*t also finds those variations of
plot as well as variations of print and part, among others.

You can use multiple wildcards in a word or search term. For example, plot*
tool* finds plotting tools, among other terms. The term p*t* tool* finds not
only plotting tools, but also pointer tooltip.

You cannot use a wildcard with just one letter or digit, nor can you include
wildcards within an exact phrase. You cannot begin a word in a search term
with a wildcard character. For example, these fail: p*, "plot* tools", plot
*ool.

Exact Phrases in Search
To find a phrase, type quotation marks around it. For example, "plot tools"
finds only pages that include plot tools together, but does not find pages
that include plot in one part of the page and tools in another part of the
page. Specify an exact phrase to reduce the number of irrelevant results. For
example, "plot tools" finds about 10 pages in MATLAB documentation,
while plot tools finds about 100 pages.

You can specify more than one exact phrase, such as "plot tools" "figure
palette" to find pages that contain both "plot tools" and "figure
palette". You cannot use a wildcard within an exact phrase.

Boolean Operators in Search
The search automatically performs a Boolean AND for multiple words. In the
example publish* html, it finds all pages that have the word publish or its
variations, and the word html.

You can refine the search by including the Boolean operators NOT, OR, and AND
between words. The operators must be in all capital letters and there must be
a space before and after each operator. The NOTs are evaluated first, followed
by the ORs, and then the ANDs.

4-21

4 Help for Using MATLAB

Example Using Boolean Operators in Search. Type

plot* tools NOT time series

to find all pages that contain the words plot or its variations and tools, but
not the phrase time series.

More About Search
These are the guidelines search uses:

• Insignificant words (a, an, the, of) are ignored.

• Search is not case sensitive.

• Search only finds letters and digits, but not symbols. To find a symbol,
look for the word (for example, plus instead of +), use the Index, or
see Operators and Special Characters in the MATLAB Functions — By
Category. Another option is to search the PDF documentation, which
supports searching for symbols — instructions to access the PDF file are
included in “Printing the PDF Version of Documentation” on page 4-42.

• Search find words in comments or code for M-file and Model types demos.
It finds comments in the M-file help for M-GUI demos. It does not search
video demos.

• If you search for a function that is used in multiple products (called an
overloaded function), the reference pages for all those products are listed.
Use the Product column in Search Results to determine the reference
page you want.

Get Fewer Results
If there are too many results for the search to be useful, try the following.

Problem Try These Suggestions

Too many products Select File > Preferences > Help and enable the product filter for
specified products. For details, see “Product Filter” on page 4-37.

Order results by product — click the Product column in Search
Results. If you cannot see the column, make the pane wider.

4-22

Finding Information with the Help Browser

Problem Try These Suggestions

Pages are not about search
word, but just mention it

Try the Index pane to see more important entries for that search
word.

Too many irrelevant
results

Type more than one word in the Search for field.

Look for an exact phrase by enclosing words in quotations marks,
such as "plot tools".

Use Boolean operators (in all capitals), for example, printing AND
figures NOT exporting.

Topic is not relevant Look at the Section column in Search Results, which provides
context for the result. If you cannot see the column, make the pane
wider.

Want to look only within
part of a product’s
documentation

For products like MATLAB, you might want to search only part of
the documentation. There is no way to do this in the Help browser.
However, you might be able to accomplish that via PDF search. For
example, you can search the “Getting Started with MATLAB” PDF
file, or the “MATLAB External Interfaces” PDF file. Instructions
to access the PDF file are included in “Printing the PDF Version of
Documentation” on page 4-42.

Get More Results
If you want more results, try the following.

Problem Try These Suggestions

No results for the product Be sure the product filter is set correctly. Select
File > Preferences > Help and disable the product
filter, or at least ensure the products of interest are selected. For
details, see “Product Filter” on page 4-37.

4-23

4 Help for Using MATLAB

Problem Try These Suggestions

No results but you know
the word should be there

Try variations of the search word by using a wildcard symbol (*).
For example, search for preference* to find all pages that contain
either the word preference or the word preferences.

Not enough information Try searching the Technical Support database of bug reports,
solutions, and technical notes by clicking the link at the bottom of
the Search results pane.

If you are not running the most current version of MATLAB,
try looking at the most current version on the Web site. It
might contain additional information. For more information, see
“Accessing Documentation on the Web” on page 4-8.

See Also. “Finding Files and Content Within Files” on page 5-49, which
describes the Find Files tool you use to look for files and content within files,
such as comments in M-files or code fragments.

Favorites
Favorites are bookmarks to pages in the Help browser documentation and
M-file type demos.

Add Favorites
To designate the displayed page as a favorite (that is, to bookmark it),

1 Select Favorites > Add to Favorites.

2 The Favorites Editor dialog box opens. You can accept the defaults and
click Save, or make changes to the entries:

a Use the Label provided, or change it to another term.

b Do not change the entry for Callback.

c Maintain the Category as Help Browser Favorites so you can access
them from the Favorites menu.

d For Icon, keep the default Help icon, or choose another.

4-24

Finding Information with the Help Browser

A favorite is implemented as a MATLAB shortcut, so the dialog box is
the same as for the Shortcut Editor.

Favorites from previous releases are not migrated to a new release.

Go to Favorites
Select the Favorites menu to view the list of pages you previously designated
as favorites (bookmarks). Select an entry and that page appears in the
display pane.

Organize Favorites
You can rename, remove, and reorder the list of favorites. Select
Favorites > Organize Favorites. For more information, click Help in the
Organize Favorites dialog box.

4-25

4 Help for Using MATLAB

Viewing Documentation in the Help Browser

In this section...

“About the Display Pane” on page 4-26

“Browse to Other Pages” on page 4-27

“Links” on page 4-28

“Find Text in Displayed Pages” on page 4-28

“Copy Information” on page 4-29

“Evaluate a Selection” on page 4-29

“Open a Selection” on page 4-29

“Help on Selection” on page 4-29

“View the Page Source (HTML)” on page 4-29

“View the Page Location” on page 4-30

About the Display Pane
After finding documentation with the Help Navigator, view the
documentation in the display pane. The following illustration shows the Help
Navigator closed to provide a larger area for viewing the information.

4-26

Viewing Documentation in the Help Browser

Browse to Other Pages
Use the arrow buttons in the page and in the toolbar to go to other pages.

4-27

4 Help for Using MATLAB

View the next page in a document by clicking the Next page button at the
top or bottom of the page. View the previous page in a document by clicking
the Previous page button at the top or bottom of the page. These arrows
allow you to move forward or backward within a single document. The arrows
at the bottom of the page are labeled with the title of the page they go to.

View the page previously shown by clicking the Back button in the display
pane toolbar. After using the Back button, view the next page shown by
clicking the Forward button in the display pane toolbar. These buttons work
like the forward and back buttons of popular Web browsers. You can also go
back or forward by right-clicking a page and selecting Back or Forward
from the context menu.

Links
Click links in the displayed page to go to a related topic for more information
on the subject. Links appear underlined and in blue, while visited links
appear in purple. Links to Web addresses open in the MATLAB Web Browser.
Click the middle mouse button to open the linked page in a separate window.

Find Text in Displayed Pages
To find a phrase in the currently displayed page,

1 Click the Find button . In the resulting Find dialog box, type the word
or phrase you are looking for. You can type a partial word, for example,
preference to find all occurrences of preference and preferences. Use
the check boxes to specify options. Click Find Next.

The search begins at the current cursor position and the page scrolls to the
first occurrence of the phrase in the page and highlights it.

2 To find more occurrences in that page, click Find Next or Find Previous
in the Find dialog box, or use the keyboard shortcuts F3 and Shift+F3.

MATLAB beeps when a search for Find Next reaches the end of the page,
or when a search for Find Previous reaches the top of the page. If you
have Wrap around selected, it continues searching after beeping.

4-28

Viewing Documentation in the Help Browser

You can change the selection in the Look in field to search for the specified
text in other MATLAB desktop tools.

See “Search Documentation and Demos with the Help Browser” on page 4-16
for instructions on looking through all the documentation instead of just one
page.

Copy Information
To copy information from the display pane, such as code in an example, first
select the information. Then right-click and select Copy from the context
menu. You can then paste the information into another tool, such as the
Command Window or Editor/Debugger, or into another application, such as a
word processing application.

Evaluate a Selection
To run code examples that appear in the documentation, select the code in
the display pane. Then right-click and select Evaluate Selection from the
context menu. The statements execute in the Command Window.

Open a Selection
In a page in the display pane, select the name of a file that is provided with
MATLAB, such as an M-file. Then right-click and select Open Selection
from the context menu. The file opens in MATLAB. For example, an M-file
opens in the Editor/Debugger.

Help on Selection
In a page in the display pane, select the name of a function that is provided
with MATLAB. Then right-click and select Help on Selection from the
context menu. The reference page for that function opens in Help browser.

View the Page Source (HTML)
To view the HTML source for the currently displayed page, select
View > Page Source. A read-only HTML version of the page appears in a
separate window. You can copy selections from the HTML source and paste

4-29

4 Help for Using MATLAB

them into other tools like the Editor/Debugger or Command Window, or into
other applications.

View the Page Location
To view the location of the page currently displayed, select View > Page
Location. The Help Page Location dialog box appears, providing the full
path to the documentation file for both your local system and the MathWorks
Web site.

You can copy the information from this window into an e-mail message or
other tool to facilitate communication with other users or The MathWorks.
For example, if you find a page of documentation that you know would be
useful to a colleague running MATLAB, send them the link so they can view
the page in the Help browser. Note that the docroot function used with the
web function is unsupported, intended only for use by MathWorks products.

Click the Go button to view the same documentation page on The MathWorks
Web site. This is useful if you do not see the information you are looking for
on the page in view and know you are not running the most current version
of MATLAB. The documentation for the most current version is on the Web
site and might include more information than the documentation for your
version. Note, though, that the documentation on the Web site might refer
to features that are not part of your earlier-version product. See “Accessing
Documentation on the Web” on page 4-8 for more information.

4-30

Demos in the Help Browser

Demos in the Help Browser

In this section...

“About Demos” on page 4-31

“Using Demos” on page 4-32

“Adding Your Own Demos” on page 4-36

About Demos
MATLAB and related products include demos that you can access from the
Help browser Demos pane.

There are four types of demos:

• M-file: Demos that tell a step-by-step story, including source code,
commentary, and output. They are published from M-file scripts to HTML
output using the Editor/Debugger. The first comment line of the demo
M-file begins with two comment symbols (%%), and similarly, two comment
symbols (%%) create a cell for each step. The MATLAB Graphics Square
Wave from Sine Waves demo is an M-file type demo.

• M-GUI: Stand-alone tools for exploring a feature. An example is the
MATLAB Graphics Vibrating Logo demo.

• Model: Simulink block diagrams. An example is the Engine Timing
Simulation demo.

• Video: Movies that highlight key features in a tool. They play in your
system browser and require the Macromedia Flash Player plug-in. Some
also require an Internet connection. An example is the MATLAB Desktop
and Command Window demo.

The MATLAB code and Simulink blocks used in the demos (except videos) are
available for you to view and copy for use in your own applications.

See also Examples for each product in the Contents pane. These examples
are similar to demos but are integrated in the documentation.

4-31

4 Help for Using MATLAB

Using Demos
To access demos for the products you have installed,

1 Click the Demos tab in the Help Navigator.

You can also access demos from the Start button, by using the demo
function, or from the Help menu for some tools.

2 Click the + for a product area to list the products or categories that have
demos. Then click + for a product or product category to list its demos.

All demos for that product or product area are listed in the display pane,
and each includes the type of demo along with a thumbnail image that
represents output from the demo.

3 Select a specific demo. Information about the demo appears in the display
pane.

4-32

Demos in the Help Browser

4 You can then view and run the demo, with specific options depending on
the type of demo:

4-33

4 Help for Using MATLAB

• For M-file demos, click the Open filename in the Editor link at
the top left. This opens the M-file in the Editor/Debugger. From the
Editor/Debugger, run the demo step by step by selecting Cell > Evaluate
Current Cell and Advance.

You can also click Run in the Command Window, and then follow the
instructions that appear in the Command Window. You might need to
scroll up to see all of the instructions.

See also “Running Demos and Base Workspace Variables” on page 4-35.

• For M-GUI demos, click the Open filename in the Editor link at the
top left. This opens the M-file in the Editor/Debugger.

Click the Run this demo link at the top right to start the GUI. Then
follow the instructions in the GUI to proceed through the demo.

• For Model demos, click Open this model to open the block diagram.

• For Video demos, click the Run this demo link in the top right to
play the video. These demos run in your system browser and require
the Macromedia Flash Player plug-in. Some also require an Internet
connection.

When you double-click a demo name in the Help Navigator pane, the demo
file opens for M-file and Model demos, or runs for M-GUI and Video demos.

The following example shows the results of running the MATLAB Graphics
Square Wave from Sine Waves demo (xfourier). In it, MATLAB generates
a series of plots, culminating in the final one shown here.

4-34

Demos in the Help Browser

Searching for Demos
You can use the Help browser search feature to find demos. Search find words
in comments or code for M-file and Model types demos. It finds comments
in the M-file help for M-GUI demos. It does not search video demos. For
instructions, see “Search Documentation and Demos with the Help Browser”
on page 4-16.

Running Demos and Base Workspace Variables
M-file demos run as scripts. Their variables are created in the MATLAB
base workspace. If you have variables in the base workspace when you run
an M-file demo, and the demo uses an identical variable name, there could
be problems due to variable name conflicts. For example, a variable of yours
might be overwritten by the demo. The demo’s variables remain in the base
workspace until you clear them or quit MATLAB.

4-35

4 Help for Using MATLAB

Function Alternative
To open the Demos pane in the Help browser, type demo in the Command
Window. You can go directly to the demos for a specific product. For example

demo toolbox signal

opens the Demos listing for Signal Processing Toolbox.

To run an M-GUI demo, type the demo name in the Command Window. For
example, type

vibes

to run the MATLAB Graphics demo showing an animated L-shaped
membrane.

To run an M-file demo step by step from the Command Window, type echodemo
followed by the demo name. For example, run

echodemo xfourier

Typing the demo name for an M-file demo runs the demo, but not step by step.

Typing the name of a model demo opens the block diagram.

Adding Your Own Demos
You can add your own demos so they appear in the Demos pane. For details,
see in the online documentation.

4-36

Preferences for the Help Browser

Preferences for the Help Browser

In this section...

“Product Filter” on page 4-37

“PDF Reader — Specifying Its Location” on page 4-38

“General — Keep Contents Synchronized” on page 4-38

“Help Fonts and Colors Preferences” on page 4-39

Product Filter
If you have MathWorks products in addition to MATLAB, such as Simulink,
toolboxes, and blocksets, set the product filter to limit the product
documentation and demos used:

1 Select File > Preferences > Help.

2 Under Product filter, select the check box for Enable product filter.
Click Select products.

The Help Product Filter dialog box opens.

3 Select the products whose documentation and demos you want to appear
in the Help Navigator. Click OK.

The Help Navigator updates to include only those products you specified.
The product filter settings are saved for your next MATLAB session.

4 When you want to use documentation and demos for all installed products,
in Help Preferences, clear the check box for Enable product filter.

The Release Notes entry in the Help Product Filter dialog box applies
to the Release Notes overview document for a release, for example, all
products in R2007b, not to the Release Notes for an individual product, for
example, MATLAB Release Notes for R2007b. Release Notes for a product
are considered part of the product’s documentation. For example, MATLAB
Release Notes are considered part of MATLAB, and Database Toolbox Release
Notes are considered part of Database Toolbox when you use the Help
Product Filter.

4-37

4 Help for Using MATLAB

Example Using the Product Filter
If you want to perform a search and have many products installed but know
the information you are seeking is in MATLAB or Communications Toolbox,
in the Help Product Filter, click Clear All and then select MATLAB and
Communications Toolbox.

The Contents only shows MATLAB and Communications Toolbox
documentation, the Index only shows entries for MATLAB and
Communications Toolbox, and the Search for feature only looks in and shows
results for MATLAB and Communications Toolbox documentation and demos.
Demos lists only demos for MATLAB and Communications Toolbox.

PDF Reader — Specifying Its Location
If you want to view the PDF version of the documentation, use the link on the
roadmap page for that product. To open the PDF file, the Help browser needs
to know the location of your PDF reader (for example, Adobe Acrobat).

For Windows systems, MATLAB reads the PDF reader location from the
registry, so you do not specify its location.

For UNIX systems, the default PDF reader is Acrobat and MATLAB
determines its location. If a different command starts your PDF reader,
specify it using preferences. Select File > Preferences > Help, and enter
the full pathname in the PDF reader field or use the Browse for Folder (...)
button to navigate your file system to select it.

General — Keep Contents Synchronized
By default, the displayed page is synchronized with the Contents or Demos
listings. For more information about this feature, see “Synchronize the
Contents Listing and Demos Listing with the Display Pane” on page 4-12.

To turn synchronization off, select File > Preferences > Help. Under
General, clear the check box for Keep contents tree synchronized with
displayed document. Select the check box to turn synchronization back on.

4-38

Preferences for the Help Browser

Help Fonts and Colors Preferences
Set fonts and colors for the Help browser the same way you would for other
desktop tools. This section describes the process for the Help browser:

• “Specifying Font Name, Style, and Size” on page 4-39

• “Specifying Colors for the Help Browser” on page 4-41

Specifying Font Name, Style, and Size
You can specify the font name (also called font type or family), style, and
size used in the Help Navigator.

For the display pane, you can specify the font name and size for the text font,
but changes do not impact the style. For the code font, your changes to size
apply, but changes to name and style have no impact. The following example
shows the results of specifying Comic Sans MS, bold, 14 point for the text
font; note that the bold has no effect.

4-39

4 Help for Using MATLAB

4-40

Preferences for the Help Browser

Use the same method as you would to specify fonts for any desktop tool — for
more information, see “Fonts Preferences for Desktop Tools” on page 2-62. By
default, the Help Navigator uses the desktop text font. The display pane
is considered to be an HTML Proportional Text tool, and by default, uses
the desktop text font.

This example changes the display pane font:

1 Select File > Preferences > Fonts > Custom.

2 From the Desktop tools list, select HTML Proportional Text. The Help
browser display pane is considered to be an HTML Proportional Text tool,
as is the MATLAB Web Browser. Changing the font preference affects
both tools.

3 For Font to Use, select Custom, and then specify the font characteristics:

• Name, for example, Comic Sans

• Size in points, for example, 14

After you make a selection, the Sample area shows how the font will look.

4 Click OK. The Help display pane fonts use the new settings. The MATLAB
Web Browser fonts also use the new settings.

Specifying Colors for the Help Browser
You can specify the background and text color used in the Help Navigator.
Use the same method as you would to specify the background color for any
desktop tool — for more information, see “Colors Preferences for Desktop
Tools” on page 2-70.

If the background color preference for your desktop tools is a dark color, you
might not be able to see index entries in the Help Navigator because they
are links, for which the default color is blue. To see the links, change the
Hyperlink color preference to a light or other contrasting color — for more
information, see “Other Colors” on page 2-75.

You cannot specify colors for the Help browser display pane.

4-41

4 Help for Using MATLAB

Printed Documentation

In this section...

“About Printed Manuals” on page 4-42

“Printing a Page from the Help Browser” on page 4-42

“Printing the PDF Version of Documentation” on page 4-42

About Printed Manuals
Generally, printed manuals are not provided for most products and tools. The
printed manuals typically contain less information, and is also sometimes
less current than the online documentation. If you want to purchase
printed documentation, see the online store at the MathWorks Web site at
http://www.mathworks.com.

Printing a Page from the Help Browser
To print the page currently shown in the Help browser, select File > Print,
or click the Print button in the display pane toolbar. The Print dialog box
appears.

Select All in the Print dialog box to print the entire page shown in the display
pane. Specifying a range of pages, for example, 1 to 3, prints the first three
pages of the page currently shown in the display pane.

Complete the dialog box and click OK to print.

Printing the PDF Version of Documentation
If you need to print more than a few pages of documentation, or if you want
the pages to appear as if they came from a printed book, print the PDF
version of the documentation. PDF documentation is shown and printed using
your PDF reader, usually Adobe Acrobat Reader. The PDF documentation
reproduces the look and feel of a printed book. In the PDF document, use
links from the table of contents, index, or within the document to go directly
to the page of interest within that document. Note that some documentation
available from the Help browser is not available in PDF format.

4-42

http://www.mathworks.com

Printed Documentation

Note The Help browser accesses PDF documentation from the MathWorks
Web site. Therefore, you need Internet access to view or print PDF
documentation.

1 In the Help browser, click the Contents tab and select a product, for
example, MATLAB.

The roadmap page opens for that product, providing links to key
documentation for that product.

2 Near the end of the roadmap page, listed under Printing the
Documentation Set, are links for printing the documentation. Select the
link for the item you want to print.

The selected document is accessed from the MathWorks Web site. Your
PDF reader opens, displaying the documentation.

If you are using a UNIX platform and cannot open the PDF documentation,
check the Help preferences. See “PDF Reader — Specifying Its Location”
on page 4-38 for more information.

3 To print the documentation, select Print from the File menu in your PDF
reader.

4-43

4 Help for Using MATLAB

Help Functions

In this section...

“About Help Functions” on page 4-44

“Summary Table of Help Functions” on page 4-44

“View Function Reference Pages — the doc Function” on page 4-45

“Getting Help in the Command Window — the help Function” on page 4-46

About Help Functions
There are several help functions that provide forms of help different than
the Help browser documentation, or provide alternative ways to access the
Help browser information.

Summary Table of Help Functions

Function Description

dbtype Displays specified M-file with line numbers. If you want to see only the
input and output arguments for a function, use dbtype function 1,
which displays the first line of the M-file.

demo Displays the Demos pane in the Help browser, from which you can access
demonstrations for the products you have installed. With an argument,
runs the specified demo.

doc Displays in the Help browser, the reference page for the specified function,
block, or property. Usually more extensive than results for the help
function, the reference page provides syntax, a description, examples,
illustrations, and links to related functions.

docopt On UNIX systems, specifies Web browser information, used when
displaying Internet Web pages.

docsearch Run the Help browser search feature for the specified term.

help Displays M-file help (a description and syntax) in the Command Window
for the specified function. For MDL-files, displays a description of the
model.

4-44

Help Functions

Function Description

helpbrowser Opens the Help browser, the MATLAB interface for accessing
documentation.

helpdesk Opens the Help browser. In previous releases, helpdesk displayed the
Help Desk, which was the precursor to the Help browser. This function
will be removed in a future release.

helpwin Displays in the Help browser a list of all functions, and provides access to
M-file help for the functions.

lookfor Displays in the Command Window a list and brief description of all
functions whose brief description includes the specified keyword.

web Opens the specified URL in the specified browser. Use web in your own
M-files to display HTML documentation you create for your work.

whatsnew Displays the Release Notes in the Help browser.

View Function Reference Pages — the doc Function
To view the reference page for a function, block, or property in the Help
browser, use doc. For example, type

doc format

to view the reference page for the format function.

Overloaded Functions with the doc Function
When a function name is used in multiple products, it is said to be an
overloaded function. The doc function displays the reference page for the
first function on the MATLAB search path having that name, and displays a
hyperlinked list of the overloaded functions in the Command Window.

For example, using the default search path

doc set

displays the reference page for the MATLAB set function in the Help browser.
The Command Window displays a hyperlinked list of the set functions located
in other directories, such as

4-45

4 Help for Using MATLAB

database/set

which is the set function for Database Toolbox. Click a link to go to that
set reference page.

To directly get the reference page for an overloaded function, specify the name
of the directory containing the function you want the reference page for,
followed by the function name. For example, to display the reference page for
the set function in Database Toolbox, type

doc database/set

Some products have more than one function with the same name. For example,
MATLAB includes a built-in get function in the graphics directory and a get
function in the MATLAB serial directory (for serial port functions). Type

doc get

The reference page for the MATLAB graphics built-in get function appears,
and the Command Window lists overloaded functions in other products.
But the list does not include any overloaded functions in the same product.
Therefore, get in the MATLAB serial directory is not listed as an overloaded
function. Type

doc ('get (serial)')

to display the reference page for the get function located in the MATLAB
serial directory.

Getting Help in the Command Window — the help
Function
To quickly view a brief description and syntax for a function in the Command
Window, use the help function. For example, typing

help bar

displays a description and syntax for the bar function in the Command
Window. This is called the M-file help. For other arguments you can supply,
see the reference page for help.

4-46

Help Functions

Note M-file help displayed in the Command Window uses all uppercase
characters for the function and variable names to distinguish them from
the rest of the text. When typing function names, however, use lowercase
characters. Some functions for interfacing to Java do use mixed case; the
M-file help accurately reflects that, and you should use mixed case when
typing them.

If you need more information than the help function provides, use the doc
function, which displays the reference page in the Help browser. It can include
color, images, links, and more extensive examples than the M-file help. For
example, typing

doc bar

displays the reference page for the bar function in the Help browser.

Overloaded Functions with the help Function
When a function name is used in multiple products, it is said to be an
overloaded function. The help function displays M-file help for the first
function on the MATLAB search path having that name, and displays a
hyperlinked list of the overloaded functions at the end.

For example, using the default search path

help set

displays M-file help for the MATLAB set function, and displays a hyperlinked
list of the set functions residing in other directories, such as

database/set

which is the set function for Database Toolbox. Click a link to display the
M-file help for that set function.

To directly get help for an overloaded function, specify the name of the
directory containing the function you want help for, followed by the function
name. For example, to get help for the set function in Database Toolbox, type

4-47

4 Help for Using MATLAB

help database/set

Creating M-File Help for Your Own M-Files
You can create M-file help for your own M-files and access it using the help
command. See the help reference page for details.

Help in the Current Directory Browser
The Help Report and the Contents Report provide other ways of looking at
and managing help for M-files — see “Directory Reports in Current Directory
Browser” on page 7-2.

You can also see the help for an M-file in the Current Directory browser if you
have its preference for Show M, MDL, and MAT file contents selected.

Help for Model Files
Use the help function with an MDL filename to display the complete
description for the model file. For example, run

help f14_dap.mdl

and MATLAB displays the description of the Simulink F-14
Digital Autopilot High Angle of Attack Mode, as defined in the
Model > Properties > Description.

Multirate digital pitch loop control for F-14 control design
demonstration.

If Simulink is installed, you do not need to include the .mdl extension.

You can see the same description in the Current Directory browser if you have
its preference for Show M, MDL, and MAT file contents selected.

4-48

Getting Pop-Up Help for Functions

Getting Pop-Up Help for Functions
MATLAB provides pop-up help for MATLAB functions from both the
Editor/Debugger and the Command Window. Pop-up help, also referred to as
“help on selection,” enables you to view documentation for a function without
requiring you to interrupt the flow of your work to open the Help browser.

To access pop-up help, follow these steps:

1 Select a function or click the pointer in a function for which you want
information.

2 Press F1 or right-click and select Help on Selection.

Documentation for the function opens in a small pop-up window, similar to
that shown in the figure that follows.

3 Move or resize the pop-up window, if desired.

4 Press the F1 key to toggle focus between the pop-up window and Command
Window or the Editor/Debugger.

When you type in the Command Window or the Editor/Debugger, the
pop-up window remains open.

5 With the pop-up window active, press the Escape (Esc) key to close the
pop-up window.

If you want to get documentation on a different function while the pop-up
window is open, there is no need to close it. Repeat steps 1 and 2—the pop-up
window refreshes with documentation for the new function.

If you want to open the Help browser from the pop-up window, click the Open
Help Browser link at the bottom of the pop-up window. The Help browser
opens and the pop-up window closes.

4-49

4 Help for Using MATLAB

4-50

Other Forms of Help

Other Forms of Help

In this section...

“Documentation for Other Products” on page 4-51

“Product-Specific Help Features” on page 4-51

“User-Contributed M-Files” on page 4-51

“Technical Support” on page 4-52

“Newsgroup for MathWorks Products” on page 4-52

“Other Resources for MATLAB Information” on page 4-53

“Version and License Information” on page 4-53

“Provide Feedback” on page 4-54

Documentation for Other Products
The Help browser provides access to documentation for all products
installed on your system. To view the online documentation
for all MathWorks products, use the MathWorks Web site at
http://www.mathworks.com/access/helpdesk/help/helpdesk.shtml.

Product-Specific Help Features
In addition to the Help browser and help functions, some products and tools
allow other methods for getting help. You will encounter some methods in the
course of using a product, such as entries in the Help menu, Help buttons
in dialog boxes, and selecting Help from a context menu. These methods
all display context-sensitive help. Other methods for getting help, such as
pressing the F1 key, are described in the documentation for the product or
tool that uses the method.

User-Contributed M-Files
You can download M-files contributed by users and developers of MATLAB,
Simulink, and related products from MATLAB Central. Before you write
an M-file yourself, especially if it seems to be a generic utility, check the
list of contributed files to see if someone has already written it. These
files are freely contributed and can be used without charge by anyone

4-51

http://www.mathworks.com/access/helpdesk/help/helpdesk.shtml

4 Help for Using MATLAB

who downloads them. To view the files available to download, go to
the MATLAB Central File Exchange page on the MathWorks Web site,
http://www.mathworks.com/matlabcentral/fileexchange/index.jsp.
You can access this from any desktop component via Help > Web Resources.

If you write M-files that you think would be of use to others, consider
submitting them to the MATLAB Central File Exchange via the Web page.

Technical Support
Technical Support provides help for problems you have with MathWorks
products:

• Find specific Technical Support information using the Help browser
Search feature. Run a search for a specified term. The end of the results
list includes a link that runs the same search on the support database.
This database, on the MathWorks Web site, provides the most up-to-date
solutions, bug reports, and technical notes for questions posed by users.

• Select Help > Web Resources > Support to go to the Support Web
page (http://www.mathworks.com/support). The page displays in your
system’s default Web browser. You can find out about other types of
information such as third-party books, ask questions, make suggestions,
view known bugs and workarounds, and report possible bugs.

• If you cannot access the Web site, e-mail Technical Support using the
address support@mathworks.com. You must provide your license number
to obtain support. It is helpful if you also provide your operating system
and MATLAB version number. You can obtain the information by running
the ver function or by selecting Help > About.

Newsgroup for MathWorks Products
The Usenet newsgroup for MATLAB and related products,
comp.soft-sys.matlab, (also known as cssm) is read by thousands of users
worldwide. Access the newsgroup to ask for or provide help or advice. You
can read and submit postings as well as view and search through a sizable
archive of postings using the MATLAB Central Newsgroup Access Web page
on the MathWorks Web site, http://www.mathworks.com/matlabcentral.
You can access this via Help > Web Resources > MATLAB Newsgroup
Access from any desktop component.

4-52

http://www.mathworks.com/matlabcentral/fileexchange/index.jsp
http://www.mathworks.com/support
mailto:support@mathworks.com
http://www.mathworks.com/matlabcentral

Other Forms of Help

First-time users to the newsgroup should read the newsgroup FAQ, linked
to from the MATLAB Central page. It is a good practice to try to solve your
own problem using the documentation and Technical Support database before
posting a question to the newsgroup. Be sure to post with a meaningful
subject that briefly describes the nature of the issue.

Other Resources for MATLAB Information
Following are some additional resources for help with MATLAB and related
products:

• Newsletters — The MathWorks publishes News and Notes twice
a year, containing feature articles, technical notes, and product
information for MATLAB users. More frequently, The MathWorks
issues MATLAB Digest, an electronic bulletin consisting of technical
notes, solutions, and timely announcements to the user community.
Select Help > Web Resources > MATLAB Newsletters or see
http://www.mathworks.com/company/newsletters/.

• Books — There are hundreds of MATLAB based books. For a list with
descriptions, see http://www.mathworks.com/support/books/.

• Seminars and Training — The MathWorks regularly presents free
seminars on special topics conducted in various locations. Webinars
on special topics are presented via the Web. The MathWorks offers
training classes for MATLAB and other products. For details, see
http://www.mathworks.com/company/events/.

• Mathtools.net — This is a technical computing Web portal with links to
many resources for MATLAB users. See http://www.mathtools.net/.

Version and License Information
If you need the version or license information for a product, select About from
the Help menu for that product. The version is displayed in an About dialog
box. If the product does not have a Help menu, use the ver function. To see
the license number for MATLAB, type license in the Command Window. See
also the ver, version, and license reference pages.

You can access information about your passcodes and licenses, as well get trial
versions of products, using Help > Web Resources > MathWorks Account.

4-53

http://www.mathworks.com/company/newsletters/
http://www.mathworks.com/support/books/
http://www.mathworks.com/company/events/
http://www.mathtools.net/

4 Help for Using MATLAB

Provide Feedback
To report problems or provide comments or suggestions to The MathWorks
about the documentation, help features, or products, use the Provide
feedback on this page link on the top and bottom of every page in the Help
browser.

4-54

5

Workspace, Search Path,
and File Operations

If you have an active Internet connection, you can watch the Workspace
Browser video demo, the Array Editor video demo, and the Current Directory
Browser video demo for an overview of the major functionality.

MATLAB Workspace (p. 5-2) The workspace is the set of variables
maintained in memory during
a MATLAB session. Use the
Workspace browser or equivalent
functions to view the workspace.

Viewing and Editing Workspace
Variables with the Array Editor
(p. 5-12)

View and make changes to variables
using the Array Editor.

Search Path (p. 5-23) MATLAB uses a search path to find
M-files and other MATLAB related
files. View and change the path
using the Set Path dialog box or
equivalent functions.

File Management Operations
(p. 5-35)

Search for, view, open, and make
changes to MATLAB related
directories and files, using the
Current Directory browser or
equivalent functions.

5 Workspace, Search Path, and File Operations

MATLAB Workspace

In this section...

“About the MATLAB Workspace” on page 5-2

“Opening the Workspace Browser” on page 5-3

“Viewing and Editing Values in the Current Workspace” on page 5-3

“Saving the Current Workspace” on page 5-5

“Loading a Saved Workspace and Importing Data” on page 5-7

“Changing and Copying Variable Names” on page 5-8

“Deleting Workspace Variables” on page 5-8

“Viewing Base and Function Workspaces Using the Stack” on page 5-9

“Creating Plots from the Workspace Browser” on page 5-9

“Opening Variables and Objects for Viewing and Editing” on page 5-9

“Preferences for the Workspace Browser” on page 5-10

About the MATLAB Workspace
The MATLAB workspace consists of the set of variables (named arrays) built
up during a MATLAB session and stored in memory. You add variables to the
workspace by using functions, running M-files, and loading saved workspaces.
For example, if you type

t = 0:pi/4:2*pi;
y = sin(t);

the workspace includes two variables, y and t, each having nine values.

You can perform workspace operations and related features using the
Workspace browser. Equivalent functions are available and are documented
with each feature of the Workspace browser. If you have an active Internet
connection, you can watch the Workspace browser video demo for an overview
of the major functionality:

5-2

MATLAB Workspace

Opening the Workspace Browser
To open the Workspace browser, select Workspace from the Desktop menu
in the MATLAB desktop, or type workspace at the Command Window prompt.

The Workspace browser opens.

Viewing and Editing Values in the Current Workspace
The Workspace browser shows the name of each variable, its value, and the
Min and Max calculations, which MATLAB computes using the min and max
functions, and updates automatically. The icon for each variable denotes
its class.

• You can display additional columns, including size (dimensions), size in
bytes, class, and other common statistical calculations such as mode and
standard deviation. To show or hide columns, select View > Choose
Columns or right-click any column heading. To specify the size limit
for calculations and how NaNs are considered, use “Preferences for the
Workspace Browser” on page 5-10.

• To resize the columns of information, drag the column header borders. To
reorder columns, drag a column header to a new position.

5-3

5 Workspace, Search Path, and File Operations

• You can select the column on which to sort as well as reverse the sort order
of any column. Click a column heading to sort on that column. Click the
column heading again to reverse the sort order in that column. For example,
to sort on Name, click the column heading once. To change from ascending
to descending, click the heading again. You cannot sort by the Value
column in the Workspace browser. Alternatively, select View > Sort By

• You can edit variable values directly in the Workspace browser Value
column. To edit a value, select the row to change in the Value column and
type the new value.

This illustration shows the Workspace browser with all columns in view,
sorted by the Class column, as indicated by the triangle in that column
heading. Preferences are set to show statistical values only for arrays under
10,000 elements, so results for a, (1 x 20000), do not appear. The preference
for treatment of NaNs is set to include them in calculations, as seen for n.
With the preference set to ignore NaNs, values other than NaN would appear.

Function Alternative
Use who to list the current workspace variables. Use whos to list the variables
and information about their size and class. For example:

>> who

5-4

MATLAB Workspace

Your variables are:

A C M R S c

>> whos
Name Size Bytes Class Attributes

A 4x4 128 double
C 1x3 348 cell
M 4x4x24 3072 double
R 3x4x5 480 double
S 1x3 826 struct
c 1x16 32 char

Use exist to see if the specified variable is in the workspace.

Saving the Current Workspace
The workspace is not maintained across MATLAB sessions. When you quit
MATLAB, the workspace is cleared. You can save any or all of the variables in
the current workspace to a MAT-file, which is a MATLAB specific binary file.
You can then load the MAT-file at a later time during the current or another
session to reuse the workspace variables. MAT-files use a .mat extension.

Note The .mat extension is also used by Microsoft Access.

Saving All Variables
To save all of the workspace variables using the Workspace browser,

1 From the File menu, select Save Workspace As, or click the Save button
in the Workspace browser toolbar.

The Save dialog box opens.

2 Specify the location and File name. MATLAB automatically supplies the
.mat extension.

3 Click Save.

5-5

5 Workspace, Search Path, and File Operations

The workspace variables are saved under the MAT-file name you specified.

You can also save the workspace variables from the desktop by selecting Save
Workspace As from the File menu.

Saving Selected Variables
To save some but not all of the current workspace variables,

1 Select the variable in the Workspace browser. To select multiple variables,
Shift+click or Ctrl+click.

2 Right-click and from the context menu, select Save As.

The Save to MAT-File dialog box opens.

3 Specify the location and File name. MATLAB automatically supplies the
.mat extension.

4 Click Save.

The workspace variables are saved under the MAT-file name you specified.

To specify preferences for saving MAT-files, see “MAT-Files Preferences” on
page 2-79.

Function Alternative
To save workspace variables, use the save function followed by the filename
you want to save to. For example,

save('june10')

saves all current workspace variables to the file june10.mat.

If you don’t specify a filename, the workspace is saved to matlab.mat in the
current working directory. You can specify which variables to save, as well
as control the format in which the data is stored, such as ASCII. For these
and other forms of the function, see the reference page for save. For a related
function, see genvarname. MATLAB provides additional functions for saving

5-6

MATLAB Workspace

information — see “Data Import and Export” in the MATLAB Programming
documentation.

Loading a Saved Workspace and Importing Data
To load saved variables into the workspace,

1 Click the Import Data button on the toolbar in the Workspace browser.

The Open dialog box opens.

2 Select the MAT-file you want to load and click Open.

The variables and their values, as stored in the MAT-file, are loaded into
the current workspace. If any variables being loaded have the same names
as variables in the current workspace, the values from the MAT-file replace
the values in the current workspace. Any variables in the MAT-file that are
not in the workspace are added to the workspace.

Function Alternative
Use load to open a saved workspace. For example,

load('june10')

loads all workspace variables from the file june10.mat.

Importing Data
MATLAB provides other methods and functions for loading information.
You can use one of these methods, the Import Wizard, from the Workspace
browser — select Edit > Paste to workspace or use Ctrl+V to import data
to MATLAB using the Import Wizard. For more information on the Import
Wizard and other methods for loading information, see the “Using the Import
Wizard”.

Viewing Variables in MAT-Files
Use the Current Directory browser to view the contents of a MAT-file without
loading the file into MATLAB. For details, see “Finding Files and Content
Within Files” on page 5-49.

5-7

5 Workspace, Search Path, and File Operations

Function Alternative. Use whos with the -file option.

Changing and Copying Variable Names
To rename a variable in the workspace, right-click the variable in the
Workspace browser and select Rename from the context menu. Type the new
variable name over the existing name and press Enter or Return.

To copy variable names to the clipboard, select the workspace variables and
select Edit > Copy. You can then paste the names, for example, into the
Command Window. Multiple variables are comma separated.

Deleting Workspace Variables
You can delete a variable, which removes it from the workspace. To delete a
variable using the Workspace browser,

1 In the Workspace browser, select the variable, or Shift+click or Ctrl+click
to select multiple variables. To select all variables, choose Select All from
the Edit or context menus.

2 Press the Delete key on your keyboard or click the Delete button on the
Workspace browser toolbar.

3 A confirmation dialog box might appear. If it does, click OK to clear the
variables.

The confirmation dialog box appears if you selected that preference. For
more information, see “Confirmation Dialogs Preferences” on page 2-81.

To delete all variables, select Edit > Clear Workspace from any desktop tool.

Function Alternative
Use the clear function to clear variables from the workspace. For example,

clear A M

clears the variables A and M from the workspace.

5-8

MATLAB Workspace

Viewing Base and Function Workspaces Using the
Stack
When you run M-files, MATLAB assigns each function its own workspace,
called the function workspace, which is separate from the MATLAB base
workspace. To access the base and function workspaces when running or
debugging M-files, use the Stack field in the Workspace browser. The Stack
field is only available in debug mode and otherwise is grayed out. The Stack
field is also accessible from the Array Editor and the Editor/Debugger. See
“Finding Errors, Debugging, and Correcting M-Files” on page 6-84for more
information. See also the dbstack and evalin functions.

Creating Plots from the Workspace Browser
From the Workspace browser, you can generate a plot of a variable. To create
a plot, click the Plot button on the Workspace browser toolbar and select
the plot type. The plot appears in a figure window. The button itself changes
to reflect the currently selected style of plot, for example bar or stem.

This feature is only available for variables whose data types can be plotted,
such as numeric. Open the variable in the Array Editor for additional plotting
options.

In addition, you can right-click the variable you want to plot. From the
context menu, choose the type of plot you want to create.

You can also Shift+click or Ctrl+click to select multiple variables to plot
together. When one of the variables is named time, t, or T, MATLAB assumes
it is the independent variable.

For more information about creating graphs in MATLAB, see the MATLAB
Graphics documentation.

Opening Variables and Objects for Viewing and
Editing
In the Workspace browser, double-click a variable and it opens in the Array
Editor, where you can view and edit the contents of the variable. See “Viewing
and Editing Workspace Variables with the Array Editor” on page 5-12 for
more information about opening arrays.

5-9

5 Workspace, Search Path, and File Operations

Some toolboxes allow you to double-click an object in the Workspace browser
to open a viewer or other tool appropriate for that object. For details, see the
toolbox documentation for that object type.

Preferences for the Workspace Browser
The Workspace browser displays statistical calculations for variables. Use
preferences to restrict the size of arrays on which calculations are performed
and to specify if NaNs are included or ignored in calculations. Select
File > Preferences to open the dialog box. Make changes and click OK.

5-10

MATLAB Workspace

Specify Maximum Array Size on Which to Compute Statistics
If you show statistical columns in the Workspace browser, and if you work
with very large arrays, you might experience performance issues when the
data changes as MATLAB updates the statistical results. In that event, show
only the columns of interest to you and hide those you do not need.

Another step you can take is specify via a preference that the Workspace
browser not perform statistical calculations on the largest arrays. Use the
arrows to change the value of the maximum array size for which you want
the Workspace browser to perform statistical calculations. The default value
is 500,000 elements. Any variable exceeding that size reports <Too many
elements> instead of statistical results.

Handling NaN Values in Calculations
If your data includes NaNs, you can specify that the statistical calculations
consider the NaNs, or ignore the NaNs. For example, if a variable includes
a NaN and the preference is set to Use NaNs when calculating statistics,
the values for Min, Max, Var and some others will appear as NaN, although
Mode, for example, shows a numeric result. With the preference set to Ignore
NaNs whenever possible, numeric results appear for most of the statistical
columns including Min and Max, however, Var is still reported as NaN.

For more information about statistical values in the Workspace browser, see
“Viewing and Editing Values in the Current Workspace” on page 5-3.

5-11

5 Workspace, Search Path, and File Operations

Viewing and Editing Workspace Variables with the Array
Editor

In this section...

“About the Array Editor” on page 5-12

“Opening the Array Editor” on page 5-12

“Viewing and Editing Cell Arrays, Structures, and Multidimensional
Arrays” on page 5-14

“Navigating and Editing Shortcut Keys for the Array Editor” on page 5-16

“Changing Array Size, Content, and Format of Elements in the Array
Editor” on page 5-17

“Cut, Copy, Paste, and Clear Contents in the Array Editor” on page 5-18

“Insert and Delete in the Array Editor” on page 5-21

“Undo and Redo in the Array Editor” on page 5-21

“Exchanging Data with the Command Window” on page 5-21

“Exchanging Data with Excel” on page 5-21

“Creating Graphs and Variables from the Current Selection” on page 5-21

“Preferences for the Array Editor” on page 5-22

About the Array Editor
You use the Array Editor to view and edit a visual representation of one
or two-dimensional numeric arrays, strings, cell arrays of strings, and
structures. You can also view the contents of multidimensional arrays. If you
have an active Internet connection, watch the Array Editor video demo for an
overview of the major functionality.

Opening the Array Editor
To open the Array Editor from the Workspace browser,

5-12

Viewing and Editing Workspace Variables with the Array Editor

1 In the Workspace browser, select the variable you want to open. Shift+click
or Ctrl+click to select multiple variables, or use Ctrl+A to select all
variables to open.

2 Click the Open Selection button on the toolbar. For one variable, you can
also open it by double-clicking it.

The Array Editor opens, displaying the values for the selected variable.

Repeat the steps to open additional variables in the Array Editor. Access each
variable via its tab at the bottom of the window, or use the Window menu.

Changes you make to variables via the Command Window or other operations
automatically update the information for those variables in the Array Editor.

5-13

5 Workspace, Search Path, and File Operations

Note The maximum array size that you can open in the Array Editor is not
limited by MATLAB, but is based on your operating system or the amount of
physical memory installed on your system.

Function Alternatives
To open a variable in the Array Editor, use openvar with the name of the
variable you want to open as the argument. For example, type

openvar('M')

MATLAB opens M in the Array Editor.

To see the contents of a variable in the workspace, just type the variable name
at the Command Window prompt. For example, type

M

and MATLAB returns

M =
'one'
'two'
'three'

Viewing and Editing Cell Arrays, Structures, and
Multidimensional Arrays

Cell Arrays and Structures in the Array Editor
You can view and edit the content of cell arrays and structures in the Array
Editor.

In the Array Editor, double-click an element of a structure to open it as its
own Array Editor document. You can then view and edit the contents of that
element.

5-14

Viewing and Editing Workspace Variables with the Array Editor

Similarly, double-click a cell in a cell array to view and edit its contents. The
following illustration shows an 8-by-1 cell array, M, and the contents of M{4,1}.

Multidimensional Arrays in the Array Editor
You can view the contents of multidimensional arrays in the Array Editor.
When you open a multidimensional array in the Array Editor, it does not have
usual grid structure, because multidimensional arrays do not fit that format.
You cannot double-click an element in a multidimensional array to edit it.
The following illustration shows R = rand(1,2,3).

5-15

5 Workspace, Search Path, and File Operations

Navigating and Editing Shortcut Keys for the Array
Editor
Use the following shortcut keys (sometimes called hot keys) to move among
elements in the Array Editor. Navigating in the Array Editor is much like
navigating in Microsoft Excel.

Key Result

Enter Commit any changes to the element and move
to next element, where next element is specified
using “Preferences for the Array Editor” on page
5-22 (default is down)

5-16

Viewing and Editing Workspace Variables with the Array Editor

Key Result

Tab Move right

Within a selection, also moves from the last
column to the first column in the next row

Shift+Enter or
Shift+Tab

Move in opposite direction of Enter or Tab

Page Up Move up m rows, where m is the number of visible
rows

Page Down Move down m rows, where m is the number of
visible rows

Home Move to column 1

Ctrl+Home Move to row 1, column 1

Shift+Home Select to column 1

End Move to last column in current row

F2 (Ctrl+U on
Macintosh)

Edit current element, positioning cursor at the
end of the element

Changing Array Size, Content, and Format of
Elements in the Array Editor
To increase the size of an array, scroll to the desired location in the array and
enter a value. The array will automatically expand to accommodate the new
value. Empty cells are filled with zeros, if numeric, or empty arrays, if a cell
array. To decrease the size of an array, select the rows or columns that you
want to remove by clicking in the row or column header to select the entire
row, right-clicking, and selecting Delete.

To change the value of an element in the Array Editor, click in that element
and type a new value. Press Enter or Return, or click in another element to
make the change take effect. You can specify where the cursor moves to after
you press Enter — see “Preferences for the Array Editor” on page 5-22.

If you want to change the display format for the Array Editor, select the View
menu and choose a format. To change the default format for future use, use

5-17

5 Workspace, Search Path, and File Operations

the Preferences dialog. For more information, see “Preferences for the Array
Editor” on page 5-22.

If you opened an existing MAT-file and made changes to it using the
Array Editor, save that MAT-file if you want the changes to be saved. For
instructions, see “Saving the Current Workspace” on page 5-5.

Cut, Copy, Paste, and Clear Contents in the Array
Editor
You can cut or copy selected elements, rows, and columns in an array and
paste them to another position in that or another open array. To select a
column or row, click in the row or column heading (the element that shows
the row or column number). Shift+click to choose contiguous elements, rows,
or columns in the array, or Ctrl+A to select all elements. For the cut, copy,
and paste operations, use the Edit menu, the context menu, or the toolbar
buttons. You can undo the last operation you performed in the Array Editor.

When you cut elements, the value of each element you cut becomes 0 if
numeric or [] if a cell array. After cutting, select the elements whose value
you want to replace with the cut elements and then choose Paste. If the
shape of the elements you cut differs from the shape of the elements into
which you are pasting, the Array Editor pastes all the elements, either by
expanding the selection to be pasted into, or by expanding the array size to
allow all the elements to be pasted. Pasting copied elements is the same as
pasting cut elements, but the elements copied maintain their value rather
than becoming 0.

Select elements, rows, or columns and then select Edit > Clear Contents.
The value of the selected elements becomes 0. It differs from a performing
a Cut because the data from the selected elements does not move to the
clipboard; any clipboard content is unaffected by Clear Contents.

5-18

Viewing and Editing Workspace Variables with the Array Editor

Example Copying and Pasting Array Elements
In this example, two elements are copied but the selected area for pasting is
only one element, so the Array Editor expands the selected area for pasting.

5-19

5 Workspace, Search Path, and File Operations

Example Cutting and Pasting Array Elements
In this example, the area selected for pasting requires the Array Editor to
expand the array size in order for all cut elements to be pasted.

5-20

Viewing and Editing Workspace Variables with the Array Editor

Insert and Delete in the Array Editor
You can insert and delete elements, rows, and columns in the Array Editor.
When you select Edit > Insert, or Edit > Delete, a dialog box appears in
which you specify cells, rows, or columns, and for cells, the direction for
shifting.

Undo and Redo in the Array Editor
You can undo the last action you performed in the Array Editor, or redo a
change after choosing undo. Select Edit > Undo or Edit > Redo. The actions
supported are a change to a value you make by editing it in the Array Editor,
cutting, pasting, inserting, deleting, clearing contents, and pasting Excel data.

Exchanging Data with the Command Window
You can copy data from the Array Editor and paste it into the Command
Window. You can also copy a value from the Command Window and paste it
into an element in the Array Editor. Be sure the data types are compatible.
For example, you cannot paste text from the Command Window into a
numeric array in the Array Editor.

Exchanging Data with Excel
You can cut or copy cells from Microsoft Excel and paste them into the Array
Editor—use Edit > Paste from Excel. You can also cut or copy elements
from the Array Editor and paste them into Excel.

Be sure the data types are compatible. For example, you cannot paste text
from Excel into a numeric array in the Array Editor.

Creating Graphs and Variables from the Current
Selection
You can create graphs and new variables from the Array Editor. To create a
graph, select a cell, row, or column, and in the right-click context menu, choose
the graph type. MATLAB presents allowable options for the selected data. In
some cases, MATLAB makes assumptions, such as using cell2mat to convert
selected cell array data, which cannot be plotted directly.

5-21

5 Workspace, Search Path, and File Operations

To create a new variable, select a cell, row, or column in the Array Editor,
right-click, and from the context menu, select Create Variable from
Selection.

Preferences for the Array Editor
To set preferences for the Array Editor, select File > Preferences. The
Preferences dialog box opens showing Array Editor Preferences.

Format
Specify the default array output format of numeric values displayed in the
Array Editor. This affects only how numbers are displayed, not how MATLAB
computes or saves them. For more information, see the reference page for
format.

Editing
You can specify where the cursor moves to after you type in an element and
press Enter:

• If you want the cursor to remain at the element where you just typed, clear
the Move selection after Enter check box.

• If you want the cursor to move to another element, select the Move
selection after Enter check box, and then use Direction to specify how
you want the cursor to move. For example, if you want the cursor to move
right one element after you press Enter, select Right.

International Number Handling
You can specify how you want decimal numbers to be formatted when you cut
or copy cells from the Array Editor and paste them into text files or other
applications. The Decimal separator to use when copying edit field is by
default "." (period). If you are working in or providing data to a locale that
uses a different character to delimit decimals, type that character in this
preference and click OK or Apply.

5-22

Search Path

Search Path

In this section...

“About the Search Path” on page 5-23

“How the Search Path Determines Which Function to Use” on page 5-24

“How MATLAB Finds the Search Path, pathdef.m” on page 5-25

“Viewing and Setting the Search Path” on page 5-26

“Using the Path in Future Sessions” on page 5-31

“Recovering from Problems with the Search Path” on page 5-33

About the Search Path
MATLAB uses a search path to find M-files and other MATLAB related files,
which are organized in directories on your file system. By default, the files
supplied with MATLAB and MathWorks products are included in the search
path. This default search path includes many of the directories and files
under matlabroot/toolbox, where matlabroot is the directory in which
MATLAB was installed, as returned by running the matlabroot function.

Any file you want to run or debug in MATLAB must reside in a directory that
is on the search path, or in the current directory. If you create any MATLAB
related files, add the directories containing the files to the MATLAB search
path.

If you try to run or debug a file that is in a directory not on the path, the
action fails. When this occurs in the Command Window, MATLAB errors. In
the Editor/Debugger, a dialog box prompts you to

• Change Directory — Makes the directory containing the file you want to
run become the current directory

• Add to Path — Adds the directory containing the file to the top of the
search path

If there is already another file of the same name on the search path, the file
you want to run is considered shadowed. You might need to perform some

5-23

5 Workspace, Search Path, and File Operations

action so that MATLAB runs the file you want—for more information, see
“How the Search Path Determines Which Function to Use” on page 5-24.

The search path is also referred to as the MATLAB path. Directories included
are considered to be on the path. When you include a directory in the search
path, you add it to the path. Subdirectories must be explicitly added to the
path; they are not on the path just because their parent directories are.
Adding directories to the path is similar to performing an include or import
in some other applications.

For instructions to view the search path and add directories to it, see “Viewing
and Setting the Search Path” on page 5-26, including “Caution Against Saving
Files in matlabroot/toolbox” on page 5-31.

How the Search Path Determines Which Function to
Use
The order of directories on the path is relevant. MATLAB looks for a named
element, for example, foo, as described here. If you enter foo at the MATLAB
prompt, MATLAB performs the following actions:

1 Looks for foo as a variable.

2 Looks in the current directory for a file named foo.m.

3 Searches the directories on the MATLAB search path, in order, for foo as a
built-in function, followed by foo.m which is not built-in.

If there is more than one function with the same name, the order of directories
on the path determines which of those functions MATLAB uses. When
MATLAB looks for that function, it uses the first one found in the search path:

• To use a function with the same name that is located in a directory further
down on the search path, called a shadowed function, make its location
the current directory. For M-file scripts, you can use run with the full
pathname for the M-file. For example, use run d:/mymfiles/foo.m to
ensure that version of foo runs. Another option is to move the directory
containing the shadowed function to a position in the search path ahead of
the directory containing the file of the same name. For example, add it to
the top of the search path.

5-24

Search Path

• If you are not sure of the function MATLAB is using, run which for a
specified function and MATLAB returns the full path to the function.

Although the actual search path rules are more complicated because of the
restricted scope of private functions, subfunctions, object-oriented functions,
P-files, and MAT-files, this simplified perspective is accurate for the ordinary
M-files you usually work with. For more information, see “Determining Which
Function Is Called” in the MATLAB Programming documentation.

How MATLAB Finds the Search Path, pathdef.m
The search path is stored in the file pathdef.m, which by default, is located
in matlabroot/toolbox/local. You can store it in the MATLAB startup
directory, and modify it for the current session or for all future sessions.

When MATLAB starts, it looks for a pathdef.m file in its startup directory. If
none is found, it uses pathdef.m in matlabroot/toolbox/local. MATLAB
modifies the path based on any path statements in a startup.m file. During
a session, you can save changes to the path using the Set Path dialog box
or the savepath function, and MATLAB uses the path you saved to for the
remainder of the session.

If MATLAB finds a pathdef.m in the current directory, it uses that version
instead. To avoid problems, do not maintain a pathdef.m file in a directory
other than the MATLAB startup directory or matlabroot/toolbox/local.

5-25

5 Workspace, Search Path, and File Operations

Viewing and Setting the Search Path
Use the Set Path dialog box to view and modify the MATLAB search path.
Equivalent functions are documented for each feature of the Set Path dialog
box. Select Set Path from the File menu, or type pathtool at the Command
Window prompt. The Set Path dialog box opens.

Use the Set Path dialog box for the following actions. Equivalent functions
are listed as well:

5-26

Search Path

• “Viewing the Search Path” on page 5-27

• “Adding Directories to the Search Path” on page 5-27

• “Moving Directories Within the Search Path” on page 5-28

• “Removing Directories from the Search Path” on page 5-29

• “Restoring the Default Search Path” on page 5-30

• “Reverting to the Previous Path” on page 5-30

• “Saving Settings to the Path” on page 5-30

See also

• “About the Search Path” on page 5-23

• “Using the Path in Future Sessions” on page 5-31

• “Recovering from Problems with the Search Path” on page 5-33

Viewing the Search Path
The MATLAB search path field in the Set Path dialog box lists all of the
directories on the search path. The top of the list is the start of the search
path, while the bottom of the list is the end.

Function Alternative. Use the path function to view the search path.

Adding Directories to the Search Path
Add directories to the search path when you want to run M-files in those
directories.

To add directories to the MATLAB search path using the Set Path dialog box,

1 Click Add Folder or Add with Subfolders.

• If you want to add only the selected directory but do not want to add all
of its subdirectories, click Add Folder.

• If you want to add the selected directory and all of its subdirectories,
click Add with Subfolders.

5-27

5 Workspace, Search Path, and File Operations

The Browse for Folder dialog box opens.

2 In the Browse for Folder dialog box, use the view of your file system to
select the directory to add, and then click OK.

The selected directory, and subdirectories if specified in step 1, are added to
the top of the search path.

3 To use the newly modified search path in future sessions, click Save.
For more information about saving the path, see “Saving Settings to the
Path” on page 5-30.

4 Click Close. If you did not save the changes in the previous step, the
directories you added remain on the search path until you end the current
MATLAB session.

You cannot add method directories (directories that start with @) and private
directories to the MATLAB search path.

Adding Directories to the Path from the Current Directory Browser.
In the Current Directory browser, select a directory, right-click, and select
Add to Path from the context menu. Then select one of the submenus, for
example, Selected Folder and Subfolders.

Function Alternative. To add directories to the top or the end of the search
path, use addpath. The addpath function offers an option to get the path as a
string and to concatenate multiple strings to form a new path.

You can include addpath statements in your startup M-file to automatically
modify the path when MATLAB starts. For details, see “Modifying the Path in
a startup.m File” on page 5-31.

Moving Directories Within the Search Path
The order of files on the search path is relevant — for more information, see
“How the Search Path Determines Which Function to Use” on page 5-24.

To modify the order of directories within the search path,

1 Select the directory or directories you want to move.

5-28

Search Path

2 Click one of the Move buttons, such as Move to Top. The order of the
directories changes.

3 To use the newly modified search path in future sessions, click Save.
For more information about saving the path, see “Saving Settings to the
Path” on page 5-30.

4 Click Close. If you did not save the changes in the previous step, the
new order of files on the search path remains in effect until you end the
current MATLAB session.

Function Alternative. While there is not a specific function to move
directories, you can edit the pathdef.m file with any text editor to change the
order of the directories. Use caution when editing the file so that you do not
make MATLAB and toolbox functions unusable.

Removing Directories from the Search Path
To remove directories from the MATLAB search path using the Set Path
dialog box,

1 Select the directories to remove.

2 Click Remove. The directories are removed from the path.

3 To use the newly modified search path in future sessions, click Save.
For more information about saving the path, see “Saving Settings to the
Path” on page 5-30.

4 Click Close. If you did not save the changes in the previous step, the
directories are removed from the search path until you end the current
MATLAB session.

Function Alternative. To remove directories from the search path, use
rmpath.

You can include rmpath statements in your startup M-file to automatically
modify the path when MATLAB starts. For details see “Modifying the Path in
a startup.m File” on page 5-31.

5-29

5 Workspace, Search Path, and File Operations

Restoring the Default Search Path
To restore the default search path, click Default in the Set Path dialog box.
This changes the search path so that it includes only the directories installed
with MATLAB and related products.

Reverting to the Previous Path
To restore the previous path, click Revert in the Set Path dialog box. This
cancels any unsaved changes you have made in the Set Path dialog box.

Saving Settings to the Path
When you make changes to the search path, they remain in effect during
the current MATLAB session. To keep the changes in effect for subsequent
sessions, you need to save them. To save changes using the Set Path dialog
box, click Save.

If you want to automatically use this search path in future sessions, save
the path to your MATLAB startup directory, which saves pathdef.m to
that location. You can save the changes to the default pathdef.m file, in
matlabroot/toolbox/local if you have write permission for that directory
but see the following caution. Alternatively, you can include addpath and
rmpath statements in a startup.m file, which avoids some problems you
might have with saving the path, for example, using the same path with both
Windows and UNIX platforms. For more information, see “Using the Path in
Future Sessions” on page 5-31.

Note When MATLAB starts up, it may provide in the Command Window a
list of invalid directories. These directories were previously in pathdef.m but
were subsequently deleted. The directories do not now appear on the search
path listing in the Set Path dialog box. Click Save to overwrite the pathdef
M-file, thereby eliminating future reporting of these nonexistent directories.

5-30

Search Path

Caution Against Saving Files in matlabroot/toolbox. Save any M-files
you create and any MathWorks supplied M-files that you edit in a directory
that is not in the matlabroot/toolbox directory tree. If you keep your
files in matlabroot/toolbox directories, they can be overwritten when you
install a new version of MATLAB. Also note that locations of files in the
matlabroot/toolbox directory tree are loaded and cached in memory at the
beginning of each MATLAB session to improve performance. If you save files
to matlabroot/toolbox directories using an external editor or add or remove
in from these directories using file system operations, run rehash toolbox
before you use the files in the current session. If you make changes to existing
files in matlabroot/toolbox directories using an external editor, run clear
functionname before you use the files in the current session. For more
information, see rehash or “Toolbox Path Caching in MATLAB” on page 1-17.

Function Alternative. Use savepath to save the current path to pathdef.m.
Locate pathdef.m in your MATLAB startup directory to automatically use
it in future sessions. Consider using savepath in your finish.m file. To
modify the default path upon startup, include addpath and rmpath functions
in your startup.m file. For more information, see “Modifying the Path in a
startup.m File” on page 5-31.

Using the Path in Future Sessions
There are three basic ways for MATLAB to automatically use a search path
you specify, each with advantages and disadvantages:

• “Modifying the Path in a startup.m File” on page 5-31

• “Saving the Path in the MATLAB Startup Directory” on page 5-32

• “Saving the Path in matlabroot/toolbox/local” on page 5-32

For background information, see “How MATLAB Finds the Search Path,
pathdef.m” on page 5-25.

Modifying the Path in a startup.m File
Put addpath and rmpath statements in a startup.m file, and include the
startup file in MATLAB’s startup directory. When MATLAB starts, it uses
the search path defined in pathdef.m in matlabroot/toolbox/local and
modifies it based on the commands in the startup.m file.

5-31

5 Workspace, Search Path, and File Operations

By maintaining an unaltered pathdef.m in matlabroot/toolbox/local,
you avoid inadvertently removing directories supplied by The MathWorks
from the path. This method continues working even when you update to a
new version of MATLAB. If you run MATLAB on both Windows and UNIX
platforms, this method works well — for example, for each platform, include
separate addpath sections in the startup.m file, with each section preceded
by an ispc or isunix statement.

One disadvantage of this method is that changes you make to the path using
the Set Path dialog box are not incorporated in the startup.m file.

Saving the Path in the MATLAB Startup Directory
Copy pathdef.m from matlabroot/toolbox/local to the MATLAB
startup directory. Make changes to the path using the Set Path dialog
box, and with addpath and rmpath functions — choose whichever suits
your needs. You can use this method if you do not have write access to
matlabroot/toolbox/local.

There are some disadvantages to this method. You might inadvertently
remove directories supplied by The MathWorks from the path. When you
update to a new version of MATLAB, you cannot use the pathdef.m file in
the startup directory, but must delete it and create a new version. If you
run MATLAB on both Windows and UNIX platforms, you need to maintain
a separate pathdef.m file for each.

Saving the Path in matlabroot/toolbox/local
If you have write access to matlabroot/toolbox/local, make and save
changes to the path using the Set Path dialog box, and with addpath and
rmpath functions — choose whichever suits your needs.

There are some disadvantages to this method. You cannot maintain this file
when you update to a new version of MATLAB, but will need to use the new
default pathdef.m and make changes to it. If you run MATLAB on both
Windows and UNIX platforms, you need to maintain a separate pathdef.m
file for each.

5-32

Search Path

Recovering from Problems with the Search Path
If you get unexpected results that are related to the search path, you can try
to correct the path file or restore the default path. You might experience path
problems if you save the path on a Windows platform and then try to use the
same pathdef.m file on a UNIX platform. Similarly, you might experience
problems if you edit the pathdef.m file directly and make it invalid, or if the
file becomes corrupt, renamed, or lost.

For example, if an error message similar to the following appears when you
start MATLAB

Warning: MATLAB did not appear to successfully set the search
path...

it indicates a problem with the search path and you will not be able to use
MATLAB successfully.

To recover from problems with the search path, try the following, in order,
proceeding to the next step only if needed:

1 View the pathdef.m and startup.m files, looking for obvious problems.
Make changes and save them. If path problems appear to be resolved, start
MATLAB again to be sure the problem does not reappear. Depending on
the problem, you might not be able to even view the pathdef.m file.

2 Use the default path for MathWorks products. In the Set Path dialog box,
select Default, then Save, then Close. Depending on the problem, you
might not be able to even open the dialog box.

3 Run restoredefaultpath. This sets the search path to include only
installed products from The MathWorks. If that seems to have corrected
the problem, run savepath. Start MATLAB again to be sure the problem
does not reappear.

Depending on the problem, this might generate a message such as

The path may be bad. Please save your work (if desired), and quit.

If so, perform step 4.

4 Perform these steps after trying step 3.

5-33

5 Workspace, Search Path, and File Operations

a Run

restoredefaultpath; matlabrc

This might run for a few minutes. It sets the search path to include only
installed products from The MathWorks and corrects path problems
encountered during startup.

b If there is a pathdef.m in your startup directory for MATLAB, it caused
the problem. So either remove the bad pathdef.m file or replace the with
a good pathdef.m file, for example, one you can generate at this point
with

savepath('path_to_your_startup_directory/pathdef.m')

c Start MATLAB again to be sure the problem does not reappear.

5-34

File Management Operations

File Management Operations

In this section...

“About MATLAB File Operations” on page 5-35

“Current Directory Field” on page 5-35

“Current Directory Browser” on page 5-36

“Viewing and Making Changes to Directories” on page 5-38

“Creating, Renaming, Copying, and Removing Directories and Files” on
page 5-43

“Opening and Running Files” on page 5-47

“Finding Files and Content Within Files” on page 5-49

“Comparing Files” on page 5-54

“Accessing Source Control Features” on page 5-54

“Preferences for the Current Directory Browser” on page 5-54

Note You generally cannot perform operations on files and directories for
which you do not have proper permission. For example, you cannot copy a file
to a read-only directory using the Current Directory browser, however, you
can do so using movefile with the appropriate option.

About MATLAB File Operations
MATLAB file operations use the current directory and the MATLAB search
path as reference points. Any file you want to run must either be in the
current directory or on the search path. The key tools for performing file
operations are

Current Directory Field
A quick way to view or change the current directory is by using the current
directory field in the desktop toolbar.

5-35

5 Workspace, Search Path, and File Operations

To change the current directory from this field, do one of the following:

• In the field, type the path for the new current directory.

• Click the down arrow to view a list of previous working directories, and
select an item from the list to make that directory become the MATLAB
current working directory. The directories are listed in order, with the
most recently used at the top of the list. You can clear the list and set the
number of directories saved in the list — see “Preferences for the Current
Directory Browser” on page 5-54.

• Click the Browse for Folder button (...) to set a new current directory.

• Use the Go Up One Level button to move the current directory up one
level.

The current directory field in the desktop also appears in the Current
Directory browser, when the Current Directory browser is undocked. Consider
it to be one tool with two different means of accessing it.

Current Directory Browser
To search for, view, open, find, and make changes to MATLAB related
directories and files, use the MATLAB Current Directory browser. Most
features of the Current Directory browser have equivalent functions that
perform similar actions. If you have an active Internet connection, you can
watch the Current Directory Browser video demo for an overview of the major
functionality.

In addition to the features described here, the Current Directory browser
includes tools to help you manage your M-files — see “Directory Reports in
Current Directory Browser” on page 7-2.

To open the Current Directory browser, select Desktop > Current Directory
from the MATLAB desktop, or type filebrowser at the Command Window
prompt. The Current Directory browser opens.

5-36

File Management Operations

The main tasks you perform with the Current Directory browser are

• “Viewing and Making Changes to Directories” on page 5-38

• “Creating, Renaming, Copying, and Removing Directories and Files” on
page 5-43

• “Opening and Running Files” on page 5-47

• “Finding Files and Content Within Files” on page 5-49

• “Accessing Source Control Features” on page 5-54

• Setting “Preferences for the Current Directory Browser” on page 5-54

5-37

5 Workspace, Search Path, and File Operations

Viewing and Making Changes to Directories
You can change the current directory, view its contents, add directories to the
MATLAB search path, and change the way the Current Directory browser
presents entries.

• “Changing the Current Working Directory and Viewing Its Contents” on
page 5-38

• “Searching in the Current Directory Browser” on page 5-38

• “Changing the Display” on page 5-41

• “Adding Directories to the MATLAB Search Path” on page 5-43

Changing the Current Working Directory and Viewing Its
Contents
To change the current directory, use the current directory field. The Current
Directory browser lists the files and directories in the current directory.

To view the contents of a subdirectory, double-click it, or select the
subdirectory and press Enter or Return.

To move up one level in the directory structure, press the backspace (<-) key.

Function Alternative. Use dir to view the contents of the current working
directory or another specified directory. Use a return argument with dir to
get a structure containing information including the names of the files in the
directory and their last modified date and time.

Use what with no arguments to display the MATLAB related files in the
current working directory. Use which to display the pathname for a specified
function. Use exist to see if a directory or file exists. Use fileattrib to see
or set file attributes, much like attrib in DOS or chmod in UNIX.

Searching in the Current Directory Browser
You can search the Current Directory browser for files and directories by
typing directly in the window. As you type the Current Directory browser
searches downward from the top of the window to find an entry that matches
what you have typed. For example:

5-38

File Management Operations

1 Set C:\Climate as your current directory.

2 Assume that you want to search the Current Directory for the file named
standard.m. Begin your search by positioning the cursor anywhere within
the Current Directory browser.

3 Type the letter s. The Current Directory browser searches to find the
first entry beginning with the letter s. In this example it stops at the
directory named standalone. Note as you begin typing that a small
yellow-background Search filenames for: dialog box appears at the
top of the Current Directory browser window. This dialog box keeps track
of your search target as you type additional letters to narrow the focus
of your search.

5-39

5 Workspace, Search Path, and File Operations

4 Since the standalone directory is not your intended search target, continue
typing additional letters that identify your search target, eventually
entering the letters standar.

5 When you have entered the letters standar, the search resumes, stopping
this time at the standard.m file, your intended search target.

5-40

File Management Operations

Changing the Display

Types of Files. To specify the types of files shown in the Current Directory
browser, use the View menu. For example, you can show only M-files. If All
Files is selected and you want to see specific file types, first clear the selection
for All Files and then select the specific file types.

Columns. To show or hide columns, use preferences for the Current Directory
browser. Select File > Preferences > Current Directory and select or clear
the check boxes for Browser display options. For more information, see
“Browser Display Options” on page 5-55.

You can sort the information shown in the Current Directory browser by
column. Click the title of column on which you want to sort. The display is
sorted, with the information in that column shown in ascending order, and
an up arrow icon indicating the direction. Click a second time on the column
title to sort the information in descending order.

5-41

5 Workspace, Search Path, and File Operations

Contents. In the Current Directory browser, select a file and then view
information about the file in the Current Directory browser’s lower pane. To
view this, you must first select File > Preferences > Current Directory
and under Browser display options, select the check box Show M, MDL
and MAT file contents.

For an M-file, it shows the M-file help. For a Simulink model, it shows the
complete description, allowing you to view information about a model without
having to start Simulink. For a MAT-file, it displays the names of its variables
along with their size, bytes, and class, allowing you to view the content of a
MAT-file without loading it.

You can view more extensive help for the M-file selected in the Current
Directory browser. From the context menu, select View Help. The reference
page for that function appears in the Help browser.

5-42

File Management Operations

Adding Directories to the MATLAB Search Path
From the Current Directory browser, you can add directories to the MATLAB
search path. Right-click and from the context menu, select Add to Path.
Then select one of the options:

• Current Directory — Adds the current directory to the path.

• Selected Folders — Adds the directories selected in the Current Directory
browser to the path.

• Selected Folder and Subfolders — Adds the directory selected in the
Current Directory browser to the path, and adds all of its subdirectories
to the path.

Creating, Renaming, Copying, and Removing
Directories and Files

• “General Notes” on page 5-43

• “Creating New Files” on page 5-44

• “Creating New Directories” on page 5-44

• “Renaming Files and Directories” on page 5-45

• “Cutting or Deleting Files and Directories” on page 5-45

• “Copying and Pasting Files and Directories” on page 5-46

General Notes
If you have write permission, you can create, copy, remove, and rename
MATLAB related files and directories for the directory shown in the Current
Directory browser. If you do not have write permission, you can still copy files
and directories to another directory, or you can use equivalent functions,
such as movefile.

To run functions whose arguments require the use of a pathname or filename,
use the function form rather than the unquoted or command form of the
syntax when the pathname or filename includes spaces. For example, the
command form

delete my file.m

5-43

5 Workspace, Search Path, and File Operations

generates a warning and does not delete my file.m. Instead use the function
form of the syntax:

delete('my file.m')

Creating New Files
To create a new file in the current directory,

1 Select New from the context menu or File menu and then select the type
of file to create.

An icon for that file type, for example, an M-file icon , with the default
name Untitledn, appears at the end of the list of files shown in the
Current Directory browser.

2 Type over Untitledn with the name you want to give to the new file.

3 Press Enter or Return.

The file is added.

4 To enter the contents of the new M-file, open the file—see “Opening and
Running Files” on page 5-47. If you created the file using the context menu,
the new file opens in the Editor/Debugger with a template for writing an
M-file function.

Function Alternative. Use the edit function to create a new M-file or other
type of text file in the Editor/Debugger.

Creating New Directories
To create a new directory in the current directory,

1 Click the New Folder button in the Current Directory browser toolbar,
or select New > Folder from the context menu.

An icon, with the default name NewFoldern appears at the end of the list
of files shown in the Current Directory browser.

2 Type over NewFoldern with the name you want to give to the new directory.

5-44

File Management Operations

3 Press the Enter or Return key.

The directory is added.

Function Alternative. To create a directory, use the mkdir function. For
example,

mkdir newdir

creates the directory newdir within the current directory.

Renaming Files and Directories
To rename a file or directory, select the item, right-click, and select Rename
from the context menu. Type over the existing name with the new name
for the file or directory, and press Enter or Return. The file or directory
is renamed.

Function Alternative. You can use movefile to rename a file or directory.
For example,

movefile('myfile.m','projectresults.m')

renames myfile.m to projectresults.m.

Cutting or Deleting Files and Directories
To cut or delete files and directories,

1 Select the files and directories to remove. Use Shift+click or Ctrl+click to
select multiple items.

2 Right-click and select Cut or Delete from the context menu.

The files and directories are removed.

Files and directories you delete from the Current Directory browser go to the
Recycle Bin on Windows (or the Trash Can on Macintosh platforms). If you do
not want the selected items to go to the Recycle Bin, press Shift+Delete. A
confirmation dialog box displays before the items are deleted if you have set
that option in your operating system. For example, on Windows, right-click

5-45

5 Workspace, Search Path, and File Operations

the Recycle Bin, select Properties from the context menu, and then, under
the Global tab, select the check box to Display delete confirmation dialog.

Function Alternative. To delete a file, use the delete function. For example,

delete('d:/mymfiles/testfun.m')

deletes the file testfun.m. You can recover deleted files if you use the
recycle function or the equivalent preference described in “Default Behavior
of the Delete Function” on page 2-78.

To delete a directory and optionally its contents, use rmdir. For example,

rmdir('myfiles')

removes the directory myfiles from the current directory.

Copying and Pasting Files and Directories
Use the Current Directory browser, to copy (or cut) and paste files and
directories:

1 Select the files or directories to copy. Use Shift+click or Ctrl+click to select
multiple items. For a directory, the entire contents are copied, including
all subdirectories and files.

2 Right-click and select Copy from the context menu.

3 Navigate to the file or directory where you want to paste the items you
just copied.

4 Right-click and select Paste from the context menu.

You can also copy and paste files and directories to and from tools outside of
MATLAB, such as Windows Explorer. You can use Current Directory browser
menu items or keyboard shortcuts, or you can drag the items.

Function Alternative. Use movefile or copyfile to cut and paste or to copy
and paste files or directories. For example, to make a copy of the file myfun.m
in the current directory, assigning it the name myfun2.m, type

copyfile('myfun.m','myfun2.m')

5-46

File Management Operations

Opening and Running Files

• “Opening Files” on page 5-47

• “Running M-Files” on page 5-49

Opening Files
You can open a file from the Current Directory browser and the file opens in
the tool associated with that file type.

To open a file, select one or more files and perform one of the following actions:

• Press the Enter or Return key.

• Right-click and select Open from the context menu.

• Double-click the file(s).

The file opens in the appropriate tool, provided that the tool has been installed
on your system. For example, the Editor/Debugger opens for M-files, and
Simulink opens for model (.mdl) files.

To open a file in the Editor/Debugger, no matter what type it is, select Open
as Text from the context menu. One exception is P-files (.p), which you
cannot open.

To open a file using an external application, select Open Outside MATLAB
from the context menu. For example, if you select myfile.doc, Open
Outside MATLAB opens myfile.doc in Microsoft Word, assuming you have
the .doc file association configured to start Word. This is also useful for file
types associated with MATLAB that are also associated with an external
application in Windows. For example, .mat is the extension for MATLAB data
files as well as Microsoft Access files. When you double-click a .mat file in the
Current Directory browser, it loads the MATLAB data file into the workspace.
If instead you want to open the .mat file in Access, right-click it and select
Open Outside MATLAB. MATLAB opens the file using the applications
you associated with that file type in Windows. For more information, see
“Changing File Associations for MATLAB from Windows” on page 1-5.

5-47

5 Workspace, Search Path, and File Operations

You can also import data from a file. Select the file, right-click, and select
Import Data from the context menu. The Import Wizard opens. See the
Import Wizard documentation for instructions to import the data.

You can run a Windows shortcut directly from the Current Directory browser.
Double-click the shortcut icon in the Current Directory browser to perform
the Windows operation.

Function Alternative. Use the open function to open a file in the tool
appropriate for the file, given its file extension. Default behavior is provided
for standard MATLAB file types. You can add other file types and override
the default behavior for the standard files. For name.ext, open performs
the following actions.

File Type Extension Action

Figure file fig Opens figure name.fig in a figure
window.

HTML file html Opens HTML file name.html in the
MATLAB Web browser.

M-file m Opens M-file name.m in the
Editor/Debugger.

MAT-file mat Opens MAT-file name.mat in the Import
Wizard.

Model mdl Opens model name.mdl in Simulink.

PDF file pdf Opens the PDF file name.pdf in the
installed PDF reader, for example,
Adobe Acrobat.

Project file prj Opens the project file name.prj in the
MATLAB Compiler Deployment Tool. If
the MATLAB Compiler or Deployment
Tool is not installed, opens the project
file in a text editor.

5-48

File Management Operations

File Type Extension Action

Variable none Opens the numeric or string array name
in the Array Editor; open calls openvar.

Other custom Opens name.custom by calling the
helper function opencustom, where
opencustom is a user-defined function.

Use winopen to open a file using an external application on Windows
platforms.

To view the content of an ASCII file, such as an M-file, use the type function.
For example

type('startup')

displays the contents of the file startup.m in the Command Window.

Running M-Files
To run an M-file from the Current Directory browser, select it, right-click,
and select Run from the context menu. The results appear in the Command
Window.

Finding Files and Content Within Files
Use the Find Files tool to search for files or for specified text within files.

5-49

5 Workspace, Search Path, and File Operations

To search for files in one or more directories, or to search for specified text in
files, follow these instructions:

1 Open the Find Files tool by clicking the Find Files button in the Current
Directory browser toolbar, or by selecting Edit > Find Files from any
desktop tool, such as the Current Directory browser or the Editor/Debugger.

The Find Files dialog box opens.

2 Type the filename and/or text you are searching for:

• To search for files, type the filename in the Find files named field. You
can use the wildcard character (*) in the filename. For example, type
coll* to search for filenames that start with coll.

5-50

File Management Operations

• To search for text within files, type the text in the Find files containing
text field. For example, search for plot. Alternatively, you can select
text in the Command Window or Editor/Debugger and that text appears
in the Find files containing text field.

Under More options, use the Search type to specify Matches whole
word, or specify a partial match by selecting Contains text.

• To search for text in specified filenames only, type entries in both fields.
Use the Clear Text button to clear the entries in both fields.

Click the down arrow next to each field to select previous entries from the
current MATLAB session.

3 You can restrict the types of files to search by selecting an option in Include
only file type(s). For example, select *.m to limit the search to M-files only.

With All files (*) selected, use Skip file types (under More options) to
ignore files of the specified type. For details, see “Skip File Types in Find
Files” on page 5-52.

4 From the Look in list box, select the directories to search in. Select the
MATLAB current directory or MATLAB search path, or use the Browse
option to select another directory. You can instead type the full pathname
for one or more directories into this field, with each pathname separated by
a semicolon (;). To include subdirectories in the search, select the Include
subdirectories check box.

5 Use additional entries under More options to further restrict the search:

• Skip files over the specified size to ignore large files that might take
a long time to search through. This option is only available when you
are searching for text within files.

• Match case when lower or upper case is relevant.

6 To execute the search, click Find. While the search is in progress, the Find
button label changes to Stop Find. To abort a search, click Stop Find.

Search results appear in the pane on the right side of the Find Files
dialog box, with a summary of the results at the bottom of the pane. For
text searches, the line number and line of code are shown. To see the full
pathnames for the files, select the Show full pathnames check box.

5-51

5 Workspace, Search Path, and File Operations

7 Click a column heading to sort the results based on that column. Click
the column heading again to reverse the sort order for that column. For
example, click Line to sort results by line number.

Opening Files from Find Files
To open files shown in the results list, do one of the following:

• Double-click the file

• Select the files and press Enter or Return

• Right-click the selected files and select Open from the context menu

The files open in the Editor/Debugger. For text searches, the file opens
scrolled to the line number shown in the results section of the Find Files
dialog box. Once in the Editor/Debugger, you can use the Find & Replace
tool to change specified text.

Previous Results of Find Files
To see the results of a previous search, select its tab at the bottom of the
results pane. Find Files shows up 10 search result tabs while the tool is
open, but does not maintain the results after you close the tool.

MATLAB maintains the state for options in the Find Files tool even after
you end the session.

Skip File Types in Find Files
In the Find Files tool, you can restrict the search to look in all file types
except those you specify:

1 For Include only file type(s), select All files (*).

2 Select the Skip file type(s) check box.

3 Click Edit to view or change the list of file types the search ignores.

The Edit Skipped File Extensions dialog box opens.

5-52

File Management Operations

4 Find Files will not look in any file type in the list whose State check box is
selected. It will look in any file type in the list whose State check box is
cleared.

a Clear or select the State check box as needed to instruct Find Files
about file types to skip.

b If you want Find Files to skip a file type not shown in the list, enter the
file extension in the field at the top of the dialog box and click Add. The
type appears in the list. Be sure its State check box is selected. For the
example shown, the scc file type was added.

c You can reduce the size of the list by removing any file extensions. Select
the name of the extension and click Remove.

5-53

5 Workspace, Search Path, and File Operations

5 Click OK to accept the changes and close the Edit Skipped File
Extensions dialog box.

6 When you click Find in the Find Files tool, the search ignores the selected
file types.

Function Alternative
Use lookfor to search for the specified text in the first line of help for all
M-files on the search path.

Comparing Files
The MATLAB File Comparison tool highlights the line-by-line differences
between two files. Access it by selecting a file in the Current Directory
browser, then right-click, and from the context menu, select Compare
Against > Browse and navigate to the file to compare. Select it and click
Open.

For two files in the same directory, select the files, right-click, and from the
context menu, select Compare Selected Files.

For information about using the results and other options, see “Comparing
Files — File Comparison Tool” on page 6-54.

Accessing Source Control Features
Select a file or files in the Current Directory browser and right-click to view
the context menu. From there you can access features for Source Control. For
details on these features, see Chapter 9, “Source Control Interface”.

Preferences for the Current Directory Browser
Using preferences, you can specify the number of recently used current
directories to maintain in the history list as well as the type of information to
display in the Current Directory browser.

From the Current Directory browser, select File > Preferences. The
Current Directory Preferences pane appears in the Preferences dialog box.

5-54

File Management Operations

History
The drop-down list in the current directory field shows the history of current
directories, that is, the most recently used current directories.

Saving Directories. When the MATLAB session ends, the list of directories
will be maintained. Use the Save most recent directories field to specify
how many directories will appear on the list at the start of the next MATLAB
session.

Removing Directories. To remove all entries in the list, click Clear
History. The list is cleared immediately.

Browser Display Options
In the Current Directory browser, you can view or hide the following
information by selecting the appropriate Browser display options:

5-55

5 Workspace, Search Path, and File Operations

• File type

• File size

• Last modified date

• M-file descriptions (the first comment line in the M-file, also called the
H1 line) and the start of MDL file descriptions (approximately the first
128 characters)

• M-file help, MDL complete descriptions, and MAT-file contents

For more information, see “Changing the Display” on page 5-41.

Auto-Refresh
By default, the Auto-refresh directory view check box is selected, with
an update time of 2 seconds. This means that every 2 seconds, the Current
Directory browser checks for and reflects any changes you made to files and
directories in the current directory using other applications.

In some cases when the current directory is on a network, MATLAB becomes
slow because of the auto-refresh feature in the Current Directory browser. If
you experience general slowness in MATLAB and have the Current Directory
browser open, try increasing the default update time to alleviate this problem.
For extremely slow performance situations, clear the check box to turn
auto-refresh off. You can then right-click and select Refresh from the context
menu to update the Current Directory browser display.

5-56

6

Editing and Debugging
M-Files

MATLAB provides powerful tools for creating, editing, and debugging files,
as detailed here. For information about the MATLAB language and writing
M-files, see the MATLAB Programming documentation.

Begin with Existing Code (p. 6-3) Use code resources such as your
Command Window and History,
and existing M-files, demos, and
examples.

Ways to Edit, Evaluate, and Debug
M-Files (p. 6-5)

Use the Editor/Debugger in
MATLAB for M-files or any text
file. Or use another editor you have,
along with debugging functions in
the Command Window.

Starting, Customizing, and Closing
the Editor/Debugger (p. 6-7)

Create and open files, arrange
document windows, and set
preferences.

Entering Statements in the
Editor/Debugger (p. 6-14)

Changing case, undo and redo,
comments, tab completion. Also use
features common to the Command
Window for entering statements.

Appearance of an M-File — Making
Files More Readable (p. 6-28)

Syntax highlighting, indenting, line
and column numbers, highlighting,
and more.

6 Editing and Debugging M-Files

Navigating in an M-File (p. 6-42) Go to a line number, function,
bookmark, back and forward, and
open a selection.

Finding Text in Files (p. 6-49) Find and replace text in the current
file or multiple files. Incremental
search tool.

Comparing Files — File Comparison
Tool (p. 6-54)

View differences between two files.

Keyboard Shortcuts in the
Editor/Debugger (p. 6-59)

Use the keyboard to navigate in or
perform other common actions in a
file.

Saving, Printing, and Closing Files
in the Editor/Debugger (p. 6-62)

Save and autosave features, printing
and page setup, and closing files.

Running M-Files in the
Editor/Debugger (p. 6-66)

Running M-files from the
Editor/Debugger, with no input
arguments or with input arguments

Finding Errors, Debugging, and
Correcting M-Files (p. 6-84)

Automatically analyze code using
M-Lint to find errors and make
improvements, and use debugging
features to isolate run-time
problems.

M-Lint Code Analyzer (p. 6-87) Check your code for problems and
get recommendations to maximize
performance and maintainability.

Debugging Process and Features
(p. 6-103)

Graphical debugging tools and
functions for debugging in the
Command Window.

Using Cells for Rapid Code Iteration
and Publishing Results (p. 6-133)

Define sections of your M-files as
cells. Use cells for publishing M-files
to formats like HTML. Also use cells
to experiment and incrementally
modify values in M-files.

6-2

Begin with Existing Code

Begin with Existing Code

In this section...

“Create M-Files from Command Window and History” on page 6-3

“Use Existing M-Files and Examples” on page 6-3

Create M-Files from Command Window and History
Before you begin writing MATLAB code in a blank file, consider starting with
existing resources for the code, and then use the MATLAB Editor/Debugger to
modify the code.

In many cases, you create and run MATLAB statements in the Command
Window, modify those statements to your satisfaction, and then create
an M-file that includes the statements. To facilitate this process, in the
Command History, select the MATLAB statements you want to include in the
M-file. Right-click and select Create M-File. The Editor/Debugger opens
a new file that includes the statements you selected from the Command
History. You can also copy the statements from the Command History and
paste them into an existing M-file.

Use Existing M-Files and Examples
If you can find existing M-files that accomplish what you want to do, copy and
use the code in your own M-file, assuming you have legal permission to do so.
Following are some resources you can use.

MATLAB and Toolbox M-Files
You can access and reuse the code in most MATLAB and toolbox functions
that have a .m file extension. You cannot use MATLAB and toolbox functions
that are built-in. They are efficient but their code is not accessible.

If there is a MATLAB function that is similar to what you need to do and it is
not built-in, open the file in the Editor/Debugger and use it as a basis for your
file. Be sure to save the file using a different name and in a directory that is
not in matlabroot/toolbox. See “Saving Files” on page 6-62 for details.

6-3

6 Editing and Debugging M-Files

Demos and Examples
MATLAB and its toolboxes include demonstration programs. You can view the
code in the demos and copy it for use in your own M-files. To see the demos,
type demo, which opens the Help browser to the Demos pane. For more
information about demos, see “Demos in the Help Browser” on page 4-31.

There are also code examples in the online documentation. To see a list of
examples for a product, type helpbrowser to open the Help browser. In the
Contents pane, click + for a product to view the help topics, and then select
the Examples entry.

File Exchange
The MathWorks Web site features a user-contributed code library, from which
you can download free M-files contributed by users and developers of MATLAB,
Simulink, and related products. To view the files available to download, go
to the MATLAB Central File Exchange page on the MathWorks Web site,
http://www.mathworks.com/matlabcentral/fileexchange/index.jsp, or
access it via the Help > Web menu in any desktop component.

6-4

http://www.mathworks.com/matlabcentral/fileexchange/index.jsp

Ways to Edit, Evaluate, and Debug M-Files

Ways to Edit, Evaluate, and Debug M-Files
There are several methods for creating, editing, evaluating, and debugging
files with MATLAB.

Creating and Editing Files —
Options Instructions

MATLAB Editor/Debugger See “Starting, Customizing, and Closing the
Editor/Debugger” on page 6-7, and “Saving, Printing,
and Closing Files in the Editor/Debugger” on page 6-62.

You can create, open, edit and save M-files as well as
other file types in the MATLAB Editor/Debugger — see
“Creating and Editing Other Text File Types” on page
6-12.

Any text editor, such as Emacs or vi To specify another editor as the
default for use with MATLAB, select
File > Preferences > Editor/Debugger, and for
Editor, specify the Text editor. Click the Help button
in the Preferences dialog box for details. Use that editor
by default, or use any other editor you open. Regardless
of the editor you use, you can debug M-files using the
MATLAB Editor/Debugger or debugging functions.

Debugging M-Files – Options Instructions

General debugging tips See “Finding Errors, Debugging, and Correcting
M-Files” on page 6-84.

MATLAB Editor/Debugger See

• “M-Lint Code Analyzer” on page 6-87 to identify
errors and make improvements.

• “Debugging Process and Features” on page 6-103 to
help you isolate run-time problems.

MATLAB debugging functions (for use
in the Command Window)

See function alternatives in “Debugging Process and
Features” on page 6-103.

6-5

6 Editing and Debugging M-Files

Use preferences for the Editor/Debugger to set up the editing and debugging
environment to best meet your needs.

For information about the MATLAB language and writing M-files, see the
MATLAB Programming documentation.

6-6

Starting, Customizing, and Closing the Editor/Debugger

Starting, Customizing, and Closing the Editor/Debugger

In this section...

“Starting the Editor/Debugger” on page 6-7

“Creating a New File in the Editor/Debugger” on page 6-8

“Opening Existing Files in the Editor/Debugger” on page 6-9

“Arranging Editor/Debugger Documents” on page 6-11

“Preferences for the Editor/Debugger” on page 6-11

“Creating and Editing Other Text File Types” on page 6-12

“Closing the Editor/Debugger” on page 6-13

Starting the Editor/Debugger
The MATLAB Editor/Debugger provides a graphical user interface for basic
text editing features for any file type, as well as for M-file debugging. The
Editor/Debugger is a single tool that you can use for editing, debugging,
or both. There are various ways to start the Editor/Debugger. The
Editor/Debugger automatically starts when you open a document or create
a new one. Once started, you can customize the Editor/Debugger to suit
your needs.

This figure shows an example of the Editor/Debugger outside of the desktop
opened to an existing M-file, and calls out some of the tool’s useful features.

6-7

6 Editing and Debugging M-Files

Creating a New File in the Editor/Debugger
To create a new text file in the Editor/Debugger, either click the New M-file
button on the MATLAB desktop toolbar, or select File > New > M-File
from the MATLAB desktop. The Editor/Debugger opens, if it is not already
open, with an untitled file in the MATLAB current directory, in which you can
create an M-file or another type of text file.

The location of the new file and the Editor/Debugger are determined by
document positioning guidelines. You can rearrange the documents to suit
your needs. For details, see “Opening and Arranging Documents” on page 2-8.

If the Editor/Debugger is open, create more new files by using the New M-file
button on the toolbar, or select File > New > M-File.

Other tools also provide features for creating new M-files. For example, in the
Command History, select statements, right-click, and select Create M-File
from the context menu. Similarly, create a new file from the context menu in
the Current Directory browser — see “Creating New Files” on page 5-44.

6-8

Starting, Customizing, and Closing the Editor/Debugger

Function Alternative
Type edit in the Command Window to create a new file in the
Editor/Debugger.

Type edit filename.ext to create the file filename.ext. If filename.ext
already exists in the current directory or on the MATLAB search path, this
opens the existing file. If filename.ext does not exist in the current directory
or on the MATLAB search path, a confirmation dialog box might appear
asking if you want to create a new file titled filename.ext:

• If you click Yes, the Editor/Debugger creates a blank file titled
filename.ext. If you do not want the dialog to appear in this situation,
select that check box in the dialog. Then, the next time you type edit
filename.ext, the file is created without first prompting you.

• If you click No, the Editor/Debugger does not create a new file. If you do
not want the dialog to appear in this situation, select that check box in the
dialog. In that case, the next time you type edit filename.ext, a “file
not found” message appears.

For more information about the confirmation dialog box, see preferences for
“Confirmation Dialogs Preferences” on page 2-81.

Opening Existing Files in the Editor/Debugger
To open an existing file in the Editor/Debugger, click the Open file button
on the desktop or Editor/Debugger toolbar, or select File > Open.

The Open dialog box appears, listing all M-files. You can see different files
by changing the selection for Files of type in the dialog box. Type or select
a filename, and click Open. If you access the Open dialog box from the
desktop, the current directory files are shown, but if you access it from the
Editor/Debugger, the files in the directory for the current file are shown.

The Editor/Debugger opens, if it is not already open, with the file displayed.
You can have multiple Editor/Debugger files open at once, and the location of
the files and the Editor/Debugger are determined by document positioning
guidelines. You can rearrange the documents to suit your needs. For details,
see “Opening and Arranging Documents” on page 2-8.

6-9

6 Editing and Debugging M-Files

To make a document in the Editor/Debugger become the current document,
click it, or select it from the Window menu or document bar.

M-File Cells
If you open an M-file that contains M-file cells, yellow highlighting and
gray horizontal lines might appear in the M-file, along with an information
toolbar. Cell mode is used for publishing results and rapid code iteration.
An M-file cell is denoted by a %% at the start of a line. MATLAB interprets
any M-file that contains %% at the start of a line as including cells and the
Editor/Debugger reflect the cell toolbar state and the cell display preferences,
such as yellow highlighting of the current cell and gray lines between cells.

The first time you open an M-file that contains cells, an information bar
appears below the cell toolbar, providing links for details about cell mode. To
dismiss the information bar, click the close box on the right side of the bar.
The information bar does not appear again, but you can get the same quick
access to the information about M-file cells from the information button on
the cell toolbar.

To hide the cell toolbar, right-click in the toolbar and select Cell Toolbar from
the context menu. If you do not want cell mode enabled, select Cell > Disable
Cell Mode. Because MATLAB remembers the cell mode between sessions, if
cell mode is disabled when you quit MATLAB, it is disabled the next time you
start MATLAB, and the converse is true.

Other Methods for Opening Files in the Editor/Debugger
These are other ways to open files in the Editor/Debugger:

• Drag a file from another MATLAB desktop tool or a Windows tool into
the Editor/Debugger. For example, drag files from the Current Directory
browser, or from Windows Explorer.

• Open files from the Current Directory browser — see “Opening Files” on
page 5-47.

• Select a file to open from the most recently used files, which are listed at
the bottom of the File menu in the Editor/Debugger and all other desktop
tools. You can change the number of files appearing on the list — select

6-10

Starting, Customizing, and Closing the Editor/Debugger

File > Preferences > Editor/Debugger and in the Most recently used
file list, specify the Number of entries.

• In the Editor/Debugger or another desktop tool such as the Command
Window, select a filename, right-click, and select Open Selection from
the context menu to open that file. For details, see “Opening a Selection
in an M-File” on page 6-48.

• Set a preference that instructs MATLAB, upon startup, to automatically
open the files that were open when the previous MATLAB session ended.
Select File > Preferences > Editor/Debugger and in the Opening files
in editor area, select the check box for On restart reopen files from
previous MATLAB session.

Function Alternative for Opening an M-File. Use the edit or open
function to open an existing file in the Editor/Debugger. For example, type

edit collatz.m

to open the file collatz.m in the Editor/Debugger, where collatz.m is on the
search path or in the current directory. Use the relative or absolute pathname
for the file you want to open if it is not on the search path or in the current
directory.

Arranging Editor/Debugger Documents
You can arrange the size and location of M-files and other text documents you
open in the Editor/Debugger. Editor/Debugger documents follow the same
arrangement practices as other desktop documents. For details, see “Opening
and Arranging Documents” on page 2-8.

Preferences for the Editor/Debugger
Using preferences, you can specify the default behavior for various aspects of
the Editor/Debugger.

To set preferences for the Editor/Debugger, select File > Preferences. The
Preferences dialog box opens showing Editor/Debugger Preferences.

6-11

6 Editing and Debugging M-Files

Click the + next to Editor/Debugger in the left pane to view all categories of
Editor/Debugger preferences. Select a category and that preference pane
displays. Make changes and click Apply or OK.

Click the Help button in the Preferences dialog box for details about
Editor/Debugger preferences.

Creating and Editing Other Text File Types
You can edit any type of text file using the MATLAB Editor/Debugger. For
example, you can open and edit an HTML file. Note that you can run or debug
only M-files from the Editor/Debugger.

6-12

Starting, Customizing, and Closing the Editor/Debugger

When working with files created for C/C++, Java, and HTML, you can specify
syntax highlighting and indenting preferences appropriate to those languages.
Select File > Preferences > Editor/Debugger > Language. See details in
the online documentation for Editor/Debugger language preferences, or click
the Help button in the dialog box.

Closing the Editor/Debugger
To close the Editor/Debugger, click the Close box in the title bar of the
Editor/Debugger. This is different from the Close box in the menu bar of the
Editor/Debugger, which closes the current file when multiple files are open in
a single window.

If multiple files are open, with each in a separate window, close each window
separately. To close all files at once, select Close All Documents from the
Window menu. Note that this will close other desktop documents as well,
such as arrays in the Array Editor, and it will close the tools as well, that is,
the Editor/Debugger and Array Editor, for example.

When you close the Editor/Debugger and any of the open files have unsaved
changes, you are prompted to save the files.

6-13

6 Editing and Debugging M-Files

Entering Statements in the Editor/Debugger

In this section...

“Use Command Window Features in the Editor/Debugger” on page 6-14

“Changing the Case of Selected Text” on page 6-14

“Undo and Redo” on page 6-15

“Adding Comments” on page 6-15

“Tab Completion in the Editor/Debugger” on page 6-21

Use Command Window Features in the
Editor/Debugger
After opening an existing file or creating a new file in the Editor/Debugger,
enter statements in the file. Follow the same rules you would use for entering
statements in the Command Window as described in Chapter 3, “Running
Functions — Command Window and History”:

• “Case and Space Sensitivity” on page 3-15

• “Matching Delimiters (Parentheses)” on page 3-17

• “Entering Multiple Functions in a Line” on page 3-18

• “Entering Long Statements (Line Continuation)” on page 3-18

• “Suppressing Output” on page 3-30

• “Formatting and Spacing Numeric Output” on page 3-31

In addition, utilize the Editor/Debugger features described in the remaining
parts of this section.

Changing the Case of Selected Text
To change the case of text in the Editor/Debugger, select the text and then
from the Text menu, select one of the following:

• Change to Upper Case to change all text to uppercase

• Change to Lower Case to change all text to lowercase

6-14

Entering Statements in the Editor/Debugger

• Reverse Case to change the case of each letter

This is useful, for example, when copying syntax from help in an M-file, where
function and variable names are distinguished by the use of uppercase. But
because of that, the code will not run in MATLAB. In this example, the text
was copied and pasted from the output of help get.

V = GET(H, 'Default')

Select all of the text. Select Text > Change to Lower Case. The text
becomes

v = get(h, 'default')

If instead you select Reverse Case for

V = GET(H, 'Default')

the case changes to

v = get(h, 'dEFAULT')

Undo and Redo
You can undo many of the Editor/Debugger actions listed in Edit and Text
menus. Select Edit > Undo. You can undo multiple times in succession
until there are no remaining actions to undo. Select Edit > Redo to reverse
an undo.

Adding Comments
Comments in an M-file are strings or statements that do not execute. Add
comments in an M-file to describe the code or how to use it. Comments
determine what text displays when you run help for a filename. Use
comments when testing your files or looking for errors—temporarily turn
lines of code into comments to see how the M-file runs without those lines.
These topics provide details:

• “Commenting in M-Files Using the MATLAB Editor/Debugger” on page
6-16

6-15

6 Editing and Debugging M-Files

• “Commenting in Java and C/C++ Files Using the MATLAB
Editor/Debugger” on page 6-17

• “Commenting in M-File Using Any Text Editor” on page 6-17

• “Commenting Out Part of a Statement” on page 6-19

• “Formatting Comments in M-Files” on page 6-20

Commenting in M-Files Using the MATLAB Editor/Debugger
You can comment the current line or a selection of lines in an M-file:

1 For a single line, position the cursor in that line. For multiple lines, click in
the line and then drag or Shift+click to select multiple lines.

2 Select Comment from the Text menu, or right-click and select it from
the context menu.

A comment symbol, %, is added at the start of each selected line, and the color
of the text becomes green or the color specified for comments — see “Syntax
Highlighting” on page 6-28.

To uncomment the current line or a selected group of lines, select Uncomment
from the Text menu, or right-click and select it from the context menu.

6-16

Entering Statements in the Editor/Debugger

Commenting in Java and C/C++ Files Using the MATLAB
Editor/Debugger
For Java and C/C++ files, selecting Text > Comment adds the // symbols at
the front of the selected lines. Similarly, Text > Uncomment removes the //
symbols from the front of selected lines in Java and C/C++ files.

Commenting in M-File Using Any Text Editor
You can make any line in an M-file a comment by typing % at the beginning of
the line. To put a comment within a line, type % followed by the comment text;
MATLAB treats all the information after the % on a line as a comment.

To uncomment any line, delete the comment symbol, %.

6-17

6 Editing and Debugging M-Files

To comment a contiguous group of lines, type %{ before the first line and
%} after the last line you want to comment. This is referred to as a block
comment. The lines that contain %{ and %} can contain spaces, but not
contain any other text. After typing the opening block comment symbol, %{,
all subsequent lines assume the syntax highlighting color for comments until
you type the closing block comment symbol, %}. Remove the block comment
symbols, %{ and %}, to uncomment the lines.

This examples shows some lines of code commented out. When you run the
M-file, the commented lines will not execute. This is useful when you want to
identify the section of a file that is not working as expected.

You can easily extend a block comment without losing the original block
comment, that is, create a nested block comment, as shown in the following
example.

6-18

Entering Statements in the Editor/Debugger

Commenting Out Part of a Statement
To comment out the end of a statement in an M-file, put the comment
character, %, before the comment. When you run the file, MATLAB ignores
any text on the line after the %.

To comment out text within a multiline statement, use the ellipsis (...).
MATLAB ignores any text appearing after the ... on a line and continues
processing on the next line. This effectively makes a comment out of anything
on the current line that follows the The following example comments
out the Middle Initial line.

MATLAB ignores the text following the ... on the line

6-19

6 Editing and Debugging M-Files

Note that Middle Initial is green, which is the syntax highlighting color for
a comment.

MATLAB continues processing the statement with the next line

MATLAB effectively runs

Formatting Comments in M-Files
To make comment lines in M-files wrap when they reach a certain column,

1 Specify the maximum column number using preferences for the
Editor/Debugger. Select Language > M. For Comment formatting, set
the Max width.

2 Select contiguous comment lines that you want to limit to the specified
maximum width.

3 Select Text > Wrap Selected Comments.

The selected comment lines are reformatted so that no comment line in the
selected area is longer than the maximum. Lines that were shorter than
the specified maximum are merged to make longer lines if they are at the
same level of indentation.

To automatically limit comment lines to the maximum width while you type,
select the Comment formatting preference to Autowrap comments.

For example, assume you select Autowrap comments and set the maximum
width to be 75 characters, which is the width that will fit on a printed page
using the default font for the Editor/Debugger. When typing a comment line,

6-20

Entering Statements in the Editor/Debugger

as you reach the 75th column, the comment automatically continues on the
next line.

Tab Completion in the Editor/Debugger
The Editor/Debugger helps you automatically complete the names of these
items as you type them in an M-file:

• Functions or models on the search path or in the current directory

• Variables, including structures, in the current workspace, where the
current workspace is shown in the Stack on the toolbar.

• Handle Graphics properties for figures in the current workspace

Type the first few characters of the item name and then press the Tab key.
To use tab completion, you must have the tab completion preference for the
Editor/Debugger selected. For details, see “Keyboard Preferences” on page
3-43.

Tab completion is also available in the Command Window. There are a few
minor differences in how tab completion works in the Command Window,
the most notable being that Command Window tab completion supports the
completion of filenames, whereas the Editor/Debugger tab completion does
not.

Note Tab completion does not complete the names of variables you define in
an M-file, but only those variables in the current workspace. This means that
while editing, it only completes the names of variables in the base workspace.
While debugging, it only completes the names of variables in the current
function workspace.

These examples demonstrate how to use tab completion:

• “Basic Example — Unique Completion” on page 6-22

• “Multiple Possible Completions” on page 6-23

• “Narrowing Completions Shown” on page 6-24

6-21

6 Editing and Debugging M-Files

• “Tab Completion for Structures” on page 6-25

• “Tab Completion for Properties” on page 6-26

• “Using Tab for Spacing” on page 6-27

Basic Example — Unique Completion
This example illustrates a basic use for tab completion in the Editor/Debugger.
In an M-file opened in the Editor/Debugger, type the beginning of a function
or model on the MATLAB search path or in the current directory, for example,

horz

and press Tab. The Editor/Debugger automatically completes the name,
which for this example displays the function name

horzcat

Complete the statement, adding any arguments, operators, or options. If the
Editor/Debugger does not complete the name horzcat but instead moves the
cursor to the right, you do not have the preference set for tab completion. The
Editor/Debugger also moves the cursor to the right when you try to complete a
filename; filename tab completion is not supported in the Editor/Debugger,
but is supported in the Command Window.

You can use tab completion anywhere in the line, not just at the beginning.
For example, if you type

a = horz

and press Tab, the Editor/Debugger completes horzcat.

The Editor/Debugger also completes the names of variables in the current
workspace. For example, if there is a variable costs_march in the currently
selected workspace, type cost and press Tab. The Editor/Debugger completes
the variable name costs_march. If MATLAB displays No Completions
Found, costs_march does not exist in the current workspace.

6-22

Entering Statements in the Editor/Debugger

Multiple Possible Completions
If there is more than one name that starts with the characters you typed, when
you press the Tab key, the Editor/Debugger displays a list of all names that
start with those characters. For example, assume you had created the variable
costs_march in the base workspace. In an M-file in the Editor/Debugger, type

cos

and press Tab. The Editor/Debugger displays

The resulting list of possible completions includes the variable name you
created, costs_march, but also includes functions and models that begin with
cos, including cosets from Communications Toolbox, if it is installed and on
the MATLAB search path.

Continue typing to make your entry unique. For example, type the next
character, such as t in the example. The Editor/Debugger selects the first
item in the list that matches what you typed, in this case, costs_march. Press
Enter (or Return) or Tab to select that item, which completes the name in
the M-file. In the example, MATLAB displays costs_march at the prompt.

6-23

6 Editing and Debugging M-Files

You can navigate the list of possible completions using up and down arrow
keys, and Page Up and Page Down keys. You can clear the list without
selecting anything by pressing Esc. The list of possible completions might
include items that are not valid commands, such as private functions.

Narrowing Completions Shown
You can narrow the list of completions shown by typing a character and then
pressing Tab if the Keyboard preference Tab key narrows completions is
selected. This is particularly useful for large lists. For example, type cam and
press Tab to see the possible completions. There is a scroll bar with the list
because there are too many completions to be seen at once.

Type p and press Tab again. The Editor/Debugger narrows the list, showing
only all possible camp completions.

6-24

Entering Statements in the Editor/Debugger

Continue narrowing the list in the same way. For the above example, type o
and press Tab to further narrow the list. Press Enter or Return to select
an item, which completes the name at the prompt.

Tab Completion for Structures
For structures that are in the current workspace, after the period separator,
press Tab. For example, type

mystruct.

and press Tab to display all fields of mystruct. If you type a structure and
include the start of a unique field after the period, pressing Tab completes
that structure and field entry.

For example, type

mystruct.n

and press Tab, which completes the entry mystruct.name, where mystruct is
in the current workspace and contains no other fields that begin with n.

6-25

6 Editing and Debugging M-Files

Tab Completion for Properties
Complete property names for figures in the current workspace using tab
completion, as in this graphics example. Here, f is a figure. Type

set(f, 'pap

and press Tab. The Editor/Debugger displays

Select a property from the list. For example, type

u

and press Enter. The Editor/Debugger completes the property, including
the closing quote.

set(f, 'paperunits'

Continue adding to the statement, as in this example,

set(f, 'paperunits', 'c

and press Tab. The Editor/Debugger automatically completes the property

set(f, 'paperUnits', 'centimeters'

because centimeters is the only possible completion.

6-26

Entering Statements in the Editor/Debugger

Using Tab for Spacing
If the preference for tab completion is selected, and you want to also use the
Tab key to add spacing within your statements, add a space before pressing
Tab. For example, to create this statement

if a=mate %test input value

add a space after mate and then press Tab. If you do not include the space,
the following happens instead:

if a=material

This is because the tab completion feature automatically causes mate to
complete as the material function.

Alternatively, turn off the tab completion preference to use Tab for spacing in
the Editor/Debugger.

6-27

6 Editing and Debugging M-Files

Appearance of an M-File — Making Files More Readable

In this section...

“Syntax Highlighting” on page 6-28

“Indenting” on page 6-29

“Function Indenting” on page 6-29

“Line and Column Numbers” on page 6-30

“Highlight Current Line” on page 6-30

“Right-Hand Text Limit” on page 6-31

“View Function or Subfunction” on page 6-31

“Code Folding—Expanding and Collapsing M-File Constructs” on page 6-31

“Split Screen Display” on page 6-38

Note You can specify the default behaviors for some of these features—see
“Preferences” on page 2-59.

Syntax Highlighting
Some entries appear in different colors to help you better find matching
elements, such as if/else statements. Similarly, unterminated strings
have a different color than terminated strings. This is called syntax
highlighting and is used in the Command Window and History, as well as
in the Editor/Debugger. For more information, see the Command Window
documentation for “Syntax Highlighting” on page 3-16.

When you paste or drag a selection from the Editor/Debugger to another
application, such as Microsoft Word, the pasted text maintains the syntax
highlighting colors and font characteristics from the Editor/Debugger.
MATLAB pastes the selection to the clipboard in RTF format, which many
Windows and Macintosh applications support.

6-28

Appearance of an M-File — Making Files More Readable

Indenting

Automatic Indenting
You can set an indenting preference so that program control
entries are automatically indented to make reading loops, such as
while/end statements, easier. To do so, select File > Preferences >
Editor/Debugger > Language, and select a Language, for example, M.
For Indenting for Enter key, select Smart indenting or Block indent,
and then click OK. Use No indent instead if you want to indent manually.
For more information about indenting preferences, see the in the online
documentation. Specify the indenting size and other options using in the
online documentation.

Manual Indenting
You can manually apply smart indenting to selected lines — select the lines
and then select Smart Indent from the Text menu, or right-click and select
it from the context menu. This feature indents lines that start with keyword
functions or that follow lines containing certain keyword functions. Smart
indenting can help you to follow the code sequence.

To move the current or selected lines further to the left, select Decrease
Indent from the Text menu. To move the current or selected lines further to
the right, select Increase Indent from the Text menu.

You can also indent a line by pressing the Tab key at the start of a line.
Or select a line or group or lines and press the Tab key. Press Shift+Tab
to decrease the indent for the selected lines. This works differently if you
select the Editor/Debugger Tab preference for Emacs-style Tab key smart
indenting — when you position the cursor in any line or select a group of
lines and press Tab, the lines indent according to smart indenting practices.

For more information about manual indenting, see in the online
documentation.

Function Indenting
If you select the language preference for smart indent, you can select from
three indenting options when you enter a subfunction or a nested function

6-29

6 Editing and Debugging M-Files

(a function within a function) in the Editor/Debugger. For details, see in the
online documentation.

Line and Column Numbers
Line numbers are displayed along the left side of the Editor/Debugger window.
You can elect not to show the line numbers using preferences — for details,
see in the online documentation.

The line and column numbers for the current cursor position are shown in the
far right side of the status bar in the Editor/Debugger.

Highlight Current Line
You can set a preference to highlight the current line, that is the line with the
caret (also called the cursor). This is useful, for example, to help you see
where copied text will be inserted when you paste.

To highlight the current line, select
File > Preferences > Editor/Debugger > Display, and
under General display options, select the check box for Highlight current
line. You can also specify the color used to highlight the line.

6-30

Appearance of an M-File — Making Files More Readable

Right-Hand Text Limit
By default, a light red vertical line (rule) appears at column 75 in the
Editor/Debugger, providing a cue as to when a line becomes wider than
desired, which is useful if you plan to print the file, for example. You can
hide the line or change the column number at which it appears — see in the
online documentation.

View Function or Subfunction
The function or subfunction the cursor is currently at is shown at the right
side of the status bar in the Editor/Debugger.

Code Folding—Expanding and Collapsing M-File
Constructs
You can enable or disable the ability to expand and collapse M-file
programming constructs; this ability is referred to as code folding.
Programming constructs include functions and function help.

6-31

6 Editing and Debugging M-Files

Code folding is particularly useful for improving readability when an M-file
contains numerous subfunctions and you want to hide code on which you
are not currently working.

When you fold a function, all the code associated with that function (including
any help code) is collapsed such that the Editor/Debugger displays only the
function definition line. The function definition line is appended with an

ellipsis icon to indicate there is more function code.

The following image shows the collatz function code expanded and the
collatzall and collatzplot_new functions collapsed:

6-32

Appearance of an M-File — Making Files More Readable

6-33

6 Editing and Debugging M-Files

When you expand a function, but collapse its associated help code, the
Editor/Debugger displays all the function code and just the H1 line of the help

code. The H1 line ends with a commented ellipsis icon to indicate there
is additional help code, as shown in the following image:

6-34

Appearance of an M-File — Making Files More Readable

6-35

6 Editing and Debugging M-Files

To expand code for a construct that is currently collapsed, do one of the
following:

• Click the plus sign icon to the left of the construct that you want to
expand.

• Place your cursor in the code that you want to expand, right-click, and then
select Code Folding > Expand from the context menu.

To collapse code for a construct that is currently expanded, do one of the
following:

• Click the minus sign icon to the left of the construct that you want to
collapse.

• Place your cursor in the code that you want to collapse, right-click, and
then select Code Folding > Collapse from the context menu.

To expand or collapse all of the code in an M-file, place your cursor anywhere
within the M-file, right-click, and then select Code Folding > Expand All or
Code Folding > Collapse All from the context menu.

For information on the structure of an M-file, including a description of a
function definition line and an H1 line, see Basic Parts of an M-File in the
MATLAB Programming documentation

Viewing Folded Code in a Tooltip
You can view code that is currently folded by positioning the pointer over its

ellipsis icon . The code displays in a tooltip. This enables you to get a
quick view of the code without requiring you to unfold it.

The following image shows the tooltip that displays when the pointer is
placed over the ellipsis icon on line 5 of collatzall.m when the collatzplot_new
function is folded.

6-36

Appearance of an M-File — Making Files More Readable

6-37

6 Editing and Debugging M-Files

Code Folding Behavior and Preferences
Be aware of the following:

• You can change the current code folding settings, by selecting File >
Preferences > Editor/Debugger > Code Folding and then clicking
Help for assistance.

• By default, the first time you open an existing M-file in MATLAB release
7.5 (R2007b), code folding is enabled and all constructs are expanded.

• Constructs that are collapsed when you close an M-file remain collapsed
when you reopen the file.

• If you copy a collapsed construct from one region of an M-file and paste it in
another region, the construct is expanded in the pasted location.

• If you print a file with one or more collapsed constructs, those constructs
are expanded in the printed version of the file.

Split Screen Display
You can simultaneously display two different parts of a file in the
Editor/Debugger. This makes it easy to compare different lines in a file or to
copy and paste from one part of a file to another.

Split the screen horizontally by selecting Window > Split
Screen > Top/Bottom. Or to split it vertically, select Left/Right.

Alternatively, when there is a scroll bar, split the document into top and
bottom views by dragging the splitter bar, (as shown in the following
illustration), down from above the vertical scroll bar. Similarly, to split into
left and right views, drag the splitter bar from the left of the horizontal scroll
bar. The pointer assumes a double-headed arrow shape when it is positioned
on the splitter bar.

6-38

Appearance of an M-File — Making Files More Readable

6-39

6 Editing and Debugging M-Files

Adjust the size of the views by dragging the splitter. The pointer assumes an
arrow shape when it is positioned on the splitter.

Only one view is active at any time, meaning, you will only see the cursor
in one of the views. To change the active view use Window > Split
Screen > Switch Focus or its keyboard equivalent, which is shown with the
menu item. The cursor returns to its last position in that view.

Make changes to the document in either view. Both views of the file are
always current, so you see the changes in either view.

You split each open document individually, so there can be multiple
configurations at once. You can split some documents horizontally, others
vertically, and leave others unsplit. When you open a document, it always
opens unsplit, regardless of its split status when you last had it open.

You can remove a document split using any of these methods:

6-40

Appearance of an M-File — Making Files More Readable

• Drag the splitter to an edge of the window.

• Double-click the splitter.

• Select Window > Split > Screen > Off.

See also “Summary of Actions for Arranging Documents” on page 2-11 for
instructions to display multiple documents simultaneously.

6-41

6 Editing and Debugging M-Files

Navigating in an M-File

In this section...

“Going to a Line Number” on page 6-42

“Going to a Function (Subfunctions and Nested Functions)” on page 6-42

“Going to a Bookmark” on page 6-43

“Navigating Back and Forward in Files” on page 6-44

“Opening a Selection in an M-File” on page 6-48

Note See also “Finding Text in Files” on page 6-49.

Going to a Line Number
Select Go > Go To. In the resulting Go To dialog box, select the Line
number option, enter a line number, and click OK. The cursor moves to
that line number in the current M-file.

Going to a Function (Subfunctions and Nested
Functions)
To go to a function within an M-file (either a subfunction or a nested function),
select Go > Go To. In the resulting Go To dialog box, select the Function
option, and then select an entry from the list of subfunctions and nested
functions in the file. Click OK.

6-42

Navigating in an M-File

Functions in the list appear alphabetically by name. To order them by their
position in the file, click the Line column heading. The list does not include
functions that are called from the M-file, but only shows lines in the current
M-file that begin with a function statement.

Alternatively, click the Show Functions button on the toolbar. Then select
the subfunction or nested function you want to go to from the list. The
functions are listed in order of position in the file.

Note that the status bar shows the function and subfunction the current
line is part of.

Going to a Cell
For M-file scripts that contain cells for rapid code iteration or publishing,
the Go To dialog box lists cell titles.

Going to a Bookmark
You can set a bookmark at a line in a file in the Editor/Debugger so you can
quickly go to the bookmarked line. This is particularly useful in long files.
For example, while working on a line, if you need to look at another part of
the file and then return, set a bookmark at the current line, go to the other
part of the file, and then go back to the bookmark.

6-43

6 Editing and Debugging M-Files

To set a bookmark, position the cursor anywhere in the line and select
Go > Set/Clear Bookmark. A bookmark icon appears to the left of the line.

To go to a bookmark, select Next Bookmark or Previous Bookmark from
the Go menu.

To clear a bookmark, position the cursor anywhere in the line and select
Go > Select/Clear Bookmark.

Bookmarks are not maintained after you close a file.

Navigating Back and Forward in Files
Use Go > Back (and Go > Forward) to go to lines you previously edited
or navigated to in a file. The feature goes to the lines in the sequence you
accessed them. As an alternative to the menu items, use the Back and
Forward buttons on the toolbar.

6-44

Navigating in an M-File

For example, if you open a file and make changes at lines 3, 9, and 6, use
Go > Back to return to line 9, then 3, then 1, and then use Go > Forward
to go from 1 to 3 to 9 to 6, and then return to 3. Detailed instructions to
accomplish this are

1 Select Go > Back to return from line 6 to line 9.

2 Select Go > Back again to return to line 3.

3 Select Go > Back again to return to line 1, which is the first line you
originally navigate to in a file by virtue of opening it.

4 Use Go > Forward to reverse the direction of the feature—select
Go > Forward to navigate to line 3.

5 Select Go > Forward to navigate to line 9.

6 Reverse the direction of the feature again—select Go > Back to navigate
to line 3.

6-45

6 Editing and Debugging M-Files

Lines Navigated to Using Go Back
Use Go > Back and Forward to go to lines you previously edited or navigated
to via these features:

Feature Examples Notes

Opening a file (first line in
the file)

File > Open None

Changes made using
text-editing tools

Delete key, or
Text > Increase Indent

Edits made to a selection of lines are
represented by the first line in the
selection.

Changes made using Cell > Insert
Cell Divider and Cell > Insert
Text Markup are not considered as
having been previously navigated to.

Changes made using Find
and Replace

Edit > Find and Replace Changes made using Replace All
are not considered as having been
previously navigated to.

Find features Edit > Find and Replace,
Find Next, Find Previous,
and Find Selection

None

Incremental search Ctrl+S and Ctrl+R None

Show Function button None

Opening a selection File > Open Selection None

Go to Go > Go To line number,
function, or cell title

None

Bookmark navigation Go > Next Bookmark and
Previous Bookmark

A line at which you Set/Clear
Bookmark is not considered as
having been previously navigated to.

Hyperlink access From warnings or errors in
the Command Window, from
Find Files results, and from
reports like the Profiler

None

6-46

Navigating in an M-File

Feature Examples Notes

Debugging navigation Lines with breakpoints
that were stopped at while
running, and lines stepped
to

A line at which you set a breakpoint
is not considered as having been
previously navigated to, unless it was
actually stopped at during execution.

Cell mode navigation Cell > Next Cell and
Previous Cell, and
Cell > Evaluate Current
Cell and Advance

Lines accessed using
Cell > Evaluate Current Cell
are not considered as having been
previously navigated to.

Interrupting the Sequence of Go Back and Forward
If you use Go > Back and Go > Forward, and then edit another line or
navigate to another line using the list of features described in the above table,
the Go > Back or Go > Forward feature sequence is interrupted. You can
still go to the lines preceding the interruption point in the sequence, but you
cannot go to any lines after that point. Any lines you edit or navigate to after
interrupting the sequence are added to the sequence after the interruption
point.

For example,

1 Open a file and edit lines 2, then 4, and then 6.

2 Use Go > Back to move back to line 4, and then back to line 2.

3 You could then Go > Forward to lines 4 and 6, or Go > Back to line 1.

Instead, make an edit at line 3. Now you cannot Go > Forward to lines 4
and 6 and you can only Go > Back to line 2 and then line 1.

Closed Files and Behavior of Go Back and Forward
Go > Back and Forward do not go to lines in closed files.

Split Screen and Behavior of Go Back and Forward
When you have a split screen display, Go > Back and Forward go to the
view in which the line was originally navigated to or edited in. If you remove

6-47

6 Editing and Debugging M-Files

the split, Go > Back and Forward do not go to any lines that were visited
in the lower (or right) view.

Opening a Selection in an M-File
You can open a subfunction, function, file, variable, or Simulink model from
within a file in the Editor/Debugger. Position the cursor in the name and then
right-click and select Open Selection from the context menu. Based on what
the selection is, the Editor/Debugger performs a different action.

Selection Action

Subfunction Cursor moves to the subfunction within the current
M-file. If no subfunction by that name is found in
the current M-file, the Editor/Debugger runs the
open function on the selection, which opens the
selection in the appropriate tool, as shown for the
other selection types in this table.

M-file or other text
file

Opens in the Editor/Debugger.

Figure file (.fig) Opens in a figure window.

Variable Opens in the Array Editor.

Model Opens in Simulink.

Other If the selection is some other type, Open selection
looks for a matching file in a private directory in
the current directory and performs the appropriate
action.

After selecting a name, you can also choose Help on Selection from the
context menu to see documentation for the item. For example, select a
function, right-click and select Help on Selection. The reference page for
that function opens in a popup window, or if the reference page does not exist,
the M-file help appears. For more information, see “Getting Pop-Up Help
for Functions” on page 4-49

6-48

Finding Text in Files

Finding Text in Files

In this section...

“Finding Text in the Current File” on page 6-49

“Finding and Replacing Text in the Current File” on page 6-49

“Finding Files or Text in Multiple Files” on page 6-51

“Incremental Search” on page 6-51

Finding Text in the Current File
Within the current file, select the text you want to find. From the Edit menu,
select Find Selection. The next occurrence of that text is selected. Select
Find Selection again (or Find Next) to continue finding more occurrences of
the text.

To find the previous occurrence of selected text (find backwards) in the current
file, select Find Previous from the Edit menu. The previous occurrence of
the text is selected. Repeat to continue finding the previous occurrences of
the text.

Finding and Replacing Text in the Current File
You can search for specified text within multiple files, and then replace the
text within a file.

Finding Text
To search for text in files, click the Find button in the Editor/Debugger
toolbar, or select Edit > Find and Replace. Complete the resulting Find &
Replace dialog box.

6-49

6 Editing and Debugging M-Files

The search begins at the current cursor position. MATLAB finds the text
you specified and highlights it. To find another occurrence, click Find Next
or Find Previous, or use the keyboard shortcuts F3 and Shift+F3 (or
Command+F3 and Command+Shift+F3 with Macintosh key bindings).

MATLAB beeps when a search for Find Next reaches the end of the file, or
when a search for Find Previous reaches the top of the file. If you have
Wrap around selected, it continues searching after beeping.

Use F3 and Shift+F3 to continue finding the specified text even after closing
the Find & Replace dialog box. You can go to another file and find the
specified text in it.

Change the selection in the Look in field to search for the specified text in
other MATLAB desktop tools.

Replacing Text
After finding text using the Find & Replace dialog box, you can replace
the text in the current file:

1 In the Replace with field, type the text that is to replace the found text.

2 Click Replace to replace the text currently selected, or click Replace All
to replace all instances in the current file.

The text is replaced. For Replace All, the number of instances that were
replaced appears in the Editor/Debugger status bar.

6-50

Finding Text in Files

3 To save the changes to the file, select Save from the File menu.

You can repeat this for multiple files.

Function Alternative for Finding Text
Use lookfor to search for the specified text in the first line of help for all
M-files on the search path.

Finding Files or Text in Multiple Files
To find directories and filenames that include specified text, or whose contents
contain specified text, use Edit > Find Files. For details, see “Finding Files
and Content Within Files” on page 5-49.

Incremental Search
With the incremental search feature, the cursor moves to the next or previous
occurrence of the specified text in the current file. It is similar to the Emacs
search feature. Incremental search is also available in the Command Window
— see “Incremental Search” on page 3-35.

To use the incremental search feature in the Editor/Debugger, follow these
steps:

1 Position the cursor where you want the search to begin.

2 How you begin the incremental search depends on your setting for
theEditor/Debugger key bindings preference and in which direction you
want to search:

• Press Ctrl+S to search forward or Ctrl+R to search backward for Emacs
and Macintosh key bindings.

• Press Ctrl+Shift+S to search forward or Ctrl+Shift+R to search
backward for Windows key bindings.

An incremental search field appears in the left side of the status bar of the
current file window. F Inc Search means search Forward from the cursor.
The field label is instead R Inc Search when you search backwards.

6-51

6 Editing and Debugging M-Files

3 In the incremental search field, type the text you want to find. For example,
type plot.

As you type the first letter, p, the first occurrence of that letter after the
cursor is highlighted. In the example shown, the cursor is in the middle of
line 2, so the first occurrence of p, the p in problem on line 2, is highlighted.

Incremental search is case sensitive for uppercase letters. In the above
example, searching for uppercase P, would instead find the P in Prepare
on line 3.

When you type the next letter in the term you are searching for, the first
occurrence of the term becomes highlighted. In the example, when you add
the letter l to the p so that the incremental search field now has pl, the
pl in plot on line 8 is highlighted. When you add ot to the term in the
incremental search field, the whole word plot in line 8 is highlighted.

6-52

Finding Text in Files

• If you mistype in the incremental search field, use the backspace key to
remove the last letters and make corrections.

• After finding the p, press Ctrl+W to highlight the rest of the word found,
in this case plot, which also puts the complete word in incremental
search field.

4 To find the next occurrence of plot in the file, press Ctrl+S. To find the
previous occurrence of the text, press Ctrl+R.

5 If MATLAB beeps, it either means the search is at the end or beginning of
the file, or it means that the text was not found.

• When the text is not found, Failing appears in the incremental search
field. Modify the search term in the incremental search field and try
again. Use Ctrl+G to automatically remove characters back to the last
successful search. For example, if plode fails, Ctrl+G removes the de
from the search term because plo does exist in the file.

• When at the end or beginning of the file, press Ctrl+S or Ctrl+R again
to wrap to the beginning (or end) of the file and continue the search.
Use Ctrl+G after a finding a string to clear the search and return the
cursor to the starting point.

6 To end the incremental search, press Esc or Enter, or any other
noncharacter or number key except Tab or backspace.

The incremental search field no longer appears in the status bar. The
cursor is now located at the position where the string was last found.

If you press Ctrl+S or Ctrl+R after displaying the blank incremental search
field, the search term from your previous incremental search appears in the
field. Then the backspace key deletes the entire previous search term, rather
than just the last letter.

6-53

6 Editing and Debugging M-Files

Comparing Files — File Comparison Tool

In this section...

“What Is the File Comparison Tool?” on page 6-54

“Running the File Comparison Tool” on page 6-54

“Increase or Decrease Line Lengths Shown” on page 6-56

“Exchange Positions” on page 6-57

“Show Updated Files” on page 6-57

“Find Text in Files” on page 6-57

“Compare to Other Files” on page 6-57

“Perform New and View Previous Comparisons” on page 6-57

“Alternative Ways to Access the Tool” on page 6-58

What Is the File Comparison Tool?
The File Comparisons tool identifies differences line by line between two files.
Some other applications refer to this as a file diff. As an example, you can use
this to easily compare an autosaved version of a file to the latest version.

Running the File Comparison Tool
To use the tool, follow these steps:

1 Open one of the files you want to compare in the Editor/Debugger.

To open the example file provided, lengthofline.m, run

open(fullfile(matlabroot,'help','techdoc','matlab_env',...
'examples','lengthofline.m'))

2 Select Tools > Compare Against > Browse. Navigate to the file you
want to compare against, select the file, and click Open. To open the
example file provided, select lengthofline2.m. Other options available are

6-54

Comparing Files — File Comparison Tool

• Tools > Compare Against > Autosave Version to compare the open
file to the Editor/Debugger’s automatic copy, filename.asv. For more
information, see “Autosave” on page 6-63.

• Tools > Compare Against Version on Disk to compare an open file
that has been changed but not saved to the saved version.

3 The File Comparisons tool opens, displaying the files side by side and
highlighting lines that do not match. Pink highlighting and an x at the
start of a line indicates that the content of the lines differs between the two
files. Green highlighting and a > at the start of a line indicates a line that
exists in the file presented on the right side of the page but not in the file
presented on the left side of the page. Green highlighting and a < at the
end of a line indicates a line that exists in the file presented on the left side
of the page but not in the file presented on the right side of the page.

6-55

6 Editing and Debugging M-Files

4 Use features of the File Comparisons tool to work with the results.

Increase or Decrease Line Lengths Shown
By default, the display is 60 columns wide for each file. To see the full line
length for each file, use a high number for Columns visible, and drag the

6-56

Comparing Files — File Comparison Tool

vertical edges of the window to make it wider. With a narrower window size, if
there are more columns shown in the left file but fewer in the right file, reduce
the number for Columns visible to see enough in both sides.

Exchange Positions
To move the file on the left side to the right side and vice-versa, select
File > Swap Sides, or click the equivalent toolbar button .

Show Updated Files
After making changes to and saving the files in the Editor/Debugger, update
the results in the File Comparisons tool by selecting File > Refresh or
clicking the equivalent toolbar button .

Find Text in Files
To find a phrase in the currently displayed files, select Edit > Find, or click
the equivalent toolbar button. The resulting Find dialog box is the same as
the one you use in the Command Window—for more information, see “Find
Dialog Box” on page 3-34.

Compare to Other Files
You can replace an existing file in the tool. Drag a different filename from
the Current Directory browser or Windows Explorer to the left or right side
of the File Comparisons window, replacing the file currently shown there.
Alternatively, type the path to a file or browse to find a file using the field
below the File Comparisons toolbar. Another option is to use File > Open.

Perform New and View Previous Comparisons
You can perform another comparison by selecting File > New File
Comparison. Supply the files to compare using the techniques described in
“Compare to Other Files” on page 6-57. You can see the results of either pair
of comparisons by selecting its entry in the document bar (as shown at the
bottom of the window in the above example illustration).

6-57

6 Editing and Debugging M-Files

Alternative Ways to Access the Tool
These are additional ways you can access the tool:

• From the MATLAB desktop, select Desktop > File Comparisons.

• From the Current Directory browser, select a file, right-click, and from the
context menu, select Compare Against.

• For two files in the same directory, from the Current Directory browser,
select the files, right-click, and from the context menu, select Compare
Selected Files.

Supply the files to compare using the techniques described in “Compare to
Other Files” on page 6-57.

6-58

Keyboard Shortcuts in the Editor/Debugger

Keyboard Shortcuts in the Editor/Debugger
Following is the list of keys that serve as shortcuts for using the
Editor/Debugger. This list does not include shortcut keys (sometimes called
hot keys) for menu items—you can view those on the menus. If you select the
Emacs “Editor/Debugger Key Bindings” on page 3-45 preference, you can also
use the Ctrl+key combinations shown. See also general desktop “Keyboard
Shortcuts” on page 2-40.

Key or Mouse
Action for
Windows
Preference

Additional
Control Key
for Emacs
Preference

Key or Mouse
Action for
Macintosh
Preference Operation

Ctrl+P Move to previous line.

Ctrl+N Move to next line.

Ctrl+Home None Cmd+Home Move to top of file.

Ctrl+End None Cmd+End Move to end of file.

Ctrl+ None Home Scroll up without moving cursor
position (with cell mode disabled).

Move to top of current cell or top of
previous cell (with cell mode enabled).

Ctrl+ None End Scroll down without moving cursor
position (with cell mode disabled).

Move to top of next cell (with cell
mode enabled).

Page Down Ctrl+V Page Down Move down one screen.

Page Up Alt+V Page Up Move up one screen.

Ctrl+B Move back one character.

Ctrl+F Move forward one character.

Ctrl+ None Option+ Move left one word.

Ctrl+ None Option+ Move right one word.

6-59

6 Editing and Debugging M-Files

Key or Mouse
Action for
Windows
Preference

Additional
Control Key
for Emacs
Preference

Key or Mouse
Action for
Macintosh
Preference Operation

Home Ctrl+A Cmd+ Move to beginning of line.

End Ctrl+E Cmd+ Move to end of line.

Delete Ctrl+D Forward Delete Delete character after cursor.

Backspace none Delete Delete character before cursor.

None Ctrl+K None Cut contents (kill) to end of line.

Double-click None Double-click Select current word. To select
additional words, hold mouse after
second click and continue dragging
left or right.

Triple-click None Triple-click Select current line. To select
additional lines, hold mouse after
second click and continue dragging
up or down.

Ctrl+Shift+ None Option+Shift+ Select word to the left

Ctrl+Shift+ None Option+Shift+ Select word to the right.

Shift+Home None Cmd+Shift+ Select to beginning of line.

Shift+End None Cmd+Shift+ Select to end of line.

Shift+Page Up Ctrl+Shift+V Shift+Page Up Select one screen up.

Shift+Page
Down

Alt+Shift+V Shift+Page Down Select one screen down.

Ctrl+Shift+Home None Cmd+Shift+Home Select to top of file.

Ctrl+Shift+End None Cmd+Shift+End Select to end of file.

Shift+Enter None Shift+Enter Add a new line that is not indented.

6-60

Keyboard Shortcuts in the Editor/Debugger

Key or Mouse
Action for
Windows
Preference

Additional
Control Key
for Emacs
Preference

Key or Mouse
Action for
Macintosh
Preference Operation

Insert None None Change to overwrite mode from insert
mode, or change to insert mode from
overwrite mode. View current mode
in the status bar: OVR is gray for
insert mode. In overwrite mode,
what you type replaces existing text,
and the cursor is a wide block. (Not
supported on Macintosh platforms.)

Shift+F5 None Shift+F5 Exit debug mode. Equivalent to
typing dbquit. The Command
Window displays the standard
prompt >>.

6-61

6 Editing and Debugging M-Files

Saving, Printing, and Closing Files in the Editor/Debugger

In this section...

“Saving Files” on page 6-62

“Printing M-Files” on page 6-64

“Closing M-Files” on page 6-64

Saving Files
After making changes to an file, you see an asterisk (*) next to the filename
in the title bar of the Editor/Debugger. This indicates there are unsaved
changes to the file.

To save the changes, use one of the Save commands in the File menu:

• Save — Saves the file using its existing name. If the file is newly created,
the Save file as dialog box opens, where you assign a name to the file
before saving it. Another way to save is by using the Save button on the
toolbar. If the file has not been changed, Save is grayed out, but you can
instead use Save As from the File menu to save to a different filename.

• Save As — The Save file as dialog box opens, where you assign a name to
the file and save it. By default, if you do not type an extension, MATLAB
automatically assigns the .m extension to the filename. If you do not want
an extension, type a . (period) after the filename.

• Save All — Saves all named files to their existing filenames. For all newly
created files, the Save file as dialog box opens, where you assign a name to
each untitled file and save it.

You cannot save an M-file while in debug mode. If you try to, MATLAB
displays a dialog box asking if you want to exit debug mode and then save
the file. While debugging, you can execute sections of an M-file even though
there are unsaved changes — see “Running Sections in M-Files That Have
Unsaved Changes” on page 6-125.

6-62

Saving, Printing, and Closing Files in the Editor/Debugger

Note Save any M-files you create and any M-files from The MathWorks
that you edit in a directory that is not in the matlabroot/toolbox directory
tree. If you keep your files in matlabroot/toolbox directories, they can
be overwritten when you install a new version of MATLAB. Also note that
locations of files in the matlabroot/toolbox directory tree are loaded and
cached in memory at the beginning of each MATLAB session to improve
performance. If you save files to matlabroot/toolbox directories using an
external editor or add or remove files from these directories using file system
operations, run rehash toolbox before you use the files in the current session.
If you make changes to existing files in matlabroot/toolbox directories using
an external editor, run clear functionname before you use the files in the
current session. For more information, see rehash or “Toolbox Path Caching
in MATLAB” on page 1-17.

Autosave
As you make changes to a file in the Editor/Debugger, every five minutes the
Editor/Debugger automatically saves a copy of the file to a file of the same
name but with an .asv extension. The autosave copy is useful if you have
system problems and lose changes made to your file. In that event, you can
open the autosave version, filename.asv, and then save it as filename.m to
use the last good version of filename. For example, if you edit filename.m
and do not save it for five minutes, MATLAB saves the file including the
unsaved changes, to filename.asv.

Use autosave preferences to turn the autosave feature off or on, to specify the
number of minutes between automatic saves, and to specify the file extension
and location for autosave files. For details, see in the online documentation.

If the file you are editing is in a read-only directory and the autosave
preference for location is the source file directory, an autosave copy of the
file is not made.

Deleting Autosave Files. By default, autosave files are not automatically
deleted when you delete the source file. To keep autosave to M-file
relationships clear and current, it is a good practice when you rename or
remove an M-file to delete or rename its corresponding autosave file.

6-63

6 Editing and Debugging M-Files

There is a preference to Automatically delete autosave files. With
this preference selected, when you close an M-file in the Editor/Debugger,
MATLAB automatically deletes the corresponding autosave file.

Accessing Your Source Control System
If you use a source control system for M-files, you can access it from within
the Editor/Debugger using File > Source Control. For more information,
see Chapter 9, “Source Control Interface”.

Printing M-Files
To print an entire M-file, select File > Print, or click the Print button on
the toolbar. To print the current selection, select File > Print Selection.
Complete the standard print dialog box that appears.

Specify printing options for the Editor/Debugger by selecting File > Page
Setup. For example, you can specify printing with a header. For more
information, see “Printing and Page Setup Options for Desktop Tools” on
page 2-52.

Closing M-Files
To close the current M-file, select Close filename from the File menu, or
click the Close box in the Editor/Debugger menu bar. This is different from
the Close box in the titlebar of the Editor/Debugger, which closes all open
files in that Editor/Debugger window.

To close all files within the Editor/Debugger, select Window > Close Editor
Documents. This does not close any files undocked from the Editor/Debugger.
The Editor/Debugger remains open with no files in it.

6-64

Saving, Printing, and Closing Files in the Editor/Debugger

If each file is open in a separate window, close all the files at once using the
Close All Documents item in the Window menu. Note that this also closes
desktop documents of all types, including Array Editor documents.

When you close a file that has unsaved changes, you are prompted to save
the file. If you do not want to be prompted, hold Ctrl and click the Close
box. The prompt will not appear and the document will close without saving
any unsaved changes.

6-65

6 Editing and Debugging M-Files

Running M-Files in the Editor/Debugger

In this section...

“Running M-Files with No Input Arguments in the Editor/Debugger” on
page 6-66

“Using Configurations — Running M-Files with Input Arguments in the
Editor/Debugger” on page 6-67

“Create and Run a Configuration for an M-file” on page 6-67

“Create and Run Multiple Configurations for an M-File” on page 6-72

“Find Configurations” on page 6-75

“Remove Configurations” on page 6-78

“Reassociate and Rename Configurations” on page 6-79

“See Also — Other Ways to Run M-Files from the Editor/Debugger” on
page 6-83

Running M-Files with No Input Arguments in the
Editor/Debugger
In the Editor/Debugger, to run a script M-file, or a function M-file that requires
no input arguments, click the Run button on the toolbar. The button’s
tooltip includes the name of the file to be run, which is useful when you have
more than one file open. Alternatively, select Debug > Run filename.

If the file is not in a directory on the search path or in the current directory, a
dialog box appears, presenting you with options that allow you to run the file.
You can either change the current directory to the directory containing the
file, or you can add the directory containing the file to the search path.

If the file has unsaved changes, running it from the Editor/Debugger
automatically saves the changes before running. In that event, the menu
item is Save File and Run filename.

If the M-file is a script, you can view the value of a variable in the file, which
is called a datatip (like a tooltip for data). You need to set the preference to
show datatips in edit mode — select File > Preferences > Display, and for

6-66

Running M-Files in the Editor/Debugger

General Display Options, select the check box for Enable datatips in
edit mode.

Using Configurations — Running M-Files with Input
Arguments in the Editor/Debugger
In the Editor/Debugger, you can provide values for a function’s input
arguments using a configuration, and then run that configuration to use the
assigned values. When you are editing a function M-file, use a configuration
as an alternative to running the function in the Command Window. You can
associate multiple configurations with an M-file, for different input values.
MATLAB saves the configurations between sessions.

For example, the function collatzplot_new.m, which computes and plots the
Collatz sequence for any given positive integer, requires you to specify the
integer as an input value. You cannot simply run collatplot_new.m in the
Editor/Debugger because the input value is not defined. One way to specify
the input value is to run the M-file in the Command Window. Configurations
allow you to run collatzplot_new(specific value) in the Editor/Debugger.

You can also use configurations to provide preparatory or setup information
prior to running an M-file, whether it takes input arguments or not.

Create and Run a Configuration for an M-file
Follow these steps to create and run a configuration for an M-file in the
Editor/Debugger. These steps specify Editor/Debugger toolbar buttons, but
you can also use equivalent items in the Debug menu.

1 Open the file you want to run in the Editor/Debugger. For example, open
collatzplot_new.m by running

cd ([matlabroot '/help/techdoc/matlab_env/examples'])
edit collatzplot_new.m

To work with collatzplot_new.m on your system, save the file to a
directory for which you have write permission. In the example, the file is
saved to I:\my_matlab_files\my_mfiles\collatzplot_new.m

6-67

6 Editing and Debugging M-Files

2 Click the down arrow on the Run button in the Editor/Debugger toolbar

and select Edit Configurations for
filename, where filename in this example is collatzplot_new.m.

The Edit M-File Configurations dialog box opens, with a default
configuration template for collatzplot_new.m.

6-68

Running M-Files in the Editor/Debugger

3 In the dialog box, enter MATLAB statements in the MATLAB expression
area of the dialog box, specifying what you want to run. Delete the existing
comments or replace them with comments relevant to your configuration.
To undo and redo, use the keyboard shortcuts for your platform, such as
Ctrl+Z and Ctrl+Y for Windows.

In this example, set m equal to 3, a small value useful for debugging
purposes. Complete the statement to run collatzplot_new(m).

6-69

6 Editing and Debugging M-Files

The MATLAB expression area provides syntax highlighting and shows
M-Lint messages, similar to the Editor/Debugger.

4 To ensure your configuration runs as expected, click Run to execute the
statements in the MATLAB expression area of the dialog box. In this
example, collatzplot_new(3) runs, and a figure window displays the plot.

6-70

Running M-Files in the Editor/Debugger

5 You can modify the statements in the MATLAB expression area of
the dialog box and click Run to see the results of the changes. You
can also modify the M-file and save the changes while the Edit M-File
Configurations dialog box is open, and then click Run to see the results
of the M-file changes.

6 You can assign a name using Configuration name in the Edit M-File
Configurations dialog box. By default, the configuration name is the M-file
name. If you expect to create multiple configurations for an M-file, assign
each a name that helps you identify the configuration. In this example,
name the configuration collatzplot_new_test.

7 To close the Edit M-File Configurations dialog box, click Done. MATLAB
saves the configuration and its association with the M-file.

8 After creating a configuration, you can view and run the configuration
without opening the Edit M-File Configurations dialog box.

In the Editor/Debugger toolbar, click the down arrow on the Run button
and position the pointer on a configuration name. MATLAB displays

a tooltip showing the configuration’s expression so you can see what will
run.

6-71

6 Editing and Debugging M-Files

To run the configuration, select the configuration name. MATLAB runs
the expression you specified in the configuration. For example, select
collatzplot_new_test, and MATLAB runs collatzplot_new(3), as
specified in step 3. You can modify the M-file, save it, and run the
configuration from the toolbar to see the effects of the M-file changes.

Create and Run Multiple Configurations for an M-File
You can create multiple configurations for a given M-file, allowing you to run
with different values for input arguments, each for a different purpose. Create
a named configuration for each purpose, all associated with the M-file. Then
any time you open the M-file, chose and run the configuration you want. For
example, for collatzplot_new(m) you might use three values for m and have
three configurations:

6-72

Running M-Files in the Editor/Debugger

• Small value, e.g., 3, for debugging and testing

• Realistic value, e.g., 200 or more, for a specific project

• Random value to observe changes

1 Open the Edit M-File Configurations dialog box. Select the M-file to
which you want to add a configuration, or select a configuration associated
with that M-file. Click the Add button (under the list of M-files and
configurations). MATLAB creates a new default configuration template,
in this example, collatzplot_new.

The example shows collatzplot_new and its default expression, as well as
one previously created configuration associated with collatzplot_new.m,
collatzplot_new_test.

2 In the Edit M-File Configurations dialog box, modify, run, and
name the new configurations as you did for the initial configuration,

6-73

6 Editing and Debugging M-Files

collatplot_new_test, described in “Create and Run a Configuration for
an M-file” on page 6-67.

For example, rename collatzplot_new to collatzplot_new_largevalue,
and replace the default template expression with

m=200;
collatzplot_new(m)

To create another configuration, click the Add button . Rename
collatzplot_new to collatzplot_new_random and replace the default
template expression with

% Random value
m=int16(rand*50);
collatzplot_new(m)
clear all

3 Select a configuration in the listing to see and modify its expression, or to
rename the configuration. Click the expander next to an M-file name (+
and - icon on Windows) to see or hide all the configurations associated
with that M-file.

4 To get a quick view of the expression in a configuration, position the pointer
on the name of a configuration without selecting it. In this example,
collatzplot_new_largevalue is selected and you can edit its expression
or name. The pointer is positioned on collatzplot_new_test and you
can see the statements in it.

6-74

Running M-Files in the Editor/Debugger

5 Click Done to close the Edit M-File Configurations dialog box.

Find Configurations

1 Open any M-file in Editor/Debugger. For example, open the MATLAB
function sin.

2 Open the Edit M-File Configurations dialog box. MATLAB automatically
creates a default configuration for sin.m, if none exists.

In the left panel, MATLAB displays a list of all M-files containing
configurations.

6-75

6 Editing and Debugging M-Files

3 Type a term in the filter field to find an M-file or
configuration by name.

MATLAB displays only those M-files whose names contain the term, or
whose associated configurations contain the term in their name. As you
type, MATLAB filters out files and configurations that do not contain the
term.

For example, type rand. In this example, only one M-file,
collatzplot_new.m, has a configuration that contains the term rand.

6-76

Running M-Files in the Editor/Debugger

4 Expand the M-file name to see associated configurations whose names
contain the term you entered in the filter field. In this example, click the
expander (+ on Windows) for collatzplot_new.m to see configurations
whose names contain rand. If you cannot view the entire name of a
configuration, drag the separator bar to the right of the list, making
the left panel wider. For the example, there is only one configuration,
collatzplot_new_randomvalue.

6-77

6 Editing and Debugging M-Files

5 To see the expression in that configuration, select the configuration, or
position the pointer over the name.

6 As you type additional letters in the filter field, fewer M-files remain in the
list of results. Use the backspace key to modify the term. If there are no
M-files or configurations containing the term, the list will be empty.

7 To clear the filter and show all M-files with configurations, click the clear
button in the filter field.

Remove Configurations
If you no longer need a configuration because you do not use it or because you
deleted the M-file with which it is associated, it is a good practice to delete
the configuration.

1 Open any M-file in the Editor/Debugger.

2 Open the Edit M-File Configurations dialog box.

6-78

Running M-Files in the Editor/Debugger

3 Select the configuration you want to delete.

4 Click the Remove button .

5 To undo the last deletion, click the Undo button . You cannot undo the
last deletion after having closed the Edit M-File Configuration dialog box.

Reassociate and Rename Configurations
Each configuration is associated with a specific M-file. If you move or rename
the M-file, you need to redefine the association. If you delete an M-file, you
might want to delete the associated configurations, or associate them with
a different M-file. You might also need to modify the statements in the
configurations so they will run.

When MATLAB cannot associate a configuration with an M-file, the Edit
M-File Configurations dialog box displays the M-file name in red, displays a
File Not Found message, and allows you to find the M-file to which you want
to associate the configuration. In this example, MATLAB cannot find the file
collatzplot_new.m, which has three configurations associated with it. For
this example, collatzplot_new.m had been renamed to collatzplot.m,
so the configurations associated with collatzplot_new.m need to be
reassociated.

6-79

6 Editing and Debugging M-Files

To reassociate configurations

1 In the list of configurations (left pane), select the M-file. The Associated
M-file displays the full path to the M-file that was associated with the
configurations. Click Choose.

2 In the resulting Open dialog box, navigate to and select the M-file with
which you now want to associate the configurations. Click Open

In this example, you want to associate the configurations with
collatzplot.m; select collatzplot.m.

3 In the Edit M-File Configurations dialog box, the Associated M-file value
reflects the change you made and the File Not Found message no longer
appears.

6-80

Running M-Files in the Editor/Debugger

4 You might want to rename the configurations to be consistent with the new
M-file name, or at least to not reflect the former M-file name. This is not
required, but it is a good practice. To do so, select a configuration from the
list in the left pane. In the right pane, edit the value for Configuration
name. Repeat for all configurations associated with the M-file.

In this example, remove collatzplot_new from the start of each
configuration name.

6-81

6 Editing and Debugging M-Files

5 For an M-file name change, you might need to modify the
configuration statements to run correctly. For this example, modify
the collatzplot_new(m) statement in each configuration to use
collatzplot(m).

6-82

Running M-Files in the Editor/Debugger

See Also — Other Ways to Run M-Files from the
Editor/Debugger

• See “Running an M-File with Breakpoints” on page 6-111 for additional
information about running M-files while debugging.

• While debugging, you can execute sections of an M-file even though there
are unsaved changes—see “Running Sections in M-Files That Have
Unsaved Changes” on page 6-125.

• You can execute M-files one section at a time and quickly modify values
incrementally using the toolbar—for more information, see “Using Cells for
Rapid Code Iteration and Publishing Results” on page 6-133.

6-83

6 Editing and Debugging M-Files

Finding Errors, Debugging, and Correcting M-Files
This section introduces general techniques for finding errors and using M-Lint
automatic code analyzer to detect possible improvements in M-files. It then
illustrates MATLAB debugger features found in the Editor/Debugger, as well
equivalent Command Window debugging functions, using a simple example.

There are two kinds of errors:

• Syntax errors — For example, misspelling a function name or omitting a
parenthesis.

• Run-time errors — These errors are usually algorithmic in nature. For
example, you might modify the wrong variable or code a calculation
incorrectly. Run-time errors are usually apparent when an M-file produces
unexpected results. Run-time errors are difficult to track down because
the function’s local workspace is lost when the error forces a return to
the MATLAB base workspace. The process of isolating and fixing these
run-time problems is referred to as debugging.

In addition to finding and fixing problems with your M-files, you might want to
improve the performance and make other enhancements using MATLAB tools.

Use the following techniques to isolate the causes of errors and improve your
M-files.

Technique or
Tool Description For More Information

Syntax
highlighting
and Delimiter
matching

Syntax highlighting helps you identify
unterminated strings in an M-file before you run
the file.

Delimiter matching helps you correctly match
pairs of parentheses, brackets, braces, and
keywords.

“Syntax Highlighting” on
page 6-28

“Matching Delimiters
(Parentheses)” on page
3-17

6-84

Finding Errors, Debugging, and Correcting M-Files

Technique or
Tool Description For More Information

Error Messages When you run an M-file with a syntax error,
MATLAB will most likely detect it and display
an error message in the Command Window
describing the error and showing its line number
in the M-file. Click the underlined portion of the
error message, or position the cursor within the
message and press Ctrl+Enter. The offending
M-file opens in the Editor/Debugger, scrolled to
the line containing the error.

To check for syntax errors in an M-file without
running the M-file, use the pcode function.

None

M-Lint Use the M-Lint code analyzer to help you verify
the integrity of your code and learn about
potential improvements. Access M-Lint messages
automatically while you work in a file in the
Editor/Debugger, or run an M-Lint report for an
existing file.

To evaluate the McCabe complexity (also known
as the cyclomatic complexity) of an M-File, use
the mlint function with the -cyc option.

“M-Lint Code Analyzer”
on page 6-87 and the
reference page for the
mlint function

Editor/
Debugger
Graphical
Debugger
and MATLAB
Debugging
Functions

The MATLAB Editor/Debugger graphical
debugger and MATLAB debugging functions are
useful for correcting run-time problems because
you can access function workspaces and examine
or change the values they contain. You can set
and clear breakpoints, indicators that temporarily
halt execution in an M-file. While stopped at a
breakpoint, you can change workspace contexts,
view the function call stack, and execute the lines
in an M-file one by one.

“Debugging Process and
Features” on page 6-103

6-85

6 Editing and Debugging M-Files

Technique or
Tool Description For More Information

Other
Debugging
Techniques

• Add keyboard statements to the M-file —
keyboard statements stop M-file execution at
the point where they appear and allow you
to examine and change the function’s local
workspace. This mode is indicated by a special
K>>prompt. Resume function execution by
typing return and pressing the Enter key. For
more information, see the keyboard reference
page.

• Remove selected semicolons from the
statements in your M-file—semicolons disable
the display of output in the M-file. By removing
the semicolons, you instruct MATLAB to
display these results on your screen as the
M-file executes.

• List dependent functions—use the depfun
function to see the dependent functions.

Reference pages for
keyboard and depfun
function

Cells In the Editor/Debugger, isolate sections of an
M-file, called cells, so you can easily make changes
to and run a single section.

“Using Cells for Rapid
Code Iteration and
Publishing Results” on
page 6-133

Profiler Use the Profiler to help you improve performance
and detect problems in your M-files. Access the
Profiler from the Editor/Debugger by selecting
Tools > Open Profiler.

“Profiling for Improving
Performance” on page
7-27

Directory
Reports

The M-file Directory Reports help you polish and
package M-files before providing them to others
to use. Access all of these tools from the Current
Directory browser. You can access some of these
directly from the Editor/Debugger Tools menu.

“Directory Reports
in Current Directory
Browser” on page 7-2

6-86

M-Lint Code Analyzer

M-Lint Code Analyzer

In this section...

“What Is M-Lint?” on page 6-87

“Ways to Use M-Lint” on page 6-87

“M-Lint Automatic Code Analyzer in the Editor/Debugger” on page 6-88

“Suppressing M-Lint Indicators and Messages” on page 6-98

What Is M-Lint?
The M-Lint code analyzer checks your code for problems and recommends
modifications to maximize performance and maintainability.

Ways to Use M-Lint
You can use M-Lint in two different ways, both of which report the same
information:

• Run a report for an existing M-file or group of M-files. To do so, from an
M-file in the Editor/Debugger, select Tools > M-Lint > Show M-Lint
Report. Make any changes to your file based on the M-Lint messages in
the report. After making changes, you must save the file and rerun the
report to see if your changes addressed the issues noted in M-Lint messages.
To run M-Lint for all files in a directory, access M-Lint from the Current
Directory browser — select View > Directory Reports > M-Lint Code
Check Report. For details, see “M-Lint Code Check Report” on page 7-16.

• Continuously check code in the Editor/Debugger while you work. View
M-Lint messages and make changes to your file based on the messages.
The code analyzer updates automatically and continuously so you can see
if your changes addressed the issues noted in the M-Lint messages. For
some messages, M-Lint offers automatic code correction. For details about
specific M-Lint messages, see “M-Lint Code Check Report” on page 7-16.
Information about using the continuous checking and correction interface
in the Editor/Debugger is explained here.

6-87

6 Editing and Debugging M-Files

M-Lint Automatic Code Analyzer in the
Editor/Debugger
To use the M-Lint continuous code checking in an M-file in the
Editor/Debugger, perform the following steps:

1 Ensure the M-Lint messaging preference is enabled: Select
File > Preferences > M-Lint and select the Enable integrated M-Lint
warning and error messages check box. To follow these instructions, be
sure the Underlining option is set to Underline warnings and errors.
Click OK.

6-88

M-Lint Code Analyzer

2 Open an M-file in the Editor/Debugger. This example uses the sample
file lengthofline.m:

a Open the example file:

6-89

6 Editing and Debugging M-Files

open(fullfile(matlabroot,'help','techdoc','matlab_env','examples','lengthofline.m'))

b Save the example file to a directory to which you have write access. For
the example, lengthofline.m is saved to I:\MATLABFiles\mymfiles.

3 The M-Lint message indicator at the top right edge of the window conveys
the M-Lint messages reported for the file:

• Red means syntax errors were detected. Another way to detect some
of these errors is using syntax highlighting to identify unterminated
strings, and delimiter matching to identify unmatched keywords,
parentheses, braces, and brackets.

• Orange means warnings or opportunities for improvement were detected,
but no errors were detected.

• Green means no errors, warnings, or opportunities for improvement
were detected.

For the example, the indicator is red, meaning there is at least one error in
the file.

6-90

M-Lint Code Analyzer

(�������������	�	��

�5�	�������� ��	��	���������

������ ���	�����	���	
�7
5�3���������������������
5�4�� �����������	� ����	���!�������������	�	�����������
5�&�����������������������

(
	�)�	��	�������� ����������
	��������������������	������5�	�������� ��

6-91

6 Editing and Debugging M-Files

4 Click the M-Lint message indicator to go to the next code fragment
containing an M-Lint message. The next code fragment is relative to the
current cursor position, viewable in the status bar.

In the lengthofline example, the first message is at line 22. The cursor
moves to the beginning of line 22.

5 The code fragment for which there is an M-Lint message is underlined in
either red for errors or orange for warnings and improvement opportunities.

To view the M-Lint message, move the pointer within the underlined
fragment. The message appears with a yellow highlighted background,
similar to datatips (see “Viewing Values as Datatips in the Editor/Debugger”
on page 6-115).

,��	�	���������	��	����� ������
	����������� ��������
#�	��.'�%� ���	��
���������
������5�	�������� ��

This message means that in line 22, nothandle is assigned a value, but
is probably not used anywhere after that in the file. The line might be

6-92

M-Lint Code Analyzer

extraneous and you could delete it. But it might be that you actually
intended to use the variable, as shown in step 6 of this example.

6 Make changes to your code as needed. The M-Lint indicator and
underlining automatically update to reflect the changes you make, even
if you do not save the file.

In this example, the intention was to use nothandle as a performance
improvement by determining the value prior to the loop. Changing
~ishandle(hline(nh)) in line 24 to nothandle(nh) means there is no
longer an M-Lint message associated with line 22. For more information
about what the warning and improvement messages in this example mean
and actions you can take to address them, see “Messages and Resulting
Changes for the lengthofline Example” on page 7-21.

7 Some errors and warnings are highlighted, indicating M-Lint can
automatically fix the code. For example, in lengthofline, line 23, prod
is underlined because there is an M-Lint warning, and it is highlighted
because an automatic fix is available. When you view the M-Lint message,
it also indicates the auto-fix that is available.

6-93

6 Editing and Debugging M-Files

Right-click the highlighted code (for a single-button mouse, use Ctrl+click).
The first item in the context menu indicates the automatic fix that M-Lint
can perform. Select it and M-Lint automatically corrects the code. In this
example, M-Lint replaces prod(size(hline)) with numel(hline).

6-94

M-Lint Code Analyzer

There is a preference you can set for the color—for more information, see
“Other Colors” on page 2-75.

8 You might want to ignore certain M-Lint messages and do not want the
messages to display; for more information, see “Suppressing M-Lint
Indicators and Messages” on page 6-98.

9 You can click the M-Lint message indicator to go to the next message, or
use the other way to view messages, which is the M-Lint message bar. Each
marker in the bar represents a line that has associated M-Lint messages. A
red marker means there is an error at that line, while an orange marker
means there are warnings or suggested improvements, but no errors at
that line.

a Position the pointer at a marker in the message bar to view the message.
For example, to see an error in lengthofline, position the pointer at a
red marker in the message bar. There is only one error in the file and
with the pointer positioned over it, the associated M-Lint messages
appears. Click the marker to go to the first code fragment in the line that
resulted in an M-Lint message. For the example, click the red marker,
which takes you to the first suspect code fragment in line 48.

6-95

6 Editing and Debugging M-Files

temp = diff([data{1}(:) data{2}(:) data{3}(;)]);

Multiple messages can represent a single problem or multiple problems.
Addressing one might address all of them, or after addressing one, the
other messages might change or what you need to do might become
clearer.

�5�	�������� ��%���#������)�
�������������5�	�������� ��

,��	�	���������	�����������)����
!	������������ ���	����	�������
�
������
�������)��	�������	
��
���������%����
�	�
������� ����������
	���
(
	�)�����)����� �������������
�� �������������
����	����������� ��
�����	�������
���������
�	�
������� ��
�����

�����
���������	�
�����

b Make changes to address the problem noted in the M-Lint message—the
M-Lint indicators update automatically.

In the example, the M-Lint message suggest a delimiter imbalance. You
can check that by moving the arrow key over each of the delimiters
to see if MATLAB indicates a mismatch. This requires that File >
Preferences > Keyboard > Delimiter Matching has the Match on
arrow key option selected. There are no mismatched delimiters. The
actual problem is the semicolon in parentheses, data{3}(;), is incorrect
and should be a colon. In line 48, change data{3}(;) to data{3}(:).
When you make the change, the underline no longer appears in line 48.

6-96

M-Lint Code Analyzer

That single change addressed the issues in all of the M-Lint messages
for line 48.

Because the change you made removed the only error in the file, the
M-Lint message indicator at the top of the bar changes from red to
orange, indicating that only warnings and potential improvements
remain.

c If there are multiple messages associated with a line, there might be
multiple underlined code fragments that are adjacent, as in the above
example, making it difficult to display the message of interest. In those
cases, it might be easier to view the messages via the marker on the
message bar.

10 After making changes to address all M-Lint messages, or disabling
designated messages, the M-Lint message indicator becomes green The
example file with all M-Lint messages addressed has been saved as
lengthofline2.m, which you can open by running

open(fullfile(matlabroot,'help','techdoc','matlab_env',...
'examples','lengthofline2.m'))

6-97

6 Editing and Debugging M-Files

Suppressing M-Lint Indicators and Messages
Depending on what stage you are at in completing the M-file, you might
want to restrict the underlining, which you can do via the M-Lint preference
referred to in step 1, above. For example, when first coding, you might prefer
no underlines because they would be distracting. For details, click the Help
button in the Preferences dialog box.

M-Lint does not provide perfect information about every situation and in
some cases, you might not want to make any changes based on an M-Lint
message. In the event you do not want to change the code but you also do not
want to see the M-Lint indicator and message for that line, instruct M-Lint to
suppress them. For the lengthofline example, in line 49, the first M-Lint
message is Terminate statement with semicolon to suppress output
(in functions). Adding a semicolon to the end of a statement suppresses
output and is a common practice. M-Lint alerts you to lines that produce
output but lack the terminating semicolon. If you want to view output from
line 49, do not add the semicolon as M-Lint suggests.

6-98

M-Lint Code Analyzer

There are a few different ways to suppress the M-Lint indicators and
messages:

• “Ignore Only a Specific Instance” on page 6-99

• “Disable All Instances in All Files” on page 6-101

• “Disable Specified Messages or in Selected Files as Needed” on page 6-101

Note that you cannot suppress M-Lint error messages such as syntax errors,
and therefore, the following options do not apply.

Ignore Only a Specific Instance
Right-click at the M-Lint underline (for a single-button mouse, use
Ctrl+click). From the context menu, select Ignore this "Terminate
statement with semicolon...". M-Lint adds a %#ok<NOPRT> to the end of
the line, which instructs MATLAB not to check for a terminating semicolon at
that line. M-Lint removes the underline and mark in the M-Lint indicator
bar for that message.

If there are two messages on a line that you do not want M-Lint to display,
right-click separately at each underline and select the appropriate entry from
the context menu. M-Lint expands the %#ok syntax. For the example, ignoring
both messages for line 49 would add %#ok<NBRAK,NOPRT>.

For more information about %#ok, see the mlint function reference page.

This method of suppressing the messages changes the M-file. If M-Lint
preferences are to set to enable this message, the specific instance of the
message suppressed in this way will not appear because the %#ok takes
precedence over the preference setting. If you later decide you want M-Lint
to check for a terminating semicolon at that line, delete the %#ok<NOPRT>
from the line.

6-99

6 Editing and Debugging M-Files

3	 ��5�
	�)��������5�	�������
	���������
�����������	���	������	� ��5�	��
���	 ������
����	��	�������������������� ������������	����	�������
��

6-100

M-Lint Code Analyzer

�5�	����������������������	�	������� ��������
���������
	��������	�����������	�	��������5�	�������� �
����
��%������������

Disable All Instances in All Files
Right-click at the M-Lint underline (for a single-button mouse, use Ctrl+click).
From the context menu, select Disable all "Terminate statement with
semicolon...". Doing so modifies the M-Lint preference setting, which
applies to all occurrences in all files, unless a line includes a %#ok for that
message. For more information about the M-Lint preference, including how
to restore MATLAB default settings, select File > Preferences > M-Lint,
and click Help.

Disable Specified Messages or in Selected Files as Needed
Use M-Lint preferences by selecting File > Preferences > M-Lint. Then
enable specific messages or categories of messages and save the settings to a

6-101

6 Editing and Debugging M-Files

txt file. You can reuse the settings for any M-file, or provide the settings file
to another user.

To use the saved settings, either select the settings file in M-Lint preferences,
or in the Editor/Debugger. In the Editor/Debugger, right-click the
M-Lint message bar (for a single-button mouse, use Ctrl+click), or select
Tools > M-Lint. The currently-selected setting choice is shown, preceded
by a bullet point. You can choose from any of the settings files, such as the
MLintNoSemis example, as shown here.

�5�	��������
������	� ����������
����
������-���	��	������%������%�

�����	��
�����	� �����������	���/��$�
��������	�	��	
��������������5�	�������	� �
����	�	���	��������	
��

For more about M-Lint settings and preferences, click Help in the M-Lint
preferences panel.

6-102

Debugging Process and Features

Debugging Process and Features

In this section...

“Ways to Debug M-Files” on page 6-103

“Preparing for Debugging” on page 6-103

“Setting Breakpoints” on page 6-107

“Running an M-File with Breakpoints” on page 6-111

“Stepping Through an M-File” on page 6-112

“Examining Values” on page 6-114

“Correcting Problems and Ending Debugging” on page 6-118

“Conditional Breakpoints” on page 6-126

“Breakpoints in Anonymous Functions” on page 6-128

“Error Breakpoints” on page 6-129

Ways to Debug M-Files
You can debug the M-files using the Editor/Debugger, which is a graphical
user interface, as well as by using debugging functions from the Command
Window. You can use both methods interchangeably. These topics and the
example describe both methods.

Preparing for Debugging
Do the following to prepare for debugging:

• Open the file — To use the Editor/Debugger for debugging, open it with
the file to run.

• Save changes — If you are editing the file, save the changes before you
begin debugging. If you try to run a file with unsaved changes from within
the Editor/Debugger, the file is automatically saved before it runs. If you
run a file with unsaved changes from the Command Window, MATLAB runs
the saved version of the file, so you will not see the results of your changes.

• Add the files to a directory on the search path or put them in the current
directory — Be sure the file you run and any files it calls are in directories

6-103

6 Editing and Debugging M-Files

that are on the search path. If all files to be used are in the same directory,
you can instead make that directory be the current directory.

Debugging Example — The Collatz Problem
The debugging process and features are best described via an example.
To prepare to use the example, create two M-files, collatz.m and
collatzplot.m, that produce data for the Collatz problem.

For any given positive integer, n, the Collatz function produces a sequence of
numbers that always resolves to 1. If n is even, divide it by 2 to get the next
integer in the sequence. If n is odd, multiply it by 3 and add 1 to get the next
integer in the sequence. Repeat the steps until the next integer is 1. The
number of integers in the sequence varies, depending on the starting value, n.

The Collatz problem is to prove that the Collatz function will resolve to 1 for
all positive integers. The M-files for this example are useful for studying
the Collatz problem. The file collatz.m generates the sequence of integers
for any given n. The file collatzplot.m calculates the number of integers
in the sequence for all integers from 1 through m, and plots the results. The
plot shows patterns that can be further studied.

Following are the results when n is 1, 2, or 3.

n Sequence
Number of Integers in the
Sequence

1 1 1

2 2 1 2

3 3 10 5 16 8 4 2 1 8

M-Files for the Collatz Problem. Following are the two M-files you use for
the debugging example. To create these files on your system, open two new
M-files. Select and copy the following code from the Help browser and paste
it into the M-files. Save and name the files collatz.m and collatzplot.m.
Save them to your current directory or add the directory where you save them
to the search path. One of the files has an embedded error to illustrate the
debugging features.

6-104

Debugging Process and Features

Code for collatz.m.

function sequence=collatz(n)

% Collatz problem. Generate a sequence of integers resolving to 1

% For any positive integer, n:

% Divide n by 2 if n is even

% Multiply n by 3 and add 1 if n is odd

% Repeat for the result

% Continue until the result is 1%

sequence = n;

next_value = n;

while next_value > 1

if rem(next_value,2)==0

next_value = next_value/2;

else

next_value = 3*next_value+1;

end

sequence = [sequence, next_value];

end

Code for collatzplot.m.

function collatzplot(m)
% Plot length of sequence for Collatz problem
% Prepare figure
clf
set(gcf,'DoubleBuffer','on')
set(gca,'XScale','linear')
%
% Determine and plot sequence and sequence length
for N = 1:m
plot_seq = collatz(N);
seq_length(N) = length(plot_seq);
line(N,plot_seq,'Marker','.','MarkerSize',9,'Color','blue')
drawnow

end

Trial Run for Example. Open the file collatzplot.m. Make sure the
current directory is the directory in which you saved collatzplot.

6-105

6 Editing and Debugging M-Files

Try out collatzplot to see if it works correctly. Use a simple input value,
for example, 3, and compare the results to those shown in the preceding
table. Typing

collatzplot(3)

produces the plot shown in the following figure.

The plot for n = 1 appears to be correct—for 1, the Collatz series is 1, and
contains one integer. But for n = 2 and n = 3, it is wrong because there should
be only one value plotted for each integer, the number of integers in the
sequence, which the preceding table shows to be 2 (for n = 2) and 8 (for n
= 3). Instead, multiple values are plotted. Use MATLAB debugging features
to isolate the problem.

6-106

Debugging Process and Features

Setting Breakpoints
Set breakpoints to pause execution of the M-file so you can examine values
where you think the problem might be. You can set breakpoints in the
Editor/Debugger, using functions in the Command Window, or both.

There are three basic types of breakpoints you can set in M-files:

• A standard breakpoint, which stops at a specified line in an M-file. For
details, see “Setting Standard Breakpoints” on page 6-108.

• A conditional breakpoint, which stops at a specified line in an M-file only
under specified conditions. For details, see “Conditional Breakpoints” on
page 6-126.

• An error breakpoint that stops in any M-file when it produces the specified
type of warning, error, or NaN or infinite value. For details, see “Error
Breakpoints” on page 6-129.

You can disable standard and conditional breakpoints so that MATLAB
temporarily ignores them, or you can remove them. For details, see “Disabling
and Clearing Breakpoints” on page 6-119. Breakpoints are not maintained
after you exit the MATLAB session.

You can only set valid standard and conditional breakpoints at executable
lines in saved files that are in the current directory or in directories on the
search path. When you add or remove a breakpoint in a file that is not in a
directory on the search path or in the current directory, a dialog box appears,
presenting you with options that allow you to add or remove the breakpoint.
You can either change the current directory to the directory containing the
file, or you can add the directory containing the file to the search path.

Do not set a breakpoint at a for statement if you want to examine values at
increments in the loop. For example, in

for n = 1:10
m = n+1;

end

MATLAB executes the for statement only once, which is efficient. Therefore,
when you set a breakpoint at the for statement and step through the file, you

6-107

6 Editing and Debugging M-Files

only stop at the for statement once. Instead place the breakpoint at the next
line, m=n+1 to stop at each pass through the loop.

You cannot set breakpoints while MATLAB is busy, for example, running an
M-file, unless that M-file is paused at a breakpoint.

Setting Standard Breakpoints
To set a standard breakpoint using the Editor/Debugger, click in the
breakpoint alley at the line where you want to set the breakpoint. The
breakpoint alley is the narrow column on the left side of the Editor/Debugger,
just right of the line number. Set breakpoints at lines that are preceded by
a - (dash). Lines not preceded by a dash, such as comments or blank lines,
are not executable — if you try to set a breakpoint there, it is actually set at
the next executable line. Other ways to set a breakpoint are to position the
cursor in the line and then click the Set/Clear Breakpoint button on the
toolbar, or select Set/Clear Breakpoint from the Debug menu or the context
menu. A breakpoint icon appears.

Set Breakpoints for the Example. It is unclear whether the problem in
the example is in collatzplot or collatz. To start, set breakpoints in
collatzplot.m at lines 10, 11, and 12. The breakpoint at line 10 allows you
to step into collatz to see if the problem might be there. The breakpoints at
lines 11 and 12 stop the program where you can examine the interim results.

6-108

Debugging Process and Features

Valid (Red) and Invalid (Gray) Breakpoints. Red breakpoints are valid
standard breakpoints. If breakpoints are instead gray, they are not valid.

6-109

6 Editing and Debugging M-Files

Breakpoints are gray for either of these reasons:

• The file has not been saved since changes were made to it. Save the file
to make breakpoints valid. The gray breakpoints become red, indicating
they are now valid. Any gray breakpoints that were entered at invalid
breakpoint lines automatically move to the next valid breakpoint line with
the successful file save.

• There is a syntax error in the file. When you set a breakpoint, an error
message appears indicating where the syntax error is. Fix the syntax error
and save the file to make breakpoints valid.

Function Alternative for Setting Breakpoints
To set a breakpoint using the debugging functions, use dbstop. For the
example, type

dbstop in collatzplot at 10
dbstop in collatzplot at 11
dbstop in collatzplot at 12

6-110

Debugging Process and Features

Some useful related functions are

• dbtype — Lists the M-file with line numbers in the Command Window.

• dbstatus — Lists breakpoints.

Running an M-File with Breakpoints
After setting breakpoints, run the M-file from the Command Window or the
Editor/Debugger.

Running the Example
For the example, run collatzplot for the simple input value, 3, by typing in
the Command Window

collatzplot(3)

The example, collatzplot, requires an input argument and therefore runs
only from the Command Window and not from the Editor/Debugger.

Results of Running an M-File Containing Breakpoints
Running the M-file results in the following:

• The prompt in the Command Window changes to

K>>

indicating that MATLAB is in debug mode.

• The program pauses at the first breakpoint. This means that line will be
executed when you continue. The pause is indicated in the Editor/Debugger
by the green arrow just to the right of the breakpoint, which in the example,
is line 10 of collatzplot as shown here.

If you use debugging functions from the Command Window, the line at
which you are paused is displayed in the Command Window. For the
example, it would show

10 plot_seq = collatz(N);

6-111

6 Editing and Debugging M-Files

• The function displayed in the Stack field on the toolbar changes to
reflect the current function (sometimes referred to as the caller or calling
workspace). The call stack includes subfunctions as well as called functions.
If you use debugging functions from the Command Window, use dbstack to
view the current call stack.

• If the file you are running is not in the current directory or a directory on
the search path, you are prompted to either add the directory to the path or
change the current directory.

In debug mode, you can set breakpoints, step through programs, examine
variables, and run other functions.

Note that MATLAB could become nonresponsive if it stops at a breakpoint
while displaying a modal dialog box or figure that your M-file creates. In that
event, use Ctrl+C to go the MATLAB prompt.

Stepping Through an M-File
While debugging, you can step through an M-file, pausing at points where
you want to examine values.

Use the step buttons or the step items in the Debug menu of the
Editor/Debugger or desktop, or use the equivalent functions.

Toolbar
Button

Debug Menu
Item Description

Function
Alternative

Continue or Run
or Save and Run

Continue execution of M-file
until completion or until another
breakpoint is encountered. The
menu item says Run or Save and
Run if a file is not already running.

dbcont

None Go Until Cursor Continue execution of M-file
until the line where the cursor is
positioned. Also available on the
context menu.

None

6-112

Debugging Process and Features

Toolbar
Button

Debug Menu
Item Description

Function
Alternative

Step Execute the current line of the
M-file.

dbstep

Step In Execute the current line of the M-file
and, if the line is a call to another
function, step into that function.

dbstep in

Step Out After stepping in, run the rest of the
called function or subfunction, leave
the called function, and pause.

dbstep out

Continue Running in the Example
In the example, collatzplot is paused at line 10. Because the problem
results are correct for N/n = 1, continue running until N/n = 2. Press the
Continue button three times to move through the breakpoints at lines 10, 11,
and 12. Now the program is again paused at the breakpoint at line 10.

Stepping In to Called Function in the Example
Now that collatzplot is paused at line 10 during the second iteration, use
the Step In button or type dbstep in in the Command Window to step into
collatz and walk through that M-file. Stepping into line 10 of collatzplot
goes to line 9 of collatz. If collatz is not open in the Editor/Debugger, it
automatically opens if you have selected Debug > Open M-Files When
Debugging.

The pause indicator at line 10 of collatzplot changes to a hollow arrow ,
indicating that MATLAB control is now in a subfunction called from the main
program. The call stack shows that the current function is now collatz.

In the called function, collatz in the example, you can do the same things
you can do in the main (calling) function—set breakpoints, run, step through,
and examine values.

6-113

6 Editing and Debugging M-Files

Examining Values
While the program is paused, you can view the value of any variable currently
in the workspace. Examine values when you want to see whether a line of
code has produced the expected result or not. If the result is as expected,
continue running or step to the next line. If the result is not as expected, then
that line, or a previous line, contains an error. Use the following methods to
examine values:

• “Selecting the Workspace” on page 6-114

• “Viewing Values as Datatips in the Editor/Debugger” on page 6-115

• “Viewing Values in the Command Window” on page 6-115

• “Viewing Values in the Workspace Browser and Array Editor” on page 6-116

• “Evaluating a Selection” on page 6-117

• “Examining Values in the Example” on page 6-117

Many of these methods are used in “Examining Values in the Example” on
page 6-117.

Selecting the Workspace
Variables assigned through the Command Window and created using scripts
are considered to be in the base workspace. Variables created in a function
belong to their own function workspace. To examine a variable, you must
first select its workspace. When you run a program, the current workspace
is shown in the Stack field. To examine values that are part of another
workspace for a currently running function or for the base workspace, first
select that workspace from the list in the Stack field.

If you use debugging functions from the Command Window, use dbstack
to display the call stack. Use dbup and dbdown to change to a different
workspace. Use who or whos to list the variables in the current workspace.

Workspace in the Example. At line 10 of collatzplot, you stepped in,
so the current line is 9 in collatz. The Stack shows that collatz is the
current workspace.

6-114

Debugging Process and Features

Viewing Values as Datatips in the Editor/Debugger
In the Editor/Debugger, position the pointer to the left of a variable on that
line. Its current value appears — this is called a datatip, which is like a
tooltip for data. The datatip stays in view until you move the pointer. If you
have trouble getting the datatip to appear, click in the line and then move the
pointer next to the variable.

A related function is datatipinfo.

Datatips in the Example. Position the pointer over n in line 9 of collatz.
The datatip shows that n = 2, as expected.

Viewing Values in the Command Window
You can examine values while in debug mode at the K>> prompt. To see the
variables currently in the workspace, use who. Type a variable name in the

6-115

6 Editing and Debugging M-Files

Command Window and MATLAB displays its current value. For the example,
to see the value of n, type

n

MATLAB returns the expected result

n =
2

and displays the debug prompt, K>>.

Viewing Values in the Workspace Browser and Array Editor
You can view the value of variables in the Value column of the Workspace
browser. The Workspace browser displays all variables in the current
workspace. Use the Stack in the Workspace browser to change to another
workspace and view its variables.

The Value column does not show all details for all variables. To see details,
double-click a variable in the Workspace browser. The Array Editor opens,
displaying the content for that variable. You can open the Array Editor
directly for a variable using openvar.

To see the value of n in the Array Editor for the example, type

openvar n

6-116

Debugging Process and Features

and the Array Editor opens, showing that n = 2 as expected.

Evaluating a Selection
Select a variable or equation in an M-file in the Editor/Debugger. Right-click
and select Evaluate Selection from the context menu (for a single-button
mouse, use Ctrl+click). MATLAB displays the value of the variable or
equation in the Command Window. You cannot evaluate a selection while
MATLAB is busy, for example, running an M-file.

Examining Values in the Example
Step from line 9 through line 13 in collatz. Step again, and the pause
indicator jumps to line 17, just after the if loop, as expected. Step again, to
line 18, check the value of sequence in line 17 and see that the array is

2 1

as expected for n = 2. Step again, which moves the pause indicator from line
18 to line 11. At line 11, step again. Because next_value is now 1, the while
loop ends. The pause indicator is at line 11 and appears as a green down
arrow . This indicates that processing in the called function is complete and
program control will return to the calling program. Step again from line 11 in
collatz and execution is now paused at line 10 in collatzplot.

Note that instead of stepping through collatz, the called function, as was
just done in this example, you can step out from a called function back to the

6-117

6 Editing and Debugging M-Files

calling function, which automatically runs the rest of the called function and
returns to the next line in the calling function. To step out, use the Step Out
button or type dbstep out in the Command Window.

In collatzplot, step again to advance to line 11, then line 12. The variable
seq_length in line 11 is a vector with the elements

1 2

which is correct.

Finally, step again to advance to line 13. Examining the values in line 12,
N = 2 as expected, but the second variable, plot_seq, has two values, where
only one value is expected. While the value for plot_seq is as expected

2 1

it is the incorrect variable for plotting. Instead, seq_length(N) should be
plotted.

Correcting Problems and Ending Debugging
These are some of the ways to correct problems and end the debugging session:

• “Changing Values and Checking Results” on page 6-118

• “Ending Debugging” on page 6-119

• “Disabling and Clearing Breakpoints” on page 6-119

• “Saving Breakpoints” on page 6-121

• “Correcting an M-File” on page 6-121

• “Completing the Example” on page 6-121

• “Running Sections in M-Files That Have Unsaved Changes” on page 6-125

Many of these features are used in “Completing the Example” on page 6-121.

Changing Values and Checking Results
While debugging, you can change the value of a variable in the current
workspace to see if the new value produces expected results. While the

6-118

Debugging Process and Features

program is paused, assign a new value to the variable in the Command
Window, Workspace browser, or Array Editor. Then continue running or
stepping through the program. If the new value does not produce the expected
results, the program has a different problem.

Ending Debugging
After identifying a problem, end the debugging session. You must end a
debugging session if you want to change and save an M-file to correct a
problem, or if you want to run other functions in MATLAB.

Note It is recommended that you quit debug mode before editing an M-file. If
you edit an M-file while in debug mode, you can get unexpected results when
you run the file. If you do edit an M-file while in debug mode, breakpoints
turn gray, indicating that results might not be reliable. See “Valid (Red) and
Invalid (Gray) Breakpoints” on page 6-109 for details.

If you attempt to save an edited M-file while in debug mode, a dialog box
appears allowing you to exit debug mode and save the file.

To end debugging, click the Exit Debug Mode button , or select Exit Debug
Mode from the Debug menu.

You can instead use the function dbquit or the Shift+F5 keyboard shortcut
to end debugging.

After quitting debugging, pause indicators in the Editor/Debugger display no
longer appear, and the normal prompt >> appears in the Command Window
instead of the debugging prompt, K>>. You can no longer access the call stack.

Disabling and Clearing Breakpoints
Disable a breakpoint to temporarily ignore it. Clear a breakpoint to remove it.

6-119

6 Editing and Debugging M-Files

Disabling and Enabling Breakpoints. You can disable selected
breakpoints so the program temporarily ignores them and runs uninterrupted,
for example, after you think you identified and corrected a problem. This is
especially useful for conditional breakpoints — see “Conditional Breakpoints”
on page 6-126.

To disable a breakpoint, right-click the breakpoint icon and select Disable
Breakpoint from the context menu, or click anywhere in a line and select
Enable/Disable Breakpoint from the Debug or context menu. You can also
disable a conditional breakpoint by clicking the breakpoint icon. This puts
an X through the breakpoint icon as shown here.

After disabling a breakpoint, you can enable it to make it active again, or clear
it. To enable it, right-click the breakpoint icon and select Enable Breakpoint
from the context menu, or click anywhere in a line and select Enable/Disable
Breakpoint from the Breakpoints or context menu. The X no longer
appears on the breakpoint icon and program execution will pause at that line.

When you run dbstatus, the resulting message for a disabled breakpoint is

Breakpoint on line 10 has conditional expression 'false'.

Clearing (Removing) Breakpoints. All breakpoints remain in a file until
you clear (remove) them or until they are automatically cleared. Clear a
breakpoint after determining that a line of code is not causing a problem.

To clear a breakpoint in the Editor/Debugger, click anywhere in a line
and select Set/Clear Breakpoint from the Debug or context menu. The
breakpoint for that line is cleared. Another way to clear a breakpoint is to
click a standard breakpoint icon, or a disabled conditional breakpoint icon.

To clear all breakpoints in all files, select Debug > Clear Breakpoints in
All Files, or click its equivalent button on the toolbar.

The function that clears breakpoints is dbclear. To clear all breakpoints, use
dbclear all. For the example, clear all of the breakpoints in collatzplot
by typing

6-120

Debugging Process and Features

dbclear all in collatzplot

Breakpoints are automatically cleared when you

• End the MATLAB session

• Clear the M-file using clear name or clear all

Note When clear name or clear all is in a statement in an M-file that you
are debugging, it clears the breakpoints.

Saving Breakpoints
You can use the s=dbstatus syntax and then save s to save the current
breakpoints to a MAT-file. At a later time, you can load s and restore the
breakpoints using dbstop(s). For more information, including an example,
see the dbstatus reference page.

Correcting an M-File
To correct a problem in an M-file,

1 Quit debugging.

Do not make changes to an M-file while MATLAB is in debug mode. If you
do edit an M-file while in debug mode, breakpoints turn gray, indicating
that results might not be reliable. See“Valid (Red) and Invalid (Gray)
Breakpoints” on page 6-109 for details.

2 Make changes to the M-file.

3 Save the M-file.

4 Set, disable, or clear breakpoints, as appropriate.

5 Run the M-file again to be sure it produces the expected results.

Completing the Example
To correct the problem in the example, do the following:

6-121

6 Editing and Debugging M-Files

1 End the debugging session. One way to do this is to select Exit Debug
Mode from the Debug menu.

2 In collatzplot.m line 12, change the string plot_seq to seq_length(N)
and save the file.

3 Clear the breakpoints in collatzplot.m. One way to do this is by typing

dbclear all in collatzplot

in the Command Window.

4 Run collatzplot for m = 3 by typing

collatzplot(3)

in the Command Window.

5 Verify the result. The figure shows that the length of the Collatz series is 1
when n = 1, 2 when n = 2, and 8 when n = 3, as expected.

6-122

Debugging Process and Features

6 Test the function for a slightly larger value of m, such as 6, to be sure the
results are still accurate. To make it easier to verify collatzplot for m = 6
as well as the results for collatz, add this line at the end of collatz.m

sequence

which displays the series in the Command Window. The results for when
n = 6 are

sequence =

6 3 10 5 16 8 4 2 1

Then run collatzplot for m = 6 by typing

6-123

6 Editing and Debugging M-Files

collatzplot(6)

7 To make debugging easier, you ran collatzplot for a small value of m.
Now that you know it works correctly, run collatzplot for a larger value
to produce more interesting results. Before doing so, you might want to
disable output for the line you just added in step 6, line 19 of collatz.m, by
adding a semicolon to the end of the line so it appears as

sequence;

Then run

collatzplot(500)

6-124

Debugging Process and Features

The following figure shows the lengths of the Collatz series for n = 1
through n = 500.

Running Sections in M-Files That Have Unsaved Changes
It is a good practice to make changes to an M-file after you quit debugging,
and to save the changes and then run the file. Otherwise, you might get
unexpected results. But there are situations where you might want to
experiment during debugging, to make a change to a part of the file that has
not yet run, and then run the remainder of the file without saving the change.

To do this, while stopped at a breakpoint, make a change to a part of the
file that has not yet run. Breakpoints will turn gray, indicating they are
invalid. Then select all of the code after the breakpoint, right-click, and

6-125

6 Editing and Debugging M-Files

choose Evaluate Selection from the context menu. You can also use cell
mode to do this.

Conditional Breakpoints
Set conditional breakpoints to cause MATLAB to stop at a specified line in a
file only when the specified condition is met. One particularly good use for
conditional breakpoints is when you want to examine results after a certain
number of iterations in a loop. For example, set a breakpoint at line 10 in
collatzplot, specifying that MATLAB should stop only if N is greater than or
equal to 2. This section covers the following topics:

• “Setting Conditional Breakpoints” on page 6-126

• “Copying, Modifying, Disabling, and Clearing Conditional Breakpoints” on
page 6-128

• “Function Alternative for Conditional Breakpoints” on page 6-128

Setting Conditional Breakpoints
To set a conditional breakpoint, follow these steps:

1 Click in the line where you want to set the conditional breakpoint. Then
select Set/Modify Conditional Breakpoint from the Debug or context
menu. If a standard breakpoint already exists at that line, use this same
method to make it conditional.

6-126

Debugging Process and Features

The MATLAB Editor conditional breakpoint dialog box opens as shown
in this example.

2 Type a condition in the dialog box, where a condition is any legal MATLAB
expression that returns a logical scalar value. Click OK. As noted in the
dialog box, the condition is evaluated before running the line. For the
example, at line 10 in collatzplot, enter

N>=2

as the condition. A yellow breakpoint icon (indicating the breakpoint is
conditional) appears in the breakpoint alley at that line.

When you run the file, MATLAB enters debug mode and pauses at the line
only when the condition is met. In the collatzplot example, MATLAB runs
through the for loop once and pauses on the second iteration at line 10 when
N is 2. If you continue executing, MATLAB pauses again at line 10 on the
third iteration when N is 3.

6-127

6 Editing and Debugging M-Files

Copying, Modifying, Disabling, and Clearing Conditional
Breakpoints
To copy a conditional breakpoint, right-click the icon in the breakpoint alley
and select Copy from the context menu. Then right-click in the breakpoint
alley at the line where you want to paste the conditional breakpoint and select
Paste from the context menu.

Modify the condition for the breakpoint in the current line by selecting
Set/Modify Conditional Breakpoint from the Debug or context menu.

Click a conditional breakpoint icon to disable it. Click a disabled conditional
breakpoint to clear it.

Function Alternative for Conditional Breakpoints
Use the dbstop function with appropriate arguments to set conditional
breakpoints from the Command Window, and use dbclear to clear them. Use
dbstatus to view the breakpoints currently set, including any conditions,
which are listed in the expression field. If no condition exists, the value in
the expression field is [] (empty). For details, see the function reference
pages: dbstop, dbclear, and dbstatus.

Breakpoints in Anonymous Functions
There can be multiple breakpoints in an M-file line that contains anonymous
functions. There can be a breakpoint for the line itself (MATLAB stops at the
start of the line), as well as a breakpoint for each anonymous function in
that line. When you add a breakpoint to a line containing an anonymous
function, the Editor/Debugger asks exactly where in the line you want to add
the breakpoint. If there is more than one breakpoint in a line, the breakpoint
icon is blue .

When there are multiple breakpoints set on a line, the icon is always blue,
regardless of the status of any of the breakpoints on the line. Position the
mouse on the icon and a tooltip displays information about all breakpoints
in that line.

To perform a breakpoint action for a line that can contain multiple
breakpoints, such as Clear Breakpoint, right-click the breakpoint alley at

6-128

Debugging Process and Features

that line and select the action. MATLAB prompts you to specify the exact
breakpoint on which to act in that line.

When you set a breakpoint in an anonymous function, MATLAB stops when
the anonymous function is called. The following illustration shows the
Editor/Debugger when you set a breakpoint in the anonymous function sqr in
line 2, and then run the file. MATLAB stops when it runs sqr in line 4. After
you continue execution, MATLAB stops again when it runs sqr the second
time in line 4. Note that the Stack display shows the anonymous function.

Error Breakpoints
Set error breakpoints to stop program execution and enter debug mode when
MATLAB encounters a problem. Unlike standard and conditional breakpoints,
you do not set these breakpoints at a specific line in a specific file. Rather,
once set, MATLAB stops at any line in any file when the error condition
specified via the error breakpoint occurs. MATLAB then enters debug mode
and opens the file containing the error, with the pause indicator at the line
containing the error. Files open only when the you select Debug > Open
M-Files . Error breakpoints remain in effect until you clear them or until you
end the MATLAB session. You can set error breakpoints from the Debug
menu in any desktop tool. This section covers the following topics:

• “Setting Error Breakpoints” on page 6-130

• “Error Breakpoint Types and Options” on page 6-130

6-129

6 Editing and Debugging M-Files

• “Function Alternative for Error Breakpoints” on page 6-132

Setting Error Breakpoints
To set error breakpoints, select Debug > Stop if Errors/Warnings. In the
resulting Stop if Errors/Warnings for All Files dialog box, specify error
breakpoints on all appropriate tabs and click OK. To clear error breakpoints,
select the Never stop if ... option for all appropriate tabs and click OK.

For example, to pause execution when a warning occurs, select the Warnings
tab, and from it select Always stop if warning, then click OK. When you
run an M-file and MATLAB produces a warning, execution pauses, MATLAB
enters debug mode, and the file opens in the Editor/Debugger at the line that
produced the warning. To remove the warning breakpoint, select Never stop
if warning in the Warnings tab and click OK.

Error Breakpoint Types and Options
The four basic types of error breakpoints you can set are Errors, Try/Catch
Errors, Warnings, and NaN or Inf. Select the Always stop if ... option for
each tab to set that type of breakpoint. Select the Use message identifiers
... option to limit each type of error breakpoint (except NaN or Inf) so that
execution stops only for specific errors.

6-130

Debugging Process and Features

Errors. When an error occurs, execution stops, unless the error is in a
try...catch block. MATLAB enters debug mode and opens the M-file to
the line in the try portion of the block that produced the error. You cannot
resume execution.

Try/Catch Errors. When an error occurs in a try...catch block, execution
pauses. MATLAB enters debug mode and opens the M-file to the line that
produced the error. You can resume execution or use debugging features.

Warnings. When a warning is produced, MATLAB pauses, enters debug
mode, and opens the M-file, paused at the line that produced the warning.
You can resume execution or use debugging features.

NaN or Inf. When an operator, function call, or scalar assignment produces
a NaN (not-a-number) or Inf (infinite) value, MATLAB pauses, enters
debug mode, and opens the M-file, paused immediately after the line that
encountered the value. You can resume execution or use debugging features.

Use Message Identifiers. Execution stops only when MATLAB encounters
one of the specified errors. This option is not available for the NaN or Inf
type of error breakpoint. To use this feature:

1 Select the Errors, Try/Catch Errors, or Warnings tab.

2 Select the Use Message Identifiers option.

3 Click Add.

4 In the resulting Add Message Identifier dialog box, supply the message
identifier of the specific error you want to stop for, where the identifier is
of the form component:message, and click OK.

5 The message identifier you added appears in the Stop If Errors/Warnings
for All Files dialog box, where you click OK.

You can add multiple message identifiers, and edit or remove them.

One way to obtain an error message identifier generated by a MATLAB
function for example, is to produce the error, and then run the lasterror
function. MATLAB returns the error message and identifier. Copy the
identifier from the Command Window output and paste it into the Add

6-131

6 Editing and Debugging M-Files

Message Identifier dialog box. An example of an error message identifier
is MATLAB:UndefinedFunction. Similarly, to obtain a warning message
identifier, produce the warning and then run [m,id] = lastwarn; MATLAB
returns the last warning identifier to id. An example of a warning message
identifier is MATLAB:divideByZero.

Function Alternative for Error Breakpoints
The function equivalent for each option appears in the Stop if
Errors/Warnings for All Files dialog box. For example, the function
equivalent for Always stop if error is dbstop if error. Use the dbstop
function with appropriate arguments to set error breakpoints from the
Command Window, and use dbclear to clear them. Use dbstatus to view the
error breakpoints currently set. Error breakpoints are listed in the cond field
and message identifiers for breakpoints are listed in the identifier field of
the dbstatus output.

6-132

Using Cells for Rapid Code Iteration and Publishing Results

Using Cells for Rapid Code Iteration and Publishing Results

In this section...

“What Are Cells?” on page 6-133

“Rapid Code Iteration Overview” on page 6-133

“Defining Cells” on page 6-135

“Navigating and Evaluating with Cells” on page 6-139

“Using Cells in Function M-Files” on page 6-144

What Are Cells?
M-files often have a natural structure consisting of multiple sections.
Especially for larger files, you typically focus efforts on a single section at a
time, working with the code in just that section. Similarly, when conveying
information about your M-files to others, often you describe the sections of the
code. To facilitate these processes, use M-file cells, where cell means a section
of code. Specifically, MATLAB uses cells for

• Rapid code iteration in the Editor/Debugger — This makes the experimental
phase of your work with M-file scripts easier. The next section, “Rapid Code
Iteration Overview” on page 6-133, outlines the process, and is followed by
details for defining, evaluating, and modifying values in cells.

• Publishing M-files — This allows you to include code and results in a
presentation format such as HTML. Publishing using cells requires you to
define cells using the same instructions as for rapid code iteration. You
can also make use of the cell navigation and evaluation features used for
rapid code iteration. See “Publishing to HTML, XML, LaTeX, Word, and
PowerPoint Using Cells” on page 8-2 for complete details.

Rapid Code Iteration Overview
When working with MATLAB, you often experiment with your code —
modifying it, testing it, and updating it — until you have an M-file that does
what you want. Use the MATLAB Editor/Debugger cells features with M-file
scripts to facilitate this process. You can also use cell features with function
M-files, but there are some restrictions — see “Using Cells in Function
M-Files” on page 6-144.

6-133

6 Editing and Debugging M-Files

If you have an active Internet connection, you can watch the Rapid Code
Iteration Using Cells video demo for an overview of the major functionality.

This is the overall process of using cells for rapid code iteration:

1 In the MATLAB Editor/Debugger, enable cell mode by selecting Cell >
Enable Cell Mode. Items in the Cell menu become selectable. The cell
toolbar appears, unless you had previously hidden it. With cell mode
enabled, hide or show the toolbar by right-clicking in the Editor/Debugger
menu bar or toolbars and selecting Cell Toolbar from the context menu.

2 Define the boundaries of the cells in an M-file script using cell features.
Cells are denoted by a specialized comment syntax, %%. For details, see
“Defining Cells” on page 6-135.

3 Once you define the cells, use cell features to navigate quickly from cell to
cell in your file, evaluate the code in a cell in the base workspace, and view
the results. To facilitate experimentation, use cell features to modify values
in cells and then reevaluate them, to see how different values impact the
result. For details, see “Navigating and Evaluating with Cells” on page
6-139.

4 Cells also facilitate sharing your code and results via cell publishing to a
presentation format. For details, see “Publishing to HTML, XML, LaTeX,
Word, and PowerPoint Using Cells” on page 8-2.

6-134

Using Cells for Rapid Code Iteration and Publishing Results

Defining Cells
Cell features operate on cells, where a cell is contiguous lines of code you
want to evaluate as a whole in an M-file script. To define a cell, first be sure
that cell mode is enabled (see step). Position the cursor just before the line
at which you want to start the cell and select Cell > Insert Cell Divider
or click the Insert Cell Divider button . MATLAB inserts a line after the
cursor that consists of two percent signs (%%), which is the “start new cell”
indicator to MATLAB. A cell consists of the line starting with %% and the
lines that follow, up to the start of the next cell, which is identified by %% at
the start of a new line.

You can also define a cell by entering two percent signs (%%) at the start
of the line where you want to begin the new cell. Alternatively, select the

6-135

6 Editing and Debugging M-Files

lines of code you want in a cell and then select Cell > Insert Cell Dividers
Around Selection.

You can define a cell at the start of a new empty file, enter code for the cell,
define the start of the next cell, enter its code, and so on. Redefine cells by
defining new cells, removing existing cells, and moving lines of code.

You can set an Editor/Debugger preference to show a faint gray horizontal
line (rule) above each cell that helps distinguish the cells. Select
File > Preferences > Editor/Debugger > Display and in Cell display
options, use Show lines between cells. The horizontal lines do not appear
in the M-file when you print it.

MATLAB does not execute the code in lines beginning with %%, so be sure to
put any executable code for the cell on the following line. For program control
statements, such as if ... end, a cell must contain both the opening and
closing statements, that is, it must contain both the if and the end statements.

Note that the first cell in a file does not have to begin with %%. MATLAB
automatically understands any lines above the first %% line to be a cell. If
there are no cell dividers in an M-file, MATLAB understands the entire file to
be a single cell.

Cell Titles and Highlighting
After the %%, type a space, followed by a description of the cell. The
Editor/Debugger emphasizes the special meaning of the start of a cell by
making any text following the percent signs appear bold. The text on the %%
line is called the cell title (like a section title). Including text in cell titles is
optional, however, they improve readability of the file and are used for cell
publishing features.

When the cursor is positioned in any line within a cell, the Editor/Debugger
highlights the entire cell with a yellow background. This identifies it as
the current cell. For example, it is used when you select the Evaluate
Current Cell option on the Cell menu. If you do not want yellow
highlighting for the current cell, change it using preferences. Select
File > Preferences > Editor/Debugger > Display and change the
appropriate Cell display options.

6-136

Using Cells for Rapid Code Iteration and Publishing Results

Example — Define Cells
This example defines two cells for a simple M-file called sine_wave, shown in
the following code and figure. The first cell creates the basic results, while the
second label the plot. The two cells in this example allow you to experiment
with the plot of the data first, and then when that is final, change the plot
properties to affect the style of presentation.

% Define the range for x.
% Calculate and plot y = sin(x).
x = 0:1:6*pi;
y = sin(x);
plot(x,y)
title('Sine Wave','FontWeight','bold')
xlabel('x')
ylabel('sin(x)')
set(gca,'Color','w')
set(gcf, 'MenuBar', 'none')

1 Select Cell > Enable Cell Mode, if it is not already enabled.

6-137

6 Editing and Debugging M-Files

2 Position the cursor at the start of the first line. Select Cell > Insert Cell
Divider.

The Editor/Debugger inserts %% as the first line and moves the rest of the
file down one line. All lines are highlighted in yellow, indicating that the
entire file is a single cell, unless you do not have that display preference
for cells selected.

3 Enter a cell title following the %%. Type a space first, followed by the
description.

Calculate and Plot Sine Wave

4 Position the cursor at the start of line 7, title.... Select Cell > Insert
Cell Divider.

The Editor/Debugger inserts a line containing only %% at line 7 and moves
the remaining lines down by one line. A horizontal line that helps you
distinguish the two cells appears above the %% line, unless you do not
have that display preference for cells selected. Lines 7 through 12 are
highlighted in yellow, indicating they comprise the current cell.

5 Enter a cell title for the new cell. On line 7, type a space after the %%,
followed by the description

Modify Plot Properties

Save the file. The file appears as shown in this figure.

6-138

Using Cells for Rapid Code Iteration and Publishing Results

Removing Cells
To remove a cell, delete one of the percent signs (%) from the line that starts
the cell. This changes the line from a cell to a standard comment and merges
the cell with the preceding cell. You can also just delete the entire line that
contains the %%.

Navigating and Evaluating with Cells
While you develop an M-file, you can use these Editor/Debugger cell features:

• “Navigating Among Cells in an M-File” on page 6-140

• “Evaluating Cells in an M-File” on page 6-140

• “Modifying Values in a Cell” on page 6-141

• “Example — Evaluate Cells” on page 6-141

6-139

6 Editing and Debugging M-Files

Navigating Among Cells in an M-File
To move to the next cell, select Cell > Next Cell. To move to the previous cell,
select Cell > Previous Cell. To move to a specific cell, click the Show Cell
Titles button and from it, select the cell title to which you want to move.
You can also go to cells by selecting Edit > Go To.

Evaluating Cells in an M-File
To evaluate the code in a cell, use the Cell menu evaluation items or
equivalent buttons in the cell toolbar. When you evaluate a cell, the results
display in the Command Window, figure window, or otherwise, depending
on the code evaluated.

The cell evaluation features run the code currently shown in the
Editor/Debugger, even if the file contains unsaved changes. The file does not
have to be on the search path. To evaluate a cell, it must contain all the values
it requires, or the values must already exist in the MATLAB workspace.

Note While you can set breakpoints and debug a file containing cells, when
you evaluate a file from the Cell menu or cell toolbar, breakpoints are ignored.
To run the file and stop at breakpoints, use Run/Continue in the Debug
menu. This means you cannot debug while running a single cell.

Evaluate Current Cell. Select Cell > Evaluate Current Cell or click the
Evaluate Cell button to run the code in the current cell.

Evaluate and Advance. Select Cell > Evaluate Current Cell and
Advance or click the Evaluate Cell and Advance button to run the code in
the current cell and move to the next cell.

Evaluate File. Select Cell > Evaluate Entire File or click the Evaluate
Entire File button to run all of the code in the file.

Note A beep means there is an error. See the Command Window for the
error message.

6-140

Using Cells for Rapid Code Iteration and Publishing Results

Modifying Values in a Cell
You can use cell features to modify numbers in a cell, which also automatically
reevaluates the cell. This helps you experiment with and fine-tune your code.

To modify a number in a cell, select the number (or place the cursor near
it) and use the value modification tool in the cell toolbar. Using this tool,
you can specify a number and press the appropriate math operator to add
(increment), subtract (decrement), multiply, or divide the number. The cell
then automatically reevaluates.

You can use the numeric keypad operator keys (-, +, /, and *) instead of the
operator buttons on the toolbar.

Note MATLAB does not automatically save changes you make to values
using the cell toolbar. To save changes, select File > Save.

Example — Evaluate Cells
In this example, modify the values for x in sine_wave.m:

1 Run the first cell in sine_wav.m. Click somewhere in the first cell, that
is, between lines 1 and 6. Select Cell > Evaluate Current Cell. The
following figure appears.

6-141

6 Editing and Debugging M-Files

2 Assume you want to produce a smoother curve. Use more values for x in
0:1:6*pi. Position the cursor in line 4, next to the 1. In the cell toolbar,
change the 1.1 default multiply/divide by value to 2. Click the Divide
button .

Line 4 becomes

and the length of x doubles. The plot automatically updates. The curve
still has some rough edges.

3 To add more values for x, click the Divide button three more times. Line 4
becomes

6-142

Using Cells for Rapid Code Iteration and Publishing Results

The curve is smooth, but because there are more values, processing time is
slower. It would be better to find a smaller x that still produces a smooth
curve.

4 In the cell toolbar, click the Multiply button once. The increment for x as
shown in line 4 changes from 0.0625 to 0.125.

The resulting curve is still smooth.

5 Save these changes. Select File > Save.

6 Now you can apply the plot properties, defined in the second cell, that is,
lines 7 through 12. You do not need to evaluate the entire file to apply the
plot properties. Instead, position the cursor in the second cell and use the
shortcut Ctrl+Enter to evaluate the current cell. (The shortcut appears
with the menu item, Cell > Evaluate Current Cell.)

6-143

6 Editing and Debugging M-Files

MATLAB updates the figure.

Using Cells in Function M-Files
You can define and evaluate cells in function M-files as long as the variables
referred to in the cell are in your workspace. For example, this can be useful
during debugging. If execution is stopped at a breakpoint, you can define cells
and execute them without saving the file. If you are not debugging, add the
necessary variables to the base workspace and then execute the cells.

6-144

7

Tuning and Managing
M-Files

This set of tools provides useful information about the M-files in a directory
that can help you refine the files and improve performance. The tools can help
you polish M-files before providing them to others to use. If you have an active
Internet connection, you can watch the Directory Reports video demo for an
overview of the major functionality.

Directory Reports in Current
Directory Browser (p. 7-2)

HTML reports about files in the
current directory: TODO/FIXME,
Help, Contents, Dependency,
Coverage (for Profiling), and M-Lint
Code Check.

M-Lint Code Check Report (p. 7-16) Report that identifies potential
errors, problems, and opportunities
for improvement in your code.

Profiling for Improving Performance
(p. 7-27)

Report that identifies where
an M-file spends the most
time, indicating where to focus
when looking for performance
improvements.

7 Tuning and Managing M-Files

Directory Reports in Current Directory Browser

In this section...

“Accessing and Using Directory Reports” on page 7-2

“TODO/FIXME Report” on page 7-4

“Help Report” on page 7-6

“Contents Report” on page 7-9

“Dependency Report” on page 7-13

“Coverage Report” on page 7-15

See also another Directory Report, “M-Lint Code Check Report” on page 7-16,
and the File Comparisons tool.

Accessing and Using Directory Reports
Directory reports help you refine the M-files in a directory and improve their
performance. They are also useful for when you prepare files for use by
others, such as for a finished project, to share on MATLAB Central, or for
a toolbox to be distributed.

Access directory reports from the MATLAB Current Directory browser. To
display the Current Directory browser, select Desktop > Current Directory.
For more information, see “Current Directory Browser” on page 5-36.

Navigate to the directory whose M-files you want to produce reports about.
Then, in the Current Directory browser toolbar, click the down arrow button
and select the type of report you want to run for all the M-files in the current
directory.

7-2

Directory Reports in Current Directory Browser

The report you selected appears as an HTML document in the MATLAB Web
Browser:

• In a report, click a filename to open that file in the Editor/Debugger, where
you can view it or make changes to it. Click a line number to open the
file at that line.

• To update a report after making changes to the report options, or after
changing any files in the directory, click Rerun This Report. Note that
this reruns the report for the directory shown in the report, not for the
MATLAB current directory.

• While a report is displayed, you can change the MATLAB current directory
and then click Run Report on Current Directory to generate the same
type of report for the new current directory.

• When you run a report, it replaces the report currently displayed. Use the
Back and Forward buttons in the toolbar to see a previously run report
and then return to the most recent.

You cannot run directory reports when the path is a UNC (Universal Naming
Convention) pathname, that is, starts with \\. Instead, use an actual hard
drive on your system, or a mapped network drive.

7-3

7 Tuning and Managing M-Files

TODO/FIXME Report
The TODO/FIXME Report shows M-files that contain text strings you
included as notes to yourself, such as TODO. Use this report to easily identify
M-files that still require work or some other actions.

To access this report, follow the instructions in “Accessing and Using Directory
Reports” on page 7-2.

In the report, select one or more check boxes to display lines containing the
specified strings (TODO and FIXME), and click Rerun This Report. You can
also select the check box for the text field and enter any text string in the
field, such as NOTE or TBD to identify lines containing that string.

7-4

Directory Reports in Current Directory Browser

7-5

7 Tuning and Managing M-Files

Help Report
The Help Report presents a summary view of the help component of
your M-files. In MATLAB, the M-file help component is all contiguous
nonexecutable lines (comment lines and blank lines), starting with the
second line of a function M-file or the first line of a script M-file. For more
information about creating help for your own M-files, see the reference page
for the help function.

To access this report, follow the instructions in “Accessing and Using Directory
Reports” on page 7-2.

Select one or more check boxes to display the specified help information and
click Rerun This Report.

Use this information to help you identify files of interest or files that lack help
information. It is a good practice to provide help for your files not only to help
you recall their purpose, but to help others who might use the files.

7-6

Directory Reports in Current Directory Browser

Show Subfunctions
With Show subfunctions selected, the Help Report displays help
information for all subfunctions called by each function. Help information for
subfunctions is highlighted in gray.

7-7

7 Tuning and Managing M-Files

Description
With Description selected, the Help Report displays the first line of help in
the M-file. If the first comment line is empty, or if there is not a comment
before the executable code, No description line, highlighted in pink, appears
instead.

Examples
With Examples selected, the Help Report displays the line number where the
examples section of the M-file help begins. The Help Report looks for a line in
the M-file help that begins with the string example or Example and displays
any subsequent nonblank comment lines. Select this option to easily locate
and go to examples in your M-files.

It is a good practice to include examples in the help for your M-files. If you do
not have examples in the help for all your M-files, use this option to identify
those without examples. If the report does not find examples in the M-file
help, No example, highlighted in pink, appears.

Show All Help
With Show all help selected, the Help Report displays complete M-file help,
which is all contiguous nonexecutable lines (comment lines and blank lines),
starting with the second line of a function M-file, or the first line of a script
M-file. The M-file help shown also includes overloaded functions and methods,
which are not actually part of the M-file help comments, but are automatically
generated when help runs.

If the comment lines before the executable code are empty, or if there are no
comments before the executable code, No help, highlighted in pink, appears
instead.

See Also
With See Also selected, the Help Report displays the line number for the
see also line in the M-file help. The see also line in M-file help lists related
functions. When MATLAB displays the help for an M-file, any function name
listed on the see also line appears as a link you can click to display its help. It
is a good practice to include a see also line in the help for your M-files.

7-8

Directory Reports in Current Directory Browser

The report looks for a line in the M-file help that begins with the string See
also. If the report does not find a see also line in the M-file help, No see-also
line, highlighted in pink, appears. This helps you identify those M-files
without a see also line, should you want to include one in each M-file.

The report also indicates when an M-file noted in the see also line is not in a
directory on the search path. You might want to move that file to a directory
that is on the search path. If not, you will not be able to click the link to get
help for the file, unless you then add its directory to the path or make its
directory become the current directory.

Copyright
With Copyright selected, the Help Report displays the line number for the
copyright line in the M-file. The report looks for a comment line in the M-file
that begins with the string Copyright and is followed by year1-year2 (with
no spaces between the years and the hyphen that separates them). It also
notes if the end of the date range is not the current year.

It is a good practice to include a copyright line in the help for your M-files,
that notes the year you created the file and the current year. For example,
for an M-file you created in 2001, include this line

% Copyright 2001-2006

If the report does not find a copyright line in the M-file help, No copyright
line, highlighted in pink, appears. This helps you identify those files without
a copyright line, should you want to include one in each M-file.

Contents Report
The Contents Report displays information about the integrity of the
Contents.m file for the directory. A Contents.m file includes the filename
and a brief description of each M-file in the directory. When you type help
followed by the directory name, such as help mydemos, MATLAB displays
the information in the mydemos/Contents.m file. For more information,
see “Providing Help for Your Program” in the MATLAB Programming
documentation.

7-9

7 Tuning and Managing M-Files

To access this report, follow the instructions in “Accessing and Using Directory
Reports” on page 7-2.

If there is no Contents.m file for the directory and you run the Contents
Report, the report tells you the Contents.m file does not exist and asks if you
want to create one. Click yes to automatically create the Contents.m file.
Edit the Contents.m file in the Editor/Debugger to include the names of files
you plan to create, or to remove files that you do not want to expose when
displaying help for the directory, such as files for internal use.

You need to update the Contents.m file to reflect changes you make to files in
the directory. For example, when you remove a file from a directory, remove its
entry from the Contents.m file. The Contents Report helps you to maintain
the Contents.m file. It displays discrepancies between the Contents.m file
and the M-files in the directory.

7-10

Directory Reports in Current Directory Browser

Use the links displayed for each line, or edit the Contents.m file directly, or
edit the M-files to make the changes. To make all of the suggested changes at
once, click fix all. To automatically align the filenames and descriptions in
the Contents.m file, click fix spacing.

7-11

7 Tuning and Managing M-Files

If you always want the Contents.m file to reflect all files in the directory,
you can automatically generate a new Contents.m file rather than changing
the file based on the Contents Report. To do this, first delete the existing
Contents.m file, run the Contents Report, and click yes when prompted for
MATLAB to automatically create one.

Messages in the Contents File Report

No Contents File. This message appears if there is no Contents.m file in the
directory. Click yes to automatically create a Contents.m file, which contains
the filenames and descriptions for all M-files in the directory.

No Contents.m file. Make one? [yes]

File Not Found. This message appears when a file included in Contents.m is
not in the directory. These messages are highlighted in pink. For example, a
message such as

File helloworld does not appear in this directory.
Remove it from Contents.m? [yes]

means the Contents.m file includes an entry for helloworld, but that file is
not in the directory. This might be because you removed the file helloworld,
or you manually added it to Contents.m because you planned to create the
file but have not as yet, or you renamed helloworld.

Description Lines Do Not Match. This message appears when the
description line in the M-file help does not match the description provided for
the M-file in Contents.m. These messages are highlighted in pink. Click yes
to replace the description in the Contents.m file with the description from the
M-file. Or select the option to replace the description line in the M-file help
using the description for that file in Contents.m.

Description lines do not match for file logo5.
Use this description from the file? (default) [yes]
logo5 - This is the basic logo image for MATLAB V5

Or put this description from the Contents into the file? [yes]
logo5 - This is the basic logo image for MATLAB

7-12

Directory Reports in Current Directory Browser

Files Not In Contents.m. This message appears when a file in the directory
is not in Contents.m. These messages are highlighted in gray. Click yes
to add the filename and its description line from the M-file help to the
Contents.m file.

collatzall is in the directory but not Contents.m
collatzall - Plot length of sequence for Collatz problem

Add the line shown above? [yes]

Dependency Report
The Dependency Report shows dependencies among M-files in a directory.
This helps you determine all the M-files you need to provide when you tell
someone to run a particular M-file. If you do not provide all the dependent
M-files along with the M-file you want them to run, they will not be able
run the file. The report does not list as dependencies the M-files in the
toolbox/matlab directory because every MATLAB user already has those
files.

To access this report, follow the instructions in “Accessing and Using
Directory Reports” on page 7-2. You can also access the report from the
Editor/Debugger Tools menu.

Select Show child functions to see a list of all M-files (children) called by
each M-file in the directory (parent). The report also indicates where each
child function resides, for example, in a specified toolbox. If a child function’s
location is listed as unknown, it could be because the child function is not on
the search path or in the current directory.

7-13

7 Tuning and Managing M-Files

The Dependency Report is similar to running the depfun function, although
the two do not provide the exact same results. For performance purposes, the
Dependency Report limits the functions considered.

Select Show parent functions to list the M-files that call each M-file.
The report limits the parent (calling) functions to those in the current
directory. Select Show subfunctions to include subfunctions in the report.
Subfunctions are listed directly after the main function and are highlighted
in gray.

7-14

Directory Reports in Current Directory Browser

Coverage Report
Run the Coverage Report after you run the Profiler to identify how much of a
file ran when it was profiled. For example, when you have an if statement
in your code, that section might not run during profiling, depending on
conditions.

You can run the Coverage Report from the Profiler, or follow these steps:

1 In the MATLAB desktop, select Desktop > Profiler. Profile an M-file
in the Profiler. For detailed instructions, see “Profiling for Improving
Performance” on page 7-27.

2 In the Current Directory browser, select Coverage Report. The Coverage
Report appears, providing a summary of coverage for the M-file you
profiled.

3 Click the Coverage link to see the Profile Detail Report for the file.

7-15

7 Tuning and Managing M-Files

M-Lint Code Check Report

In this section...

“Running the M-Lint Code Check Directory Report” on page 7-16

“Making Changes Based on M-Lint Messages” on page 7-18

“Other Ways to Access M-Lint” on page 7-26

Running the M-Lint Code Check Directory Report
The M-Lint Code Check Report displays potential errors and problems, as
well as opportunities for improvement in your code. The term “lint” is the
name given to similar tools used with other programming languages such as
C. In MATLAB, M-Lint produces a message for each line of an M-file that it
determines might be improved. For example, a common M-Lint message is
that a variable foo in line 12 is defined but never used in the M-file.

To run the M-Lint code check directory report, follow these steps:

1 In the Current Directory browser, navigate to the directory that contains
the M-files you want to check with M-Lint. To use the example shown in
this documentation, lengthofline.m, you can change the current directory
by running

cd(fullfile(matlabroot,'help','techdoc','matlab_env','examples'))

2 If you plan to modify the example, save the file to a directory for which you
have write access, and then make that directory the current MATLAB
directory. In this example, the file is saved to I:\MATLABFiles\mymfiles.

3 In the Current Directory browser toolbar, select the M-Lint Code Check
Report from the Directory Reports listing—for details, see “Accessing and
Using Directory Reports” on page 7-2.

The M-Lint Code Check Report displays in the MATLAB Web Browser,
showing those M-files that M-Lint identified as having potential problems
or opportunities for improvement.

7-16

M-Lint Code Check Report

(
	�)���
	������%�
�����������
�5�	
��	�����
#�	��.'�%� �
�������
	���

�	������%�����
����� �
����	%	� ��
������	�
���%
��
��	���!�����
�������	���

4 For each message, review the suggestion and your code, click the line
number to open the M-file in the Editor/Debugger at that line, and make
changes based on the message. Use the following general advice:

• If you are not sure what a message means or what to change in the code
as a result, use the Help browser to look for related topics in the online
documentation. For examples of messages and what to do about them,
including specific changes to make for the example, lengthofline.m,
see “Making Changes Based on M-Lint Messages” on page 7-18.

7-17

7 Tuning and Managing M-Files

• M-Lint does not provide perfect information about every situation and
in some cases, you might not want to make any changes based on the
M-Lint message. In the event you do not want to change the code but you
also do not want to see the M-Lint message for that line in the M-Lint
Report, instruct M-Lint to ignore a line by adding %#ok to the end of
the line in the M-file. (You can override the %#ok by running the mlint
function with the '-notok' tag.)

• If there are certain messages or types of messages you do not want to
see, you can set a preference so that M-Lint does not report them. Select
File > Preferences > M-Lint. In Select messages to enable, clear
the check box for messages you do not want to see. Review the settings
for all messages to ensure you are seeing those pertinent to your file.
Click OK. For more information, click the Help button in the M-Lint
Preferences pane. The next time you run the report, the messages
will not appear. You can use %#ok with a specific message ID so that
only that type of message is suppressed—for more information, see the
reference page for mlint.

5 After making changes, save the M-file. Consider saving the file to a
different name if you made significant changes that might introduce errors.
Then you can refer to the original file if needed to resolve problems with
the updated file. Use Tools > Compare Against in the Editor/Debugger
to help you identify the changes you made to the file. For more information,
see “Comparing Files — File Comparison Tool” on page 6-54.

6 Run and debug the file(s) again to be sure you have not introduced any
inadvertent errors.

7 If the M-Lint Code Check Report is already displayed, click Rerun This
Report to update the report based on the changes you made to the file, or
run the report from the Current Directory browser toolbar. Ensure the
M-Lint messages are gone, based on the changes you made to the M-files.

Making Changes Based on M-Lint Messages
For information on how to correct the potential problems presented by M-Lint,
use the following resources:

• Look for relevant topics in the MATLAB Programming and “Programming
Tips” documentation.

7-18

M-Lint Code Check Report

• Use the Help browser Search and Index panes to find documentation
about terms presented in the M-Lint messages.

Other techniques to help you identify problems in and improve your M-files
are in these topics:

• “Syntax Highlighting” on page 6-28 in the Command Window and
Editor/Debugger

• “Examining Errors” on page 3-9 generated when you run the M-file

• “Finding Errors, Debugging, and Correcting M-Files” on page 6-84, namely
the Editor/Debugger and debugging functions

• “Profiling for Improving Performance” on page 7-27 for improving
performance

Example Using M-Lint Messages to Improve Code
An example file, lengthofline.m, is included with MATLAB in
matlabroot/matlab/help/techdoc/matlab_env/examples.

To run the M-Lint Code Check Report for lengthofline.m, change the
current directory to its location by running

cd(fullfile(matlabroot,'help','techdoc','matlab_env','examples'))

In the Current Directory browser, select the M-Lint Code Check Report
from the list of directory reports on the toolbar.

The M-Lint Code Check Report appears, with its list of messages suggesting
improvements you can make to lengthofline.m and any other files in the
directory.

7-19

7 Tuning and Managing M-Files

7-20

M-Lint Code Check Report

Messages and Resulting Changes for the lengthofline Example. The
following table describes each message and demonstrates a way to change the
file, based on the message.

Message — Code (Original Line Numbers)
Explanation and Updated Code (New
Line Numbers)

22: The value assigned here to
variable 'nothandle' might never be
used.

— — — — — — — — — — — — — — — — —

22 nothandle = ~ishandle(hline);

23 for nh = 1:prod(size(hline))

24 notline(nh) = ~ishandle(hline(nh))
...

In line 22, nothandle is assigned a value, but
nothandle is probably not used anywhere after
that in the file. The line might be extraneous
and you could delete it. But it might be that
you actually intended to use the variable, which
is the case for the lengthofline example.
Update line 24 to use nothandle, which is
faster than computing ~ishandle for each
iteration of the loop, as shown here.

22 nothandle = ~ishandle(hline);

23 for nh = 1:numel(hline)

24 notline(nh) = nothandle(nh) ...

23: NUMEL(x) is usually faster than
PROD(SIZE(x)).

— — — — — — — — — — — — — — — — —

23 for nh = 1:prod(size(hline))

While prod(size(x)) returns the number
of elements in a matrix, the numel function
was designed to do just that, and therefore is
usually more efficient. Type doc numel to see
the numel reference page. Change the line to

23 for nh = 1:numel(hline)

7-21

7 Tuning and Managing M-Files

Message — Code (Original Line Numbers)
Explanation and Updated Code (New
Line Numbers)

24: 'notline' might be growing inside
a loop. Consider preallocating for
speed.

— — — — — — — — — — — — — — — — —

22 nothandle = ~ishandle(hline);

23 for nh = 1:numel(hline)

24 notline(nh) = ~ishandle(hline(nh))
...

When you increase the size of an array within
a loop, it is inefficient. Before the loop,
preallocate the array to its maximum size to
improve performance. For more information,
see “Preallocating Memory” in the MATLAB
Programming documentation. In the example,
add a new line to preallocate notline before
the loop.

23 notline = false(size(hline));

24 for nh = 1:numel(hline)

25 notline(nh) = nothandle(nh) ...

24: Use STRCMPI(str1,str2) instead of
using LOWER in a call to STRCMP.

— — — — — — — — — — — — — — — — —

24 notline(nh)=~ishandle(hline(nh)) ||
~strcmp('line',lower(get(hline(nh),
'type')));

While

strcmp
('line',lower(get(hline(nh)'type'))

converts the result of the get function to a
lowercase string before doing the comparison,
the strcmpi function ignores the case while
performing the comparison, with advantages
that include more efficiency. Change line 25 to

notline(nh) = nothandle(nh) ||
~strcmpi('line',get(hline(nh),'type'));

28: NUMEL(x) is usually faster than
PROD(SIZE(x)).

— — — — — — — — — — — — — — — — —

28 for nl = 1:prod(size(hline))

See the same message and explanation
reported for line 23. Change the line 29 to

for nl = 1:numel(hline)

7-22

M-Lint Code Check Report

Message — Code (Original Line Numbers)
Explanation and Updated Code (New
Line Numbers)

34: 'data' might be growing inside
a loop. Consider preallocating for
speed.

— — — — — — — — — — — — — — — — —

33 for nd = 1:length(fdata)

34 data{nd} = getfield(flds,fdata{nd});

See the same message and explanation
reported for line 24. Add this line, 34, before
the loop

data = cell(size(fdata));

34: Use dynamic fieldnames with
structures instead of GETFIELD. Type
'doc struct' for more information.

— — — — — — — — — — — — — — — — —

34 data{nd} = getfield(flds,fdata{nd});

You can access a field in a structure as a
variable expression that MATLAB evaluates
at run-time. This is more efficient than using
getfield. For more information, type doc
struct to see the reference page for structures,
or see “Using Dynamic Field Names” in
the MATLAB Programming documentation.
Change line 37 to

data{nd} = flds.(fdata{nd});

38: Use || instead of | as the OR
operator in (scalar) conditional
statements.

39: Use || instead of | as the OR
operator in (scalar) conditional
statements.

40: Use || instead of | as the OR
operator in (scalar) conditional
statements.

— — — — — — — — — — — — — — — — —

38 if isempty(data{3}) | ...

39 (length(unique(data{1}(:)))==1 | ...

40 length(unique(data{2}(:)))==1 | ...

41 length(unique(data{3}(:)))==1)

While | (the element-wise logical OR operator)
performs the comparison correctly, use the ||
(short circuit OR operator) for efficiency. For
details, see “Logical Operators” in the MATLAB
Programming documentation. Change lines
40, 41, and 42 to

if isempty(data{3}) || ...

(length(unique(data{1}(:)))==1 || ...

length(unique(data{2}(:)))==1 || ...

7-23

7 Tuning and Managing M-Files

Message — Code (Original Line Numbers)
Explanation and Updated Code (New
Line Numbers)

42: 'data' might be growing inside
a loop. Consider preallocating for
speed.

— — — — — — — — — — — — — — — — —

42 data{3} = zeros(size(data{1}));

This message no longer appears due to
the change made to line 34 data{nd} =
getfield(flds,fdata{nd});. Sometimes
fixing code in one line automatically clears a
message for another line. If the reason for a
message or the action to take for a message is
not obvious at first, it could be because another
line is causing the message. Address the issues
that are easy to fix first and rerun the report.
Do not make any changes to line 44.

43: 'dim' might be growing inside
a loop. Consider preallocating for
speed.

43 dim(nl) = 2;

See the same message and explanation
reported for line 24. Add this line before the
first line of the loop

dim = len;

48: There may be a parenthesis
imbalance around here.

48: There may be a parenthesis
imbalance around here.

48: There may be a parenthesis
imbalance around here.

48: There may be a parenthesis
imbalance around here.

There is an error in this line, which you
would see by running lengthofline. M-Lint
suggests that it might be due to a parenthesis
imbalance. You can check that by moving
the arrow key over each of the delimiters, to
see if MATLAB indicates a mismatch. This
requires that File > Preferences > Keyboard
> Delimiter Matching has the Match on
arrow key option selected. There are no
mismatched delimiters. The actual problem
is the semicolon in parentheses, data{3}(:)
is incorrect and should be a colon. In line 51,
change data{3}(;) to data{3}(:). That
single change addressed the issues in all the
messages for that line.

7-24

M-Lint Code Check Report

Message — Code (Original Line Numbers)
Explanation and Updated Code (New
Line Numbers)

49: Terminate statement with semicolon
to suppress output (in functions).

Adding a semicolon to the end of a statement
suppresses output and is a common practice.
M-Lint alerts you to lines that produce output
but lack the terminating semicolon. If you want
to view output from this line, do not add the
semicolon. You can instruct M-Lint to ignore
all messages on this line so that the messages
on it will not appear by adding %#ok to the end
of the line. However, because there is currently
another message on the line, do not add %#ok
until you have addressed the other message.

Alternatively, you can add %#ok with the
message ID for the specific message you
want to suppress. To determine the message
ID, run mlint('lengthofline.m', '-id'),
which indicates the ID is NOPRT—for more
information, see the mlint function reference
page.

For this example, assume you want to display
the output and suppress the M-Lint message.
To do so, add %#ok<NOPRT> to the end of the
line.

Note that there is a similar message for
M-file scripts. This is so you can suppress the
message for M-files that are cell-mode scripts,
because they are often intended as demos and
the display of output is intentional.

49: Use of brackets [] is unnecessary.
Use parentheses to group, if needed.

— — — — — — — — — — — — — — — — —

49 len(nl) =
sum([sqrt(dot(temp',temp'))])

For more information about the use of brackets
and parentheses, see the Special Characters
reference page. In this example, remove
the brackets because they are not needed.
They add processing time because MATLAB
concatenates unnecessarily. Change line 52 to

len(nl) = sum(sqrt(dot(temp',temp')))
%#ok

7-25

7 Tuning and Managing M-Files

+��������5�	���(���
(���)�3���������
��)	� ����� �����
����
�� ����
	����	
�
%���������5�	��
����� ����8������
����� ��
����������

The M-file that includes all of the changes suggested by M-Lint is
lengthofline2.m. To view it, run

edit(fullfile(matlabroot,'help','techdoc','matlab_env',...
'examples','lengthofline2.m')).

Other Ways to Access M-Lint
You can get M-Lint messages using any of the following methods. Each
provides the same M-Lint messages, but in a different format:

• Access the M-Lint Code Check report for an M-file from the Editor/Debugger
Tools menu or from the Profiler detail report.

• Run the mlint function, which analyzes the specified file and displays
messages in the Command Window, or mlintrpt, which runs mlint and
displays the messages in the Web Browser.

• Use automatic M-Lint analysis and code correction while you work on a file
in the Editor/Debugger — see “M-Lint Code Analyzer” on page 6-87.

7-26

Profiling for Improving Performance

Profiling for Improving Performance

In this section...

“What Is Profiling?” on page 7-27

“Profiling Process and Guidelines” on page 7-28

“Using the Profiler” on page 7-29

“Profile Summary Report” on page 7-33

“Profile Detail Report” on page 7-35

“The profile Function” on page 7-42

What Is Profiling?
Profiling is a way to measure where a program spends time. To assist
you in profiling, MATLAB provides a graphical user interface, called the
Profiler, which is based on the results returned by the profile function.
Once you identify which functions are consuming the most time, you can
determine why you are calling them and look for ways to minimize their
use and thus improve performance. It is often helpful to decide whether
the number of times a particular function is called is reasonable. Because
programs often have several layers, your code may not explicitly call the
most time-consuming functions. Rather, functions within your code might
be calling other time-consuming functions that can be several layers down
in the code. In this case it is important to determine which of your functions
are responsible for such calls.

Profiling helps to uncover performance problems that you can solve by

• Avoiding unnecessary computation, which can arise from oversight

• Changing your algorithm to avoid costly functions

• Avoiding recomputation by storing results for future use

When you reach the point where most of the time is spent on calls to a small
number of built-in functions, you have probably optimized the code as much
as you can expect.

7-27

7 Tuning and Managing M-Files

Profiling Process and Guidelines
Here is a general process you can follow to use the Profiler to improve
performance in your M-files. This section also describes how you can use
profiling as a debugging tool and as a way to understand complex M-files.

Note Premature optimization can increase code complexity unnecessarily
without providing a real gain in performance. Your first implementation
should be as simple as possible. Then, if speed is an issue, use profiling to
identify bottlenecks.

1 In the summary report produced by the Profiler, look for functions that
used a significant amount of time or were called most frequently. See
“Profile Summary Report” on page 7-33 for more information.

2 View the detail report produced by the Profiler for those functions and look
for the lines that use the most time or are called most often. See “Profile
Detail Report” on page 7-35 for more information.

You might want to keep a copy of your first detail report to use as a
reference to compare with after you make changes, and then profile again.

3 Determine whether there are changes you can make to the lines most called
or the most time-consuming lines to improve performance.

For example, if you have a load statement within a loop, load is called
every time the loop is called. You might be able to save time by moving the
load statement so it is before the loop and therefore is only called once.

4 Click the links to the files and make the changes you identified for potential
performance improvement. Save the files and run clear all. Run the
Profiler again and compare the results to the original report. Note that
there are inherent time fluctuations that are not dependent on your code.
If you profile the exact same code twice, you can get slightly different
results each time.

5 Repeat this process to continue improving the performance.

7-28

Profiling for Improving Performance

Using Profiling as a Debugging Tool
The Profiler is a useful tool for isolating problems in your M-files.

For example, if a particular section of the file did not run, you can look at the
detail reports to see what lines did run, which might point you to the problem.

You can also view the lines that did not run to help you develop test cases
that exercise that code.

If you get an error in the M-file when profiling, the Profiler provides partial
results in the reports. You can see what ran and what did not to help you
isolate the problem. Similarly, you can do this if you stop the execution using
Ctrl+C, which might be useful when a file is taking much more time to run
than expected.

Using Profiling for Understanding an M-File
For lengthy M-files that you did not create or that you have not used for
awhile and are unfamiliar with, you can use the Profiler to see how the M-file
actually worked. Use the Profiler detail reports to see the lines actually called.

If there is an existing GUI tool (or M-file) similar to one that you want to
create, start profiling, use the tool, then stop profiling. Look through the
Profiler detail reports to see what functions and lines ran. This helps you
determine the lines of code in the file that are most like the code you want
to create.

Using the Profiler
Use the Profiler to help you determine where you can modify your code to
make performance improvements. The Profiler is a tool that shows you where
an M-file is spending its time. This section covers

• “Opening the Profiler” on page 7-30

• “Running the Profiler” on page 7-30

• “Profiling a Graphical User Interface” on page 7-32

• “Profiling Statements from the Command Window” on page 7-33

• “Changing Fonts for the Profiler” on page 7-33

7-29

7 Tuning and Managing M-Files

For information about the reports generated by the Profiler, see “Profile
Summary Report” on page 7-33 and “Profile Detail Report” on page 7-35.

Opening the Profiler
You can use any of the following methods to open the Profiler:

• Select Desktop > Profiler from the MATLAB desktop.

• Click the Profiler button in the MATLAB desktop toolbar.

• With a file open in the MATLAB Editor/Debugger, select Tools > Open
Profiler.

• Select one or more statements in the Command History window, right-click
to view the context menu, and choose Profile Code.

• Enter the following function in the Command Window:

profile viewer

Running the Profiler
The following illustration summarizes the steps for profiling.

7-30

Profiling for Improving Performance

To profile an M-file or a line of code, follow these steps:

1 In the Run this code field in the Profiler, type the statement you want
to run.

You can run this example

[t,y] = ode23('lotka',[0 2],[20;20])

as the code is provided with MATLAB demos. It runs the Lotka-Volterra
predator-prey population model. For more information about this model,
type lotkademo, which runs the demonstration.

To run a statement you previously profiled in the current MATLAB session,
select the statement from the list box — MATLAB automatically starts
profiling the code, so skip to step 3.

7-31

7 Tuning and Managing M-Files

2 Click Start Profiling (or press Enter after typing the statement).

While the Profiler is running, the Profile time indicator (at the top right
of the Profiler window) is green and the number of seconds it reports
increases.

When the profiling is finished, the Profile time indicator becomes black
and shows the length of time the Profiler ran. The statements you profiled
are shown as having been executed in the Command Window.

This is not the actual time that your statements took to run; it is the wall
clock (or tic/toc) time elapsed from when you clicked Start Profiling
until profiling stops. If the time reported is much different from what you
expected (for example, hundreds of seconds for a simple statement), you
might have had profiling on longer than you realized. This also does not
match the time reported in Profiler statistics, which is based on cpu time
by default, not wall clock time.

3 When profiling is complete, the Profile Summary report appears in the
Profiler window. For more information about this report, see “Profile
Summary Report” on page 7-33.

Profiling a Graphical User Interface
You can run the Profiler for a graphical user interface, such as the Filter
Design and Analysis tool included with Signal Processing Toolbox. You can
also run the Profiler for an interface you created, such as one built using
GUIDE.

To profile a graphical user interface, follow these steps:

1 In the Profiler, click Start Profiling. Make sure that no code appears
in the Run this code field.

7-32

Profiling for Improving Performance

2 Start the graphical user interface. (If you do not want to include its startup
process in the profile, do not click Start Profiling, step 1, until after you
have started the graphical interface.)

3 Use the graphical interface. When you are finished, click Stop Profiling
in the Profiler.

The Profile Summary report appears in the Profiler.

Profiling Statements from the Command Window
To profile more than one statement, follow these steps:

1 In the Profiler, clear the Run this code field and click Start Profiling.

2 In the Command Window, enter and run the statements you want to profile.

3 After running all the statements, click Stop Profiling in the Profiler.

The Profile Summary report appears in the Profiler.

Changing Fonts for the Profiler
To change the fonts used in the Profiler, follow these steps:

1 Select File > Preferences > Fonts to open the Font Preferences dialog
box.

2 In the Font Preferences dialog box, select the code or text font that you
want to use in the Profiler. The Profiler is an HTML Proportional Text tool.
For more information, click the Help button in the dialog box.

3 Click Apply or OK. The Profiler font reflects the changes.

Profile Summary Report
The Profile Summary report presents statistics about the overall execution of
the function and provides summary statistics for each function called. The
report formats these values in four columns.

• Function Name — A list of all the functions and subfunctions called by
the profiled function. When first displayed, the functions are listed in

7-33

7 Tuning and Managing M-Files

order by the amount of time they took to process. To sort the functions
alphabetically, click the Function Name link at the top of the column.

• Calls — The number of times the function was called while profiling was
on. To sort the report by the number of times functions were called, click
the Calls link at the top of the column.

• Total Time — The total time spent in a function, including all child
functions called, in seconds. The time for a function includes time spent
on child functions. To sort the functions by the amount of time they
consumed, click the Total Time link at the top of the column. By default,
the summary report displays profiling information sorted by Total Time.
Note that the Profiler itself uses some time, which is included in the
results. Also note that total time can be zero for files whose running time
was inconsequential.

• Self Time — The total time spent in a function, not including time for any
child functions called, in seconds. To sort the functions by this time value,
click the Self Time link at the top of the column.

• Total Time Plot — Graphic display showing self time compared to total
time.

Following is the summary report for the Lotka-Volterra model described in
“Example: Using the profile Function” on page 7-43.

To print a summary report, click the Print button .

To get more detailed information about a particular function, click its name
in the Function Name column. See “Profile Detail Report” on page 7-35
for more information.

7-34

Profiling for Improving Performance

Profile Detail Report
The Profile Detail report shows profiling results for a selected function that
was called during profiling. A Profile Detail report is made up of seven
sections, summarized below. By default, the Profile Detail report includes
all seven sections, although, depending on the function, not every section
contains data. To return to the Profile Summary report from the Profile
Detail report, click the Home button in the toolbar. The following sections
provide more detail:

7-35

7 Tuning and Managing M-Files

Controlling the Contents of the
Detail Report Display (p. 7-36)

Customize display to include only
sections you are interested in.

Profile Detail Report Header (p. 7-38) Provides general information about
the function.

Parent Functions (p. 7-38) Provides information about the
parent function.

Busy Lines (p. 7-38) Lists the lines in the function
that used the greatest amount of
processing time.

Child Functions (p. 7-39)

M-Lint Results (p. 7-40) Lists the lines in the functions that
M-Lint highlighted.

File Coverage (p. 7-40) Provides statistics about the lines of
code in the function that executed
while profiling was on.

Function Listing (p. 7-41) Includes the source code for the
function, if it is an M-file.

Controlling the Contents of the Detail Report Display
You can determine which sections are included in the display by selecting
them and then clicking the Refresh button. The following sections provide
more detail about each section of this report.

7-36

Profiling for Improving Performance

7-37

7 Tuning and Managing M-Files

Profile Detail Report Header
The detail report header includes the name of the function that was profiled,
the number of times it was called in the parent function, and the amount of
time it used.

The header includes a link that opens the function in your default text editor.

The header also includes a link that copies the report to a separate window.
Creating a copy of the report can be helpful when you make changes to the
file, run the Profiler for the updated file, and compare the Profile Detail
reports for the two runs. Do not make changes to M-files provided with
MathWorks products, that is, files in matlabroot/toolbox directories.

Parent Functions
To include the Parents section in the detail report, select the Show parent
functions check box. This section of the report provides information about
the parent functions, with links to their detail reports.

Busy Lines
To include information about the lines of code that used the most amount of
processing time in the detail report, select the Show busy lines check box.

7-38

Profiling for Improving Performance

Note that this was not selected in the example. Click a line number to view
that line of code in the source listing.

Child Functions
To include the Children section of the detail report, select the Show child
functions check box. This section of the report lists all the functions called
by the profiled function. If the called function is an M-file, you can view the
source code for the function by clicking its name.

7-39

7 Tuning and Managing M-Files

M-Lint Results
To include the M-Lint results section in the detail report display, select
the Show M-Lint results check box. This section of the report provides
information about problems and potential improvements, generated by
M-Lint about the function. For more information about M-Lint, see “M-Lint
Code Check Report” on page 7-16.

File Coverage
To include the Coverage results section in the detail report display, select
the Show file coverage check box. This section of the report provides
statistical information about the number of lines in the code that executed
during the profile run.

7-40

Profiling for Improving Performance

Function Listing
To include the Function listing section in the detail report display, select
the Show function listing check box. If the file is an M-file, the Profile
Detail report includes a column listing the execution time for each line, a
column listing the number of times the line was called, and the source code
for the function.

In the function listing, comment lines appear in green, lines of code that
executed appear in black, and lines of code that did not execute appear in
gray. If you click a function name in the listing, you can view its detail report.

By default, the Profile Detail report uses the color red to highlight the lines of
code with the longest execution time. The darker the shade of red, the longer
the line of code took to execute. Using the menu in this section of the detail
report you can change this default and choose to highlight lines of code based
on other criteria such as the lines called the most, lines called out by M-Lint,
or lines of code that were (or were not) executed. Using this menu, you can
also turn off highlighting completely.

7-41

7 Tuning and Managing M-Files

The profile Function
The Profiler is based on the results returned by the profile function. This
section describes

• “profile Function Syntax Summary” on page 7-43

• “Example: Using the profile Function” on page 7-43

• “Accessing Profiler Results” on page 7-45

• “Saving Profile Reports” on page 7-47

7-42

Profiling for Improving Performance

profile Function Syntax Summary
Here is a summary of some of the main forms of profile. For details about
these and other options, type doc profile. Some people use profile simply
to see the child functions; see also depfun for that purpose.

Syntax Description

profile on Starts profile, clearing previously recorded
statistics.

profile on -detail level Specifies the level of function to be profiled,
where level can be either:

'mmex' — M-functions, M-subfunctions, and
MEX-functions 'builtin' — M-functions,
M-subfunctions, MEX-functions, and
built-ins

profile on -history Specifies that the exact sequence of function
calls is to be recorded.

profile off Suspends profile.

profile resume Restarts profile without clearing
previously recorded statistics.

profile clear Clears the statistics recorded by profile.

profile viewer Opens the Profiler, a graphical user interface
and displays the information gathered as an
HTML-formatted report.

Note: If you run the obsoleted syntax
profile report, the profile function calls
this syntax.

s = profile('status') Displays a structure containing the current
profile status.

stats = profile('info') Suspends profile and displays a structure
containing profile results.

Example: Using the profile Function
This example demonstrates how to run profile:

7-43

7 Tuning and Managing M-Files

1 To start profile, type in the Command Window

profile on

2 Execute an M-file. This example runs the Lotka-Volterra predator-prey
population model. For more information about this model, type lotkademo,
which runs a demonstration.

[t,y] = ode23('lotka',[0 2],[20;20]);

3 Generate the profile report and display it in the Profiler window. This
suspends profile.

profile viewer

4 Restart profile, without clearing the existing statistics.

profile resume

The profile function is now ready to continue gathering statistics for any
more M-files you run. It will add these new statistics to those generated
in the previous steps.

5 Stop profile when you finish gathering statistics.

profile off

6 To view the profile data, call profile specifying the 'info' argument. The
profile function returns data in a structure.

p = profile('info')

p =
FunctionTable: [10x1 struct]

FunctionHistory: [2x0 double]
ClockPrecision: 3.3333e-010

ClockSpeed: 3.0000e+009
Name: 'MATLAB'

The FunctionTable indicates that statistics were gathered for 10 functions.

7-44

Profiling for Improving Performance

7 To save the profile report, use the profsave function. This function stores
the profile information in separate HTML files, for each function listed in
FunctionTable of p.

profsave(p)

By default, profsave puts these HTML files in a subdirectory of the
current directory named profile_results, and displays the summary
report in your system browser. You can specify another directory name as
an optional second argument to profsave.

Accessing Profiler Results
The profile function returns results in a structure. This example illustrates
how you can access these results:

1 To start profile, specifying the detail and history options, type in the
Command Window.

profile on -detail builtin -history

The detail option specifies that built-ins should be included in the profile
data. The history option specifies that the report include information about
the sequence of functions as they are entered and exited during profiling.

2 Execute an M-file. This example runs the Lotka-Volterra predator-prey
population model. For more information about this model, type lotkademo,
which runs a demonstration.

[t,y] = ode23('lotka',[0 2],[20;20]);

3 Stop profiling.

profile off

4 Get the structure containing profile results.

stats = profile('info')
stats =

FunctionTable: [43x1 struct]
FunctionHistory: [2x754 double]
ClockPrecision: 3.3333e-010

7-45

7 Tuning and Managing M-Files

ClockSpeed: 3.0000e+009
Name: 'MATLAB'

5 The FunctionTable field is an array of structures, where each structure
represents an M-function, M-subfunction, MEX-function, or, because the
builtin option is specified, a MATLAB built-in function.

stats.FunctionTable

ans =

41x1 struct array with fields:
CompleteName
FunctionName
FileName
Type
NumCalls
TotalTime
TotalRecursiveTime
Children
Parents
ExecutedLines
IsRecursive
PartialData

6 View the second structure in FunctionTable.

stats.FunctionTable(2)

ans =
CompleteName: [1x79 char]

FunctionName: 'ode23'
FileName: [1x73 char]

Type: 'M-function'
NumCalls: 1

TotalTime: 0.3902
TotalRecursiveTime: 0

Children: [20x1 struct]
Parents: [0x1 struct]

ExecutedLines: [139x3 double]

7-46

Profiling for Improving Performance

IsRecursive: 0
PartialData: 0

7 To view the history data generated by profile, view the FunctionHistory,
for example, stats.FunctionHistory. The history data is a 2-by-n array.
The first row contains Boolean values, where 0 (zero) means entrance into
a function and 1 means exit from a function. The second row identifies the
function being entered or exited by its index in the FunctionTable field. To
see how to create a formatted display of history data, see the example on
the profile reference page.

Saving Profile Reports
To save the profile report, use the profsave function.

This function stores the profile information in separate HTML files, for each
function listed in the FunctionTable field of the structure, stats.

profsave(stats)

By default, profsave puts these HTML files in a subdirectory of the current
directory named profile_results. You can specify another directory name
as an optional second argument to profsave.

profsave(stats,'mydir')

7-47

7 Tuning and Managing M-Files

7-48

8

Publishing Results

MATLAB provides two different approaches for publishing: using cells and
with the Notebook features for Microsoft Word.

Publishing to HTML, XML, LaTeX,
Word, and PowerPoint Using Cells
(p. 8-2)

Use cells to publish M-files,
including code, comments, and
results, to popular output formats.

Marking Up Text in Cells for
Publishing (p. 8-11)

Prepare an M-file for publishing.

Publishing M-Files Using Cells
(p. 8-24)

Publish an M-file and set preferences
for publishing.

Notebook for Publishing to Word
(p. 8-27)

Create an M-book in Microsoft Word,
enter commands, and perform other
basic tasks.

Defining MATLAB Commands as
Input Cells for Notebook (p. 8-36)

Make text in the M-book become a
MATLAB command.

Evaluating MATLAB Commands
with Notebook (p. 8-41)

Run the MATLAB commands in the
M-book.

Printing and Formatting an M-Book
(p. 8-47)

Control styles and print M-books.

Configuring Notebook (p. 8-53) Set up Notebook for use with your
version of Word.

Notebook Feature Reference (p. 8-54) Alphabetical listing of features.

8 Publishing Results

Publishing to HTML, XML, LaTeX, Word, and PowerPoint
Using Cells

In this section...

“About Publishing M-Files” on page 8-2

“Publishing Scripts and Functions—Differences” on page 8-3

“Example of Publishing Without Text Markup” on page 8-4

“Example of Publishing with Text Markup” on page 8-6

About Publishing M-Files
When you have completed writing and debugging an M-file, use the M-file
cell features in the Editor/Debugger to quickly publish the M-file and its
results in any of several presentation formats: HTML, XML, LaTeX, or, when
the applications are installed, Microsoft Word or PowerPoint. This allows
you to share your work with others, presenting not only the code, but also
commentary on the code and results from running the file.

Publishing features evaluate M-files cell-by-cell and display the contents of a
cell in a presentation quality document. For M-file scripts, publishing also
displays the results. For example, published documents include bold headings
for each section of the file. For M-file scripts, published documents include
output to the Command Window and figures. The cells in the Editor/Debugger
that you use for publishing are the same ones you might already have used
for rapid code iteration—see “Using Cells for Rapid Code Iteration and
Publishing Results” on page 6-133.

If you have an active Internet connection, you can watch the Publishing M
Code from the Editor/Debugger video demo for an overview of the major
functionality.

This is the overall process to publish an M-file using cell features in the
Editor/Debugger:

1 Enable cell mode and define cells as described in steps 1 through 3 in “Using
Cells for Rapid Code Iteration and Publishing Results” on page 6-133.
When you publish the file without adding any text markup, comments at

8-2

Publishing to HTML, XML, LaTeX, Word, and PowerPoint Using Cells

the start of a cell appear as plain text. Comments appearing after code in a
cell appear as unformatted M-file comments in the published document.

2 Use Cell > Insert Text Markup to insert markup symbols in the M-file
comments to stylize the text for the output, for example, to display specified
text as bold or monospaced. For details, see “Marking Up Text in Cells for
Publishing” on page 8-11.

3 When publishing an M-file function, select
File > Preferences > Editor/Debugger > Publishing, and
clear the Evaluate code option.

4 Select File > Publish To, and select the format in which you want to
publish the M-file: HTML, XML, LaTeX, Word, or PowerPoint. For details,
see “Publishing M-Files Using Cells” on page 8-24.

5 Change the Editor/Debugger Publishing and Publishing Images
preferences to adjust the output. For example, you can choose to include
or exclude the code from the output. For details, see “Modifying Published
Output Using Preferences” on page 8-26.

MATLAB publishes the M-file by writing the cell titles, comment text, and
code to a file using the specified format. For M-file scripts, MATLAB also
evaluates the cells and writes the results of the evaluation to the output file.
Any figures created or modified during the evaluation are saved as graphics
files, and are shown with the results.

Publishing Scripts and Functions—Differences
When you publish M-file scripts, MATLAB runs the code and the published
output includes the results.

When you publish M-file functions, MATLAB does not run the code, so the
published output does not include results. Publishing an M-file function
allows you to effectively save the M-file code along with formatted M-file
comments. The instructions for publishing M-files apply to M-file functions,
with the exception of steps that involve evaluating code and displaying results
from running the file.

If you want to publish an M-file function that includes results, change the
M-file function to a script. Remove the function declaration statement and

8-3

8 Publishing Results

within the M-file script, supply any input values that you had passed when
you ran the function.

Example of Publishing Without Text Markup
This is based on the M-file script used in “Example — Evaluate Cells” on page
6-141, as shown here. Instructions for preparing and publishing the file follow.

8-4

Publishing to HTML, XML, LaTeX, Word, and PowerPoint Using Cells

Select File > Publish to HTML to produce the following result.

8-5

8 Publishing Results

Example of Publishing with Text Markup
This simple example adds text markup to the sine_wave.m file used in
“Example of Publishing Without Text Markup” on page 8-4 to produce the
following published HTML document.

8-6

Publishing to HTML, XML, LaTeX, Word, and PowerPoint Using Cells

8-7

8 Publishing Results

1 Add an overall title and introduction for the published document

a Select Cell > Insert Text Markup > > Document Title and
Introduction. MATLAB adds the following at the top of the file.

%% DOCUMENT TITLE
% INTRODUCTORY TEXT

The two percent signs (%%) indicate the start of a new cell, where a cell is
a section of an M-file. A single percent sign indicates a comment line.

b Replace DOCUMENT TITLE with Plot Sine Wave.

c On line 2, after the single percent sign, replace INTRODUCTORY TEXT
with a comment about the overall file. For example, Calculate and
plot a sine wave.

d On line 3, insert a blank line for better readability.

You can add any overall comments about the file in the lines following the
title. You cannot add executable code between document title and before
the next cell (a line starting with %%) if you want the document title to
appear as the overall document title.

2 Display equations in comments with symbols and Greek characters using
the TeX format. For a list of symbols you can display and the character
sequence to create them, see the String property on the MATLAB reference
page for graphics Text Properties. In this example, to create a comment
containing the following equation in the published document: ,
use text markup as follows:

a Position the cursor at the end of line 5, where the textDefine the range
for x appears.

b Select Cell > Insert Text Markup > TeX Equation.

MATLAB inserts the following lines:

%
% $$e^{\pi i} + 1 = 0$$
%

The sample equation, which is the text between the set of two dollar
signs ($$), is highlighted.

8-8

Publishing to HTML, XML, LaTeX, Word, and PowerPoint Using Cells

c Replace the sample equation with the following TeX equation:

0 \leq x \leq 6\pi

The three lines that display the TeX equation in the published document
now appear as follows in the M-file.

%
% $$0 \leq x \leq 6\pi$$
%

3 Display a selected comment text in a monospace font, as follows:

a Position the cursor in the following comment, which appears in line 9.

% Calculate and plot y = sin(x).

b To make the equation y = sin(x) appear in monospace font in the
published document, select the equation and then select Cell> Insert
Text Markup> Monospaced Text. Line 9 should appear as follows:

% Calculate and plot |y = sin(x)|.

4 To reduce the size of the published figure, select
File > Preferences > Editor/Debugger > Publishing Images. In the
Preferences dialog box, for Resize image, select Restrict height to
and enter 200. Click OK to close the dialog box.

5 Select File > Save and Publish to HTML.

The HTML file displays in the MATLAB Web Browser, as shown at the start
of this example, “Example of Publishing with Text Markup” on page 8-6.

6 By default, MATLAB stores the HTML document, sine_wave.html, and
the associated image files in d:/mymfiles/html for this example.

The file sine_wave.m now appears as shown in the following illustration.

8-9

8 Publishing Results

8-10

Marking Up Text in Cells for Publishing

Marking Up Text in Cells for Publishing

In this section...

“Overview of Text Markup” on page 8-11

“Text Markup for Cell Breaks, Headings, and Formatted Comments” on
page 8-12

“Text Markup for Indented Text, Lists, and Graphics” on page 8-14

“Text Markup for HTML, LaTeX, and TeX Equation Output Types” on page
8-17

“Text Markup for Bold, Italic, and Monospaced Text Formats” on page 8-20

“Text Markup for Inline Links” on page 8-22

Overview of Text Markup
When you publish an M-file and results, you can mark up the file using cell
features—this adds and formats comments in the published file. You can
include the markup as you write the basic code, mark up the file after you’ve
written the code, or do both. The markup applies to any of the available
publishing options: HTML, XML, LaTeX, Word, and PowerPoint.

Any cell features you use for evaluating and improving your code are used
for publishing purposes as well. The “Example of Publishing Without Text
Markup” on page 8-4 shows how the cells used for improving an M-file appear
when the M-file is published. You might want to change the existing cells
for publishing purposes, but note that this changes the cells for evaluation
purposes as well. For example, to have text markup and formatted comments
in the output document, the comments must appear at the start of a cell,
before any code.

Mark up comment text in one of two ways:

• Use Cell > Insert Text Markup menu items to format the code, which
automatically inserts the markup symbols for you. This is not available for
all markup options.

8-11

8 Publishing Results

• Type the markup symbols directly in the code. Note that what you type is
the same as the code that results if you instead use the equivalent menu
item.

The following tables describe each markup option and how to use it. The
tables refer to “Example of Publishing with Text Markup” on page 8-6:

Text Markup for Cell Breaks, Headings, and
Formatted Comments
Cell breaks, headings, and formatted comments are the structural elements
that control the overall output format of the published document.

8-12

Marking Up Text in Cells for Publishing

Format
How to Produce
Format Resulting Code Published Results

Overall
document
heading and
introductory
text

1 Position the cursor
anywhere in the
editor.

2 Select
Cell > Insert Text
Markup > Document
Title and
Introduction.

3 Replace DOCUMENT
TITLE in the resulting
code with your
desired cell heading.

4 Replace
INTRODUCTORY TEXT
in the resulting
code with text that
introduces the M-file.

See step in the example.

%% DOCUMENT TITLE
% INTRODUCTORY TEXT
In the example, the
overall heading is
%% Plot Sine Wave

Document title is
formatted as a top-level
heading (h1 in HTML),
using a large size, bold
font.

Introductory text
appears as formatted
text.

Section title,
formatted
comments, and
a cell break

1 Position the cursor
where you want to
insert a new cell.

2 Select
Cell > Insert Text
Markup > Section
Title with Cell
Break.

3 Replace SECTION
TITLE with your
desired title.

4 Replace DESCRIPTIVE
TEXT with text that
describes the cell.

%% SECTION TITLE
% DESCRIPTIVE TEXT
In the example, the
section titles are
%% Calculate and
Plot Sine Wave
%% Modify Plot
Properties
Note that descriptive
text must appear
before the first line
of executable code in a
cell.

Formatted as a heading
(h2 in HTML), using a
medium size, bold font.

Descriptive text appears
as formatted text in the
published output.

8-13

8 Publishing Results

Text Markup for Indented Text, Lists, and Graphics
Indented text, lists, and graphics are types of block styles. Block styles
control the appearance of large sections of text within the final published
document. A block is a series of comment lines within a cell’s descriptive text
that starts and ends with a blank comment line, or the beginning or end of
the descriptive text.

Format
How to Produce
Format

Resulting Code and
Explanation Published Results

Indented text
1 Position the cursor

before the line where
you want to add
indented text.

2 Select Cell > Insert
Text Markup
> Preformatted

Text.

3 Replace the resulting
code with your
desired text,
including tabs and
spaces. Be careful,
however, to keep the
percent signs (%) at
the beginning of each
line.

% PREFORMATTED
% TEXT

More than one space
at the start of a block
distinguishes it as
preformatted.

The indents, spacing,
and line breaks in the
M-file are preserved in
the output:

PREFORMATTED
TEXT

8-14

Marking Up Text in Cells for Publishing

Format
How to Produce
Format

Resulting Code and
Explanation Published Results

Image
1 Position the cursor

before the line where
you want to add a
graphic.

2 Select
Cell > Insert Text
Markup > Image.

3 Replace the sample
text inserted,
FILENAME.PNG, with
filename of the
graphic you want
to insert. Keep the
percent sign (%) and
angle brackets (<<
>>) . The image
file must be in the
same directory as
the output file, or
you must specify a
relative path to the
image file, from the
output file.

% <<FILENAME.PNG>> If you replace
FILENAME.PNG with
surfpeaks.jpg, the
published results appear
as follows:

8-15

8 Publishing Results

Format
How to Produce
Format

Resulting Code and
Explanation Published Results

Bulleted list
1 Position the cursor

before the line where
you want to add a
bulleted list.

2 Select
Cell > Insert Text
Markup > Bulleted
List.

3 Replace the sample
text inserted, ITEM
1 and ITEM 2, with
your desired text.
Be careful, however,
to keep the percent
signs (%) and asterisk
(*) at the beginning of
each line.

% * ITEM1
% * ITEM2

The asterisk (*) at the
start of a line indicates
it is a bulleted list item.

• ITEM1

• ITEM2

Numbered list
1 Position the cursor

before the line where
you want to add a
numbered list.

2 Select Cell > Insert
Text Markup
> Numbered List.

3 Replace the inserted
text , ITEM 1 and
ITEM 2, with your
desired text. Do
not, however, replace
the percent sign (%)
and number sign (#)
that appear at the
beginning of each
line.

% # ITEM1
% # ITEM2

The number sign
(#) at the start of a
line indicates it is a
numbered list item.

1 ITEM1

2 ITEM2

8-16

Marking Up Text in Cells for Publishing

Text Markup for HTML, LaTeX, and TeX Equation
Output Types
You can specify the output type for a published M-file as HTML, LaTeX or
TeX equation. When you publish the M-file, use the File > Publish to menu
options accordingly. For details, see “Publishing M-Files Using Cells” on page
8-24.

Note When you markup text for the HTML or LaTex output type, that text
is published only when the specified output type matches the markup type.
For example, if you add HTML markup, but then select File > Publish
To > LaTeX, the text enclosed within the HTML markup is not published.
Similarly, if you add LaTeX markup, but then select File > Publish To >

HTML or click the Publish to HTML button (), the text enclosed within
the LaTeX markup is not published.

8-17

8 Publishing Results

Format
How to Produce
Format Resulting Code Published Results

HTML markup
1 Position the cursor

before the line where
you want to add
HTML markup.

2 Select
Cell > Insert Text
Markup > HTML
Markup.

3 Replace the inserted
HTML markup (as
shown in the next
column) with your
desired text. Be
careful, however, to
keep the percent signs
(%) at the beginning
of each line.

% <table
border=1><tr>
<td>one</td><td>two
</td></tr></table>%
</html>

8-18

Marking Up Text in Cells for Publishing

Format
How to Produce
Format Resulting Code Published Results

LaTeX markup
1 Position the cursor

before the line where
you want to add
LaTeX markup.

2 Select
Cell > Insert Text
Markup > LaTeX
Markup.

3 Replace the inserted
LaTeX markup (as
shown in the next
column) with your
desired text. Be
careful, however, to
keep the percent signs
(%) at the beginning
of each line.

% <latex>
%
\begin{tabular}{|r|r}
% \hline n&$n!$\\
\\hline 1&1\\ 2&2\\
3&6\\ \\hline
% \end{tabular}
% </latex>

TeX Equations
and symbols 1 Position the cursor

before the line where
you want to add an
equation or symbols.

2 Select Cell > Insert
Text Markup > TeX
Equation.

3 Replace the inserted
text inserted, e^{\pi
i} + 1 = 0, with
your desired TeX
equation. See step in
the example.

% $$e^{\pi
i} + 1 = 0$$
%

The $$ at the start
and end of a block
description distinguish
the TeX equation.

For a list of symbols
you can display and
the character sequence
to create them, see
the String property
on MATLAB graphics
reference page for Text
Properties.

In the example, line 7
includes a TeX equation:

% $$0\leq 6\pi$$
8-19

8 Publishing Results

Text Markup for Bold, Italic, and Monospaced Text
Formats
You can mark up selected strings in the M-file comments so that they appear
in bold, italic or monospaced text formats when you publish the M-file.

Format How to Produce Format Resulting Code Published Results

Bold text Follow these steps to bold
existing text:

1 Within a comment, select
text that you want to be
bold.

2 Select Cell > Insert Text
Markup > Bold Text.

To insert sample text, that
you will replace with your
desired text, follow these
steps:

1 Select Cell > Insert Text
Markup > Bold Text.

2 Replace the inserted text
with the text that you
want to be bold.

% *BOLD TEXT* BOLD TEXT

8-20

Marking Up Text in Cells for Publishing

Format How to Produce Format Resulting Code Published Results

Italic text Follow these steps to bold
existing text:

1 Within a comment, select
text that you want to be
italic.

2 Select Cell > Insert Text
Markup > Italic Text.

To insert sample text, that
you will replace with your
desired text, follow these
steps:

1 Select Cell > Insert Text
Markup > Italic Text.

2 Replace the inserted text
with the text you want to
be italic.

% _ITALIC TEXT_ ITALIC TEXT

Monospaced
text

Follow these steps to bold
existing text:

1 Within a comment, select
text that you want to be
monospaced.

2 Select Cell > Insert
Text Markup
> Monospaced Text.

To insert sample text, that
you will replace with your
desired text, follow these
steps:

1 Select Cell > Insert
Text Markup
> Monospaced Text.

2 Replace the inserted text
with the text you want to
be monospaced.

% |MONOSPACED TEXT|

In the example,
monospaced text is
added in line 9:

% Calculate and plot
|y=sin(x)|.

MONOSPACED TEXT

8-21

8 Publishing Results

Text Markup for Inline Links
When you specify hypertext links within an M-file, when you publish the
document the hypertext links become active links to a URL on the web.

8-22

Marking Up Text in Cells for Publishing

Format How to Produce Format Resulting Code Published Results

URL as
hyperlinked
text

1 Within a comment, position
the cursor where you want
to insert the hypertext
link.

2 Select Cell > Insert
Text Markup
> Hyperlinked Text.

The Editor/Debugger
inserts the following code:

<http://www.mathworks
.com The MathWorks>

3 Replace
www.mathworks.com
with your desired URL.

4 Delete the string, The
MathWorks.

% <http:
//www.mathworks
.com>>

http://www.mathworks.com

Hyperlinked
text without
a printed
URL

1 Within a comment, position
the cursor where you want
to insert the hypertext
link.

2 Select Cell > Insert
Text Markup
> Hyperlinked Text.

The Editor/Debugger
inserts the following code:

<http://www.mathworks
.com The MathWorks>

3 Replace
www.mathworks.com
with your desired URL.

4 Replace The MathWorks
with the text that you
want to appear as the
hyperlinked text.

% <http:
//www.mathworks
.com The
MathWorks>>

The MathWorks

8-23

http://www.mathworks.com
http://www.mathworks.com

8 Publishing Results

Publishing M-Files Using Cells

In this section...

“How to Publish an M-File” on page 8-24

“About Published M-Files” on page 8-25

“Modifying Published Output Using Preferences” on page 8-26

How to Publish an M-File
When you publish an M-file that contains cells and text markup, MATLAB
produces an output document consisting of the M-file code, comments, and
results.

1 When you publish an M-file function, MATLAB does not run the code or
include results from running the code in the output document—for M-file
functions, clear the Evaluate code preference prior to publishing.

2 After adding cells and text markup to an M-file, select File > Publish To
and select an output format from those listed in the menu: HTML, XML,
LaTeX, Word, or PowerPoint. If the M-file contains unsaved changes,
the menu item becomes Save and Publish To.

You can also publish to the default output format specified in Preferences
using the Publish button in the Editor/Debugger toolbar.

MATLAB displays the published document in the appropriate tool for the
selected output format:

• HTML displays in the MATLAB Web Browser.

• XML displays in the MATLAB Editor/Debugger.

• LaTeX displays in the MATLAB Editor/Debugger.

• Word displays in Microsoft Word.

• PowerPoint displays in Microsoft PowerPoint.

8-24

Publishing M-Files Using Cells

Note Publishing to Microsoft Word and to PowerPoint features are available
only on Windows systems that have the applications installed. Supported
Word and PowerPoint versions are 2000, 2002, 2003, and 2007.

The published file contains the formatted comments, code with syntax
highlighting and a gray background to distinguish it from results, and results
for each cell. It also contains a Contents heading at the top of the file with a
bulleted list of links to the named cells in the rest of the document.

When code in a cell creates or modifies a figure, the published file includes
an image of the figure. If the code in a given cell modifies a figure more than
once, the published file includes only one image of the figure, that being the
last version of the figure.

When publishing to HTML, the M-file code is included at the end of published
HTML file as comments. Use the grabcode function to extract the code
from the HTML file.

Function Alternative
From the Command Window, run the publish function to run the M-file and
publish the results. See the publish function reference page for options you
can set.

About Published M-Files

Published Filenames and Locations
MATLAB names the published file the same as the M-file that produced it,
adding the relevant extension for the selected output format: .html, .xml,
.tex, .doc, or .ppt. MATLAB stores this output file, along with supporting
files such as images of figure windows, in the html subdirectory under the
directory containing the M-file you published.

For example, when you publish d:/mymfiles/sine_wave.m to HTML,
MATLAB creates a directory d:/mymfiles/html that includes the published
document sine_wave.html. Any figure windows produced by running the
M-file appear as image files in the directory, for example, sine_wave_img.png.

8-25

8 Publishing Results

TeX equations are image files as well; in the example, the equation file
is sine_wave_eq_eq####.png. MATLAB creates a thumbnail file for the
document, sine_wave_img_thumbnail.png in the example, if that preference
is selected — see in the online documentation.

Publishing Code that Displays Hyperlinks in Command
Window
If the M-file you publish contains statements that display hyperlinks in the
MATLAB Command Window, the published document shows the code rather
than the hyperlinks.

For example

disp('Link to MathWorks')

displays

in the Command Window. You can click the link to go to the MathWorks Web
site. When that disp statement is in an M-file you publish, the hyperlink
tag and the text between it, that is,

Link to MathWorks

rather than the link, appears in the published document.

Similar results occur if you include

help matlab_functioname

in an M-file.

Modifying Published Output Using Preferences
Use preferences to control execution, output, and options related to images
created during publishing. For details about these preferences, click the Help
button in the Preferences dialog box for those panes.

8-26

Notebook for Publishing to Word

Notebook for Publishing to Word

In this section...

“Using Notebook to Create an M-book” on page 8-27

“See Also Publishing Using Cells” on page 8-27

“Creating or Opening an M-Book” on page 8-28

“Entering MATLAB Commands in an M-Book” on page 8-34

“Protecting the Integrity of Your Workspace in M-Books” on page 8-34

“Ensuring Data Consistency in M-Books” on page 8-35

“Debugging and Notebook” on page 8-35

Note Notebook is available only on Windows systems that have Microsoft
Word installed. For supported versions of Word, see “Configuring Notebook”
on page 8-53.

Using Notebook to Create an M-book
Notebook enables you to access the numeric computation and visualization
software of MATLAB from within the word processing environment, Microsoft
Word. Using Notebook, you can create a document, called an M-book, that
contains text, MATLAB commands, and the output from MATLAB commands.

You can think of an M-book as a record of an interactive MATLAB session
annotated with text, or as a document embedded with live MATLAB
commands and output. Notebook is useful for creating electronic or printed
records of MATLAB sessions, class notes, textbooks or technical reports.

See Also Publishing Using Cells
As an alternative to Notebook, consider publishing using cells. For more
information, see “Publishing to HTML, XML, LaTeX, Word, and PowerPoint
Using Cells” on page 8-2.

8-27

8 Publishing Results

Creating or Opening an M-Book

Creating an M-Book from MATLAB
To create a new M-book from within MATLAB, type

notebook

in the Command Window. If you are running Notebook for the first time,
you might need to configure it. See “Configuring Notebook” on page 8-53
for more information.

Notebook starts Microsoft Word on your system and creates a new M-book,
called Document1.

When Word is opening, if a dialog box appears asking you to enable or
disable macros, choose to enable macros. Notebook defines Microsoft Word
macros that enable MATLAB to interpret the different types of cells that
hold MATLAB commands and their output. For more information on macro
security, see “Configuring Notebook” on page 8-53.

Depending on the version of Word you are using, one of the following occurs:

• In Word 2000, 2002, and 2003, Notebook adds the Notebook menu to the
Word menu bar, as shown in the following illustration. Use this menu to
access Notebook features.

8-28

Notebook for Publishing to Word

• In Word 2007, Notebook adds the Notebook menu to the Word Add-Ins
tab, as shown in the following illustration. Use this menu to access
Notebook features.

8-29

8 Publishing Results

Microsoft product screen shot reprinted with permission from Microsoft
Corporation.

Creating an M-Book While Running Notebook
With Notebook running, you can create a new M-book as follows:

• In Word 2000, 2002, and 2003, select File > New M-book

• In Word 2007, select Add-Ins > New M-book, as shown in the following
figure:

8-30

Notebook for Publishing to Word

Microsoft product screen shot reprinted with permission from Microsoft
Corporation.

Opening an Existing M-Book
You can use the notebook command to open an existing M-book

notebook filename

where filename is the M-book you want to open. Or you can double-click an
M-book file in a Windows file management tool, such as Explorer.

8-31

8 Publishing Results

When you double-click on an M-book, Microsoft Word opens the M-book and
starts MATLAB if it is not already running. Notebook adds the Notebook
menu to the Word menu bar and adds New M-book to the File menu.

Converting a Word Document to an M-Book
To convert a Word document to an M-book, follow these steps, depending on
the version of Word you are using:

• Microsoft Word 2000, 2002, or 2003:

1 Create a new M-book.

2 From the Insert menu, select File.

8-32

Notebook for Publishing to Word

3 Select the file you want to convert.

4 Click OK.

• Microsoft Word 2007:

1 Create a new M-book.

2 From the Insert tab, in the Text group, click the arrow next to Object
and then click Text from File, as shown in the image that follows.

The Insert File dialog box opens.

3 In the Insert File dialog box, select the file that you want to convert,
and then click OK.

Microsoft product screen shot reprinted with permission from Microsoft
Corporation.

8-33

8 Publishing Results

Entering MATLAB Commands in an M-Book

Note A good way to learn how to use Notebook is to open the sample M-book,
Readme.doc, and try out the various techniques described in this section. You
can find this file in the matlabroot/notebook/pc directory.

You enter MATLAB commands in an M-book the same way you enter text in
any other Word document. For example, you can enter the following text
in a Word document. The example uses text in Courier Font but you can
use any font:

Here is a sample M-book.

a = magic(3)

To execute the MATLAB magic command in this document, you must

• Define the command as an input cell

• Evaluate the input cell

MATLAB displays the output of the command in the Word document in an
output cell.

Protecting the Integrity of Your Workspace in
M-Books
When you work on more than one M-book in a single word processing session,
note that:

• Each M-book uses the same “copy” of MATLAB.

• All M-books share the same workspace.

If you use the same variable names in more than one M-book, data used in
one M-book can be affected by another M-book. You can protect the integrity
of your workspace by specifying the clear command as the first autoinit
cell in the M-book.

8-34

Notebook for Publishing to Word

Ensuring Data Consistency in M-Books
An M-book can be thought of as a sequential record of a MATLAB session.
When executed in order, from the first MATLAB command to the last, the
M-book accurately reflects the relationships among these commands.

If, however, you change an input cell or output cell as you refine your M-book,
Notebook does not automatically recalculate input cells that depend on either
the contents or the results of the changed cells. As a result, the M-book may
contain inconsistent data.

When working on an M-book, you might find it useful to select Evaluate
M-book periodically to ensure that your M-book data is consistent. You could
also use calc zones to isolate related commands in a section of the M-book.
You can then use Evaluate Calc Zone to execute only those input cells
contained in the calc zone.

Debugging and Notebook
Do not use debugging functions or use the Editor/Debugger while evaluating
cells with Notebook. Instead debug M-files from within MATLAB, and then
after completing debugging, clear all the breakpoints and access the M-file
via Notebook. If you debug while evaluating from Notebook, you might
experience problems with MATLAB.

8-35

8 Publishing Results

Defining MATLAB Commands as Input Cells for Notebook

In this section...

“Defining Commands as Input Cells for Notebook” on page 8-36

“Defining Cell Groups for Notebook” on page 8-37

“Defining Autoinit Input Cells for Notebook” on page 8-38

“Defining Calc Zones for Notebook” on page 8-38

“Converting an Input Cell to Text with Notebook” on page 8-39

For information about evaluating the input cells you define, see “Evaluating
MATLAB Commands with Notebook” on page 8-41.

Defining Commands as Input Cells for Notebook
To define a MATLAB command in a Word document as an input cell,

1 Type the command into the M-book as text. For example,

This is a sample M-book.

a = magic(3)

2 Position the cursor anywhere in the command and select
Notebook > Define Input Cell or press Alt+D. If the command is
embedded in a line of text, use the mouse to select it. Notebook defines the
MATLAB command as an input cell:

This is a sample M-book.

[a = magic(3)]

Note how Notebook changes the character font of the text in the input cell to a
bold, dark green color and encloses it within cell markers. Cell markers are
bold, gray brackets. They differ from the brackets used to enclose matrices by
their size and weight. For information about changing these default formats,
see “Modifying Styles in the M-Book Template” on page 8-47.

8-36

Defining MATLAB Commands as Input Cells for Notebook

Defining Cell Groups for Notebook
You can collect several input cells into a single input cell. This is called a cell
group. Because all the output from a cell group appears in a single output cell
that Notebook places immediately after the group, cell groups are useful when
several MATLAB commands are needed, such as, to fully define a graphic.

For example, if you define all the MATLAB commands that produce a graphic
as a cell group and then evaluate the cell group, Notebook generates a single
graphic that includes all the graphic components defined in the commands. If
instead you define all the MATLAB commands that generate the graphic as
separate input cells, evaluating the cells generates multiple graphic output
cells.

See “Evaluating Cell Groups with Notebook” on page 8-42 for information
about evaluating a cell group. For information about ungrouping a cell group,
see “Ungroup Cells” on page 8-61.

Creating a Cell Group for Notebook
To create a cell group,

1 Use the mouse to select the input cells that are to make up the group.

2 Select Notebook > Group Cells or press Alt+G.

Notebook converts the selected cells into a cell group and replaces cell
markers with a single pair that surrounds the group:

This is a sample cell group.

[date
a = magic(3)]

Note the following:

• A cell group cannot contain output cells. If the selection includes output
cells, Notebook deletes them.

• A cell group cannot contain text. If the selection includes text, Notebook
places the text after the cell group. However, if the text precedes the first
input cell in the selection, Notebook leaves it where it is.

8-37

8 Publishing Results

• If you select part or all of an output cell but not its input cell, Notebook
includes the input cell in the cell group.

When you create a cell group, Notebook defines it as an input cell unless
its first line is an autoinit cell, in which case Notebook defines the group as
an autoinit cell.

Defining Autoinit Input Cells for Notebook
You can use autoinit cells to specify MATLAB commands to be automatically
evaluated each time an M-book is opened. This is a quick and easy way
to initialize the workspace. Autoinit cells are simply input cells with the
following additional characteristics:

• Notebook evaluates the autoinit cells when it opens the M-book.

• Notebook displays the commands in autoinit cells using dark blue
characters.

Autoinit cells are otherwise identical to input cells.

Creating an Autoinit Cell for Notebook
You can create an autoinit cell in two ways:

• Enter the MATLAB command as text, then convert the command to an
autoinit cell by selecting Notebook > Define AutoInit Cell.

• If you already entered the MATLAB command as an input cell, you can
convert the input cell to an autoinit cell. Either select the input cell or
position the cursor in the cell, then select Notebook > Define AutoInit
Cell.

See “Evaluating MATLAB Commands with Notebook” on page 8-41 for
information about evaluating autoinit cells.

Defining Calc Zones for Notebook
You can partition an M-book into self-contained sections, called calc zones. A
calc zone is a contiguous block of text, input cells, and output cells. Notebook
inserts Microsoft Word section breaks before and after the section to define

8-38

Defining MATLAB Commands as Input Cells for Notebook

the calc zone. The section break indicators include bold, gray brackets to
distinguish them from standard Word section breaks.

You can use calc zones to prepare problem sets, making each problem a
separate calc zone that can be created and tested on its own. An M-book
can contain any number of calc zones.

Note Using calc zones does not affect the scope of the variables in an M-book.
Variables used in one calc zone are accessible to all calc zones.

Creating a Calc Zone
After you create the text and cells you want to include in the calc zone, you
define the calc zone by following these steps:

1 Select the input cells and text to be included in the calc zone.

2 Select Notebook > Define Calc Zone.

Note You must select an input cell and its output cell in their entirety to
include them in the calc zone.

See “Evaluating a Calc Zone with Notebook” on page 8-44 for information
about evaluating a calc zone.

Converting an Input Cell to Text with Notebook
To convert an input cell (or an autoinit cell or a cell group) to text,

1 Select the input cell with the mouse or position the cursor in the input cell.

2 Select Notebook > Undefine Cells or press Alt+U.

When Notebook converts the cell to text, it reformats the cell contents
according to the Microsoft Word Normal style. For more information about
M-book styles, see “Modifying Styles in the M-Book Template” on page

8-39

8 Publishing Results

8-47. When you convert an input cell to text, Notebook also converts the
corresponding output cell to text.

8-40

Evaluating MATLAB Commands with Notebook

Evaluating MATLAB Commands with Notebook

In this section...

“Evaluating Input Commands with Notebook” on page 8-41

“Evaluating Cell Groups with Notebook” on page 8-42

“Evaluating a Range of Input Cells with Notebook” on page 8-43

“Evaluating a Calc Zone with Notebook” on page 8-44

“Evaluating an Entire M-Book” on page 8-44

“Using a Loop to Evaluate Input Cells Repeatedly with Notebook” on page
8-45

“Converting Output Cells to Text with Notebook” on page 8-46

“Deleting Output Cells with Notebook” on page 8-46

Evaluating Input Commands with Notebook
After you define a MATLAB command as an input cell, or as an autoinit cell,
you can evaluate it in your M-book. Use the following steps to define and
evaluate a MATLAB command:

1 Type the command into the M-book as text. For example:

This is a sample M-book

a = magic(3)

2 Position the cursor anywhere in the command. If the command is embedded
in a line of text, use the mouse to select it. Then select Notebook > Define
Input Cell or press Alt+D.

Notebook defines the MATLAB command as an input cell. For example:

This is a sample M-book

[a = magic(3)]

8-41

8 Publishing Results

3 Specify the input cell to be evaluated by selecting it with the mouse or by
placing the cursor in it. Then select Notebook > Evaluate Cell or press
Ctrl+Enter.

Notebook evaluates the input cell and displays the results in a output cell
immediately following the input cell. If there is already an output cell,
Notebook replaces its contents, wherever it is in the M-book. For example:

This is a sample M-book.

[a = magic(3)]

[a =
8 1 6
3 5 7
4 9 2]

The text in the output cell is blue and is enclosed within cell markers. Cell
markers are bold, gray brackets. They differ from the brackets used to
enclose matrices by their size and weight. Error messages appear in red. For
information about changing these default formats, see “Modifying Styles in
the M-Book Template” on page 8-47.

Evaluating Cell Groups with Notebook
You evaluate a cell group the same way you evaluate an input cell (because a
cell group is an input cell):

1 Position the cursor anywhere in the cell or in its output cell.

2 Select Notebook > Evaluate Cell or press Ctrl+Enter.

For information about creating a cell group, see “Defining Cell Groups for
Notebook” on page 8-37.

When MATLAB evaluates a cell group, the output for all commands in the
group appears in a single output cell. By default, Notebook places the output
cell immediately after the cell group the first time the cell group is evaluated.
If you evaluate a cell group with an existing output cell, Notebook places the
results in the output cell wherever it is located in the M-book.

8-42

Evaluating MATLAB Commands with Notebook

Note Text or numeric output always comes first, regardless of the order of
the commands in the group.

The illustration shows a cell group and the figure created when you evaluate
the cell group.

Evaluating a Range of Input Cells with Notebook
To evaluate more than one MATLAB command contained in different but
contiguous input cells,

8-43

8 Publishing Results

1 Select the range of cells that includes the input cells you want to evaluate.
You can include text that surrounds input cells in your selection.

2 Select Notebook > Evaluate Cell or press Ctrl+Enter.

Notebook evaluates each input cell in the selection, inserting new output
cells or replacing existing ones.

Evaluating a Calc Zone with Notebook
To evaluate a calc zone,

1 Position the cursor anywhere in the calc zone.

2 Select Notebook > Evaluate Calc Zone or press Alt+Enter.

For information about creating a calc zone, see “Defining Calc Zones for
Notebook” on page 8-38.

By default, Notebook places the output cell immediately after the calc zone
the first time the calc zone is evaluated. If you evaluate a calc zone with an
existing output cell, Notebook places the results in the output cell wherever
it is located in the M-book.

Evaluating an Entire M-Book
To evaluate the entire M-book, either select Notebook > Evaluate M-book
or press Alt+R.

Notebook begins at the top of the M-book regardless of the cursor position and
evaluates each input cell in the M-book. As it evaluates the M-book, Notebook
inserts new output cells or replaces existing output cells.

Controlling Execution of Multiple Commands
When you evaluate an entire M-book, and an error occurs, evaluation
continues. If you want to stop evaluation if an error occurs, follow this
procedure:

1 Select Notebook > Notebook Options.

8-44

Evaluating MATLAB Commands with Notebook

The Notebook Options dialog box opens.

2 Select the Stop evaluating on error check box and click OK.

Using a Loop to Evaluate Input Cells Repeatedly with
Notebook
To evaluate a sequence of MATLAB commands repeatedly,

1 Use the mouse to select the input cells, including any text or output cells
located between them.

2 Select Notebook > Evaluate Loop or press Alt+L. Notebook displays the
Evaluate Loop dialog box.

3 Enter the number of times you want MATLAB to evaluate the selected
commands in the Stop After field, then click Start. The button changes to
Stop. Notebook begins evaluating the commands and indicates the number
of completed iterations in the Loop Count field.

You can increase or decrease the delay at the end of each iteration by clicking
Slower or Faster. Slower increases the delay. Faster decreases the delay.

To suspend evaluation of the commands, click Pause. The button changes to
Resume. Click Resume to continue evaluation.

To stop processing the commands, click Stop. To close the Evaluate Loop
dialog box, click Close.

8-45

8 Publishing Results

Converting Output Cells to Text with Notebook
You can convert an output cell to text by undefining cells. If the output is
numeric or textual, Notebook removes the cell markers and converts the cell
contents to text according to the Microsoft Word Normal style. If the output
is graphical, Notebook removes the cell markers and dissociates the graphic
from its input cell, but does not alter its contents.

Note Undefining an output cell does not affect the associated input cell.

To undefine an output cell,

1 Select the output cell you want to undefine.

2 Select Notebook > Undefine Cells or press Alt+U.

Deleting Output Cells with Notebook
To delete output cells,

1 Select an output cell, using the mouse, or place the cursor in the output cell.

2 Select Notebook > Purge Selected Output Cells or press Alt+P.

If you select a range of cells, Notebook deletes all the output cells in the
selected range, but any associate input cells remain intact.

8-46

Printing and Formatting an M-Book

Printing and Formatting an M-Book

In this section...

“Printing an M-Book” on page 8-47

“Modifying Styles in the M-Book Template” on page 8-47

“Choosing Loose or Compact Format for Notebook” on page 8-48

“Controlling Numeric Output Format for Notebook” on page 8-49

“Controlling Graphic Output for Notebook” on page 8-49

Printing an M-Book
You can print all or part of an M-book by doing one of the following, depending
on the version of Microsoft Word you are using:

• In Microsoft Word 2000, 2002, 2003 –– Select File > Print.

• In Microsoft Word 2007 –– Select Microsoft Office Button > Print

Word follows these rules when printing M-book cells and graphics:

• Cell markers are not printed.

• Input cells, autoinit cells, and output cells (including error messages)
are printed according to their defined styles. If you prefer to print these
cells using black type instead of colors or shades of gray, you can modify
the styles.

Modifying Styles in the M-Book Template
You can control the appearance of the text in your M-book by modifying the
predefined styles stored in the M-book template, m-book.dot. These styles
control the appearance of text and cells. By default, M-books use the Word
Normal style for all other text.

For example, if you print an M-book on a color printer, input cells appear dark
green, output and autoinit cells appear dark blue, and error messages appear
red. If you print the M-book on a grayscale printer, these cells appear as

8-47

8 Publishing Results

shades of gray. To print these cells using black type, you need to modify the
color of the Input, Output, AutoInit, and Error styles in the M-book template.

The table below describes the default styles used by Notebook. If you modify
styles, you can use the information in the tables below to help you return the
styles to their original settings. For general information about using styles
in Word documents, see the Word documentation.

Style Font Size Weight Color

Normal Times New
Roman

10 points N/A Black

AutoInit Courier New 10 points Bold Dark blue

Error Courier New 10 points Bold Red

Input Courier New 10 points Bold Dark green

Output Courier New 10 points N/A Blue

When you change a style, Word applies the change to all characters in the
M-book that use that style and gives you the option to change the template.
Be cautious about making changes to the template. If you choose to apply the
changes to the template, you will affect all new M-books you create using the
template. See the Word documentation for more information.

Choosing Loose or Compact Format for Notebook
You can specify whether a blank line appears between the input and output
cells by selecting the loose or compact format:

1 Select Notebook > Notebook Options.

2 In the Notebook Options dialog box, select either Loose or Compact.
Loose format adds an empty line. Compact format does not.

3 Click OK.

8-48

Printing and Formatting an M-Book

Note Changes you make using the Notebook Options dialog box take effect
for output generated after you click OK. To affect existing input or output
cells, you must reevaluate the cells.

Controlling Numeric Output Format for Notebook
To change how Notebook displays numeric output,

1 Select Notebook > Notebook Options.

2 In the Notebook Options dialog box, select a format from the Numeric
Format list. These settings correspond to the choices available with the
MATLAB format command.

3 Click OK.

Note Changes you make using the Notebook Options dialog box take effect
for output generated after you click OK. To affect existing input or output
cells, you must reevaluate the cells.

Controlling Graphic Output for Notebook
This section describes how to control several aspects of the graphic output
produced by MATLAB commands in an M-book, including

• “Embedding Graphic Output in the M-Book” on page 8-49

• “Suppressing Graphic Output for Individual Input Cells in Notebook” on
page 8-50

• “Sizing Graphic Output in Notebook” on page 8-51

• “Cropping Graphic Output in Notebook” on page 8-51

• “Adding White Space Around Graphic Output in Notebook” on page 8-52

Embedding Graphic Output in the M-Book
By default, graphic output is embedded in an M-book. To display graphic
output in a separate figure window,

8-49

8 Publishing Results

1 Select Notebook > Notebook Options.

2 In the Notebook Options dialog box, clear the Embed Figures in
M-book check box.

3 Click OK.

Note Embedded figures do not include Handle Graphics objects generated by
the uicontrol and uimenu functions.

Notebook determines whether to embed a figure in the M-book by examining
the value of the figure object’s Visible property. If the value of the property
is off, Notebook embeds the figure. If the value of this property is on, all
graphic output is directed to the current figure window.

Suppressing Graphic Output for Individual Input Cells in
Notebook
If an input or autoinit cell generates figure output that you want to suppress,

1 Place the cursor in the input cell.

2 Select Notebook > Toggle Graph Output for Cell.

Notebook suppresses graphic output from the cell, inserting the string (no
graph) after the input cell.

8-50

Printing and Formatting an M-Book

To allow graphic output for a cell, repeat the procedure. Notebook removes
the (no graph) marker and allows graphic output from the cell.

Note Toggle Graph Output for Cell overrides the Embed Figures in
M-book option, if that option is set.

Sizing Graphic Output in Notebook
To set the default size of embedded graphics in an M-book,

1 Select Notebook > Notebook Options.

2 In the Notebook Options dialog box, use the Units, Width and Height
fields to set the size of graphics generated by the M-book.

3 Click OK.

Note Changes you make using the Notebook Options dialog box take effect
for graphic output generated after you click OK. To affect existing input or
output cells, you must reevaluate the cells.

You change the size of an existing embedded figure by selecting the figure,
clicking the left mouse button anywhere in the figure, and dragging the
resize handles of the figure. If you resize an embedded figure using its resize
handles and then regenerate the figure, its size reverts to its original size.

Cropping Graphic Output in Notebook
To crop an embedded figure to cut off areas you do not want to show,

1 Select the graphic by clicking the left mouse button anywhere in the figure.

2 Hold down the Shift key.

3 Drag a sizing handle toward the center of the graphic.

8-51

8 Publishing Results

Adding White Space Around Graphic Output in Notebook
You can add white space around an embedded figure by moving the boundaries
of a graphic outward. Select the graphic, then hold down the Shift key and
drag a sizing handle away from the graphic.

8-52

Configuring Notebook

Configuring Notebook
After you install Notebook but before you begin using it, you must configure
it. (Notebook is installed as part of the MATLAB installation process on
Windows platforms. For more information, see the MATLAB installation
documentation for your platform.)

Before configuring Notebook, you must specify that Word can use the
Notebook macros.

• In Word 2000, 2002, and 2003 do either of the following:

- Set the macro security level to medium: in Word, select
Tools > Macros > Security, and in the resulting dialog box, choose
Medium.

- After starting Notebook, when Word first opens, a security warning
dialog box appears. In the dialog box, select Always trust macros from
this source. This allows you to use Notebook, but still maintain a high
security level for other macros you use in Word.

• In Word 2007, follow the Word help instructions in the topic entitled
“Enable or disable macros in Office documents.”

To configure Notebook, type the following in the MATLAB Command Window:

notebook ('-setup')

MATLAB accesses the Windows system registry to locate Microsoft Word and
the Word templates directory, and to identify the version of Word. MATLAB
then copies Notebook’s m-book.dot template to the Word templates directory.
MATLAB Notebook supports Word versions 2000, 2002, 2003, and 2007.

When Notebook setup successfully finishes, MATLAB displays the message

Setup complete

8-53

8 Publishing Results

Notebook Feature Reference

In this section...

“Bring MATLAB to Front” on page 8-54

“Define Autoinit Cell” on page 8-55

“Define Calc Zone” on page 8-55

“Define Input Cell” on page 8-56

“Evaluate Calc Zone” on page 8-56

“Evaluate Cell” on page 8-57

“Evaluate Loop” on page 8-58

“Evaluate M-Book” on page 8-58

“Group Cells” on page 8-58

“Hide Cell Markers” on page 8-59

“Notebook Options” on page 8-59

“Purge Selected Output Cells” on page 8-60

“Toggle Graph Output for Cell” on page 8-60

“Undefine Cells” on page 8-60

“Ungroup Cells” on page 8-61

This section provides reference information about each of the Notebook
features, listed alphabetically. To use these features, select them from the
Notebook menu in Microsoft Word. (In Word 2007, the Notebook menu is
on the Add-Ins tab.)

Bring MATLAB to Front
Bring MATLAB to Front brings the MATLAB Command Window to the
foreground.

8-54

Notebook Feature Reference

Define Autoinit Cell
Define AutoInit Cell creates an autoinit cell by converting the current
paragraph, selected text, or input cell. An autoinit cell is an input cell that is
automatically evaluated whenever you open an M-book.

Result
If you select this feature while the cursor is in a paragraph of text, Notebook
converts the entire paragraph to an autoinit cell. If you select this feature
while text is selected, Notebook converts the text to an autoinit cell. If you
select this feature while the cursor is in an input cell, Notebook converts the
input cell to an autoinit cell.

Format
Notebook formats the autoinit cell using the AutoInit style, defined as bold,
dark blue, 10-point Courier New.

See Also
For more information about autoinit cells, see “Defining Autoinit Input Cells
for Notebook” on page 8-38.

Define Calc Zone
Define Calc Zone defines the selected text, input cells, and output cells as a
calc zone. A calc zone is a contiguous block of related text, input cells, and
output cells that describes a specific operation or problem.

Result
Notebook defines a calc zone as a Word document section, placing section
breaks before and after the calc zone. However, Word does not display section
breaks at the beginning or end of a document.

See Also
For information about evaluating calc zones, see “Evaluating a Calc Zone with
Notebook” on page 8-44. For more information about document sections, see
the Microsoft Word documentation.

8-55

8 Publishing Results

Define Input Cell
Define Input Cell creates an input cell by converting the current paragraph,
selected text, or autoinit cell. An input cell contains a MATLAB command.

Result
If you select this feature while the cursor is in a paragraph of text, Notebook
converts the entire paragraph to an input cell. If you select this feature while
text is selected, Notebook converts the text to an input cell. If you select this
feature while the cursor is in an autoinit cell, Notebook converts the autoinit
cell to an input cell.

Format
Notebook encloses the text in cell markers and formats the cell using the
Input style, defined as bold, dark green, 10-point Courier New.

See Also
For more information about creating input cells, see “Defining MATLAB
Commands as Input Cells for Notebook” on page 8-36. For information about
evaluating input cells, see “Evaluating MATLAB Commands with Notebook”
on page 8-41.

Evaluate Calc Zone
Evaluate Calc Zone sends the input cells in the current calc zone to
MATLAB to be evaluated. The current calc zone is the Word section that
contains the cursor.

Result
As Notebook evaluates each input cell, it generates an output cell. When you
evaluate an input cell for which there is no output cell, Notebook places the
output cell immediately after the input cell that generated it. If you evaluate
an input cell for which there is an output cell, Notebook replaces the results
in the output cell wherever it is in the M-book.

8-56

Notebook Feature Reference

See Also
For more information, see “Evaluating a Calc Zone with Notebook” on page
8-44.

Evaluate Cell
Evaluate Cell sends the current input cell or cell group to MATLAB to be
evaluated. An input cell contains a MATLAB command. A cell group is a
single, multiline input cell that contains more than one MATLAB command.
Notebook displays the output or an error message in an output cell.

Result
If you evaluate an input cell for which there is no output cell, Notebook places
the output cell immediately after the input cell that generated it. If you
evaluate an input cell for which there is an output cell, Notebook replaces the
results in the output cell wherever it is in the M-book. If you evaluate a cell
group, all output for the cell appears in a single output cell.

An input cell or cell group is the current input cell or cell group if

• The cursor is in the input cell or cell group.

• The cursor is at the end of the line that contains the closing cell marker for
the input cell or cell group.

• The cursor is in the output cell for the input cell or cell group.

• The input cell or cell group is selected.

Note Evaluating a cell that involves a lengthy operation may cause a
time-out. If this happens, Word displays a time-out message and asks whether
you want to continue waiting for a response or terminate the request. If you
choose to continue, Word resets the time-out value and continues waiting for a
response. Word sets the time-out value; you cannot change it.

8-57

8 Publishing Results

See Also
For more information, see “Evaluating MATLAB Commands with Notebook”
on page 8-41. For information about evaluating the entire M-book, see
“Evaluating an Entire M-Book” on page 8-44.

Evaluate Loop
Evaluate Loop evaluates the selected input cells repeatedly.

For more information, see “Using a Loop to Evaluate Input Cells Repeatedly
with Notebook” on page 8-45.

Evaluate M-Book
Evaluate M-book evaluates the entire M-book, sending all input cells
to MATLAB to be evaluated. Notebook begins at the top of the M-book
regardless of the cursor position.

Result
As Notebook evaluates each input cell, it generates an output cell. When you
evaluate an input cell for which there is no output cell, Notebook places the
output cell immediately after the input cell that generated it. If you evaluate
an input cell for which there is an output cell, Notebook replaces the results
in the output cell wherever it is in the M-book.

See Also
For more information, see “Evaluating an Entire M-Book” on page 8-44.

Group Cells
Group Cells converts the input cells in the selection into a single multiline
input cell called a cell group. You evaluate a cell group using Evaluate
Cell. When you evaluate a cell group, all of its output follows the group and
appears in a single output cell.

8-58

Notebook Feature Reference

Result
If you include text in the selection, Notebook moves it after the cell group.
However, if text precedes the first input cell in the group, the text will remain
before the group.

If you include output cells in the selection, Notebook deletes them. If you
select all or part of an output cell before selecting this feature, Notebook
includes its input cell in the cell group.

If the first line in the cell group is an autoinit cell, the entire group acts as a
sequence of autoinit cells. Otherwise, the group acts as a sequence of input
cells. You can convert an entire cell group to an autoinit cell by using Define
AutoInit Cell.

See Also
For more information, see “Defining Cell Groups for Notebook” on page 8-37.
For information about converting a cell group to individual input cells, see the
description of the “Ungroup Cells” on page 8-61.

Hide Cell Markers
Hide Cell Markers hides cell markers in the M-book.

When you select this feature, it changes to Show Cell Markers.

Note Notebook does not print cell markers whether you choose to hide them
or show them on the screen.

Notebook Options
Notebook Options allows you to examine and modify display options for
numeric and graphic output.

See Also
See “Printing and Formatting an M-Book” on page 8-47 for more information.

8-59

8 Publishing Results

Purge Selected Output Cells
Purge Selected Output Cells deletes all output cells from the current
selection.

See Also
For more information, see “Deleting Output Cells with Notebook” on page
8-46.

Toggle Graph Output for Cell
Toggle Graph Output for Cell suppresses or allows graphic output from
an input cell.

If an input or autoinit cell generates figure output that you want to suppress,
place the cursor in the input cell and choose this feature. The string (no
graph) will be placed after the input cell to indicate that graph output for
that cell will be suppressed.

To allow graphic output for that cell, place the cursor inside the input cell and
choose Toggle Graph Output for Cell again. The (no graph) marker will
be removed. This feature overrides the Embed Figures in M-book option, if
that option is set in the Notebook Options dialog box.

See Also
See “Embedding Graphic Output in the M-Book” on page 8-49 and
“Suppressing Graphic Output for Individual Input Cells in Notebook” on page
8-50 for more information.

Undefine Cells
Undefine Cells converts the selected cells to text. If no cells are selected but
the cursor is in a cell, Notebook undefines that cell. Notebook removes the cell
markers and reformats the cell according to the Normal style.

If you undefine an input cell, Notebook automatically undefines its output
cell. However, if you undefine an output cell, Notebook does not undefine its
input cell. If you undefine an output cell containing an embedded graphic, the
graphic remains in the M-book but is no longer associated with an input cell.

8-60

Notebook Feature Reference

See Also
For information about the Normal style, see “Modifying Styles in the M-Book
Template” on page 8-47. For information about deleting output cells, see the
description of the “Purge Selected Output Cells” on page 8-60.

Ungroup Cells
Ungroup Cells converts the current cell group into a sequence of individual
input cells or autoinit cells. If the cell group is an input cell, Notebook
converts the cell group to input cells. If the cell group is an autoinit cell,
Notebook converts the cell group to autoinit cells. Notebook deletes the output
cell for the cell group.

A cell group is the current cell group if

• The cursor is in the cell group.

• The cursor is at the end of a line that contains the closing cell marker for
the cell group.

• The cursor is in the output cell for the cell group.

• The cell group is selected.

See Also
For information about creating cell groups, see the description of the “Defining
Cell Groups for Notebook” on page 8-37.

8-61

8 Publishing Results

8-62

9

Source Control Interface

The source control interface provides access to your source control system
from MATLAB. Source control systems, also known as version control,
revision control, configuration management, and file management systems,
are platform dependent — the topics for the Windows platforms appear first,
followed by the topics for the UNIX platforms.

Source Control Interface on Windows
(p. 9-3)

Overview of the ways you can use the
source control interface on Windows
platforms.

Setting Up the Source Control
Interface on Windows (p. 9-4)

Set up the source control interface
before you check files into and out
of your source control system from
MATLAB.

Checking Files Into and Out of
Source Control from MATLAB on
Windows (p. 9-11)

Check files into and out of source
control. Undo a checkout.

Additional Source Control Actions
on Windows (p. 9-14)

Get the latest version of files, remove
files from source control, show file
history, compare working copy to
latest version in source control, view
source control properties of a file,
and start the source control system.

Performing Source Control Actions
from the Editor/Debugger, Simulink,
or Stateflow on Windows (p. 9-23)

Create or open a file in the
Editor/Debugger, Simulink, or
Stateflow® and perform source
control actions from their File
menus, rather than from the Current
Directory browser.

9 Source Control Interface

Troubleshooting Source Control
Problems on Windows (p. 9-24)

Solutions to some common source
control problems.

Source Control Interface on UNIX
(p. 9-26)

Overview of the ways you can use
the source control interface on UNIX
platforms.

Specifying the Source Control
System on UNIX (p. 9-27)

Specify the source control system
using MATLAB, list the currently
selected source control system using
the cmopts function, set a view and
check out a directory with ClearCase.

Checking Files Into the Source
Control System on UNIX (p. 9-30)

Check in files using the
Current Directory browser, the
Editor/Debugger, Simulink,
Stateflow, or the checkin function.

Checking Files Out of the Source
Control System on UNIX (p. 9-33)

Check files out using the
Current Directory browser, the
Editor/Debugger, Simulink,
Stateflow, or the checkout function.

Undoing the Checkout on UNIX
(p. 9-36)

Undoing a checkout using the
Current Directory browser, the
Editor/Debugger, Simulink,
Stateflow, or the undocheckout
function

9-2

Source Control Interface on Windows

Source Control Interface on Windows
If you use source control systems to manage your files, you can interface
with the systems to perform source control actions from within MATLAB,
Simulink, and Stateflow®. Use menu items in MATLAB, Simulink, or
Stateflow, or run functions in the MATLAB Command Window to interface
with your source control systems.

The source control interface on Windows works with any source control system
that conforms to the Microsoft Common Source Control standard, Version 1.1.
If your source control system does not conform to the standard, use a Microsoft
Source Code Control API wrapper product for your source control system so
that you can interface with it from MATLAB, Simulink, and Stateflow.

Perform most source control interface actions from the Current Directory
browser. You can also perform many of these actions for a single file from the
MATLAB Editor/Debugger, a Simulink model window, or a Stateflow chart
window — for more information, see “Performing Source Control Actions
from the Editor/Debugger, Simulink, or Stateflow on Windows” on page 9-23.
Another way to access many of the source control actions is with the verctrl
function.

9-3

9 Source Control Interface

Setting Up the Source Control Interface on Windows

In this section...

“Create Projects in Source Control System” on page 9-4

“Specify Source Control System in MATLAB” on page 9-6

“Register Source Control Project with MATLAB” on page 9-7

“Add Files to Source Control” on page 9-9

Create Projects in Source Control System
In your source control system, create the projects that your directories and
files will be associated with.

All files in a directory must belong to the same source control project. Be sure
the working directory for the project in the source control system specifies the
correct pathname to the directory on disk.

Example of Creating Source Control Project
This example uses the project my_thesis_files in Microsoft Visual
SourceSafe. This illustration of the Current Directory browser shows the
pathname to the directory on disk, D:\my_thesis_files.

9-4

Setting Up the Source Control Interface on Windows

The following illustration shows the example project in the source control
system.

To set the working directory in Microsoft Visual SourceSafe for this example,
select my_thesis_files, right-click, select Set Working Folder from the
context menu, and specify D:\my_thesis_files in the resulting dialog box.

9-5

9 Source Control Interface

Specify Source Control System in MATLAB
In MATLAB, specify the source control system you want to access. Select
File > Preferences > General > Source Control.

The currently selected system is shown in the Preferences dialog box. The
list includes all installed source control systems that support the Microsoft
Common Source Control standard.

Select the source control system you want to interface with and click OK.

9-6

Setting Up the Source Control Interface on Windows

MATLAB remembers preferences between sessions, so you only need to
perform this action again when you want to access a different source control
system.

Function Alternative
A function alternative to select a source control system is not available, but
you can list all available source control systems using verctrl with the
all_systems argument. Use cmopts to display the name of the currently
selected source control system.

Register Source Control Project with MATLAB
Register a source control system project with a directory in MATLAB, that is,
associate a source control system project with a directory and all files in that
directory. Do this only one time for any file in the directory, which registers all
files in that directory:

1 In the MATLAB Current Directory browser, select a file that is in the
directory you want to associate with a project in your source control system.
For example, select D:\my_thesis_files\wind.m. This will associate all
files in the my_thesis_files directory.

2 Right-click, and from the context menu, select Source Control > Register
Name_of_Source_Control_System Project with MATLAB. The
Name_of_Source_Control_System is the source control system you
selected using preferences as described in “Specify Source Control System
in MATLAB” on page 9-6.

9-7

9 Source Control Interface

The following example shows Microsoft Visual SourceSafe.

3 In the resulting Name_of_Source_Control_System Login dialog box,
provide the username and password you use to access your source control
system, and click OK.

9-8

Setting Up the Source Control Interface on Windows

4 In the resulting Choose project from
Name_of_Source_Control_System dialog box, select
the source control system project to associate with the directory and click
OK. This example shows my_thesis_files.

The selected file, its directory, and all files in the directory, are associated
with the source control system project you selected. For the example,
MATLAB associates all files in D:\my_thesis_files with the source
control project my_thesis_files.

Add Files to Source Control
Add files to the source control system. Do this only once for each file:

1 In the Current Directory browser, select files you want to add to the source
control system.

9-9

9 Source Control Interface

2 Right-click, and from the context menu, select Source Control > Add
to Source Control.

3 The resulting Add to source control dialog box lists files you selected to
add. You can add text in the Comments field. If you expect to use the
files soon, select the Keep checked out check box (which is selected by
default). Click OK.

If you try to add an unsaved file, the file is automatically saved upon adding.

Function Alternative
The function alternative is verctrl with the add argument.

9-10

Checking Files Into and Out of Source Control from MATLAB on Windows

Checking Files Into and Out of Source Control from
MATLAB on Windows

In this section...

“Check Files Into Source Control” on page 9-11

“Check Files Out of Source Control” on page 9-12

“Undoing the Checkout” on page 9-13

Before checking files into and out of your source control system from
MATLAB, be sure to set up your system for use with MATLAB as described in
“Setting Up the Source Control Interface on Windows” on page 9-4.

Check Files Into Source Control
After creating or modifying files in MATLAB or related products, check the
files into the source control system by performing these steps:

1 In the Current Directory browser, select the files to check in. A file can be
open or closed when you check it in, but it must be saved, that is, it cannot
contain unsaved changes.

2 Right-click, and from the context menu, select Source Control > Check
In.

3 In the resulting Check in file(s) dialog box, you can add text in the
Comments field. If you want to continue working on the files, select the
check box Keep checked out. Click OK.

If a file contains unsaved changes when you try to check it in, you will be
prompted to save the changes to complete the checkin. If you did not keep the
file checked out and you keep the file open, note that it is a read-only version.

Function Alternative
The function alternative is verctrl with the checkin argument.

9-11

9 Source Control Interface

Check Files Out of Source Control
From MATLAB, to check out the files you want to modify, perform these steps:

1 In the Current Directory browser, select the files to check out.

2 Right-click, and from the context menu, select Source Control > Check
Out.

3 The resulting Check out file(s) dialog box lists files you selected to check
out. Enter comment text in the Comments field, which appears if your
source control system supports comments on checkout. Click OK.

After checking out a file, make changes to it in MATLAB or another product,
and save the file. For example, edit an M-file in the Editor/Debugger.

If you try to change a file without first having checked it out, the file is
read-only, as seen in the title bar, and you will not be able to save any changes.
This protects you from accidentally overwriting the source control version of
the file.

If you end the MATLAB session, the file remains checked out. You can check
in the file from within MATLAB during a later session, or directly from your
source control system.

9-12

Checking Files Into and Out of Source Control from MATLAB on Windows

Function Alternative
The function alternative is verctrl with the checkout argument.

Undoing the Checkout
You can undo the checkout for files. The files remain checked in, and do
not have any of the changes you made since you last checked them out. To
save any changes you have made since checking out a particular file select
File > Save As, and supply a different filename before you undo the checkout.

To undo a checkout, follow these steps:

1 In the MATLAB Current Directory browser, select the files for which you
want to undo the checkout.

2 Right-click, and from the context menu, select Source Control > Undo
Checkout.

The MATLAB Undo checkout dialog box opens, listing the files you
selected.

3 Click OK.

Function Alternative
The function alternative is verctrl with the undocheckout argument.

9-13

9 Source Control Interface

Additional Source Control Actions on Windows

In this section...

“Getting the Latest Version of Files for Viewing or Compiling” on page 9-14

“Removing Files from the Source Control System” on page 9-15

“Showing File History” on page 9-16

“Comparing the Working Copy of a File to the Latest Version in Source
Control” on page 9-18

“Viewing Source Control Properties of a File” on page 9-20

“Starting the Source Control System” on page 9-21

Getting the Latest Version of Files for Viewing or
Compiling
You can get the latest version of a file from the source control system for
viewing or running. Getting a file differs from checking it out. When you
get a file, it is write protected so you cannot edit it, but when you check out
a file, you can edit it.

To get the latest version, follow these steps:

1 In the MATLAB Current Directory browser, select the directories or files
that you want to get. If you select files, you cannot also select directories.

9-14

Additional Source Control Actions on Windows

2 Right-click, and from the context menu, select Source Control > Get
Latest Version.

The MATLAB Get latest version dialog box opens, listing the files or
directories you selected.

3 Click OK.

You can now open the file to view it, run the file, or check out the file for
editing.

Function Alternative
The function alternative is verctrl with the get argument.

Removing Files from the Source Control System
To remove files from the source control system, follow these steps:

1 In the MATLAB Current Directory browser, select the files you want to
remove.

2 Right-click, and from the context menu, select Source Control > Remove
from Source Control.

The MATLAB Remove from source control dialog box opens, listing
the files you selected.

9-15

9 Source Control Interface

3 Click OK.

Function Alternative
The function alternative is verctrl with the remove argument.

Showing File History
To show the history of a file in the source control system, follow these steps:

1 In the MATLAB Current Directory browser, select the file for which
you want to view the history.

2 Right-click, and from the context menu, select Source Control > History.

9-16

Additional Source Control Actions on Windows

A dialog box, which is specific to your source control system, opens. For
Microsoft Visual SourceSafe, the History Options dialog box opens, as
shown in the following example illustration.

3 Complete the dialog box to specify the range of history you want for the
selected file and click OK. For example, enter my_name for User.

9-17

9 Source Control Interface

The history presented depends on your source control system. For Microsoft
Visual SourceSafe, the History dialog box opens for that file, showing the
file’s history in the source control system.

Function Alternative
The function alternative is verctrl with the history argument.

Comparing the Working Copy of a File to the Latest
Version in Source Control
You can compare the current working copy of a file with the latest checked-in
version of the file in the source control system. This highlights the differences
between the two files, showing the changes you made since you checked out
the file.

To view the differences, follow these steps:

1 In the MATLAB Current Directory browser, select the file for which you
want to view differences. This is a file that has been checked out and edited.

9-18

Additional Source Control Actions on Windows

2 Right-click, and from the context menu, select Source
Control > Differences.

A dialog box, which is specific to your source control system, opens. For
Microsoft Visual SourceSafe, the Difference Options dialog box opens.

3 Review the default entries in the dialog box, make any needed changes, and
click OK. The following example is for Microsoft Visual Source Safe.

The method of presenting differences depends on your source control
system. For Microsoft Visual SourceSafe, the Differences for dialog box
opens. This highlights the differences between the working copy of the file
and the latest checked-in version of the file.

9-19

9 Source Control Interface

Function Alternative
The function alternative is verctrl with the showdiff or isdiff argument.

Viewing Source Control Properties of a File
To view the source control properties of a file, follow these steps:

1 In the MATLAB Current Directory browser, select the file for which
you want to view properties.

2 Right-click, and from the context menu, select Source
Control > Properties.

9-20

Additional Source Control Actions on Windows

A dialog box, which is specific to your source control system, opens. The
following example shows the Microsoft Visual SourceSafe properties dialog
box.

Function Alternative
The function alternative is verctrl with the properties argument.

Starting the Source Control System
All the MATLAB source control actions automatically start the source control
system to perform the action, if the source control system is not already
open. If you want to start the source control system from MATLAB without
performing a specific action source control action,

9-21

9 Source Control Interface

1 Right-click any directory or file in the MATLAB Current Directory browser

2 From the context menu, select Source Control > Start Source Control
System.

The interface to your source control system opens, showing the source control
project associated with the current directory in MATLAB. The following
example shows the Microsoft Visual SourceSafe Explorer interface.

Function Alternative
The function alternative is verctrl with the runscc argument.

9-22

Performing Source Control Actions from the Editor/Debugger, Simulink, or Stateflow on Windows

Performing Source Control Actions from the
Editor/Debugger, Simulink, or Stateflow on Windows

You can create or open a file in the Editor/Debugger, Simulink, or Stateflow
and perform most source control actions from their File > Source Control
menus, rather than from the Current Directory browser as described in
previous sections. Following are some differences in the source control
interface process when you use the Editor/Debugger, Simulink, or Stateflow:

• You can perform actions on only one file at time.

• Some of the dialog boxes have a different icon in the title bar. For example,
the Check out file(s) dialog box uses an M-file Editor/Debugger document
icon instead of the MATLAB icon.

• You cannot add a new (Untitled) file, but must instead first save the file.

• You cannot register projects from Simulink or Stateflow. Instead, register
a project using the Current Directory browser, as described in “Register
Source Control Project with MATLAB” on page 9-7.

9-23

9 Source Control Interface

Troubleshooting Source Control Problems on Windows

In this section...

“Source Control Error: Provider Not Present or Not Installed Properly”
on page 9-24

“Restriction Against @ Character” on page 9-25

“Add to Source Control Is the Only Action Available” on page 9-25

“More Solutions for Source Control Problems” on page 9-25

Source Control Error: Provider Not Present or Not
Installed Properly
In some cases, MATLAB recognizes your source control system but you
cannot use source control features for MATLAB. Specifically, when you select
File > Preferences > General > Source Control, or run cmopts, MATLAB
lists your source control system, but you cannot perform any source control
actions. Only the File > Source Control > Start Source Control System
menu item is available, and when you select it, MATLAB displays this error:

Source control provider is not present or not installed properly.

Often, this error occurs because a registry key that MATLAB requires from
the source control application is not present. Make sure this registry key is
present:

HKEY_LOCAL_MACHINE\SOFTWARE\SourceCodeControlProvider\
InstalledSCCProviders

The registry key refers to another registry key that is similar to

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\SourceSafe\SccServerPath

This registry key has a path to a DLL-file in the file system. Make sure the
DLL-file exists in that location. If you are not familiar with registry keys, ask
your system administrator for help.

If this does not solve the problem and you use Microsoft Visual SourceSafe, try
running a client setup for your source control application. When SourceSafe is

9-24

Troubleshooting Source Control Problems on Windows

installed on a server for a group to use, each machine client can run a setup
but is not required to do so. However, some applications that interface with
SourceSafe, including MATLAB, require you to run the client setup. Run the
client setup, which should resolve the problem.

If the problem persists, access source control outside of MATLAB.

Restriction Against @ Character
Some source control systems, such as Perforce and Synergy, reserve the @
character. Perforce, for example, uses it as a revision specifier. Therefore,
you might experience problems if you use these source control systems with
MATLAB files and directories that include the @ character in the directory
or filename.

You might be able to work around this restriction by quoting nonstandard
characters in filenames, such as with an escape sequence, which some source
control systems allow. Consult your source control system documentation or
technical support resources for a workaround.

Add to Source Control Is the Only Action Available
To use source control features for a file in Simulink or Stateflow, the file’s
source control project must first be registered with MATLAB. When a file’s
source control project is not registered with MATLAB, all File > Source
Control menu items are disabled except Add to Source Control. You can
select Add to Source, which registers the project with MATLAB, or you
can register the project using the Current Directory browser, as described in
“Register Source Control Project with MATLAB” on page 9-7. You can then
perform source control actions for all files in that project (directory).

More Solutions for Source Control Problems
The latest solutions for problems interfacing MATLAB with a source
control system appear on the MathWorks Web page for support at
http://www.mathworks.com/support/. Search Solutions and Technical
Notes for “source control.”

9-25

http://www.mathworks.com/support/

9 Source Control Interface

Source Control Interface on UNIX
If you use a source control system to manage your files, you can check M-files
and Simulink models, and Stateflow charts into and out of the source control
system from within MATLAB, Simulink, and Stateflow.

The source control interface supports four popular source control systems,
as well as a custom option:

• ClearCase from IBM Rational

• Concurrent Version System (CVS)

• ChangeMan from Serena (also used for PVCS from Merant)

• Revision Control System (RCS)

• Custom option — Allows you to build your own interface if you use a
different source control system. For details, see the reference page for
customverctrl.

Perform source control interface actions for a single file using menu items in
the MATLAB Editor/Debugger, a Simulink model window, or a Stateflow chart
window. To perform source control actions on multiple files, use the Current
Directory browser. Alternatively, run source control functions in the Command
Window, which provide some options not supported with the menu items.

9-26

Specifying the Source Control System on UNIX

Specifying the Source Control System on UNIX

In this section...

“MATLAB Alternative” on page 9-27

“Function Alternative” on page 9-28

“Setting a View and Checking Out a Directory with ClearCase on UNIX”
on page 9-29

MATLAB Alternative
In MATLAB, specify the source control system you want to access. Select
File > Preferences > General > Source Control.

The currently selected system is shown in the Preferences dialog box. The
default selection is None.

Select the source control system you want to interface with and click OK.

9-27

9 Source Control Interface

MATLAB remembers preferences between sessions, so you only need to
perform this action when you want to access a different source control system.

Function Alternative
A function alternative to select a source control system is not available, but
you can list the currently selected source control system by running cmopts.

9-28

Specifying the Source Control System on UNIX

Setting a View and Checking Out a Directory with
ClearCase on UNIX
If you use ClearCase on a UNIX platform, perform the following from
ClearCase:

1 Set a view.

2 Check out the directory that contains files you want to save, check in, or
check out.

You can now use the MATLAB, Simulink, or Stateflow source control
interfaces to ClearCase.

9-29

9 Source Control Interface

Checking Files Into the Source Control System on UNIX

In this section...

“Checking In One or More Files Using the Current Directory Browser”
on page 9-30

“Checking In One File Using the Editor/Debugger, Simulink, or Stateflow”
on page 9-31

“Function Alternative” on page 9-32

Checking In One or More Files Using the Current
Directory Browser

1 From the Current Directory browser, select the file or files to check in. A
file can be open or closed when you check it in, but it must be saved, that is,
it cannot contain unsaved changes.

2 Right-click, and from the context menu, select Source Control > Check
In.

3 In the resulting Check in file(s) dialog box, you can add text in the
Comments field. If you want to continue working on the files, select the
check box Keep checked out. Click OK.

9-30

Checking Files Into the Source Control System on UNIX

The files are checked into the source control system. If any file contains
unsaved changes when you try to check it in, you will be prompted to and
must then save the changes to complete the checkin.

An error appears in the Command Window if a file is already checked in.

If you did not keep a file checked out and you keep that file open, note that it
is a read-only version.

Checking In One File Using the Editor/Debugger,
Simulink, or Stateflow

1 From the Editor/Debugger, Simulink, or Stateflow, with the file open and
saved, select File > Source Control > Check In.

2 In the resulting Check in file(s) dialog box, you can add text in the
Comments field. If you want to continue working on the files, select the
check box Keep checked out. Click OK.

9-31

9 Source Control Interface

Function Alternative
Use checkin to check files into the source control system. The files can be
open or closed when you use checkin. The checkin function takes this form:

checkin({'file1','file2', ...},'comments','comment_text',...
'option','value')

For filen, use the complete path and include the file extension. You must
supply the comments argument and a comments string with checkin.

Use the option argument to

• Check in a file and keep it checked out — set the lock option value to on.

• Check in a file even though it has not changed since the previous check in
— set the force option value to on.

The comments argument and the lock and force options apply to all files
checked in.

Example Using checkin Function
To check in the file clock.m with the comment Adjustment for leap year,
type

checkin('\myserver\mymfiles\clock.m','comments', ...
'Adjustment for leap year')

For other examples, see the reference page for checkin.

9-32

Checking Files Out of the Source Control System on UNIX

Checking Files Out of the Source Control System on UNIX

In this section...

“Checking Out One or More Files Using the Current Directory Browser”
on page 9-33

“Checking Out a Single File Using the Editor/Debugger, Simulink, or
Stateflow” on page 9-34

“Function Alternative” on page 9-34

Checking Out One or More Files Using the Current
Directory Browser

1 In the Current Directory browser, select the file or files to check out.

2 Right-click, and from the context menu, select Source Control > Check
Out. The Check out file(s) dialog box opens.

3 Complete the dialog box:

a To check out the versions that were most recently checked in, select
the Latest version option.

b To check out a specific version of the files, select the Version number
option and type the version number in the field.

9-33

9 Source Control Interface

c To prevent others from checking out the files while you have them
checked out, select Lock latest version. To check out read-only
versions of the file, clear Lock latest version.

4 Click OK.
An error appears in the Command Window if a file is already checked out.

After checking out files, make changes to them in MATLAB or another
product, and save the files. For example, edit an M-file in the Editor/Debugger.

If you try to change a file without first having checked it out, the file is
read-only, as seen in the title bar, and you will not be able to save any changes.
This protects you from accidentally overwriting the source control version of
the file.

If you end the MATLAB session, the file or files remain checked out. You can
check in files from within MATLAB during a later session, or directly from
your source control system.

Checking Out a Single File Using the Editor/Debugger,
Simulink, or Stateflow

1 Open the M-file, Simulink model, or Stateflow chart you want to check out.
The title bar indicates the file is read-only.

2 Select File > Source Control > Check Out. The Check out file(s)
dialog box opens.

3 Complete the dialog box as described in step of “Checking Out One or More
Files Using the Current Directory Browser” on page 9-33, and click OK.

Function Alternative
Use checkout to check out a file from the source control system. You can
check out multiple files at once and specify checkout options. The checkout
function takes this form:

checkout({'file1','file2', ...},'option','value')

9-34

Checking Files Out of the Source Control System on UNIX

For filen, use the complete path and include the file extension.

Use the option argument to

• Check out a read-only version of the file — set the lock option value to off.

• Check out the file even if you already have it checked out — set the force
option value to on.

• Check out a specific version of the file — use the revision option, and
assign the version number to the value argument.

The options apply to all files being checked out. The files can be open or closed
when you use checkout.

Example Using checkout Function—Check Out a Specific
Version of a File
To check out the 1.1 version of the file clock.m, type

checkout('\myserver\mymfiles\clock.m','revision','1.1')

For other examples, see the reference page for checkout.

9-35

9 Source Control Interface

Undoing the Checkout on UNIX

In this section...

“Impact of Undoing a File Checkout” on page 9-36

“Undoing the Checkout for One or More Files Using the Current Directory
Browser” on page 9-36

“Undoing the Checkout for a Single File Using the Editor/Debugger,
Simulink, or Stateflow” on page 9-36

“Function Alternative” on page 9-37

Impact of Undoing a File Checkout
When you undo the checkout for a file, the file remains checked in, and does
not have any of the changes you made since you checked it out. To save any
changes you have made since checking out a file, select File > Save As, and
supply a different filename before you undo the checkout. Undo the checkout
using the Current Directory browser for one or more files. For only one file,
you can also use the Editor/Debugger, Simulink, or Stateflow.

Undoing the Checkout for One or More Files Using
the Current Directory Browser

1 In the MATLAB Current Directory browser, select the file or files for
which you want to undo the checkout.

2 Right-click, and from the context menu, select Source Control > Undo
Checkout. MATLAB undoes the checkout.

An error appears in the Command Window if the file is not checked out.

Undoing the Checkout for a Single File Using the
Editor/Debugger, Simulink, or Stateflow

1 Open the M-file, Simulink model, or Stateflow chart for which you want
to undo the checkout.

9-36

Undoing the Checkout on UNIX

2 Select File > Source Control > Undo Checkout. MATLAB undoes the
checkout.

Function Alternative
The undocheckout function takes this form:

undocheckout({'file1','file2', ...})

Use the complete path for filen and include the file extension. For example,
to undo the checkout for the files clock.m and calendar.m, type

undocheckout({'\myserver\mymfiles\clock.m',...
'\myserver\mymfiles\calendar.m'})

9-37

9 Source Control Interface

9-38

Index

Index%
comment symbol 6-16
create comment 6-17

, after functions 3-30
; after functions 3-30
! function 3-9

argument length restrictions 3-10
%% 6-135
{% block comment symbol 6-18
>> prompt in Command Window 3-4
... in statements 3-18

A
accelerators, keyboard 2-40
Access Bridge 2-88
accessibility 2-85

documentation 2-86
installation 2-88
troubleshooting 2-91

account
MathWorks products 2-57

addpath 5-28
antialiasing

desktop fonts 2-69
AppleScript

running from MATLAB 3-10
Array Editor 5-12

cut, copy, paste, clear 5-18
decimal separator 5-22
delete 5-21
insert 5-21
preferences 5-22
size limitations 5-14
undo and redo 5-21

arrays
editing 5-12
workspace 5-2

arrow keys
Command Window usage 3-26

Editor/Debugger 6-59
ASCII files

viewing contents of 5-49
assistive technology 2-85
asv 6-63
auto-fix

M-Lint 6-93
autoinit cells

converting input cells to 8-55
converting to input cells 8-56
defining 8-38

AutoInit style
definition of 8-48

automatic completion of statement
Command Window 3-20
Editor/Debugger 6-21

autosave 6-63

B
Back and Forward navigation 6-44
backup

Editor/Debugger autosave 6-63
bang (!) function 3-9
bang function 3-9
base workspace 5-9
batch mode for starting MATLAB 1-16
beep

preferences 3-46
blank spaces in MATLAB commands 3-15
block

within cell 8-14
block comments 6-18

extending 6-18
block indenting 6-29
blue breakpoint icon 6-128
bold text

within cell 8-20
bookmarks

in files in Editor/Debugger 6-43

Index-1

Index

in Help browser 4-24
Boolean searching in Help browser 4-21
breaking long lines 3-18
breaking out of a running program 3-9
breakpoints

anonymous functions 6-128
blue icon 6-128
clearing (removing) 6-120
clearing, automatically 6-121
conditional 6-126
disabling and enabling 6-119
multiple per line 6-128
running file 6-111
setting 6-107
types 6-107

Bring MATLAB to Front 8-54
browser

Help 4-3
Web, in MATLAB 2-55

bugs, reporting to The MathWorks 4-52
built-in editor 6-5

C
C/C++

editing files in Editor/Debugger 6-12
caching

M-files 6-63
search path 5-31

calc zones
defining 8-38
ensuring workspace consistency in

M-books 8-35
evaluating 8-44
output from 8-44

callbacks
in shortcuts 2-32

calling from MATLAB 3-9
capitalization in MATLAB 3-15
case sensitivity in MATLAB 3-15

cell arrays
editing 5-14

cell breaks 8-12
cell groups

converting to input cells 8-61
creating 8-37
definition of 8-37
evaluating 8-42
output from 8-42

cell markers
defined 8-36
hiding 8-59
printing 8-47

cell mode 6-133
cell scripts 6-133
cells

defining in M-files 6-135
cells in M-File Editor/Debugger 6-133
cells in M-files

beep 6-140
evaluating 6-139 to 6-140
removing 6-139
toolbar 6-134

character set
preference for MAT-files 2-79

checkin
on UNIX platforms 9-32

checking in files
on UNIX platforms 9-30

checking out files
on UNIX platforms 9-33
on Windows platforms 9-12
undoing on UNIX platforms 9-36
undoing on Windows platforms 9-13

checkout
on UNIX platforms 9-34

clc 3-32
clear 5-8
ClearCase source control system

configuring on UNIX platforms 9-29

Index-2

Index

clearing
Command Window 3-32
variables 5-8

clicking on multiple items 2-50
clipboard 2-51
closing

desktop tools 2-7
M-files 6-64
MATLAB 1-23

code analyzer 6-87
Code check report

checking M-files code 7-16
code examples 6-3
code folding in M-files 6-31
code iteration 6-133
code resources 6-3
code samples

sample code 6-3
collapsing

code in M-files 6-31
Collatz problem 6-104
color

general preferences 2-73
indicators for syntax 3-16
printing M-book 8-47

colors
Help browser 4-41
in M-files 6-28
preferences in MATLAB 2-70

column numbers 6-30
command flags 1-12
Command History

about 3-49
deleting entries in window 3-57
file 3-50
find entry by letter 3-52
preferences 3-59
printing window contents 3-57
running functions from window 3-51

command line

defined 3-4
editing 3-17

command name completion
Command Window 3-20
Editor/Debugger 6-21

command switches 1-12
Command Window

bringing to front in Notebook 8-54
clearing 3-32
editing in 3-17
getting started message bar 3-42
help 4-8
paging of output in 3-30
preferences 3-40
preferences, keyboard 3-43
printing contents of 3-33
prompt 3-3
width 3-42

Command Window scroll buffer 3-42
commands

executing a group of 2-32
on multiple lines 3-18
to operating system 3-9

comments
adding/removing with any text editor 6-17
adding/removing with Editor/Debugger 6-16
block 6-18
color indicators 2-73
creating in Editor/Debugger 6-15
multiline statements 6-19
purpose 6-15
using ... (ellipsis) 6-19
within a line 6-19

comp.soft-sys.matlab 4-52
comparing

files 6-54
comparing working copy to source control version

on Windows platforms 9-18
completing statements automatically

Command Window 3-20

Index-3

Index

Editor/Debugger 6-21
compression

MAT-files and Fig-Files 2-79
conditional breakpoints 6-126
configuration management

See source control system interface 9-1
configuration, desktop 2-6
configurations

for M-files in Editor/Debugger 6-67
configuring Notebook 8-53
confirmation dialog boxes

preferences 2-81
console mode 3-42
content of M-files, searching 5-49
Contents in Help browser

synchronizing preference 4-38
Contents tab in Help browser

description 4-10
synchronizing with display 4-12

context menus 2-46
continuation

long lines 3-18
continuing long statements 3-18
control keys

editing commands 3-26
Editor/Debugger 6-59

conversion
Word document to M-book 8-32

crash 1-24
cropping graphics

in M-books 8-51
cssm 4-52
current directory

at startup for MATLAB 1-8
changing 5-38
contents of 5-38
field in toolbar 5-35
relevance to MATLAB 5-35
tool 5-36

Current Directory browser 5-36

preferences 5-54
running Windows shortcuts 5-48

D
data consistency

calc zones in M-books 8-35
evaluating M-books 8-35
in M-book 8-35

datatips
example 6-115

dbclear 6-120
dbstop

example 6-110
Debugger 6-1
debugging

ending 6-119
example 6-104
features 6-103
M-files 6-84

options 6-5
Notebook 8-35
prompt 6-111
stepping 6-112
techniques 6-84
with unsaved changes 6-125

decimal places in output 3-31
defaults

preferences for MATLAB 2-59
setting in startup file for MATLAB 1-12

Define Autoinit Cell 8-55
Define Calc Zone 8-55
Define Input Cell 8-56
delete 5-46
delete function

preference for recycling 2-78
deleting

files 5-46
variables 5-8

deleting files 2-78

Index-4

Index

delimiter
matching in Editor/Debugger 3-46

delimiter matching
preferences 3-46

demos
using 4-31

Demos
searching 4-16

desktop
color preferences 2-70
configuration 2-6
description 2-3
font preferences for 2-62
starting without 1-15
tools

closing 2-7
opening 2-5

windows
closing 2-7
opening 2-5

desktop layout
saving 2-6

desktop, docking 2-7
desktop, grouping tools 2-8
desktop, maximizing tools 2-8
desktop, minimizing tools 2-8
desktop, undocking 2-7
development environment for MATLAB 2-3
diary 3-33
difference reporting for files 6-54
dir 5-38
directories 5-49

copying 5-46
creating 5-44
deleting 5-45
MATLAB

caching 6-63
renaming 5-45
searching contents of 5-36
See also current directory, search path

disabling
breakpoints 6-119

display pane in Help browser 4-26
displaying

output 3-30
displaying source control properties of a file 9-20
dividers for cells 6-135
do not show again

preferences 2-81
docking tools in desktop 2-7
documentation

accessibility 2-86
all products 4-8
most current version 4-8
printing 4-42
prior version 4-8
problems, reporting 4-54
searching 4-16
viewing 4-26
Web site 4-8
without running MATLAB 4-9

dots (...) 3-18
downloading

M-files 4-51
dragging in the desktop 2-51

E
echo execution 3-30
edit

creating new M-file in Editor/Debugger 6-9
editing

in Command Window 3-17
M-files 6-1

outside of MATLAB 6-5
editor

built-in 6-5
Editor

see Editor/Debugger 6-11
Editor/Debugger 6-1

Index-5

Index

arranging documents 6-11
closing 6-13
closing files 6-64
description 6-7
example 6-104
go to

bookmark 6-43
function 6-42
line number 6-42

horizontal lines 6-136
indenting 6-7
modifying values 6-139
navigating 6-42
navigating back and forward 6-44
navigation keys 6-59
opening files 6-9
other text files 6-12
preferences 6-11
rule displayed 6-31
running M-files 6-66
running with unsaved changes 6-125
status bar

function 6-31
EDU>> prompt in Command Window 3-4
ellipses (...) in statements 3-18
Emacs key bindings in Editor/Debugger 6-59
Embed Figures in M-book 8-50
embedding graphics

in M-book 8-49
encoding

preference when saving 2-79
ending MATLAB 1-23
environment settings at startup 1-12
environment variables 3-10
error breakpoints

stop for errors 6-129
error logs 1-24
error message identifiers 6-131
error messages

in Command Window 3-9

error style
definition 8-48

errors
color indicators 2-73
finding in M-files 6-84
run-time 6-84
source control 9-24
syntax 6-84

Evaluate Calc Zone 8-56
Evaluate Cell 8-57
Evaluate Loop 8-58
Evaluate Loop dialog box 8-45
Evaluate M-Book 8-58
evaluating

M-books, ensuring data consistency 8-35
selection in Command History window 3-51
selection in Command Window 3-12

evaluating sections of M-file 6-140
exact phrase

Help browser search 4-21
example code 6-3
examples

in documentation, index of 4-12
running from Help browser 4-29

exe 3-9
executables

running from MATLAB 3-9
executing

group of statements 2-32
execution

displaying functions during 3-30
existing code 6-3
exiting MATLAB 1-23
expanding

code in M-files 6-31

F
f button 6-42
F Inc Search field 6-51

Index-6

Index

fatal error 1-24
favorites in Help browser 4-24
feedback to The MathWorks 4-54
Fig-files

compatibility 2-79
save options 2-79

file exchange
for M-files 4-51

file management system
See source control system interface 9-1

filebrowser 5-36
files

comparing 6-54
contents, viewing 5-49
copying 5-46
creating in the Current Directory

browser 5-44
deleting 5-45
editing M-files 6-7
log 1-14
MATLAB related, listing 5-38
naming 5-24
opening 5-47
operations in MATLAB 5-35
renaming 5-45
running 5-49
viewing contents of 5-49

Find Files dialog box 5-49
finding

files using Current Directory browser 5-49
M-files 5-49
string in M-files 5-49
text in Command History window 3-56
text in Command Window 3-34
text in current file 6-49
text in M-files 6-49
text in page of Help browser 4-28

finish.m file running when quitting 1-24
firewall 2-56
flags

for startup 1-12
folders.. See directories
font

adding new family for MATLAB 2-69
antialiasing in desktop 2-69
Help browser 4-39
preferences in MATLAB 2-62
size, additional values 2-62
smoothing in desktop 2-69

format 3-31
controlling numeric format in M-book 8-49
in M-book 8-49
preferences 3-41

formatted comments
within cell 8-12

FTP
transferring files via link 3-13

function name
automatic completion

Command Window 3-20
Editor/Debugger 6-21

function workspace 5-9
functions

color indicators 2-73
displaying during execution 3-30
executing a group of 2-32
help for 4-44

reference page 4-7
long (on multiple lines) 3-18
multiple in one line 3-18
naming 5-24

G
get latest version of file on Windows

platforms 9-14
getting files 9-33
graphical debugger 6-1
graphics

controlling output in M-book 8-50

Index-7

Index

embedding in M-book 8-49
in M-books 8-49
within cell 8-14

gray background color in desktop 2-73
gray breakpoint icons 6-109
gray lines in Editor/Debugger 6-136
green indicator in Editor/Debugger 6-87
Group Cells 8-58
grouping

tools in desktop 2-8

H
HDF

preference when saving 2-79
headings

within cell 8-12
help 4-46

functions 4-44
in Command Window 4-46
M-file description 5-55
M-files 4-8
pop-up 4-49

help browser
copying information from 4-29
running examples from 4-29

Help browser 4-3
color preferences 4-41
contents listing 4-10
display pane 4-26
font preferences 4-39
index 4-13
navigating 4-27
printing help 4-42
searching 4-16
viewing page location 4-30

Help Navigator 4-5
helpbrowser 4-3
Hide Cell Markers 8-59

highlighted search terms 4-18
history

automatic log file 1-14
source control on Windows platforms 9-16

history of statements 3-49
history.m file 3-50
home 3-32
horizontal lines in Editor/Debugger 6-136
hot keys 2-40

Array Editor 5-16
Command Window 3-26
desktop 2-40
Editor/Debugger 6-59

HTML
editing files in Editor/Debugger 6-12
source, viewing in Help browser 4-29

HTML markup
within cell 8-17

HTML viewer in MATLAB 2-55
hyperlinks

Command Window 3-13
running functions by 3-14

I
import

files for use with MATLAB 5-24
include

files with MATLAB 5-24
incremental searching

in Editor/Debugger 6-51
indented text

within cell 8-14
indenting

functions and nested functions 6-29
in Command Window 3-16
in Editor/Debugger 6-29

index
examples in documentation 4-12

Index-8

Index

Help browser 4-13
results 4-15
tips 4-15

initiation (init) file for MATLAB 1-12
inline links

within cell 8-22
input

to MATLAB in Command Window 3-3
input cells

controlling evaluation 8-44
controlling graphic output 8-50
converting autoinit cell to 8-56
converting text to 8-56
converting to autoinit cell 8-55
converting to cell groups 8-61
converting to text 8-39
defining in M-books 8-36
evaluating 8-41
evaluating cell groups 8-42
evaluating in loop 8-45
maintaining consistency 8-34
timing out during evaluation 8-57
use of Word Normal style 8-39

Input style
definition of 8-48

Insert key
Command Window 3-28
Editor/Debugger 6-61

insert mode
Command Window 3-28
Editor/Debugger 6-61

Internet proxy server 2-56
interrupting a running program 3-9
invalid breakpoints 6-109
italic text

within cell 8-20
iterative programming 6-133

J
Java

editing files in Editor/Debugger 6-12
Java VM

starting without 1-15
JAWS 2-87

K
K>>

prompt in Command Window 3-4
K>> prompt in Command Window

debugging mode 6-111
keyboard statement 6-86

key bindings 3-45
keyboard 6-86
keyboard shortcuts

Array Editor 5-16
keyboard shortcuts and accelerators 2-40
keys

editing in Command Window 3-26
Editor/Debugger 6-59

keywords
color indicators 2-73
in documentation 4-13
matching in Editor/Debugger 3-46

L
LaTeX markup

within cell 8-17
license information 4-53
licenses 2-57
line

in Editor/Debugger 6-31
line breaks

adding for long statements 3-18
line continuation 3-18
line numbers 6-30

going to 6-42

Index-9

Index

line wrapping 3-42
lines (gray) Editor/Debugger 6-136
links

Command Window 3-13
in Help browser 4-28

lists
within cell 8-14

load 5-7
locking files on checkout 9-33
log

automatic 1-14
file 1-14
session 3-33
statements 3-49

logfile startup option 1-14
login

remote on Macintosh 1-7
long lines 3-18
lookfor 5-54
looping

to evaluate input cells 8-45
lowercase usage in MATLAB 3-15

M
M-books

creating 8-27
data consistency 8-35
data integrity 8-34
entering text and commands 8-34
evaluating all input cells 8-44
modifying style template 8-47
opening 8-31
printing 8-47
sizing graphic output 8-51
styles 8-47

M-files
appearance 6-28
checking code 7-16
colors in 6-28

comparing 6-54
content, viewing 5-49
creating 6-5

from Command History window 3-51
in MATLAB directory 5-31
new file 6-8

debugging 6-84
options 6-5

determining cyclomatic complexity of 6-85
determining McCabe complexity of 6-85
editing 6-1

options 6-5
file association (Windows) 1-2
finding 5-49
help 4-8

viewing in Current Directory
browser 5-42

naming 5-24
opening 6-9
pausing 6-86
performance of 7-27
printing 6-64
profiling 7-27
replacing content 6-49
running

at startup 1-16
from Command Window 3-8
from Current Directory browser 5-49

saving 6-62
search path 5-23
searching contents of 5-49
starting MATLAB from 1-2
user-contributed 4-51

M-Lint 7-16
auto-fix 6-93
Editor/Debugger access 6-87
suppressing messages 7-17

Macintosh
startup

remote login 1-7

Index-10

Index

MAT-files
compatibility 2-79
compression options 2-79
creating 5-5
defined 5-5
loading 5-7
preferences 2-79
starting MATLAB from 1-2
view without loading 5-42

matched delimiters
preferences 3-46

matching parentheses
in Editor/Debugger 3-46

Mathtools.net 4-53
MATLAB

commands, executing in a Word
document 8-41

files, listing 5-38
path 5-23
quitting 1-23

confirmation 1-23
matlab directory 1-8
MATLAB functions

running by hyperlink 3-14
matlab.mat 5-6
matlabrc.m, startup file 1-12
matrices

editing 5-12
maximizing

tools in desktop 2-8
measuring performance of M-files 7-27
membership Web page 2-56
message identifiers 6-131
Microsoft Word

converting document to M-book 8-32
minimize

Windows startup option 1-15
minimizing

tools in desktop 2-8
mkdir 5-45

monospaced text
within cell 8-20

more 3-30
mouse, right-clicking 2-46
multidimensional arrays

editing 5-14
multiple item selection 2-50
multiple lines for statements 3-18
multiprocessing 3-9
multithreaded computation 2-84

N
naming functions and variables 5-24
navigating

M-files 6-42
nested comments 6-18
nested functions

indenting 6-29
newsgroup for MATLAB 4-52
newsletters 4-53
nodesktop startup option 1-15
nojvm startup option 1-15
Normal style (Microsoft Word)

default style in M-book 8-47
defaults 8-48
used in undefined input cells 8-39

notebook
function 8-28

Notebook
configuring 8-53
debugging 8-35
options 8-59
overview 8-27
platforms supported 8-27

Notebook menu
Word menu bar 8-28

numbering lines 6-30
numeric format

controlling in M-book 8-49

Index-11

Index

output 3-31
preferences 3-41

O
%#ok indicator to suppress M-Lint message 7-17
open 5-48
opening files

Current Directory browser 5-47
openvar 5-14
operating system commands 3-9
operators

searching for 4-22
optimizing performance of M-files 7-27
options

shutdown 1-24
startup 1-12

orange underline in M-file 6-92
output

display
format 3-31
hidden 3-30

hiding 3-30
in Command Window 3-3
paging 3-30
spaces per tab 3-43
spacing of 3-42
suppressing 3-30

output cells
converting to text 8-46
purging 8-46

Output style
definition 8-48

overwrite mode
Command Window 3-28
Editor/Debugger 6-61

P
paging in the Command Window 3-30

parentheses
matching 3-46

parentheses matching
preferences 3-46

partial word
Help browser search 4-21

passcodes 2-57
path

adding directories to 5-43
changing 5-27
description 5-23
order of directories 5-24
problems and recovering 5-33
saving changes 5-30
saving for future sessions 5-30
viewing 5-27

PATH environment variable 3-11
pathdef.m 5-25

location 5-30
pathtool 5-26
pausing execution of M-file 6-107
pcode

error checking 6-85
PDF

printing documentation files 4-42
reader, preference for Help browser 4-38

performance
improving for M-files 7-27

periods (...) 3-18
Perl variables

passing
at startup 1-21

plotting
from the Workspace browser 5-9

pop-up menus 2-46
precision

output display 3-31
preferences

MATLAB, general 2-76
printing

Index-12

Index

Command History window contents 3-57
Command Window contents 3-33
documentation 4-42
help 4-42
M-files 6-64

printing an M-book
cell markers 8-47
color 8-47
defaults 8-47

problems, reporting to The MathWorks 4-52
product filter in Help browser

preference 4-37
product version 2-58
profile 7-42

example 7-43
profiling 7-27
programs

running from MATLAB 3-9
stopping while running 3-9

prompt
in Command Window 3-3
when debugging 6-111

properties
source control on Windows platforms 9-20
tab completion

Command Window 3-25
Editor/Debugger 6-26

publishing
cells

platforms supported 8-25
Publishing

functions versus scripts 8-2
Purge Output Cells 8-60
purging output cells 8-46

Q
quitting

saving workspace 1-24

quitting MATLAB 1-23
confirmation 1-23

R
R Inc Search field 6-51
rapid development 6-133
recall previous lines 3-19
recover deleted files 2-78
recycle function

preference 2-78
red breakpoint icons 6-109
red underline in M-file 6-92
red vertical line

in Editor/Debugger 6-31
redo

in desktop 2-51
reference pages 4-7
release notes

prior versions 4-7 to 4-8
more extensive 4-8

remote login
Macintosh 1-7

removing files from source control system 9-15
requirements

MATLAB 1-1
restoring

tools in desktop 2-8
results in MATLAB, displaying 5-14
revision control

See source control system interface 9-1
right-hand text limit 6-31
roadmap for documentation 4-11
rule

in Editor/Debugger 6-31
rules (lines) in Editor/Debugger 6-136
run-time errors 6-84
running

M-files 5-49

Index-13

Index

S
save

function 5-6
saving

automatically in Editor/Debugger 6-63
M-files 6-62
MAT-files

preferences 2-79
workspace upon quitting 1-24

screen reader 2-87
script for startup 1-12
scroll buffer for Command Window 3-42
scrolling in Command Window 3-30
search path 5-23

default 5-23
problems and recovering 5-33
saving for future sessions 5-30

searching
for M-files 5-49
Help browser 4-16

Boolean 4-21
exact phrase (" ") 4-21
results 4-18
text in page 4-28
wildcard (*) or partial word 4-21

M-file content
across files 5-49

special characters 4-22
text

Command History window 3-56
Command Window 3-34

text in current file 6-49
text in M-files 6-49
text, incrementally 6-51

section breaks
in calc zones 8-55

segmentation violation 1-24
segv 1-24
selecting multiple items 2-50
semicolon (;)

after functions 3-30
between functions 3-18

separator in functions 3-18
session

automatic log file 1-14
session log

Command History 3-49
diary 3-33

setting breakpoints 6-107
shadowed functions 5-24
shell escape 3-9
shortcut

for MATLAB in Windows 1-2
keys in Editor/Debugger 3-45
keys in MATLAB 2-40

shortcut keys
Array Editor 5-16
Command Window editing 3-26
Editor/Debugger 6-59

shortcuts
categories 2-38
creating

from Command History window 3-51
defined 2-32
deleting 2-38
editing 2-38
Editor/Debugger 6-59
file 2-34
labels, hiding 2-37
moving 2-38
organizing 2-38
toolbar 2-35

shortcuts.xml 2-34
Show Cell Markers 8-59
show file history on Windows platforms 9-16
shutdown

MATLAB 1-23
options 1-24

smart indenting 6-29
smart recall 3-19

Index-14

Index

source control on UNIX platforms
getting files 9-33
locking files 9-33

source control system interface 9-1
UNIX platforms 9-26

preferences 9-27
selecting system 9-27
supported systems 9-26

Windows platforms
adding files 9-9
preferences 9-6
selecting system 9-6
supported systems 9-3

source control system interface on UNIX
platforms
checking in files 9-30
checking out files 9-33
configuring ClearCase source control

system 9-29
undoing file check-out 9-36

source control system interface on Windows
platforms
checking out files 9-12
comparing working copy to source control

version 9-18
displaying file properties 9-20
get latest version of file 9-14
removing files 9-15
showing file history 9-16
starting source control system 9-21
troubleshooting 9-24
undoing file check-out 9-13

spaces in MATLAB commands 3-15
spacing

output in Command Window 3-42
tabs in Command Window 3-43

special characters
searching for 4-22

splash screen
startup option 1-16

split screen display
Editor/Debugger 6-38

stack
in Editor/Debugger 6-112
viewing 5-9

Start button 2-44
adding toolboxes 2-46

starting MATLAB
DOS 1-2
UNIX 1-6
Windows 1-2

startup
directory for MATLAB 1-8
files for MATLAB 1-12
M-file double-click 1-2
Macintosh, remote login 1-7
options for MATLAB 1-12
script 1-12

startup.m
location 1-12
startup file 1-12

statement
definition 3-8

statements
defined 3-7
executing a group of 2-32
long (on multiple lines) 3-18

stepping through M-file 6-112
stopping a running program 3-9
stops

in M-files 6-107
stops (...) 3-18
strings

across multiple lines 3-18
color indicators 2-73
saving as Unicode 2-79

structures
editing 5-14
tab completion 3-24 6-25

style preferences for text 2-62

Index-15

Index

styles in M-book
modifying 8-47

subfunction
displayed in Editor/Debugger status bar 6-31

subfunctions
going to in M-file 6-42

suggestions to The MathWorks 4-54
support

technical 4-52
suppressing output 3-30
switches

for startup 1-12
symbols

searching for 4-22
syntax

color indicators 2-73
color preferences in MATLAB 2-70
coloring and indenting 3-16
errors 6-84
highlighting 6-28

system environment variables 3-10
system path for UNIX 3-11
system requirements

MATLAB 1-1

T
tab

indenting in Editor/Debugger 6-29
spacing in Command Window 3-43

tab completion
Command Window 3-20
Editor/Debugger 6-21

table of contents for help 4-10
Technical Support

contacting 4-52
Web page 2-56

templates
M-book 8-47

temporary directory
for deleted files 2-78

terminating a running program 3-9
TeX equation markup

within cell 8-17
text

converting to input cells 8-56
finding in page in Help browser 4-28
preferences in MATLAB 2-62
styles in M-book 8-47

text editors for M-files 6-5
text files

editing in Editor/Debugger 6-12
opening in Editor/Debugger 6-9

time
measured for M-files 7-27

time-out message
while evaluating multiple input cells in an

M-book 8-57
tmp/MATLAB_Files directory 2-78
Toggle Graph Output for Cell 8-60
token matching

preferences 3-46
toolbars

desktop 2-47
Editor/Debugger cell mode 6-134
shortcuts 2-35

toolbox path cache
preferences 1-18

tools in desktop
description 2-3

tooltips 2-47
for data 6-115

trial versions 2-57
troubleshooting

source control problems 9-24
type ahead feature 3-19

Index-16

Index

U
UNC (Universal Naming Convention)

pathname 7-3
uncomment 6-16
Undefine Cells 8-60
undo

in desktop 2-51
in Editor 6-15

undocking tools from desktop 2-7
undoing file check-out

on UNIX platforms 9-36
on Windows platforms 9-13

Ungroup Cells 8-61
Unicode

preference when saving 2-79
UNIX

system path 3-11
updates to products 2-56
uppercase usage in MATLAB 3-15
utilities

running from MATLAB 3-9

V
validating

M-files 7-16
values

examining 6-114
variables

deleting or clearing 5-8
displaying values of 5-14
editing values 5-12
naming 5-24
saving 5-5
viewing during execution 6-114
viewing values in Editor 6-115
workspace 5-2

version 2-58
information for MathWorks products 4-53

version control

See source control system interface 9-1
viewing desktop tools 2-6
Visible figure property

embedding graphics in M-book 8-50

W
warning breakpoints 6-129
warning message identifiers 6-131
Web

accessing from MATLAB 2-56
site for The MathWorks 2-57

Web Browser
font 2-56
in MATLAB 2-55
proxy server 2-56

Web site
documentation 4-8

what 5-38
who 5-4
whos 5-4
width of Command Window 3-42
wildcard (*)

Help browser search 4-21
windows in desktop

about 2-3
arrangement 2-6
closing 2-7
opening 2-6

Word documents
converting to M-book 8-32

working directory 5-36
workspace

base 5-9
clearing 5-8
defined 5-2
functions 5-9
initializing in M-book 8-38
loading 5-7
M-book contamination 8-34

Index-17

Index

opening 5-7
protecting integrity 8-34
saving 5-5
tool 5-2
viewing 5-3
viewing during execution 6-114

Workspace browser
description 5-2
plotting variables from 5-9
preferences 5-8

wrapping
lines in Command Window 3-42
long statements 3-18

Y
yellow highlighting in M-file

current cell 6-136
datatip 6-115
M-Lint message 6-92

Index-18

MATLAB® 7
External Interfaces

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

MATLAB External Interfaces

© COPYRIGHT 1984–2007 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined
in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of
this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government’s
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, SimBiology,
SimHydraulics, SimEvents, and xPC TargetBox are registered trademarks and The
MathWorks, the L-shaped membrane logo, Embedded MATLAB, and PolySpace are
trademarks of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective
holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
December 1996 First printing New for MATLAB 5 (release 8)
July 1997 Online only Revised for MATLAB 5.1 (Release 9)
January 1998 Second printing Revised for MATLAB 5.2 (Release 10)
October 1998 Third printing Revised for MATLAB 5.3 (Release 11)
November 2000 Fourth printing Revised and renamed for MATLAB 6.0 (Release 12)
June 2001 Online only Revised for MATLAB 6.1 (Release 12.1)
July 2002 Online only Revised for MATLAB 6.5 (Release 13)
January 2003 Online only Revised for MATLAB 6.5.1 (Release 13SP1)
June 2004 Online only Revised for MATLAB 7.0 (Release 14)
October 2004 Online only Revised for MATLAB 7.0.1 (Release 14SP1)
September 2005 Online only Revised for MATLAB 7.1 (Release 14SP3)
March 2006 Online only Revised for MATLAB 7.2 (Release 2006a)
September 2006 Online only Revised for MATLAB 7.3 (Release 2006b)
March 2007 Online only Revised for MATLAB 7.4 (Release 2007a)
September 2007 Online only Revised for MATLAB 7.5 (Release 2007b)

Contents

Importing and Exporting Data

1
Using MAT-Files . 1-2

Introduction . 1-2
Importing Data to MATLAB . 1-2
Exporting Data from MATLAB . 1-3
Exchanging Data Files Between Platforms 1-4
Reading and Writing MAT-Files . 1-5
Writing Character Data . 1-7
Finding Associated Files . 1-8

Examples of MAT-Files . 1-11
Creating a MAT-File in C . 1-11
Reading a MAT-File in C . 1-12
Creating a MAT-File in Fortran . 1-12
Reading a MAT-File in Fortran . 1-13

Compiling and Linking MAT-File Programs 1-15
Masking Floating Point Exceptions 1-15
Compiling and Linking on UNIX . 1-16
Compiling and Linking on Windows 1-18
Required Files from Third-Party Sources 1-18
Working Directly with Unicode . 1-20

MATLAB Interface to Generic DLLs

2
Overview . 2-3

Loading and Unloading the Library 2-4
Using a Shared Library . 2-4
Loading the Library . 2-4
Unloading the Library . 2-5

v

Getting Information About the Library 2-6
Introduction . 2-6
Listing Functions . 2-6
Viewing Functions in a GUI Interface 2-7

Invoking Library Functions . 2-9

Passing Arguments . 2-10
Displaying MATLAB Syntax for Library Functions 2-10
General Rules for Passing Arguments 2-11
Passing References . 2-12
Passing a NULL Pointer . 2-13
Using C++ Libraries . 2-13

Data Conversion . 2-15
When to Convert Manually . 2-15
Primitive Types . 2-15
Enumerated Types . 2-19
Structures . 2-20
Creating References . 2-26
Reference Pointers . 2-34

Calling C and Fortran Programs from MATLAB

3
Introducing MEX-Files . 3-2

What are MEX-Files . 3-2
Using MEX-Files . 3-2
MEX-File Placement . 3-3
The Distinction Between mx and mex Prefixes 3-4

MATLAB Data . 3-6
The MATLAB Array . 3-6
Data Storage . 3-6
Data Types in MATLAB . 3-7
Sparse Matrices . 3-9
Using Data Types . 3-9

vi Contents

Building MEX-Files . 3-11
Compiler Requirements . 3-11
Testing Your Configuration on UNIX 3-12
Testing Your Configuration on Windows 3-14
Specifying an Options File . 3-17

Custom Building MEX-Files . 3-19
Who Should Read this Chapter . 3-19
MEX Script Switches . 3-19
Default Options File on UNIX . 3-23
Default Options File on Windows . 3-24
Custom Building on UNIX . 3-24
Custom Building on Windows . 3-27

Troubleshooting . 3-32
Configuration Issues . 3-32
Understanding MEX-File Problems 3-34
Compiler and Platform-Specific Issues 3-37
Memory Management Compatibility Issues 3-39

Additional Information . 3-43
Files and Directories - UNIX Systems 3-43
Files and Directories — Windows Systems 3-45
Examples . 3-48
Technical Support . 3-48

Creating C Language MEX-Files

4
C MEX-Files . 4-2

The Components of a C MEX-File . 4-2
Gateway Routine . 4-2
Computational Routine . 4-4
Preprocessor Macros . 4-5
Data Flow in MEX-Files . 4-5
Creating C++ MEX-Files . 4-9

Examples of C MEX-Files . 4-11
Introduction . 4-11

vii

A First Example — Passing a Scalar 4-12
Passing Strings . 4-13
Passing Two or More Inputs or Outputs 4-14
Passing Structures and Cell Arrays 4-15
Prompting User for Input . 4-16
Handling Complex Data . 4-17
Handling 8-,16-, and 32-Bit Data . 4-18
Manipulating Multidimensional Numerical Arrays 4-18
Handling Sparse Arrays . 4-19
Calling Functions from C MEX-Files 4-20
Using C++ Features in MEX-Files . 4-21
File Handling with C++ . 4-22

Advanced Topics . 4-25
Help Files . 4-25
Linking Multiple Files . 4-25
Workspace for MEX-File Functions 4-26
Handling Large mxArrays . 4-26
Memory Management . 4-29
Large File I/O . 4-32
Using LAPACK and BLAS Functions 4-38

Debugging C Language MEX-Files 4-46
Notes on Debugging . 4-46
Debugging on Windows . 4-46
Debugging on Linux . 4-54

Creating Fortran MEX-Files

5
Fortran MEX-Files . 5-2

The Components of a Fortran MEX-File 5-2
Gateway Routine . 5-2
Computational Routine . 5-5
Preprocessor Macros . 5-5
Using the Fortran %val Construct . 5-6
Data Flow in MEX-Files . 5-7

Examples of Fortran MEX-Files . 5-12

viii Contents

Introduction . 5-12
A First Example — Passing a Scalar 5-12
Passing Strings . 5-13
Passing Arrays of Strings . 5-14
Passing Matrices . 5-15
Passing Two or More Inputs or Outputs 5-15
Handling Complex Data . 5-16
Dynamically Allocating Memory . 5-17
Handling Sparse Matrices . 5-18
Calling Functions from Fortran MEX-Files 5-19

Advanced Topics . 5-21
Help Files . 5-21
Linking Multiple Files . 5-21
Workspace for MEX-File Functions 5-22
Handling Large mxArrays . 5-22
Memory Management . 5-24

Debugging Fortran Language MEX-Files 5-25
Notes on Debugging . 5-25
Debugging on Windows . 5-25
Debugging on Linux . 5-25

Calling MATLAB from C and Fortran Programs

6
Using the MATLAB Engine . 6-2

Introduction . 6-2
The Engine Library . 6-3
GUI-Intensive Applications . 6-4

Examples of Calling Engine Functions 6-5
Overview . 6-5
Calling MATLAB from a C Application 6-5
Calling MATLAB from a Fortran Application 6-7
Attaching to an Existing MATLAB Session 6-8

Compiling and Linking MATLAB Engine Programs . . . 6-10
Step 1 — Write Your Application . 6-10

ix

Step 2 — Check Required Libraries and Files 6-10
Step 3 — Build the Application . 6-12
Step 4 — Set Run-Time Library Path 6-14
Step 5 — (Windows Only) Register MATLAB as a COM

Server . 6-16
Step 6 — Test the Program . 6-16
Example — Building an Engine Application on Windows . . 6-17
Example — Building an Engine Application on UNIX 6-17
Masking Floating-Point Exceptions 6-18

Calling Java from MATLAB

7
Using Java from MATLAB: An Overview 7-3

Java Interface Is Integral to MATLAB 7-3
Benefits of the MATLAB Java Interface 7-3
Who Should Use the MATLAB Java Interface 7-3
To Learn More About Java Programming 7-4
Platform Support for the Java Virtual Machine 7-4
Using a Different Version of the Java JVM 7-4

Bringing Java Classes and Methods into MATLAB 7-7
Introduction . 7-7
Sources of Java Classes . 7-7
Defining New Java Classes . 7-8
The Java Class Path . 7-8
Making Java Classes Available to MATLAB 7-11
Loading Java Class Definitions . 7-13
Simplifying Java Class Names . 7-13
Locating Native Method Libraries . 7-14
Java Classes Contained in a JAR File 7-15

Creating and Using Java Objects . 7-16
Overview . 7-16
Constructing Java Objects . 7-16
Concatenating Java Objects . 7-19
Saving and Loading Java Objects to MAT-Files 7-20
Finding the Public Data Fields of an Object 7-21
Accessing Private and Public Data 7-22
Determining the Class of an Object 7-23

x Contents

Invoking Methods on Java Objects 7-25
Using Java and MATLAB Calling Syntax 7-25
Invoking Static Methods on Java Classes 7-27
Obtaining Information About Methods 7-28
Java Methods That Affect MATLAB Commands 7-32
How MATLAB Handles Undefined Methods 7-33
How MATLAB Handles Java Exceptions 7-34
Method Execution in MATLAB . 7-34

Working with Java Arrays . 7-35
Introduction . 7-35
How MATLAB Represents the Java Array 7-35
Creating an Array of Objects Within MATLAB 7-40
Accessing Elements of a Java Array 7-42
Assigning to a Java Array . 7-46
Concatenating Java Arrays . 7-49
Creating a New Array Reference . 7-50
Creating a Copy of a Java Array . 7-51

Passing Data to a Java Method . 7-53
Introduction . 7-53
Conversion of MATLAB Argument Data 7-53
Passing Built-In Data Types . 7-55
Passing String Arguments . 7-56
Passing Java Objects . 7-57
Other Data Conversion Topics . 7-60
Passing Data to Overloaded Methods 7-61

Handling Data Returned from a Java Method 7-64
Introduction . 7-64
Conversion of Java Return Data . 7-64
Built-In Data Types . 7-65
Java Objects . 7-65
Converting Objects to MATLAB Data Types 7-66

Introduction to Programming Examples 7-70

Example — Reading a URL . 7-71
Overview . 7-71
Description of URLdemo . 7-71
Running the Example . 7-72

xi

Example — Finding an Internet Protocol Address 7-74
Overview . 7-74
Description of resolveip . 7-74
Running the Example . 7-75

Example — Communicating Through a Serial Port . . . 7-76
Overview . 7-76
Setting Up the Java Environment . 7-77
Description of Serial Example . 7-77
Running the serialexample Program 7-80

Example — Creating and Using a Phone Book 7-82
Overview . 7-82
Description of Function phonebook 7-83
Description of Function pb_lookup . 7-88
Description of Function pb_add . 7-88
Description of Function pb_remove 7-89
Description of Function pb_change 7-90
Description of Function pb_listall . 7-91
Description of Function pb_display 7-92
Description of Function pb_keyfilter 7-92
Running the phonebook Program . 7-93

COM Support in MATLAB (Windows Only)

8
Introducing MATLAB COM Integration 8-3

What is COM? . 8-3
Concepts and Terminology . 8-3
The MATLAB COM Client . 8-6
The MATLAB COM Automation Server 8-7
Registering Controls and Servers . 8-7

Getting Started with COM . 8-9
Introduction . 8-9
Basic COM Functions . 8-9
Overview of MATLAB COM Client Examples 8-11
Example — Using Internet Explorer in a MATLAB

Figure . 8-12

xii Contents

Example — Grid ActiveX Control in a Figure 8-17
Example — Reading Data from Excel 8-24

Supported Client/Server Configurations 8-33
Introduction . 8-33
MATLAB Client and In-Process Server 8-33
MATLAB Client and Out-of-Process Server 8-34
COM Implementations Supported by MATLAB 8-35
Client Application and MATLAB Automation Server 8-35
Client Application and MATLAB Engine Server 8-37

MATLAB COM Client Support . 8-38
Creating the Server Process — An Overview 8-38
Creating an ActiveX Control . 8-39
Deploying ActiveX Controls Requiring Run-Time

Licenses . 8-47
Instantiating a DLL Component . 8-48
Instantiating an EXE Component . 8-49
Getting Interfaces to the Object . 8-50
Invoking Commands on a COM Object 8-53
Identifying Objects and Interfaces . 8-58
Invoking Methods . 8-59
Object Properties . 8-65
Control and Server Events . 8-75
Writing Event Handlers . 8-87
Saving Your Work . 8-92
Releasing COM Interfaces and Objects 8-93
Identifying Objects . 8-94
Handling COM Data in MATLAB . 8-95
Examples of MATLAB as an Automation Client 8-105
MATLAB COM Client Demo . 8-109

Additional COM Client Information 8-110
Using COM Collections . 8-110
Using MATLAB as a DCOM Client 8-111
MATLAB COM Support Limitations 8-111

MATLAB COM Automation Server Support 8-112
Introduction . 8-112
Creating the MATLAB Server . 8-112
Connecting to an Existing MATLAB Server 8-115

xiii

MATLAB Automation Server Functions and
Properties . 8-116
Introduction . 8-116
Executing Commands in the MATLAB Server 8-116
Date Data Type . 8-118
Exchanging Data with the Server . 8-119
Controlling the Server Window . 8-120
Terminating the Server Process . 8-120
Client-Specific Information . 8-120
Using the Visible Property . 8-121

Additional Automation Server Information 8-122
Creating the Server Manually . 8-122
Specifying a Shared or Dedicated Server 8-123
Using MATLAB as a DCOM Server 8-123

Examples of a MATLAB Automation Server 8-125
Example — Running an M-File from Visual Basic .NET . . 8-125
Example — Viewing Methods from a Visual Basic .NET

Client . 8-126
Example — Calling MATLAB from a Web Application . . . 8-126
Example — Calling MATLAB from a C# Client 8-129

Web Services in MATLAB

9
What Are Web Services in MATLAB? 9-2

Introduction . 9-2
Web Service Examples . 9-2
Understanding Data Type Conversions 9-5
Finding More Information About Web Services 9-6

Using Web Services in MATLAB . 9-7
Getting Started . 9-7
Building a Simple Web Service . 9-7

Building MATLAB Applications with Web Services . . . 9-11
Understanding Web Service Limitations 9-11
Programming with Web Services . 9-11

xiv Contents

Simple M-File Example . 9-12

Serial Port I/O

10
Introduction . 10-3

What Is the MATLAB Serial Port Interface? 10-3
Supported Serial Port Interface Standards 10-4
Supported Platforms . 10-4
Using the Examples with Your Device 10-4

Overview of the Serial Port . 10-5
Introduction . 10-5
What Is Serial Communication? . 10-5
The Serial Port Interface Standard 10-5
Connecting Two Devices with a Serial Cable 10-6
Serial Port Signals and Pin Assignments 10-7
Serial Data Format . 10-11
Finding Serial Port Information for Your Platform 10-16
Selected Bibliography . 10-18

Getting Started with Serial I/O . 10-19
Example: Getting Started . 10-19
The Serial Port Session . 10-19
Configuring and Returning Properties 10-21

Creating a Serial Port Object . 10-26
Overview of a Serial Port Object . 10-26
Configuring Properties During Object Creation 10-27
The Serial Port Object Display . 10-27
Creating an Array of Serial Port Objects 10-28

Connecting to the Device . 10-30

Configuring Communication Settings 10-31

Writing and Reading Data . 10-32
Before You Begin . 10-32

xv

Example — Introduction to Writing and Reading Data . . . 10-32
Controlling Access to the MATLAB Command Line 10-33
Writing Data . 10-34
Reading Data . 10-39
Example — Writing and Reading Text Data 10-45
Example — Parsing Input Data Using strread 10-47
Example — Reading Binary Data . 10-48

Events and Callbacks . 10-51
Introduction . 10-51
Example — Introduction to Events and Callbacks 10-51
Event Types and Callback Properties 10-52
Storing Event Information . 10-54
Creating and Executing Callback Functions 10-57
Enabling Callback Functions After They Error 10-58
Example — Using Events and Callbacks 10-58

Using Control Pins . 10-60
Properties of Serial Port Control Pins 10-60
Signaling the Presence of Connected Devices 10-60
Controlling the Flow of Data: Handshaking 10-63

Debugging: Recording Information to Disk 10-66
Introduction . 10-66
Recording Properties . 10-66
Example: Introduction to Recording Information 10-67
Creating Multiple Record Files . 10-67
Specifying a Filename . 10-68
The Record File Format . 10-68
Example: Recording Information to Disk 10-69

Saving and Loading . 10-72
Using save and load . 10-72
Using Serial Port Objects on Different Platforms 10-73

Disconnecting and Cleaning Up . 10-74
Disconnecting a Serial Port Object . 10-74
Cleaning Up the MATLAB Environment 10-74

Property Reference . 10-76
The Property Reference Page Format 10-76

xvi Contents

Serial Port Object Properties . 10-76

Properties — Alphabetical List . 10-80

Examples

A
Importing and Exporting Data . A-2

MATLAB Interface to Generic DLLs A-2

Calling C and Fortran Programs from MATLAB A-2

Creating C Language MEX-Files . A-2

Creating Fortran MEX-Files . A-3

Calling MATLAB from C and Fortran Programs A-3

Calling Java from MATLAB . A-4

COM Support . A-4

Serial Port I/O . A-4

Index

xvii

xviii Contents

1

Importing and Exporting
Data

Using MAT-Files (p. 1-2) Methods of importing and exporting
MATLAB® data, and MAT-file
routines that enable you to do this

Examples of MAT-Files (p. 1-11) Programs to create and read a
MAT-file in C and Fortran

Compiling and Linking MAT-File
Programs (p. 1-15)

Compiling and linking on Windows
and UNIX

1 Importing and Exporting Data

Using MAT-Files

In this section...

“Introduction” on page 1-2

“Importing Data to MATLAB” on page 1-2

“Exporting Data from MATLAB” on page 1-3

“Exchanging Data Files Between Platforms” on page 1-4

“Reading and Writing MAT-Files” on page 1-5

“Writing Character Data” on page 1-7

“Finding Associated Files” on page 1-8

Introduction
MAT-files, the data file format MATLAB uses for saving data to your disk,
provide a convenient mechanism for moving MATLAB data between platforms
and for importing and exporting data to stand-alone MATLAB applications.

To simplify your use of MAT-files in applications outside of MATLAB, we have
developed a library of access routines with a mat prefix that you can use in
your own C or Fortran programs to read and write MAT-files. Programs that
access MAT-files also use the mx prefixed API (application program interface)
routines discussed in Chapter 4, “Creating C Language MEX-Files” and
Chapter 5, “Creating Fortran MEX-Files”.

Importing Data to MATLAB
The best method for importing data into MATLAB depends on how much
data there is, whether the data is already in machine-readable form, and
what format the data is in. Here are some choices; select the one that best
meets your needs.

• Enter the data at the MATLAB command prompt.

For small amounts of data, less than 10-15 elements, type the data directly
into MATLAB using brackets []. This method is awkward for large
amounts of data because you can’t edit your input.

1-2

Using MAT-Files

• Create data in an M-file.

With a text editor, create an M-file to enter data as an explicit list
of elements. This method is useful when the data isn’t already in
computer-readable format and must be typed in. Use the editor to change
the data or correct mistakes, then rerun the M-file to reenter the data.

• Load data from an ASCII flat file.

A flat file stores data in ASCII format, with fixed-length rows terminated
by new lines (carriage returns) and with spaces separating the numbers.
Edit ASCII flat files using a text editor and use the load command to read
them directly into MATLAB. MATLAB creates a variable with the same
name as the filename.

• Read data using MATLAB I/O functions.

Use fopen, fread, and other low-level MATLAB I/O functions to read data.
This method allows you to load data files from applications that have their
own file formats.

• Write a MEX-file to read the data.

This is the method of choice if subroutines are available for reading data
files from other applications. See the section, “Introducing MEX-Files”
on page 3-2, for more information.

• Write a program to translate your data.

Write programs in C or Fortran to translate your data into MAT-file
format. Use the load command to read the MAT-file into MATLAB. Refer
to the section, “Reading and Writing MAT-Files” on page 1-5, for more
information.

Exporting Data from MATLAB
There are several methods for exporting MATLAB data.

• Create a diary file.

For small matrices, use the diary command to create a diary file, a log of
keyboard input and the resulting text output. You can use a text editor
to modify the file. The diary file displays the variables and includes
the MATLAB commands used during the session, which can be used in
documents and reports.

1-3

1 Importing and Exporting Data

• Use the save command.

Save data in ASCII format using the save command with the -ascii
option. For example,

A = rand(4,3);
save temp.dat A -ascii

creates an ASCII file called temp.dat, which may look something like this:

1.3889088e-001 2.7218792e-001 4.4509643e-001
2.0276522e-001 1.9881427e-001 9.3181458e-001
1.9872174e-001 1.5273927e-002 4.6599434e-001
6.0379248e-001 7.4678568e-001 4.1864947e-001

The -ascii option supports two-dimensional double and character
arrays only. Multidimensional arrays, cell arrays, and structures are not
supported.

• Use MATLAB I/O functions.

Write the data in a special format using fopen, fwrite, and other low-level
file I/O functions. This method is useful for writing data files in file formats
required by other applications. See the section, “Using Low-Level File I/O
Functions”, for more information.

• Create a MEX-file to write the data.

This is the method of choice if subroutines are available for writing data
files in the form needed by other applications. See the section, “Introducing
MEX-Files” on page 3-2, for more information.

• Translate data from a MAT-file.

Write data into a MAT-file using the save command, then write a program
in C or Fortran to translate the MAT-file into your own special format.
See the section, “Reading and Writing MAT-Files” on page 1-5, for more
information.

Exchanging Data Files Between Platforms
You can work with MATLAB on different computer systems and send
MATLAB applications to users on other systems. MATLAB applications
consist of M-files containing functions and scripts, and MAT-files containing
binary data.

1-4

Using MAT-Files

Both types of files can be transported directly between machines: M-files
because they are platform independent and MAT-files because they contain a
machine signature in the file header. MATLAB checks the signature when
it loads a file and, if a signature indicates that a file is foreign, performs the
necessary conversion.

Using MATLAB across different machine architectures requires a facility for
exchanging both binary and ASCII data between the machines. Examples
of this type of facility include FTP, NFS, and Kermit. When using these
programs, be careful to transmit MAT-files in binary file mode and M-files in
ASCII file mode. Failure to set these modes correctly corrupts the data.

Reading and Writing MAT-Files
Use the MATLAB save command to save MATLAB arrays currently in
memory to a binary file called a MAT-file. MAT-files have the extension .mat.
The load command reads MATLAB arrays from a MAT-file on disk back
into the MATLAB workspace.

A MAT-file contains one or more of the data types supported in MATLAB 5 or
later, including strings, matrices, multidimensional arrays, structures, and
cell arrays. MATLAB writes the data sequentially onto disk in a continuous
byte stream.

MAT-File Interface Library
The MAT-file interface library contains routines for reading and writing
MAT-files. You can call these routines from your own C and Fortran programs.
Use these routines, rather than attempt to write your own code, to perform
these operations, since using the library insulates your applications from
future changes to the MAT-file structure.

Functions in the MAT-file library begin with the three-letter prefix mat. These
tables list and describe the MAT-functions.

1-5

1 Importing and Exporting Data

C MAT-File Routines

MAT-Function Purpose

matOpen Open a MAT-file.

matClose Close a MAT-file.

matGetDir Get a list of MATLAB arrays from a
MAT-file.

matGetFp Get an ANSI C file pointer to a MAT-file.

matGetVariable Read a MATLAB array from a MAT-file.

matPutVariable Write a MATLAB array to a MAT-file.

matGetNextVariable Read the next MATLAB array from a
MAT-file.

matDeleteVariable Remove a MATLAB array from a MAT-file.

matPutVariableAsGlobal Put a MATLAB array into a MAT-file such
that the load command places it into the
global workspace.

matGetVariableInfo Load a MATLAB array header from a
MAT-file (no data).

matGetNextVariableInfo Load the next MATLAB array header from
a MAT-file (no data).

Fortran MAT-File Routines

MAT-Function Purpose

matOpen Open a MAT-file.

matClose Close a MAT-file.

matGetDir Get a list of MATLAB arrays from a
MAT-file.

matGetVariable Get a named MATLAB array from a
MAT-file.

matGetVariableInfo Get header for named MATLAB array from
a MAT-file.

1-6

Using MAT-Files

Fortran MAT-File Routines (Continued)

MAT-Function Purpose

matPutVariable Put a MATLAB array into a MAT-file.

matPutVariableAsGlobal Put a MATLAB array into a MAT-file.

matGetNextVariable Get the next sequential MATLAB array
from a MAT-file.

matGetNextVariableInfo Get header for next sequential MATLAB
array from a MAT-file.

matDeleteVariable Remove a MATLAB array from a MAT-file.

Writing Character Data
By default, MATLAB writes character data to MAT-files using Unicode
character encoding. To override this setting and use your system’s default
encoding instead, do one of the following:

• From the MATLAB command line or a MATLAB function, save your data
to the MAT-file using the command save -nounicode.

• From a C mex file, open the MAT-file you will write the data to using the
command matOpen -wL.

See the individual reference pages for these functions for more information.

You can also set a save preference for all MATLAB sessions. See MAT-Files
Preferences in the “General Preferences for MATLAB” section of the Desktop
Tools and Development Environment documentation for more information.

ASCII Data Formats
When writing character data using Unicode character encoding (the default),
MATLAB checks if the data is 7-bit ASCII. If it is, MATLAB writes the 7-bit
ASCII character data to the MAT-file using 8 bits per character (UTF-8
format), thus minimizing the size of the resulting file. Any character data
that is not 7-bit ASCII is written in 16-bit Unicode form (UTF-16). This
algorithm operates on a per-string basis.

1-7

1 Importing and Exporting Data

Note Level 4 MAT-files support only ASCII character data. If you have
non-ASCII character data, writing a Level 4 MAT-file is not supported. In
the event that a Level 4 MAT-file is created with such character data, it is
unlikely that the original representation of the characters will be preserved.

Converting Character Data
Writing character data to MAT-files using Unicode character encoding
enables you to share data with users that have systems with a different
default system character encoding scheme, without character data loss or
corruption. Although conversion between Unicode and other encoding forms
is often lossless, there are scenarios in which round-trip conversions can
result in loss of data. The following guidelines may reduce your chances of
data loss or corruption.

In order to prevent loss or corruption of character data, all users sharing the
data must have at least one of the following in common:

• They exchange Unicode-based MAT-files, and use a version of MATLAB
that supports these files.

• Their computer systems all use the same default encoding, and all
character data in the MAT-file was written using the -nounicode option

For example, if one user on a Japanese language operating system writes
ASCII data having more than 7 bits per character to a MAT-file, another user
running MATLAB version 6.5 on an English language operating system will
be unable to read the data accurately. However, if both have MATLAB version
7, the information can be shared without corruption or loss of data.

Finding Associated Files
A collection of files associated with reading and writing MAT-files is located
on your disk. The following table, MAT-Function Subdirectories, lists the
path to the required subdirectories for importing and exporting data using
MAT-functions. The term matlabroot refers to the root directory of your
MATLAB installation.

1-8

Using MAT-Files

MAT-Function Subdirectories

Platform Contents Directories

Include files matlabroot\extern\include

Libraries matlabroot\bin\win32 or
matlabroot\bin\win64

Windows

Examples matlabroot\extern\examples\eng_mat

Include files matlabroot/extern/include

Libraries matlabroot/bin/$arch

UNIX

Examples matlabroot/extern/examples/eng_mat

Include Files
The include subdirectory holds header files containing function declarations
with prototypes for the routines that you can access in the API Library. These
files are the same for both Windows and UNIX. Included in the subdirectory
are

• The matrix.h header file that defines MATLAB array access and creation
methods

• The mat.h header file that defines MAT-file access and creation methods

Libraries
The libraries subdirectory, that contains shared (dynamically linkable)
libraries for linking your programs, is platform dependent.

Shared Libraries on Windows. The bin subdirectory contains the shared
libraries for linking your programs:

• The libmat.dll library of MAT-file routines (C and Fortran)

• The libmx.dll library of array access and creation routines

Shared Libraries on UNIX. The bin/$arch subdirectory, where $arch is
your machine’s architecture, contains the shared libraries for linking your
programs. For example, on Solaris, the subdirectory is bin/sol64:

1-9

1 Importing and Exporting Data

• The libmat.so library of MAT-file routines (C and Fortran)

• The libmx.so library of array access and creation routines

Example Files
The examples/eng_mat subdirectory contains C and Fortran source code for a
number of example files that demonstrate how to use the MAT-file routines.
The source code files are the same for both Windows and UNIX.

C and Fortran Examples

Library Description

matcreat.c C program that demonstrates how to use the library
routines to create a MAT-file that can be loaded into
MATLAB

matdgns.c C program that demonstrates how to use the library
routines to read and diagnose a MAT-file

matdemo1.F Fortran program that demonstrates how to call the
MATLAB MAT-file functions from a Fortran program

matdemo2.F Fortran program that demonstrates how to use the library
routines to read the MAT-file created by matdemo1.F and
describe its contents

For more information about MATLAB API files and directories, see
“Additional Information” on page 3-43.

1-10

Examples of MAT-Files

Examples of MAT-Files

In this section...

“Creating a MAT-File in C” on page 1-11

“Reading a MAT-File in C” on page 1-12

“Creating a MAT-File in Fortran” on page 1-12

“Reading a MAT-File in Fortran” on page 1-13

Creating a MAT-File in C
This program, matcreat.c, illustrates how to use the library routines to
create a MAT-file that can be loaded into MATLAB. The program also
demonstrates how to check the return values of MAT-function calls for read or
write failures. To see the code, you can open the file in MATLAB Editor.

To produce an executable version of this program, compile the file and link
it with the appropriate library. Details of how to compile and link MAT-file
programs on various platforms are discussed in the section, “Compiling and
Linking MAT-File Programs” on page 1-15.

Once you have compiled and linked your MAT-file program, you can run
the stand-alone application you have just produced. This program creates
mattest.mat, a MAT-file that can be loaded into MATLAB. To run the
application, depending on your platform, either double-click its icon or enter
matcreat at the system prompt:

matcreat
Creating file mattest.mat...

To verify the MAT-file was created, at the MATLAB prompt type

whos -file mattest.mat
Name Size Bytes Class

GlobalDouble 3x3 72 double array (global)
LocalDouble 3x3 72 double array
LocalString 1x43 86 char array

1-11

1 Importing and Exporting Data

Grand total is 61 elements using 230 bytes

Reading a MAT-File in C
This program, matdgns.c, illustrates how to use the library routines to read
and diagnose a MAT-file. To see the code, you can open the file in MATLAB
Editor.

After compiling and linking this program, you can view its results:

matdgns mattest.mat
Reading file mattest.mat...

Directory of mattest.mat:
GlobalDouble
LocalString
LocalDouble

Examining the header for each variable:
According to its header, array GlobalDouble has 2 dimensions

and was a global variable when saved
According to its header, array LocalString has 2 dimensions

and was a local variable when saved
According to its header, array LocalDouble has 2 dimensions

and was a local variable when saved

Reading in the actual array contents:
According to its contents, array GlobalDouble has 2 dimensions

and was a global variable when saved
According to its contents, array LocalString has 2 dimensions

and was a local variable when saved
According to its contents, array LocalDouble has 2 dimensions

and was a local variable when saved
Done

Creating a MAT-File in Fortran
This program, matdemo1.F, creates the MAT-file, matdemo.mat. To see the
code, you can open the file in MATLAB Editor.

1-12

Examples of MAT-Files

Once you have compiled and linked your MAT-file program, you can run
the stand-alone application you have just produced. This program creates
a MAT-file, matdemo.mat, that can be loaded into MATLAB. To run the
application, depending on your platform, either double-click its icon or enter
matdemo1 at the system prompt:

matdemo1
Creating MAT-file matdemo.mat ...
Done creating MAT-file

To verify that the MAT-file has been created, at the MATLAB prompt enter

whos -file matdemo.mat
Name Size Bytes Class

Numeric 3x3 72 double array
String 1x33 66 char array

Grand total is 42 elements using 138 bytes

Note For an example of a Windows stand-alone program (not MAT-file
specific), see engwindemo.c in the matlabroot\extern\examples\eng_mat
directory.

Reading a MAT-File in Fortran
This program, matdemo2.F, illustrates how to use the library routines to read
the MAT-file created by matdemo1.F and describe its contents. To see the code,
you can open the file in MATLAB Editor.

After compiling and linking this program, you can view its results:

matdemo2
Directory of Mat-file:
String
Numeric
Getting full array contents:

1
Retrieved String

1-13

1 Importing and Exporting Data

With size 1-by- 33
3

Retrieved Numeric
With size 3-by- 3

1-14

Compiling and Linking MAT-File Programs

Compiling and Linking MAT-File Programs

In this section...

“Masking Floating Point Exceptions” on page 1-15

“Compiling and Linking on UNIX” on page 1-16

“Compiling and Linking on Windows” on page 1-18

“Required Files from Third-Party Sources” on page 1-18

“Working Directly with Unicode” on page 1-20

Masking Floating Point Exceptions
Certain mathematical operations can result in nonfinite values. For example,
division by zero results in the nonfinite IEEE value, inf. A floating-point
exception occurs when such an operation is performed. Because MATLAB
uses an IEEE model that supports nonfinite values such as inf and NaN,
MATLAB disables, or masks, floating-point exceptions.

Some compilers do not mask floating-point exceptions by default. This
causes MAT-file applications built with such compilers to terminate when
a floating-point exception occurs. Consequently, you need to take special
precautions when using these compilers to mask floating-point exceptions so
that your MAT-file application performs properly.

Note MATLAB-based applications should never get floating-point exceptions.
If you do get a floating-point exception, verify that any third-party libraries
that you link against do not enable floating-point exception handling.

The only compiler and platform on which you need to mask floating-point
exceptions is the Borland C++ compiler on Windows.

Borland C++ Compiler on Windows
To mask floating-point exceptions when using the Borland C++ compiler on
the Windows platform include the following at the beginning of your main()
or WinMain() function, before calling any MATLAB API functions:

1-15

1 Importing and Exporting Data

#include <float.h>
.
.
.

_control87(MCW_EM,MCW_EM);
.
.
.

Compiling and Linking on UNIX
Under UNIX at run-time, you must tell the system where the API shared
libraries reside. These sections provide the necessary UNIX commands,
depending on your shell and system architecture.

Setting Run-Time Library Path
Set the library path as follows for the C and Bourne shells. Replace the terms
envvar and pathspec with the appropriate values from the table below.

In the C shell, set the library path using the command

setenv envvar pathspec

In the Bourne shell, use

envvar = pathspec:envvar
export envvar

Operating
System envvar pathspec

Linux LD_LIBRARY_PATH matlabroot/bin/glnx86:
matlabroot/sys/os/glnx86

64-bit Linux LD_LIBRARY_PATH matlabroot/bin/glnxa64:
matlabroot/sys/os/glnxa64

64-bit Solaris
SPARC

LD_LIBRARY_PATH matlabroot/bin/sol64:
matlabroot/sys/os/sol64

1-16

Compiling and Linking MAT-File Programs

Operating
System envvar pathspec

Macintosh
(PPC)

DYLD_LIBRARY_PATH matlabroot/bin/mac:
matlabroot/sys/os/mac

Macintosh
(Intel)

DYLD_LIBRARY_PATH matlabroot/bin/maci:
matlabroot/sys/os/maci

For example, for the C shell on a Solaris system use:

setenv LD_LIBRARY_PATH
matlabroot/bin/sol64:matlabroot/sys/os/sol64

and for the Bourne shell:

LD_LIBRARY_PATH=matlabroot/bin/sol64:matlabroot/sys/os/sol64:$LD_LIBRARY_PATH

export LD_LIBRARY_PATH

You can place these commands in a startup script such as ~/.cshrc for C
shell or ~/.profile for Bourne shell.

Using the Options File
MATLAB provides an options file, matopts.sh, that lets you use the mex script
to easily compile and link MAT-file applications. For example, to compile and
link the matcreat.c example, first copy the file

matlabroot/extern/examples/eng_mat/matcreat.c

(where matlabroot is the MATLAB root directory) to a writable directory,
then use the following command to build it:

mex -f matlabroot/bin/matopts.sh matcreat.c

If you need to modify the options file for your particular compiler or platform,
use the -v switch to view the current compiler and linker settings and then
make the appropriate changes in a local copy of the matopts.sh file.

1-17

1 Importing and Exporting Data

Compiling and Linking on Windows
To compile and link Fortran or C MAT-file programs, use the mex
script with a MAT options file. The MAT options files reside in
matlabroot\bin\win32\mexopts or matlabroot\bin\win64\mexopts and
are named *engmatopts.bat, where * represents the compiler type and
version.

For example, to compile and link the stand-alone MAT application matcreat.c
using MSVC Version 7.1 on Windows, first copy the file

matlabroot\extern\examples\eng_mat\matcreat.c

(where matlabroot is the MATLAB root directory) to a directory that is
writable, and then use the following command to build it:

mex -f matlabroot\bin\win32\mexopts\msvc71engmatopts.bat matcreat.c

If you need to modify the options file for your particular compiler, use the -v
switch to view the current compiler and linker settings and then make the
appropriate changes in a local copy of the options file.

Required Files from Third-Party Sources
MATLAB requires the following data and library files for building any
MAT-file application. You must also distribute these files along with any
MAT-file application that you deploy to another system.

Third-Party Data Files
When building a MAT-file application on your system or deploying a MAT-file
application to some other system, make sure that the appropriate Unicode
data file is installed in the matlabroot/bin/$ARCH directory. MATLAB uses
this file to support Unicode.

For systems that order bytes in a big-endian manner, use icudt32b.dat.

For systems that order bytes in a little-endian manner, use icudt32l.dat.

1-18

Compiling and Linking MAT-File Programs

Third-Party Libraries
When building a MAT-file application on your system or deploying a MAT-file
application to some other system, make sure that the appropriate libraries
are installed in the matlabroot/bin/$ARCH directory:

On Windows On UNIX On Intel-based
Macintosh

libmat.dll libmat.so libmat.dylib

libmx.dll libmx.so libmx.dylib

In addition to these libraries, you must also have all third-party library files
that libmat depends on. MATLAB uses these additional libraries to support
Unicode character encoding and data compression in MAT-files. These library
files must reside in the same directory as libmx.

You can determine what most of these libraries are using the platform-specific
methods described below.

On Linux or Solaris Systems
Type the following command:

ldd -d libmat.so

On Macintosh Systems
Type the following command:

otool -L libmat.dylib

On Windows Systems
Download the Dependency Walker utility from the following Web site:

http://www.dependencywalker.com/

and then drag and drop the file matlabroot/bin/win32/libmat.dll or
matlabroot/bin/win64/libmat.dll into Depends window. (matlabroot
represents the MATLAB root directory).

1-19

http://www.dependencywalker.com/%0D

1 Importing and Exporting Data

Working Directly with Unicode
If you need to manipulate Unicode text directly in your application, the latest
version of International Components for Unicode (ICU) is freely available
online from the IBM Corporation Web site at

http://icu.sourceforge.net/download

1-20

http://icu.sourceforge.net/download

2

MATLAB Interface to
Generic DLLs

A shared library is a collection of functions that are available for use by one or
more applications running on a system. MATLAB supports dynamic linking of
external libraries on 32-bit MS-Windows systems and on 32-bit Linux systems.

You precompile the library into a dynamic link library file (.dll) on Windows,
a shared object file (.so) on UNIX and Linux, or a dynamic shared library
(.dylib) on Intel-based Macintosh. At run-time, the library is loaded into
memory and made accessible to all applications. The MATLAB Interface to
Generic DLLs enables you to interact with functions in dynamic link libraries
directly from MATLAB.

This chapter covers the following topics:

Overview (p. 2-3) Describes how to call functions in
external, shared libraries (.dll, .so,
and .dylib files) from MATLAB.

Loading and Unloading the Library
(p. 2-4)

Describes functions to use in loading
the library into MATLAB memory
and later releasing that memory.

Getting Information About the
Library (p. 2-6)

Shows several ways of obtaining
information about the functions
contained in a library.

Invoking Library Functions (p. 2-9) Tells you how to make a call to any
function in the library.

2 MATLAB Interface to Generic DLLs

Passing Arguments (p. 2-10) Explains how to construct MATLAB
arguments that are compatible with
the argument types found in the
library functions.

Data Conversion (p. 2-15) Describes how to convert MATLAB
data to C data types when you need
to do the conversion manually.

2-2

Overview

Overview
C programs built into external, shared libraries are accessed by MATLAB
through a command-line interface. This interface gives you the ability to
load an external library into MATLAB memory space and then access any of
the functions defined therein. Although data types differ between the two
language environments, in most cases you can pass MATLAB types to the C
functions without having to do the work of conversion. MATLAB does this
for you.

Note The MATLAB Generic Shared Library interface does not support
library functions that have function pointer inputs because there is no way to
write a MATLAB function that is compatible with a C function pointer.

This interface also supports libraries containing functions programmed in
languages other than C, provided that the functions have a C interface. For
example, it is possible to call a Visual Basic 6.0 DLL using loadlibrary;
however, you must create a C header file for the library. The ActiveX interface
might be simpler to use for this reason. See “Introducing MATLAB COM
Integration” on page 8-3 for more information on ActiveX.

2-3

2 MATLAB Interface to Generic DLLs

Loading and Unloading the Library

In this section...

“Using a Shared Library” on page 2-4

“Loading the Library” on page 2-4

“Unloading the Library” on page 2-5

Using a Shared Library
To give MATLAB access to external functions in a shared library, you must
first load the library into memory. Once loaded, you can request information
about any of the functions in the library and call them directly from MATLAB.
When the library is no longer needed, unload it from memory to conserve
memory usage.

Loading the Library
To load a shared library into MATLAB, use the loadlibrary function. The
syntax for loadlibrary is

loadlibrary('shrlib', 'hfile')

where shrlib is the filename for the shared library file, and hfile is the
filename for the header file that contains the function prototypes. See the
reference page for loadlibrary for variations in the syntax that you can use
and information on library file extensions.

Note The header file provides signatures for the functions in the library and
is a required argument for loadlibrary.

As an example, you can use loadlibrary to load the libmx library that
defines the MATLAB mx routines. The first statement below forms the
directory specification for the matrix.h header file for the mx routines. The
second loads the library from libmx (note the file extension is platform
dependent), also specifying the header file:

2-4

Loading and Unloading the Library

hfile = [matlabroot '\extern\include\matrix.h'];
loadlibrary('libmx', hfile)

There are also several optional arguments that you can use with loadlibrary.
See the loadlibrary reference page for more information.

Unloading the Library
To unload the library and free up the memory that it occupied, use the
unloadlibrary function. For example:

unloadlibrary libmx

2-5

2 MATLAB Interface to Generic DLLs

Getting Information About the Library

In this section...

“Introduction” on page 2-6

“Listing Functions” on page 2-6

“Viewing Functions in a GUI Interface” on page 2-7

Introduction
You can use these functions to get information on the functions available in a
library that you have loaded:

libfunctions('libname')
libfunctionsview('libname')

The main difference is that libfunctions displays the information in the
MATLAB Command Window (and you can assign its output to a variable),
and libfunctionsview displays the information as a graphical display in a
new window.

Listing Functions
To see what functions are available in the libmx library, use libfunctions,
specifying the library filename as the only argument. Note that you can use
the MATLAB command syntax (with no parentheses or quotes required) when
specifying no output variables:

libfunctions libmx

Functions in library libmx:

mxAddField mxGetFieldNumber mxIsLogicalScalarTrue

mxArrayToString mxGetImagData mxIsNaN

mxCalcSingleSubscript mxGetInf mxIsNumeric

mxCalloc mxGetIr mxIsObject

mxClearScalarDoubleFlag mxGetJc mxIsOpaque

mxCreateCellArray mxGetLogicals mxIsScalarDoubleFlagSet

. . .

2-6

Getting Information About the Library

. . .

. . .

To list the functions along with their signatures, use the -full switch with
libfunctions. This shows the MATLAB syntax for calling functions written
in C. The data types used in the argument lists and return values match
MATLAB types, not C types. See the section “Data Conversion” on page 2-15
for more information on these data types.

libfunctions libmx -full

Functions in library libmx:

[int32, MATLAB array, cstring] mxAddField(MATLAB array, cstring)

[cstring, MATLAB array] mxArrayToString(MATLAB array)

[int32, MATLAB array, int32Ptr] mxCalcSingleSubscript(MATLAB array, int32, int32Ptr)

lib.pointer mxCalloc(uint32, uint32)

MATLAB array mxClearScalarDoubleFlag(MATLAB array)

[MATLAB array, int32Ptr] mxCreateCellArray(int32, int32Ptr)

MATLAB array mxCreateCellMatrix(int32, int32)

.

.

.

Viewing Functions in a GUI Interface
The libfunctionsview function creates a new window that displays all of
the functions defined in a specific library. For each method, the following
information is shown.

Heading Description

Return Type Data types that the method returns

Name Function name

Arguments Valid data types for input arguments

Inherited From Not relevant for shared library functions

2-7

2 MATLAB Interface to Generic DLLs

The following command opens the window shown below for the libmx library:

libfunctionsview libmx

As was true for the libfunctions function, the data types displayed here are
MATLAB types. See the section “Data Conversion” on page 2-15 for more
information on these data types.

2-8

Invoking Library Functions

Invoking Library Functions
Once a shared library has been loaded into MATLAB, use the calllib
function to call any of the functions from that library. Specify the library
name, function name, and any arguments that get passed to the function:

calllib('libname', 'funcname', arg1, ..., argN)

This example calls functions from the libmx library to test the value stored
in y.

hfile = [matlabroot '\extern\include\matrix.h'];
loadlibrary('libmx', hfile)

y = rand(4, 7, 2);

calllib('libmx', 'mxGetNumberOfElements', y)
ans =

56

calllib('libmx', 'mxGetClassID', y)
ans =

mxDOUBLE_CLASS

See the section “Passing Arguments” on page 2-10 for information on how to
define the argument types.

2-9

2 MATLAB Interface to Generic DLLs

Passing Arguments

In this section...

“Displaying MATLAB Syntax for Library Functions” on page 2-10

“General Rules for Passing Arguments” on page 2-11

“Passing References” on page 2-12

“Passing a NULL Pointer” on page 2-13

“Using C++ Libraries” on page 2-13

Displaying MATLAB Syntax for Library Functions
A sample external library called shrlibsample is supplied with MATLAB.
The library file for the shrlibsample library resides in the directory
extern\examples\shrlib. MATLAB selects the appropriate version for your
platform. The mexext function returns the file extension that is used on your
platform. See the mex function for a list of all extensions used by MATLAB.

To use the shrlibsample library, you first need to either add this directory to
your MATLAB path with the command

addpath([matlabroot '\extern\examples\shrlib'])

or make this your current working directory with the command,

cd([matlabroot '\extern\examples\shrlib'])

The following example loads the shrlibsample library and displays the
MATLAB syntax for calling functions that come with the library:

loadlibrary shrlibsample shrlibsample.h
libfunctions shrlibsample -full

Functions in library shrlibsample:

[double, doublePtr] addDoubleRef(double, doublePtr, double)
double addMixedTypes(int16, int32, double)
[double, c_structPtr] addStructByRef(c_structPtr)
double addStructFields(c_struct)

2-10

Passing Arguments

c_structPtrPtr allocateStruct(c_structPtrPtr)
voidPtr deallocateStruct(voidPtr)
doublePtr multDoubleArray(doublePtr, int32)
[lib.pointer, doublePtr] multDoubleRef(doublePtr)
int16Ptr multiplyShort(int16Ptr, int32)
cstring readEnum(Enum1)
[cstring, cstring] stringToUpper(cstring)

While these functions are all written in C, libfunctions with the full
option displays the MATLAB syntax for calling the C functions.

See “Primitive Types” on page 2-15 for a table of extended MATLAB data
types (e.g., doublePtr).

General Rules for Passing Arguments
There are some important things to note about the input and output
arguments shown in the function listing of the previous section:

• Many of the arguments (like int32, double) are very similar to their C
counterparts. In these cases, you need only to pass in the MATLAB data
types shown for these arguments.

• Some arguments in C (like **double, or predefined structures), are quite
different from standard MATLAB data types. In these cases, you usually
have the option of either passing a standard MATLAB type and letting
MATLAB convert it for you, or converting the data yourself using MATLAB
functions like libstruct and libpointer. See the next section on “Data
Conversion” on page 2-15.

• C input arguments are often passed by reference. Although MATLAB does
not support passing by reference, you can create MATLAB arguments
that are compatible with C references. In the listing shown above, these
are the arguments with names ending in Ptr and PtrPtr. See “Creating
References” on page 2-26.

• C functions often return data in input arguments passed by reference.
MATLAB creates additional output arguments to return these values. Note
that in the listing in the previous section, all input arguments ending in
Ptr or PtrPtr are also listed as outputs.

2-11

2 MATLAB Interface to Generic DLLs

General Guidelines for Passing Arguments

• Nonscalar arguments must be declared as passed by reference in the
library functions.

• If the library function uses single subscript indexing to reference a two-
dimensional matrix, keep in mind that C programs process matrices row by
row while MATLAB processes matrices by column. To get C behavior from
the function, transpose the input matrix before calling the function, and
then transpose the function output.

• When passing an array having more than two dimensions, the shape of the
array might be altered by MATLAB. To ensure that the array retains its
shape, store the size of the array before making the call, and then use this
same size to reshape the output array to the correct dimensions:

vs = size(vin) % Store the original dimensions
vs =

2 5 2

vout = calllib('shrlibsample','multDoubleArray', vin, 20);

size(vout) % Dimensions have been altered
ans =

2 10

vout = reshape(vout, vs); % Restore the array to 2-by-5-by-2

size(vout)
ans =

2 5 2

• Use an empty array, [], to pass a NULL parameter to a library function
that supports optional input arguments. This is valid only when the
argument is declared as a Ptr or PtrPtr as shown by libfunctions or
libfunctionsview.

Passing References
Many functions in external libraries use arguments that are passed by
reference. To enable you to interact with these functions, MATLAB passes
what is called a pointer object to these arguments. This should not be confused

2-12

Passing Arguments

with “passing by reference” in the typical sense of the term. See “Creating
References” on page 2-26 for more information.

Passing a NULL Pointer
You can create a NULL pointer to pass to library functions in the following ways:

• Pass a 0 as the argument.

• Use the libpointer function:

p = libpointer; % no arguments

p = libpointer('string') % string argument

p = libpointer('stringPtr') % pointer to a string argument

• Use the libstruct function:

p = libstruct; % no arguments

Using C++ Libraries
The loadlibrary function cannot load C++ libraries unless you define the
function prototypes as extern "C" in the library header file. For example,
the following function prototype from the file mex.h shows the syntax to use
for each function:

#ifdef __cplusplus
extern "C" {
#endif
void mexFunction(

int nlhs,
mxArray *plhs[],
int nrhs,
const mxArray *prhs[]

);
#ifdef __cplusplus
}
#endif

2-13

2 MATLAB Interface to Generic DLLs

Another approach to using C++ libraries is to generate a prototype M-file
that contain aliases for the mangled C++ function names. Use the original
(premangled) function names as the aliases for the C++ functions. Generate
the M-file with the mfilename option of the loadlibrary function and then
determine which functions in the library you want to make available by
defining aliases for these functions.

2-14

Data Conversion

Data Conversion

In this section...

“When to Convert Manually” on page 2-15

“Primitive Types” on page 2-15

“Enumerated Types” on page 2-19

“Structures” on page 2-20

“Creating References” on page 2-26

“Reference Pointers” on page 2-34

When to Convert Manually
Under most conditions, data passed to and from external library functions
is automatically converted by MATLAB to the data type expected by the
external function. However, you may choose, at times, to convert some of
your argument data manually. Circumstances under which you might find
this advantageous are

• When you pass the same piece of data to a series of library functions, it
probably makes more sense to convert it once manually at the start rather
than having MATLAB convert it automatically on every call. This saves
time on unnecessary copy and conversion operations.

• When you pass large structures, you can save memory by creating MATLAB
structures that match the shape of the C structures used in the external
function instead of using generic MATLAB structures. The libstruct
function creates a MATLAB structure modeled from a C structure taken
from the library. See “Structures” on page 2-20 for more information.

• When an argument to an external function uses more than one level
of referencing (e.g., double **), you must pass a reference that you
have constructed using the libpointer function rather than relying on
MATLAB to convert the data type automatically.

Primitive Types
All standard scalar C data types are supported by the shared library interface.
These are shown in the two tables below along with their equivalent MATLAB

2-15

2 MATLAB Interface to Generic DLLs

types. MATLAB uses the type from the right column for arguments having
the C type shown in the left column.

The second table shows extended MATLAB types in the right column. These
are instances of the MATLAB lib.pointer class rather than standard
MATLAB data types. See “Creating References” on page 2-26 for information
on the lib.pointer class.

MATLAB Primitive Types

C Type (on a 32-bit computer) Equivalent MATLAB Type

char, byte int8

unsigned char, byte uint8

short int16

unsigned short uint16

int, long int32

unsigned int, unsigned long uint32

float single

double double

char * cstring (1xn char array)

*char[] cell array of strings

MATLAB Extended Types

C Type (on a 32-bit computer) Equivalent MATLAB Type

integer pointer types (int *) (u)int(size)Ptr

Null-terminated string passed by
value

cstring

Null-terminated string passed by
reference (from a libpointer only)

stringPtr

Array of pointers to strings (or one
**char)

stringPtrPtr

2-16

Data Conversion

MATLAB Extended Types (Continued)

C Type (on a 32-bit computer) Equivalent MATLAB Type

Matrix of signed bytes int8Ptr

float * singlePtr

double * doublePtr

mxArray * MATLAB array

void * voidPtr

void ** voidPtrPtr

type ** Same as typePtr with an
added Ptr (e.g., double **
is doublePtrPtr)

Converting to Other Primitive Types
For primitive types, MATLAB automatically converts any argument to the
data type expected by the external function. This means that you can pass
a double to a function that expects to receive a byte (8-bit integer) and
MATLAB does the conversion for you.

For example, the C function shown here takes arguments that are of types
short, int, and double:

double addMixedTypes(short x, int y, double z)
{

return (x + y + z);
}

You can simply pass all of the arguments as type double from MATLAB.
MATLAB determines what type of data is expected for each argument and
performs the appropriate conversions:

calllib('shrlibsample', 'addMixedTypes', 127, 33000, pi)
ans =

3.3130e+004

2-17

2 MATLAB Interface to Generic DLLs

Converting to a Reference
MATLAB also automatically converts an argument passed by value into an
argument passed by reference when the external function prototype defines
the argument as a reference. So a MATLAB double argument passed to
a function that expects double * is converted to a double reference by
MATLAB.

addDoubleRef is a C function that takes an argument of type double *:

double addDoubleRef(double x, double *y, double z)
{

return (x + *y + z);
}

Call the function with three arguments of type double, and MATLAB handles
the conversion:

calllib('shrlibsample', 'addDoubleRef', 1.78, 5.42, 13.3)
ans =

20.5000

Strings
For arguments that require char *, you can pass a MATLAB string (i.e.,
character array).

For example, the following C function takes a char * input argument:

char* stringToUpper(char *input) {
char *p = input;

if (p != NULL)
while (*p!=0)

*p++ = toupper(*p);
return input;

}

libfunctions shows that you can use a MATLAB cstring for this input.

libfunctions shrlibsample -full
.

2-18

Data Conversion

.
[cstring, cstring] stringToUpper(cstring)

Create a MATLAB character array, str, and pass it as the input argument:

str = 'This was a Mixed Case string';
calllib('shrlibsample', 'stringToUpper', str)
ans =

THIS WAS A MIXED CASE STRING

Note Although the input argument that MATLAB passes to stringToUpper
resembles a reference to type char, it is not a true reference data type. That
is, it does not contain the address of the MATLAB character array, str. So,
when the function executes, it returns the correct result but does not modify
the value in str. If you now examine str, you find that its original value is
unchanged:

str

str =

This was a Mixed Case string

Enumerated Types
For arguments defined as C enumerated types, you can pass either the
enumeration string or its integer equivalent.

The readEnum function from the shrlibsample library returns the
enumeration string that matches the argument passed in. Here is the Enum1
definition and the readEnum function in C:

2-19

2 MATLAB Interface to Generic DLLs

enum Enum1 {en1 = 1, en2, en4 = 4} TEnum1;

char* readEnum(TEnum1 val) {
switch (val) {
case 1 :return "You chose en1";
case 2: return "You chose en2";
case 4: return "You chose en4";
default : return "enum not defined";
}

}

In MATLAB, you can express an enumerated type as either the enumeration
string or its equivalent numeric value. The TEnum1 definition above declares
enumeration en4 to be equal to 4. Call readEnum first with a string:

calllib('shrlibsample', 'readEnum', 'en4')
ans =

You chose en4

Now call it with the equivalent numeric argument, 4:

calllib('shrlibsample', 'readEnum', 4)
ans =

You chose en4

Structures
For library functions that take structure arguments, you need to pass
structures that have field names that are the same as those in the structure
definitions in the library. To determine the names and also the data types
of structure fields, you can:

• Consult the documentation that was provided with the library.

• Look for the structure definition in the header file that you used to load
the library into MATLAB.

When you create and initialize the structure, you do not necessarily have to
match the data types of numeric fields. MATLAB converts to the correct
numeric type for you when you make the call using the calllib function.

2-20

Data Conversion

Finding Field Names From MATLAB
You can also determine the field names of an externally defined structure
from within MATLAB using the following procedure:

1 Use libfunctionsview to display the signatures for all functions in the
library. libfunctionsview shows the names of the structures used by each
function. For example, when you type

libfunctionsview shrlibsample

MATLAB opens a new window displaying function signatures for the
shrlibsample library. The line showing the addStructFields function
reads:

double addStructFields (c_struct)

2 If the function you are using takes a structure argument, get the structure
type from the libfunctionsview display, and invoke the libstruct
function on that type. libstruct returns an object that is modeled on the
structure as defined in the library:

s = libstruct('c_struct');

3 Get the names of the structure fields from the object returned by libstruct:

get(s)
p1: 0
p2: 0
p3: 0

4 Initialize the fields to the values you want to pass to the library function
and make the call using calllib:

s.p1 = 476; s.p2 = -299; s.p3 = 1000;
calllib('shrlibsample','addStructFields',s);

Specifying Structure Field Names
Here are a few general guidelines that apply to structures passed to external
library functions:

2-21

2 MATLAB Interface to Generic DLLs

• These structures can contain fewer fields than defined in the library
structure. MATLAB sets any undefined or uninitialized fields to zero.

• Any structure field name that you use must match a field name in the
structure definition. Structure names are case sensitive.

• Structures cannot contain additional fields that are not in the library
structure definition.

Passing a MATLAB Structure
As with other data types, when an external function takes a structure
argument (such as a C structure), you can pass a MATLAB structure to the
function in its place. Structure field names must match field names defined in
the library, but data types for numeric fields do not have to match. MATLAB
converts each numeric field of the MATLAB structure to the correct data type.

Example of Passing a MATLAB Structure. The sample shared library,
shrlibsample, defines the following C structure and function:

struct c_struct {
double p1;
short p2;
long p3;

};

double addStructFields(struct c_struct st)
{

double t = st.p1 + st.p2 + st.p3;
return t;

}

The following code passes a MATLAB structure, sm, with three double fields
to addStructFields. MATLAB converts the fields to the double, short, and
long data types defined in the C structure, c_struct.

sm.p1 = 476; sm.p2 = -299; sm.p3 = 1000;

calllib('shrlibsample', 'addStructFields', sm)
ans =

1177

2-22

Data Conversion

Passing a libstruct Object
When you pass a structure to an external function, MATLAB makes sure that
the structure being passed matches the library’s definition for that structure
type. It must contain all the necessary fields defined for that type and each
field must be of the expected data type. For any fields that are missing in the
structure being passed, MATLAB creates an empty field of that name and
initializes its value to zero. For any fields that have a data type that doesn’t
match the structure definition, MATLAB converts the field to the expected
type.

When working with small structures, it is efficient enough to have MATLAB
do this work for you. You can pass the original MATLAB structure with
calllib and let MATLAB handle the conversions automatically. However,
when working with repeated calls that pass one or more large structures, it
may be to your advantage to convert the structure manually before making
any calls to external functions. In this way, you save processing time by
converting the structure data only once at the start rather than at each
function call. You can also save memory if the fields of the converted structure
take up less space than the original MATLAB structure.

Preconverting a MATLAB Struct with libstruct. You can convert a
MATLAB structure to a C-like structure derived from a specific type definition
in the library in one step. Call the libstruct function, passing in the name of
the structure type from the library, and the original structure from MATLAB.
The syntax for libstruct is

s = libstruct('structtype', mlstruct)

The value s returned by this function is called a libstruct object. Although it is
truly a MATLAB object, it handles much like a MATLAB structure. The fields
of this new “structure” are derived from the external structure type specified
by structtype in the syntax above.

For example, to convert a MATLAB structure, sm, to a libstruct object, sc,
that is derived from the c_struct structure type, use

sm.p1 = 476; sm.p2 = -299; sm.p3 = 1000;
sc = libstruct('c_struct', sm);

2-23

2 MATLAB Interface to Generic DLLs

The original structure, sm, has fields that are all of type double. The object,
sc, returned from the libstruct call has fields that match the c_struct
structure type. These fields are double, short, and long.

Note You can only use libstruct on scalar structures.

Creating an Empty libstruct Object. You can also create an empty libstruct
object by calling libstruct with only the structtype argument. This
constructs an object with all the required fields and with each field initialized
to zero.

s = libstruct('structtype')

libstruct Requirements for Structures. When converting a MATLAB
structure to a libstruct object, the structure to be converted must adhere to
the same guidelines that were documented for MATLAB structures passed
directly to external functions. See “Specifying Structure Field Names” on
page 2-21.

Using the Structure as an Object
The value returned by libstruct is not a true MATLAB structure. It is
actually an instance of a class called lib.c_struct, as seen by examining
the output of whos:

whos sc
Name Size Bytes Class

sc 1x1 lib.c_struct
sm 1x1 396 struct array

Grand total is 7 elements using 396 bytes

2-24

Data Conversion

Determining the Size of a lib.c_struct Object. You can use the
lib.c_struct class method structsize to obtain the size of a lib.c_struct
object:

sc.structsize
ans =

16

Accessing lib.c_struct Fields. The fields of this structure are implemented
as properties of the lib.c_struct class. You can read and modify any of these
fields using the MATLAB object-oriented functions, set and get:

sc = libstruct('c_struct');

set(sc, 'p1', 100, 'p2', 150, 'p3', 200);

get(sc)
p1: 100
p2: 150
p3: 200

You can also read and modify the fields by simply treating them like any
other MATLAB structure fields:

sc.p1 = 23;

sc.p1
ans =

23

Example of Passing a libstruct Object
Repeat the addStructFields example, this time converting the structure to
one of type c_struct before calling the function:

sm.p1 = 476; sm.p2 = -299; sm.p3 = 1000;
sc = libstruct('c_struct', sm);

get(sc)
p1: 476
p2: -299

2-25

2 MATLAB Interface to Generic DLLs

p3: 1000

Now call the function, passing the structure sc:

calllib('shrlibsample', 'addStructFields', sc)
ans =

1177

Note When passing manually converted structures, the structure passed
must be of the same type as that used by the external function. For example,
you cannot pass a structure of type records to a function that expects type
c_struct.

Creating References
You can pass most arguments to an external function by value, even when
the prototype for that function declares the argument to be a reference.
The calllib function uses the header file to determine how to convert the
function arguments.

There are times, however, when it is useful to pass MATLAB arguments that
are the equivalent of C references:

• You want to modify the data in the input arguments.

• You are passing large amounts of data, and you don’t want MATLAB to
make copies of the data.

• The library is going to store and use the pointer for a period of time so it is
better to give the M-code control over the lifetime of the pointer object.

In the cases above, you should use libpointer to construct a pointer object
of a specified type (for structures use libstruct).

Constructing a Reference with the libpointer Function
To construct a reference, use the function libpointer with this syntax:

p = libpointer('type', 'value')

2-26

Data Conversion

To give an example, create a pointer pv to an int16 value. In the first
argument to libpointer, enter the type of pointer you are creating. The type
is always the data type (int16, in this case) suffixed by the letters Ptr:

v = int16(485);
pv = libpointer('int16Ptr', v);

The value returned, pv, is actually an instance of a MATLAB class called
lib.pointer. The lib.pointer class has the properties Value and DataType.
You can read and modify these properties with the MATLAB get and set
functions:

get(pv)
Value: 485

DataType: 'int16Ptr'

The lib.pointer class also has two methods, setdatatype and reshape, that
are described in the next section, “Obtaining the Function’s Return Values”
on page 2-28:

methods(pv)

Methods for class lib.pointer:
disp plus reshape setdatatype

Creating a Reference to a Primitive Type
Here is a simple example that illustrates how to construct and pass a
pointer to type double, and how to interpret the output data. The function
multDoubleRef takes one input that is a reference to a double and returns
the same.

Here is the C function:

double *multDoubleRef(double *x)
{

*x *= 5;
return x;

}

2-27

2 MATLAB Interface to Generic DLLs

Construct a reference, xp, to input data, x, and verify its contents:

x = 15;
xp = libpointer('doublePtr', x);

get(xp)
Value: 15

DataType: 'doublePtr'

Now call the function and check the results:

calllib('shrlibsample', 'multDoubleRef', xp);

get(xp, 'Value')
ans =

75

Note It is important to note that reference xp is not a true pointer as it would
be in a language like C. That is, even though it was constructed as a reference
to x, it does not contain the address of x. So, when the function executes, it
modifies the Value property of xp, but it does not modify the value in x. If you
now examine x, you find that its original value is unchanged:

x

x =

15

Obtaining the Function’s Return Values. In the last example, the result
of the function called from MATLAB could be obtained by examining the
modified input reference. But this function also returns data in its output
arguments that may be useful.

The MATLAB prototype for this function (returned by libfunctions -full)
indicates that MATLAB returns two outputs. The first is an object of class
lib.pointer; the second is the Value property of the doublePtr input
argument:

2-28

Data Conversion

libfunctions shrlibsample -full
[lib.pointer, doublePtr] multDoubleRef(doublePtr)

Run the example once more, but this time check the output values returned:

x = 15;
xp = libpointer('doublePtr', x);

[xobj, xval] = calllib('shrlibsample', 'multDoubleRef', xp)
xobj =

lib.pointer
xval =

75

Like the input reference argument, the first output, xobj, is an object of class
lib.pointer. You can examine this output, but first you need to initialize
its data type and size as these factors are undefined when returned by the
function. Use the setdatatype method defined by class lib.pointer to set
the data type to doublePtr and the size to 1-by-1. Once initialized, you can
examine outputs.

The first output is xobj:

setdatatype(xobj, 'doublePtr', 1, 1)

get(xobj)
ans =

Value: 75
DataType: 'doublePtr'

The second output, xval, is a double copied from the Value of input xp.

Creating a Reference by Offsetting from an Existing libpointer. You
can use the plus operator (+) to create a new pointer that is offset from an
existing pointer by a scalar numeric value. Note that this operation applies
only to pointer of numeric data types. For example, suppose you create a
libpointer to the vector x:

2-29

2 MATLAB Interface to Generic DLLs

x = 1:10;
xp = libpointer('doublePtr',x);
xp.Value
ans =

1 2 3 4 5 6 7 8 9 10

You can now use the plus operator to create a new libpointer that is offset
from the xp:

xp2 = xp+4;
xp2.Value

ans =

5 6 7 8 9 10

Note that the new pointer (xp2 in this example) is valid only as long as the
original pointer exists.

Creating a Structure Reference
Creating a reference argument to a structure is not much different than using
a reference to a primitive type. The function shown here takes a reference to a
structure of type c_struct as its only input. It returns an output argument
that is the sum of all fields in the structure. It also modifies the fields of
the input argument:

double addStructByRef(struct c_struct *st)
{

double t = st->p1 + st->p2 + st->p3;
st->p1 = 5.5;
st->p2 = 1234;
st->p3 = 12345678;
return t;

}

2-30

Data Conversion

Passing the Structure Itself. Although this function expects to receive
a structure reference input, it is easier to pass the structure itself and let
MATLAB do the conversion to a reference. This example passes a MATLAB
structure, sm, to the function addStructByRef. MATLAB returns the correct
value in the output, x, but does not modify the contents of the input, sm, since
sm is not a reference:

sm.p1 = 476; sm.p2 = -299; sm.p3 = 1000;

x = calllib('shrlibsample', 'addStructByRef', sm)
x =

1177

Passing a Structure Reference. The second part of this example passes
the structure by reference. This time, the function receives a pointer to the
structure and is then able to modify the structure fields.

sp = libpointer('c_struct', sm);
calllib('shrlibsample', 'addStructByRef', sp)
ans =

1177

get(sp, 'Value')
ans =

p1: 5.5000
p2: 1234
p3: 12345678

Passing a Pointer to the First Element of an Array
In cases where a function defines an input argument that is a pointer to the
first element of a data array, the calllib function automatically passes an
argument that is a pointer of the correct type to the first element of data in the
MATLAB vector or matrix. For example, the following C function sum requires
an argument that is a pointer to the first element of an array of shorts (int16).

Suppose you have the following variables defined in MATLAB:

Data = 1:100;
lp = libpointer(('int16Ptr',Data);
shortData = int16(Data);

2-31

2 MATLAB Interface to Generic DLLs

The signature of the C function sum is:

int sum(int size, short* data);

All of the following statements work correctly and give the same answer:

summed_data = calllib('libname','sum',100,Data);
summed_data = calllib('libname','sum',100,shortData);
summed_data = calllib('libname','sum',100,lp);

Note that the size and data arguments must match. That is, length of the
data vector must be equal to the specified size. For example:

% sum last 50 elements
summed_data = calllib('libname','sum',50,Data(50:100));

Creating a Void Pointer to a String
Suppose you want to create a voidPtr that points to a string as an input
argument. In C, characters are represented as unsigned eight-bit integers.
Therefore, you must first cast the string to this MATLAB type before creating
a variable of type voidPtr.

You can create a variable of the correct type and value using libpointer as
follows:

str = 'string variable';
vp = libpointer('voidPtr',[uint8(str) 0]);

To obtain the character string from the pointer, use

char(vp.Value)
ans =
string variable

Confirm the type of the pointer by accessing its DataType property:

vp.DataType
ans =
voidPtr

2-32

Data Conversion

You can call a function that takes a voidPtr to a string as an input argument
using the following syntax because MATLAB automatically converts an
argument passed by value into an argument passed by reference when the
external function prototype defines the argument as a reference:

func_name(uint8(str))

Note that while MATLAB converts the argument from a value to a reference,
it must be of the correct type.

Memory Allocation for an External Library
In general, a valid memory address is passed each time you pass a MATLAB
variable to a library function. You need to explicitly allocate memory only if
the library provides a memory allocation function that you are required to use.

When to Use libpointer. You should use a libpointer object in cases where
the library is going to store the pointer and access the buffer over a period of
time. In these cases, you need to ensure that MATLAB has control over the
lifetime of the buffer and to prevent copies of the data from being made. The
following pseudo code is an example of asynchronous data acquisition that
shows how to use libpointer in this type of situation.

Suppose an external library has the following functions:

AcquireData(int points, short *buffer)
IsAquistionDone(void)

First, create a pointer to a buffer of 1024 points:

BufferSize = 1024;
pBuffer = libpointer('int16Ptr',1:BufferSize);

Then, begin acquiring data and wait in a loop until it is done:

calllib('lib_name','AcquireData,BufferSize,pbuffer);
while (~calllib('lib_name','IsAcquisitionDone')
pause(0.1)

end

The following statement reads the data in the buffer:

2-33

2 MATLAB Interface to Generic DLLs

result = pBuffer.Value;

When the library is done with the buffer, clear the MATLAB variable:

clear pBuffer

Reference Pointers
Arguments that have more than one level of referencing (e.g., uint16 **) are
referred to here as reference pointers. In MATLAB, these argument types are
named with the suffix PtrPtr (for example, uint16PtrPtr). See the output of
libfunctionsview or methods -full for examples of this type.

When calling a function that takes a reference pointer argument, you can
use a reference argument instead and MATLAB converts it to the reference
pointer. For example, the external allocateStruct function expects a
c_structPtrPtr argument:

libfunctions shrlibsample -full
c_structPtrPtr allocateStruct(c_structPtrPtr)

Here is the C function:

void allocateStruct(struct c_struct **val)
{

val=(struct c_struct) malloc(sizeof(struct c_struct));
(*val)->p1 = 12.4;
(*val)->p2 = 222;
(*val)->p3 = 333333;

}

Although the prototype says that a c_structPtrPtr is required, you can use
a c_structPtr and let MATLAB do the second level of conversion. Create a
reference to an empty structure argument and pass it to allocateStruct:

2-34

Data Conversion

sp = libpointer('c_structPtr');
calllib('shrlibsample', 'allocateStruct', sp)

get(sp)
ans =

Value: [1x1 struct]
DataType: 'c_structPtr'

get(sp, 'Value')
ans =

p1: 12.4000
p2: 222
p3: 333333

When you are done, return the memory that you had allocated:

calllib('shrlibsample', 'deallocateStruct', sp)

2-35

2 MATLAB Interface to Generic DLLs

2-36

3

Calling C and Fortran
Programs from MATLAB

Although MATLAB is a complete, self-contained environment for
programming and manipulating data, it is often useful to interact with data
and programs external to the MATLAB environment. MATLAB provides an
interface to external programs written in the C and Fortran languages.

Introducing MEX-Files (p. 3-2) Using MEX-files, mx routines, and
mex routines

MATLAB Data (p. 3-6) Data types you can use in MEX-files

Building MEX-Files (p. 3-11) Compiling and linking your MEX-file

Custom Building MEX-Files (p. 3-19) Platform-specific instructions on
custom building

Troubleshooting (p. 3-32) Troubleshooting some of the
more common problems you may
encounter

Additional Information (p. 3-43) Files you should know about,
example programs, where to get help

3 Calling C and Fortran Programs from MATLAB

Introducing MEX-Files

In this section...

“What are MEX-Files” on page 3-2

“Using MEX-Files” on page 3-2

“MEX-File Placement” on page 3-3

“The Distinction Between mx and mex Prefixes” on page 3-4

What are MEX-Files
You can call your own C or Fortran subroutines from MATLAB as if they were
built-in functions. MATLAB callable C and Fortran programs are referred
to as MEX-files. MEX-files are dynamically linked subroutines that the
MATLAB interpreter can automatically load and execute.

MEX-files have several applications:

• Large pre-existing C and Fortran programs can be called from MATLAB
without having to be rewritten as M-files.

• Bottleneck computations that do not run fast enough in MATLAB can be
recoded in C or Fortran for efficiency.

MEX-files are not appropriate for all applications. MATLAB is a
high-productivity system whose specialty is eliminating time-consuming,
low-level programming in compiled languages like Fortran or C. In general,
most programming should be done in MATLAB. Don’t use the MEX facility
unless your application requires it.

MATLAB supports MEX-files created in C++, with some limitations. For more
information, see “Creating C++ MEX-Files” on page 4-9.

Using MEX-Files
MEX-files are subroutines produced from C, C++, or Fortran source code.
They behave just like M-files and built-in functions. While M-files have
a platform-independent extension, .m, MATLAB identifies MEX-files by

3-2

Introducing MEX-Files

platform-specific extensions. This table lists the platform-specific extensions
for MEX-files.

MEX-File Extensions

Platform MEX-File Extension

Linux (32-bit) mexglx

Linux x86-64 mexa64

Macintosh (PPC) mexmac

Macintosh (Intel) mexmaci

64-bit Solaris SPARC mexs64

Windows (32-bit) mexw32

Windows x64 mexw64

You call MEX-files exactly as you call any M-function. For example, on
a Windows platform, there is a MEX-file called histc.mexw32 in one of
the MATLAB toolbox directories (matlabroot\toolbox\matlab\datafun)
that performs a histogram count. The file histc.m contains the help text
documentation. When you call histc from MATLAB, the dispatcher looks
through the list of directories on the MATLAB search path. It scans each
directory looking for the first occurrence of a file named histc with either the
corresponding filename extension from the table or .m. When it finds one, it
loads the file and executes it. MEX-files take precedence over M-files when
like-named files exist in the same directory. However, help text documentation
still reads from the .m file.

You cannot use a MEX-file on a platform if it was compiled on a different
platform. You must recompile the source code on the platform for which you
wish to use the MEX-file.

MEX-File Placement
For MATLAB to be able to execute your C or Fortran functions, you must
either put the compiled MEX-files containing those functions in a directory
on the MATLAB path, or run MATLAB in the directory in which they reside.

3-3

3 Calling C and Fortran Programs from MATLAB

Functions in the current working directory are found before functions on the
MATLAB path.

Type path to see what directories are currently included in your path. You
can add new directories to the path either by using the addpath function, or
by selecting File > SetPath to edit the path.

If you are using a Windows operating system and any of your MEX-files are
on a network drive, be aware that file servers do not always report directory
and file changes correctly. If you change any MEX-files that are on a network
drive and you find that MATLAB is not using your latest changes, you can
force MATLAB to look for the correct version of the file by changing directories
away from and then back to the directory in which the files reside.

The Distinction Between mx and mex Prefixes
Routines in the API that are prefixed with mx allow you to create, access,
manipulate, and destroy mxArrays. Routines prefixed with mex perform
operations back in the MATLAB environment.

mx Routines
The array access and creation library provides a set of array access and
creation routines for manipulating MATLAB arrays. These subroutines,
which are fully documented in the online API reference pages, always
start with the prefix mx. For example, mxGetPi retrieves the pointer to the
imaginary data inside the array.

Although most of the routines in the array access and creation library let you
manipulate the MATLAB array, there are two exceptions—the IEEE routines
and memory management routines. For example, mxGetNaN returns a double,
not an mxArray.

mex Routines
Routines that begin with the mex prefix perform operations back in the
MATLAB environment. For example, the mexEvalString routine evaluates a
string in the MATLAB workspace.

3-4

Introducing MEX-Files

Note mex routines are only available in MEX-functions.

3-5

3 Calling C and Fortran Programs from MATLAB

MATLAB Data

In this section...

“The MATLAB Array” on page 3-6

“Data Storage” on page 3-6

“Data Types in MATLAB” on page 3-7

“Sparse Matrices” on page 3-9

“Using Data Types” on page 3-9

The MATLAB Array
The MATLAB language works with only a single object type: the MATLAB
array. All MATLAB variables, including scalars, vectors, matrices, strings,
cell arrays, structures, and objects, are stored as MATLAB arrays. In C, the
MATLAB array is declared to be of type mxArray. The mxArray structure
contains, among other things:

• Its type

• Its dimensions

• The data associated with this array

• If numeric, whether the variable is real or complex

• If sparse, its indices and nonzero maximum elements

• If a structure or object, the number of fields and field names

Data Storage
All MATLAB data is stored columnwise, which is how Fortran stores matrices.
MATLAB uses this convention because it was originally written in Fortran.
For example, given the matrix

a=['house'; 'floor'; 'porch']
a =

house
floor
porch

3-6

MATLAB Data

its dimensions are

size(a)
ans =

3 5

and its data is stored as

Data Types in MATLAB

Complex Double-Precision Matrices
The most common data type in MATLAB is the complex double-precision,
nonsparse matrix. These matrices are of type double and have dimensions
m-by-n, where m is the number of rows and n is the number of columns. The
data is stored as two vectors of double-precision numbers—one contains the
real data and one contains the imaginary data. The pointers to this data are
referred to as pr (pointer to real data) and pi (pointer to imaginary data),
respectively. A real-only, double-precision matrix is one whose pi is NULL.

Numeric Matrices
MATLAB also supports other types of numeric matrices. These are
single-precision floating-point and 8-, 16-, and 32-bit integers, both signed
and unsigned. The data is stored in two vectors in the same manner as
double-precision matrices.

Logical Matrices
The logical data type represents a logical true or false state using the
numbers 1 and 0, respectively. Certain MATLAB functions and operators
return logical 1 or logical 0 to indicate whether a certain condition was found
to be true or not. For example, the statement (5 * 10) > 40 returns a logical
1 value.

3-7

3 Calling C and Fortran Programs from MATLAB

MATLAB Strings
MATLAB strings are of type char and are stored the same way as unsigned
16-bit integers except there is no imaginary data component. Unlike C,
MATLAB strings are not null terminated.

Cell Arrays
Cell arrays are a collection of MATLAB arrays where each mxArray is referred
to as a cell. This allows MATLAB arrays of different types to be stored
together. Cell arrays are stored in a similar manner to numeric matrices,
except the data portion contains a single vector of pointers to mxArrays.
Members of this vector are called cells. Each cell can be of any supported
data type, even another cell array.

Structures
A 1-by-1 structure is stored in the same manner as a 1-by-n cell array where n
is the number of fields in the structure. Members of the data vector are called
fields. Each field is associated with a name stored in the mxArray.

Objects
Objects are stored and accessed the same way as structures. In MATLAB,
objects are named structures with registered methods. Outside MATLAB, an
object is a structure that contains storage for an additional classname that
identifies the name of the object.

Multidimensional Arrays
MATLAB arrays of any type can be multidimensional. A vector of integers is
stored where each element is the size of the corresponding dimension. The
storage of the data is the same as matrices.

Empty Arrays
MATLAB arrays of any type can be empty. An empty mxArray is one with at
least one dimension equal to zero. For example, a double-precision mxArray of
type double, where m and n equal 0 and pr is NULL, is an empty array.

3-8

MATLAB Data

Sparse Matrices
Sparse matrices have a different storage convention from that of full matrices
in MATLAB. The parameters pr and pi are still arrays of double-precision
numbers, but these arrays contain only nonzero data elements. There are
three additional parameters: nzmax, ir, and jc.

• nzmax is an integer that contains the length of ir, pr, and, if it exists, pi. It
is the maximum possible number of nonzero elements in the sparse matrix.

• ir points to an integer array of length nzmax containing the row indices of
the corresponding elements in pr and pi.

• jc points to an integer array of length n+1, where n is the number of
columns in the sparse matrix. The jc array contains column index
information. If the jth column of the sparse matrix has any nonzero
elements, jc[j] is the index in ir and pr (and pi if it exists) of the first
nonzero element in the jth column, and jc[j+1] - 1 is the index of the
last nonzero element in that column. For the jth column of the sparse
matrix, jc[j] is the total number of nonzero elements in all preceding
columns. The last element of the jc array, jc[n], is equal to nnz, the
number of nonzero elements in the entire sparse matrix. If nnz is less
than nzmax, more nonzero entries can be inserted into the array without
allocating additional storage.

Using Data Types
You can write MEX-files, MAT-file applications, and engine applications in
C that accept any data type supported by MATLAB. In Fortran, only the
creation of double-precision n-by-m arrays and strings are supported. You can
treat C and Fortran MEX-files, once compiled, exactly like M-functions.

Caution MATLAB does not check the validity of MATLAB data
structures created in C or Fortran using one of the mx functions (e.g.,
mxCreateStructArray). Using invalid syntax to create a MATLAB data
structure can result in unexpected behavior in your C or Fortran program.

3-9

3 Calling C and Fortran Programs from MATLAB

The explore Example
There is an example MEX-file included with MATLAB, called explore, that
identifies the data type of an input variable. The source file for this example
is in the matlabroot/extern/examples/mex directory, where matlabroot
represents the top-level directory where MATLAB is installed on your system.

Note In platform-independent discussions that refer to directory paths, this
book uses the UNIX convention. For example, a general reference to the mex
directory is matlabroot/extern/examples/mex.

For example, typing

cd([matlabroot '/extern/examples/mex']);
x = 2;
explore(x);

produces this result

--
Name: prhs[0]
Dimensions: 1x1
Class Name: double
--
(1,1) = 2

explore accepts any data type. Try using explore with these examples.

explore([1 2 3 4 5])
explore 1 2 3 4 5
explore({1 2 3 4 5})
explore(int8([1 2 3 4 5]))
explore {1 2 3 4 5}
explore(sparse(eye(5)))
explore(struct('name', 'Joe Jones', 'ext', 7332))
explore(1, 2, 3, 4, 5)

3-10

Building MEX-Files

Building MEX-Files

In this section...

“Compiler Requirements” on page 3-11

“Testing Your Configuration on UNIX” on page 3-12

“Testing Your Configuration on Windows” on page 3-14

“Specifying an Options File” on page 3-17

Compiler Requirements
Your installed version of MATLAB contains all the tools you need to work
with the API. MATLAB includes a C compiler for the PC called Lcc, but does
not include a Fortran compiler. If you choose to use your own C compiler, it
must be an ANSI C compiler. Also, if you are working on a Microsoft Windows
platform, your compiler must be able to create 32-bit windows dynamically
linked libraries (DLL files).

MATLAB supports many compilers and provides preconfigured files, called
options files, designed specifically for these compilers. The purpose of
supporting this large collection of compilers is to provide you with the
flexibility to use the tool of your choice. However, in many cases, you
simply can use the provided Lcc compiler with your C code to produce your
applications.

The MathWorks maintains a list of compilers supported by MATLAB at the
following location on the Web:

http://www.mathworks.com/support/tech-notes/1600/1601.shtml

Note The MathWorks provides an option called -setup for the mex script that
lets you easily choose or switch your compiler.

The following sections contain configuration information for creating
MEX-files on UNIX and Windows systems. More detailed information about
the mex script is provided in “Custom Building MEX-Files” on page 3-19.

3-11

http://www.mathworks.com/support/tech-notes/1600/1601.shtml

3 Calling C and Fortran Programs from MATLAB

In addition, there is a section on “Troubleshooting” on page 3-32, if you are
having difficulties creating MEX-files.

Testing Your Configuration on UNIX
The quickest way to check if your system is set up properly to create MEX-files
is by trying the actual process. There is C source code for an example,
yprime.c, and its Fortran counterpart, yprimef.F and yprimefg.F, included
in the matlabroot/extern/examples/mex directory, where matlabroot
represents the top-level directory where MATLAB is installed on your system.

To compile and link the example source files, yprime.c or yprimef.F and
yprimefg.F, on UNIX, you must first copy the file(s) to a local directory, and
then change directory (cd) to that local directory.

At the MATLAB prompt, type

mex yprime.c

This uses the system compiler to create the MEX-file called yprime with the
appropriate extension for your system.

You can now call yprime as if it were an M-function:

yprime(1,1:4)
ans =

2.0000 8.9685 4.0000 -1.0947

To try the Fortran version of the sample program with your Fortran compiler,
at the MATLAB prompt, type

mex yprimef.F yprimefg.F

In addition to running the mex script from the MATLAB prompt, you can also
run the script from the system prompt.

Selecting a Compiler
To change your default compiler, you select a different options file. You can do
this anytime by using the command

mex -setup

3-12

Building MEX-Files

Using the 'mex -setup' command selects an options file that is

placed in ~/matlab and used by default for 'mex'. An options

file in the current working directory or specified on the

command line overrides the default options file in ~/matlab.

Options files control which compiler to use, the compiler and

link command options, and the runtime libraries to link

against.

To override the default options file, use the 'mex -f' command

(see 'mex -help' for more information).

The options files available for mex are:

1: matlabroot/bin/gccopts.sh :

Template Options file for building gcc MEXfiles

2: matlabroot/bin/mexopts.sh :

Template Options file for building MEXfiles using the

system ANSI compiler

Enter the number of the options file to use as your default

options file:

Select the proper options file for your system by entering its number and
pressing Enter. If an options file doesn’t exist in your MATLAB directory, the
system displays a message stating that the options file is being copied to your
user-specific matlab directory. If an options file already exists in your matlab
directory, the system prompts you to overwrite it.

3-13

3 Calling C and Fortran Programs from MATLAB

Note The -setup option creates a user-specific matlab directory in your
individual home directory and copies the appropriate options file to the
directory. (If the directory already exists, a new one is not created.) This
matlab directory is used for your individual options files only; each user can
have his or her own default options files (other MATLAB products may place
options files in this directory). Do not confuse these user-specific matlab
directories with the system matlab directory, where MATLAB is installed. To
see the name of this directory on your machine, use the MATLAB command
prefdir.

Using the setup option resets your default compiler so that the new compiler
is used every time you use the mex script.

Testing Your Configuration on Windows
Before you can create MEX-files on the Windows platform, you must configure
the default options file, mexopts.bat, for your compiler. The -setup option
provides an easy way for you to configure the default options file. To configure
or change the options file at anytime, run

mex -setup

from either the MATLAB or DOS command prompt.

Lcc Compiler
MATLAB includes a C compiler called Lcc that you can use to create C
MEX-files. Help on using the Lcc compiler is available in a help file that ships
with MATLAB. To view this file, type in the MATLAB command window

!matlabroot\sys\lcc\bin\wedit.hlp

replacing the term matlabroot with the path to the directory in which
MATLAB is installed on your system. (Type matlabroot in the Command
Window to get the path for this directory.)

3-14

Building MEX-Files

Selecting a Compiler
The mex script uses the Lcc compiler by default if you do not have a C or C++
compiler of your own already installed on your system and you try to compile
a C MEX-file. If you need to compile Fortran programs, you must supply
your own supported Fortran compiler.

The mex script uses the filename extension to determine the type of compiler
to use for creating your MEX-files. For example,

mex test1.F

uses your Fortran compiler and

mex test2.c

uses your C compiler.

On Systems without a Compiler. If you do not have your own C or C++
compiler on your system, the mex script automatically configures itself for
the included Lcc compiler. So, to create a C MEX-file on these systems, you
can simply enter

mex filename.c

This simple method of creating MEX-files works for the majority of users.

If using the included Lcc compiler satisfies your needs, you can skip ahead in
this section to “Building the MEX-File on Windows” on page 3-16.

On Systems with a Compiler. On systems where there is a C, C++, or
Fortran compiler, you can select which compiler you want to use. Once you
choose your compiler, that compiler becomes your default compiler and you no
longer have to select one when you compile MEX-files. To select a compiler or
change to existing default compiler, use mex -setup.

This example shows the process of setting your default compiler to the
Microsoft Visual C++ Version 6.0 compiler:

mex -setup

Please choose your compiler for building external interface (MEX)

3-15

3 Calling C and Fortran Programs from MATLAB

files.

Would you like mex to locate installed compilers [y]/n? n

Select a compiler:

[1] Compaq Visual Fortran version 6.6

[2] Lcc C version 2.4

[3] Microsoft Visual C/C++ version 6.0

[0] None

Compiler: 3

Your machine has a Microsoft Visual C/C++ compiler located at

D:\Applications\Microsoft Visual Studio. Do you want to use this

compiler [y]/n? y

Please verify your choices:

Compiler: Microsoft Visual C/C++ 6.0

Location: C:\Program Files\Microsoft Visual Studio

Are these correct?([y]/n): y

The default options file:

"C:\WINNT\Profiles\username\ApplicationData\MathWorks\MATLAB\R1

3\mexopts.bat" is being updated from ...

If the specified compiler cannot be located, you are given the message:

The default location for compiler-name is directory-name,
but that directory does not exist on this machine.
Use directory-name anyway [y]/n?

Using the setup option sets your default compiler so that the new compiler is
used every time you use the mex script.

Building the MEX-File on Windows
There is example C source code, yprime.c, and its Fortran
counterpart, yprimef.F and yprimefg.F, included in the

3-16

Building MEX-Files

matlabroot\extern\examples\mex directory, where matlabroot represents
the top-level directory where MATLAB is installed on your system.

To compile and link the example source file on Windows, at the MATLAB
prompt, type

cd([matlabroot '\extern\examples\mex'])
mex yprime.c

This should create the MEX-file called yprime with the .mexw32 extension,
which corresponds to the 32-bit Windows platform.

You can now call yprime as if it were an M-function:

yprime(1,1:4)
ans =

2.0000 8.9685 4.0000 -1.0947

To try the Fortran version of the sample program with your Fortran compiler,
switch to your Fortran compiler using mex -setup. Then, at the MATLAB
prompt, type

cd([matlabroot '\extern\examples\mex'])
mex yprimef.F yprimefg.F

In addition to running the mex script from the MATLAB prompt, you can also
run the script from the system prompt.

Specifying an Options File
You can use the -f option to specify an options file on either UNIX or
Windows. To use the -f option, at the MATLAB prompt type

mex filename -f <optionsfile>

and specify the name of the options file along with its pathname.

There are several situations when it may be necessary to specify an options
file every time you use the mex script. These include

3-17

3 Calling C and Fortran Programs from MATLAB

• (Windows and UNIX) You want to use a different compiler (and not use
the -setup option), or you want to compile MAT or engine stand-alone
programs.

• (UNIX) You do not want to use the system C compiler.

Preconfigured Options Files
MATLAB includes some preconfigured options files that you
can use with particular compilers. The options files are located
in the directory matlabroot\bin\win32\mexopts on Windows,
matlabroot\bin\win64\mexopts on Windows x64, and matlabroot/bin on
UNIX, where matlabroot stands for the MATLAB root directory as returned
by the matlabroot command. On Windows and Windows x64, the options
files are named *.bat, where * stands for the compiler type and version.
On UNIX, the options file is named *opts.sh, where * stands for mex or a
specific compiler.

For a list of all the compilers supported by MATLAB, see the following
location on the Web:

http://www.mathworks.com/support/tech-notes/1600/1601.shtml

Note The next section, “Custom Building MEX-Files” on page 3-19, contains
specific information on how to modify options files for particular systems.

3-18

http://www.mathworks.com/support/tech-notes/1600/1601.shtml

Custom Building MEX-Files

Custom Building MEX-Files

In this section...

“Who Should Read this Chapter” on page 3-19

“MEX Script Switches” on page 3-19

“Default Options File on UNIX” on page 3-23

“Default Options File on Windows” on page 3-24

“Custom Building on UNIX” on page 3-24

“Custom Building on Windows” on page 3-27

Who Should Read this Chapter
In general, the defaults that come with MATLAB should be sufficient for
building most MEX-files. Following are reasons that you might need more
detailed information:

• You want to use an Integrated Development Environment (IDE), rather
than the provided script, to build MEX-files.

• You want to create a new options file, for example, to use a compiler that is
not directly supported.

• You want to exercise more control over the build process than the script
uses.

The script, in general, uses two stages (or three, for Microsoft Windows) to
build MEX-files. These are the compile stage and the link stage. In between
these two stages, Windows compilers must perform some additional steps to
prepare for linking (the prelink stage).

MEX Script Switches
The mex script has a set of switches (also called options) that you can use
to modify the link and compile stages. The MEX Script Switches table lists
the available switches and their uses. Each switch is available on both UNIX
and Windows unless otherwise noted.

3-19

3 Calling C and Fortran Programs from MATLAB

For customizing the build process, you should modify the options file, which
contains the compiler-specific flags corresponding to the general compile,
prelink, and link steps required on your system. The options file consists of
a series of variable assignments; each variable represents a different logical
piece of the build process.

MEX Script Switches

Switch Function

@<rsp_file> (Windows only) Include the contents of the text
file <rsp_file> as command-line arguments to
mex.

-<arch> Build an output file for architecture <arch>.
To determine the value for <arch>, type
computer('arch') at the MATLAB Command
Prompt on the target machine. Valid values for
<arch> depend on the architecture of the build
platform.

-ada <sfcn.ads> Use this option to compile a Simulink® S-function
written in Ada, where <sfcn.ads> is the Package
Specification for the S-function. When this
option is specified, only the -v (verbose) and -g
(debug) options are relevant. All other options
are ignored. For examples and information on
supported compilers and other requirements, see
README in the simulink/ada/examples directory.

-argcheck (C functions only) Add argument checking. This
adds code so arguments passed incorrectly to
MATLAB API functions cause assertion failures.

-c Compile only. Creates an object file, but not a
MEX-file.

-compatibleArrayDims Build a MEX-file using the MATLAB Version 7.2
array-handling API, which limits arrays to 2^31-1
elements. This option is the default. (See also the
-largeArrayDims option.)

3-20

Custom Building MEX-Files

MEX Script Switches (Continued)

Switch Function

-cxx (UNIX only) Use the C++ linker to link the
MEX-file if the first source file is in C and there
are one or more C++ source or object files. This
option overrides the assumption that the first
source file in the list determines which linker to
use.

-D<name> Define a symbol name to the C preprocessor.
Equivalent to a #define <name> directive in the
source.

-D<name>=<value> Define a symbol name and value to the C
preprocessor. Equivalent to a #define <name>
<value> directive in the source.

-f <optionsfile> Specify location and name of options file to use.
Overrides the mex default-options-file search
mechanism.

-fortran (UNIX only) Specify that the gateway routine is
in Fortran. This option overrides the assumption
that the first source file in the list determines
which linker to use.

-g Create a MEX-file containing additional symbolic
information for use in debugging. This option
disables the mex default behavior of optimizing
built object code (see the -O option).

-h[elp] Print help for mex.

-I<pathname> Add <pathname> to the list of directories to search
for #include files.

-inline Inline matrix accessor functions (mx*). The
generated MEX-function may not be compatible
with future versions of MATLAB.

-l<name> Link with object library. On Windows, <name>
expands to <name>.lib or lib<name>.lib and on
UNIX to lib<name>.so or lib<name>.dylib.

3-21

3 Calling C and Fortran Programs from MATLAB

MEX Script Switches (Continued)

Switch Function

-L<directory> Add <directory> to the list of directories to
search for libraries specified with the -l option.
On UNIX systems, you must also set the run-time
library path, as explained in “Setting Run-Time
Library Path” on page 1-16.

-largeArrayDims Build a MEX-file using the MATLAB
large-array-handling API. This API can handle
arrays with more than 2^31–1 elements when
compiled on 64-bit platforms. (See also the
-compatibleArrayDims option.)

-n No execute mode. Print any commands that
mex would otherwise have executed, but do not
actually execute any of them.

-O Optimize the object code. Optimization is enabled
by default and by including this option on the
command line. If the -g option appears without
the -O option, optimization is disabled.

-outdir <dirname> Place all output files in directory <dirname>.

-output
<resultname>

Create MEX-file named <resultname>. The
appropriate MEX-file extension is automatically
appended. Overrides the default MEX-file naming
mechanism.

-setup Interactively specify the compiler options file
to use as the default for future invocations of
mex by placing it in the user profile directory
(returned by the prefdir command). When this
option is specified, no other command-line input
is accepted.

-U<name> Remove any initial definition of the C preprocessor
symbol <name>. (Inverse of the -D option.)

3-22

Custom Building MEX-Files

MEX Script Switches (Continued)

Switch Function

-v Verbose mode. Print the values for important
internal variables after the options file is
processed and all command-line arguments are
considered. Prints each compile step and final
link step fully evaluated.

<name>=<value> Supplement or override an options file variable
for variable <name>. This option is processed after
the options file is processed and all command line
arguments are considered.

Default Options File on UNIX
The default MEX options file provided with MATLAB is located in
matlabroot/bin. The mex script searches for an options file called
mexopts.sh in the following order:

• The current directory

• The directory specified by matlabroot/bin

• The directory returned by the prefdir function

mex uses the first occurrence of the options file it finds. If no options file is
found, mex displays an error message. You can directly specify the name of
the options file using the -f switch.

On UNIX, the options file is written in the Bourne shell script language.

For specific information on the default settings for the MATLAB supported
compilers, you can examine the options file in fullfile(matlabroot,
'bin', 'mexopts.sh'), or you can invoke the mex script in verbose mode
(-v). Verbose mode prints the exact compiler options, prelink commands (if
appropriate), and linker options used in the build process for each compiler.
“Custom Building on UNIX” on page 3-24 gives an overview of the high-level
build process.

3-23

3 Calling C and Fortran Programs from MATLAB

Default Options File on Windows
The default MEX options file is placed in your user profile directory after
you configure your system by running mex -setup. The mex script searches
for an options file called mexopts.bat in the following order:

• The current directory

• The user profile directory (returned by the prefdir function)

mex uses the first occurrence of the options file it finds. If no options
file is found, mex searches your machine for a supported C compiler and
automatically configures itself to use that compiler. Also, during the
configuration process, it copies the compiler’s default options file to the user
profile directory. If multiple compilers are found, you are prompted to select
one.

On Windows, the options file is written in the Perl script language.

For specific information on the default settings for the MATLAB supported
compilers, you can examine the options file, mexopts.bat, or you can invoke
the mex script in verbose mode (-v). Verbose mode prints the exact compiler
options, prelink commands, if appropriate, and linker options used in the
build process for each compiler. “Custom Building on Windows” on page 3-27
gives an overview of the high-level build process.

The User Profile Directory
The Windows user profile directory is a directory that contains user-specific
information such as desktop appearance, recently used files, and Start
menu items. The mex and mbuild utilities store their respective options
files, mexopts.bat and compopts.bat, which are created during the
-setup process, in a subdirectory of your user profile directory, named
Application Data\MathWorks\MATLAB.

Custom Building on UNIX
On UNIX systems, there are two stages in MEX-file building: compiling and
linking.

3-24

Custom Building MEX-Files

Compile Stage
The compile stage must

• Add matlabroot/extern/include to the list of directories in which to find
header files (-Imatlabroot/extern/include).

• Define the preprocessor macro MATLAB_MEX_FILE (-DMATLAB_MEX_FILE).

• (C MEX-files only) Compile the source file, which contains version
information for the MEX-file, matlabroot/extern/src/mexversion.c.

Link Stage
The link stage must

• Instruct the linker to build a shared library.

• If you link with your own libraries, set the run-time library path, which is
explained in “Setting Run-Time Library Path” on page 1-16.

• Link all objects from compiled source files (including mexversion.c).

• (Fortran MEX-files only) Link in the precompiled versioning source file,
matlabroot/extern/lib/$Arch/version4.o.

• Export the symbols mexFunction and mexVersion (these symbols represent
functions called by MATLAB).

For Fortran MEX-files, the symbols are all lowercase and may have appended
underscores. For specific information, invoke the mex script in verbose mode
and examine the output.

Build Options
For customizing the build process, you should modify the options file.
The options file contains the compiler-specific flags corresponding to the
general steps outlined above. The options file consists of a series of variable
assignments. Each variable represents a different logical piece of the
build process. The options files provided with MATLAB are located in
matlabroot/bin. The section “Default Options File on UNIX” on page 3-23,
describes how the mex script looks for an options file.

3-25

3 Calling C and Fortran Programs from MATLAB

To aid in providing flexibility, there are two sets of options in the options file
that you can turn on and off with switches to the mex script. These sets of
options correspond to building in debug mode and building in optimization
mode. They are represented by the variables DEBUGFLAGS and OPTIMFLAGS,
respectively, one pair for each driver that is invoked (CDEBUGFLAGS for the C
compiler, FDEBUGFLAGS for the Fortran compiler, and LDDEBUGFLAGS for the
linker; similarly for the OPTIMFLAGS):

• If you build in optimization mode (the default), the mex script includes the
OPTIMFLAGS options in the compile and link stages.

• If you build in debug mode, the mex script includes the DEBUGFLAGS options
in the compile and link stages. It does not include the OPTIMFLAGS options.

• You can include both sets of options by specifying both the optimization and
debugging flags to the mex script (-O and -g, respectively).

Aside from these special variables, the mex options file defines the executable
invoked for each of the three modes (C compile, Fortran compile, link) and the
flags for each stage. You also can provide explicit lists of libraries that must
be linked in to all MEX-files containing source files of each language.

The variable summary follows.

Variable C Compiler
Fortran
Compiler Linker

Executable CC FC LD

Flags CFLAGS FFLAGS LDFLAGS

Optimization COPTIMFLAGS FOPTIMFLAGS LDOPTIMFLAGS

Debugging CDEBUGFLAGS FDEBUGFLAGS LDDEBUGFLAGS

Additional
libraries

CLIBS FLIBS (none)

For specifics on the default settings for these variables, you can

• Examine the options file in matlabroot/bin/mexopts.sh (or the options
file you are using), or

3-26

Custom Building MEX-Files

• Invoke the mex script in verbose mode.

Custom Building on Windows
There are three stages to MEX-file building for both C and Fortran on
Windows: compiling, prelinking, and linking.

Compile Stage
For the compile stage, a mex options file must

• Set up paths to the compiler using the COMPILER (e.g., Watcom), PATH,
INCLUDE, and LIB environment variables. If your compiler always has the
environment variables set (e.g., in AUTOEXEC.BAT), you can comment them
out in the options file.

• Define the name of the compiler, using the COMPILER environment variable,
if needed.

• Define the compiler switches in the COMPFLAGS environment variable:

- The switch to create a DLL is required for MEX-files.

- For stand-alone programs, the switch to create an exe is required.

- The -c switch (compile only; do not link) is recommended.

- The switch to specify 8-byte alignment.

- You can use any other switch specific to the environment.

• Define preprocessor macro, with -D, MATLAB_MEX_FILE is required.

• Set up optimizer switches and/or debug switches using OPTIMFLAGS and
DEBUGFLAGS.

- If you build in optimization mode (the default), the mex script includes
the OPTIMFLAGS option in the compile stage.

- If you build in debug mode, the mex script includes the DEBUGFLAGS
options in the compile stage. It does not include the OPTIMFLAGS option.

- You can include both sets of options by specifying both the optimization
and debugging flags to the mex script (OPTIMFLAGS and DEBUGFLAGS,
respectively).

3-27

3 Calling C and Fortran Programs from MATLAB

Prelink Stage
The prelink stage dynamically creates import libraries to import the required
function into the MEX, MAT, or engine file:

• All MEX-files link against libmex.dll (MEX library).

• MAT stand-alone programs link against libmx.dll (array access library)
and libmat.dll (MAT-functions).

• Engine stand-alone programs link against libmx.dll (array access library)
and libeng.dll for engine functions.

MATLAB and each DLL have corresponding .def files of the same names
located in the matlabroot\extern\include directory.

Link Stage
For the link stage, a mex options file must

• Define the name of the linker in the LINKER environment variable.

• Define the LINKFLAGS environment variable that must contain

- The switch to create a DLL for MEX-files, or the switch to create an exe
for stand-alone programs.

- Export of the entry point to the MEX-file as mexFunction for C or
MEXFUNCTION@16 for Fortran.

- The import library (or libraries) created in the PRELINK_CMDS stage.

- You can use any other link switch specific to the compiler.

• Set up the linking optimization and debugging switches LINKOPTIMFLAGS
and LINKDEBUGFLAGS. Use the same conditions described in the “Compile
Stage” on page 3-27.

• Define the link-file identifier in the LINK_FILE environment variable,
if necessary. For example, Watcom uses file to identify that the name
following is a file and not a command.

• Define the link-library identifier in the LINK_LIB environment variable,
if necessary. For example, Watcom uses library to identify the name
following is a library and not a command.

3-28

Custom Building MEX-Files

• Optionally, set up an output identifier and name with the output switch
in the NAME_OUTPUT environment variable. The environment variable
MEX_NAME contains the name of the first program in the command line. This
must be set for -output to work. If this environment is not set, the compiler
default is to use the name of the first program in the command line. Even if
this is set, you can override it by specifying the mex -output switch.

Linking DLL Files to MEX-Files
To link a DLL to a MEX-file, list the DLL’s .lib file on the command line.

Versioning MEX-Files
The mex script can build your MEX-file with a resource file that contains
versioning and other essential information. The resource file is called
mexversion.rc and resides in the extern\include directory. To support
versioning, there are two new commands in the options files, RC_COMPILER
and RC_LINKER, to provide the resource compiler and linker commands. It
is assumed that

• If a compiler command is given, the compiled resource links to the MEX-file
using the standard link command.

• If a linker command is given, the resource file links to the MEX-file after it
is built using that command.

Compiling MEX-Files with the Microsoft Visual C++ IDE

Note This section provides information on how to compile MEX-files in the
Microsoft Visual C++ (MSVC) IDE. It is not totally inclusive. This section
assumes that you know how to use the IDE. If you need more information on
using the MSVC IDE, refer to the corresponding Microsoft documentation.

To build MEX-files with the Microsoft Visual C++ integrated development
environment:

1 Create a project and insert your MEX source files.

3-29

3 Calling C and Fortran Programs from MATLAB

2 Add mexversion.rc from the MATLAB include directory,
matlab\extern\include, to the project.

3 Create a .def file to export the MEX entry point. On the Project menu,
click Add New Item and select Module-Definition File (.def). For
example:

LIBRARY MYFILE
EXPORTS mexFunction <-- for a C MEX-file

or
EXPORTS _MEXFUNCTION@16 <-- for a Fortran MEX-file

4 On the Project menu, click Properties for the project to open the property
pages.

5 Under C/C++ General properties, add the MATLAB include directory,
matlab\extern\include, as an additional include directory.

6 Under C/C++ Preprocessor properties, add MATLAB_MEX_FILE as a
preprocessor definition.

7 Under Linker General properties, change the output file extension to
.mexw32 if you are building for a 32–bit platform or .mexw64 if you are
building for a 64–bit platform.

8 Locate the .lib files for the compiler you are using
under matlabroot\extern\lib\win32\microsoft or
matlabroot\extern\lib\win64\microsoft. Under Linker
Input properties, add libmx.lib, libmex.lib, and libmat.lib as
additional dependencies.

9 Under Linker Input properties, add the module definition (.def) file
you created.

10 Under Linker Debugging properties, if you intend to debug the
MEX-file using the IDE, specify that the build should generate debugging
information. For more information about debugging, see “Debugging on
Windows” on page 4-46.

If you are using a compiler other than the Microsoft Visual C/C++ compiler,
the process for building MEX files is similar to that described above. In

3-30

Custom Building MEX-Files

step 4, locate the .lib files for the compiler you are using in a subdirectory
of matlabroot\extern\lib\win32 or matlabroot\extern\lib\win64.
For example, if you are using the Borland C/C++ compiler, look in
matlabroot\extern\lib\win32\borland.

3-31

3 Calling C and Fortran Programs from MATLAB

Troubleshooting

In this section...

“Configuration Issues” on page 3-32

“Understanding MEX-File Problems” on page 3-34

“Compiler and Platform-Specific Issues” on page 3-37

“Memory Management Compatibility Issues” on page 3-39

Configuration Issues
This section focuses on common problems that might occur when creating
MEX-files.

Search Path Problem on Windows
Under Windows, if you move the MATLAB executable without reinstalling
MATLAB, you may need to modify mex.bat to point to the new MATLAB
location.

MATLAB Path Names Containing Spaces on Windows
If you have problems building MEX-files on Windows and there is a space
in any of the directory names within the MATLAB path, either reinstall
MATLAB into a path name that contains no spaces or rename the directory
that contains the space. For example, if you install MATLAB under the
Program Files directory, you may have difficulty building MEX-files with
certain C compilers.

DLL Files Not on Path on Windows
MATLAB fails to load MEX-files if it cannot find all .dll files referenced by
the MEX-file; the .dll files must be on the DOS path or in the same directory
as the MEX-file. This is also true for third-party .dll files.

When this happens, MATLAB displays an error message of the following form:

??? Invalid MEX-file <mexfilename>:
The specified module could not be found.

3-32

Troubleshooting

On Windows, the third-party product Dependency Walker can be used to
diagnose this problem. Dependency Walker is a free utility that scans any
32-bit or 64-bit Windows module and builds a hierarchical tree diagram of
all dependent modules. For each module found, it lists all the functions that
are exported by that module, and which of those functions are actually being
called by other modules. You can download the Dependency Walker utility
from the following Web site:

http://www.dependencywalker.com/

See the Technical Support solution 1-2RQL4L for information on using the
Dependency Walker:

http://www.mathworks.com/support/solutions/data/1-2RQL4L.html

Internal Error When Using mex -setup (PC)
Some antivirus software packages may conflict with the mex -setup process
or other mex commands. If you get an error message of the following form in
response to a mex command,

mex.bat: internal error in sub get_compiler_info(): don't
recognize <string>

then you need to disable your antivirus software temporarily and reenter the
command. After you have successfully run the mex script, you can reenable
your antivirus software.

Alternatively, you can open a separate MS-DOS window and enter the mex
command from that window.

General Configuration Problem
Make sure you followed the configuration steps for your platform described
in this chapter. Also, refer to “Custom Building MEX-Files” on page 3-19
for additional information.

3-33

http://www.dependencywalker.com/%0D
http://www.mathworks.com/support/solutions/data/1-2RQL4L.html

3 Calling C and Fortran Programs from MATLAB

Understanding MEX-File Problems
This section contains information regarding common problems that occur
when creating MEX-files. Use the following figure to help isolate these
problems.

�����
���	
�����	�������
����
��������
��	������������
����
��������
��

����

������	
����
��������	�
��������	
���
��������	��

������	
	
�����	�������

����
����

�
������
��������
����
�
��	�
���������	��

����������
�����
�����������
����

����������
� �!�������
"�������������#������

$�	���%��������	�
����
�	���
�������
�&��
�����	������
�	���
��
���' !(�)���*
���+,��

������	
����
�����	�
��������

����-�&��.
�������	��-/(%�
���

���������
��
��	�����

�	�������

$����	����
�����
������+���

0	��
�����	�����

'��
��������
��������
��
�������

����'��
��������
��
�������

�������
��
�

�� ��

��

��

��

�� ��

��

��

��

�� ��

�

�

�

� �

Troubleshooting MEX-File Creation Problems

3-34

Troubleshooting

Problems 1 through 5 refer to the corresponding numbered sections of the
previous flowchart. For additional suggestions on resolving MEX-file build
problems, access The MathWorks Technical Support Web site at:

http://www.mathworks.com/support

Problem 1 — Compiling a MathWorks Program Fails
The most common configuration problem in creating C MEX-files on UNIX
involves using a non-ANSI C compiler, or failing to pass to the compiler a flag
that tells it to compile ANSI C code.

A reliable way of knowing if you have this type of configuration problem is
if the header files supplied by The MathWorks generate a string of syntax
errors when you try to compile your code. See “Building MEX-Files” on page
3-11 for information on selecting the appropriate options file or, if necessary,
obtain an ANSI C compiler.

Problem 2 — Compiling Your Own Program Fails
Mixing ANSI and non-ANSI C code can generate a string of syntax errors.
The MathWorks provides header and source files that are ANSI C compliant.
Therefore, your C code must also be ANSI compliant.

Other common problems that can occur in any C program are neglecting to
include all necessary header files, or neglecting to link against all required
libraries.

Make sure you are using a MATLAB supported compiler. See “Compiler
Requirements” on page 3-11 for this information. Additional information can
be found in “Compiler and Platform-Specific Issues” on page 3-37.

Problem 3 — MEX-File Load Errors
If you receive an error of the form

Unable to load mex file:
??? Invalid MEX-file

MATLAB does not recognize your MEX-file.

3-35

http://www.mathworks.com/support

3 Calling C and Fortran Programs from MATLAB

MATLAB loads MEX-files by looking for the gateway routine, mexFunction.
If you misspell the function name, MATLAB cannot load your MEX-file and
generates an error message. On Windows, check that you are exporting
mexFunction correctly.

On some platforms, if you fail to link against required libraries, you may get
an error when MATLAB loads your MEX-file rather than when you compile
your MEX-file. In such cases, a system error message referring to unresolved
symbols or unresolved references appears. Be sure to link against the library
that defines the function in question.

On Windows, MATLAB fails to load MEX-files if it cannot find all .dll files
referenced by the MEX-file; the .dll files must be on the path or in the
same directory as the MEX-file. This is also true for third-party .dll files.
See “DLL Files Not on Path on Windows” on page 3-32 for information to
diagnose this problem.

Problem 4 — Segmentation Fault or Bus Error
If your MEX-file causes a segmentation violation or bus error, it means the
MEX-file has attempted to access protected, read-only, or unallocated memory.
Since this is such a general category of programming errors, such problems
are sometimes difficult to track down.

Segmentation violations do not always occur at the same point as the logical
errors that cause them. If a program writes data to an unintended section of
memory, an error may not occur until the program reads and interprets the
corrupted data. Consequently, a segmentation violation or bus error can occur
after the MEX-file finishes executing.

MATLAB provides three features to help you troubleshoot problems of this
nature. Listed in order of simplicity, they are as follows:

• Recompile your MEX-file with argument checking (C MEX-files only). You
can add a layer of error checking to your MEX-file by recompiling with the
mex script flag -argcheck. This warns you about invalid arguments to both
MATLAB MEX-file (mex) and matrix access (mx) API functions.

Although your MEX-file will not run as efficiently as it can, this switch
detects errors such as passing null pointers to API functions.

3-36

Troubleshooting

• Run MATLAB with the -check_malloc option. The MATLAB startup
flag, -check_malloc, indicates that MATLAB should maintain additional
memory-checking information. When memory is freed, MATLAB checks
to make sure that memory just before and just after this memory remains
unwritten and that the memory has not been previously freed.

If an error occurs, MATLAB reports the size of the allocated memory
block. Using this information, you can track down where in your code this
memory was allocated, and proceed accordingly.

Although using this flag prevents MATLAB from running as efficiently as
it can, it detects errors such as writing past the end of a dimensioned array,
or freeing previously freed memory.

• Run MATLAB within a debugging environment. This process is already
described in the chapters on creating C and Fortran MEX-files, respectively.

Problem 5 - Program Generates Incorrect Results
If your program generates the wrong answer(s), there are several possible
causes. First, there could be an error in the computational logic. Second,
the program could be reading from an uninitialized section of memory. For
example, reading the 11th element of a 10-element vector yields unpredictable
results.

Another cause of generating a wrong answer could be overwriting valid data
due to memory mishandling. For example, writing to the 15th element of a
10-element vector might overwrite data in the adjacent variable in memory.
This case can be handled in a similar manner as segmentation violations,
as described in Problem 4.

In all of these cases, you can use mexPrintf to examine data values at
intermediate stages or run MATLAB within a debugger to exploit all the
tools the debugger provides.

Compiler and Platform-Specific Issues
This section describes situations specific to particular compilers and
platforms.

3-37

3 Calling C and Fortran Programs from MATLAB

Using MEX-Files from Other Sources
If you obtain a MEX-file from another source, be sure the file was compiled for
the same platform on which you want to run it. See “What are MEX-Files” on
page 3-2 for platform-specific information.

When you try to run a MEX-file from a version of MATLAB that is different
from the version that created the MEX-file, MATLAB displays an error
message of the following form:

??? Invalid MEX-file <mexfilename>:
The specified module could not be found.

Linux gcc Compiler Version Error
For information concerning a gcc compiler version error on Linux, see the
Technical Support solution 1-2H64MF at:

http://www.mathworks.com/support/solutions/data/1-2H64MF.html

Fortran MEX-Files Compiler Errors
When you try to compile a Fortran MEX-file using a free source form format,
MATLAB displays an error message of the following form:

Illegal character in statement label field

mex supports the fixed source form. The difference between free and fixed
source forms is explained in the Fortran Language Reference Manual Source
Forms topic. The URL for this topic is:

http://h21007.www2.hp.com/portal/download/files/unprot/Fortran/
docs/lrm/lrm0015.htm#source_formatmenu?&Record=383697&STASH=7

The URL for the Fortran Language Reference Manual is:

http://h21007.www2.hp.com/portal/download/files/unprot/Fortran/
docs/lrm/dflrm.htm

3-38

http://www.mathworks.com/support/solutions/data/1-2H64MF.html
http://h21007.www2.hp.com/portal/download/files/unprot/Fortran/docs/lrm/lrm0015.htm#source_formatmenu?&Record=383697&STASH=7

Troubleshooting

MEX-Files Created in Watcom IDE
If you use the Watcom IDE to create MEX-files and get unresolved
references to API functions when linking against our libraries, check the
argument-passing convention. The Watcom IDE uses a default switch that
passes parameters in registers. MATLAB requires that you pass parameters
on the stack.

Memory Management Compatibility Issues
MATLAB implicitly calls mxDestroyArray, the mxArray destructor, at the
end of a MEX-file’s execution on any mxArrays that are not returned in the
left-hand side list (plhs[]). We recommend you review code in your MEX-files
to avoid using these functions in the following situations. For additional
information, see “Memory Management” on page 4-29 in Creating C Language
MEX-Files.

Improperly Destroying an mxArray
You cannot use mxFree to destroy an mxArray.

Example. In the following example, mxFree does not destroy the array
object. This operation frees the structure header associated with the array,
but MATLAB stills operates as if the array object needs to be destroyed. Thus
MATLAB tries to destroy the array object, and in the process, attempts to free
its structure header again:

mxArray *temp = mxCreateDoubleMatrix(1,1,mxREAL);
...

mxFree(temp); /* INCORRECT */

Solution. Call mxDestroyArray instead:

mxDestroyArray(temp); /* CORRECT */

Incorrectly Constructing a Cell or Structure mxArray
You cannot call mxSetCell or mxSetField variants with prhs[] as the
member array.

3-39

3 Calling C and Fortran Programs from MATLAB

Example. In the following example, when the MEX-file returns, MATLAB
destroys the entire cell array. Since this includes the members of the cell, this
implicitly destroys the MEX-file’s input arguments. This can cause several
strange results, generally having to do with the corruption of the caller’s
workspace, if the right-hand side argument used is a temporary array (i.e., a
literal or the result of an expression):

myfunction('hello')
/* myfunction is the name of your MEX-file and your code */
/* contains the following: */

mxArray *temp = mxCreateCellMatrix(1,1);
...

mxSetCell(temp, 0, prhs[0]); /* INCORRECT */

Solution. Make a copy of the right-hand side argument with
mxDuplicateArray and use that copy as the argument to mxSetCell (or
mxSetField variants). For example:

mxSetCell(temp, 0, mxDuplicateArray(prhs[0])); /* CORRECT */

Creating a Temporary mxArray with Improper Data
You cannot call mxDestroyArray on an mxArray whose data was not allocated
by an API routine.

Example. If you call mxSetPr, mxSetPi, mxSetData, or mxSetImagData,
specifying memory that was not allocated by mxCalloc, mxMalloc, or
mxRealloc as the intended data block (second argument), then when the
MEX-file returns, MATLAB attempts to free the pointers to real data and
imaginary data (if any). Thus MATLAB attempts to free memory, in this
example, from the program stack.

mxArray *temp = mxCreateDoubleMatrix(0,0,mxREAL);
double data[5] = {1,2,3,4,5};

...
mxSetM(temp,1); mxSetN(temp,5); mxSetPr(temp, data);
/* INCORRECT */

3-40

Troubleshooting

Solution. Rather than use mxSetPr to set the data pointer, instead, create
the mxArray with the right size and use memcpy to copy the stack data into the
buffer returned by mxGetPr:

mxArray *temp = mxCreateDoubleMatrix(1,5,mxREAL);
double data[5] = {1,2,3,4,5};

...
memcpy(mxGetPr(temp), data, 5*sizeof(double)); /* CORRECT */

Potential Memory Leaks
Prior to Version 5.2, if you created an mxArray using one of the API creation
routines and then you overwrote the pointer to the data using mxSetPr,
MATLAB still freed the original memory. This is no longer the case.

For example,

pr = mxCalloc(5*5, sizeof(double));
... <load data into pr>
plhs[0] = mxCreateDoubleMatrix(5,5,mxREAL);
mxSetPr(plhs[0], pr); /* INCORRECT */

will now leak 5*5*8 bytes of memory, where 8 bytes is the size of a double.

You can avoid that memory leak by changing the code

plhs[0] = mxCreateDoubleMatrix(5,5,mxREAL);
pr = mxGetPr(plhs[0]);
... <load data into pr>

or alternatively

pr = mxCalloc(5*5, sizeof(double));
... <load data into pr>
plhs[0] = mxCreateDoubleMatrix(5,5,mxREAL);
mxFree(mxGetPr(plhs[0]));
mxSetPr(plhs[0], pr);

Note that the first solution is more efficient.

3-41

3 Calling C and Fortran Programs from MATLAB

Similar memory leaks can also occur when using mxSetPi, mxSetData,
mxSetImagData, mxSetIr, or mxSetJc. You can avoid memory leaks by
changing the code as described in this section.

MEX-Files Should Destroy Their Own Temporary Arrays
In general, we recommend that MEX-files destroy their own temporary
arrays and clean up their own temporary memory. All mxArrays except those
returned in the left-hand side list and those returned by mexGetVariablePtr
may be safely destroyed. This approach is consistent with other MATLAB API
applications (i.e., MAT-file applications, engine applications, and MATLAB
Compiler generated applications, which do not have any automatic cleanup
mechanism.)

3-42

Additional Information

Additional Information

In this section...

“Files and Directories - UNIX Systems” on page 3-43

“Files and Directories — Windows Systems” on page 3-45

“Examples” on page 3-48

“Technical Support” on page 3-48

Files and Directories - UNIX Systems
This section describes the directory organization and purpose of the files
associated with the MATLAB API on UNIX systems.

����������

���

�����

�����

��
�� �

��

���!���

�������

��

�

�������

3-43

3 Calling C and Fortran Programs from MATLAB

matlabroot/bin
The matlabroot/bin directory contains two files that are relevant for the
MATLAB API:

mex
UNIX shell script that creates MEX-files from C or Fortran MEX-file
source code.

matlab
UNIX shell script that initializes your environment and then invokes
the MATLAB interpreter.

This directory also contains the preconfigured options files that the mex script
uses with particular compilers. See “Preconfigured Options Files” on page
3-18 for more information.

matlabroot/bin/$ARCH
The matlabroot/bin/$ARCH directory contains libraries, where $ARCH
specifies a particular UNIX platform. On some UNIX platforms, this directory
contains two versions of this library. Library filenames ending with .so or
.dylib are shared libraries.

matlabroot/extern/include
The matlabroot/extern/include directory contains the header files for
developing C and C++ applications that interface with MATLAB.

The relevant header files for the MATLAB API are

engine.h
Header file for MATLAB engine programs. Contains function prototypes
for engine routines.

mat.h
Header file for programs accessing MAT-files. Contains function
prototypes for mat routines.

matrix.h
Header file containing a definition of the mxArray structure and function
prototypes for matrix access routines.

3-44

Additional Information

mex.h
Header file for building MEX-files. Contains function prototypes for
mex routines.

matlabroot/extern/src
The matlabroot/extern/src directory contains those C source files that are
necessary to support certain MEX-file features such as argument checking
and versioning.

Files and Directories — Windows Systems
This section describes the directory organization and purpose of the files
associated with the MATLAB API on Microsoft Windows systems.

3-45

3 Calling C and Fortran Programs from MATLAB

The following figure illustrates the directories in which the MATLAB API
files are located. In the illustration, matlabroot symbolizes the top-level
directory where MATLAB is installed on your system.

����������

���

���"#

����� ���!��

��
�� �

��

���!���

�������

��

�

�������

matlabroot\bin
The matlabroot\bin directory contains the mex.bat batch file that builds C
and Fortran files into MEX-files. Also, this directory contains mex.pl, which
is a Perl script used by mex.bat.

matlabroot\bin\win32\mexopts or
matlabroot\bin\win64\mexopts
The matlabroot\bin\win32\mexopts or matlabroot\bin\win64\mexopts
directory contains the preconfigured options files that the mex script uses

3-46

Additional Information

with particular compilers. See “Preconfigured Options Files” on page 3-18
for more information.

matlabroot\extern\include
The matlabroot\extern\include directory contains the header files for
developing C and C++ applications that interface with MATLAB.

The relevant header files for the MATLAB API (MEX-files, engine, and
MAT-files) are

engine.h
Header file for MATLAB engine programs. Contains function prototypes
for engine routines.

mat.h
Header file for programs accessing MAT-files. Contains function
prototypes for mat routines.

matrix.h
Header file containing a definition of the mxArray structure and function
prototypes for matrix access routines.

mex.h
Header file for building MEX-files. Contains function prototypes for
mex routines.

_*.def
Files used by Borland compiler.

*.def
Files used by MSVC and Microsoft Fortran compilers.

mexversion.rc
Resource file for inserting versioning information into MEX-files.

matlabroot\extern\src
The matlabroot\extern\src directory contains files that are used for
debugging MEX-files.

3-47

3 Calling C and Fortran Programs from MATLAB

Examples
This book uses many examples to show how to write C and Fortran MEX-files.

Examples from the Text
The refbook subdirectory in the extern/examples directory contains the
MEX-file examples (C and Fortran) that are used in this topic.

MEX Reference Examples
The mex subdirectory of /extern/examples directory contains MEX-file
examples. It includes the examples described in the online C and Fortran API
Reference for “MEX-Files” (the functions beginning with the mex prefix).

MX Examples
The mx subdirectory of extern/examples contains examples for using
the array access functions. Although you can use these functions in
stand-alone programs, most of these are MEX-file examples. The exception
is mxSetAllocFcns.c, since this function is available only to stand-alone
programs.

Engine and MAT Examples
The eng_mat subdirectory in the extern/examples directory contains the
MEX-file examples (C and Fortran) for using the MATLAB engine facility, as
well as examples for reading and writing MATLAB data files (MAT-files).
These examples are all stand-alone programs.

Technical Support
The MathWorks provides additional Technical Support through its Web site.
A few of the services provided are as follows:

• Solution Search Engine

This knowledge base on our Web site includes thousands of solutions and
links to Technical Notes and is updated several times each week.

http://www.mathworks.com/support/

3-48

http://www.mathworks.com/support/

Additional Information

• Technical Notes

Technical notes are written by our Technical Support staff to address
commonly asked questions.

http://www.mathworks.com/support/tech-notes/list_all.shtml

3-49

http://www.mathworks.com/support/tech-notes/list_all.shtml

3 Calling C and Fortran Programs from MATLAB

3-50

4

Creating C Language
MEX-Files

This chapter describes how to write MEX-files in the C programming
language. It discusses the MEX-file itself, how these C language files
interact with MATLAB, how to pass and manipulate arguments of different
data types, how to debug your MEX-file programs, and several other, more
advanced topics.

C MEX-Files (p. 4-2) MEX-file components and required
arguments

Examples of C MEX-Files (p. 4-11) Sample MEX-files that show how to
handle all data types

Advanced Topics (p. 4-25) Help files, linking multiple files,
workspace, managing memory, using
LAPACK and BLAS functions

Debugging C Language MEX-Files
(p. 4-46)

Debugging MEX-file source code
from within MATLAB

4 Creating C Language MEX-Files

C MEX-Files

In this section...

“The Components of a C MEX-File” on page 4-2

“Gateway Routine” on page 4-2

“Computational Routine” on page 4-4

“Preprocessor Macros” on page 4-5

“Data Flow in MEX-Files” on page 4-5

“Creating C++ MEX-Files” on page 4-9

The Components of a C MEX-File
MEX-files are built by using the mex function. mex compiles and links source
files into a shared library called a MEX-file, which you can run in MATLAB.
Once compiled, you treat MEX-files exactly like MATLAB M-files and built-in
functions.

The MEX-file consists of:

• A “Gateway Routine” on page 4-2 that interfaces C and MATLAB data.

• A “Computational Routine” on page 4-4 written in C that performs the
computations you want implemented in the MEX-file.

• “Preprocessor Macros” on page 4-5 for building platform-independent code.

Gateway Routine
The gateway routine is the entry point to the MEX-file shared library. It is
through this routine that MATLAB accesses the rest of the routines in your
MEX-files. Use the following guideline to create a gateway routine:

• “Naming the Gateway Routine” on page 4-3

• “Required Parameters” on page 4-3

• “Creating and Using Source Files” on page 4-4

• “Using MATLAB Libraries” on page 4-4

4-2

C MEX-Files

• “Required Header Files” on page 4-4

• “Naming the MEX-File” on page 4-4

A C MEX-file gateway routine looks like this:

void mexFunction(
int nlhs, mxArray *plhs[],
int nrhs, const mxArray *prhs[])

{
/* more C code ... */

}

Naming the Gateway Routine
The name of the gateway routine must be mexFunction.

Required Parameters
A gateway routine must contain the parameters prhs, nrhs, plhs, and nlhs
which are described in the following table.

Parameter Description

prhs An array of right-hand input arguments.

plhs An array of left-hand output arguments.

nrhs The number of right-hand arguments, or the size of the prhs
array.

nlhs The number of left-hand arguments, or the size of the plhs
array.

Both prhs and plhs are declared as type mxArray *, which means they point
to MATLAB arrays. They are vectors that contain pointers to the arguments
of the MEX-file.

You can think of the name prhs as representing the “parameters, right-hand
side,” that is, the input parameters. Likewise, plhs represents the
“parameters, left-hand side,” or output parameters.

4-3

4 Creating C Language MEX-Files

Creating and Using Source Files
It is good practice to write the gateway routine to call a “Computational
Routine” on page 4-4; however, this is not required. The computational code
can be part of the gateway routine. If you use both gateway and computational
routines, they can be combined in one source file or in separate files. If you
use separate files, the gateway routine must be the first source file listed
in the mex command.

The name of the file containing your gateway routine is important, as
explained in “Naming the MEX-File” on page 4-4.

Using MATLAB Libraries
The MATLAB C and Fortran API Reference describes functions you can use
in your gateway and computational routines that interact with MATLAB
programs and the data in the MATLAB workspace. The mx prefixed functions
provide access methods for manipulating MATLAB arrays. The mex prefixed
functions perform operations in the MATLAB environment.

Required Header Files
To use the functions in the C and Fortran Reference library you must include
the mex header, which declares the entry point and interface routines. Put
this statement in your source file:

#include "mex.h"

Naming the MEX-File
The MEX-file name, and hence the name of the function you use in MATLAB,
is the name of the source file containing your gateway routine.

The file extension of the MEX-file is platform-dependent. The mexext function
returns the extension for the current machine.

Computational Routine
The computational routine contains the code for performing the computations
you want implemented in the MEX-file. Computations can be numerical
computations as well as inputting and outputting data. The gateway calls the
computational routine as a subroutine.

4-4

C MEX-Files

The programming requirements described in “Creating and Using Source
Files” on page 4-4, “Using MATLAB Libraries” on page 4-4, and “Required
Header Files” on page 4-4 may also apply to your computational routine.

Preprocessor Macros
The MATLAB preprocessor macros mwSize and mwIndex are used in the mx
and mex functions for cross-platform flexibility. mwSize represents size values,
such as array dimensions and number of elements. mwIndex represents index
values, such as indices into arrays.

Data Flow in MEX-Files
The following examples illustrate data flow in MEX-files:

• “Showing Data Input and Output” on page 4-5

• “Gateway Routine Data Flow Diagram” on page 4-6

• “MATLAB Example yprime.c” on page 4-7

Showing Data Input and Output
Suppose your MEX-file myFunction has 2 input arguments and 1 output
argument. The MATLAB syntax is [X] = myFunction(Y, Z). To call
myFunction from MATLAB, type:

X = myFunction(Y, Z);

The MATLAB interpreter calls mexFunction, the gateway routine to
myFunction, with the following arguments:

4-5

4 Creating C Language MEX-Files

Your input is prhs, a 2-element C array (nrhs = 2). The first element is a
pointer to an mxArray named Y and the second element is a pointer to an
mxArray named Z.

Your output is plhs, a 1-element C array (nlhs = 1) where the single element
is a null pointer. The parameter plhs points at nothing because the output X
is not created until the subroutine executes.

The gateway routine creates the output array and sets a pointer to it in
plhs[0]. If plhs[0] is left unassigned and you assign an output value to
the function when you call it, MATLAB generates an error stating that no
output was assigned.

Note It is possible to return an output value even if nlhs = 0. This
corresponds to returning the result in the ans variable.

Gateway Routine Data Flow Diagram
The following MEX Cycle diagram shows how inputs enter a MEX-file, what
functions the gateway routine performs, and how outputs return to MATLAB.

In this example, the syntax of the MEX-file func is [C, D] = func(A,B). In
the figure, a call to func tells MATLAB to pass variables A and B to your
MEX-file. C and D are left unassigned.

The gateway routine func.c uses the mxCreate* functions to create the
MATLAB arrays for your output arguments. It sets plhs[0] and plhs[1]

4-6

C MEX-Files

to the pointers to the newly created MATLAB arrays. It uses the mxGet*
functions to extract your data from your input arguments prhs[0] and
prhs[0]. Finally, it calls your computational routine, passing the input and
output data pointers as function parameters.

On return to MATLAB, plhs[0] is assigned to C and plhs[1] is assigned to D.

���������
-/(%�
������
$

�����-�&��.���
���1��
����������
%������	��-/(%�
���
������&���������
	��
�����

��	
��

'�(&)*���
+�(%,

2�����	�������
-/(%�
������
$

!���'-)�
��
����
���������!���'.)�

�
��������&�

'�(&)*���
+�(%,

��	
��

������

1�
����#3	���
��)
��������(������/�0!���')(
��������(�
����������/�0!���'),

!����������+�����	�
���

'���������������	���
������������
����-�&��.�������������	���	��	�
���	����������!���'-)('.)(
���������
��������������+����������
-�&��.�������

'�������1����	���
�������#�����
��	������������!���'-)('.)(��

�������	����	���	�
�����
������

��	�������	��	���������
������
�	���
�������������

�����

�������

����������/�0%
%�*�!���'.)

����������/�0�
��*�!���'-)

�����/�0&
&�*�!���'.)

�����/�0�
��*�!���'-)

C MEX Cycle

MATLAB Example yprime.c
Let’s look at an example, yprime.c, found in your
matlabroot/extern/examples/mex/ directory. (“Building MEX-Files” on
page 3-11 explains how to create the MEX-file.) It’s calling syntax is [YP]
= YPRIME(T,Y), where T is an integer and Y is a vector with 4 elements.
For T=1 and Y=1:4, when you type

4-7

4 Creating C Language MEX-Files

yprime(T,Y)

MATLAB displays:

ans =
2.0000 8.9685 4.0000 -1.0947

The gateway routine should validate the input arguments. This step includes
checking the number, type, and size of the input arrays as well as examining
the number of output arrays. If the inputs are not valid, call mexErrMsgTxt.
For example,

mexErrMsgTxt

/* Check for proper number of arguments */
if (nrhs != 2) {
mexErrMsgTxt("Two input arguments required.");

} else if (nlhs > 1) {
mexErrMsgTxt("Too many output arguments.");

}

/* Check the dimensions of Y. Y can be 4 X 1 or 1 X 4. */
m = mxGetM(Y_IN);
n = mxGetN(Y_IN);
if (!mxIsDouble(Y_IN) || mxIsComplex(Y_IN) ||

(MAX(m,n) != 4) || (MIN(m,n) != 1)) {
mexErrMsgTxt("YPRIME requires that Y be a 4 x 1 vector.");

}

To create MATLAB arrays, call any of the mxCreate* functions, like
mxCreateDoubleMatrix, mxCreateSparse, or mxCreateString. If it needs
them, the gateway routine can call mxCalloc to allocate temporary work
arrays for the computational routine. In this example,

/* Create a matrix for the return argument */
plhs[0] = mxCreateDoubleMatrix(m, n, mxREAL);

In the gateway routine, you access the data in mxArray and manipulate
it in your computational subroutine. For example, the expression
mxGetPr(prhs[0]) returns a pointer of type double * to the real data in the

4-8

C MEX-Files

mxArray pointed to by prhs[0]. You can then use this pointer like any other
pointer of type double * in C. For example,

/* Assign pointers to the various parameters */
yp = mxGetPr(plhs[0]);

In this example, a computational routine, yprime, performs the calculations:

/* Do the actual computations in a subroutine */
yprime(yp,t,y);

After calling your computational routine from the gateway, you can set a
pointer of type mxArray to the data it returns. MATLAB recognizes the output
from your computational routine as the output from the MEX-file.

When a MEX-file completes its task, it returns control to MATLAB. Any
MATLAB arrays that are created by the MEX-file but are not returned to
MATLAB through the left-hand side arguments are automatically destroyed.

Creating C++ MEX-Files
All C++ language standards are supported in MEX-files.

This section discusses specific C++ language issues to consider when creating
and using MEX-files.

Creating Your C++ Source File
The C++ source code for the examples provided by MATLAB use the .cpp file
extension. The extension .cpp is unambiguous and generally recognized by
C++ compilers. Other possible extensions include .C, .cc, and .cxx.

For information on using C++ features, see
Technical Note 1605, MEX-files Guide, at
http://www.mathworks.com/support/tech-notes/1600/1605.html. Look
for the sections under the “C++ Mex-files” heading.

Compiling and Linking
You can run a C++ MEX-file only on systems with the same version of
MATLAB that the file was compiled on.

4-9

http://www.mathworks.com/support/tech-notes/1600/1605.html

4 Creating C Language MEX-Files

Use mex setup to select a C++ compiler, then type

mex filename.cpp

You can use command-line options, as shown in the “MEX Script Switches” on
page 3-19 table.

Your link command must have all of the necessary DLL files that the
MEX-function is dependent upon. To help you check for dependent files, see
the Troubleshooting topic “DLL Files Not on Path on Windows” on page 3-32.

Examples
The examples “Using C++ Features in MEX-Files” on page 4-21 and “File
Handling with C++” on page 4-22 illustrate the use of C++ by walking through
source code examples available in your MATLAB directory.

4-10

Examples of C MEX-Files

Examples of C MEX-Files

In this section...

“Introduction” on page 4-11

“A First Example — Passing a Scalar” on page 4-12

“Passing Strings” on page 4-13

“Passing Two or More Inputs or Outputs” on page 4-14

“Passing Structures and Cell Arrays” on page 4-15

“Prompting User for Input” on page 4-16

“Handling Complex Data” on page 4-17

“Handling 8-,16-, and 32-Bit Data” on page 4-18

“Manipulating Multidimensional Numerical Arrays” on page 4-18

“Handling Sparse Arrays” on page 4-19

“Calling Functions from C MEX-Files” on page 4-20

“Using C++ Features in MEX-Files” on page 4-21

“File Handling with C++” on page 4-22

Introduction
The MATLAB API provides a full set of routines that handle the various data
types supported by MATLAB. For each data type there is a specific set of
functions that you can use for data manipulation. The first example discusses
the simple case of doubling a scalar. After that, the examples discuss how to
pass in, manipulate, and pass back various data types, and how to handle
multiple inputs and outputs. Finally, the sections discuss passing and
manipulating various MATLAB data types.

Note Source code for most examples in this chapter is available in the
matlabroot/extern/examples/refbook directory of your MATLAB
installation. matlabroot is your MATLAB root directory, the value returned
by the matlabroot function.

4-11

4 Creating C Language MEX-Files

A First Example — Passing a Scalar
Let’s look at a simple example of C code and its MEX-file equivalent. Here is a
C computational function that takes a scalar and doubles it.

#include <math.h>
void timestwo(double y[], double x[])
{

y[0] = 2.0*x[0];
return;

}

To see the same function written in the MEX-file format (timestwo.c), open
the file in MATLAB Editor.

In C, function argument checking is done at compile time. In MATLAB,
you can pass any number or type of arguments to your M-function, which
is responsible for argument checking. This is also true for MEX-files. Your
program must safely handle any number of input or output arguments of any
supported type.

To compile and link this example source file at the MATLAB prompt, type

mex timestwo.c

This carries out the necessary steps to create the MEX-file called timestwo
with an extension corresponding to the platform on which you’re running. You
can now call timestwo as if it were an M-function.

x = 2;
y = timestwo(x)
y =

4

You can create and compile MEX-files in MATLAB or at your operating
system’s prompt. MATLAB uses mex.m, an M-file version of the mex script,
and your operating system uses mex.bat on Windows and mex.sh on UNIX.
In either case, typing

mex filename

at the prompt produces a compiled version of your MEX-file.

4-12

Examples of C MEX-Files

In the above example, scalars are viewed as 1-by-1 matrices. Alternatively,
you can use a special API function called mxGetScalar that returns the values
of scalars instead of pointers to copies of scalar variables (timestwoalt.c). To
see the alternative code (error checking has been omitted for brevity), open
the file in MATLAB Editor.

This example passes the input scalar x by value into the timestwo_alt
subroutine, but passes the output scalar y by reference.

Passing Strings
Any MATLAB data type can be passed to and from MEX-files. The example
revord.c accepts a string and returns the characters in reverse order. To see
the example, open the file in MATLAB Editor.

In this example, the API function mxCalloc replaces calloc, the standard C
function for dynamic memory allocation. mxCalloc allocates dynamic memory
using the MATLAB memory manager and initializes it to zero. You must use
mxCalloc in any situation where C would require the use of calloc. The
same is true for mxMalloc and mxRealloc; use mxMalloc in any situation
where C would require the use of malloc and use mxRealloc where C would
require realloc.

Note MATLAB automatically frees up memory allocated with the
mx allocation routines (mxCalloc, mxMalloc, mxRealloc) upon exiting
your MEX-file. If you don’t want this to happen, use the API function
mexMakeMemoryPersistent.

The gateway routine mexFunction allocates memory for the input and output
strings. Since these are C strings, they need to be one greater than the
number of elements in the MATLAB string. Next the MATLAB string is
copied to the input string. Both the input and output strings are passed to
the computational subroutine (revord), which loads the output in reverse
order. Note that the output buffer is a valid null-terminated C string because
mxCalloc initializes the memory to 0. The API function mxCreateString then
creates a MATLAB string from the C string, output_buf. Finally, plhs[0],
the left-hand side return argument to MATLAB, is set to the MATLAB array
you just created.

4-13

4 Creating C Language MEX-Files

By isolating variables of type mxArray from the computational subroutine,
you can avoid having to make significant changes to your original C code.

In this example, typing

x = 'hello world';
y = revord(x)

produces

The string to convert is 'hello world'.
y =
dlrow olleh

Passing Two or More Inputs or Outputs
The plhs[] and prhs[] parameters are vectors that contain pointers to each
left-hand side (output) variable and each right-hand side (input) variable,
respectively. Accordingly, plhs[0] contains a pointer to the first left-hand side
argument, plhs[1] contains a pointer to the second left-hand side argument,
and so on. Likewise, prhs[0] contains a pointer to the first right-hand side
argument, prhs[1] points to the second, and so on.

This example, xtimesy, multiplies an input scalar by an input scalar or matrix
and outputs a matrix. For example, using xtimesy with two scalars gives

x = 7;
y = 7;
z = xtimesy(x,y)

z =
49

4-14

Examples of C MEX-Files

Using xtimesy with a scalar and a matrix gives

x = 9;
y = ones(3);
z = xtimesy(x,y)

z =
9 9 9
9 9 9
9 9 9

To see the corresponding MEX-file C code xtimesy.c, open the file in
MATLAB Editor.

As this example shows, creating MEX-file gateways that handle multiple
inputs and outputs is straightforward. All you need to do is keep track of
which indices of the vectors prhs and plhs correspond to the input and output
arguments of your function. In the example above, the input variable x
corresponds to prhs[0] and the input variable y to prhs[1].

Note that mxGetScalar returns the value of x rather than a pointer to x. This
is just an alternative way of handling scalars. You could treat x as a 1-by-1
matrix and use mxGetPr to return a pointer to x.

Passing Structures and Cell Arrays
Passing structures and cell arrays into MEX-files is just like passing any
other data types, except the data itself is of type mxArray. In practice, this
means that mxGetField (for structures) and mxGetCell (for cell arrays) return
pointers of type mxArray. You can then treat the pointers like any other
pointers of type mxArray, but if you want to pass the data contained in the
mxArray to a C routine, you must use an API function such as mxGetData
to access it.

This example takes an m-by-n structure matrix as input and returns a new
1-by-1 structure that contains these fields:

• String input generates an m-by-n cell array

4-15

4 Creating C Language MEX-Files

• Numeric input (noncomplex, scalar values) generates an m-by-n vector of
numbers with the same class ID as the input, for example, int, double,
and so on.

To see the program phonebook.c, open the file in MATLAB Editor.

To see how this program works, enter this structure.

friends(1).name = 'Jordan Robert';
friends(1).phone = 3386;
friends(2).name = 'Mary Smith';
friends(2).phone = 3912;
friends(3).name = 'Stacy Flora';
friends(3).phone = 3238;
friends(4).name = 'Harry Alpert';
friends(4).phone = 3077;

The results of this input are

phonebook(friends)

ans =
name: {1x4 cell }

phone: [3386 3912 3238 3077]

Prompting User for Input
Because MATLAB does not use stdin and stdout, C functions like scanf and
printf cannot be used to prompt users for input. The following example
shows how to use mexCallMATLAB with the input function to get a number
from the user.

#include "mex.h"
#include "string.h"
void mexFunction(int nlhs, mxArray *plhs[],

int nrhs, const mxArray *prhs[])
{

mxArray *new_number, *str;
double out;

str = mxCreateString("Enter extension: ");

4-16

Examples of C MEX-Files

mexCallMATLAB(1,&new_number,1,&str,"input");
out = mxGetScalar(new_number);
mexPrintf("You entered: %.0f ", out);
mxFree(new_number);
mxFree(str);
return;

}

Handling Complex Data
Complex data from MATLAB is separated into real and imaginary parts. The
MATLAB API provides two functions, mxGetPr and mxGetPi, that return
pointers (of type double *) to the real and imaginary parts of your data.

This example, convec.c, takes two complex row vectors and convolves them.
To see the example, open the file in MATLAB Editor.

Entering these numbers at the MATLAB prompt

x = [3.000 - 1.000i, 4.000 + 2.000i, 7.000 - 3.000i];
y = [8.000 - 6.000i, 12.000 + 16.000i, 40.000 - 42.000i];

and invoking the new MEX-file

z = convec(x,y)

results in

z =

1.0e+02 *

Columns 1 through 4

0.1800 - 0.2600i 0.9600 + 0.2800i 1.3200 - 1.4400i 3.7600 - 0.1200i

Column 5

1.5400 - 4.1400i

which agrees with the results that the built-in MATLAB function conv.m
produces.

4-17

4 Creating C Language MEX-Files

Handling 8-,16-, and 32-Bit Data
You can create and manipulate signed and unsigned 8-, 16-, and 32-bit data
from within your MEX-files. The MATLAB API provides a set of functions
that support these data types. The API function mxCreateNumericArray
constructs an unpopulated N-dimensional numeric array with a specified data
size. Refer to the entry for mxClassID in the online reference pages for a
discussion of how the MATLAB API represents these data types.

Once you have created an unpopulated MATLAB array of a specified data
type, you can access the data using mxGetData and mxGetImagData. These
two functions return pointers to the real and imaginary data. You can perform
arithmetic on data of 8-, 16- or 32-bit precision in MEX-files and return the
result to MATLAB, which will recognize the correct data class.

The example, doubleelement.c, constructs a 2-by-2 matrix with unsigned
16-bit integers, doubles each element, and returns both matrices to MATLAB.
To see the example, open the file in MATLAB Editor.

At the MATLAB prompt, entering

doubleelement

produces

ans =
2 6
4 8

The output of this function is a 2-by-2 matrix populated with unsigned 16-bit
integers.

Manipulating Multidimensional Numerical Arrays
You can manipulate multidimensional numerical arrays by using mxGetData
and mxGetImagData to return pointers to the real and imaginary parts of the
data stored in the original multidimensional array. The example, findnz.c,
takes an N-dimensional array of doubles and returns the indices for the
nonzero elements in the array. To see the example, open the file in MATLAB
Editor.

4-18

Examples of C MEX-Files

Entering a sample matrix at the MATLAB prompt gives

matrix = [3 0 9 0; 0 8 2 4; 0 9 2 4; 3 0 9 3; 9 9 2 0]
matrix =

3 0 9 0
0 8 2 4
0 9 2 4
3 0 9 3
9 9 2 0

This example determines the position of all nonzero elements in the matrix.
Running the MEX-file on this matrix produces

nz = findnz(matrix)
nz =

1 1
4 1
5 1
2 2
3 2
5 2
1 3
2 3
3 3
4 3
5 3
2 4
3 4
4 4

Handling Sparse Arrays
The MATLAB API provides a set of functions that allow you to create and
manipulate sparse arrays from within your MEX-files. These API routines
access and manipulate ir and jc, two of the parameters associated with
sparse arrays. For more information on how MATLAB stores sparse arrays,
see “The MATLAB Array” on page 3-6.
The example, fulltosparse.c, illustrates how to populate a sparse matrix.
To see the example, open the file in MATLAB Editor.

At the MATLAB prompt, entering

4-19

4 Creating C Language MEX-Files

full = eye(5)
full =

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

creates a full, 5-by-5 identity matrix. Using fulltosparse on the full matrix
produces the corresponding sparse matrix.

spar = fulltosparse(full)
spar =

(1,1) 1
(2,2) 1
(3,3) 1
(4,4) 1
(5,5) 1

Calling Functions from C MEX-Files
It is possible to call MATLAB functions, operators, M-files, and other
MEX-files from within your C source code by using the API function
mexCallMATLAB. The example, sincall.c, creates an mxArray, passes
various pointers to a subfunction to acquire data, and calls mexCallMATLAB
to calculate the sine function and plot the results. To see the example, open
the file in MATLAB Editor.

Running this example

sincall

displays the results

4-20

Examples of C MEX-Files

Note It is possible to generate an object of type mxUNKNOWN_CLASS using
mexCallMATLAB. See the example below.

The following example creates an M-file that returns two variables but only
assigns one of them a value.

function [a,b] = foo[c]
a = 2*c;

MATLAB displays the following warning message.

Warning: One or more output arguments not assigned during call to

'foo'.

If you then call foo using mexCallMATLAB, the unassigned output variable is
now type mxUNKNOWN_CLASS.

Using C++ Features in MEX-Files
This example, mexcpp.cpp, illustrates how to use C++ code with your
C language MEX-file. It makes use of member functions, constructors,

4-21

4 Creating C Language MEX-Files

destructors, and the iostream include file. To see the example, open the file
in MATLAB Editor.

The calling syntax is mexcpp(num1, num2).

The routine defines a class, MyData, with member functions display and
set_data, and variables v1 and v2. It constructs an object d of class MyData
and displays the initialized values of v1 and v2. It then sets v1 and v2 to your
input, num1 and num2, and displays the new values. Finally, cleanup of the
object is done using the delete operator.

File Handling with C++
This example, mexatexit.cpp, illustrates C++ file handling features. To see
the C++ code, open the C++ file in MATLAB Editor. To compare it with a C
code example mexatexit.c, open the C file in MATLAB Editor.

C Example
The C code example registers the mexAtExit function to perform cleanup
tasks (close the data file) when the MEX-file clears. This example prints a
message on the screen (using mexPrintf) when performing file operations
fopen, fprintf, and fclose.

To build the mexatexit.c MEX-file, type:

mex mexatexit.c

If you type

x = 'my input string';
mexatexit(x)

MATLAB displays

Opening file matlab.data.
Writing data to file.

To clear the MEX-file, type

clear mexatexit

4-22

Examples of C MEX-Files

MATLAB displays

Closing file matlab.data.

You can see the contents of matlab.data by typing

type matlab.data

MATLAB displays

my input string

C++ Example
The C++ example does not use the mexAtExit function. The file open and
close functions are handled in a fileresource class. The destructor for this
class (which closes the data file) is automatically called when the MEX-file
clears. This example also prints a message on the screen when performing
operations on the data file. However, in this case, the only C file operation
performed is the write operation, fprintf.

To build the mexatexit.cpp MEX-file, make sure you have selected a C++
compiler, then type:

mex mexatexit.cpp

If you type

z = 'for the C++ MEX-file';
mexatexit(x)
mexatexit(z)
clear mexatexit

MATLAB displays

Writing data to file.
Writing data to file.

To see the contents of matlab.data, type

type matlab.data

MATLAB displays

4-23

4 Creating C Language MEX-Files

my input string
for the C++ MEX-file

4-24

Advanced Topics

Advanced Topics

In this section...

“Help Files” on page 4-25

“Linking Multiple Files” on page 4-25

“Workspace for MEX-File Functions” on page 4-26

“Handling Large mxArrays” on page 4-26

“Memory Management” on page 4-29

“Large File I/O” on page 4-32

“Using LAPACK and BLAS Functions” on page 4-38

Help Files
Because the MATLAB interpreter chooses the MEX-file when both an M-file
and a MEX-file with the same name are encountered in the same directory, it
is possible to use M-files for documenting the behavior of your MEX-files. The
MATLAB help command automatically finds and displays the appropriate
M-file when help is requested and the interpreter finds and executes the
corresponding MEX-file when the function is invoked.

Linking Multiple Files
It is possible to combine several object files and to use object file libraries
when building MEX-files. To do so, simply list the additional files with their
full extension, separated by spaces. For example, on the PC

mex circle.c square.obj rectangle.c shapes.lib

is a legal command that operates on the .c, .obj, and .lib files to create a
MEX-file called circle.mexw32, where mexw32 is the extension corresponding
to the MEX-file type on 32-bit Windows. The name of the resulting MEX-file
is taken from the first file in the list.

You may find it useful to use a software development tool like MAKE to manage
MEX-file projects involving multiple source files. Simply create a MAKEFILE
that contains a rule for producing object files from each of your source files

4-25

4 Creating C Language MEX-Files

and then invoke mex to combine your object files into a MEX-file. This way
you can ensure that your source files are recompiled only when necessary.

Workspace for MEX-File Functions
Unlike M-file functions, MEX-file functions do not have their own variable
workspace. MEX-file functions operate in the caller’s workspace.

mexEvalString evaluates the string in the caller’s workspace. In addition,
you can use the mexGetVariable and mexPutVariable routines to get and put
variables into the caller’s workspace.

Handling Large mxArrays
MEX-files built on 64-bit platforms can handle 64-bit mxArrays. These large
data arrays can have up to 248–1 elements. The maximum number of elements
a sparse mxArray can have is 248-2.

Using the following instructions creates platform-independent MEX-files
as well.

Your system configuration can impact the performance of MATLAB. The
64-bit processor requirement enables you to create the mxArray and access
data in it. However, your system’s memory, in particular the size of RAM
and virtual memory, determine the speed at which MATLAB processes the
mxArray. The more memory available, the faster the processing.

The amount of RAM also limits the amount of data you can process at one
time in MATLAB. For guidance on memory issues, see “Memory Allocation
in MATLAB”. Memory management within MEX-files can have special
considerations, as described in “Memory Management” on page 4-29.

Using the 64-Bit API
To work with 64-bit mxArrays, your source code must comply with the 64-bit
API, which consists of the functions in the following table.

mxCalcSingleSubscript mxCreateCellMatrix

mxCalloc mxCreateCharArray

4-26

Advanced Topics

mxCopyCharacterToPtr mxCreateCharMatrixFromStrings

mxCopyComplex16ToPtr mxCreateDoubleMatrix

mxCopyComplex8ToPtr mxCreateLogicalArray

mxCopyInteger1ToPtr mxCreateLogicalMatrix

mxCopyInteger2ToPtr mxCreateNumericArray

mxCopyInteger4ToPtr mxCreateNumericMatrix

mxCopyPtrToCharacter mxCreateSparse

mxCopyPtrToComplex16 mxCreateSparseLogicalMatrix

mxCopyPtrToComplex8 mxCreateSparseLogicalMatrix

mxCopyPtrToInteger1 mxCreateStructMatrix

mxCopyPtrToInteger2 mxGetCell

mxCopyPtrToInteger4 mxGetElementSize

mxCopyPtrToPtrArray mxGetField

mxCopyPtrToReal4 mxGetFieldByNumber

mxCopyPtrToReal8 mxGetIr

mxCopyReal4ToPtr mxGetJc

mxCopyReal8ToPtr mxGetM

mxCopyReal8ToPtr mxGetN

mxCopyReal4ToPtr mxGetNumberOfDimensions

mxCreateCellArray mxGetNumberOfElements

Functions in this API use the mwIndex and mwSize types. For information
about using these macros, see “Required Header Files” on page 4-4.

Building the MEX-File
Use the mex command option, -largeArrayDims, with the 64-bit API.

4-27

4 Creating C Language MEX-Files

Example
The example, arraySize.c in matlabroot/extern/examples/mex, illustrates
memory requirements of large mxArrays. To see the example, open the file in
MATLAB Editor.

This function requires one positive scalar numeric input, which it uses to
create a square matrix. It checks the size of the input to make sure your
system can theoretically create a matrix of this size. If the input is valid, it
displays the size of the mxArray in kilobytes.

To build this MEX-file, type:

mex -largeArrayDims arraySize.c

To run the MEX-file, type:

arraySize(2^10)

If your system has enough available memory, MATLAB displays:

Dimensions: 1024 x 1024
Size of array in kilobytes: 1024

If your system does not have enough memory to create the array, MATLAB
displays an Out of memory error.

You can experiment with this function to test the performance and limits of
handling large arrays on your system.

Caution Using Negative Values
When using the 64-bit API, mwSize and mwIndex are equivalent to size_t
in C or INTEGER*8 in Fortran. These types are unsigned, unlike int and
INTEGER*4, which are the types used in the 32-bit API. Be careful not to pass
any negative values to functions that take mwSize or mwIndex arguments.
Do not cast negative int or INTEGER*4 values to mwSize or mwIndex; the
returned value can not be predicted. Instead, change your code to avoid using
negative values.

4-28

Advanced Topics

Building Cross-Platform Applications
If you develop cross-platform applications (programs that can run on both 32-
and 64-bit architectures), you must pay attention to the upper limit of values
you use for mwSize and mwIndex. The 32-bit application reads these values
and assigns them to variables declared as int in C or INTEGER*4 in Fortran.
Be careful to avoid assigning a large mwSize or mwIndex value to an int,
INTEGER*4, or other variable that might be too small.

Memory Management
Memory management within MEX-files is not unlike memory management for
regular C or Fortran applications. However, there are special considerations
because the MEX-file must exist within the context of a larger application,
i.e., MATLAB itself.

Automatic Cleanup of Temporary Arrays
When a MEX-file returns to MATLAB, it gives to MATLAB the results of its
computations in the form of the left-hand side arguments — the mxArrays
contained within the plhs[] list. Any mxArrays created by the MEX-file that
are not in this list are automatically destroyed. In addition, any memory
allocated with mxCalloc, mxMalloc, or mxRealloc during the MEX-file’s
execution is automatically freed.

In general, we recommend that MEX-files destroy their own temporary arrays
and free their own dynamically allocated memory. It is more efficient for the
MEX-file to perform this cleanup than to rely on the automatic mechanism.
However, there are several circumstances in which the MEX-file does not
reach its normal return statement.

The normal return is not reached if:

• A call to mexErrMsgTxt occurs.

• A call to mexCallMATLAB occurs and the function being called creates an
error. (A MEX-file can trap such errors by using mexSetTrapFlag, but not
all MEX-files necessarily need to trap errors.)

• The user interrupts the MEX-file’s execution using Ctrl+C.

4-29

4 Creating C Language MEX-Files

• The MEX-file runs out of memory. When this happens, the MATLAB
out-of-memory handler immediately terminates the MEX-file.

A careful MEX-file programmer can ensure safe cleanup of all temporary
arrays and memory before returning in the first two cases, but not in the
last two cases. In the last two cases, the automatic cleanup mechanism is
necessary to prevent memory leaks.

Persistent Arrays
You can exempt an array, or a piece of memory, from the MATLAB automatic
cleanup by calling mexMakeArrayPersistent or mexMakeMemoryPersistent.
However, if a MEX-file creates such persistent objects, there is a danger that
a memory leak could occur if the MEX-file is cleared before the persistent
object is properly destroyed. In order to prevent this from happening, a
MEX-file that creates persistent objects should register a function, using
mexAtExit, which disposes of the objects. (You can use a mexAtExit function
to dispose of other resources as well; for example, you can use mexAtExit
to close an open file.)

For example, here is a simple MEX-file that creates a persistent array and
properly disposes of it.

#include "mex.h"

static int initialized = 0;
static mxArray *persistent_array_ptr = NULL;

void cleanup(void) {
mexPrintf("MEX-file is terminating, destroying array\n");
mxDestroyArray(persistent_array_ptr);

}

void mexFunction(int nlhs,
mxArray *plhs[],
int nrhs,
const mxArray *prhs[])

{
if (!initialized) {

mexPrintf("MEX-file initializing, creating array\n");

4-30

Advanced Topics

/* Create persistent array and register its cleanup. */
persistent_array_ptr = mxCreateDoubleMatrix(1, 1, mxREAL);
mexMakeArrayPersistent(persistent_array_ptr);
mexAtExit(cleanup);
initialized = 1;

/* Set the data of the array to some interesting value. */
*mxGetPr(persistent_array_ptr) = 1.0;

} else {
mexPrintf("MEX-file executing; value of first array

element is %g\n", *mxGetPr(persistent_array_ptr));
}

}

Hybrid Arrays
Functions such as mxSetPr, mxSetData, and mxSetCell allow the direct
placement of memory pieces into an mxArray. mxDestroyArray destroys these
pieces along with the entire array. Because of this, it is possible to create an
array that cannot be destroyed, i.e., an array on which it is not safe to call
mxDestroyArray. Such an array is called a hybrid array, because it contains
both destroyable and nondestroyable components.

For example, it is not legal to call mxFree (or the ANSI free() function,
for that matter) on automatic variables. Therefore, in the following code
fragment, pArray is a hybrid array.

mxArray *pArray = mxCreateDoubleMatrix(0, 0, mxREAL);
double data[10];

mxSetPr(pArray, data);
mxSetM(pArray, 1);
mxSetN(pArray, 10);

Another example of a hybrid array is a cell array or structure, one of whose
children is a read-only array (an array with the const qualifier, such as one of
the inputs to the MEX-file). The array cannot be destroyed because the input
to the MEX-file would also be destroyed.

4-31

4 Creating C Language MEX-Files

Because hybrid arrays cannot be destroyed, they cannot be cleaned up by
the automatic mechanism outlined in “Automatic Cleanup of Temporary
Arrays” on page 4-29. As described in that section, the automatic cleanup
mechanism is the only way to destroy temporary arrays in case of a user
interrupt. Therefore, temporary hybrid arrays are illegal and can cause your
MEX-file to crash. Although persistent hybrid arrays are viable, it is best to
avoid using them whenever possible.

Large File I/O
MATLAB supports the use of 64-bit file I/O operations in your MEX-file
programs. This enables you to read and write data to files that are up to and
greater than 2 GB (2 31-1 bytes) in size. Note that some operating systems or
compilers might not support files larger than 2 GB.

This section covers the following topics on large file I/O:

• “Prerequisites to Using 64-Bit I/O” on page 4-32

• “Specifying Constant Literal Values” on page 4-34

• “Opening a File” on page 4-35

• “Printing Formatted Messages” on page 4-36

• “Replacing fseek and ftell with 64-Bit Functions” on page 4-36

• “Determining the Size of an Open File” on page 4-37

• “Determining the Size of a Closed File” on page 4-38

Prerequisites to Using 64-Bit I/O
This section describes the components you need to use 64-bit file I/O in your
MEX-file programs:

• “Header File” on page 4-33

• “Type Declarations” on page 4-33

• “Functions” on page 4-34

4-32

Advanced Topics

Header File. Header file io64.h defines many of the types and functions
required for 64-bit file I/O. The statement to include this file must be the first
#include statement in your source file and must also precede any system
header include statements:

#include "io64.h"
#include "mex.h"

.

.

.

Type Declarations. Use the following types to declare variables used in
64-bit file I/O.

MEX Type Description POSIX

fpos_T Declares a 64-bit int type
for setFilePos() and
getFilePos(). Defined
in io64.h.

fpos_t

int64_T, uint64_T Declares 64-bit signed and
unsigned integer types.
Defined in tmwtypes.h.

long, long

structStat Declares a structure to hold
the size of a file. Defined in
io64.h.

struct stat

FMT64 Used in mexPrintf to
specify length within
a format specifier such
as %d. See example in
the section “Printing
Formatted Messages” on
page 4-36. FMT64 is defined in
tmwtypes.h.

%lld

LL, LLU Suffixes for literal int
constant 64-bit values
(C Standard ISO/IEC
9899:1999(E) Section 6.4.4.1).
Used only on UNIX.

LL, LLU

4-33

4 Creating C Language MEX-Files

Functions. Here are the functions you need for 64-bit file I/O. All are defined
in the header file io64.h.

Function Description POSIX

fileno() Gets a file descriptor from a
file pointer

fileno()

fopen() Opens the file and obtains the
file pointer

fopen()

getFileFstat() Gets the file size of a given file
pointer

fstat()

getFilePos() Gets the file position for the
next I/O

fgetpos()

getFileStat() Gets the file size of a given
filename

stat()

setFilePos() Sets the file position for the
next I/O

fsetpos()

Specifying Constant Literal Values
To assign signed and unsigned 64-bit integer literal values, use type
definitions int64_T and uint64_T.

On UNIX, to assign a literal value to an integer variable where the value to
be assigned is greater than 2 31-1 signed, you must suffix the value with
LL. If the value is greater than 2 32-1 unsigned, then use LLU as the suffix.
These suffixes apply only to UNIX systems and are considered invalid on
Windows systems.

Note The LL and LLU suffixes are not required for hardcoded (literal) values
less than 2 G (2 31-1), even if they are assigned to a 64-bit int type.

The following example declares a 64-bit integer variable initialized with a
large literal int value, and two 64-bit integer variables:

void mexFunction(int nlhs, mxArray *plhs[], int nrhs,

4-34

Advanced Topics

const mxArray *prhs[])
{
#if defined(_MSC_VER) || defined(__BORLANDC__) /* Windows */

int64_T large_offset_example = 9000222000;
#else /* UNIX */

int64_T large_offset_example = 9000222000LL;
#endif

int64_T offset = 0;
int64_T position = 0;

Opening a File
To open a file for reading or writing, use the C fopen function as you normally
would. As long as you have included io64.h at the start of your program,
fopen works correctly for large files. No changes at all are required for fread,
fwrite, fprintf, fscanf, and fclose.

To open an existing file for read and update in binary mode,

fp = fopen(filename, "r+b");
if (NULL == fp)

{
/* File does not exist. Create new file for writing
* in binary mode.
*/

fp = fopen(filename, "wb");
if (NULL == fp)

{
sprintf(str, "Failed to open/create test file '%s'",

filename);
mexErrMsgTxt(str);
return;
}

else
{
mexPrintf("New test file '%s' created\n",filename);
}

}
else mexPrintf("Existing test file '%s' opened\n",filename);

4-35

4 Creating C Language MEX-Files

Printing Formatted Messages
You cannot print 64-bit integers using the %d conversion specifier. Instead, use
FMT64 to specify the appropriate format for your platform. FMT64 is defined
in the header file tmwtypes.h. The following example shows how to print a
message showing the size of a large file:

int64_T large_offset_example = 9000222000LL;

mexPrintf("Example large file size: %" FMT64 "d bytes.\n",
large_offset_example);

Replacing fseek and ftell with 64-Bit Functions
The ANSI C fseek and ftell functions are not 64-bit file I/O capable on
most platforms. The functions setFilePos and getFilePos, however, are
defined as the corresponding POSIX fsetpos and fgetpos, (or fsetpos64 and
fgetpos64), as required by your platform/OS. These functions are 64-bit file
I/O capable on all platforms.

The following example shows how to use setFilePos instead of fseek, and
getFilePos instead of ftell. It uses getFileFstat to find the size of the file,
and then uses setFilePos to seek to the end of the file to prepare for adding
data at the end of the file.

Note Although the offset parameter to setFilePos and getFilePos is
really a pointer to a signed 64-bit integer, int64_T, it must be cast to an
fpos_T*. The fpos_T type is defined in io64.h as the appropriate fpos64_t
or fpos_t, as required by your platform/OS.

getFileFstat(fileno(fp), &statbuf);
fileSize = statbuf.st_size;
offset = fileSize;

setFilePos(fp, (fpos_T*) &offset);
getFilePos(fp, (fpos_T*) &position);

Unlike fseek, setFilePos supports only absolute seeking relative to the
beginning of the file. If you want to do a relative seek, first call getFileFstat

4-36

Advanced Topics

to obtain the file size, and then convert the relative offset to an absolute offset
that you can pass to setFilePos.

Determining the Size of an Open File
Getting the size of an open file involves two steps:

1 Refresh the record of the file size stored in memory using getFilePos and
setFilePos.

2 Retrieve the size of the file using getFileFstat.

Refreshing the File Size Record. Before attempting to retrieve the size of
an open file, you should first refresh the record of the file size residing in
memory. If you skip this step on a file that is opened for writing, the file
size returned might be incorrect or 0.

To refresh the file size record, seek to any offset in the file using setFilePos.
If you do not want to change the position of the file pointer, you can seek to
the current position in the file. This example obtains the current offset from
the start of the file and then seeks to the current position to update the file
size without moving the file pointer:

getFilePos(fp, (fpos_T*) &position);
setFilePos(fp, (fpos_T*) &position);

Getting the File Size. The getFileFstat function takes a file descriptor
input argument (that you can obtain from the file pointer of the open file
using fileno), and returns the size of that file in bytes in the st_size field
of a structStat structure:

structStat statbuf;
int64_T fileSize = 0;

if (0 == getFileFstat(fileno(fp), &statbuf))
{
fileSize = statbuf.st_size;
mexPrintf("File size is %" FMT64 "d bytes\n", fileSize);
}

4-37

4 Creating C Language MEX-Files

Determining the Size of a Closed File
The getFileStat function takes the filename of a closed file as an input
argument, and returns the size of the file in bytes in the st_size field of a
structStat structure:

structStat statbuf;
int64_T fileSize = 0;

if (0 == getFileStat(filename, &statbuf))
{
fileSize = statbuf.st_size;
mexPrintf("File size is %" FMT64 "d bytes\n", fileSize);
}

Using LAPACK and BLAS Functions
LAPACK is a large, multiauthor Fortran subroutine library that MATLAB
uses for numerical linear algebra. BLAS, which stands for Basic Linear
Algebra Subroutines, is used by MATLAB to speed up matrix multiplication
and the LAPACK routines themselves. The functions provided by LAPACK
and BLAS can also be called directly from within your C MEX-files.

This section explains how to write and build MEX-files that call LAPACK and
BLAS functions. It provides information on

• “Specifying the Function Name” on page 4-39

• “Calling LAPACK and BLAS Functions from C” on page 4-39

• “Handling Complex Numbers” on page 4-40

• “Preserving Input Values from Modification” on page 4-41

• “Building the C MEX-File” on page 4-42

• “Example — Symmetric Indefinite Factorization Using LAPACK” on page
4-44

• “Calling LAPACK and BLAS Functions from Fortran” on page 4-44

• “Building the Fortran MEX-File” on page 4-45

4-38

Advanced Topics

Specifying the Function Name
When calling an LAPACK or BLAS function, some platforms require an
underscore character following the function name in the call statement.

On the PC platform use the function name alone, with no trailing underscore.
For example, to call the LAPACK dgemm function, use

dgemm(arg1, arg2, ..., argn);

On the LINUX, Solaris, and Macintosh platforms, add the underscore after
the function name. For example, to call dgemm on any of these platforms, use

dgemm_(arg1, arg2, ..., argn);

Calling LAPACK and BLAS Functions from C
Since the LAPACK and BLAS functions are written in Fortran, arguments
passed to and from these functions must be passed by reference. The following
example calls dgemm, passing all arguments by reference. An ampersand (&)
precedes each argument unless that argument is already a reference.

#include "mex.h"

void mexFunction(int nlhs, mxArray *plhs[],

int nrhs, const mxArray *prhs[])

{

double *A, *B, *C, one = 1.0, zero = 0.0;

int m,n,p;

char *chn = "N";

A = mxGetPr(prhs[0]);

B = mxGetPr(prhs[1]);

m = mxGetM(prhs[0]);

p = mxGetN(prhs[0]);

n = mxGetN(prhs[1]);

if (p != mxGetM(prhs[1])) {mexErrMsgTxt

("Inner dimensions of matrix multiply do not match");

}

plhs[0] = mxCreateDoubleMatrix(m, n, mxREAL);

4-39

4 Creating C Language MEX-Files

C = mxGetPr(plhs[0]);

/* Pass all arguments to Fortran by reference */

dgemm(chn, chn, &m, &n, &p, &one, A, &m, B, &p, &zero, C, &m);

}

Handling Complex Numbers
MATLAB stores complex numbers differently than Fortran. MATLAB stores
the real and imaginary parts of a complex number in separate, equal length
vectors, pr and pi. Fortran stores the same number in one location with the
real and imaginary parts interleaved.

As a result, complex variables exchanged between MATLAB and the Fortran
functions in LAPACK and BLAS are incompatible. MATLAB provides
conversion routines that change the storage format of complex numbers to
address this incompatibility.

Input Arguments. For all complex variables passed as input arguments to a
Fortran function, you need to convert the storage of the MATLAB variable
to be compatible with the Fortran function. Use the mat2fort function for
this. See the example that follows.

Output Arguments. For all complex variables passed as output arguments
to a Fortran function, you need to do the following:

1 When allocating storage for the complex variable, allocate a real variable
with twice as much space as you would for a MATLAB variable of the same
size. You need to do this because the returned variable uses the Fortran
format, which takes twice the space. See the allocation of zout in the
example that follows.

2 Once the variable is returned to MATLAB, convert its storage so that it is
compatible with MATLAB. Use the fort2mat function for this.

Example — Passing Complex Variables. The example below shows how
to call an LAPACK function from MATLAB, passing complex prhs[0] as
input and receiving complex plhs[0] as output. Temporary variables zin and
zout are used to hold prhs[0] and plhs[0] in Fortran format.

#include "mex.h"

4-40

Advanced Topics

#include "fort.h" /* defines mat2fort and fort2mat */

void mexFunction(int nlhs, mxArray *plhs[], int nrhs, mxArray

*prhs[])

{

int lda, n;

double *zin, *zout;

lda = mxGetM(prhs[0]);

n = mxGetN(prhs[0]);

/* Convert input to Fortran format */

zin = mat2fort(prhs[0], lda, n);

/* Allocate a real, complex, lda-by-n variable to store output

*/

zout = mxCalloc(2*lda*n, sizeof(double));

/* Call complex LAPACK function */

zlapack_function(zin, &lda, &n, zout);

/* Convert output to MATLAB format */

plhs[0] = fort2mat(zout, lda, lda, n);

/* Free intermediate Fortran format arrays */

mxFree(zin);

mxFree(zout);

}

Preserving Input Values from Modification
Many LAPACK and BLAS functions modify the values of arguments passed
in to them. It is advisable to make a copy of arguments that can be modified
prior to passing them to the function. For complex inputs, this point is moot
since the mat2fort version of the input is a new piece of memory, but for
real data this is not the case.

The following example calls an LAPACK function that modifies the first input
argument. The code in this example makes a copy of prhs[0], and then
passes the copy to the LAPACK function to preserve the contents of prhs[0].

4-41

4 Creating C Language MEX-Files

/* lapack_function modifies A so make a copy of the input */
m = mxGetM(prhs[0]);
n = mxGetN(prhs[0]);
A = mxCalloc(m*n, sizeof(double));

/* Copy mxGetPr(prhs[0]) into A */
temp = mxGetPr(prhs[0]);
for (k = 0; k < m*n; k++) {

A[k] = temp[k];
}

/* lapack_function does not modify B
/* so it is OK to use the input
directly */
B = mxGetPr(prhs[1]);
lapack_function(A, B); /* modifies A but not B */

/* Free A when you are done with it */
mxFree(A);

Building the C MEX-File
The examples in this section show how to compile and link a C MEX file,
myCmexFile.c, on the platforms supported by MATLAB.

Building on the PC. If you build your C MEX-file on a PC platform, you need
to explicitly specify a library file to link with.

On the PC, use this command if you are using the Lcc compiler that ships
with MATLAB:

mex myCmexFile.c
matlabroot\extern\lib\win32\lcc\libmwlapack.lib
matlabroot\extern\lib\win32\lcc\libmwblas.lib

Or, use this command if you are using Microsoft Visual C++ as your C
compiler:

mex myCmexFile.c
matlabroot\extern\lib\win32\microsoft\libmwlapack.lib
matlabroot\extern\lib\win32\microsoft\libmwblas.lib

4-42

Advanced Topics

or

mex myCmexFile.c
matlabroot\extern\lib\win64\microsoft\libmwlapack.lib
matlabroot\extern\lib\win64\microsoft\libmwblas.lib

Building on Other Platforms. On all other platforms, you can build your
MEX-file as you would any other C MEX-file. For example,

mex myCmexFile.c

MEX-Files That Perform Complex Number Conversion. MATLAB
supplies the files fort.c and fort.h, which provide routines for conversion
between MATLAB and FORTRAN complex data structures. These files define
the mat2fort and fort2mat routines mentioned previously under “Handling
Complex Numbers” on page 4-40.

If your program uses these routines, you need to:

1 Include the fort.h file in your program using #include "fort.h". See
“Example — Passing Complex Variables” on page 4-40.

2 Build the fort.c file with your program. Specify the path,
matlabroot/extern/examples/refbook for both fort.c and fort.h in
the build command.

On the PC, use either one of the following:

1

mex myCmexFile.c matlabroot/extern/examples/refbook/fort.c
-Imatlabroot/extern/examples/refbook
matlabroot/extern/lib/win32/microsoft/libmwlapack.lib
matlabroot/extern/lib/win32/microsoft/libmwblas.lib

2

mex myCmexFile.c matlabroot/extern/examples/refbook/fort.c
-Imatlabroot/extern/examples/refbook
matlabroot/extern/lib/win32/lcc/libmwlapack.lib
matlabroot/extern/lib/win32/lcc/libmwblas.lib

4-43

4 Creating C Language MEX-Files

For all other platforms, use

mex myCmexFile.c matlabroot/extern/examples/refbook/fort.c
-Imatlabroot/extern/examples/refbook

Example — Symmetric Indefinite Factorization Using LAPACK
The directory matlabroot/extern/examples/refbook contains an example C
MEX-file that calls two LAPACK functions. There are two versions of this file:

• utdu_slv.c - calls functions zhesvx and dsysvx, and thus is compatible
with the PC platform.

• utdu_slv_.c - calls functions zhesvx_ and dsysvx_, and thus is compatible
with the LINUX, Solaris, and Macintosh platforms.

Calling LAPACK and BLAS Functions from Fortran
You can make calls to the LAPACK and BLAS functions used by MATLAB
from your Fortran MEX files. The following is an example program that takes
two matrices and multiplies them by calling the LAPACK routine, dgemm:

subroutine mexFunction(nlhs, plhs, nrhs, prhs)
integer plhs(*), prhs(*)
integer nlhs, nrhs
integer mxcreatedoublematrix, mxgetpr
integer mxgetm, mxgetn
integer m, n, p
integer A, B, C
double precision one, zero, ar, br
character ch1, ch2

ch1 = 'N'
ch2 = 'N'
one = 1.0
zero = 0.0

A = mxgetpr(prhs(1))
B = mxgetpr(prhs(2))
m = mxgetm(prhs(1))
p = mxgetn(prhs(1))

4-44

Advanced Topics

n = mxgetn(prhs(2))

plhs(1) = mxcreatedoublematrix(m, n, 0.0)
C = mxgetpr(plhs(1))
call mxcopyptrtoreal8(A, ar, 1)
call mxcopyptrtoreal8(B, br, 1)

call dgemm(ch1, ch2, m, n, p, one, %val(A), m,
+ %val(B), p, zero, %val(C), m)

return
end

Building the Fortran MEX-File
The examples in this section show how to compile and link a Fortran MEX
file, myFortranmexFile.F, on the platforms supported by MATLAB.

Building on the PC. On the PC, using Visual Fortran, link against the
libraries libdflapack.lib and libdfblas.lib:

mex -v myFortranMexFile.F
matlabroot/extern/lib/win32/microsoft/libdflapack.lib
matlabroot/extern/lib/win32/microsoft/libdfblas.lib

Building on Other UNIX Platforms. On the UNIX platforms, create the
MEX file as follows:

mex -v myFortranMexFile.F

4-45

4 Creating C Language MEX-Files

Debugging C Language MEX-Files

In this section...

“Notes on Debugging” on page 4-46

“Debugging on Windows” on page 4-46

“Debugging on Linux” on page 4-54

Notes on Debugging
The examples show how to debug yprime.c, found in your
matlabroot/extern/examples/mex/ directory.

MEX-files built with the -g option do not execute on other computers because
they rely on files that are not distributed with MATLAB. Refer to the “Calling
C and Fortran Programs from MATLAB” topic “Troubleshooting” on page 3-32
for additional information on isolating problems with MEX-files.

Debugging on Windows
The Microsoft Visual Studio development environment provides complete
source code debugging, including the ability to set breakpoints, examine
variables, and step through the source code line-by-line.

For information on debugging MEX-files compiled with other MATLAB
supported compilers, see Technical Note 1605, MEX-files Guide, at
http://www.mathworks.com/support/tech-notes/1600/1605.html.

Microsoft Visual Studio 2005
This section describes how to debug using the default compiler, that is, the
compiler used to build MATLAB.

1 Select the Microsoft Visual C++ 2005 compiler. At the MATLAB prompt,
type

mex -setup

4-46

http://www.mathworks.com/support/tech-notes/1600/1605.html

Debugging C Language MEX-Files

Type y to locate installed compilers, and then type the number
corresponding to this compiler.

2 Next, compile the MEX-file with the -g option, which builds the file with
debugging symbols included. For example

mex -g yprime.c

On a 32–bit platform, this command creates the executable file
yprime.mexw32.

3 Start Visual Studio. Do not exit your MATLAB session.

4-47

4 Creating C Language MEX-Files

4 From the Visual Studio Tools menu, select Attach to Process...

4-48

Debugging C Language MEX-Files

5 In the Attach to Process dialog box, select the MATLAB process and click
Attach.

4-49

4 Creating C Language MEX-Files

Visual Studio loads data then displays an empty code pane.

4-50

Debugging C Language MEX-Files

6 Open the source file yprime.c by selecting File > Open > File. yprime.c
is found in the matlabroot/extern/examples/mex/ directory.

7 Set a breakpoint by right-clicking the desired line of code and following
Breakpoint > Insert Breakpoint on the context menu. It is often

4-51

4 Creating C Language MEX-Files

convenient to set a breakpoint at mexFunction in order to stop at the
beginning of the gateway routine.

If you have not yet run the executable file, ignore any “!” icon that appears
with the breakpoint next to the line of code.

4-52

Debugging C Language MEX-Files

Once you hit one of your breakpoints, you can make full use of any
commands the debugger provides to examine variables, display memory,
or inspect registers.

8 Run the MEX-file in MATLAB. After typing

yprime(1,1:4)

4-53

4 Creating C Language MEX-Files

yprime.c is opened in the Visual Studio debugger at the first breakpoint.

9 If you select Debug > Continue, MATLAB displays

ans =

2.0000 8.9685 4.0000 -1.0947

For more information on how to debug in the Visual Studio environment,
see the Microsoft documentation.

Debugging on Linux
The GNU Debugger gdb, available on Linux, provides complete source code
debugging, including the ability to set breakpoints, examine variables, and
step through the source code line-by-line.

For information on debugging MEX-files compiled with other MATLAB
supported compilers, see Technical Note 1605, MEX-files Guide, at
http://www.mathworks.com/support/tech-notes/1600/1605.html.

GNU Debugger gdb
In this procedure, the MATLAB command prompt >> is shown in front of
MATLAB commands, and linux> represents a Linux prompt; your system
may show a different prompt. The debugger prompt is <gdb>.

To debug with gdb,

1 Compile the MEX-file with the -g option, which builds the file with
debugging symbols included. For this example, at the Linux prompt, type

linux> mex -g yprime.c

On a Linux 32–bit platform, this command creates the executable file
yprime.mexglx.

2 At the Linux prompt, start the gdb debugger using the matlab function -D
option:

linux> matlab -Dgdb

4-54

http://www.mathworks.com/support/tech-notes/1600/1605.html

Debugging C Language MEX-Files

3 Start MATLAB without the Java virtual machine (JVM) by using the
-nojvm startup flag:

<gdb> run -nojvm

4 In MATLAB, enable debugging with the dbmex function and run your
MEX-file:

>> dbmex on
>> yprime(1,1:4)

5 At this point, you are ready to start debugging.

It is often convenient to set a breakpoint at mexFunction so you stop at the
beginning of the gateway routine.

<gdb> break mexFunction
<gdb> continue

6 Once you hit one of your breakpoints, you can make full use of any
commands the debugger provides to examine variables, display memory,
or inspect registers.

To proceed from a breakpoint, type

<gdb> continue

7 After stopping at the last breakpoint, type

<gdb> continue

yprime finishes and MATLAB displays

ans =

2.0000 8.9685 4.0000 -1.0947

8 From the MATLAB prompt you can return control to the debugger by typing

>> dbmex stop

Or, if you are finished running MATLAB, type

4-55

4 Creating C Language MEX-Files

>> quit

9 When you are finished with the debugger, type

<gdb> quit

You return to the Linux prompt.

Refer to the documentation provided with your debugger for more information
on its use.

4-56

5

Creating Fortran MEX-Files

Fortran MEX-Files (p. 5-2) MEX-file components and required
arguments

Examples of Fortran MEX-Files
(p. 5-12)

Sample MEX-files that show how to
handle all data types

Advanced Topics (p. 5-21) Help files, linking multiple files,
workspace, managing memory

Debugging Fortran Language
MEX-Files (p. 5-25)

Debugging MEX-file source code
from MATLAB

5 Creating Fortran MEX-Files

Fortran MEX-Files

In this section...

“The Components of a Fortran MEX-File” on page 5-2

“Gateway Routine” on page 5-2

“Computational Routine” on page 5-5

“Preprocessor Macros” on page 5-5

“Using the Fortran %val Construct” on page 5-6

“Data Flow in MEX-Files” on page 5-7

The Components of a Fortran MEX-File
MEX-files are built by using the mex function. mex compiles and links source
files into a shared library called a MEX-file, which you can run in MATLAB.
Once compiled, you treat MEX-files exactly like MATLAB M-files and built-in
functions.

The MEX-file consists of:

• A “Gateway Routine” on page 5-2 that interfaces Fortran and MATLAB
data.

• A “Computational Routine” on page 5-5 that performs the computations
you want implemented in the MEX-file.

• “Preprocessor Macros” on page 5-5 for building platform-independent code.

Gateway Routine
The gateway routine is the entry point to the MEX-file shared library. It is
through this routine that MATLAB accesses the rest of the routines in your
MEX-files. Use the following guideline to create a gateway routine:

• “Naming the Gateway Routine” on page 5-3

• “Required Parameters” on page 5-3

• “Creating and Using Source Files” on page 5-4

5-2

Fortran MEX-Files

• “Using MATLAB Libraries” on page 5-4

• “Required Header Files” on page 5-4

• “Naming the MEX-File” on page 5-5

A Fortran MEX-file gateway routine looks like this:

C The gateway routine.
subroutine mexFunction(nlhs, plhs, nrhs, prhs)
integer nlhs, nrhs
mwpointer plhs(*), prhs(*)

Note Fortran is not case sensitive. This document uses mixed-case function
names for ease of reading.

Naming the Gateway Routine
The name of the gateway routine must be mexFunction.

Required Parameters
A gateway routine must contain the parameters prhs, nrhs, plhs, and nlhs
which are described in the following table.

Parameter Description

prhs An array of right-hand input arguments.

plhs An array of left-hand output arguments.

nrhs The number of right-hand arguments, or the size of the prhs
array.

nlhs The number of left-hand arguments, or the size of the plhs
array.

Both prhs and plhs are declared as type mxArray *, which means they point
to MATLAB arrays. They are vectors that contain pointers to the arguments
of the MEX-file.

5-3

5 Creating Fortran MEX-Files

You can think of the name prhs as representing the “parameters, right-hand
side,” that is, the input parameters. Likewise, plhs represents the
“parameters, left-hand side,” or output parameters.

Creating and Using Source Files
It is good practice to write the gateway routine to call a “Computational
Routine” on page 4-4; however, this is not required. The computational code
can be part of the gateway routine. If you use both gateway and computational
routines, they can be combined in one source file or in separate files. If you
use separate files, the gateway routine must be the first source file listed
in the mex command.

The name of the file containing your gateway routine is important, as
explained in “Naming the MEX-File” on page 5-5.

Name your Fortran source file with an uppercase .F file extension.

The Difference Between .f and .F Files. Fortran compilers assume source
files using a lowercase .f file extension have been preprocessed. On most
platforms, mex makes sure the file is preprocessed regardless of the file
extension. However, on Macintosh systems, mex cannot force preprocessing.
Use an uppercase .F file extension to ensure your Fortran MEX-file is
platform independent.

Using MATLAB Libraries
The MATLAB C and Fortran API Reference describes functions you can use
in your gateway and computational routines that interact with MATLAB
programs and the data in the MATLAB workspace. The mx prefixed functions
provide access methods for manipulating MATLAB arrays. The mex prefixed
functions perform operations in the MATLAB environment.

Required Header Files
To use the functions in the C and Fortran Reference library you must include
the mex header, which declares the entry point and interface routines. Put
this statement in your source file:

#include "mex.h"

5-4

Fortran MEX-Files

In addition, Fortran MEX-files require the fintrf.h header file, which is
used by the mwPointer preprocessor macro. Put this statement in your
Fortran source file:

#include "fintrf.h"

Naming the MEX-File
The MEX-file name, and hence the name of the function you use in MATLAB,
is the name of the source file containing your gateway routine.

The file extension of the MEX-file is platform-dependent. The mexext function
returns the extension for the current machine.

Computational Routine
The computational routine contains the code for performing the computations
you want implemented in the MEX-file. Computations can be numerical
computations as well as inputting and outputting data. The gateway calls the
computational routine as a subroutine.

The programming requirements described in “Creating and Using Source
Files” on page 4-4, “Using MATLAB Libraries” on page 4-4, and “Required
Header Files” on page 4-4 may also apply to your computational routine.

Preprocessor Macros
The MATLAB preprocessor macros mwSize and mwIndex are used in the mx
and mex functions for cross-platform flexibility. mwSize represents size values,
such as array dimensions and number of elements. mwIndex represents index
values, such as indices into arrays.

MATLAB has an additional preprocessor macro for Fortran files, mwPointer.
MATLAB uses a unique data type, the mxArray. Because there is no way
to create a new data type in Fortran, MATLAB passes a special identifier,
created by the mwPointer preprocessor macro, to a Fortran program. This is
how you get information about an mxArray in a native Fortran data type. For
example, you can find out the size of the mxArray, determine whether or not
it is a string, and look at the contents of the array. Use mwPointer to build
platform-independent code.

5-5

5 Creating Fortran MEX-Files

The Fortran preprocessor converts mwPointer to integer*4 when building
MEX-files on 32-bit platforms and to integer*8 when building on 64-bit
platforms.

Note Declaring a pointer to be the incorrect size may cause your program
to crash.

Using the Fortran %val Construct
The Fortran %val(arg) construct specifies that an argument, arg, is to be
passed by value, instead of by reference. The %val construct is supported by
most, but not all, Fortran compilers. Compaq Visual Fortran does support
the construct.

If your compiler does not support the %val construct, you must copy the array
values into a temporary true Fortran array using the mxCopy* routines (e.g.,
mxCopyPtrToReal8).

A %val Construct Example
If your compiler supports the %val construct, you can use routines that point
directly to the data (i.e., the pointer returned by mxGetPr or mxGetPi). You can
use %val to pass this pointer’s contents to a subroutine, where it is declared
as a Fortran double-precision matrix.

For example, consider a gateway routine that calls its computational routine,
yprime, by

call yprime(%val(yp), %val(t), %val(y))

If your Fortran compiler does not support the %val construct, you would
replace the call to the computational subroutine with

C Copy array pointers to local arrays.
call mxCopyPtrToReal8(t, tr, 1)
call mxCopyPtrToReal8(y, yr, 4)

C
C Call the computational subroutine.

call yprime(ypr, tr, yr)

5-6

Fortran MEX-Files

C
C Copy local array to output array pointer.

call mxCopyReal8ToPtr(ypr, yp, 4)

You must also add the following declaration line to the top of the gateway
routine:

real*8 ypr(4), tr, yr(4)

Note that if you use mxCopyPtrToReal8 or any of the other mxCopy* routines,
the size of the arrays declared in the Fortran gateway routine must be
greater than or equal to the size of the inputs to the MEX-file coming in from
MATLAB. Otherwise, mxCopyPtrToReal8 does not work correctly.

Data Flow in MEX-Files
The following examples illustrate data flow in MEX-files:

• “Showing Data Input and Output” on page 5-7

• “Gateway Routine Data Flow Diagram” on page 5-8

• “MATLAB Example yprime.F” on page 5-9

Showing Data Input and Output
Suppose your MEX-file myFunction has 2 input arguments and 1 output
argument. The MATLAB syntax is [X] = myFunction(Y, Z). To call
myFunction from MATLAB, type:

X = myFunction(Y, Z);

The MATLAB interpreter calls mexFunction, the gateway routine to
myFunction, with the following arguments:

5-7

5 Creating Fortran MEX-Files

Your input is prhs, a 2-element C array (nrhs = 2). The first element is a
pointer to an mxArray named Y and the second element is a pointer to an
mxArray named Z.

Your output is plhs, a 1-element C array (nlhs = 1) where the single element
is a null pointer. The parameter plhs points at nothing because the output X
is not created until the subroutine executes.

The gateway routine creates the output array and sets a pointer to it in
plhs[0]. If plhs[0] is left unassigned and you assign an output value to
the function when you call it, MATLAB generates an error stating that no
output was assigned.

Note It is possible to return an output value even if nlhs = 0. This
corresponds to returning the result in the ans variable.

Gateway Routine Data Flow Diagram
The following MEX Cycle diagram shows how inputs enter a MEX-file, what
functions the gateway routine performs, and how outputs return to MATLAB.

In this example, the syntax of the MEX-file func is [C, D] = func(A,B). In
the figure, a call to func tells MATLAB to pass variables A and B to your
MEX-file. C and D are left unassigned.

The gateway routine func.F uses the mxCreate* functions to create the
MATLAB arrays for your output arguments. It sets plhs[0] and plhs[1]

5-8

Fortran MEX-Files

to the pointers to the newly created MATLAB arrays. It uses the mxGet*
functions to extract your data from your input arguments prhs[0] and
prhs[0]. Finally, it calls your computational routine, passing the input and
output data pointers as function parameters.

On return to MATLAB, plhs[0] is assigned to C and plhs[1] is assigned to D.

���������
-/(%�
������
$

�����-�&��.���
���1��
����������
%������	��-/(%�
���
������&���������
	��
�����

��	
��

'�(&)*���
+�(%,

2�����	�������
-/(%�
������
$

!���+.,�
��
����
���������!���+#,�

�
��������&�

'�(&)*���
+�(%,

��	
��

������

	���	�
�����#3	���
��)
����(�!���(�����(�!���,

��������!���+0,(�!���+0,(����(�����

!����������+�����	�
���

'���������������	���
������������
����-�&��.�������������	���	��	�
���	����������!���+.,(+#,(
���������
��������������+����������
-�&��.�������

'�������1����	���
�������#�����
��	������������!���+.,(+#,(��

�������	��3�������	���	�
�����
��
����
��	�������	��	���������
������
�	���
�������������	
���23���

�����

�������

��������%
%�*�!���+#,

���������
��*�!���+.,

��������&
&�*�!���+#,

���������
��*�!���+.,

Fortran MEX Cycle

MATLAB Example yprime.F
Let’s look at an example, yprime.F, found in your
matlabroot/extern/examples/mex/ directory. (“Building MEX-Files” on
page 3-11 explains how to create the MEX-file.) It’s calling syntax is [YP]
= YPRIME(T,Y), where T is an integer and Y is a vector with 4 elements.
For T=1 and Y=1:4, when you type

5-9

5 Creating Fortran MEX-Files

yprime(T,Y)

MATLAB displays:

ans =
2.0000 8.9685 4.0000 -1.0947

The gateway routine should validate the input arguments. This step includes
checking the number, type, and size of the input arrays as well as examining
the number of output arrays. If the inputs are not valid, call mexErrMsgTxt.
For example,

C

C CHECK FOR PROPER NUMBER OF ARGUMENTS

C

IF (NRHS .NE. 2) THEN

CALL MEXERRMSGTXT('YPRIME requires two input arguments')

ELSEIF (NLHS .GT. 1) THEN

CALL MEXERRMSGTXT('YPRIME requires one output argument')

ENDIF

C

C CHECK THE DIMENSIONS OF Y. IT CAN BE 4 X 1 OR 1 X 4.

C

M = MXGETM(PRHS(2))

N = MXGETN(PRHS(2))

C

IF ((MAX(M,N) .NE. 4) .OR. (MIN(M,N) .NE. 1)) THEN

CALL MEXERRMSGTXT('YPRIME requires that Y be a 4 x 1 vector')

ENDIF

To create MATLAB arrays, call any of the mxCreate* functions, like
mxCreateDoubleMatrix, mxCreateSparse, or mxCreateString. If it needs
them, the gateway routine can call mxCalloc to allocate temporary work
arrays for the computational routine. In this example,

C
C CREATE A MATRIX FOR RETURN ARGUMENT
C

PLHS(1) = MXCREATEDOUBLEMATRIX(M,N,0)

5-10

Fortran MEX-Files

In the gateway routine, you access the data in mxArray and manipulate
it in your computational subroutine. For example, the expression
mxGetPr(prhs[0]) returns a pointer of type double * to the real data in the
mxArray pointed to by prhs[0]. You can then use this pointer like any other
pointer of type double * in Fortran. For example,

C
C ASSIGN POINTERS TO THE VARIOUS PARAMETERS
C

YPP = MXGETPR(PLHS(1))
C

TP = MXGETPR(PRHS(1))
YP = MXGETPR(PRHS(2))

C
C COPY RIGHT HAND ARGUMENTS TO LOCAL ARRAYS OR VARIABLES

NEL = 1
CALL MXCOPYPTRTOREAL8(TP, RTP, NEL)
NEL = 4
CALL MXCOPYPTRTOREAL8(YP, RYP, NEL)

In this example, a computational routine, yprime, performs the calculations:

C
C DO THE ACTUAL COMPUTATIONS IN A SUBROUTINE
C CREATED ARRAYS.
C

CALL YPRIME(RYPP,RTP,RYP)

After calling your computational routine from the gateway, you can set a
pointer of type mxArray to the data it returns. MATLAB recognizes the output
from your computational routine as the output from the MEX-file.

C
C COPY OUTPUT WHICH IS STORED IN LOCAL ARRAY TO MATRIX OUTPUT

NEL = 4
CALL MXCOPYREAL8TOPTR(RYPP, YPP, NEL)

When a MEX-file completes its task, it returns control to MATLAB. Any
MATLAB arrays that are created by the MEX-file but are not returned to
MATLAB through the left-hand side arguments are automatically destroyed.

5-11

5 Creating Fortran MEX-Files

Examples of Fortran MEX-Files

In this section...

“Introduction” on page 5-12

“A First Example — Passing a Scalar” on page 5-12

“Passing Strings” on page 5-13

“Passing Arrays of Strings” on page 5-14

“Passing Matrices” on page 5-15

“Passing Two or More Inputs or Outputs” on page 5-15

“Handling Complex Data” on page 5-16

“Dynamically Allocating Memory” on page 5-17

“Handling Sparse Matrices ” on page 5-18

“Calling Functions from Fortran MEX-Files” on page 5-19

Introduction
The MATLAB API provides a set of Fortran routines that handle
double-precision data and strings in MATLAB. For each data type, there is a
specific set of functions that you can use for data manipulation.

Note Source code for the examples in this chapter are located in the
matlabroot/extern/examples/refbook directory of your MATLAB
installation.

A First Example — Passing a Scalar
Let’s look at a simple example of Fortran code and its MEX-file equivalent.
Here is a Fortran computational routine that takes a scalar and doubles it:

subroutine timestwo(y, x)
real*8 x, y

C
y = 2.0 * x

5-12

Examples of Fortran MEX-Files

return
end

To see the same function written in the MEX-file format (timestwo.F), open
the file in MATLAB Editor.

To compile and link this example, at the MATLAB prompt type

mex timestwo.F

This command creates the MEX-file called timestwo with an extension
corresponding to the machine type on which you’re running. You can now call
timestwo as if it were an M-function:

x = 2;
y = timestwo(x)
y =

4

Passing Strings
Passing strings from MATLAB to a Fortran MEX-file is straightforward. The
program revord.F accepts a string and returns the characters in reverse
order. To see the example revord.F, open the file in MATLAB Editor.

After checking for the correct number of inputs, the gateway routine
mexFunction verifies that the input was a row vector string. It then finds
the size of the string and places the string into a Fortran character array.
Note that in the case of character strings, it is not necessary to copy the
data into a Fortran character array using mxCopyPtrToCharacter. In fact,
mxCopyPtrToCharacter works only with MAT-files. For more information,
see “Using MAT-Files” on page 1-2.

For an input string

x = 'hello world';

typing

y = revord(x)

produces

5-13

5 Creating Fortran MEX-Files

y =

dlrow olleh

Passing Arrays of Strings
Passing arrays of strings adds a complication to the example “Passing Strings”
on page 5-13. Because MATLAB stores elements of a matrix by column
instead of by row, the size of the string array must be correctly defined in the
Fortran MEX-file. The key point is that the row and column sizes as defined
in MATLAB must be reversed in the Fortran MEX-file. Consequently, when
returning to MATLAB, the output matrix must be transposed.

This example places a string array/character matrix into MATLAB as output
arguments rather than placing it directly into the workspace. At the MATLAB
prompt, type

passstr;

which creates the 5-by-15 mystring matrix. You need to do some further
manipulation. The original string matrix is 5-by-15. Because of the way
MATLAB reads and orients elements in matrices, the size of the matrix must
be defined as M=15 and N=5 in the MEX-file. After the matrix is put into
MATLAB, the matrix must be transposed. The program passstr.F illustrates
how to pass a character matrix. To see the code passstr.F, open the file in
MATLAB Editor.

Typing

passstr

at the MATLAB prompt produces this result:

ans =

MATLAB
The Scientific
Computing
Environment

by TMW, Inc.

5-14

Examples of Fortran MEX-Files

Passing Matrices
In MATLAB, you can pass matrices into and out of MEX-files written in
Fortran. You can manipulate the MATLAB arrays by using mxGetPr and
mxGetPi to assign pointers to the real and imaginary parts of the data stored
in the MATLAB arrays. You can create new MATLAB arrays from within
your MEX-file by using mxCreateDoubleMatrix.

The example matsq.F takes a real 2-by-3 matrix and squares each element.
To see the source code, open the file in MATLAB Editor.

After performing error checking to ensure that the correct number of inputs
and outputs was assigned to the gateway subroutine and to verify the input
was in fact a numeric matrix, matsq.F creates a matrix. The matrix is
copied to a Fortran matrix using mxCopyPtrToReal8. Now the computational
subroutine can be called, and the return argument is placed into y_pr, the
pointer to the output, using mxCopyReal8ToPtr.

For a 2-by-3 real matrix

x = [1 2 3; 4 5 6];

typing

y = matsq(x)

produces this result:

y =
1 4 9

16 25 36

Passing Two or More Inputs or Outputs
The plhs and prhs parameters (see “The Components of a Fortran MEX-File”
on page 5-2) are vectors containing pointers to the left-hand side (output)
variables and right-hand side (input) variables. plhs(1) contains a pointer to
the first left-hand side argument, plhs(2) contains a pointer to the second
left-hand side argument, and so on. Likewise, prhs(1) contains a pointer to
the first right-hand side argument, prhs(2) points to the second, and so on.

5-15

5 Creating Fortran MEX-Files

The example xtimesy.F multiplies an input scalar times an input scalar or
matrix. To see the source code, open the file in MATLAB Editor.

As this example shows, creating MEX-file gateways that handle multiple
inputs and outputs is straightforward. All you need to do is keep track of
which indices of the vectors prhs and plhs correspond to which input and
output arguments of your function. In this example, the input variable x
corresponds to prhs(1) and the input variable y to prhs(2).

For an input scalar x and a real 3-by-3 matrix,

x = 3; y = ones(3);

typing

z = xtimesy(x, y)

yields this result:

z =
3 3 3
3 3 3
3 3 3

Handling Complex Data
MATLAB stores complex double-precision data as two vectors of numbers—one
vector contains the real data and the other contains the imaginary data. The
functions mxCopyPtrToComplex16 and mxCopyComplex16ToPtr copy MATLAB
data to a native complex*16 Fortran array.

The example convec.F takes two complex vectors (of length 3) and convolves
them. To see the source code, open the file in MATLAB Editor.

5-16

Examples of Fortran MEX-Files

Entering the following at the MATLAB prompt

x = [3 - 1i, 4 + 2i, 7 - 3i]

x =

3.0000 - 1.0000i 4.0000 + 2.0000i 7.0000 - 3.0000i
y = [8 - 6i, 12 + 16i, 40 - 42i]

y =

8.0000 - 6.0000i 12.0000 +16.0000i 40.0000 -42.0000i

and calling the new MEX-file

z = convec(x, y)

results in

z =

1.0e+02 *

Columns 1 through 4

0.1800 - 0.2600i 0.9600 + 0.2800i 1.3200 - 1.4400i
3.7600 - 0.1200i

Column 5

1.5400 - 4.1400i

which agrees with the results the built-in MATLAB function conv.m produces.

Dynamically Allocating Memory
To allocate memory dynamically in a Fortran MEX-file, use %val. (See “Using
the Fortran %val Construct” on page 5-6.) The example dblmat.F takes an
input matrix of real data and doubles each of its elements. To see the source
code, open the file in MATLAB Editor.

5-17

5 Creating Fortran MEX-Files

compute.F is the subroutine dblmat calls to double the input matrix. (Open
the file in MATLAB Editor.)

For the 2-by-3 matrix

x = [1 2 3; 4 5 6];

typing

y = dblmat(x)

yields

y =
2 4 6
8 10 12

Note The dblmat.F example, as well as fulltosparse.F and sincall.F, are
split into two parts, the gateway and the computational subroutine, because
of restrictions in some compilers.

Handling Sparse Matrices
MATLAB provides a set of functions that allow you to create and manipulate
sparse matrices. There are special parameters associated with sparse
matrices, namely ir, jc, and nzmax. For information on how to use these
parameters and how MATLAB stores sparse matrices in general, see “Sparse
Matrices” on page 3-9.

Note Sparse array indexing is zero-based, not one-based.

The fulltosparse.F example illustrates how to populate a sparse matrix. To
see the source code, open the file in MATLAB Editor.

loadsparse.F is the subroutine fulltosparse calls to fill the mxArray with
the sparse data. (Open the file in MATLAB Editor.)

At the MATLAB prompt, typing

5-18

Examples of Fortran MEX-Files

full = eye(5)
full =

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

creates a full, 5-by-5 identity matrix. Using fulltosparse on the full matrix
produces the corresponding sparse matrix:

spar = fulltosparse(full)
spar =

(1,1) 1
(2,2) 1
(3,3) 1
(4,4) 1
(5,5) 1

Calling Functions from Fortran MEX-Files
You can call MATLAB functions, operators, M-files, and even other
MEX-files from within your Fortran source code by using the API function
mexCallMATLAB. The sincall.F example creates an mxArray, passes various
pointers to a subfunction to acquire data, and calls mexCallMATLAB to
calculate the sine function and plot the results. To see the source code, open
the file in MATLAB Editor.

fill.F is the subroutine sincall calls to fill the mxArray with data. (Open
the file in MATLAB Editor.)

It is possible to use mexCallMATLAB (or any other API routine) from within
your computational Fortran subroutine. Note that you can only call most
MATLAB functions with double-precision data. M-functions that perform
computations, such as eig, do not work correctly with data that is not double
precision.

Running this example

sincall

5-19

5 Creating Fortran MEX-Files

displays the results

Note You can generate an object of type mxUNKNOWN_CLASS using
mexCallMATLAB. See the following example.

This example creates an M-file that returns two variables but only assigns
one of them a value:

function [a,b]=foo[c]
a=2*c;

MATLAB displays the following warning:

Warning: One or more output arguments not assigned during call to

'foo'.

If you then call foo using mexCallMATLAB, the unassigned output variable is
now of type mxUNKNOWN_CLASS.

5-20

Advanced Topics

Advanced Topics

In this section...

“Help Files” on page 5-21

“Linking Multiple Files” on page 5-21

“Workspace for MEX-File Functions” on page 5-22

“Handling Large mxArrays” on page 5-22

“Memory Management” on page 5-24

Help Files
Because the MATLAB interpreter chooses the MEX-file when both an M-file
and a MEX-file with the same name are encountered in the same directory, it
is possible to use M-files for documenting the behavior of your MEX-files. The
MATLAB help command automatically finds and displays the appropriate
M-file when help is requested and the interpreter finds and executes the
corresponding MEX-file when the function is actually invoked.

Linking Multiple Files
You can combine several source files when building MEX-files. For example,

mex circle.F square.o rectangle.F shapes.o

is a legal command that operates on the .F and .o files to create a MEX-file
called circle.ext, where ext is the extension corresponding to the MEX-file
type. The name of the resulting MEX-file is taken from the first file in the list.

You may find it useful to use a software development tool like MAKE to manage
MEX-file projects involving multiple source files. Simply create a MAKEFILE
that contains a rule for producing object files from each of your source files
and then invoke mex to combine your object files into a MEX-file. This way
you can ensure that your source files are recompiled only when necessary.

5-21

5 Creating Fortran MEX-Files

Note On Linux, you must use the -fortran switch to the mex script if you
are linking Fortran objects.

Workspace for MEX-File Functions
Unlike M-file functions, MEX-file functions do not have their own variable
workspace. mexEvalString evaluates the string in the caller’s workspace. In
addition, you can use the mexGetVariable and mexPutVariable routines to
get and put variables into the caller’s workspace.

Handling Large mxArrays
MEX-files built on 64-bit platforms can handle 64-bit mxArrays. These large
data arrays can have up to 248–1 elements. The maximum number of elements
a sparse mxArray can have is 248-2.

Using the following instructions creates platform-independent MEX-files
as well.

Your system configuration can impact the performance of MATLAB. The
64-bit processor requirement enables you to create the mxArray and access
data in it. However, your system’s memory, in particular the size of RAM
and virtual memory, determine the speed at which MATLAB processes the
mxArray. The more memory available, the faster the processing.

The amount of RAM also limits the amount of data you can process at one
time in MATLAB. For guidance on memory issues, see “Memory Allocation
in MATLAB”. Memory management within MEX-files can have special
considerations, as described in “Memory Management” on page 4-29.

Using the 64-Bit API
To work with 64-bit mxArrays, your source code must comply with the 64-bit
API, which consists of the functions in the following table.

mxCalcSingleSubscript mxCreateCellMatrix

mxCalloc mxCreateCharArray

5-22

Advanced Topics

mxCopyCharacterToPtr mxCreateCharMatrixFromStrings

mxCopyComplex16ToPtr mxCreateDoubleMatrix

mxCopyComplex8ToPtr mxCreateLogicalArray

mxCopyInteger1ToPtr mxCreateLogicalMatrix

mxCopyInteger2ToPtr mxCreateNumericArray

mxCopyInteger4ToPtr mxCreateNumericMatrix

mxCopyPtrToCharacter mxCreateSparse

mxCopyPtrToComplex16 mxCreateSparseLogicalMatrix

mxCopyPtrToComplex8 mxCreateSparseLogicalMatrix

mxCopyPtrToInteger1 mxCreateStructMatrix

mxCopyPtrToInteger2 mxGetCell

mxCopyPtrToInteger4 mxGetElementSize

mxCopyPtrToPtrArray mxGetField

mxCopyPtrToReal4 mxGetFieldByNumber

mxCopyPtrToReal8 mxGetIr

mxCopyReal4ToPtr mxGetJc

mxCopyReal8ToPtr mxGetM

mxCopyReal8ToPtr mxGetN

mxCopyReal4ToPtr mxGetNumberOfDimensions

mxCreateCellArray mxGetNumberOfElements

Functions in this API use the mwIndex, mwSize, and mwPointer preprocessor
macros. For information about using these macros, see “Required Header
Files” on page 5-4.

Building the MEX-File
Use the mex command option, -largeArrayDims, with the 64-bit API.

5-23

5 Creating Fortran MEX-Files

Caution Using Negative Values
When using the 64-bit API, mwSize and mwIndex are equivalent to size_t
in C or INTEGER*8 in Fortran. These types are unsigned, unlike int and
INTEGER*4, which are the types used in the 32-bit API. Be careful not to pass
any negative values to functions that take mwSize or mwIndex arguments.
Do not cast negative int or INTEGER*4 values to mwSize or mwIndex; the
returned value can not be predicted. Instead, change your code to avoid using
negative values.

Building Cross-Platform Applications
If you develop cross-platform applications (programs that can run on both 32-
and 64-bit architectures), you must pay attention to the upper limit of values
you use for mwSize and mwIndex. The 32-bit application reads these values
and assigns them to variables declared as int in C or INTEGER*4 in Fortran.
Be careful to avoid assigning a large mwSize or mwIndex value to an int,
INTEGER*4, or other variable that might be too small.

Memory Management
MATLAB now implicitly destroys (by calling mxDestroyArray) any arrays
created by a MEX-file that are not returned in the left-hand side list (plhs()).
Consequently, any misconstructed arrays left over at the end of a MEX-file’s
execution have the potential to cause memory errors.

In general, we recommend that MEX-files destroy their own temporary arrays
and clean up their own temporary memory. For additional information on
memory management techniques, see the sections “Memory Management” on
page 4-29 and “Memory Management Compatibility Issues” on page 3-39.

5-24

Debugging Fortran Language MEX-Files

Debugging Fortran Language MEX-Files

In this section...

“Notes on Debugging” on page 5-25

“Debugging on Windows” on page 5-25

“Debugging on Linux” on page 5-25

Notes on Debugging
The examples show how to debug timestwo.F, found in your
matlabroot/extern/examples/refbook/ directory.

MEX-files built with the -g option do not execute on other computers because
they rely on files that are not distributed with MATLAB. Refer to the “Calling
C and Fortran Programs from MATLAB” topic “Troubleshooting” on page 3-32
for additional information on isolating problems with MEX-files.

Debugging on Windows
For MEX-files compiled with any version of the Intel Visual Fortran compiler,
you can use the debugging tools found in your version of Microsoft Visual
Studio. Refer to the “Creating C Language MEX-Files” topic “Debugging on
Windows” on page 4-46 for instructions on using this debugger.

For information on debugging MEX-files compiled with other MATLAB
supported compilers, see Technical Note 1605, MEX-files Guide, at
http://www.mathworks.com/support/tech-notes/1600/1605.html.

Debugging on Linux
The MATLAB supported Fortran compiler g95 has a -g option for building
MEX-files with debug information. Such files can be used with gdb, the GNU
Debugger. This section describes using gdb.

For information on debugging MEX-files compiled with other MATLAB
supported compilers, see Technical Note 1605, MEX-files Guide, at
http://www.mathworks.com/support/tech-notes/1600/1605.html.

5-25

http://www.mathworks.com/support/tech-notes/1600/1605.html
http://www.mathworks.com/support/tech-notes/1600/1605.html

5 Creating Fortran MEX-Files

GNU Debugger gdb
In this example, the MATLAB command prompt >> is shown in front of
MATLAB commands, and linux> represents a Linux prompt; your system
may show a different prompt. The debugger prompt is <gdb>.

1 To compile the MEX-file, type

linux> mex -g timestwo.F

On a Linux 32–bit platform, this command creates the executable file
timestwo.mexglx.

2 At the Linux prompt, start the gdb debugger using the matlab -D option:

linux> matlab -Dgdb

3 Start MATLAB without the Java virtual machine (JVM) by using the
-nojvm startup flag:

<gdb> run -nojvm

4 In MATLAB, enable debugging with the dbmex function and run your
MEX-file:

>> dbmex on
>> y = timestwo(4)

5 At this point, you are ready to start debugging.

It is often convenient to set a breakpoint at mexFunction so you stop at the
beginning of the gateway routine.

5-26

Debugging Fortran Language MEX-Files

Note The function name may be slightly altered by the compiler (e.g., it
may have an underscore appended). To determine how this symbol appears
in a given MEX-file, use the Linux command nm. For example,

linux> nm timestwo.mexglx | grep -i mexfunction

Linux responds with something like

0000091c T mexfunction_

Use mexfunction_ in the breakpoint statement. Be sure to use the correct
case.

<gdb> break mexfunction_
<gdb> continue

6 Once you hit one of your breakpoints, you can make full use of any
commands the debugger provides to examine variables, display memory,
or inspect registers.

To proceed from a breakpoint, type continue.

<gdb> continue

7 After stopping at the last breakpoint, type

<gdb> continue

timestwo finishes and MATLAB displays

y =

8

8 From the MATLAB prompt you can return control to the debugger by typing

>> dbmex stop

Or, if you are finished running MATLAB, type

5-27

5 Creating Fortran MEX-Files

>> quit

9 When you are finished with the debugger, type

<gdb> quit

You return to the Linux prompt.

Refer to the documentation provided with your debugger for more information
on its use.

5-28

6

Calling MATLAB from C
and Fortran Programs

The MATLAB engine library is a set of routines that allows you to call
MATLAB from your own programs, thereby employing MATLAB as a
computation engine. MATLAB engine programs are C or Fortran programs
that communicate with a separate MATLAB process via pipes, on UNIX, and
through a Component Object Model (COM) interface, on Windows. There is a
library of functions provided with MATLAB that allows you to start and end
the MATLAB process, send data to and from MATLAB, and send commands
to be processed in MATLAB.

Using the MATLAB Engine (p. 6-2) What types of applications is the
MATLAB engine useful for, and what
functions are available to use with it

Examples of Calling Engine
Functions (p. 6-5)

Example programs that call
MATLAB from C or Fortran, and
that attach to an existing MATLAB
session

Compiling and Linking MATLAB
Engine Programs (p. 6-10)

Building and running an engine
application

6 Calling MATLAB from C and Fortran Programs

Using the MATLAB Engine

In this section...

“Introduction” on page 6-2

“The Engine Library” on page 6-3

“GUI-Intensive Applications” on page 6-4

Introduction
Some of the things you can do with the MATLAB engine are

• Call a math routine, for example, to invert an array or to compute an FFT
from your own program. When employed in this manner, MATLAB is a
powerful and programmable mathematical subroutine library.

• Build an entire system for a specific task, for example, radar signature
analysis or gas chromatography, where the front end (GUI) is programmed
in C and the back end (analysis) is programmed in MATLAB, thereby
shortening development time.

The MATLAB engine operates by running in the background as a separate
process from your own program. This offers several advantages:

• On UNIX, the MATLAB engine can run on your machine, or on any
other UNIX machine on your network, including machines of a different
architecture. This allows you to implement a user interface on your
workstation and perform the computations on a faster machine located
elsewhere on your network. The description of the engOpen function offers
further information.

• Instead of requiring that all of MATLAB be linked to your program (a
substantial amount of code), only a small engine communication library is
needed.

Note To run MATLAB engine on the UNIX platform, you must have the
C shell csh installed at /bin/csh.

6-2

Using the MATLAB Engine

The Engine Library
The engine library contains the following routines for controlling the MATLAB
computation engine. Their names all begin with the three-letter prefix eng.
These tables list all the available engine functions and their purposes.

C Engine Routines

Function Purpose

engOpen Start up MATLAB engine

engClose Shut down MATLAB engine

engGetVariable Get a MATLAB array from the MATLAB
engine

engPutVariable Send a MATLAB array to the MATLAB engine

engEvalString Execute a MATLAB command

engOutputBuffer Create a buffer to store MATLAB text output

engOpenSingleUse Start a MATLAB engine session for single,
nonshared use

engGetVisible Determine visibility of MATLAB engine session

engSetVisible Show or hide MATLAB engine session

Fortran Engine Routines

Function Purpose

engOpen Start up MATLAB engine

engClose Shut down MATLAB engine

engGetVariable Get a MATLAB array from the MATLAB
engine

engPutVariable Send a MATLAB array to the MATLAB engine

6-3

6 Calling MATLAB from C and Fortran Programs

Fortran Engine Routines (Continued)

Function Purpose

engEvalString Execute a MATLAB command

engOutputBuffer Create a buffer to store MATLAB text output

The MATLAB engine also uses the mx–prefixed API routines discussed in
Chapter 4, “Creating C Language MEX-Files” and Chapter 5, “Creating
Fortran MEX-Files”.

Communicating with MATLAB
On UNIX, the engine library communicates with the MATLAB engine using
pipes, and, if needed, rsh for remote execution. On Microsoft Windows, the
engine library communicates with MATLAB using a Component Object Model
(COM) interface. Chapter 8, “COM Support in MATLAB (Windows Only)”
contains a detailed description of COM.

GUI-Intensive Applications
If you have graphical user interface (GUI) intensive applications that execute
a lot of callbacks through the MATLAB engine, you should force these
callbacks to be evaluated in the context of the base workspace. Use evalin to
specify that the base workspace be used in evaluating the callback expression,
as follows:

engEvalString(ep, "evalin('base', expression)")

Specifying the base workspace in this manner ensures MATLAB processes
the callback correctly and returns results for that call.

This does not apply to computational applications that do not execute
callbacks.

6-4

Examples of Calling Engine Functions

Examples of Calling Engine Functions

In this section...

“Overview” on page 6-5

“Calling MATLAB from a C Application” on page 6-5

“Calling MATLAB from a Fortran Application” on page 6-7

“Attaching to an Existing MATLAB Session” on page 6-8

Overview
It is important to understand the sequence of steps you must follow when
using the engine functions. For example, before using engPutVariable, you
must create the matrix and populate it.

After reviewing these examples, follow the instructions in “Compiling and
Linking MATLAB Engine Programs” on page 6-10 to build the application
and test it. By building and running the application, you ensure that your
system is properly configured for engine applications.

Calling MATLAB from a C Application
This program, engdemo.c, illustrates how to call the engine functions from
a stand-alone C program. For the Windows version of this program, see
engwindemo.c in the matlabroot\extern\examples\eng_mat directory.
matlabroot is the MATLAB root directory. engine examples, like the MAT-file
examples, are located in the eng_mat directory:

To see engdemo.c, open the file in MATLAB Editor.

To see the Windows version engwindemo.c, open the file.

The first part of this program launches MATLAB and sends it data. MATLAB
then analyzes the data and plots the results.

6-5

6 Calling MATLAB from C and Fortran Programs

The program then continues with

Press Return to continue

Pressing Return continues the program:

Done for Part I.
Enter a MATLAB command to evaluate. This command should
create a variable X. This program will then determine
what kind of variable you created.
For example: X = 1:5

Entering X = 17.5 continues the program execution.

X = 17.5

X =

17.5000

Retrieving X...
X is class double
Done!

Finally, the program frees memory, closes the MATLAB engine, and exits.

6-6

Examples of Calling Engine Functions

Calling MATLAB from a Fortran Application
The program, fengdemo.F, illustrates how to call the engine functions from
a stand-alone Fortran program. To see the code, open the file in MATLAB
Editor.

Executing this program launches MATLAB, sends it data, and plots the
results.

The program continues with

Type 0 <return> to Exit
Type 1 <return> to continue

Entering 1 at the prompt continues the program execution:

1
MATLAB computed the following distances:

time(s) distance(m)
1.00 -4.90
2.00 -19.6
3.00 -44.1
4.00 -78.4
5.00 -123.
6.00 -176.
7.00 -240.

6-7

6 Calling MATLAB from C and Fortran Programs

8.00 -314.
9.00 -397.
10.0 -490.

Finally, the program frees memory, closes the MATLAB engine, and exits.

Attaching to an Existing MATLAB Session
You can make a MATLAB engine program attach to a MATLAB session that
is already running by starting the MATLAB session with /Automation in the
command line. When you make a call to engOpen, it then connects to this
existing session. You should only call engOpen once, because any engOpen
calls now connect to this one MATLAB session.

The /Automation option also causes the command window to be minimized.
You must open it manually.

Note For more information on the /Automation command-line argument, see
“Additional Automation Server Information” on page 8-122. For information
about the Component Object Model interfaces used by MATLAB, see
“Introducing MATLAB COM Integration” on page 8-3.

For example,

1 Shut down any MATLAB sessions.

2 From the Start button on the Windows menu bar, click Run.

3 In the Open field, type

d:\matlab\bin\win32\matlab.exe /Automation

or

d:\matlab\bin\win64\matlab.exe /Automation

where d:\matlab\bin\win32 or d:\matlab\bin\win64 represents the
path to the MATLAB executable.

6-8

Examples of Calling Engine Functions

4 Click OK. This starts MATLAB.

5 In MATLAB, change directories to matlabroot/extern/examples/eng_mat.

6 Compile the engwindemo.c example.

7 Run the engwindemo program by typing at the MATLAB prompt

!engwindemo

This does not start another MATLAB session, but rather uses the MATLAB
session that is already open.

Note On the UNIX platform, you cannot make a MATLAB engine program
use a MATLAB session that is already running.

6-9

6 Calling MATLAB from C and Fortran Programs

Compiling and Linking MATLAB Engine Programs

In this section...

“Step 1 — Write Your Application” on page 6-10

“Step 2 — Check Required Libraries and Files” on page 6-10

“Step 3 — Build the Application” on page 6-12

“Step 4 — Set Run-Time Library Path” on page 6-14

“Step 5 — (Windows Only) Register MATLAB as a COM Server” on page
6-16

“Step 6 — Test the Program” on page 6-16

“Example — Building an Engine Application on Windows” on page 6-17

“Example — Building an Engine Application on UNIX” on page 6-17

“Masking Floating-Point Exceptions” on page 6-18

Step 1 — Write Your Application
Write your application in C or Fortran using any of the MATLAB engine
routines to perform computations in MATLAB. See “Using the MATLAB
Engine” on page 6-2 and “Examples of Calling Engine Functions” on page
6-5 for help.

Note If you plan to build with the Borland C++ compiler on Windows,
read “Masking Floating-Point Exceptions” on page 6-18 for information on
floating-point exceptions.

Step 2 — Check Required Libraries and Files
MATLAB requires the following files for building any engine application:

• “Third-Party Libraries” on page 6-11

• “Library Files Required by libeng” on page 6-11

• “Unicode Data Files” on page 6-12

6-10

Compiling and Linking MATLAB Engine Programs

Third-Party Libraries
Verify that the required libraries are installed. Use the following table to
identify the path and library filename. Replace libfile with each of these
filenames:

libeng
libmx

Operating
System Library Path and Filename

Linux matlabroot/bin/glnx86/libfile.so

64-bit Linux matlabroot/bin/glnxa64/libfile.so

64-bit Solaris
SPARC

matlabroot/bin/sol64/libfile.so

Macintosh (PPC) matlabroot/bin/mac/libfile.dylib

Macintosh (Intel) matlabroot/bin/maci/libfile.dylib

Windows matlabroot\bin\win32\libfile.dll

Windows x64 matlabroot\bin\win64\libfile.dll

Library Files Required by libeng
The libeng library requires additional third-party library files. MATLAB
uses these libraries to support Unicode character encoding and data
compression in MAT-files.

These library files must reside in the same directory as libmx. You can
determine what most of these libraries are using the platform-specific
commands shown here.

Operating
System Library Path and Filename

All Linux, Solaris ldd -d libeng.so

All Macintosh otool -L libeng.dylib

Windows See instructions below.

6-11

6 Calling MATLAB from C and Fortran Programs

On Windows, download the Dependency Walker utility from the following
Web site:

http://www.dependencywalker.com/

Drag and drop the libeng.dll file into the Depends window.

Unicode Data Files
Verify that the appropriate Unicode data file is installed. Systems that
order bytes in a big-endian manner use icudt32b.dat, and those that have
little-endian ordering use icudt32l.dat.

Operating System Unicode File Path and Filename

Linux matlabroot/bin/glnx86/icudt32l.dat

64-bit Linux matlabroot/bin/glnxa64/icudt32l.dat

64-bit Solaris SPARC matlabroot/bin/sol64/icudt32b.dat

Macintosh (PPC) matlabroot/bin/mac/icudt32b.dat

Macintosh (Intel) matlabroot/bin/maci/icudt32b.dat

Windows matlabroot\bin\win32\icudt32l.dat

Windows x64 matlabroot\bin\win64\icudt32l.dat

Note If you need to manipulate Unicode text directly in your
application, the latest version of International Components for Unicode
(ICU) is available online from the IBM Corporation Web site at
http://icu.sourceforge.net/download.

Step 3 — Build the Application
Use the mex script to compile and link engine programs. mex has a set of
switches you can use to modify the compile and link stages. The table MEX
Script Switches on page 3-20 lists the available switches and their uses.

6-12

http://www.dependencywalker.com/%0D
http://icu.sourceforge.net/download

Compiling and Linking MATLAB Engine Programs

MEX Options File
MATLAB supplies an options file to facilitate building MEX applications. This
file contains compiler-specific flags that correspond to the general compile,
prelink, and link steps required on your system. If you want to customize the
build process, you can modify this file.

Different options files are provided for UNIX and Windows.

Operating
System Default Options File

UNIX matlabroot/bin/engopts.sh

Windows matlabroot\bin\win32\mexopts*engmatopts.bat

Windows x64 matlabroot\bin\win64\mexopts*engmatopts.bat

On Windows systems, the options file depends on which compiler you use. The
name of the options file is prefixed with a string representing the compiler
and compiler version it is used with.

For example, to locate the options file on a Windows 32-bit system, type:

dir([matlabroot '\bin\win32\mexopts*engmatopts.bat'])

If you need to modify the options file for your particular compiler, use the mex
command with the -v switch to view the current compiler and linker settings,
and then make the appropriate changes in the options file.

Build the Application
To build your engine application, use the mex script with the options filename
and the name of your MEX-file.

On UNIX Systems. Enter the following command, where mexfilename
is the name of your C or Fortran program. Enclose mexfilename in single
quotation marks.

mex('-f', [matlabroot '/bin/engopts.sh'], mexfilename);

6-13

6 Calling MATLAB from C and Fortran Programs

Alternatively, copy the options file to your current working directory, and
then enter the following command:

mex -f engopts.sh mexfilename

On Windows Systems. Enter the following command, where mexfilename
is the name of your C or Fortran program. Enclose mexfilename in single
quotation marks. This example uses the Lcc compiler. Be sure to use the
appropriate options file for your compiler.

mex('-f', [matlabroot ...
'\bin\win32\mexopts\lccengmatopts.bat'], mexfilename);

Alternatively, copy the options file to your current working directory, and
then enter the following command:

mex -f lccengmatopts.bat mexfilename

Step 4 — Set Run-Time Library Path
At run-time, you need to tell the system where the API shared libraries reside.

On UNIX Systems
Set the library path as follows for the C and Bourne shells. In the commands
shown, replace the terms envvar and pathspec with the appropriate values
from the table that follows.

In the C shell, the command to set the library path is

setenv envvar pathspec

In the Bourne shell, use

envvar = pathspec:envvar export envvar

6-14

Compiling and Linking MATLAB Engine Programs

Operating
System envvar pathspec

Linux LD_LIBRARY_PATH matlabroot/bin/glnx86:
matlabroot/sys/os/glnx86

64-bit Linux LD_LIBRARY_PATH matlabroot/bin/glnxa64:
matlabroot/sys/os/glnxa64

64-bit Solaris
SPARC

LD_LIBRARY_PATH matlabroot/bin/sol64:
matlabroot/sys/os/sol64

Macintosh
(PPC)

DYLD_LIBRARY_PATH matlabroot/bin/mac:
matlabroot/sys/os/mac

Macintosh
(Intel)

DYLD_LIBRARY_PATH matlabroot/bin/maci:
matlabroot/sys/os/maci

Here is an example for a Solaris system for the C shell:

setenv LD_LIBRARY_PATH matlabroot/bin/sol64:matlabroot/sys/os/sol64

and for the Bourne shell:

LD_LIBRARY_PATH=matlabroot/bin/sol64:matlabroot/sys/os/sol64:$LD_LIBRARY_PATH

export LD_LIBRARY_PATH

Place these commands in a startup script such as ~/.cshrc for the C shell
or ~/.profile for the Bourne shell.

On Windows Systems
Set the Path environment variable to the path string returned by MATLAB in
response to the following expression:

[matlabroot '\bin\win32']

or

[matlabroot '\bin\win64']

To set an environment variable in Windows, select
Start > Settings > Control Panel > System. Windows opens the System

6-15

6 Calling MATLAB from C and Fortran Programs

Properties dialog box. Click the Advanced tab, and then the Environment
Variables button.

In the System variables panel scroll down until you find the Path variable.
Click this variable to highlight it, and then click the Edit button to open
the Edit System Variable dialog box. At the end of the path string, enter a
semicolon and then the path string returned by evaluating the expression
shown above in MATLAB. Click OK in the Edit System Variable dialog box,
and in all remaining dialog boxes.

Step 5 — (Windows Only) Register MATLAB as a
COM Server
To run this program on Windows, you need to have MATLAB registered as
a COM server on your system. This registration is part of the MATLAB
installation and should have already been done for you as part of the
installation. If, for some reason, the registration was not done or did not
complete successfully, you may see the following error displayed when you try
to run this example:

Can't start MATLAB engine

If you see this error, manually register MATLAB as a server by entering the
following commands in a DOS command window:

cd matlabroot\bin\win32
matlab /regserver

or

cd matlabroot\bin\win64
matlab /regserver

Step 6 — Test the Program
Test your application in MATLAB by typing

!engwindemo

6-16

Compiling and Linking MATLAB Engine Programs

Example — Building an Engine Application on
Windows
MATLAB provides a demonstration program written in C that you can use to
verify the build process on your computer. The demo file for Windows systems
is engwindemo.c.

Copy the C language MEX-file engwindemo.c to your current working
directory:

demofile = [matlabroot '\extern\examples\eng_mat\engwindemo.c'];
copyfile(demofile, '.');

Look in the \bin\win32\mexopts directory for the appropriate options file
for the Lcc compiler. Use the following commands to build the executable
file using this compiler:

optsfile = [matlabroot '\bin\win32\mexopts\lccengmatopts.bat'];
mex('-f', optsfile, 'engwindemo.c');

Verify that the build worked by looking in your current working directory
for the file engwindemo.exe:

dir engwindemo.exe

To run the demo from MATLAB, make sure your current working directory is
set to the one in which you built the executable file, and then type

!engwindemo

Borland Compilers on Windows
When using a Borland compiler to build a Windows application such
as engwindemo, you must modify the appropriate bcc*engmatopts.bat
options file. For information about making these changes, see
matlabroot\bin\win32\mexopts\README.borland.

Example — Building an Engine Application on UNIX
MATLAB provides a demonstration program written in C that you can use to
verify the build process on your computer. The demo file for UNIX systems
is called engdemo.c.

6-17

6 Calling MATLAB from C and Fortran Programs

Copy the C language MEX-file engdemo.c to your current working directory:

demofile = [matlabroot '/extern/examples/eng_mat/engdemo.c'];
copyfile(demofile, '.');

Build the executable file using the ANSI compiler for engine stand-alone
programs and the options file engopts.sh:

optsfile = [matlabroot '/bin/engopts.sh'];
mex('-f', optsfile, 'engdemo.c');

Verify that the build worked by looking in your current working directory
for the file engdemo:

dir engdemo

To run the demo in MATLAB, make sure your current working directory is set
to the one in which you built the executable file, and then type

!engdemo

Masking Floating-Point Exceptions
Read this section if you plan to build with the Borland C++ compiler on
Windows. It explains how to avoid program termination when a floating-point
exception occurs.

Certain mathematical operations can result in nonfinite values. For example,
division by zero results in the nonfinite IEEE value inf. A floating-point
exception occurs when such an operation is performed. Because MATLAB
uses an IEEE model that supports nonfinite values such as inf and NaN,
MATLAB disables, or masks, floating-point exceptions.

Some compilers do not mask floating-point exceptions by default. This causes
engine programs built with such compilers to terminate when a floating-point
exception occurs. Take special precautions when using these compilers to
mask floating-point exceptions so that your engine application performs
properly.

6-18

Compiling and Linking MATLAB Engine Programs

Note MATLAB based applications should never get floating-point exceptions.
If you do get a floating-point exception, verify that any third-party libraries
that you link against do not enable floating-point exception handling.

The only compiler and platform on which you need to mask floating-point
exceptions is the Borland C++ compiler on Windows.

Borland C++ Compiler on Windows
To mask floating-point exceptions when using the Borland C++ compiler on
the Windows platform, you must add some code to your program. Include
the following at the beginning of your main() or WinMain() function, before
any calls to MATLAB API functions.

#include <float.h>
.
.
.

_control87(MCW_EM,MCW_EM);
.
.
.

6-19

6 Calling MATLAB from C and Fortran Programs

6-20

7

Calling Java from MATLAB

Using Java from MATLAB: An
Overview (p. 7-3)

How you can benefit from using the
MATLAB Java interface

Bringing Java Classes and Methods
into MATLAB (p. 7-7)

Using Java built-in, third-party, or
your own classes

Creating and Using Java Objects
(p. 7-16)

Constructing and working with Java
objects

Invoking Methods on Java Objects
(p. 7-25)

Calling syntax, static methods,
querying MATLAB about methods

Working with Java Arrays (p. 7-35) How MATLAB represents Java
arrays and how to work with them

Passing Data to a Java Method
(p. 7-53)

How to pass MATLAB data types
into Java.

Handling Data Returned from a
Java Method (p. 7-64)

How to handle data types returned
by Java

Introduction to Programming
Examples (p. 7-70)

Introduction and links to sample
programs that use the MATLAB
interface to Java

Example — Reading a URL (p. 7-71) Open a connection to a Web site
and read text from the site using a
buffered stream reader

Example — Finding an Internet
Protocol Address (p. 7-74)

Call methods on an InetAddress
object to get host name and IP
address information

7 Calling Java from MATLAB

Example — Communicating
Through a Serial Port (p. 7-76)

Create a SerialPort object and
configure the port using methods
provided by that class

Example — Creating and Using a
Phone Book (p. 7-82)

Create a phone book using a data
dictionary that operates using
key/value pairs in a hash table

7-2

Using Java from MATLAB: An Overview

Using Java from MATLAB: An Overview

In this section...

“Java Interface Is Integral to MATLAB” on page 7-3

“Benefits of the MATLAB Java Interface” on page 7-3

“Who Should Use the MATLAB Java Interface” on page 7-3

“To Learn More About Java Programming” on page 7-4

“Platform Support for the Java Virtual Machine” on page 7-4

“Using a Different Version of the Java JVM” on page 7-4

Java Interface Is Integral to MATLAB
Every installation of MATLAB includes a Java Virtual Machine (JVM), so
that you can use the Java interpreter via MATLAB commands, and you can
create and run programs that create and access Java objects. For information
on MATLAB installation, see the MATLAB installation documentation for
your platform.

Benefits of the MATLAB Java Interface
The MATLAB Java interface enables you to:

• Access Java API (application programming interface) class packages that
support essential activities such as I/O and networking. For example, the
URL class provides convenient access to resources on the Internet.

• Access third-party Java classes

• Easily construct Java objects in MATLAB

• Call Java object methods, using either Java or MATLAB syntax

• Pass data between MATLAB variables and Java objects

Who Should Use the MATLAB Java Interface
The MATLAB Java interface is intended for all MATLAB users who want to
take advantage of the special capabilities of the Java programming language.

7-3

7 Calling Java from MATLAB

For example:

• You need to access, from MATLAB, the capabilities of available Java classes.

• You are familiar with object-oriented programming in Java or in another
language, such as C++.

• You are familiar with MATLAB object-oriented classes, or with MATLAB
MEX-files.

To Learn More About Java Programming
For a complete description of the Java language and for guidance in
object-oriented software design and programming, you’ll need to consult
outside resources. For example, these recently published books may be helpful:

• Java in a Nutshell (Fourth Edition), by David Flanagan

• Teach Yourself Java in 21 Days, by Lemay and Perkins

Another place to find information is the JavaSoft Web site.

http://www.javasoft.com

For other suggestions on object-oriented programming resources, see:

• Object-Oriented Software Construction, by Bertrand Meyer

• Object-Oriented Analysis and Design with Applications, by Grady Booch,
Robert A. Maksimchuk, Michael W. Engel, and Alan Brown

Platform Support for the Java Virtual Machine
To find out which version of the Java Virtual Machine (JVM) is being used by
MATLAB on your platform, type the following at the MATLAB prompt.

version -java

Using a Different Version of the Java JVM
MATLAB ships with one specific version of the Java Virtual Machine (JVM)
and uses this version by default with the MATLAB interface to Java. This
section describes how to download and select a version other than the default.

7-4

http://www.javasoft.com

Using Java from MATLAB: An Overview

Note MATLAB is only fully supported on the JVM that it ships with. Some
components might not work properly under a different version of the JVM.
For example, calling functions in a dynamically linked library that was
created with a different JVM than that used by MATLAB might cause a
segmentation violation error.

To change the JVM version that MATLAB uses, follow these steps:

1 “Download the JVM Version You Want to Use” on page 7-5.

2 “Locate the Root of the Run-time Path for this Version” on page 7-5.

3 “Set the MATLAB_JAVA Environment Variable to this Path” on page 7-6.

When you have enabled a different version of the JVM, you can verify that
MATLAB is using this version by entering the version -java command
documented in the previous section.

Download the JVM Version You Want to Use
You can download the Java Virtual Machine from the Web site
http://java.sun.com/j2se/downloads.html.

If you are using Linux, go to the Web site
http://www.blackdown.org/java-linux/mirrors.html, and choose the
version required by your processor.

Locate the Root of the Run-time Path for this Version
To get MATLAB to use the version you have just downloaded, you must first
find the root of the run-time path for this JVM, and then set the MATLAB_JAVA
environment variable to that path. To locate the JVM run-time path, find the
directory in the Java installation tree that is one level up from the directory
containing the file rt.jar. This may be a subdirectory of the main JDK
install directory. (If you cannot find rt.jar, look for the file classes.zip.)

For example, if the JDK is installed in D:\jdk1.2.1 on Windows and the
rt.jar file is in D:\jdk1.2.1\jre\lib, set MATLAB_JAVA to the directory one
level up from that: D:\jdk1.2.1\jre.

7-5

%20http://java.sun.com/j2se/downloads.html
http://www.blackdown.org/java-linux/mirrors.html

7 Calling Java from MATLAB

On UNIX, if the JDE is installed in /usr/openv/java/jre/lib and the
rt.jar is in /usr/openv/java/jre/lib, set MATLAB_JAVA to the path
/usr/openv/java/jre.

Set the MATLAB_JAVA Environment Variable to this Path
The way you set or modify the value of the MATLAB_JAVA variable depends on
which platform you are running MATLAB on.

Windows 2000/XP. To set MATLAB_JAVA on Windows 2000 or Windows XP:

1 Click Settings in the Start Menu.

2 Choose Control Panel.

3 Click System.

4 Choose the Advanced tab and then click the Environment Variables
button.

5 You now can set (or add) the MATLAB_JAVA system environment variable to
the path of your JVM.

UNIX/Linux. To set MATLAB_JAVA on UNIX or Linux systems, use the setenv
command, as shown here:

setenv MATLAB_JAVA <path to JVM>

7-6

Bringing Java Classes and Methods into MATLAB

Bringing Java Classes and Methods into MATLAB

In this section...

“Introduction” on page 7-7

“Sources of Java Classes” on page 7-7

“Defining New Java Classes” on page 7-8

“The Java Class Path” on page 7-8

“Making Java Classes Available to MATLAB” on page 7-11

“Loading Java Class Definitions” on page 7-13

“Simplifying Java Class Names” on page 7-13

“Locating Native Method Libraries” on page 7-14

“Java Classes Contained in a JAR File” on page 7-15

Introduction
You can draw from an extensive collection of existing Java classes or create
your own class definitions to use with MATLAB. This section explains how to
go about finding the class definitions that you need or how to create classes
of your own design. Once you have the classes you need, defined in either
individual .class files, packages, or Java Archive files, you can make them
available in the MATLAB environment. This section also describes how to
specify the native method libraries used by Java.

Sources of Java Classes
Following are the three main Java class sources that you can use in MATLAB:

• Java built-in classes — general-purpose class packages, such as java.awt,
included in the Java language. See your Java language documentation
for descriptions of these packages.

• Third-party classes — packages of special-purpose Java classes.

• User-defined classes — Java classes or subclasses of existing classes that
you define. You need to use a Java development environment to do this, as
explained in the following section.

7-7

7 Calling Java from MATLAB

Defining New Java Classes
To define new Java classes and subclasses of existing classes, you must use
a Java development environment external to MATLAB. See Technical Note
1601 http://www.mathworks.com/support/tech-notes/1600/1601.html
for information on supported versions of the JDK. You can
download the development kit from the Sun Microsystems Web site,
(http://java.sun.com/j2se/). The Sun site also provides documentation for
the Java language and classes that you need for development.

After you create class definitions in .java files, use your Java compiler to
produce .class files from them. The next step is to make the class definitions
in those .class files available for you to use in MATLAB.

The Java Class Path
MATLAB loads Java class definitions from files that are on the Java class
path. The class path is a series of file and directory specifications that
MATLAB uses to locate class definitions. When loading a particular Java
class, MATLAB searches files and directories in the order they occur on the
class path until a file is found that contains that class definition. The first
definition that is found ends the search.

The Java class path consists of two segments: the static path and dynamic
path. The static path is loaded at the start of each MATLAB session and
cannot be changed without restarting MATLAB. The dynamic path can be
loaded and modified at any time during a session using MATLAB functions.
MATLAB always searches the static path before the dynamic path.

Note Java classes on the static path should not have dependencies on classes
on the dynamic path.

7-8

http://www.mathworks.com/support/tech-notes/1600/1601.html
http://java.sun.com/j2se/

Bringing Java Classes and Methods into MATLAB

You can view these two path segments using the javaclasspath function:

javaclasspath

STATIC JAVA PATH

D:\Sys0\Java\util.jar
D:\Sys0\Java\widgets.jar
D:\Sys0\Java\beans.jar

.

.

DYNAMIC JAVA PATH

C:\Work\Java\ClassFiles
C:\Work\Java\mywidgets.jar

.

.

You probably want to use both the static and dynamic paths:

• Put the Java class definitions that are more stable on the static class
path. Classes defined on the static path load somewhat faster than those
on the dynamic path.

• Put the Java class definitions that you are likely to modify on the dynamic
class path. You can make changes to the class definitions on this path
without restarting MATLAB.

The Static Path
MATLAB loads the static Java class path from the file classpath.txt at
the start of each session. The static path offers better Java class loading
performance than the dynamic path. However, to modify the static path you
need to edit the file classpath.txt and then restart MATLAB.

Finding and Editing classpath.txt. The default classpath.txt file resides
in the toolbox\local subdirectory of your MATLAB root directory:

7-9

7 Calling Java from MATLAB

[matlabroot '\toolbox\local\classpath.txt']
ans =

\\sys07\matlab\toolbox\local\classpath.txt

To make changes in the static path that affect all users who share this same
MATLAB root directory, edit this file in toolbox\local. If you want to make
changes that do not affect anyone else, copy classpath.txt to your own
startup directory and edit the file there. When MATLAB starts up, it looks
for classpath.txt first in your startup directory, and then in the default
location. It uses the file it finds first.

To see which classpath.txt file is currently being used by your MATLAB
environment, use the which function:

which classpath.txt

To edit either the default file or the copy in your own directory, enter the
following command in MATLAB:

edit classpath.txt

Note MATLAB reads classpath.txt only upon startup. If you edit
classpath.txt or change your .class files while MATLAB is running, you
must restart MATLAB to put those changes into effect.

Special Symbols in classpath.txt. You can designate special tokens
or macros in the classpath.txt file using a leading dollar sign, (e.g.,
$matlabroot or $jre_home). However, this can cause problems if you use this
sign in any of your class directory paths. For example, the following path
string does not correctly represent the path to a directory named hello$world:

d:\applications\hello$world

You must use two consecutive dollar signs in classpath.txt to represent a
single $ character. So, to correctly specify the directory path shown above,
you need to use the following text:

d:\applications\hello$$world

7-10

Bringing Java Classes and Methods into MATLAB

The Dynamic Path
The dynamic Java class path can be loaded at any time during a MATLAB
session using the javaclasspath function. You can define the dynamic
path (using javaclasspath), modify the path (using javaaddpath and
javarmpath), and refresh the Java class definitions for all classes on the
dynamic path (using clear with the java keyword) without restarting
MATLAB. See the Java function reference pages for more information on
how to use these functions.

Although the dynamic path offers more flexibility in changing the path, Java
classes on the dynamic path may load more slowly than those on the static
path.

Making Java Classes Available to MATLAB
To make your third-party and user-defined Java classes available in MATLAB,
place them on either the static or dynamic Java class path, as described in the
previous section, “The Java Class Path” on page 7-8.

• For classes you want on the static path, edit the classpath.txt file.

• For classes you want on the dynamic path, use either the javaclasspath or
javaaddpath function.

Making Individual (Unpackaged) Classes Available
To make individual classes (classes that are not part of a package) available
in MATLAB, specify the full path to the directory you want to use for the
.class file(s).

For example, to make available your compiled Java classes in the file
d:\work\javaclasses\test.class, add the following entry to the static
or dynamic class path:

d:\work\javaclasses

To put this directory on the static class path, add the above line to the default
copy (in toolbox\local) or your own local copy of classpath.txt. See
“Finding and Editing classpath.txt” on page 7-9.

7-11

7 Calling Java from MATLAB

To put this on the dynamic class path, use the following command:

javaaddpath d:\work\javaclasses

Making Entire Packages Available
To access one or more classes belonging to a package, you need to make the
entire package available to MATLAB. To do this, specify the full path to
the parent directory of the highest level directory of the package path. This
directory is the first component in the package name.

For example, if your Java class package com.mw.tbx.ini has its classes in
directory d:\work\com\mw\tbx\ini, add the following directory to your static
or dynamic class path:

d:\work

Making Classes in a JAR File Available
You can use the jar (Java Archive) tool to create a JAR file, containing
multiple Java classes and packages in a compressed ZIP format. For
information on jar and JAR files, consult your Java development
documentation or the JavaSoft Web site http://www.javasoft.com. See also “To
Learn More About Java Programming” on page 7-4.

To make the contents of a JAR file available for use in MATLAB, specify the
full path, including full filename, for the JAR file.

Note The classpath.txt requirement for JAR files is different than that for
.class files and packages, for which you do not specify any filename.

For example, to make available the JAR file e:\java\classes\utilpkg.jar,
add the following file specification to your static or dynamic class path:

e:\java\classes\utilpkg.jar

7-12

http://www.javasoft.com

Bringing Java Classes and Methods into MATLAB

Loading Java Class Definitions
Normally, MATLAB loads a Java class automatically when your code first
uses it, (for example, when you call its constructor). However, there is one
exception you should be aware of.

When you use the which function on methods defined by Java classes, the
function only acts on the classes currently loaded into the MATLAB working
environment. In contrast, which always operates on MATLAB classes,
whether or not they are loaded.

Determining Which Classes Are Loaded
At any time during a MATLAB session, you can obtain a listing of all the Java
classes that are currently loaded. To do so, use the inmem function as follows:

[M,X,J] = inmem

This function returns the list of Java classes in the output argument J. (It also
returns in M the names of all currently loaded M-files, and in X the names of
all currently loaded MEX-files.)

Here’s a sample of output from the inmem function:

[m,x,j] = inmem;
j =
'java.awt.Frame'
'com.mathworks.ide.desktop.MLDesktop'

Simplifying Java Class Names
Your MATLAB commands can refer to any Java class by its fully qualified
name, which includes its package name. For example, the following are fully
qualified names:

• java.lang.String

• java.util.Enumeration

A fully qualified name can be rather long, making commands and functions,
such as constructors, cumbersome to edit and to read. You can refer to classes
by the class name alone (without a package name) if you first import the
fully qualified name into MATLAB.

7-13

7 Calling Java from MATLAB

The import command has the following forms:

import pkg_name.* % Import all classes in package
import pkg_name1.* pkg_name2.* % Import multiple packages
import class_name % Import one class
import % Display current import list
L = import % Return current import list

MATLAB adds all classes that you import to a list called the import list.
You can see what classes are on that list by typing import, without any
arguments. Your code can refer to any class on the list by class name alone.

When called from a function, import adds the specified classes to the import
list in effect for that function. When invoked at the command prompt, import
uses the base import list for your MATLAB environment.

For example, suppose a function contains the following statements:

import java.lang.String
import java.util.* java.awt.*
import java.util.Enumeration

Code that follows the import statements above can now refer to the String,
Frame, and Enumeration classes without using the package names.

str = String('hello'); % Create java.lang.String object
frm = Frame; % Create java.awt.Frame object
methods Enumeration % List java.util.Enumeration methods

To clear the list of imported Java classes, invoke the command

clear import

Locating Native Method Libraries
Java classes can dynamically load native methods using the Java method
java.lang.System.loadLibrary("LibFile"). In order for the JVM to locate
the specified library file, the directory containing it must be on the Java
Library Path. This path is established when MATLAB launches the JVM at
startup, and is based on the contents of the file

matlabroot/toolbox/local/librarypath.txt

7-14

Bringing Java Classes and Methods into MATLAB

(where matlabroot is the MATLAB root directory returned by the MATLAB
command matlabroot).

You can augment the search path for native method libraries by editing the
librarypath.txt file. Follow these guidelines when editing this file:

• Specify each new directory on a line by itself.

• Specify only the directory names, not the names of the DLL files. The
loadLibrary call does this for you.

• To simplify the specification of directories in cross-platform environments,
use any of these macros: $matlabroot, $arch, and $jre_home.

Java Classes Contained in a JAR File
You can access Java classes that are contained in a JAR file once you have
added the JAR file to either the static or dynamic Java class path. See “The
Java Class Path” on page 7-8 for more information on how MATLAB uses
the Java class path.

For example, suppose you have a file, myArchive.jar in a directory called
work in your MATLAB root directory. You can construct the path to this file
using the matlabroot command:

[matlabroot '/work/myArchive.jar']

Add the JAR file to your dynamic Java class path using the javaaddpath
function (fullfile adds the platform-correct directory separators):

javaaddpath(fullfile(matlabroot,'work','myArchive.jar'))

You can now call the public methods in the JAR file.

7-15

7 Calling Java from MATLAB

Creating and Using Java Objects

In this section...

“Overview” on page 7-16

“Constructing Java Objects” on page 7-16

“Concatenating Java Objects” on page 7-19

“Saving and Loading Java Objects to MAT-Files” on page 7-20

“Finding the Public Data Fields of an Object” on page 7-21

“Accessing Private and Public Data” on page 7-22

“Determining the Class of an Object” on page 7-23

Overview
In MATLAB, you create a Java object by calling one of the constructors of
that class. You then use commands and programming statements to perform
operations on these objects. You can also save your Java objects to a MAT-file
and, in subsequent sessions, reload them into MATLAB.

Constructing Java Objects
You construct Java objects in MATLAB by calling the Java class constructor,
which has the same name as the class. For example, the following constructor
creates a Frame object with the title 'Frame A' and the other properties with
their default values.

frame = java.awt.Frame('Frame A');

Displaying the new object frame shows the following.

frame =
java.awt.Frame[frame0,0,0,0x0,invalid,hidden,layout=
java.awt.BorderLayout,title=Frame A,resizable,normal]

All of the programming examples in this chapter contain Java object
constructors. For example, the code in the Example — Reading a URL creates
a java.net.URL object with the constructor

7-16

Creating and Using Java Objects

url = java.net.URL(...
'http://archive.ncsa.uiuc.edu/demoweb/')

Using the javaObject Function
Under certain circumstances, you may need to use the javaObject function to
construct a Java object. The following syntax invokes the Java constructor
for class, class_name, with the argument list that matches x1,...,xn, and
returns a new object, J.

J = javaObject('class_name',x1,...,xn);

For example, to construct and return a Java object of class java.lang.String,
you use

strObj = javaObject('java.lang.String','hello');

Using the javaObject function enables you to:

• Use classes that have names that exceed the maximum length of a
MATLAB identifier. (Call the namelengthmax function to obtain the
maximum identifier length.)

• Specify the class for an object at run-time, for example, as input from an
application user

The default MATLAB constructor syntax requires that no segment of the
input class name be longer than namelengthmax characters. (A class name
segment is any portion of the class name before, between, or after a dot.
For example, there are three segments in class, java.lang.String.) Any
class name segment that exceeds namelengthmax characters is truncated by
MATLAB. In the rare case where you need to use a class name of this length,
you must use javaObject to instantiate the class.

The javaObject function also allows you to specify the Java class for the
object being constructed at run-time. In this situation, you call javaObject
with a string variable in place of the class name argument.

class = 'java.lang.String';
text = 'hello';
strObj = javaObject(class, text);

7-17

7 Calling Java from MATLAB

In the usual case, when the class to instantiate is known at development time,
it is more convenient to use the MATLAB constructor syntax. For example, to
create a java.lang.String object, you would use

strObj = java.lang.String('hello');

Note Typically, you do not need to use javaObject. The default MATLAB
syntax for instantiating a Java class is somewhat simpler and is preferable
for most applications. Use javaObject primarily for the two cases described
above.

Java Objects Are References in MATLAB
In MATLAB, Java objects are references and do not adhere to MATLAB
copy-on-assignment and pass-by-value rules. For example,

origFrame = java.awt.Frame;
setSize(origFrame, 800, 400);
newFrameRef = origFrame;

In the third statement above, the variable newFrameRef is a second reference
to origFrame, not a copy of the object. In any code following the example
above, any change to the object at newFrameRef also changes the object at
origFrame. This effect occurs whether the object is changed by MATLAB
code, or by Java code.

The following example shows that origFrame and newFrameRef are both
references to the same entity. When the size of the frame is changed via one
reference (newFrameRef), the change is reflected through the other reference
(origFrame), as well.

setSize(newFrameRef, 1000, 800);

getSize(origFrame)
ans =
java.awt.Dimension[width=1000,height=800]

7-18

Creating and Using Java Objects

Concatenating Java Objects
You can concatenate Java objects in the same way that you concatenate native
MATLAB data types. You use either the cat function or the [] operators to
tell MATLAB to assemble the enclosed objects into a single object.

Concatenating Objects of the Same Class
If all of the objects being operated on are of the same Java class, the
concatenation of those objects produces an array of objects from the same class.

In the following example, the cat function concatenates two objects of the
class java.awt.Point. The class of the result is also java.awt.Point.

point1 = java.awt.Point(24,127);
point2 = java.awt.Point(114,29);

cat(1, point1, point2)
ans =
java.awt.Point[]:

[1x1 java.awt.Point]
[1x1 java.awt.Point]

Concatenating Objects of Unlike Classes
When you concatenate objects of unlike classes, MATLAB finds one class
from which all of the input objects inherit, and makes the output an instance
of this class. MATLAB selects the lowest common parent in the Java class
hierarchy as the output class.

For example, concatenating objects of java.lang.Byte, java.lang.Integer,
and java.lang.Double yields an object of java.lang.Number, since this is
the common parent to the three input classes.

byte = java.lang.Byte(127);
integer = java.lang.Integer(52);
double = java.lang.Double(7.8);

[byte; integer; double]

ans =
java.lang.Number[]:

7-19

7 Calling Java from MATLAB

[127]
[52]
[7.8000]

If there is no common, lower level parent, then the resultant class is
java.lang.Object, which is the root of the entire Java class hierarchy.

byte = java.lang.Byte(127);
point = java.awt.Point(24,127);

[byte; point]

ans =
java.lang.Object[]:

[127]
[1x1 java.awt.Point]

Saving and Loading Java Objects to MAT-Files
Use the MATLAB save function to save a Java object to a MAT-file. Use the
load function to load it back into MATLAB from that MAT-file. To save a Java
object to a MAT-file, and to load the object from the MAT-file, make sure that
the object and its class meet all of the following criteria:

• The class implements the Serializable interface (part of the Java API),
either directly or by inheriting it from a parent class. Any embedded or
otherwise referenced objects must also implement Serializable.

• The definition of the class is not changed between saving and loading the
object. Any change to the data fields or methods of a class prevents the
loading (deserialization) of an object that was constructed with the old
class definition.

• Either the class does not have any transient data fields, or the values in
transient data fields of the object to be saved are not significant. Values in
transient data fields are never saved with the object.

If you define your own Java classes, or subclasses of existing classes, you can
follow the criteria above to enable objects of the class to be saved and loaded
in MATLAB. For details on defining classes to support serialization, consult
your Java development documentation. (See also “To Learn More About Java
Programming” on page 7-4.)

7-20

Creating and Using Java Objects

Finding the Public Data Fields of an Object
To list the public fields that belong to a Java object, use the fieldnames
function, which takes either of these forms.

names = fieldnames(obj)
names = fieldnames(obj,'-full')

Calling fieldnames without '-full' returns the names of all the data fields
(including inherited) on the object. With the '-full' qualifier, fieldnames
returns the full description of the data fields defined for the object, including
type, attributes, and inheritance information.

Suppose, for example, that you constructed a Frame object with:

frame = java.awt.Frame;

To obtain the full description of the data fields on frame, you could use the
command

fieldnames(frame,'-full')

Sample output from this command follows:

ans =
'static final int WIDTH

% Inherited from java.awt.image.ImageObserver'
'static final int HEIGHT

% Inherited from java.awt.image.ImageObserver'
[1x74 char]
'static final int SOMEBITS

% Inherited from java.awt.image.ImageObserver'
'static final int FRAMEBITS

% Inherited from java.awt.image.ImageObserver'
'static final int ALLBITS

% Inherited from java.awt.image.ImageObserver'
'static final int ERROR

% Inherited from java.awt.image.ImageObserver'
'static final int ABORT

% Inherited from java.awt.image.ImageObserver'
'static final float TOP_ALIGNMENT

% Inherited from java.awt.Component'

7-21

7 Calling Java from MATLAB

'static final float CENTER_ALIGNMENT
% Inherited from java.awt.Component'

'static final float BOTTOM_ALIGNMENT
% Inherited from java.awt.Component'

'static final float LEFT_ALIGNMENT
% Inherited from java.awt.Component'

'static final float RIGHT_ALIGNMENT
% Inherited from java.awt.Component'

.

.

.

Accessing Private and Public Data
Java API classes provide accessor methods you can use to read from and,
where allowed, to modify private data fields. These are sometimes referred to
as get and set methods, respectively.

Some Java classes have public data fields, which your code can read or modify
directly. To access these fields, use the syntax object.field.

Examples
The java.awt.Frame class provides an example of access to both private and
public data fields. This class has the read accessor method getSize, which
returns a java.awt.Dimension object. The Dimension object has data fields
height and width, which are public and therefore directly accessible. The
following example shows MATLAB commands accessing this data.

frame = java.awt.Frame;
frameDim = getSize(frame);
height = frameDim.height;
frameDim.width = 42;

The programming examples in this chapter also contain calls to data
field accessors. For instance, the sample code for “Example — Finding
an Internet Protocol Address” on page 7-74 uses calls to accessors on a
java.net.InetAddress object.

hostname = address.getHostName;
ipaddress = address.getHostAddress;

7-22

Creating and Using Java Objects

Accessing Data from a Static Field
In Java, a static data field is a field that applies to an entire class of objects.
Static fields are most commonly accessed in relation to the class name itself in
Java. For example, the code below accesses the WIDTH field of the Frame class
by referring to it in relation to the package and class names, java.awt.Frame,
rather than an object instance.

width = java.awt.Frame.WIDTH;

In MATLAB, you can use that same syntax. Or you can refer to the WIDTH
field in relation to an instance of the class. The following example creates an
instance of java.awt.Frame called frameObj, and then accesses the WIDTH
field using the name frameObj rather than the package and class names.

frame = java.awt.Frame('Frame A');

width = frame.WIDTH
width =

1

Assigning to a Static Field
You can assign values to static Java fields by using a static set method of the
class, or by making the assignment in reference to an instance of the class.
For more information, see the previous section, “Accessing Data from a Static
Field” on page 7-23. You can assign value to the field staticFieldName in the
example below by referring to this field in reference to an instance of the class.

objectName = java.className;
objectName.staticFieldName = value;

Note MATLAB does not allow assignment to static fields using the class
name itself.

Determining the Class of an Object
To find the class of a Java object, use the query form of the MATLAB function,
class. After execution of the following example, frameClass contains the
name of the package and class that Java object frame instantiates.

7-23

7 Calling Java from MATLAB

frameClass = class(frame)
frameClass =
java.awt.Frame

Because this form of class also works on MATLAB objects, it does not, in
itself, tell you whether it is a Java class. To determine the type of class, use
the isjava function, which has the form

x = isjava(obj)

isjava returns 1 if obj is Java, and 0 if it is not.

isjava(frame)
ans =

1

To find out whether or not an object is an instance of a specified class, use
the isa function, which has the form

x = isa(obj, 'class_name')

isa returns 1 if obj is an instance of the class named 'class_name', and 0 if
it is not. Note that 'class_name' can be a MATLAB built-in or user-defined
class, as well as a Java class.

isa(frame, 'java.awt.Frame')
ans =

1

7-24

Invoking Methods on Java Objects

Invoking Methods on Java Objects

In this section...

“Using Java and MATLAB Calling Syntax” on page 7-25

“Invoking Static Methods on Java Classes” on page 7-27

“Obtaining Information About Methods” on page 7-28

“Java Methods That Affect MATLAB Commands” on page 7-32

“How MATLAB Handles Undefined Methods” on page 7-33

“How MATLAB Handles Java Exceptions” on page 7-34

“Method Execution in MATLAB” on page 7-34

Using Java and MATLAB Calling Syntax
To call methods on Java objects, you can use the Java syntax

object.method(arg1,...,argn)

In the following example, frame is the java.awt.Frame object created above,
and getTitle and setTitle are methods of that object.

frame.setTitle('Sample Frame')

title = frame.getTitle
title =
Sample Frame

Alternatively, you can call Java object (nonstatic) methods with the MATLAB
syntax

method(object, arg1,...,argn)

7-25

7 Calling Java from MATLAB

With MATLAB syntax, the java.awt.Frame example above becomes

setTitle(frame, 'Sample Frame')

title = getTitle(frame)
title =
Sample Frame

All of the programming examples in this chapter contain invocations of Java
object methods. For example, the code for “Example — Reading a URL” on
page 7-71 contains a call, using MATLAB syntax, to the openStream method
on a java.net.URL object, url.

is = openStream(url)

In another example, the code for “Example — Creating and Using a Phone
Book” on page 7-82 contains a call, using Java syntax, to the load method on
a java.utils.Properties object, pb_htable.

pb_htable.load(FIS);

Using the javaMethod Function on Nonstatic Methods
Under certain circumstances, you may need to use the javaMethod function to
call a Java method. The following syntax invokes the method, method_name,
on Java object J with the argument list that matches x1,...,xn. This returns
the value X.

X = javaMethod('method_name',J,x1,...,xn);

For example, to call the startsWith method on a java.lang.String object
passing one argument, use

gAddress = java.lang.String('Four score and seven years ago');
str = java.lang.String('Four score');

javaMethod('startsWith', gAddress, str)
ans =

1

Using the javaMethod function enables you to

7-26

Invoking Methods on Java Objects

• Use methods that have names that exceed the maximum length of a
MATLAB identifier. (Call the namelengthmax function to obtain the
maximum identifier length.)

• Specify the method you want to invoke at run time, for example, as input
from an application user.

The only way to invoke a method whose name is longer than namelengthmax
characters is to use javaMethod. The Java and MATLAB calling syntax does
not accept method names of this length.

With javaMethod, you can also specify the method to be invoked at run time.
In this situation, your code calls javaMethod with a string variable in place
of the method_name argument. When you use javaMethod to invoke a static
method, you can also use a string variable in place of the class name argument.

Note Typically, you do not need to use javaMethod. The default MATLAB
syntax for invoking a Java method is somewhat simpler and is preferable for
most applications. Use javaMethod primarily for the two cases described
above.

Invoking Static Methods on Java Classes
To invoke a static method on a Java class, use the Java invocation syntax

class.method(arg1,...,argn)

For example, call the isNaN static method on the java.lang.Double class.

java.lang.Double.isNaN(2.2)

Alternatively, you can apply static method names to instances of a class.
In this example, the isNaN static method is referenced in relation to the
dblObject instance of the java.lang.Double class.

dblObject = java.lang.Double(2.2);

dblObject.isNaN
ans =

0

7-27

7 Calling Java from MATLAB

Several of the programming examples in this chapter contain examples
of static method invocation. For example, the code in the Example —
Communicating Through a Serial Port contains a call to static method
getPortIdentifier on Java class javax.comm.CommPortIdentifier.

commPort =
javax.comm.CommPortIdentifier.getPortIdentifier('COM1');

Using the javaMethod Function on Static Methods
The javaMethod function was introduced in section “Using the javaMethod
Function on Nonstatic Methods” on page 7-26. You can also use this function
to call static methods.

The following syntax invokes the static method, method_name, in class,
class_name, with the argument list that matches x1,...,xn. This returns
the value X.

X = javaMethod('method_name','class_name',x1,...,xn);

For example, to call the static isNaN method of the java.lang.Double class
on a double value of 2.2, you use

javaMethod('isNaN','java.lang.Double',2.2);

Using the javaMethod function to call static methods enables you to:

• Use methods that have names that exceed the maximum length of a
MATLAB identifier. (Call the namelengthmax function to obtain the
maximum identifier length.)

• Specify method and class names at run-time, for example, as input from
an application user.

Obtaining Information About Methods
MATLAB offers several functions to help obtain information related to the
Java methods you are working with. You can request a list of all of the
methods that are implemented by any class. The list may be accompanied by
other method information such as argument types and exceptions. You can
also request a listing of every Java class that you loaded into MATLAB that
implements a specified method.

7-28

Invoking Methods on Java Objects

Methodsview: Displaying a Listing of Java Methods
If you want to know what methods are implemented by a particular Java
(or MATLAB) class, use the methodsview function in MATLAB. Specify the
class name (along with its package name, for Java classes) in the command
line. If you have imported the package that defines this class, then the class
name alone suffices.

The following command lists information on all methods in the
java.awt.MenuItem class.

methodsview java.awt.MenuItem

A new window appears, listing one row of information for each method in
the class. This is what the methodsview display looks like. The field names
shown at the top of the window are described following the figure.

7-29

7 Calling Java from MATLAB

Each row in the window displays up to six fields of information describing the
method. The table below lists the fields displayed in the methodsview window
along with a description and examples of each field type.

Fields Displayed in the Methodsview Window

Field Name Description Examples

Qualifiers Method type qualifiers abstract, synchronized

Return Type Data type returned by
the method

void, java.lang.String

Name Method name addActionListener,
dispatchEvent

Arguments Arguments passed to
method

boolean,
java.lang.Object

Other Other relevant
information

throws
java.io.IOException

Parent Parent of the specified
class

java.awt.MenuComponent

Using the Methods Function on Java Classes
In addition to methodsview, the MATLAB methods function, which returns
information on methods of MATLAB classes, also works on Java classes. You
can use any of the following forms of this command.

methods class_name
methods class_name -full
n = methods('class_name')
n = methods('class_name','-full')

Use methods without the '-full' qualifier to return the names of all the
methods (including inherited methods) of the class. Names of overloaded
methods are listed only once.

With the '-full' qualifier, methods returns a listing of the method names
(including inherited methods) along with attributes, argument lists, and
inheritance information on each. Each overloaded method is listed separately.

7-30

Invoking Methods on Java Objects

For example, display a full description of all methods of the
java.awt.Dimension object.

methods java.awt.Dimension -full

Methods for class java.awt.Dimension:
Dimension()
Dimension(java.awt.Dimension)
Dimension(int,int)
java.lang.Class getClass() % Inherited from java.lang.Object
int hashCode() % Inherited from java.lang.Object
boolean equals(java.lang.Object)
java.lang.String toString()
void notify() % Inherited from java.lang.Object
void notifyAll() % Inherited from java.lang.Object
void wait(long) throws java.lang.InterruptedException

% Inherited from java.lang.Object
void wait(long,int) throws java.lang.InterruptedException

% Inherited from java.lang.Object
void wait() throws java.lang.InterruptedException

% Inherited from java.lang.Object
java.awt.Dimension getSize()
void setSize(java.awt.Dimension)
void setSize(int,int)

Determining What Classes Define a Method
You can use the which function to display the fully qualified name (package
and class name) of a method implemented by a loaded Java class. With the
-all qualifier, the which function finds all classes with a method of the
name specified.

Suppose, for example, that you want to find the package and class name for
the concat method, with the String class currently loaded. Use the command

which concat
java.lang.String.concat % String method

If the java.lang.String class has not been loaded, the same which command
would give the output

7-31

7 Calling Java from MATLAB

which concat
concat not found.

If you use which -all for the method equals, with the String and
java.awt.Frame classes loaded, you see the following display.

which -all equals
java.lang.String.equals % String method
java.awt.Frame.equals % Frame method
com.mathworks.ide.desktop.MLDesktop.equals % MLDesktop method

The which function operates differently on Java classes than it does on
MATLAB classes. MATLAB classes are always displayed by which, whether
or not they are loaded. This is not true for Java classes. You can find out which
Java classes are currently loaded by using the command [m,x,j]=inmem,
described in “Determining Which Classes Are Loaded” on page 7-13.

For a description of how Java classes are loaded, see “Making Java Classes
Available to MATLAB” on page 7-11.

Java Methods That Affect MATLAB Commands
MATLAB commands that operate on Java objects and arrays make use of the
methods that are implemented within, or inherited by, these objects’ classes.
There are some MATLAB commands that you can alter somewhat in behavior
by changing the Java methods that they rely on.

Changing the Effect of disp and display
You can use the disp function to display the value of a variable or an
expression in MATLAB. Terminating a command line without a semicolon
also calls the disp function. You can also use disp to display a Java object
in MATLAB.

When disp operates on a Java object, MATLAB formats the output using the
toString method of the class to which the object belongs. If the class does
not implement this method, then an inherited toString method is used. If
no intermediate ancestor classes define this method, it uses the toString
method defined by the java.lang.Object class. You can override inherited
toString methods in classes that you create by implementing such a method

7-32

Invoking Methods on Java Objects

within your class definition. In this way, you can change the way MATLAB
displays information regarding the objects of the class.

Changing the Effect of isequal
The MATLAB isequal function compares two or more arrays for equality in
type, size, and contents. This function can also be used to test Java objects
for equality.

When you compare two Java objects using isequal, MATLAB performs the
comparison using the Java method, equals. MATLAB first determines the
class of the objects specified in the command, and then uses the equals
method implemented by that class. If it is not implemented in this class, then
an inherited equals method is used. This is the equals method defined by
the java.lang.Object class if no intermediate ancestor classes define this
method.

You can override inherited equals methods in classes that you create by
implementing such a method within your class definition. In this way, you can
change the way MATLAB performs comparison of the members of this class.

Changing the Effect of double and char
You can also define your own Java methods toDouble and toChar to change
the output of the MATLAB double and char functions. For more information,
see the sections entitled “Converting to the MATLAB double Data Type” on
page 7-66 and “Converting to the MATLAB char Data Type” on page 7-67.

How MATLAB Handles Undefined Methods
If your MATLAB command invokes a nonexistent method on a Java object,
MATLAB looks for a function with the same name. If MATLAB finds a
function of that name, it attempts to invoke it. If MATLAB does not find a
function with that name, it displays a message stating that it cannot find a
method by that name for the class.

For example, MATLAB has a function named size, and the Java API
java.awt.Frame class also has a size method. If you call size on a Frame
object, the size method defined by java.awt.Frame is executed. However,

7-33

7 Calling Java from MATLAB

if you call size on an object of java.lang.String, MATLAB does not find a
size method for this class. It executes the MATLAB size function instead.

string = java.lang.String('hello');

size(string)
ans =

1 1

Note When you define a Java class for use in MATLAB, avoid giving any of
its methods the same name as a MATLAB function.

How MATLAB Handles Java Exceptions
If invoking a Java method or constructor throws an exception, MATLAB
catches the exception and transforms it into a MATLAB error. MATLAB puts
the text of the Java error message into its own error message. Receiving
an error from a Java method or constructor has the same appearance as
receiving an error from an M-file.

Method Execution in MATLAB
When calling a main method from MATLAB, the method returns as soon as it
executes its last statement, even if the method creates a thread that is still
executing. In other environments, the main method does not return until the
thread completes execution.

You, therefore, need to be cautious when calling main methods from MATLAB,
particularly main methods that launch GUIs. main methods are usually
written assuming they are the entry point to application code. When called
from MATLAB this is not the case, and the fact that other Java GUI code
might be already running can lead to problems.

7-34

Working with Java Arrays

Working with Java Arrays

In this section...

“Introduction” on page 7-35

“How MATLAB Represents the Java Array” on page 7-35

“Creating an Array of Objects Within MATLAB” on page 7-40

“Accessing Elements of a Java Array” on page 7-42

“Assigning to a Java Array” on page 7-46

“Concatenating Java Arrays” on page 7-49

“Creating a New Array Reference” on page 7-50

“Creating a Copy of a Java Array” on page 7-51

Introduction
You can pass singular Java objects to and from methods or you may pass them
in an array, providing the method expects them in that form. This array must
either be a Java array (returned from another method call or created within
MATLAB) or, under certain circumstances, a MATLAB cell array. This section
describes how to create and manipulate Java arrays in MATLAB. Later
sections will describe how to use MATLAB cell arrays in calls to Java methods.

Note The term dimension here refers more to the number of subscripts
required to address the elements of an array than to its length, width, and
height characteristics. For example, a 5-by-1 array is referred to as being
one-dimensional, as its individual elements can be indexed into using only
one array subscript.

How MATLAB Represents the Java Array
The term java array refers to any array of Java objects returned from a call
to a Java class constructor or method. You may also construct a Java array
within MATLAB using the javaArray function. The structure of a Java array
is significantly different from that of a MATLAB matrix or array. MATLAB
hides these differences whenever possible, allowing you to operate on the

7-35

7 Calling Java from MATLAB

arrays using the usual MATLAB command syntax. Just the same, it may be
helpful to keep the following differences in mind as you work with Java arrays.

Representing More Than One Dimension
An array in the Java language is strictly a one-dimensional structure because
it is measured only in length. If you want to work with a two-dimensional
array, you can create an equivalent structure using an array of arrays. To add
further dimensions, you add more levels to the array, making it an array of
arrays of arrays, and so on. You may want to use such multilevel arrays when
working in MATLAB as it is a matrix and array-based programming language.

MATLAB makes it easy for you to work with multilevel Java arrays by
treating them like the matrices and multidimensional arrays that are a part
of the language itself. You access elements of an array of arrays using the
same MATLAB syntax that you use if you are handling a matrix. If you add
more levels to the array, MATLAB can access and operate on the structure as
if it is a multidimensional MATLAB array.

7-36

Working with Java Arrays

The left side of the following figure shows Java arrays of one, two, and three
dimensions. To the right of each is the way the same array is represented
to you in MATLAB. Note that single-dimension arrays are represented as
a column vector.

Array Indexing
Java array indexing is different than MATLAB array indexing. Java array
indices are zero-based, MATLAB array indices are one-based. In Java
programming, you access the elements of array y of length N using y[0]

7-37

7 Calling Java from MATLAB

through y[N-1]. When working with this array in MATLAB, you access these
same elements using the MATLAB indexing style of y(1) through y(N). Thus,
if you have a Java array of 10 elements, the seventh element is obtained using
y(7), and not y[6] as you use when writing a program in Java.

The Shape of the Java Array
A Java array can be different from a MATLAB array in its overall shape. A
two-dimensional MATLAB array maintains a rectangular shape, as each row
is of equal length and each column of equal height. The Java counterpart of
this, an array of arrays, does not necessarily hold to this rectangular form.
Each individual lower level array may have a different length.

Such an array structure is pictured below. This is an array of three underlying
arrays of different lengths. The term ragged is commonly used to describe this
arrangement of array elements as the array ends do not match up evenly.
When a Java method returns an array with this type of structure, it is stored
in a cell array by MATLAB.

Interpreting the Size of a Java Array
When the MATLAB size function is applied to a simple Java array, the
number of rows returned is the length of the Java array and the number of
columns is always 1.

Determining the size of a Java array of arrays is not so simple. The potentially
ragged shape of an array returned from Java makes it impossible to size the
array in the same way as for a rectangular matrix. In a ragged Java array,
there is no one value that represents the size of the lower level arrays.

7-38

Working with Java Arrays

When the size function is applied to a Java array of arrays, the resulting
value describes the top level of the specified array. For the Java array

size(A) returns the dimensions of the highest array level of A. The highest
level of the array has a size of 3-by-1.

size(A)
ans =

3 1

To find the size of a lower level array, say the five-element array in row
3, refer to the row explicitly.

size(A(3))
ans =

5 1

You can specify a dimension in the size command using the following syntax.
However, you will probably find this useful only for sizing the first dimension,
dim=1, as this will be the only non-unary dimension.

m = size(X,dim)

size(A, 1)
ans =

3

Interpreting the Number of Dimensions of a Java Arrays
For Java arrays, whether they are simple one-level arrays or multilevel, the
MATLAB ndims function always returns a value of 2 to indicate the number
of dimensions in the array. This is a measure of the number of dimensions in
the top-level array, which always equals 2.

7-39

7 Calling Java from MATLAB

Creating an Array of Objects Within MATLAB
To call a Java method that has one or more arguments defined as an array
of Java objects, you must, under most circumstances, pass your objects in a
Java array. You can construct an array of objects in a call to a Java method or
constructor. Or you can create the array within MATLAB.

The MATLAB javaArray function lets you create a Java array structure that
can be handled in MATLAB as a single multidimensional array. You specify
the number and size of the array dimensions along with the class of objects
you intend to store in it. Using the one-dimensional Java array as its primary
building block, MATLAB then builds an array structure that satisfies the
dimensions requested in the javaArray command.

Using the javaArray Function
To create a Java object array, use the MATLAB javaArray function, which
has the following syntax:

A = javaArray('element_class', m, n, p, ...)

The first argument is the 'element_class' string, which names the class of
the elements in the array. You must specify the fully qualified name (package
and class name). The remaining arguments (m, n, p, ...) are the number
of elements in each dimension of the array.

An array that you create with javaArray is equivalent to the array that you
create with the Java code.

A = new element_class[m][n][p]...;

The following command builds a Java array of four lower level arrays,
each capable of holding five objects of the java.lang.Double class. (You
are more likely to use primitive types of double than instances of the
java.lang.Double class, but in this context, it affords us a simple example.)

dblArray = javaArray('java.lang.Double', 4, 5);

The javaArray function does not deposit any values into the array elements
that it creates. You must do this separately. The following MATLAB code
stores objects of the java.lang.Double type in the Java array dblArray
that was just created.

7-40

Working with Java Arrays

for m = 1:4
for n = 1:5
dblArray(m,n) = java.lang.Double((m*10) + n);
end

end

dblArray
dblArray =
java.lang.Double[][]:

[11] [12] [13] [14] [15]
[21] [22] [23] [24] [25]
[31] [32] [33] [34] [35]
[41] [42] [43] [44] [45]

Another Way to Create a Java Array
You can also create an array of Java objects using syntax that is more typical
to MATLAB. For example, the following syntax creates a 4-by-5 MATLAB
array of type double and assigns zero to each element of the array.

matlabArray(4,5) = 0;

You use similar syntax to create a Java array in MATLAB, except that
you must specify the Java class name. The value being assigned, 0 in this
example, is stored in the final element of the array, javaArray(4,5). All other
elements of the array receive the empty matrix.

javaArray(4,5) = java.lang.Double(0)
javaArray =
java.lang.Double[][]:

[] [] [] [] []
[] [] [] [] []
[] [] [] [] []
[] [] [] [] [0]

Note You cannot change the dimensions of an existing Java array as you can
with a MATLAB array. The same restriction exists when working with Java
arrays in the Java language. See the example below.

7-41

7 Calling Java from MATLAB

This example first creates a scalar MATLAB array, and then successfully
modifies it to be two-dimensional.

matlabArray = 0;
matlabArray(4,5) = 0

matlabArray =

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

When you try this with a Java array, you get an error. Similarly, you cannot
create an array of Java arrays from a Java array, and so forth.

javaArray = java.lang.Double(0);
javaArray(4,5) = java.lang.Double(0);
??? Index exceeds Java array dimensions.

Accessing Elements of a Java Array
You can access elements of a Java object array by using the MATLAB array
indexing syntax, A(row,col). For example, to access the element of array
dblArray located at row 3, column 4, use

row3_col4 = dblArray(3,4)
row3_col4 =
34.0

In Java, this is dblArray[2][3].

You can also use MATLAB array indexing syntax to access an element in an
object’s data field. Suppose that myMenuObj is an instance of a window menu
class. This user-supplied class has a data field, menuItemArray, which is a
Java array of java.awt.menuItem. To get element 3 of this array, use the
following command.

currentItem = myMenuObj.menuItemArray(3)

7-42

Working with Java Arrays

Using Single Subscript Indexing to Access Arrays
Elements of a MATLAB matrix are most commonly referenced using both row
and column subscripts. For example, you use x(3,4) to reference the array
element at the intersection of row 3 and column 4. Sometimes it is more
advantageous to use just a single subscript. MATLAB provides this capability
(see the section on “Linear Indexing” in MATLAB Programming).

Indexing into a MATLAB matrix using a single subscript references one
element of the matrix. Using the MATLAB matrix shown here, matlabArray
(3) returns a single element of the matrix.

matlabArray = [11 12 13 14 15; 21 22 23 24 25; ...
31 32 33 34 35; 41 42 43 44 45]

matlabArray =
11 12 13 14 15
21 22 23 24 25
31 32 33 34 35
41 42 43 44 45

matlabArray(3)
ans =

31

Indexing this way into a Java array of arrays references an entire subarray
of the overall structure. Using the dblArray Java array, that looks the same
as matlabArray shown above, dblArray(3) returns the 5-by-1 array that
makes up the entire third row.

row3 = dblArray(3)
row3 =
java.lang.Double[]:

[31]
[32]
[33]
[34]
[35]

This is a useful feature of MATLAB because it allows you to specify an entire
array from a larger array structure, and then manipulate it as an object.

7-43

7 Calling Java from MATLAB

Using the Colon Operator
Use of the MATLAB colon operator (:) is supported in subscripting Java
array references. This operator works just the same as when referencing the
contents of a MATLAB array. Using the Java array of java.lang.Double
objects shown here, the statement dblArray(2,2:4) refers to a portion of the
lower level array, dblArray(2). A new array, row2Array, is created from
the elements in columns 2 through 4.

dblArray
dblArray =
java.lang.Double[][]:

[11] [12] [13] [14] [15]
[21] [22] [23] [24] [25]
[31] [32] [33] [34] [35]
[41] [42] [43] [44] [45]

row2Array = dblArray(2,2:4)
row2Array =
java.lang.Double[]:

[22]
[23]
[24]

You also can use the colon operator in single-subscript indexing, as covered in
“Using Single Subscript Indexing to Access Arrays” on page 7-43. By making
your subscript a colon rather than a number, you can convert an array of
arrays into one linear array. The following example converts the 4-by-5 array
dblArray into a 20-by-1 linear array.

7-44

Working with Java Arrays

linearArray = dblArray(:)
linearArray =
java.lang.Double[]:

[11]
[12]
[13]
[14]
[15]
[21]
[22]
.
.
.

This works the same way on an N-dimensional Java array structure. Using
the colon operator as a single subscripted index into the array produces a
linear array composed of all of the elements of the original array.

Note Java and MATLAB arrays are stored differently in memory. This is
reflected in the order they are given in a linear array. Java array elements
are stored in an order that matches the rows of the matrix, (11, 12, 13, ... in
the array shown above). MATLAB array elements are stored in an order that
matches the columns, (11, 21, 31, ...).

Using END in a Subscript
You can use the end keyword in the first subscript of an access statement.
The first subscript references the top-level array in a multilevel Java array
structure.

Note Using end on lower level arrays is not valid due to the potentially
ragged nature of these arrays (see “The Shape of the Java Array” on page
7-38). In this case, there is no consistent end value to be derived.

7-45

7 Calling Java from MATLAB

The following example displays data from the third to the last row of Java
array dblArray.

last2rows = dblArray(3:end, :)
last2rows =
java.lang.Double[][]:

[31] [32] [33] [34] [35]
[41] [42] [43] [44] [45]

Assigning to a Java Array
You assign values to objects in a Java array in essentially the same way as you
do in a MATLAB array. Although Java and MATLAB arrays are structured
quite differently, you use the same command syntax to specify which elements
you want to assign to. See “Introduction” on page 7-35 for more information
on Java and MATLAB array differences.

The following example deposits the value 300 in the dblArray element at row
3, column 2. In Java, this is dblArray[2][1].

dblArray(3,2) = java.lang.Double(300)
dblArray =
java.lang.Double[][]:

[11] [12] [13] [14] [15]
[21] [22] [23] [24] [25]
[31] [300] [33] [34] [35]
[41] [42] [43] [44] [45]

You use the same syntax to assign to an element in an object’s data field.
Continuing with the myMenuObj example shown in “Accessing Elements
of a Java Array” on page 7-42, you assign to the third menu item in
menuItemArray as follows.

myMenuObj.menuItemArray(3) = java.lang.String('Save As...');

Using Single Subscript Indexing for Array Assignment
You can use a single-array subscript to index into a Java array structure that
has more than one dimension. Refer to “Using Single Subscript Indexing to
Access Arrays” on page 7-43 for a description of this feature as used with
Java arrays.

7-46

Working with Java Arrays

You can use single-subscript indexing to assign values to an array as well.
The example below assigns a one-dimensional Java array, onedimArray, to
a row of a two-dimensional Java array, dblArray. Start out by creating the
one-dimensional array.

onedimArray = javaArray('java.lang.Double', 5);
for k = 1:5

onedimArray(k) = java.lang.Double(100 * k);
end

Since dblArray(3) refers to the 5-by-1 array displayed in the third row
of dblArray, you can assign the entire, similarly dimensioned, 5-by-1
onedimArray to it.

dblArray(3) = onedimArray
dblArray =
java.lang.Double[][]:

[11] [12] [13] [14] [15]
[21] [22] [23] [24] [25]
[100] [200] [300] [400] [500]
[41] [42] [43] [44] [45]

Assigning to a Linear Array
You can assign a value to every element of a multidimensional Java array by
treating the array structure as if it were a single linear array. This entails
replacing the single, numerical subscript with the MATLAB colon operator.
If you start with the dblArray array, you can initialize the contents of every
object in the two-dimensional array with the following statement.

dblArray(:) = java.lang.Double(0)
dblArray =
java.lang.Double[][]:

[0] [0] [0] [0] [0]
[0] [0] [0] [0] [0]
[0] [0] [0] [0] [0]
[0] [0] [0] [0] [0]

7-47

7 Calling Java from MATLAB

You can use the MATLAB colon operator as you would when working with
MATLAB arrays. The statements below assign given values to each of the
four rows in the Java array, dblArray. Remember that each row actually
represents a separate Java array in itself.

dblArray(1,:) = java.lang.Double(125);
dblArray(2,:) = java.lang.Double(250);
dblArray(3,:) = java.lang.Double(375);
dblArray(4,:) = java.lang.Double(500)
dblArray =
java.lang.Double[][]:

[125] [125] [125] [125] [125]
[250] [250] [250] [250] [250]
[375] [375] [375] [375] [375]
[500] [500] [500] [500] [500]

Assigning the Empty Matrix
When working with MATLAB arrays, you can assign the empty matrix, (i.e.,
the 0-by-0 array denoted by []) to an element of the array. For Java arrays,
you can also assign [] to array elements. This stores the NULL value, rather
than a 0-by-0 array, in the Java array element.

Subscripted Deletion
When you assign the empty matrix value to an entire row or column of a
MATLAB array, you find that MATLAB actually removes the affected row or
column from the array. In the example below, the empty matrix is assigned
to all elements of the fourth column in the MATLAB matrix, matlabArray.
Thus, the fourth column is completely eliminated from the matrix. This
changes its dimensions from 4-by-5 to 4-by-4.

7-48

Working with Java Arrays

matlabArray = [11 12 13 14 15; 21 22 23 24 25; ...
31 32 33 34 35; 41 42 43 44 45]

matlabArray =
11 12 13 14 15
21 22 23 24 25
31 32 33 34 35
41 42 43 44 45

matlabArray(:,4) = []
matlabArray =

11 12 13 15
21 22 23 25
31 32 33 35
41 42 43 45

You can assign the empty matrix to a Java array, but the effect is different.
The next example shows that, when the same operation is performed on a
Java array, the structure is not collapsed; it maintains its 4-by-5 dimensions.

dblArray(:,4) = []
dblArray =
java.lang.Double[][]:

[125] [125] [125] [] [125]
[250] [250] [250] [] [250]
[375] [375] [375] [] [375]
[500] [500] [500] [] [500]

The dblArray data structure is actually an array of five-element arrays of
java.lang.Double objects. The empty array assignment placed the NULL
value in the fourth element of each of the lower level arrays.

Concatenating Java Arrays
You can concatenate arrays of Java objects in the same way as arrays of
other data types. Java objects, however, can only be catenated along the first
or second axis. To understand how scalar Java objects are concatenated in
MATLAB, see “Concatenating Java Objects” on page 7-19.

Use either the cat function or the square bracket ([]) operators. This example
horizontally concatenates two Java arrays: d1 and d2.

7-49

7 Calling Java from MATLAB

% Construct a 2-by-3 array of java.lang.Double.
d1 = javaArray('java.lang.Double',2,3);
for m = 1:3 for n = 1:3
d1(m,n) = java.lang.Double(n*2 + m-1);
end; end;

d1
d1 =
java.lang.Double[][]:

[2] [4] [6]
[3] [5] [7]
[4] [6] [8]

% Construct a 2-by-2 array of java.lang.Double.
d2 = javaArray('java.lang.Double',2,2);
for m = 1:3 for n = 1:2
d2(m,n) = java.lang.Double((n+3)*2 + m-1);
end; end;

d2
d2 =
java.lang.Double[][]:

[8] [10]
[9] [11]
[10] [12]

% Concatenate the two along the second dimension.
d3 = cat(2,d1,d2)
d3 =
java.lang.Double[][]:

[2] [4] [6] [8] [10]
[3] [5] [7] [9] [11]
[4] [6] [8] [10] [12]

Creating a New Array Reference
Because Java arrays in MATLAB are references, assigning an array variable
to another variable results in a second reference to the array.

Consider the following example where two separate array variables reference
a common array. The original array, origArray, is created and initialized.

7-50

Working with Java Arrays

The statement newArrayRef = origArray creates a copy of this array
variable. Changes made to the array referred to by newArrayRef also show up
in the original array.

origArray = javaArray('java.lang.Double', 3, 4);
for m = 1:3

for n = 1:4
origArray(m,n) = java.lang.Double((m * 10) + n);

end
end

origArray
origArray =
java.lang.Double[][]:

[11] [12] [13] [14]
[21] [22] [23] [24]
[31] [32] [33] [34]

% ----- Make a copy of the array reference -----
newArrayRef = origArray;
newArrayRef(3,:) = java.lang.Double(0);

origArray
origArray =
java.lang.Double[][]:

[11] [12] [13] [14]
[21] [22] [23] [24]
[0] [0] [0] [0]

Creating a Copy of a Java Array
You can create an entirely new array from an existing Java array by indexing
into the array to describe a block of elements, (or subarray), and assigning
this subarray to a variable. The assignment copies the values in the original
array to the corresponding cells of the new array.

As with the example in section “Creating a New Array Reference” on page
7-50, an original array is created and initialized. But, this time, a copy is
made of the array contents rather than copying the array reference. Changes
made using the reference to the new array do not affect the original.

7-51

7 Calling Java from MATLAB

origArray = javaArray('java.lang.Double', 3, 4);
for m = 1:3

for n = 1:4
origArray(m,n) = java.lang.Double((m * 10) + n);

end
end

origArray
origArray =
java.lang.Double[][]:

[11] [12] [13] [14]
[21] [22] [23] [24]
[31] [32] [33] [34]

% ----- Make a copy of the array contents -----
newArray = origArray(:,:);
newArray(3,:) = java.lang.Double(0);

origArray
origArray =
java.lang.Double[][]:

[11] [12] [13] [14]
[21] [22] [23] [24]
[31] [32] [33] [34]

7-52

Passing Data to a Java Method

Passing Data to a Java Method

In this section...

“Introduction” on page 7-53

“Conversion of MATLAB Argument Data” on page 7-53

“Passing Built-In Data Types” on page 7-55

“Passing String Arguments” on page 7-56

“Passing Java Objects” on page 7-57

“Other Data Conversion Topics” on page 7-60

“Passing Data to Overloaded Methods” on page 7-61

Introduction
When you make a call from MATLAB to Java code, any MATLAB data types
you pass in the call are converted to data types native to the Java language.
MATLAB performs this conversion on each argument that is passed, except
for those arguments that are already Java objects. This section describes the
conversion that is performed on specific MATLAB data types and, at the
end, also takes a look at how argument types affect calls made to overloaded
methods.

If data is to be returned by the method being called, MATLAB receives this
data and converts it to the appropriate MATLAB format wherever necessary.
This process is covered in “Handling Data Returned from a Java Method”
on page 7-64.

Conversion of MATLAB Argument Data
MATLAB data, passed as arguments to Java methods, are converted by
MATLAB into data types that best represent the data to the Java language.
The table below shows all of the MATLAB base types for passed arguments
and the Java base types defined for input arguments. Each row shows a
MATLAB type followed by the possible Java argument matches, from left
to right in order of closeness of the match. The MATLAB types (except cell
arrays) can all be scalar (1-by-1) arrays or matrices. All of the Java types can
be scalar values or arrays.

7-53

7 Calling Java from MATLAB

Conversion of MATLAB Types to Java Types

MATLAB
Argument

Closest
Type (7) Java Input Argument (Scalar or Array)

Least
Close
Type
(1)

logical boolean byte short int long float double

double double float long int short byte boolean

single float double N/A N/A N/A N/A N/A

char String char N/A N/A N/A N/A N/A

uint8 byte short int long float double N/A

uint16 short int long float double N/A N/A

uint32 int long float double N/A N/A N/A

int8 byte short int long float double N/A

int16 short int long float double N/A N/A

int32 int long float double N/A N/A N/A

cell array of
strings

array of
String

N/A N/A N/A N/A N/A N/A

Java object Object N/A N/A N/A N/A N/A N/A

cell array of
object

array of
Object

N/A N/A N/A N/A N/A N/A

MATLAB
object

N/A N/A N/A N/A N/A N/A N/A

Data type conversion of arguments passed to Java code are discussed in the
following three categories. MATLAB handles each category differently.

• “Passing Built-In Data Types” on page 7-55

• “Passing String Arguments” on page 7-56

• “Passing Java Objects” on page 7-57

7-54

Passing Data to a Java Method

Passing Built-In Data Types
Java has eight data types that are intrinsic to the language and are not
represented as Java objects. These are often referred to as built-in, or
elemental, data types and they include boolean, byte, short, long, int,
double, float, and char. MATLAB converts its own data types to these Java
built-in types according to the table, Conversion of MATLAB Types to Java
Types on page 7-54. Built-in types are in the first 10 rows of the table.

When a Java method you are calling expects one of these data types, you
can pass it the type of MATLAB argument shown in the left-most column of
the table. If the method takes an array of one of these types, you can pass a
MATLAB array of the data type. MATLAB converts the data type of the
argument to the type assigned in the method declaration.

The MATLAB code shown below creates a top-level window frame and sets
its dimensions. The call to setBounds passes four MATLAB scalars of the
double type to the inherited Java Frame method, setBounds, that takes four
arguments of the int type. MATLAB converts each 64-bit double data type to
a 32-bit integer prior to making the call. Shown here is the setBounds method
declaration followed by the MATLAB code that calls the method.

public void setBounds(int x, int y, int width, int height)

frame=java.awt.Frame;
frame.setBounds(200,200,800,400);
frame.setVisible(1);

Passing Built-In Types in an Array
To call a Java method with an argument defined as an array of a built-in type,
you can create and pass a MATLAB matrix with a compatible base type. The
following code defines a polygon by sending four x and y coordinates to the
Polygon constructor. Two 1-by-4 MATLAB arrays of double are passed to
java.awt.Polygon, which expects integer arrays in the first two arguments.
Shown here is the Java method declaration followed by MATLAB code that
calls the method, and then verifies the set coordinates.

7-55

7 Calling Java from MATLAB

public Polygon(int xpoints[], int ypoints[], int npoints)

poly = java.awt.Polygon([14 42 98 124], [55 12 -2 62], 4);
[poly.xpoints poly.ypoints] % Verify the coordinates
ans =
14 55
42 12
98 -2
124 62

MATLAB Arrays Are Passed by Value
Since MATLAB arrays are passed by value, any changes that a Java method
makes to them are not visible to your MATLAB code. If you need to access
changes that a Java method makes to an array, then, rather than passing a
MATLAB array, you should create and pass a Java array, which is a reference.
For a description of using Java arrays in MATLAB, see “Working with Java
Arrays” on page 7-35.

Note Generally, it is preferable to have methods return data that has been
modified using the return argument mechanism as opposed to passing a
reference to that data in an argument list.

Passing String Arguments
To call a Java method that has an argument defined as an object of class
java.lang.String, you can pass either a String object that was returned
from an earlier Java call or a MATLAB 1-by-n character array. If you
pass the character array, MATLAB converts the array to a Java object of
java.lang.String for you.

For a programming example, see “Example — Reading a URL” on page 7-71.
This shows a MATLAB character array that holds a URL being passed to the
Java URL class constructor. The constructor, shown below, expects a Java
String argument.

public URL(String spec) throws MalformedURLException

7-56

Passing Data to a Java Method

In the MATLAB call to this constructor, a character array specifying the URL
is passed. MATLAB converts this array to a Java String object prior to calling
the constructor.

url = java.net.URL(...
'http://archive.ncsa.uiuc.edu/demoweb/')

Passing Strings in an Array
When the method you are calling expects an argument of an array of type
String, you can create such an array by packaging the strings together
in a MATLAB cell array. The strings can be of varying lengths since you
are storing them in different cells of the array. As part of the method call,
MATLAB converts the cell array to a Java array of String objects.

In the following example, the echoPrompts method of a user-written class
accepts a string array argument that MATLAB converted from its original
format as a cell array of strings. The parameter list in the Java method
appears as follows:

public String[] echoPrompts(String s[])

You create the input argument by storing both strings in a MATLAB cell
array. MATLAB converts this structure to a Java array of String.

myaccount.echoPrompts({'Username: ','Password: '})
ans =
'Username: '
'Password: '

Passing Java Objects
When calling a method that has an argument belonging to a particular Java
class, you must pass an object that is an instance of that class. In the example
below, the add method belonging to the java.awt.Menu class requires, as an
argument, an object of the java.awt.MenuItem class. The method declaration
for this is

public MenuItem add(MenuItem mi)

The example operates on the frame created in the previous example in
“Passing Built-In Data Types” on page 7-55. The second, third, and fourth

7-57

7 Calling Java from MATLAB

lines of code shown here add items to a menu to be attached to the existing
window frame. In each of these calls to menu1.add, an object that is an
instance of the java.awt.MenuItem Java class is passed.

menu1 = java.awt.Menu('File Options');
menu1.add(java.awt.MenuItem('New'));
menu1.add(java.awt.MenuItem('Open'));
menu1.add(java.awt.MenuItem('Save'));

menuBar=java.awt.MenuBar;
menuBar.add(menu1);
frame.setMenuBar(menuBar);

Handling Objects of Class java.lang.Object
A special case exists when the method being called takes an argument of
the java.lang.Object class. Since this class is the root of the Java class
hierarchy, you can pass objects of any class in the argument. The following
hash table example passes objects belonging to different classes to a common
method, put, which expects an argument of java.lang.Object. The method
declaration for put is

public synchronized Object put(Object key, Object value)

The following MATLAB code passes objects of different types (boolean, float,
and string) to the put method.

hTable = java.util.Hashtable;
hTable.put(0, java.lang.Boolean('TRUE'));
hTable.put(1, java.lang.Float(41.287));
hTable.put(2, java.lang.String('test string'));

hTable % Verify hash table contents
hTable =
{1.0=41.287, 2.0=test string, 0.0=true}

When passing arguments to a method that takes java.lang.Object, it is
not necessary to specify the class name for objects of a built-in data type.
Line 3, in the example above, specifies that 41.287 is an instance of class
java.lang.Float. You can omit this and simply say, 41.287, as shown in the

7-58

Passing Data to a Java Method

following example. Thus, MATLAB creates each object for you, choosing the
closest matching Java object representation for each argument.

The three calls to put from the preceding example can be rewritten as

hTable.put(0, 1);
hTable.put(1, 41.287);
hTable.put(2, 'test string');

Passing Objects in an Array
The only types of object arrays that you can pass to Java methods are Java
arrays and MATLAB cell arrays. MATLAB automatically converts the cell
array elements to java.lang.Object class objects. Note that in order for
a cell array to be passed from MATLAB, the corresponding argument in
the Java method signature must specify java.lang.Object or an array
of java.lang.Object.

If the objects are already in a Java array, either an array returned from a Java
constructor or constructed in MATLAB by the javaArray function, then you
simply pass it as the argument to the method being called. No conversion is
done by MATLAB, because the argument is already a Java array.

The following example shows the mapPoints method of a user-written class
accepting an array of java.awt.Point objects. The declaration for this
method is

public Object mapPoints(java.awt.Point p[])

The MATLAB code shown below creates a 4-by-1 array containing four
Java Point objects. When the array is passed to the mapPoints method, no
conversion is necessary because the javaArray function created a Java array
of java.awt.Point objects.

pointObj = javaArray('java.awt.Point',4);
pointObj(1) = java.awt.Point(25,143);
pointObj(2) = java.awt.Point(31,147);
pointObj(3) = java.awt.Point(49,151);
pointObj(4) = java.awt.Point(52,176);

testData.mapPoints(pointObj);

7-59

7 Calling Java from MATLAB

Handling a Cell Array of Java Objects
You create a cell array of Java objects by using the MATLAB syntax
{a1,a2,...}. You index into a cell array of Java objects in the usual way,
with the syntax a{m,n,...}.

The following example creates a cell array of two Frame objects, frame1 and
frame2, and assigns it to variable frameArray.

frame1 = java.awt.Frame('Frame A');
frame2 = java.awt.Frame('Frame B');

frameArray = {frame1, frame2}
frameArray =
[1x1 java.awt.Frame] [1x1 java.awt.Frame]

The next statement assigns element {1,2} of the cell array frameArray to
variable f.

f = frameArray {1,2}
f =
java.awt.Frame[frame2,0,0,0x0,invalid,hidden,layout =
java.awt.BorderLayout,resizable,title=Frame B]

Other Data Conversion Topics
There are several remaining items of interest regarding the way MATLAB
converts its data to a compatible Java type. This includes how MATLAB
matches array dimensions, and how it handles empty matrices and empty
strings.

How Array Dimensions Affect Conversion
The term dimension, as used in this section, refers more to the number of
subscripts required to address the elements of an array than to its length,
width, and height characteristics. For example, a 5-by-1 array is referred to
as having one dimension, because its individual elements can be indexed
into using only one array subscript.

In converting MATLAB to Java arrays, MATLAB handles dimension in a
special manner. For a MATLAB array, dimension can be considered as the
number of nonsingleton dimensions in the array. For example, a 10-by-1 array

7-60

Passing Data to a Java Method

has dimension 1, and a 1-by-1 array has dimension 0. In Java, dimension is
determined solely by the number of nested arrays. For example, double[][]
has dimension 2, and double has dimension 0.

If the Java array’s number of dimensions exactly matches the MATLAB
array’s number of dimensions n, the conversion results in a Java array with n
dimensions. If the Java array has fewer than n dimensions, the conversion
drops singleton dimensions, starting with the first one, until the number of
remaining dimensions matches the number of dimensions in the Java array.

Empty Matrices and Nulls
The empty matrix is compatible with any method argument for which NULL is
a legal value in Java. The empty string ('') in MATLAB translates into an
empty (not NULL) String object in Java.

Passing Data to Overloaded Methods
When you invoke an overloaded method on a Java object, MATLAB
determines which method to invoke by comparing the arguments your call
passes to the arguments defined for the methods. Note that in this discussion,
the term method includes constructors. When it determines the method to
call, MATLAB converts the calling arguments to Java method types according
to Java conversion rules, except for conversions involving objects or cell
arrays. See “Passing Objects in an Array” on page 7-59.

How MATLAB Determines the Method to Call
When your MATLAB function calls a Java method, MATLAB

1 Checks to make sure that the object (or class, for a static method) has a
method by that name.

2 Determines whether the invocation passes the same number of arguments
of at least one method with that name.

3 Makes sure that each passed argument can be converted to the Java type
defined for the method.

If all of the preceding conditions are satisfied, MATLAB calls the method.

7-61

7 Calling Java from MATLAB

In a call to an overloaded method, if there is more than one candidate,
MATLAB selects the one with arguments that best fit the calling arguments.
First, MATLAB rejects all methods that have any argument types that are
incompatible with the passed arguments (for example, if the method has a
double argument and the passed argument is a char).

Among the remaining methods, MATLAB selects the one with the highest
fitness value, which is the sum of the fitness values of all its arguments.
The fitness value for each argument is the fitness of the base type minus
the difference between the MATLAB array dimension and the Java array
dimension. (Array dimensionality is explained in “How Array Dimensions
Affect Conversion” on page 7-60.) If two methods have the same fitness, the
first one defined in the Java class is chosen.

Example — Calling an Overloaded Method
Suppose a function constructs a java.io.OutputStreamWriter object, osw,
and then invokes a method on the object.

osw.write('Test data', 0, 9);

MATLAB finds that the class java.io.OutputStreamWriter defines three
write methods.

public void write(int c);
public void write(char[] cbuf, int off, int len);
public void write(String str, int off, int len);

MATLAB rejects the first write method, because it takes only one argument.
Then, MATLAB assesses the fitness of the remaining two write methods.
These differ only in their first argument, as explained below.

In the first of these two write methods, the first argument is defined with
base type, char. The table, Conversion of MATLAB Types to Java Types
on page 7-54, shows that for the type of the calling argument (MATLAB
char), Java type, char, has a value of 6. There is no difference between the
dimension of the calling argument and the Java argument. So the fitness
value for the first argument is 6.

In the other write method, the first argument has Java type String, which
has a fitness value of 7. The dimension of the Java argument is 0, so the

7-62

Passing Data to a Java Method

difference between it and the calling argument dimension is 1. Therefore, the
fitness value for the first argument is 6.

Because the fitness value of those two write methods is equal, MATLAB calls
the one listed first in the class definition, with char[] first argument.

7-63

7 Calling Java from MATLAB

Handling Data Returned from a Java Method

In this section...

“Introduction” on page 7-64

“Conversion of Java Return Data” on page 7-64

“Built-In Data Types” on page 7-65

“Java Objects” on page 7-65

“Converting Objects to MATLAB Data Types” on page 7-66

Introduction
In many cases, data returned from Java is incompatible with the data types
operated on within MATLAB. When this is the case, MATLAB converts the
returned value to a data type native to the MATLAB language. This section
describes the conversion performed on the various data types that can be
returned from a call to a Java method.

Conversion of Java Return Data
The following table lists Java return types and the resulting MATLAB types.
For some Java base return types, MATLAB treats scalar and array returns
differently, as described following the table.

Conversion of Java Types to MATLAB Types

Java Return Type

If Scalar Return,
Resulting MATLAB
Type

If Array Return,
Resulting MATLAB
Type

boolean logical logical

byte double int8

short double int16

int double int32

long double double

float double single

7-64

Handling Data Returned from a Java Method

Conversion of Java Types to MATLAB Types (Continued)

Java Return Type

If Scalar Return,
Resulting MATLAB
Type

If Array Return,
Resulting MATLAB
Type

double double double

char char char

Built-In Data Types
Java built-in data types are described in “Passing Built-In Data Types” on
page 7-55. This data type includes boolean, byte, short, long, int, double,
float, and char. When the value returned from a method call is one of these
types, MATLAB converts it according to the table Conversion of Java Types to
MATLAB Types on page 7-64.

A single numeric or boolean value converts to a 1-by-1 matrix of double,
which is convenient for use in MATLAB. An array of a numeric or boolean
return values converts to an array of the closest base type to minimize the
required storage space. Array conversions are listed in the right-hand column
of the table.

A return value of Java type char converts to a 1-by-1 matrix of char. An array
of Java char converts to a MATLAB array of that type.

Java Objects
When a method call returns Java objects, MATLAB leaves them in their
original form. They remain as Java objects so you can continue to use them
to interact with other Java methods.

The only exception to this is when the method returns data of type
java.lang.Object. This class is the root of the Java class hierarchy and is
frequently used as a catchall for objects and arrays of various types. When the
method being called returns a value of the Object class, MATLAB converts its
value according to the table Conversion of Java Types to MATLAB Types on
page 7-64. That is, numeric and boolean objects such as java.lang.Integer
or java.lang.Boolean convert to a 1-by-1 MATLAB matrix of double.

7-65

7 Calling Java from MATLAB

Object arrays of these types convert to the MATLAB data types listed in the
right-hand column of the table. Other object types are not converted.

Converting Objects to MATLAB Data Types
With the exception of objects of class Object, MATLAB does not convert Java
objects returned from method calls to a native MATLAB data type. If you
want to convert Java object data to a form more readily usable in MATLAB,
there are a few MATLAB functions that enable you to do this. These are
described in the following sections.

Converting to the MATLAB double Data Type
Using the double function in MATLAB, you can convert any Java object or
array of objects to the MATLAB double data type. The action taken by the
double function depends on the class of the object you specify:

• If the object is an instance of a numeric class (java.lang.Number or one of
the classes that inherit from that class), MATLAB uses a preset conversion
algorithm to convert the object to a MATLAB double.

• If the object is not an instance of a numeric class, MATLAB checks the
class definition to see if it implements a method called toDouble. MATLAB
uses toDouble to perform its conversion of Java objects to the MATLAB
double data type. If such a method is implemented for this class, MATLAB
executes it to perform the conversion.

• If you are using a class of your own design, you can write your own
toDouble method to perform conversions on objects of that class to a
MATLAB double. This enables you to specify your own means of data type
conversion for objects belonging to your own classes.

Note If the class of the specified object is not java.lang.Number, does not
inherit from that java.lang.Number, and does not implement a toDouble
method, then an attempt to convert the object using the double function
results in a MATLAB error.

7-66

Handling Data Returned from a Java Method

The syntax for the double command is as follows, where object is a Java
object or Java array of objects:

double(object);

Converting to the MATLAB char Data Type
With the MATLAB char function, you can convert java.lang.String objects
and arrays to MATLAB data types. A single java.lang.String object
converts to a MATLAB character array. An array of java.lang.String objects
converts to a MATLAB cell array, with each cell holding a character array.

If the object specified in the char command is not an instance of the
java.lang.String class, MATLAB checks its class to see if it implements a
method named toChar. If this is the case, MATLAB executes the toChar
method of the class to perform the conversion. If you write your own class
definitions, you can make use of this feature by writing a toChar method that
performs the conversion according to your own needs.

Note If the class of the specified object is not java.lang.String and it does
not implement a toChar method, an attempt to convert the object using the
char function results in a MATLAB error.

The syntax for the char command is as follows, where object is a Java object
or Java array of objects:

char(object);

Converting to a MATLAB Structure
Java objects are similar to the MATLAB structure in that many of an object’s
characteristics are accessible via field names defined within the object. You
may want to convert a Java object into a MATLAB structure to facilitate the
handling of its data in MATLAB. Use the MATLAB struct function to do this.

The syntax for the struct command is as follows, where object is a Java
object or a Java array of objects:

struct(object);

7-67

7 Calling Java from MATLAB

The following example converts a java.awt.Polygon object into a MATLAB
structure. You can access the fields of the object directly using MATLAB
structure operations. The last line indexes into the array, pstruct.xpoints,
to deposit a new value into the third array element.

polygon = java.awt.Polygon([14 42 98 124], [55 12 -2 62], 4);

pstruct = struct(polygon)
pstruct =

npoints: 4
xpoints: [4x1 int32]
ypoints: [4x1 int32]

pstruct.xpoints
ans =

14
42
98

124

pstruct.xpoints(3) = 101;

Converting to a MATLAB Cell Array
Use the cell function to convert a Java array or Java object into a MATLAB
cell array. Elements of the resulting cell array are of the MATLAB type (if
any) closest to the Java array elements or Java object.

The syntax for the cell command is as follows, where object is a Java object
or a Java array of objects.

cell(object);

The code in the following example creates a MATLAB cell array in which each
cell holds an array of a different data type. The cell command used in the
first line converts each type of object array into a cell array.

import java.lang.* java.awt.*;

% Create a Java array of double

dblArray = javaArray('java.lang.Double', 1, 10);

7-68

Handling Data Returned from a Java Method

for m = 1:10

dblArray(1, m) = Double(m * 7);

end

% Create a Java array of points

ptArray = javaArray('java.awt.Point', 3);

ptArray(1) = Point(7.1, 22);

ptArray(2) = Point(5.2, 35);

ptArray(3) = Point(3.1, 49);

% Create a Java array of strings

strArray = javaArray('java.lang.String', 2, 2);

strArray(1,1) = String('one'); strArray(1,2) = String('two');

strArray(2,1) = String('three'); strArray(2,2) = String('four');

% Convert each to cell arrays

cellArray = {cell(dblArray), cell(ptArray), cell(strArray)}

cellArray =

{1x10 cell} {3x1 cell} {2x2 cell}

cellArray{1,1} % Array of type double

ans =

[7] [14] [21] [28] [35] [42] [49] [56] [63] [70]

cellArray{1,2} % Array of type Java.awt.Point

ans =

F

[1x1 java.awt.Point]

[1x1 java.awt.Point]

[1x1 java.awt.Point]

cellArray{1,3} % Array of type char array

ans =

'one' 'two'

'three' 'four'

7-69

7 Calling Java from MATLAB

Introduction to Programming Examples
• “Example — Reading a URL” on page 7-71

• “Example — Finding an Internet Protocol Address” on page 7-74

• “Example — Communicating Through a Serial Port” on page 7-76

• “Example — Creating and Using a Phone Book” on page 7-82

Each example contains the following sections:

• Overview — Describes what the example does and how it uses the Java
interface to accomplish it. Highlighted are the most important Java objects
that are constructed and used in the example code.

• Description — provides a detailed description of all code in the example.
For longer functions, the description is divided into functional sections that
focus on a few statements.

• Running the Example — Shows a sample of the output from execution
of the example code.

The example descriptions concentrate on the Java-related functions. For
information on other MATLAB programming constructs, operators, and
functions used in the examples, see the applicable sections in the MATLAB
documentation.

7-70

Example — Reading a URL

Example — Reading a URL

In this section...

“Overview” on page 7-71

“Description of URLdemo” on page 7-71

“Running the Example” on page 7-72

Overview
This program, URLdemo, opens a connection to a Web site specified by a URL
(Uniform Resource Locator) for the purpose of reading text from a file at
that site.

URLdemo constructs an object of the Java API class, java.net.URL, which
enables convenient handling of URLs. Then, it calls a method on the URL
object, to open a connection.

To read and display the lines of text at the site, URLdemo uses classes from
the Java I/O package java.io. It creates an InputStreamReader object,
and then uses that object to construct a BufferedReader object. Finally, it
calls a method on the BufferedReader object to read the specified number
of lines from the site.

Description of URLdemo
The major tasks performed by URLdemo are:

1 Construct a URL object.

The example first calls a constructor on java.net.URL and assigns the
resulting object to variable url. The URL constructor takes a single
argument, the name of the URL to be accessed, as a string. The constructor
checks whether the input URL has a valid form.

url = java.net.URL(...
'http://www.mathworks.com/support/tech-notes/1100/1109.shtml')

2 Open a connection to the URL.

7-71

7 Calling Java from MATLAB

The second statement of the example calls the method, openStream, on
the URL object url, to establish a connection with the Web site named by
the object. The method returns an InputStream object to variable, is, for
reading bytes from the site.

is = openStream(url);

3 Set up a buffered stream reader.

The next two lines create a buffered stream reader for characters. The
java.io.InputStreamReader constructor is called with the input stream
is, to return to variable isr an object that can read characters. Then,
the java.io.BufferedReader constructor is called with isr, to return
a BufferedReader object to variable br. A buffered reader provides for
efficient reading of characters, arrays, and lines.

isr = java.io.InputStreamReader(is);
br = java.io.BufferedReader(isr);

4 Read and display lines of text.

The final statements read the initial lines of HTML text from the site,
displaying only the first 4 lines that contain meaningful text. Within the
MATLAB for statements, the BufferedReader method readLine reads
each line of text (terminated by a return and/or line feed character) from
the site.

for k = 1:288 % Skip initial HTML formatting lines
s = readLine(br);

end

for k = 1:4 % Read the first 4 lines of text
s = readLine(br);
disp(s)

end

Running the Example
When you run this example, you see output similar to the following. (Note
that the line breaks were changed to fit the output in the documentation).

<p>This technical note provides an introduction to vectorization techniques.

7-72

Example — Reading a URL

In order to understand some of the possible techniques, an introduction to MATLAB

referencing is provided. Then several vectorization examples are discussed.</p>

<p>This technical note examines how to identify situations where vectorized techniques

would yield a quicker or cleaner algorithm. Vectorization is ofen a smooth process;

however, in many application-specific cases, it can be difficult to construct a vectorized

routine. Understanding the tools and

7-73

7 Calling Java from MATLAB

Example — Finding an Internet Protocol Address

In this section...

“Overview” on page 7-74

“Description of resolveip” on page 7-74

“Running the Example” on page 7-75

Overview
The resolveip function returns either the name or address of an IP (internet
protocol) host. If you pass resolveip a host name, it returns the IP address.
If you pass resolveip an IP address, it returns the host name. The function
uses the Java API class java.net.InetAddress, which enables you to find
an IP address for a host name, or the host name for a given IP address,
without making DNS calls.

resolveip calls a static method on the InetAddress class to obtain an
InetAddress object. Then, it calls accessor methods on the InetAddress
object to get the host name and IP address for the input argument. It displays
either the host name or the IP address, depending on the program input
argument.

Description of resolveip
The major tasks performed by resolveip are:

1 Create an InetAddress object.

Instead of constructors, the java.net.InetAddress class has static
methods that return an instance of the class. The try statement calls one
of those methods, getByName, passing the input argument that the user
has passed to resolveip. The input argument can be either a host name
or an IP address. If getByName fails, the catch statement displays an
error message.

function resolveip(input)
try
address = java.net.InetAddress.getByName(input);

7-74

Example — Finding an Internet Protocol Address

catch
error(sprintf('Unknown host %s.', input));

end

2 Retrieve the host name and IP address.

The example uses calls to the getHostName and getHostAddress accessor
functions on the java.net.InetAddress object, to obtain the host name
and IP address, respectively. These two functions return objects of class
java.lang.String; use the char function to convert them to character
arrays.

hostname = char(address.getHostName);
ipaddress = char(address.getHostAddress);

3 Display the host name or IP address.

The example uses the MATLAB strcmp function to compare the input
argument to the resolved IP address. If it matches, MATLAB displays the
host name for the Internet address. If the input does not match, MATLAB
displays the IP address.

if strcmp(input,ipaddress)
disp(sprintf('Host name of %s is %s', input, hostname));

else
disp(sprintf('IP address of %s is %s', input, ipaddress));

end;

Running the Example
Here is an example of calling the resolveip function with a host name.

resolveip ('www.mathworks.com')
IP address of www.mathworks.com is 144.212.100.10

Here is a call to the function with an IP address.

resolveip ('144.212.100.10')
Host name of 144.212.100.10 is www.mathworks.com

7-75

7 Calling Java from MATLAB

Example — Communicating Through a Serial Port

In this section...

“Overview” on page 7-76

“Setting Up the Java Environment” on page 7-77

“Description of Serial Example” on page 7-77

“Running the serialexample Program” on page 7-80

Overview
The serialexample program uses classes of the Java API javax.comm
package, which support access to communications ports.

After defining port configuration variables, serialexample constructs
a javax.comm.CommPortIdentifier object to manage the serial
communications port. The program calls the open method on that object to
return an object of the javax.comm.SerialPort class, which describes the
low-level interface to the COM1 serial port, assumed to be connected to a
Tektronix oscilloscope. (The example can be run without an oscilloscope.) The
serialexample program then calls several methods on the SerialPort object
to configure the serial port.

The serialexample program uses the I/O package java.io to write to
and read from the serial port. It calls a static method to return an
OutputStream object for the serial port. It then passes that object to the
constructor for java.io.OutputStreamWriter. It calls the write method
on the OutputStreamWriter object to write a command to the serial port,
which sets the contrast on the oscilloscope. It calls write again to write
a command that checks the contrast. It then constructs an object of the
java.io.InputStreamWriter class to read from the serial port.

It calls another static method on the SerialPort object to return an
OutputStream object for the serial port. It calls a method on that object to get
the number of bytes to read from the port. It passes the InputStream object to
the constructor for java.io.OutputStreamWriter. Then, if there is data to
read, it calls the read method on the OutputStreamWriter object to read the
contrast data returned by the oscilloscope.

7-76

Example — Communicating Through a Serial Port

Note MATLAB also provides built-in serial port support, described in
Chapter 10, “Serial Port I/O”.

Setting Up the Java Environment
Before beginning to run this example, follow the procedure described here to
set up your Java environment:

1 Download the Java class javax.comm to a local directory. You can download
this class from

http://java.sun.com/products/javacomm/downloads/index.html

2 Add the Java class to your Java class path in MATLAB. See “Finding and
Editing classpath.txt” on page 7-9.

For example, if you downloaded the package to matlabroot/work/javax,
where matlabroot is your MATLAB root directory, you need to add the
following entry to classpath.txt:

$matlabroot/work/javax/commapi/comm.jar

3 Copy the file win32com.dll from the commapi directory into

matlabroot\sys\java\jre\win32\jre1.5.0\bin

4 Copy the file comm.jar from the commapi directory into

matlabroot\sys\java\jre\win32\jre1.5.0\lib\ext

5 Copy the file javax.comm.properties from the commapi directory into

matlabroot\sys\java\jre\win32\jre1.5.0\lib

6 Exit, then restart MATLAB.

Description of Serial Example
The major tasks performed by serialexample are:

7-77

http://java.sun.com/products/javacomm/downloads/index.html

7 Calling Java from MATLAB

1 Define variables for serial port configuration and output.

The first five statements define variables for configuring the serial port.
The first statement defines the baud rate to be 9600, the second defines
number of data bits to be 8, and the third defines the number of stop bits to
be 1. The fourth statement defines parity to be off, and the fifth statement
defines flow control (handshaking) to be off.

2 Create a CommPortIdentifier object.

Instead of constructors, the javax.comm.CommPortIdentifier class has
static methods that return an instance of the class. The example calls
one of these, getPortIdentifier, to return a CommPortIdentifier object
for port COM1.

commPort = ...
javax.comm.CommPortIdentifier.getPortIdentifier('COM1');

3 Open the serial port.

The example opens the serial port by calling open on the
CommPortIdentifier object commPort. The open call returns a SerialPort
object, assigning it to serialPort. The first argument to open is the name
(owner) for the port, the second argument is the name for the port, and the
third argument is the number of milliseconds to wait for the open.

serialPort = open(commPort, 'serial', 1000);

4 Configure the serial port.

The next three statements call configuration methods on the SerialPort
object serialPort. The first statement calls setSerialPortParams
to set the baud rate, data bits, stop bits, and parity. The next two
statements call setFlowControlMode to set the flow control, and then
enableReceiveTimeout to set the timeout for receiving data.

setSerialPortParams(serialPort, SerialPort_BAUD_9600,...
SerialPort_DATABITS_8, SerialPort_STOPBITS_1,...
SerialPort_PARITY_NONE);
setFlowControlMode(serialPort, SerialPort_FLOWCTRL_NONE);
enableReceiveTimeout(serialPort, 1000);

7-78

Example — Communicating Through a Serial Port

5 Set up an output stream writer.

The example then calls a constructor to create and open a
java.io.OutputStreamWriter object. The constructor call passes the
java.io.OutputStream object, returned by a call to the getOutputStream
method serialPort, and assigns the OutputStreamWriter object to out.

out = java.io.OutputStreamWriter(getOutputStream(serialPort));

6 Write data to serial port and close output stream.

The example writes a string to the serial port, by calling write on the object
out. The string is formed by concatenating (with MATLAB [] syntax)
a command to set the oscilloscope’s contrast to 45, with the command
terminator that is required by the instrument. The next statement calls
flush on out to flush the output stream.

write(out, ['Display:Contrast 45' terminator]);
flush(out);

Then, the example again calls write on out to send another string to the
serial port. This string is a query command, to determine the oscilloscope’s
contrast setting, concatenated with the command terminator. The example
then calls close on the output stream.

write(out, ['Display:Contrast?' terminator]);
close(out);

7 Open an input stream and determine number of bytes to read.

To read the data expected from the oscilloscope in response to the contrast
query, the example opens an input stream by calling the static method,
InputStream.getInputStream, to obtain an InputStream object for
the serial port. Then, the example calls the method available on the
InputStream object, in, and assigns the returned number of bytes to
numAvail.

in = getInputStream(serialPort);
numAvail = available(in);

8 Create an input stream reader for the serial port.

7-79

7 Calling Java from MATLAB

The example then calls a java.io.InputStreamReader constructor, with
the InputStream object, in, and assigns the new object to reader.

reader = java.io.InputStreamReader(in);

9 Read data from serial port and close reader.

The example reads from the serial port, by calling the read method on
the InputStreamReader object reader for each available byte. The read
statement uses MATLAB array concatenation to add each newly read byte
to the array of bytes already read. After reading the data, the example calls
close on reader to close the input stream reader.

result = [];
for k = 1:numAvail
result = [result read(reader)];

end
close(reader);

10 Close the serial port.

The example closes the serial port, by calling close on the serialPort
object.

close(serialPort);

11 Convert input argument to a MATLAB character array.

The last statement of the example uses the MATLAB function, char, to
convert the array input bytes (integers) to an array of characters:

result = char(result);

Running the serialexample Program
The value of result depends upon whether your system’s COM1 port is cabled
to an oscilloscope. If you have run the example with an oscilloscope, you see
the result of reading the serial port.

result =
45

7-80

Example — Communicating Through a Serial Port

If you run the example without an oscilloscope attached, there is no data to
read. In that case, you see an empty character array.

result =
''

7-81

7 Calling Java from MATLAB

Example — Creating and Using a Phone Book

In this section...

“Overview” on page 7-82

“Description of Function phonebook” on page 7-83

“Description of Function pb_lookup” on page 7-88

“Description of Function pb_add” on page 7-88

“Description of Function pb_remove” on page 7-89

“Description of Function pb_change” on page 7-90

“Description of Function pb_listall” on page 7-91

“Description of Function pb_display” on page 7-92

“Description of Function pb_keyfilter” on page 7-92

“Running the phonebook Program” on page 7-93

Overview
The example’s main function, phonebook, can be called either with no
arguments, or with one argument, which is the key of an entry that exists in
the phone book. The function first determines the directory to use for the
phone book file.

If no phone book file exists, it creates one by constructing a
java.io.FileOutputStream object, and then closing the output stream.
Next, it creates a data dictionary by constructing an object of the Java API
class, java.util.Properties, which is a subclass of java.util.Hashtable
for storing key/value pairs in a hash table. For the phonebook program, the
key is a name, and the value is one or more telephone numbers.

The phonebook function creates and opens an input stream for reading by
constructing a java.io.FileInputStream object. It calls load on that object
to load the hash table contents, if it exists. If the user passed the key to an
entry to look up, it looks up the entry by calling pb_lookup, which finds and
displays it. Then, the phonebook function returns.

7-82

Example — Creating and Using a Phone Book

If phonebook was called without the name argument, it then displays a
textual menu of the available phone book actions:

• Look up an entry

• Add an entry

• Remove an entry

• Change the phone number(s) in an entry

• List all entries

The menu also has a selection to exit the program. The function uses
MATLAB functions to display the menu and to input the user selection.

The phonebook function iterates accepting user selections and performing the
requested phone book action until the user selects the menu entry to exit. The
phonebook function then opens an output stream for the file by constructing a
java.io.FileOutputStream object. It calls save on the object to write the
current data dictionary to the phone book file. It finally closes the output
stream and returns.

Description of Function phonebook
The major tasks performed by phonebook are:

1 Determine the data directory and full filename.

The first statement assigns the phone book filename, 'myphonebook', to
the variable pbname. If the phonebook program is running on a PC, it calls
the java.lang.System static method getProperty to find the directory
to use for the data dictionary. This is set to the user’s current working
directory. Otherwise, it uses MATLAB function getenv to determine the
directory, using the system variable HOME, which you can define beforehand
to anything you like. It then assigns to pbname the full pathname,
consisting of the data directory and filename ’myphonebook’.

function phonebook(varargin)
pbname = 'myphonebook'; % name of data dictionary
if ispc

datadir = char(java.lang.System.getProperty('user.dir'));

7-83

7 Calling Java from MATLAB

else
datadir = getenv('HOME');

end;
pbname = fullfile(datadir, pbname);

2 If needed, create a file output stream.

If the phonebook file does not already exist, phonebook asks the user
whether to create a new one. If the user answers y, phonebook creates
a new phone book by constructing a FileOutputStream object. In the
try clause of a try-catch block, the argument pbname passed to the
FileOutputStream constructor is the full name of the file that the
constructor creates and opens. The next statement closes the file by
calling close on the FileOutputStream object FOS. If the output stream
constructor fails, the catch statement prints a message and terminates
the program.

if ~exist(pbname)
disp(sprintf('Data file %s does not exist.', pbname));
r = input('Create a new phone book (y/n)?','s');
if r == 'y',

try
FOS = java.io.FileOutputStream(pbname);
FOS.close

catch
error(sprintf('Failed to create %s', pbname));

end;
else

return;
end;

end;

3 Create a hash table.

The example constructs a java.util.Properties object to serve as the
hash table for the data dictionary.

pb_htable = java.util.Properties;

4 Create a file input stream.

7-84

Example — Creating and Using a Phone Book

In a try block, the example invokes a FileInputStream constructor with
the name of the phone book file, assigning the object to FIS. If the call
fails, the catch statement displays an error message and terminates the
program.

try
FIS = java.io.FileInputStream(pbname);

catch
error(sprintf('Failed to open %s for reading.', pbname));
end;

5 Load the phone book keys and close the file input stream.

The example calls load on the FileInputStream object FIS, to load the
phone book keys and their values (if any) into the hash table. It then closes
the file input stream.

pb_htable.load(FIS);
FIS.close;

6 Display the Action menu and get the user’s selection.

Within a while loop, several disp statements display a menu of actions
that the user can perform on the phone book. Then, an input statement
requests the user’s typed selection.

while 1

disp ' '

disp ' Phonebook Menu:'

disp ' '

disp ' 1. Look up a phone number'

disp ' 2. Add an entry to the phone book'

disp ' 3. Remove an entry from the phone book'

disp ' 4. Change the contents of an entry in the phone book'

disp ' 5. Display entire contents of the phone book'

disp ' 6. Exit this program'

disp ' '

s = input('Please type the number for a menu selection: ','s');

7 Invoke the function to perform a phone book action

7-85

7 Calling Java from MATLAB

Still within the while loop, a switch statement provides a case to handle
each user selection. Each of the first five cases invokes the function to
perform a phone book action.

Case 1 prompts for a name that is a key to an entry. It calls isempty to
determine whether the user has entered a name. If a name has not been
entered, it calls disp to display an error message. If a name has been input,
it passes it to pb_lookup. The pb_lookup routine looks up the entry and, if
it finds it, displays the entry contents.

switch s
case '1',

name = input('Enter the name to look up: ','s');
if isempty(name)

disp 'No name entered'
else

pb_lookup(pb_htable, name);
end;

Case 2 calls pb_add, which prompts the user for a new entry and then
adds it to the phone book.

case '2',
pb_add(pb_htable);

Case 3 uses input to prompt for the name of an entry to remove. If a name
has not been entered, it calls disp to display an error message. If a name
has been entered, it passes it to pb_remove.

case '3',

name=input('Enter the name of the entry to remove: ', 's');

if isempty(name)

disp 'No name entered'

else

pb_remove(pb_htable, name);

end;

Case 4 uses input to prompt for the name of an entry to change. If a name
has not been entered, it calls disp to display an error message. If a name
has been entered, it passes it to pb_change.

case '4',

7-86

Example — Creating and Using a Phone Book

name=input('Enter the name of the entry to change: ', 's');

if isempty(name)

disp 'No name entered'

else

pb_change(pb_htable, name);

end;

Case 5 calls pb_listall to display all entries.

case '5',
pb_listall(pb_htable);

8 Exit by creating an output stream and saving the phone book.

If the user has selected case 6 to exit the program, a try statement calls
the constructor for a FileOuputStream object, passing it the name of the
phone book. If the constructor fails, the catch statement displays an error
message.

If the object is created, the next statement saves the phone book data
by calling save on the Properties object pb_htable, passing the
FileOutputStream object FOS and a descriptive header string. It then calls
close on the FileOutputStream object, and returns.

case '6',
try

FOS = java.io.FileOutputStream(pbname);
catch

error(sprintf('Failed to open %s for writing.',...
pbname));

end;
pb_htable.save(FOS,'Data file for phonebook program');
FOS.close;
return;

otherwise
disp 'That selection is not on the menu.'

end;
end;

7-87

7 Calling Java from MATLAB

Description of Function pb_lookup
Arguments passed to pb_lookup are the Properties object pb_htable and
the name key for the requested entry. The pb_lookup function first calls get
on pb_htable with the name key, on which support function pb_keyfilter
is called to change spaces to underscores. The get method returns the entry
(or null, if the entry is not found) to variable entry. Note that get takes an
argument of type java.lang.Object and also returns an argument of that
type. In this invocation, the key passed to get and the entry returned from it
are actually character arrays.

pb_lookup then calls isempty to determine whether entry is null. If it is,
it uses disp to display an message stating that the name was not found. If
entry is not null, it calls pb_display to display the entry.

function pb_lookup(pb_htable,name)
entry = pb_htable.get(pb_keyfilter(name));
if isempty(entry),

disp(sprintf('The name %s is not in the phone book',name));
else

pb_display(entry);
end

Description of Function pb_add

1 Input the entry to add.

The pb_add function takes one argument, the Properties object
pb_htable. pb_add uses disp to prompt for an entry. Using the up arrow
(^) character as a line delimiter, input inputs a name to the variable entry.
Then, within a while loop, it uses input to get another line of the entry into
variable line. If the line is empty, indicating that the user has finished
the entry, the code breaks out of the while loop. If the line is not empty, the
else statement appends line to entry and then appends the line delimiter.
At the end, the strcmp checks the possibility that no input was entered
and, if that is the case, returns.

function pb_add(pb_htable)
disp 'Type the name for the new entry, followed by Enter.'
disp 'Then, type the phone number(s), one per line.'
disp 'To complete the entry, type an extra Enter.'

7-88

Example — Creating and Using a Phone Book

name = input(':: ','s');
entry=[name '^'];
while 1

line = input(':: ','s');
if isempty(line)

break;
else

entry=[entry line '^'];
end;

end;

if strcmp(entry, '^')
disp 'No name entered'
return;

end;

2 Add the entry to the phone book.

After the input has completed, pb_add calls put on pb_htable with the hash
key name (on which pb_keyfilter is called to change spaces to underscores)
and entry. It then displays a message that the entry has been added.

pb_htable.put(pb_keyfilter(name),entry);
disp ' '
disp(sprintf('%s has been added to the phone book.', name));

Description of Function pb_remove

1 Look for the key in the phone book.

Arguments passed to pb_remove are the Properties object pb_htable
and the name key for the entry to remove. The pb_remove function calls
containsKey on pb_htable with the name key, on which support function
pb_keyfilter is called to change spaces to underscores. If name is not in
the phone book, disp displays a message and the function returns.

function pb_remove(pb_htable,name)
if ~pb_htable.containsKey(pb_keyfilter(name))

disp(sprintf('The name %s is not in the phone book',name))
return

end;

7-89

7 Calling Java from MATLAB

2 Ask for confirmation and if given, remove the key.

If the key is in the hash table, pb_remove asks for user confirmation. If
the user confirms the removal by entering y, pb_remove calls remove on
pb_htable with the (filtered) name key, and displays a message that the
entry has been removed. If the user enters n, the removal is not performed
and disp displays a message that the removal has not been performed.

r = input(sprintf('Remove entry %s (y/n)? ',name), 's');

if r == 'y'

pb_htable.remove(pb_keyfilter(name));

disp(sprintf('%s has been removed from the phone book',name))

else

disp(sprintf('%s has not been removed',name))

end;

Description of Function pb_change

1 Find the entry to change, and confirm.

Arguments passed to pb_change are the Properties object pb_htable
and the name key for the requested entry. The pb_change function calls
get on pb_htable with the name key, on which pb_keyfilter is called to
change spaces to underscores. The get method returns the entry (or null,
if the entry is not found) to variable entry. pb_change calls isempty to
determine whether the entry is empty. If the entry is empty, pb_change
displays a message that the name is added to the phone book, and allows
the user to enter the phone number(s) for the entry.

If the entry is found, in the else clause, pb_change calls pb_display
to display the entry. It then uses input to ask the user to confirm the
replacement. If the user enters anything other than y, the function returns.

function pb_change(pb_htable,name)

entry = pb_htable.get(pb_keyfilter(name));

if isempty(entry)

disp(sprintf('The name %s is not in the phone book', name));

return;

else

pb_display(entry);

r = input('Replace phone numbers in this entry (y/n)? ','s');

7-90

Example — Creating and Using a Phone Book

if r ~= 'y'

return;

end;

end;

2 Input new phone number(s) and change the phone book entry.

pb_change uses disp to display a prompt for new phone number(s). Then,
pb_change inputs data into variable entry, with the same statements
described in “Description of Function pb_lookup” on page 7-88.

Then, to replace the existing entry with the new one, pb_change calls
put on pb_htable with the (filtered) key name and the new entry. It then
displays a message that the entry has been changed.

disp 'Type in the new phone number(s), one per line.'
disp 'To complete the entry, type an extra Enter.'
disp(sprintf(':: %s', name));
entry=[name '^'];
while 1

line = input(':: ','s');
if isempty(line)

break;
else

entry=[entry line '^'];
end;

end;
pb_htable.put(pb_keyfilter(name),entry);
disp ' '
disp(sprintf('The entry for %s has been changed', name));

Description of Function pb_listall
The pb_listall function takes one argument, the Properties object
pb_htable. The function calls propertyNames on the pb_htable object
to return to enum a java.util.Enumeration object, which supports
convenient enumeration of all the keys. In a while loop, pb_listall
calls hasMoreElements on enum, and if it returns true, pb_listall calls
nextElement on enum to return the next key. It then calls pb_display to
display the key and entry, which it retrieves by calling get on pb_htable
with the key.

7-91

7 Calling Java from MATLAB

function pb_listall(pb_htable)
enum = pb_htable.propertyNames;
while enum.hasMoreElements

key = enum.nextElement;
pb_display(pb_htable.get(key));

end;

Description of Function pb_display
The pb_display function takes an argument entry, which is a phone book
entry. After displaying a horizontal line, pb_display calls MATLAB function
strtok to extract the first line of the entry, up to the line delimiter (^), into t
and the remainder into r. Then, within a while loop that terminates when
t is empty, it displays the current line in t. Then it calls strtok to extract
the next line from r, into t. When all lines have been displayed, pb_display
indicates the end of the entry by displaying another horizontal line.

function pb_display(entry)
disp ' '
disp '-------------------------'
[t,r] = strtok(entry,'^');
while ~isempty(t)

disp(sprintf(' %s',t));
[t,r] = strtok(r,'^');

end;
disp '-------------------------'

Description of Function pb_keyfilter
The pb_keyfilter function takes an argument key, which is a name used
as a key in the hash table, and either filters it for storage or unfilters it for
display. The filter, which replaces each space in the key with an underscore
(_), makes the key usable with the methods of java.util.Properties.

function out = pb_keyfilter(key)
if ~isempty(findstr(key,' '))

out = strrep(key,' ','_');
else

out = strrep(key,'_',' ');
end;

7-92

Example — Creating and Using a Phone Book

Running the phonebook Program
In this sample run, a user invokes phonebook with no arguments. The user
selects menu action 5, which displays the two entries currently in the phone
book (all entries are fictitious). Then, the user selects 2, to add an entry. After
adding the entry, the user again selects 5, which displays the new entry along
with the other two entries.

Phonebook Menu:

1. Look up a phone number
2. Add an entry to the phone book
3. Remove an entry from the phone book
4. Change the contents of an entry in the phone book
5. Display entire contents of the phone book
6. Exit this program

Please type the number for a menu selection: 5

Sylvia Woodland
(508) 111-3456

Russell Reddy
(617) 999-8765

Phonebook Menu:

1. Look up a phone number
2. Add an entry to the phone book
3. Remove an entry from the phone book
4. Change the contents of an entry in the phone book
5. Display entire contents of the phone book
6. Exit this program

Please type the number for a menu selection: 2

Type the name for the new entry, followed by Enter.

7-93

7 Calling Java from MATLAB

Then, type the phone number(s), one per line.
To complete the entry, type an extra Enter.
:: BriteLites Books
:: (781) 777-6868
::

BriteLites Books has been added to the phone book.

Phonebook Menu:

1. Look up a phone number
2. Add an entry to the phone book
3. Remove an entry from the phone book
4. Change the contents of an entry in the phone book
5. Display entire contents of the phone book
6. Exit this program

Please type the number for a menu selection: 5

BriteLites Books
(781) 777-6868

Sylvia Woodland
(508) 111-3456

Russell Reddy
(617) 999-8765

7-94

8

COM Support in MATLAB
(Windows Only)

The Microsoft Component Object Model, or COM, is a set of object-oriented
technologies and tools that enable software developers to integrate
application-specific components from different vendors into their own
application solution.

With COM, MATLAB can include ActiveX controls or OLE server processes,
or you can configure MATLAB as a computational server controlled by your
client application programs.

COM support in MATLAB is available only on the Microsoft Windows
platform.

Introducing MATLAB COM
Integration (p. 8-3)

COM concepts and an overview of
COM support in MATLAB

Getting Started with COM (p. 8-9) Examples that show how to use
COM interface with MATLAB

Supported Client/Server
Configurations (p. 8-33)

COM client-server configurations in
MATLAB

MATLAB COM Client Support
(p. 8-38)

How to create COM objects and use
properties, methods, and events

Additional COM Client Information
(p. 8-110)

COM collections, using MATLAB as
a DCOM server client, COM support
limitations

MATLAB COM Automation Server
Support (p. 8-112)

Using MATLAB as a COM
Automation server

8 COM Support in MATLAB (Windows Only)

MATLAB Automation Server
Functions and Properties (p. 8-116)

How to use properties and methods
in a MATLAB Automation server

Additional Automation Server
Information (p. 8-122)

Starting the MATLAB server,
shared and dedicated servers, using
MATLAB as a DCOM server

Examples of a MATLAB Automation
Server (p. 8-125)

Examples that show how to access
a MATLAB Automation server from
Visual Basic .NET and C#

8-2

Introducing MATLAB COM Integration

Introducing MATLAB COM Integration

In this section...

“What is COM?” on page 8-3

“Concepts and Terminology” on page 8-3

“The MATLAB COM Client” on page 8-6

“The MATLAB COM Automation Server” on page 8-7

“Registering Controls and Servers” on page 8-7

What is COM?
The Component Object Model (COM) provides a framework for integrating
reusable, binary software components into an application. Because
components are implemented with compiled code, the source code can be
written in any of the many programming languages that support COM.
Upgrades to applications are simplified, as components can simply be
swapped without the need to recompile the entire application. In addition,
a component’s location is transparent to the application, so components can
be relocated to a separate process or even a remote system without having to
modify the application.

Using COM, developers and end users can select application-specific
components produced by different vendors and integrate them into a complete
application solution. For example, a single application might require database
access, mathematical analysis, and presentation-quality business graphs.
Using COM, a developer can choose a database-access component by one
vendor, a business graph component by another, and integrate these into a
mathematical analysis package produced by yet a third.

MATLAB supports COM integration on the Microsoft Windows platform.

Concepts and Terminology
While the ideas behind COM technology are straightforward, the terminology
is not. The meaning of COM terms has changed over time and few concise
definitions exit. Here are some terms that you should be familiar with before

8-3

8 COM Support in MATLAB (Windows Only)

reading this chapter. These are not comprehensive definitions. For a complete
description of COM, you’ll need to consult outside resources.

• “COM Objects, Clients, and Servers” on page 8-4

• “Interfaces” on page 8-4

• “COM Server Types” on page 8-5

• “Programmatic Identifiers” on page 8-5

• “In-Process and Out-of-Process Servers” on page 8-5

COM Objects, Clients, and Servers
A COM object is a software component that conforms to Microsoft’s Component
Object Model. COM enforces encapsulation of the object, preventing direct
access of its data and implementation. COM objects expose “Interfaces” on
page 8-4, which consist of properties, methods and events.

A COM client is a program that makes use of COM objects. COM objects
that expose functionality for use are called COM servers. COM servers can
be in-process or out-of-process. An example of an out-of-process server is
Microsoft Excel. These configurations are described in “In-Process and
Out-of-Process Servers” on page 8-5.

An ActiveX control is a type of in-process COM server that requires a control
container. ActiveX controls typically have a user interface. An example is the
Microsoft Calendar control. A control container is an application capable of
hosting ActiveX controls. A MATLAB figure window or a Simulink model
are examples of control containers.

MATLAB can be used as either a COM client or COM server.

Interfaces
The functionality of a component is defined by one or more interfaces. To use
a COM component, you must learn about its interfaces, and the methods,
properties, and events implemented by the component. The component vendor
provides this information.

There are two standard COM interfaces:

8-4

Introducing MATLAB COM Integration

• IUnknown — An interface required by all COM components. All other COM
interfaces are derived from IUnknown.

• IDispatch — An interface that exposes objects, methods and properties to
applications that support Automation.

COM Server Types
There are three types of COM servers:

• Automation — A server that supports the OLE Automation standard.
Automation servers are based on the IDispatch interface. Automation
servers can be accessed by clients of all types, including scripting clients.

• Custom — A server that implements an interface directly derived from
IUnknown. Custom servers are preferred when faster client access is critical.

• Dual — A server that implements a combination of Automation and
Custom interfaces.

Programmatic Identifiers
To create an instance of a COM object, you use its programmatic identifier,
or ProgID. The ProgID is a unique string defined by the component
vendor to identify the COM object. You obtain a ProgID from the vendor’s
documentation.

MATLAB’s ProgIDs are

• Matlab.Application — Starts a command window Automation server
with the version of MATLAB that was most recently used as an Automation
server (might not be the latest installed version of MATLAB).

• Matlab.Autoserver — Starts a command window Automation server using
the most recent version of MATLAB.

• Matlab.Desktop.Application — Starts the full desktop MATLAB as an
Automation server using the most recent version of MATLAB.

In-Process and Out-of-Process Servers
You can configure a server three ways. MATLAB supports all of these
configurations.

8-5

8 COM Support in MATLAB (Windows Only)

• “In-Process Server” on page 8-6

• “Local Out-of-Process Server” on page 8-6

• “Remote Out-of Process Server” on page 8-6

In-Process Server. An in-process server is a component implemented as a
dynamic link library (DLL) or ActiveX control that runs in the same process
as the client application, sharing the same address space. Communication
between client and server is relatively fast and simple.

Local Out-of-Process Server. A local out-of-process server is a component
implemented as an executable (EXE) file that runs in a separate process
from the client application. The client and server processes are on the same
computer system. This configuration is somewhat slower due to the overhead
required when transferring data across process boundaries.

Remote Out-of Process Server. This is a type of out-of-process server;
however, the client and server processes are on different systems and
communicate over a network. Network communications, in addition to the
overhead required for data transfer, can make this configuration slower than
the local out-of-process configuration. This configuration runs only on systems
that support the Distributed Component Object Model (DCOM).

The MATLAB COM Client
Using MATLAB as a COM client provides two techniques for developing
programs in MATLAB:

• You can include COM components in your MATLAB application (for
example, a spreadsheet).

• You can access existing applications that expose objects via Automation.

In a typical scenario, MATLAB creates ActiveX controls in figure windows,
which are manipulated by MATLAB through the controls’ properties,
methods, and events. This is useful because there exists a wide variety of
graphical user interface components implemented as ActiveX controls. For
example, Internet Explorer exposes objects that you can include in a figure to
display an HTML file. There also are treeviews, spreadsheets, and calendars
available from a variety of sources.

8-6

Introducing MATLAB COM Integration

MATLAB COM clients can access applications that support Automation, such
as Excel. In this case, MATLAB creates an Automation server in which to run
the application and returns a handle to the primary interface for the object
created.

Information about creating and using COM controls and server objects in
MATLAB can be found in “MATLAB COM Client Support” on page 8-38.

The MATLAB COM Automation Server
Automation provides an infrastructure whereby applications called
automation controllers can access and manipulate (i.e. set properties of
or call methods on) shared automation objects that are exported by other
applications, called Automation servers. Any Windows program that can be
configured as an Automation controller can control MATLAB.

For example, using Visual Basic, you can run a MATLAB demo in a Microsoft
PowerPoint presentation. In this case, PowerPoint is the controller and
MATLAB is the server.

Information for creating and connecting to a MATLAB Automation server
running MATLAB can be found in “MATLAB COM Automation Server
Support” on page 8-112.

Registering Controls and Servers
Before using COM objects, you must register their controls and servers. Most
are registered by default. However, if you get a new .ocx, .dll, or other
object file for the control or server, you must register the file manually in
the Windows registry.

Use the DOS regsvr32 command to register your file. From the DOS prompt,
use the cd function to go to the directory where the object file is located. If
your object file is an .ocx file, type

regsvr32 filename.ocx

For example, to register the MATLAB control mwsamp2.ocx, type

cd matlabroot\toolbox\matlab\winfun\win32
regsvr32 mwsamp2.ocx

8-7

8 COM Support in MATLAB (Windows Only)

If you encounter problems with this procedure, please consult a Windows
manual or contact your local system administrator.

Verifying the Registration
Here are several ways to verify that a control or server is registered. These
examples use the MATLAB mwsamp control. Refer to your Microsoft product
documentation for information about using Microsoft Visual Studio or the
Registry Editor.

• Go to the Microsoft Visual Studio .NET 2003 Tools menu and execute the
ActiveX control test container. Click Edit, insert a new control, and select
MwSamp Control. If you are able to insert the control without any problems,
the control is successfully registered. Note that this method only works
on controls.

• Open the Registry Editor by typing regedit at the DOS prompt. Search for
your control or server object by selecting Find from the Edit menu. It will
likely be in the following structure:

HKEY_CLASSES_ROOT/progid

• Open OLEViewer from the Microsoft Visual Studio .NET 2003 Tools menu.
Look in the following structure for your Control object:

Object Classes : Grouped by Component Category : Control :
Your_Control_Object_Name (i.e. Object Classes : Grouped by
Component Category : Control : Mwsamp Control)

8-8

Getting Started with COM

Getting Started with COM

In this section...

“Introduction” on page 8-9

“Basic COM Functions” on page 8-9

“Overview of MATLAB COM Client Examples” on page 8-11

“Example — Using Internet Explorer in a MATLAB Figure” on page 8-12

“Example — Grid ActiveX Control in a Figure” on page 8-17

“Example — Reading Data from Excel” on page 8-24

Introduction
A COM client is a program that manipulates COM objects. These objects can
run in the MATLAB application or can be part of another application that
exposes its objects as a programmatic interface to the application.

This section provides examples that show how to use MATLAB as a COM
client.

Note You can also access MATLAB as an Automation server from other
applications, such as Visual Basic. For information on this technique, see
“MATLAB COM Automation Server Support” on page 8-112.

Basic COM Functions
To start using COM objects, you need to create the object and get information
about it. This section covers the following topics:

• “Creating an Instance of a COM Object” on page 8-10

• “Getting Information About a Particular COM Control” on page 8-10

• “Getting an Object’s ProgID” on page 8-11

• “Registering a Custom Control” on page 8-11

8-9

8 COM Support in MATLAB (Windows Only)

Creating an Instance of a COM Object
Two MATLAB functions enable you to create COM objects:

• actxcontrol — Creates an instance of a control in a MATLAB figure.

• actxserver — Creates and manipulates objects from MATLAB that are
exposed in an application that supports Automation.

Each function returns a handle to the object’s main interface, which you use to
access the object’s methods, properties, and events, and any other interfaces
it provides.

Getting Information About a Particular COM Control
In general, you can determine what you can do with an object using the
methods, get, and events functions.

Information about Methods. To list the methods supported by the object
handle, type

handle.methods

Information about Properties. To list the properties of the object handle,
type

get(handle)

To see the value of the property PropertyName, type

get(handle,'PropertyName')

Use set to change a property value.

Information about Events. To list the events supported by the object
handle, type

handle.events

For more information on calling syntax, see “Getting Interfaces to the Object”
on page 8-50 and “Invoking Commands on a COM Object” on page 8-53. For
more information on events, see “Control and Server Events” on page 8-75.

8-10

Getting Started with COM

Getting an Object’s ProgID
To get the programmatic identifier (ProgID) of a COM control that is already
registered on your computer, use the actxcontrollist command. You
can also use the ActiveX Control Selector, displayed with the command
actxcontrolselect. This interface lets you see instances of the controls
installed on your computer.

For more information on using these commands, see “Creating an ActiveX
Control” on page 8-39.

Registering a Custom Control
If your MATLAB program uses a custom control (e.g., one that you have
created especially for your application), you must register it with the Windows
operating system before you can use it. You can do this from your MATLAB
program by issuing an operating system command:

!regsvr32 /s filename.ocx

where filename is the name of the file containing the control. Using this
command in your program enables you to provide custom-made controls
that you make available to other users by registering the control on their
computer when they run your MATLAB program. You might also want to
supply versions of a Microsoft ActiveX control to ensure that all users have
the same version.

For more information about registration, see “Registering Controls and
Servers” on page 8-7.

Overview of MATLAB COM Client Examples
The following examples illustrate various techniques for using MATLAB
as an COM client. Some of the examples use ActiveX controls, which is a
specific type of COM object. For a description, see “COM Objects, Clients, and
Servers” on page 8-4.

• “Example — Using Internet Explorer in a MATLAB Figure” on page 8-12
— This example uses the ActiveX control exposed by Internet Explorer to
add an HTML viewer to a MATLAB Figure, which also contains an axes
object for plotting. As the user clicks various graphics objects that are

8-11

8 COM Support in MATLAB (Windows Only)

displayed in the figure (including the figure itself), the documentation of
the object’s properties is displayed in the viewer.

• “Example — Grid ActiveX Control in a Figure” on page 8-17 — This
example puts a spreadsheet-like grid control in a figure and uses the
control’s mouse-down event to trigger the acquisition of data from the grid
and plot the data in the axes.

• “Example — Reading Data from Excel” on page 8-24 — This MATLAB
GUI reads data programmatically from an Excel spreadsheet. By running
an Automation server, MATLAB can access the objects exposed by Excel,
which provides a variety of interfaces to the application.

Example — Using Internet Explorer in a MATLAB
Figure
This example uses the ActiveX control Shell.Explorer, which is exposed by
Microsoft’s Internet Explore application, to include an HTML viewer in a
MATLAB figure. The figure’s window button down function is then used to
select a graphics object when the user clicks the graph and load the object’s
property documentation into the HTML viewer.

Techniques Demonstrated

• Using Internet Explore from a MATLAB ActiveX client program.

• Defining a window button down function that displays HTML property
documentation for whatever object the user clicks.

• Defining a resize function for the figure that also resizes the ActiveX object
container.

Using the Figure to Access Properties
This example creates a larger than normal figure window that contains an
axes object and an HTML viewer on the lower part of the figure window. By
default, the viewer displays the URL http://www.mathworks.com. When you
issue a plotting command, such as

surfc(peaks(20))

the graph displays in the axes.

8-12

Getting Started with COM

Click anywhere in the graph to see the property documentation for the
selected object.

Complete Code Listing
You can open the M-file that implements this example in the MATLAB editor
or you can run this example with the following links:

• Open M-file in editor

• Run this example

8-13

8 COM Support in MATLAB (Windows Only)

Creating the Figure
This example defines the figure size based on the default figure size and adds
space for the ActiveX control. Here is the code to define the figure:

dfpos = get(0,'DefaultFigurePosition');

hfig = figure('Position',dfpos([1 2 3 4]).*[.8 .2 1 1.65],...

'Menu','none','Name','Create a plot and click on an object',...

'ResizeFcn',@reSize,...

'WindowButtonDownFcn',@wbdf,...

'Renderer','Opengl',...

'DeleteFcn',@figDelete);

Note that the figure also defines a resize function and a window button
down function by assigning function handles to the ResizeFcn and
WindowButtonDownFcn properties. The callback functions reSize and wbdf
are defined as nested functions in the same M-file.

The figure’s delete function (called when the figure is closed) provides a
mechanism to delete the control.

Calculating the ActiveX Object Container Size
The MATLAB actxcontrol function creates the ActiveX control inside the
specified figure and returns the control’s handle. You need to supply the
following information:

• Control’s programmatic identifier (use actxcontrollist to find it)

• Location and size of the control container in the figure (pixels) [left bottom
width height]

• Handle of the figure that contains the control

conSize = calcSize; % Calculate the container size

hExp = actxcontrol('Shell.Explorer.2',conSize,hfig); % Create the control

Navigate(hExp,'http://www.mathworks.com/'); % Specify content of html viewer

The nested function, calcSize calculates the size of the object container
based on the current size of the figure. calcSize is also used by the figure
resize function, which is described in the next section.

8-14

Getting Started with COM

function conSize = calcSize

fp = get(hfig,'Position'); % Get current figure size

conSize = [0 0 1 .45].*fp([3 4 3 4]); % Calculate container size

end % calcSize

Automatic Resize
In MATLAB, you can change the size of a figure and the axes automatically
resize to fit the new size. This example implements similar resizing behavior
for the ActiveX object container within the figure using the object’s move
method. This method enables you to change both size and location of the
ActiveX object container (i.e., it is equivalent to setting the figure Position
property).

When you resize the figure window, MATLAB automatically calls the function
assigned to the figure’s ResizeFcn property. This example implements the
nested function reSize for the figure resize function.

ResizeFcn at Figure Creation. The resize function first determines if the
ActiveX object exists because MATLAB calls the figure resize function when
the figure is first created. Since the ActiveX object has not been created at
this point, the resize function simply returns.

When the Figure Is Resized. When you change the size of the figure, the
resize function executes and does the following:

• Calls the calcSize function to calculate a new size for the control container
based on the new figure size.

• Calls the control’s move method to apply the new size to the control.

Figure ResizeFcn.

function reSize(src,evnt)
if ~exist('hExp','var')

return
end
conSize = calcSize;
move(hExp,conSize);
end % reSize

8-15

8 COM Support in MATLAB (Windows Only)

Selecting Graphics Objects
This example uses the figure WindowButtonDownFcn property to define a
callback function that handles mouse click events within the figure. When
you click the left mouse button while the cursor is over the figure, MATLAB
executes the WindowButtonDownFcn callback on the mouse down event.

The callback determines which object was clicked by querying the figure
CurrentObject property, which contains the handle of the graphics object
most recently clicked. Once you have the object’s handle, you can determine
its type and then load the appropriate HTML page into the Shell.Explorer
control.

The nested function wbdf implements the callback. Once it determines the
type of the selected object, it uses the control Navigate method to display the
documentation for the object type.

Figure WindowButtonDownFcn.

function wbdf(src,evnt)

cobj = get(hfig,'CurrentObject');

if isempty(cobj)

disp('Click somewhere else')

return

end

pth = 'http://www.mathworks.com/access/helpdesk/help/techdoc/ref/';

typ = get(cobj,'Type');

switch typ

case ('figure')

Navigate(hExp,[pth,'figure_props.html']);

case ('axes')

Navigate(hExp,[pth,'axes_props.html']);

case ('line')

Navigate(hExp,[pth,'line_props.html']);

case ('image')

Navigate(hExp,[pth,'image_props.html']);

case ('patch')

Navigate(hExp,[pth,'patch_props.html']);

case ('surface')

Navigate(hExp,[pth,'surface_props.html']);

case ('text')

8-16

Getting Started with COM

Navigate(hExp,[pth,'text_props.html']);

case ('hggroup')

Navigate(hExp,[pth,'hggroupproperties.html']);

otherwise % Display property browser

Navigate(hExp,[pth(1:end-4),'infotool/hgprop/doc_frame.html']);

end

end % wbdf

Closing the Figure
This example uses the figure delete function (DeleteFcn property) to delete
the ActiveX object before closing the figure. MATLAB calls the figure delete
function before deleting the figure, which enables the function to perform any
clean up needed before closing the figure. The figure delete function calls
the control’s delete method.

function figDelete(src,evnt)
hExp.delete;

end

Example — Grid ActiveX Control in a Figure
This example adds a simple spreadsheet ActiveX control to a figure, which
also contains an axes object for plotting the data displayed by the control.
Clicking a column in the spreadsheet causes the data in that column to be
plotted. Clicking down and dragging the mouse across multiple columns plots
all columns touched.

Techniques Demonstrated

• Registering a control for use on your system.

• Writing a handler for one of the control’s events and using the event to
execute MATLAB plotting commands.

• Writing a resize function for the figure that manages the control’s size
as users resize the figure.

Using the Control
This example assumes that your data samples are organized in columns and
that the first cell in each column is a title, which is used by the legend. See

8-17

8 COM Support in MATLAB (Windows Only)

“Complete Code Listing” on page 8-19 for an example of how to load data
into the control.

Once the data is loaded, click the column to plot the data. The following
picture shows a graph of the results of Test2 and Test3 created by selecting
column B and dragging and releasing on column C.

8-18

Getting Started with COM

Complete Code Listing
You can open the M-file used to implement this example in the MATLAB
editor:

• Open M-file in editor.

Preparing to Use the Control
The ActiveX control used in this example is typical of those downloadable
from the Internet. Once you have downloaded the files you need, register the
control on your system using the DOS command regsvr32. In a command
prompt, enter a command of the following form:

regsvr32 sgrid.ocx

From MATLAB, use the following command:

system 'regsvr32 sgrid.ocx'

See the section “Registering Controls and Servers” on page 8-7 for more
information.

8-19

8 COM Support in MATLAB (Windows Only)

Finding the Control’s ProgID. Once you have installed and registered
the control, you can obtain its programmatic identifier using the ActiveX
Control Selector dialog. To display this dialog box, use the MATLAB
actxcontrolselect command. Locate the control in the list and the selector
displays the control and the ProgID.

Creating a Figure to Contain the Control
This example creates a figure that contains an axes object and the grid
control. The first step is to determine the size of the figure and then create
the figure and axes. This example uses the default figure and axes size
(obtained from the respective Position properties) to calculate a new size
and location for each object.

8-20

Getting Started with COM

dfpos = get(0,'DefaultFigurePosition');
dapos = get(0,'DefaultAxesPosition');
hfig = figure('Position',dfpos([1 2 3 4]).*[1 .8 1 1.25],...

'Name','Select the columns to plot',...
'Renderer','ZBuffer',...
'ResizeFcn',{@reSize dfpos(3)});

hax = axes('Position',dapos([1 2 3 4]).*[1 4 1 .65]);

The above code moves the figure down from the top of the screen (multiply
second element in position vector by .8) and increases the height of the figure
(multiply fourth element in position vector by 1.25). Axes are created and
sized in a similar way.

Creating an Instance of the Control
Use the MATLAB actxcontrol function to create an instance of the control in
a figure window. This function creates a container for the control and enables
you to specify the size of this container, which usually defines the size of the
control. See “Managing Figure Resize” on page 8-23 for a specific example.

Specifying the Size and Location. The control size and location in the
figure is calculated by a nested function calcSize. This function is used to
calculate both the initial size of the control container and the size resulting
from resize of the figure. It gets the figure’s current position (i.e., size and
location) and scales the four-element vector so that the control container is

• Positioned at the lower-left corner of the figure.

• Equal to the figure in width.

• Has a height that is .35 times the figure’s height.

The value returned is of the correct form to be passed to the actxcontrol
function and the control’s move method.

function conSize = calcSize
fp = get(hfig,'Position');
conSize = fp([3 4 3 4]).*[0 0 1 .35];

end % conSize

Creating the Control. Creating the control entails the following steps:

8-21

8 COM Support in MATLAB (Windows Only)

• Calculating the container size

• Instantiating the control in the figure

• Setting the number of rows and columns to match the size of the data array

• Specifying the width of the columns

conSize = calcSize;
hgrid = actxcontrol('SGRID.SgCtrl.1',conSize,hfig);
hgrid.NRows = size(dat,1);
hgrid.NColumns = size(dat,2);
colwth = 4350; hdwth = hgrid.HdrWidth;
SetColWidth(hgrid,0,sz(2)-1,colwth,1)

Using Mouse-Click Event to Plot Data
This example uses the control’s Click event to implement interactive plotting.
When a user clicks the control, MATLAB executes a function that plots the
data in the column where the mouse click occurred. Users can also select
multiple columns by clicking down and dragging the cursor over more than
one column.

Registering the Event. You need to register events with MATLAB so
that when the event occurs (a mouse click in this case), MATLAB responds
by executing the event handler function. Register the event with the
registerevent method:

hgrid.registerevent({'Click',@click_event});

Pass the event name (Click) and a function handle for the event handler
function inside a cell array.

Defining the Event Handler. The event handler function click_event uses
the control’s GetSelection method to determine what columns and rows have
been selected by the mouse click. This function plots the data in the selected
columns as lines, one line per column.

It is possible to click down on a column and drag the mouse to select multiple
columns before releasing the mouse. In this case, each column is plotted
because the event is not fired until the mouse button is released (which
reflects the way the author chose to implement the control). The MATLAB

8-22

Getting Started with COM

legend uses the column number stored in the variable cols to label the
individual plotted lines. You must add one to cols because the control counts
the columns starting from zero.

Note that you implement event handlers to accept a variable number of
arguments (varargin) .

function click_event(varargin)
[row1,col1,row2,col2] = hgrid.GetSelection(1,1,1,1,1);
ncols = (col2-col1)+1;
cols = [col1:col2];

for n = 1:ncols
hgrid.Col = cols(n);
for ii = 1:sz(1)

hgrid.Row = ii;
plot_data(ii,n) = hgrid.Number;

end
end

hgrid.SetSelection(row1,col1,row2,col2);
plot(plot_data)
legend(labels(cols+1))
end % click_event

Managing Figure Resize
The size and location of a MATLAB axes object is defined in units that are
normalized to the figure that contains it. Therefore, when you resize the
figure, the axes automatically resize proportionally. When a figure contains
objects that are not contained in axes, you are responsible for defining a
function that manages the resize process.

The figure ResizeFcn property references a function that executes whenever
the figure is resized and also when the figure is first created. This example
creates a resize function that manages resizing grid control by doing the
following:

• Disables control updates while changes are being made to improve
performance (use the hDisplay property).

• Calculates a new size for the control container based on the new figure size
(calcSize function).

8-23

8 COM Support in MATLAB (Windows Only)

• Applies the new size to the control container using its move method.

• Scales the column widths of the grid proportional to the change in width of
the figure (SetColWidth method).

• Refreshes the display of the control, showing the new size.

function reSize(src,evnt,dfp)
% Return if control does not exist (figure creation)
if ~exist('hgrid','var')

return
end
% Resize container
hgrid.bDisplay = 0;
conSize = calcSize;
move(hgrid,conSize);
% Resize columns
scl = conSize(3)/dfp;
ncolwth = scl*colwth;
nhdrwth = hdwth*(scl);
hgrid.HdrWidth = nhdrwth;
SetColWidth(hgrid,0,sz(2)-1,ncolwth,2)
hgrid.Refresh;
end % reSize

Closing the Figure
This example uses the figure delete function (DeleteFcn property) to delete
the ActiveX object before closing the figure. MATLAB calls the figure delete
function before deleting the figure, which enables the function to perform any
clean up needed before closing the figure. The figure delete function calls
the control’s delete method.

function figDelete(src,evnt)
hgrid.delete;

end

Example — Reading Data from Excel
This example creates a graphical interface to access the data in a Microsoft
Excel file. To enable the communication between MATLAB and Excel, this
example creates an ActiveX object in an Automation server running Excel.

8-24

Getting Started with COM

MATLAB then accesses the data in the Excel file through the interfaces
provided by the Excel Automation server.

Techniques Demonstrated
This example shows how to use the following techniques:

• Use of an Automation server to access another application from MATLAB

• Ways to manipulate Excel data into types used in the GUI and plotting.

• Implementing a GUI that enables plotting of selected columns of the Excel
spreadsheet.

• Inserting a MATLAB figure into an Excel file.

Using the GUI
To use the GUI, select any items in the list box and click the Create Plot
button. The sample data provided with this example contain three input
and three associated response data sets, all of which are plotted vs. the first
column in the Excel file, which is the time data.

You can view the Excel data file by clicking the Show Excel Data File
button, and you can save an image of the graph in a different Excel file by
clicking Save Graph button. Note that the Save Graph option creates a
temporary PNG file in your working directory.

8-25

8 COM Support in MATLAB (Windows Only)

The following picture shows the GUI with an input/response pair selected in
the list box and plotted in the axes.

Complete Code Listing
You can open the M-file used to implement this example in the MATLAB
editor or run this example:

• Open M-file in editor.

• Run this example.

8-26

Getting Started with COM

Excel Spreadsheet Format
This example assumes a particular organization of the Excel spreadsheet, as
shown in the following picture.

The format of the Excel file is as follows:

• The first element in each column is a text string that identifies the data
contain in the column. These strings are extracted and used to populate
the list box.

• The first column (Time) is used for the x-axis of all plots of the remaining
data.

• All rows in each column are read into MATLAB.

Excel Automation Server
The first step in accessing Excel from MATLAB is to run the Excel application
in an Automation server process using the actxserver function and the Excel
program ID, excel.application.

8-27

8 COM Support in MATLAB (Windows Only)

exl = actxserver('excel.application');

The ActiveX object that is returned provides access to a number of interfaces
supported by Excel. Use the workbook interface to open the Excel file
containing the data.

exlWkbk = exl.Workbooks;

exlFile = exlWkbk.Open([docroot '/techdoc/matlab_external/examples/input_resp_data.xls']);

Use the workbook’s sheet interface to access the data from a range object,
which stores a reference to a range of data from the specified sheet. This
example accesses all the data in column A, first cell to column G, last cell:

exlSheet1 = exlFile.Sheets.Item('Sheet1');

robj = exlSheet1.Columns.End(4); % Find the end of the column

numrows = robj.row; % And determine what row it is

dat_range = ['A1:G' num2str(numrows)]; % Read to the last row

rngObj = exlSheet1.Range(dat_range);

At this point, the entire data set from the Excel file’s sheet1 is accessed via
the range object interface. This object returns the data in a MATLAB cell
array, which can contain both numeric and character data:

exlData = rngObj.Value;

Manipulating the Data in MATLAB
Now that the data is in a cell array, you can use MATLAB functions to extract
and reshape parts of the data into the forms needed to use in the GUI and
pass to the plot function.

The following code performs two operations:

• Extracts numeric data from the cell array (indexing with curly braces),
concatenates the individual doubles returned by the indexing operation
(square brackets), and reshapes it into an array that arranges the data
in columns.

• Extracts the string in the first cell in each column of Excel sheet and stores
them in a cell array, which is used to generate the items in the list box.

8-28

Getting Started with COM

for ii = 1:size(exlData,2)

matData(:,ii) = reshape([exlData{2:end,ii}],size(exlData(2:end,ii)));

lBoxList{ii} = [exlData{1,ii}];

end

The Plotter GUI
This example uses a GUI that enables you to select from a list of input and
response data from a list box. All data is plotted as a function of time (which is,
therefore, not a choice in the list box) and you can continue to add more data
to the graph. Each data plot added to the graph causes the legend to expand.

Additional implementation details include:

• A legend that updates as you add data to a graph

• A clear button that enables you to clear all graphs from the axes

• A save button that saves the graph as a PNG file and adds it to another
Excel file

• A toggle button that shows or hides the Excel file being accessed

• The figure delete function (DeleteFcn property), which MATLAB calls
when the figure is closed, is used to terminate the Automation server
process.

Selecting and Plotting Data. When you click the Create Plot button, its
callback function queries the list box to determine what items are selected
and plots each data vs. time. The legend is updated to display any new data
while maintaining the legend for the existing data.

function plotButtonCallback(src,evnt)
iSelected = get(listBox,'Value');
grid(a,'on');hold all
for p = 1:length(iSelected)

switch iSelected(p)
case 1

plot(a,tme,matData(:,2))
case 2

plot(a,tme,matData(:,3))
case 3

8-29

8 COM Support in MATLAB (Windows Only)

plot(a,tme,matData(:,4))
case 4

plot(a,tme,matData(:,5))
case 5

plot(a,tme,matData(:,6))
case 6

plot(a,tme,matData(:,7))
otherwise

disp('Select data to plot')
end

end
[b,c,g,lbs] = legend([lbs lBoxList(iSelected+1)]);
end % plotButtonCallback

Clearing the Axes. The plotter is designed to continually add graphs as
the user selects data from the list box. The Clear Graph button clears and
resets the axes and clears the variable used to store the labels of the plot
data (used by legend).

%% Callback for clear button
function clearButtonCallback(src,evt)

cla(a,'reset')
lbs = '';

end % clearButtonCallback

Display or Hide Excel File. The MATLAB program has access to the
properties of the Excel application running in the Automation server. By
setting the Visible property to 1 or 0, this callback controls the visibility
of the Excel file.

%% Display or hide Excel file
function dispButtonCallback(src,evt)

exl.visible = get(src,'Value');
end % dispButtonCallback

8-30

Getting Started with COM

Close Figure and Terminate Excel Automation Process. Since the Excel
Automation server runs in a separate process from MATLAB, you must
terminate this process explicitly. There is no reason to keep this process
running after the GUI has been closed, so this example uses the figure’s delete
function to terminate the Excel process with the Quit method. Also, terminate
the second Excel process used for saving the graph. See “Inserting MATLAB
Graphs Into Excel” on page 8-31 for information on this second process.

%% Terminate Excel processes
function deleteFig(src,evt)

exlWkbk.Close
exlWkbk2.Close
exl.Quit
exl2.Quit

end % deleteFig

Inserting MATLAB Graphs Into Excel
You can save the graph created with this GUI in an Excel file. (This example
uses a separate Excel Automation server process for this purpose.) The
callback for the Save Graph push button creates the image and adds it to
an Excel file:

• Both the axes and legend are copied to an invisible figure configured to
print the graph as you see it on the screen (figure PaperPositionMode
property is set to auto).

• The print command creates the PNG image.

• Use the Shapes interface to insert the image in the Excel workbook.

The server and interfaces are instanced during GUI initialization phase:

exl2 = actxserver('excel.application');
exlWkbk2 = exl2.Workbooks;
wb = invoke(exlWkbk2,'Add');
graphSheet = invoke(wb.Sheets,'Add');
Shapes = graphSheet.Shapes;

The following code implements the Save Graph button callback:

8-31

8 COM Support in MATLAB (Windows Only)

function saveButtonCallback(src,evt)

tempfig = figure('Visible','off','PaperPositionMode','auto');

tempfigfile = [tempname '.png'];

ah = findobj(f,'type','axes');

copyobj(ah,tempfig) % Copy both graph axes and legend axes

print(tempfig,'-dpng',tempfigfile);

Shapes.AddPicture(tempfigfile,0,1,50,18,300,235);

exl2.visible = 1;

end

8-32

Supported Client/Server Configurations

Supported Client/Server Configurations

In this section...

“Introduction” on page 8-33

“MATLAB Client and In-Process Server” on page 8-33

“MATLAB Client and Out-of-Process Server” on page 8-34

“COM Implementations Supported by MATLAB” on page 8-35

“Client Application and MATLAB Automation Server” on page 8-35

“Client Application and MATLAB Engine Server” on page 8-37

Introduction
You can configure MATLAB to either control or be controlled by other COM
components. When MATLAB controls another component, MATLAB is the
client, and the other component is the server. When another component
controls MATLAB, MATLAB is the server.

MATLAB Client and In-Process Server
The following diagram shows how the MATLAB client interacts with an
“In-Process Server” on page 8-6.

The server exposes its properties and methods through the IDispatch
(Automation) interface or a Custom interface, depending on which interfaces
the component implements. For information on accessing interfaces, see
“Getting Interfaces to the Object” on page 8-50 .

8-33

8 COM Support in MATLAB (Windows Only)

ActiveX Controls
An ActiveX control is an object with some type of graphical user interface
(GUI). When MATLAB constructs an ActiveX control, it places the control’s
GUI in a MATLAB figure window. Click the various options available in the
user interface (e.g., making a particular menu selection) to trigger events
that get communicated from the control in the server to the client MATLAB
application. The client decides what to do about each event and responds
accordingly.

MATLAB comes with a sample ActiveX control called mwsamp. This control
draws a circle on the screen and displays some text. You can use this control
to try out MATLAB COM features. For more information, see “MATLAB
Sample Control” on page 8-105.

DLL Servers
Any COM component that has been implemented as a dynamic link library
(DLL) is also instantiated in an in-process server. That is, it is created in the
same process as the MATLAB client application. When MATLAB uses a DLL
server, it runs in a separate window rather than a MATLAB figure window.

MATLAB responds to events generated by a DLL server in the same way
as events from an ActiveX control.

For More Information
To learn more about working with MATLAB as a client, see “MATLAB COM
Client Support” on page 8-38 and “Additional COM Client Information” on
page 8-110.

MATLAB Client and Out-of-Process Server
In this configuration, a MATLAB client application interacts with a component
that has been implemented as a “Local Out-of-Process Server” on page 8-6.
Examples of out-of-process servers are Microsoft Excel and Microsoft Word.

8-34

Supported Client/Server Configurations

As with in-process servers, this server exposes its properties and methods
through the IDispatch (Automation) interface or a Custom interface,
depending on which interfaces the component implements. For information
on accessing interfaces, see “Getting Interfaces to the Object” on page 8-50.

Since the client and server run in separate processes, you have the option of
creating the server on any system on the same network as the client.

If the component provides a user interface, its window is separate from the
client application.

MATLAB responds to events generated by an out-of-process server in the
same way as events from an ActiveX control.

For More Information
To learn more about working with MATLAB as a client, see “MATLAB COM
Client Support” on page 8-38 and “Additional COM Client Information” on
page 8-110.

COM Implementations Supported by MATLAB
MATLAB only supports COM implementations that are compatible with the
Microsoft Active Template Library (ATL) API. In general, your COM object
should be able to be contained in an ATL host window in order to work with
MATLAB.

Client Application and MATLAB Automation Server
MATLAB operates as the Automation server in this configuration. It can be
created and controlled by any Windows program that can be an Automation
controller. Some examples of Automation controllers are Microsoft Excel,
Microsoft Access, Microsoft Project, and many Visual Basic and Visual C++
programs.

8-35

8 COM Support in MATLAB (Windows Only)

MATLAB Automation server capabilities include the ability to execute
commands in the MATLAB workspace, and to get and put matrices directly
from and into the workspace. You can start a MATLAB server to run in either
a shared or dedicated mode. You also have the option of running it on a local
or remote system.

To create the MATLAB server from an external application program, use
the appropriate function from that language to instantiate the server.
(For example, use the CreateObject function in Visual Basic.) For the
programmatic identifier, specify matlab.application. To run MATLAB as
a dedicated server, use the matlab.application.single programmatic
identifier. See “Shared and Dedicated Servers” on page 8-113 for more
information.

The function that creates the MATLAB server also returns a handle to
the properties and methods available in the server through the IDispatch
interface. See “MATLAB Automation Server Functions and Properties” on
page 8-116 for descriptions of these methods.

Note Because VBScript client programs require an Automation interface
to communicate with servers, this is the only configuration that supports a
VBScript client.

For More Information
To learn more about working with MATLAB Automation servers, see
“MATLAB COM Automation Server Support” on page 8-112 and “Additional
Automation Server Information” on page 8-122.

8-36

Supported Client/Server Configurations

Client Application and MATLAB Engine Server
MATLAB provides a faster custom interface called IEngine for client
applications written in C, C++, or Fortran. MATLAB uses IEngine to
communicate between the client application and the MATLAB engine running
as a COM server.

MATLAB provides a library of functions that let you to start and end the
server process, and to send commands to be processed by MATLAB. See
“MATLAB Engine” in the C and Fortran API Reference for more information.

For More Information
To learn more about the MATLAB engine and the functions provided in its C
and Fortran libraries, see Chapter 6, “Calling MATLAB from C and Fortran
Programs”.

8-37

8 COM Support in MATLAB (Windows Only)

MATLAB COM Client Support

In this section...

“Creating the Server Process — An Overview” on page 8-38

“Creating an ActiveX Control” on page 8-39

“Deploying ActiveX Controls Requiring Run-Time Licenses” on page 8-47

“Instantiating a DLL Component” on page 8-48

“Instantiating an EXE Component” on page 8-49

“Getting Interfaces to the Object” on page 8-50

“Invoking Commands on a COM Object” on page 8-53

“Identifying Objects and Interfaces” on page 8-58

“Invoking Methods” on page 8-59

“Object Properties” on page 8-65

“Control and Server Events” on page 8-75

“Writing Event Handlers” on page 8-87

“Saving Your Work” on page 8-92

“Releasing COM Interfaces and Objects” on page 8-93

“Identifying Objects” on page 8-94

“Handling COM Data in MATLAB” on page 8-95

“Examples of MATLAB as an Automation Client” on page 8-105

“MATLAB COM Client Demo” on page 8-109

Creating the Server Process — An Overview
MATLAB provides two functions to create a COM object:

• actxcontrol — Creates an ActiveX control in a MATLAB figure window.

• actxserver — Creates an in-process server for a dynamic link library
(DLL) component or an out-of-process server for an executable (EXE)
component.

8-38

MATLAB COM Client Support

The diagram below shows the basic steps in creating the server process. For
more information on how MATLAB establishes interfaces to the resultant
COM object, see “Getting Interfaces to the Object” on page 8-50.

Creating an ActiveX Control
You can create an ActiveX control from the MATLAB client using either
a graphical user interface or the actxcontrol function directly from the
command line. Either of these methods creates an instance of the control in

8-39

8 COM Support in MATLAB (Windows Only)

the MATLAB client process and returns a handle to the primary interface to
the COM object. Through this interface, you can access the object’s public
properties or methods . You can also establish additional interfaces to the
object, including interfaces that use IDispatch, and any custom interfaces
that may exist.

This section describes how to create the control and how to position its
physical representation in the MATLAB figure window:

• “Finding Out What Controls Are Installed” on page 8-40

• “Finding a Particular Control” on page 8-41

• “Creating Control Objects Using a Graphical Interface” on page 8-42

• “Creating Control Objects from the Command Line” on page 8-45

• “Repositioning the Control in a Figure Window” on page 8-46

• “Using Microsoft Forms 2.0 Controls” on page 8-46

Finding Out What Controls Are Installed
The actxcontrollist function shows you what COM controls are currently
installed on your system. Type

list = actxcontrollist

and MATLAB returns a cell array listing each control, including its name,
programmatic identifier (ProgID), and filename.

This example shows information that might be returned for several controls
(your results might be different):

list = actxcontrollist;

s=sprintf(' Name = %s\n ProgID = %s\n File = %s\n', list{114:115,:})

MATLAB displays:

s =

Name = OleInstall Class

ProgID = Outlook Express Mime Editor

File = OlePrn.OleInstall.1

Name = OutlookExpress.MimeEdit.1

8-40

MATLAB COM Client Support

ProgID = C:\WINNT\System32\oleprn.dll

File = C:\WINNT\System32\inetcomm.dll

Finding a Particular Control
If you know the name of a control, you can find it in the list and display its
ProgID and the path of the directory containing it using a few MATLAB
commands. For example the Mwsamp2 control is used in some of the examples
in this manual. You can find it with the following code:

list = actxcontrollist;
for ii = 1:length(list)

if ~isempty(findstr('Mwsamp2',[list{ii,:}]))
s = sprintf(' Name = %s\n ProgID = %s\n File = %s\n', ...

list{ii,:})
end

end

The formatted output contained in s is displayed:

s =
Name = Mwsamp2 Control
ProgID = MWSAMP.MwsampCtrl.2
File =
D:\Apps\MATLAB\R2006a\toolbox\matlab\winfun\win32\mwsamp2.ocx

The location of this file might be different on your system.

8-41

8 COM Support in MATLAB (Windows Only)

Creating Control Objects Using a Graphical Interface
The simplest way to create a control object is to use the actxcontrolselect
function. This function displays a graphical user interface (GUI) listing all
controls installed on your system. When you select an item from the list and
click the Create button, MATLAB creates the control and returns a handle to
it. Type

h = actxcontrolselect

MATLAB displays:

The interface has a selection panel on the left and a preview panel on the
right. Click one of the control names in the selection panel to see a preview
of the control. (For controls that do not have a preview, the preview panel

8-42

MATLAB COM Client Support

is blank.) If MATLAB cannot create the control, an error message appears
in the preview panel.

Setting Properties with actxcontrolselect. Click the Properties button
on the actxcontrolselect window to change property values when creating
the control. You can select which figure window to put the control in (Parent
field), where to position it in the window (X and Y fields), and what size to
make the control (Width and Height).

You can register events you want the control to respond to in this window.
(See “Control and Server Events” on page 8-75 for an explanation of event
registration.) Register an event and the callback routine to handle that event
by entering the name of the routine to the right of the event under Callback
M-File.

You can select callback routines by browsing for their M-files. Click a name
in the Event Names column and then click the Browse button. To assign
a callback routine to more than one event, first press the Ctrl key and click
individual event names, or drag the mouse over consecutive event names,
then click Browse to select the callback routine.

MATLAB only responds to registered events, so if you do not specify a
Callback M-File, the event is ignored.

8-43

8 COM Support in MATLAB (Windows Only)

For example, at the actxcontrolselect window, select Calendar Control
10.0 and click Properties to see the window shown below. Enter a Width
of 500 and a Height of 350 to change the default size for the control. Click
OK in this window, and click Create in the actxcontrolselect window to
create the Calendar control.

You can also set control parameters using the actxcontrol function. One
parameter you can set with actxcontrol but not with actxcontrolselect is
the name of an initialization file. When you specify this filename, MATLAB
sets the initial state of the control to that of a previously saved control.

Information Returned by actxcontrolselect. actxcontrolselect creates
an object that is an instance of the MATLAB COM class. The function returns
up to two arguments: a handle for the object h, and a 1-by-3 cell array info
containing information about the control.

[h, info] = actxcontrolselect;

The cell array info shows the name, ProgID, and filename for the control.

If you select Calendar Control 9.0 and then click Create, MATLAB displays:

h =
COM.mscal.calendar.7

8-44

MATLAB COM Client Support

info =
[1x20 char] 'MSCAL.Calendar.7' [1x41 char]

Expand the info cell array to show the control name, ProgID, and filename.

info{:}
ans =

Calendar Control 9.0
ans =

MSCAL.Calendar.7
ans =

D:\Applications\MSOffice\Office\MSCAL.OCX

Creating Control Objects from the Command Line
If you already know which control you want and you know its ProgID, you can
bypass the GUI by using the actxcontrol function to create it.

The only required input when calling the function is the ProgID. However,
as with actxcontrolselect, you can supply additional inputs that enable
you to select which figure window to put the control in, where to position it
in the window, and what size to make it. You can also register any events
you want the control to respond to, or set the initial state of the control by
reading that state from a file. See the reference page on actxcontrol for a
full explanation of its input arguments.

actxcontrol returns a handle to the primary interface to the object. Use this
handle to reference the object in other COM function calls. You can also use
the handle to obtain additional interfaces to the object. For more information
on using interfaces, see “Getting Interfaces to the Object” on page 8-50.

8-45

8 COM Support in MATLAB (Windows Only)

This example creates a control to run a Microsoft Calendar application.
Position the control in figure window fig3, at a [0 0] x-y offset from the
bottom left of the window, and make it 300 by 400 pixels in size:

fig3 = figure('position', [50 50 600 500]);
h = actxcontrol('mscal.calendar', [0 0 300 400], fig3)

MATLAB displays:

h =
COM.mscal.calendar

Repositioning the Control in a Figure Window
Once a control has been created, you can change its shape and position in
the window with the move function.

Observe what happens to the object created in the last section when you
specify new origin coordinates (70, 120) and new width and height dimensions
of 400 and 350:

h.move([70 120 400 350]);

Using Microsoft Forms 2.0 Controls
You may encounter problems when creating or using Microsoft Forms 2.0
controls in MATLAB. Forms 2.0 controls are designed for use with applications
enabled by Visual Basic for Applications (VBA). Microsoft Office is one such
application.

To work around these problems, use the replacement controls listed below,
or consult article 236458 in the Microsoft Knowledge Base for further
information:

http://support.microsoft.com/default.aspx?kbid=236458

Affected Controls. You may see this behavior with any of the following
Forms 2.0 controls:

• Forms.TextBox.1

• Forms.CheckBox.1

8-46

http://support.microsoft.com/default.aspx?kbid=236458

MATLAB COM Client Support

• Forms.CommandButton.1

• Forms.Image.1

• Forms.OptionButton.1

• Forms.ScrollBar.1

• Forms.SpinButton.1

• Forms.TabStrip.1

• Forms.ToggleButton.1

Replacement Controls. The following replacements are recommended by
Microsoft:

Old New

Forms.TextBox.1 RICHTEXT.RichtextCtrl.1

Forms.CheckBox.1 vidtc3.Checkbox

Forms.CommandButton.1 MSComCtl2.FlatScrollBar.2

Forms.TabStrip.1 COMCTL.TabStrip.1

Deploying ActiveX Controls Requiring Run-Time
Licenses
When you deploy an ActiveX control that requires a run-time license, you
must include a license key, which the control reads at run-time. If the key
matches the control’s own version of the license key, an instance of the control
is created. Use the following procedure to deploy a run-time-licensed control
with MATLAB.

Create an M-File to Build the Control
First, create an M-file to build the control. This M-file must contain two
elements:

• The pragma %#function actxlicense. This pragma causes MATLAB
Compiler to embed a function named actxlicense into the stand-alone
executable file you build.

8-47

8 COM Support in MATLAB (Windows Only)

• A call to actxcontrol to create the control.

Place this M-file in a directory that is not part of the MATLAB code tree.

Here is an example M-file.

function buildcontrol
%#function actxlicense
h=actxcontrol('MFCCONTROL2.MFCControl2Ctrl.1',[10 10 200 200]);

Build the Control and the License M-File
Change to the directory where you placed the M-file you created to build
the control. Call the function you defined in the M-file. When it executes
this function, MATLAB determines whether the control requires a run-time
license. If it does, MATLAB creates another M-file, named actxlicense.m, in
the current working directory. The actxlicense function defined in this file
provides the license key to MATLAB at run-time.

Build the Executable
Next, call MATLAB Compiler to create the stand-alone executable from the
file you created to build the control. The executable contains both the function
that builds the control and the actxlicense function.

mcc -m buildcontrol

Deploy the Files
Finally, distribute buildcontrol.exe, buildcontrol.ctf, and the control
(.ocx or .dll).

Instantiating a DLL Component
To create a server for a component implemented as a dynamic link library
(DLL), use the actxserver function. MATLAB creates an instance of the
component in the same process that contains the client application.

The syntax for actxserver, when used with a DLL component, is

actxserver(ProgID)

8-48

MATLAB COM Client Support

where ProgID is the programmatic identifier for the component.

actxserver returns a handle to the primary interface to the object. Use this
handle to reference the object in other COM function calls. You can also use
the handle to obtain additional interfaces to the object. For more information
on using interfaces, see “Getting Interfaces to the Object” on page 8-50.

Unlike ActiveX controls, any user interface displayed by the server appears
in a separate window.

Instantiating an EXE Component
You can use the actxserver function to create a server for a component
implemented as an executable (EXE). In this case, MATLAB instantiates the
component in an out-of-process server.

The syntax for actxserver is

actxserver(ProgID, sysname)

where ProgID is the programmatic identifier for the component, and sysname
is an optional argument used in configuring a distributed COM (DCOM)
system.

actxserver returns a handle to the primary interface to the COM object.
Use this handle to reference the object in other COM function calls. You can
also use the handle to obtain additional interfaces to the object. For more
information on using interfaces, see “Getting Interfaces to the Object” on
page 8-50.

Any user interface displayed by the server appears in a separate window.

This example creates a COM server application running Excel. The handle
is assigned to h:

h = actxserver('excel.application')

MATLAB displays:

h =
COM.excel.application

8-49

8 COM Support in MATLAB (Windows Only)

MATLAB can programmatically connect to an instance of a COM Automation
server application that is already running on your computer. Use the
actxGetRunningServer function to get a reference to such an application.

The syntax for actxGetRunningServer is

actxGetRunningServer(ProgID)

where ProgID is the programmatic identifier for the component.

This example gets a reference to Excel, which must already be running on
your system. The returned handle is assigned to h:

h = actxGetRunningServer('excel.application')

MATLAB displays:

h =
COM.excel.application

Getting Interfaces to the Object
The COM component you are working with can provide different types of
interfaces for accessing the object’s public properties and methods:

• The IUnknown and IDispatch interfaces

• One or more custom interfaces

IUnknown and IDispatch
When you invoke the actxserver or actxcontrol function, MATLAB creates
the server and returns a handle to the server interface as a means of accessing
its properties and methods. MATLAB uses the following process to determine
which handle to return:

1 MATLAB first gets a handle to the IUnknown interface from the
component. All COM components are required to implement this interface.

2 MATLAB then attempts to get the IDispatch interface. If IDispatch is
implemented, MATLAB returns a handle to this interface. If IDispatch is
not implemented, MATLAB returns the handle to IUnknown.

8-50

MATLAB COM Client Support

Additional Interfaces. Components often provide additional interfaces,
based on IDispatch, that are implemented as properties. Like any other
property, you obtain these interfaces using the MATLAB get function.

For example, a Microsoft Excel component contains numerous interfaces. To
list these interfaces, along with other Excel properties, use the MATLAB get
function without any arguments. For example, type:

h = actxserver('excel.application');
h.get

MATLAB displays information similar to:

Application: [1x1 Interface.Microsoft_Excel_9.0_
Object_Library._Application]

Creator: 'xlCreatorCode'
Parent: [1x1 Interface.Microsoft_Excel_9.0_

Object_Library._Application]
ActiveCell: []

ActiveChart: [1x50 char]
.
.

In the following example, h is a handle to a specific interface and Workbooks
is the name of the interface. Type

w = h.Workbooks

MATLAB displays:

w =
Interface.Microsoft_Excel_9.0_Object_Library.Workbooks

The information displayed depends on the version of Excel you have on your
system.

Custom Interfaces
The following two client/server configurations support a component’s custom
interface:

• “Introduction” on page 8-33

8-51

8 COM Support in MATLAB (Windows Only)

• “MATLAB Client and Out-of-Process Server” on page 8-34

Once you have created the server, you can query the server component to
see if any custom interfaces are implemented. Use the interfaces function
to return a list of all available custom interfaces. This list is returned in a
cell array of strings.

For example, for a component with the ProgID mytestenv.calculator, type

h = actxserver('mytestenv.calculator')

MATLAB displays:

h =
COM.mytestenv.calculator

Type

customlist = h.interfaces

MATLAB displays:

customlist =
ICalc1
ICalc2
ICalc3

To get a handle to a particular custom interface, use the invoke function,
specifying the handle returned by actxcontrol or actxserver, and also the
name of the custom interface:

c1 = h.invoke('ICalc1')
c1 =

Interface.Calc_1.0_Type_Library.ICalc_Interface

Use this handle with the COM client functions to access the properties and
methods of the object through the selected custom interface.

8-52

MATLAB COM Client Support

For example, to list the properties available through the ICalc1 interface, use

c1.get
background: 'Blue'

height: 10
width: 0

To list the methods, use

c1.invoke
Add = double Add(handle, double, double)
Divide = double Divide(handle, double, double)
Multiply = double Multiply(handle, double, double)
Subtract = double Subtract(handle, double, double)

Add and multiply numbers using the Add and Multiply methods of the
custom object c1:

sum = c1.Add(4, 7)
sum =

11

prod = c1.Multiply(4, 7)
prod =

28

Invoking Commands on a COM Object
This section covers the following topics:

• “Dot Syntax” on page 8-53

• “An Example of Calling Syntax” on page 8-54

• “Specifying Property, Method, and Event Names” on page 8-54

• “Implicit Syntax for Calling get, set, and invoke” on page 8-55

• “Exceptions to Using Implicit Syntax” on page 8-56

Dot Syntax
When invoking either MATLAB COM functions or methods belonging to COM
objects, the simplest syntax to use is dot syntax. Specify the object name, the

8-53

8 COM Support in MATLAB (Windows Only)

dot (.), and the name of the function or method you are calling. Enclose any
input arguments in parentheses after the function name. Specify output
arguments to the left of the equal sign:

outputvalue = object.function(arg1, arg2, ...)

An Example of Calling Syntax
To work with the example that follows, first create an ActiveX control called
mwsamp. (The mwsamp control is built into MATLAB to enable you to work with
the examples shown in the COM documentation. The control displays a circle
and text label that you can manipulate from MATLAB.)

Call actxcontrol to create the mwsamp control. This function returns a handle
h that you need to work further with the control.

h = actxcontrol('mwsamp.mwsampctrl.2', [200 120 200 200]);

Once you have a handle to an object, you can invoke MATLAB functions on
the object by referencing it through the handle.

For example, you can create a custom property, called Position, using the
addproperty function. See “Custom Properties” on page 8-74.

h.addproperty('Position');

An alternative syntax for the same operation is

addproperty(h, 'Position');

Specifying Property, Method, and Event Names
You can specify the names of properties and methods using the simple notation

handle.propertyname
handle.methodname

For example, the mwsamp object has a property called Radius that represents
the radius of the circle it draws, and a method called Redraw that redraws the
circle. You can get the circle’s radius by typing

h.Radius

8-54

MATLAB COM Client Support

You can redraw the circle with

h.Redraw

More information is provided on this in the sections “Implicit Syntax for
Calling get, set, and invoke” on page 8-55 and “Exceptions to Using Implicit
Syntax” on page 8-56. Here are a few specific rules regarding how to express
property, method, and event names.

Property Names. You can abbreviate the names of properties, as long as
you include enough characters in the name to distinguish it from another
property. Property names are also case insensitive.

These two statements produce the same result:

x = h.Radius
x = h.r

Method Names. Method names cannot be abbreviated and are case
sensitive.

Event Names. Event names are always specified as quoted strings in
arguments to a function. Event names cannot be abbreviated and they are
not case sensitive.

These statements produce the same result:

h.registerevent({'MouseDown' 'mymoused'});
h.registerevent({'MOUSEdown' 'myMOUSEd'});

Implicit Syntax for Calling get, set, and invoke
When calling get, set, or invoke on a COM object, MATLAB provides a
simpler syntax that doesn’t require an explicit function call. You can use this
shortened syntax in all but a few cases (see “Exceptions to Using Implicit
Syntax” on page 8-56).

Continue with the mwsamp control created in the last section and represented
by handle h. To get the value of Radius property and assign it to variable x,
use the syntax shown here. MATLAB still makes the call to get, but this
shortened syntax is somewhat easier to enter:

8-55

8 COM Support in MATLAB (Windows Only)

x = h.Radius
x =

20

The same shortened syntax applies when calling the set and invoke
functions. Compare these two ways of setting a new radius value for the
circle and invoking the Redraw method of mwsamp to display the circle in its
enlarged size. The commands on the left call set and invoke explicitly. The
commands on the right make implicit calls:

h.set('Radius', 40); h.Radius = 40;
h.invoke('Redraw'); h.Redraw;

Exceptions to Using Implicit Syntax
There are some conditions under which you must explicitly call get, set,
and invoke:

• When the property or method is not public

• When accessing a property that takes arguments

• When operating on a vector of objects

Nonpublic properties and methods. If the property or method you want
to access is not provided as a public property or method of the object class,
or if it is not in the type library for the control or server, you must call get,
set, or invoke explicitly. For example, the Visible property of an Internet
Explorer application is not public and must be accessed using get and set:

h = actxserver('internetexplorer.application');

% This syntax is invalid because 'Visible' is not public.
v = h.Visible
??? No appropriate method or public field Visible for class

COM.internetexplorer.application.

% You must call the get function explicitly.
v = h.get('Visible')
v =

1

8-56

MATLAB COM Client Support

% The same holds true when setting nonpublic properties.
h.set('Visible', 1);

Public properties and methods are those that are listed in response to the
following commands on COM object h:

publicproperties = h.get
publicmethods = h.invoke

Accessing Properties That Take Arguments. Some COM objects have
properties that behave somewhat like methods in that they accept input
arguments. This is explained fully in the section “Properties That Take
Arguments” on page 8-68. In order to get or set the value of such a property,
you must make an explicit call to the get or set function, as shown here. In
this example, A1 and B2 are arguments that specify which Range interface to
return on the get operation:

eActivesheetRange = e.Activesheet.get('Range', 'A1', 'B2')
eActivesheetRange =

Interface.Microsoft_Excel_5.0_Object_Library.Range

Operating on a Vector of Objects. If you operate on a vector of objects,
(see “Get and Set on a Vector of Objects” on page 8-69), you must call get and
set explicitly to access properties.

This example creates a vector of handles to two Microsoft Calendar objects. It
then modifies the Day property of both objects in one operation by invoking
set on the vector. Explicit calls to get and set are required:

h1 = actxcontrol('mscal.calendar', [0 200 250 200]);
h2 = actxcontrol('mscal.calendar', [250 200 250 200]);
H = [h1 h2];

H.set('Day', 23)
H.get('Day')
ans =

[23]
[23]

This applies only to get and set. You cannot invoke a method on more than
one COM object at a time, even if you call invoke explicitly.

8-57

8 COM Support in MATLAB (Windows Only)

Identifying Objects and Interfaces
You can get some additional information about a control or server using the
following functions.

Function Description

class Return the class of an object

isa Determine if an object is of a given MATLAB class

iscom Determine if the input is a COM or ActiveX object

isinterface Determine if the input is a COM interface

This example creates a COM object in an Automation server running Excel,
giving it the handle h, and a Workbooks interface to the object, with handle w.

h = actxserver('excel.application');
w = h.Workbooks;

Use the iscom function to see if variable h is a handle to a COM or ActiveX
object:

h.iscom
ans =

1

Use the isa function to test variable h against a known class name:

h.isa('COM.excel.application')
ans =

1

Use isinterface to see if variable w is a handle to a COM interface:

w.isinterface
ans =

1

Use the class function to find out the class of variable w:

w.class
ans =

8-58

MATLAB COM Client Support

Interface.Microsoft_Excel_9.0_Object_Library.Workbooks

Invoking Methods
This section covers the following topics:

• “Functions for Working with Methods” on page 8-59

• “Listing the Methods of a Class or Object” on page 8-59

• “Invoking Methods on an Object” on page 8-61

• “Specifying Enumerated Parameters” on page 8-62

• “Optional Input Arguments” on page 8-63

• “Returning Multiple Output Arguments” on page 8-64

• “Argument Callouts in Error Messages” on page 8-65

Functions for Working with Methods
Use the following MATLAB functions to find out what methods a COM object
has and to invoke any of these methods on the object.

Function Description

invoke Invoke a method or display a list of methods and
types

ismethod Determine if an item is a method of a COM object

methods List all method names for the control or server

methodsview GUI interface to list information on all methods
and types

Listing the Methods of a Class or Object
You can see what methods are supported by a control or server object either
in a graphical display using the methodsview function, or in a returned cell
array using the methods function.

8-59

8 COM Support in MATLAB (Windows Only)

Using methodsview. The methodsview function opens a new window with
an easy-to-read display of all methods supported by the specified control
or server object along with several related fields of information. Type the
following to bring up a window such as the one shown below:

cal = actxcontrol('mscal.calendar', [0 0 400 400]);
cal.methodsview

Methods that return void show no Return Type in the display.

Using methods. The methods function returns in a cell array the names of
all methods supported by the specified control or server object. This includes
MATLAB COM functions that you can use on the object.

When you include the -full switch in the command, MATLAB also specifies
the input and output arguments for each method:

cal.methods('-full')

Methods for class COM.mscal.calendar:

release(handle, MATLAB array)
delete(handle, MATLAB array)
MATLAB array events(handle, MATLAB array)

8-60

MATLAB COM Client Support

.

.
HRESULT Refresh(handle)
HRESULT Today(handle)
HRESULT AboutBox(handle)

The invoke function, when called with only a handle argument, returns
a similar output.

Invoking Methods on an Object
To execute, or invoke, any method on an object, use either the MATLAB
invoke function, or the somewhat simpler method name syntax.

Using invoke. The invoke function executes the specified method on an
object. You can use either of the following syntaxes with invoke:

v = invoke(handle, 'methodname', 'arg1', 'arg2', ...);
v = handle.invoke('methodname', 'arg1', 'arg2', ...);

See the output of methodsview for a method to see what data types to use for
input and output arguments.

The following example reads today’s date and then advances it by five years
by invoking the NextYear method in a loop.

To get today’s date, type

cal = actxcontrol('mscal.calendar', [0 0 400 400]);
cal.Value
ans =

11/5/2001

8-61

8 COM Support in MATLAB (Windows Only)

Call the NextYear method to advance the date, and verify the results:

for k = 1:5
cal.invoke('NextYear');

end

cal.Value
ans =

11/5/2006

Using the Method Name. Instead of using invoke, you can just use the
name of the method to call it. The syntax for calling by method name is

v = handle.methodname('arg1', 'arg2', ...);

or

v = methodname(handle, 'arg1', 'arg2', ...);

Continuing the example shown in the last section, return to the original data
by going back five years.

for k = 1:5
cal.PreviousYear;

end

cal.Value
ans =

11/5/2001

Specifying Enumerated Parameters
Enumeration is a way of representing a somewhat cryptic symbolic value by
using a more descriptive name that makes it clear what the value stands for.
For example, a program that takes atomic numbers of elements as input is
easier to work with if the program accepts element names as input rather
than requiring you to recall and pass atomic numbers for each element. You
can pass the word 'arsenic' as an enumeration for the value 33.

MATLAB supports enumeration for parameters passed to methods under
the condition that the type library in use reports the parameter as ENUM,
and only as ENUM.

8-62

MATLAB COM Client Support

Note MATLAB does not support enumeration for any parameter that the
type library reports as both ENUM and Optional.

The last line of this example passes an enumerated value
('xlLocationAsObject') to the Location method of a Microsoft Excel
Chart object. You have the choice of passing the enumeration or its numeric
equivalent:

e = actxserver('Excel.Application');

% Insert a new workbook.
Workbook = e.Workbooks.Add;
e.Visible = 1;
Sheets = e.ActiveWorkBook.Sheets;

% Get a handle to the active sheet.
Activesheet = e.Activesheet;

%Add a Chart
Charts = Workbook.Charts;
Chart = Charts.Add;

% Set chart type to be a line plot.
Chart.ChartType = 'xlXYScatterLines'
C1 = Chart.Location('xlLocationAsObject', 'Sheet1');

When you are dealing with only three numeric values, it is not that difficult
to remember the meaning of each. But with programs that require a large
number of such values, enumeration becomes more important.

Optional Input Arguments
When calling a method that takes optional input arguments, you can skip any
optional argument by specifying an empty array ([]) in its place. The syntax
for calling a method with second argument (arg2) not specified is as follows:

handle.methodname(arg1, [], arg3);

8-63

8 COM Support in MATLAB (Windows Only)

The example below invokes the Add method of an Excel object. This method
adds new sheets to an Excel workbook. The Add method takes up to four
optional input arguments:

• Before — The sheet before which to add the new sheet

• After — The sheet after which to add the new sheet

• Count — The total number of sheets to add

• Type — The type of sheet to add

The following code creates a workbook with the default number of worksheets,
and inserts an additional sheet after Sheet 1. To do this, you invoke Add
specifying only the second argument, After. You can omit the first argument,
Before, by using [] in its place. This is done on the last line:

% Open an Excel Server.
e = actxserver('excel.application');

% Insert a new workbook.
e.Workbooks.Add;
e.Visible = 1;

% Get the Active Workbook with three sheets.
eSheets = e.ActiveWorkbook.Sheets;

% Add a new sheet after eSheet1.
eSheet1 = eSheets.Item(1);
eNewSheet = eSheets.Add([], eSheet1);

Returning Multiple Output Arguments
If you know that a server function supports multiple outputs, you can return
any or all of those outputs to a MATLAB client. Specify the output arguments
within brackets on the left side of the equation. This gives the MATLAB client
code access to any values returned by the server function.

The syntax shown here shows a server function being called by the MATLAB
client. The function’s return value is shown as retval. The function’s output
arguments (out1, out2, ...) follow this:

8-64

MATLAB COM Client Support

[retval out1 out2 ...] = handle.functionname(in1, in2, ...);

MATLAB makes use of the pass-by-reference capabilities in COM to
implement this feature. Note that pass by reference is a COM feature. It is
not available in MATLAB at this time.

Argument Callouts in Error Messages
When a MATLAB client sends a command with an invalid argument to a
COM server application, the server sends back an error message similar
to that shown here, identifying the invalid argument. Be careful when
interpreting the argument callout in this type of message:

PutFullMatrix(handle, 'a', 'base', 7, [5 8]);
??? Error: Type mismatch, argument 3.

In the PutFullMatrix command shown above, the fourth argument, 7, is
invalid. (It is scalar and not the expected array data type.) However, the error
message identifies the failing argument as argument 3.

This is because the COM server receives only the last four of the arguments
shown in the MATLAB code. (The handle argument merely identifies the
server. It does not get passed to the server). So the server sees 'a' as the first
argument, and the invalid argument, 7, as the third.

As another example, submitting the same command with the invoke function
makes the invalid argument fifth in the MATLAB client code. Yet the server
still identifies it as argument 3 because neither of the first two arguments
is seen by the server:

invoke(handle, 'PutFullMatrix', 'a', 'base', 7, [5 8]);
??? Error: Type mismatch, argument 3.

Object Properties
This section covers the following topics describing how to set and get the value
of a property, and how to create custom properties:

• “Functions for Working with Object Properties” on page 8-66

• “Getting the Value of a Property” on page 8-66

• “Setting the Value of a Property” on page 8-68

8-65

8 COM Support in MATLAB (Windows Only)

• “Properties That Take Arguments” on page 8-68

• “Get and Set on a Vector of Objects” on page 8-69

• “Using Enumerated Values for Properties” on page 8-70

• “Using the Property Inspector” on page 8-72

• “Custom Properties” on page 8-74

Functions for Working with Object Properties
Use these MATLAB functions to get, set, and modify the properties of a COM
object or interface, or to add your own custom properties.

Function Description

addproperty Add a custom property to a COM object

deleteproperty Remove a custom property from a COM object

get List one or more properties and their values

inspect Display graphical interface to list and modify
property values

isprop Determine if an item is a property of a COM object

propedit Display the control’s built-in property page

set Set a property on an interface

Getting the Value of a Property
The get function returns information on one or more properties belonging
to a COM object or interface. Use get with only the handle argument, and
MATLAB returns a list of all properties for the object, and their values:

h = actxserver('excel.application');

h.get
Application: [1x1 Interface.Microsoft_Excel_9.0_

Object_Library._Application]
Creator: 'xlCreatorCode'
Parent: [1x1 Interface.Microsoft_Excel_9.0_

Object_Library._Application]

8-66

MATLAB COM Client Support

ActiveCell: []
ActiveChart: [1x50 char]

.

.

To return the value of just one property, specify the object handle and property
name using dot syntax:

company = h.OrganizationName
company =

The MathWorks, Inc.

Property names are not case sensitive and may also be abbreviated, as long as
you include enough letters in the name to make it unambiguous. You can use
'org' in place of the full 'OrganizationName' property name used above:

company = h.org
company =

The MathWorks, Inc.

You can also use the get function, without dot syntax, for this same purpose:

filepath = h.get('DefaultFilePath')
filepath =

H:\Documents

Getting Multiple Property Values. To get more than one property with just
one command, you must use the get function, specifying the property names
in a cell array of strings. This returns a cell array containing a column for
each property value:

C = h.get({'prop1', 'prop2', ...});

For example, to get the DefaultFilePath and UserName property values for
COM object h, use

h = actxserver('excel.application');

C = h.get({'DefaultFilePath', 'UserName'});
C{:}
ans =

H:\Documents

8-67

8 COM Support in MATLAB (Windows Only)

ans =
C. Coolidge

Setting the Value of a Property
The simplest way to set or modify the value of a property is to use an
assignment statement like that shown in the second line below. This sets the
value of the DefaultFilePath property for object h to ’C:\ExcelWork’:

h = actxserver('excel.application');
h.DefaultFilePath = 'C:\ExcelWork';

You can also use the set function, without dot syntax, for this same purpose.
Specify both the property name and new value as input arguments to set:

h.set('DefaultFilePath', 'C:\ExcelWork');

Setting Multiple Property Values. To change more than one property with
one command, you must use the set function:

h.set('prop1', 'value1', 'prop2', 'value2', ...);

For example, to set the DefaultFilePath and UserName fields of COM object
h, use

h = actxserver('excel.application');
h.set('DefaultFilePath', 'C:\ExcelWork', ...

'UserName', 'H. Hoover');

Properties That Take Arguments
Some COM objects have properties that behave somewhat like methods in
that they accept input arguments. On a get or set operation, the value they
end up getting or setting depends on the arguments you pass in.

The Activesheet interface of a Microsoft Excel application running as a COM
server is one example. This interface has a property called Range, which is
actually another interface. In order to get the correct Range interface, you
must pass in specific range coordinates.

The first line of code shown here (taken from the example in “Using MATLAB
as an Automation Client” on page 8-105) returns a specific Range interface.

8-68

MATLAB COM Client Support

Arguments A1 and B2 specify which rectangular region of the spreadsheet to
get the interface for:

eActivesheetRange = e.Activesheet.get('Range', 'A1', 'B2')
eActivesheetRange =

Interface.Microsoft_Excel_5.0_Object_Library.Range

To get or set this type of property, use the get or set function as shown
above for the Range property. Enter the input arguments in the parentheses
following the property name:

handle.get(propertyname, arg1, arg2, ...);

In some ways, MATLAB handles these properties internally as though they
were actually methods. The most important difference is that you need to use
invoke, not get, to view the property:

e.Activesheet.invoke
:

Range = handle Range(handle, Variant, Variant(Optional))
:

Get and Set on a Vector of Objects
You can use the get and set functions on more than one object at a time by
putting the object handles into a vector and then operating on the vector.

8-69

8 COM Support in MATLAB (Windows Only)

This example creates a vector of handles to four Microsoft Calendar objects. It
then modifies the Day property of all the objects in one operation by invoking
set on the vector:

h1 = actxcontrol('mscal.calendar', [0 200 250 200]);
h2 = actxcontrol('mscal.calendar', [250 200 250 200]);
h3 = actxcontrol('mscal.calendar', [0 0 250 200]);
h4 = actxcontrol('mscal.calendar', [250 0 250 200]);
H = [h1 h2 h3 h4];

H.set('Day', 23)
H.get('Day')
ans =

[23]
[23]
[23]
[23]

Note To get or set values for multiple objects, you must use the get and set
functions explicitly. Syntax like H.Day is only supported for scalar objects.

Using Enumerated Values for Properties
Enumeration makes examining and changing properties easier because each
possible value for the property is given a string to represent it. For example,
one of the values for the DefaultSaveFormat property in an Excel application
is xlUnicodeText. This is easier to remember than a numeric value like 57.

Finding All Enumerated Properties. The MATLAB COM get and set
functions support enumerated values for properties for those applications
that provide them. To see which properties use enumerated types, use the set
function with the object handle argument:

8-70

MATLAB COM Client Support

h = actxserver('excel.application');

h.set
ans =

Creator: {'xlCreatorCode'}
ConstrainNumeric: {}

CopyObjectsWithCells: {}
Cursor: {4x1 cell}

CutCopyMode: {2x1 cell}
.
.

MATLAB displays the properties that accept enumerated types as nonempty
cell arrays. Properties for which there is a choice of settings are displayed as
a multirow cell array, with one row per setting (see Cursor in the example
above). Properties for which there is only one possible setting are displayed as
a one row cell array (see Creator, above).

To display the current values of these properties, use get with just the object
handle argument:

h.get
Creator: 'xlCreatorCode'

ConstrainNumeric: 0
CopyObjectsWithCells: 1

Cursor: 'xlDefault'
CutCopyMode: ''

.

.

Setting an Enumerated Value. To list all possible enumerated values for
a specific property, use set with the property name argument. The output
is a cell array of strings, one string for each possible setting of the specified
property:

h.set('Cursor')
ans =

'xlIBeam'
'xlDefault'
'xlNorthwestArrow'
'xlWait'

8-71

8 COM Support in MATLAB (Windows Only)

To set the value of a property, assign the enumerated value to the property
name:

handle.property = 'enumeratedvalue';

You can also use the set function with the property name and enumerated
value:

handle.set('property', 'enumeratedvalue');

You have a choice of using the enumeration or its equivalent numeric value.
You can abbreviate the enumeration string, as in the third line below, as long
as you use enough letters in the string to make it unambiguous. Enumeration
strings are also case insensitive.

Make the Excel spreadsheet window visible and then change the cursor from
the MATLAB client. To see how the cursor has changed, you need to click the
spreadsheet window. Either of the following assignments to h.Cursor sets the
cursor to the Wait (hourglass) type:

h.Visible = 1;

h.Cursor = 'xlWait'
h.Cursor = 'xlw' % Abbreviated form of xlWait

Read the value of the Cursor property you have just set:

h.Cursor
ans =

xlWait

Using the Property Inspector
MATLAB provides a GUI to display and modify properties. Open the Property
Inspector using either of these two methods:

• Call the inspect function from the MATLAB command line.

• Double-click the object in the MATLAB Workspace browser.

For example, create a server object running Microsoft Excel, then set the
object’s DefaultFilePath property to ’C:\ExcelWork’:

8-72

MATLAB COM Client Support

h = actxserver('excel.application');
h.DefaultFilePath = 'C:\ExcelWork';

Next call the inspect function to display a new window showing the server
object’s properties:

h.inspect

Scroll down until you see the DefaultFilePath property that you just
changed. It should read C:\ExcelWork.

Using the Property Inspector, change DefaultFilePath once more, this time
to C:\MyWorkDirectory. To do this, select the value at the right and type
the new value.

Now go back to the MATLAB Command Window and confirm that the
DefaultFilePath property has changed as expected.

h.DefaultFilePath

MATLAB displays:

ans =

C:\MyWorkDirectory

8-73

8 COM Support in MATLAB (Windows Only)

Note If you modify properties at the MATLAB command line, you must
refresh the Property Inspector window to see the change reflected there.
Refresh the Property Inspector window by reinvoking inspect on the object.

Using the Property Inspector on Enumerated Values. A drop-down list
button next to a property value indicates the property accepts enumerated
values. Click anywhere in the field on the right to see the values. The
following figure displays four enumerated values for the Cursor property. The
current value is displayed in the field next to the property name.

To change a property’s value using the Property Inspector, use the drop-down
list to display the options for that property, and then click the desired value.

Custom Properties
You can attach your own properties to a control using the addproperty
function. The syntax shown here creates a custom property for control, h:

h.addproperty('propertyName')

This example creates the mwsamp2 control, adds a new property called
Position to it, and assigns the value [200 120] to that property:

8-74

MATLAB COM Client Support

h = actxcontrol('mwsamp.mwsampctrl.2', [200 120 200 200]);
h.addproperty('Position');
h.Position = [200 120];

Use get to list all properties of control, h. You see that the new Position
property has been added:

h.get
ans =

Label: 'Label'
Radius: 20

Position: [200 120]

h.Position
ans =

200 120

To remove custom properties from a control, use deleteproperty with the
following syntax:

h.deleteproperty('propertyName')

For example, delete the Position property that you just created, and use
get to show that it no longer exists:

h.deleteproperty('Position');

h.get
Label: 'Label'

Radius: 20

Control and Server Events
An event is typically a user-initiated action that takes place in a server
application which often requires a reaction from the client. For example, a
user clicking the mouse at a particular location in a server interface window
might require the client take some action in response. When an event is
fired, the server communicates this occurrence to the client. If the client is
listening for this particular type of event, it responds by executing a routine
called an event handler.

8-75

8 COM Support in MATLAB (Windows Only)

The MATLAB COM client can subscribe to and handle the events fired by an
ActiveX control or a COM server. Select which events you want the client
to listen to by registering each event you want active along with the event
handler to be used in responding to the event. When any registered event
takes place in the control or server, the client is notified and responds by
executing the appropriate handler routine. Event handlers in MATLAB are
often implemented using M-files.

This section covers the following topics on registering and responding to
events fired from an ActiveX control or a COM server:

• “Functions for Working with Events” on page 8-76

• “Examples of Event Handlers” on page 8-77

• “Responding to Events from a COM Server” on page 8-77

• “Responding to Events from an ActiveX Control” on page 8-79

• “Responding to Events from an Automation Server” on page 8-83

• “Responding to Interface Events from an Automation Server” on page 8-86

Note MATLAB does not support interface events from a Custom server.

Functions for Working with Events
Use these MATLAB functions to register and unregister events, to list all
events, or to list just registered events for a control or server.

Function Description

actxcontrol Create a COM control and optionally register
those events you want the client to listen to

eventlisteners Return a list of events attached to listeners

events List all events, both registered and unregistered,
a control or server can generate

isevent Determine if an item is an event of a COM object

8-76

MATLAB COM Client Support

Function Description

registerevent Register an event handler with a control or server
event

unregisterallevents Unregister all events for a control or server

unregisterevent Unregister an event handler with a control or
server event

When using these functions, enter event names and event handler names
as strings or in a cell array of strings. These names are case insensitive,
but cannot be abbreviated.

Examples of Event Handlers
The following examples have implementations of event handlers:

• “Example — Grid ActiveX Control in a Figure” on page 8-17

• “Example — Reading Data from Excel” on page 8-24

Responding to Events from a COM Server
This section describes the basic steps you need to take in handling events
fired by a COM control or server.

• “Identifying All Events” on page 8-77

• “Registering Those Events You Want to Respond To” on page 8-78

• “Identifying Registered Events” on page 8-78

• “Responding to Events As They Occur” on page 8-79

• “Unregistering Events You No Longer Want to Listen To” on page 8-79

Identifying All Events. Use the events function to list all events the control
or server is capable of responding to. This function returns a structure array,
where each field of the structure is the name of an event handler and the
value of that field contains the signature for the handler routine. To invoke
events on an object with handle h, type

S = h.events

8-77

8 COM Support in MATLAB (Windows Only)

Registering Those Events You Want to Respond To. Use the
registerevent function to register those server events you want the client to
respond to. There are two ways you can register events:

• If you have one function to handle all server events, you can register this
common event handler using the syntax

h.registerevent('handler');

• If you have a separate event handler function for different events, use
the syntax

h.registerevent({'event1' 'handler1'; 'event2' 'handler2';
...});

For ActiveX controls, you can register events at the time you create the control
using the actxcontrol function.

• To register a common event handler function to respond to all events, use

h = actxcontrol('progid', position, figure, 'handler');

• To register a separate function to handle each type of event, use

h = actxcontrol('progid', position, figure, ...
{'event1' 'handler1'; 'event2' 'handler2'; ...});

The MATLAB client responds only to events you have registered.

Identifying Registered Events. The eventlisteners function lists only
those events that are currently registered. This function returns a cell array,
with each row representing a registered event and the name of its event
handler. For example, to invoke eventlisteners on an object with handle h,
type

C = h.eventlisteners

8-78

MATLAB COM Client Support

Responding to Events As They Occur. Whenever a control or server
fires an event that the client is listening to, the client responds to the event
by invoking one or more event handlers that have been registered for that
event. You can implement these routines in M-file programs that you write to
handle events. Read more about event handlers in the section on “Writing
Event Handlers” on page 8-87.

Unregistering Events You No Longer Want to Listen To. If you
have registered events that you now want the client to ignore, you can
unregister them at any time using the functions unregisterevent and
unregisterallevents as follows:

• For a server with handle h, to unregister all events registered with a
common event handling function handler, use

h.unregisterevent('handler');

• To unregister individual events eventN, each registered with its own event
handling function handlerN, use

h.unregisterevent({'event1' 'handler1'; 'eventN' 'handlerN'});

• To unregister all events from the server regardless of which event handling
function they are registered with, use

h.unregisterallevents;

Responding to Events from an ActiveX Control
This section describes how to handle events fired by an ActiveX control. It
uses a control called mwsamp2 that ships with MATLAB. The event handler
routines for mwsamp2 are defined when you install MATLAB.

Tasks described in this section are

• “Creating a Control and Registering Events” on page 8-80

• “Listing Control Events” on page 8-80

• “Responding to Control Events” on page 8-81

• “Unregistering Control Events” on page 8-82

8-79

8 COM Support in MATLAB (Windows Only)

Creating a Control and Registering Events. The actxcontrol function
not only creates the control object, but can be used to register specific events
as well. The code shown here registers two events (Click and MouseDown) and
two respective handler routines (myclick and mymoused) with the mwsamp2
control.

f = figure('position', [100 200 200 200]);
h = actxcontrol('mwsamp.mwsampctrl.2', [0 0 200 200], f, ...

{'Click' 'myclick'; 'MouseDown' 'mymoused'});

If, at some later time, you want to register additional events, use the
registerevent function:

h.registerevent({'DblClick' 'my2click'});

You can view the event handler code written for the mwsamp2 control in the
section “Sample Event Handlers” on page 8-90.

Unregister the DblClick event before continuing with the example:

h.unregisterevent({'DblClick' 'my2click'});

Listing Control Events. At this point, only the Click and MouseDown events
should be registered. To see all events that the control can fire, use the events
function. This function returns a structure array, where each field of the
structure is the name of an event handler and the value of that field contains
the signature for the handler routine.

8-80

MATLAB COM Client Support

To list all events, whether registered or not, use

S = h.events
S =

Click: 'void Click()'
DblClick: 'void DblClick()'

MouseDown: 'void MouseDown(int16 Button, int16 Shift,
Variant x, Variant y)'

Event_Args: [1x101 char]

S.Event_Args
ans =

void Event_Args(int16 typeshort, int32 typelong,
double typedouble, string typestring, bool typebool)

To list only those events that are currently registered with the control, use the
eventlisteners function. This function returns a cell array, with each row
representing a registered event and the name of its event handler.

Use eventlisteners to list registered event names and their handler
routines:

h.eventlisteners
ans =

'click' 'myclick'
'mousedown' 'mymoused'

Responding to Control Events. When MATLAB creates the mwsamp2
control, it also displays a figure window showing a label and circle at the
center. If you click on different positions in this window, you see a report in
the MATLAB Command Window of the X and Y position of the mouse.

Each time you press the mouse button, the MouseDown event fires, calling the
mymoused function. This function prints the position values for that event
to the MATLAB Command Window:

The X position is:
ans =

[122]
The Y position is:
ans =

8-81

8 COM Support in MATLAB (Windows Only)

[63]

You also see the following line reported in response to the Click event:

Single click function

Double-clicking the mouse does nothing different, since the DblClick event
has been unregistered.

Unregistering Control Events. When you unregister an event, the client
discontinues listening for occurrences of that event. When the event fires, the
client does not respond. If you unregister the MouseDown event, MATLAB no
longer reports the X and Y position when you click in the window:

h.unregisterevent({'MouseDown' 'mymoused'});

Now, register the DblClick event, connecting it with handler function
my2click:

h.registerevent({'DblClick', 'my2click'});

If you call eventlisteners again, the registered events are now Click and
DblClick:

h.eventlisteners
ans =

'click' 'myclick'
'dblclick' 'my2click'

When you double-click the mouse button, MATLAB responds to both the
Click and DblClick events by displaying the following in the MATLAB
Command Window:

Single click function
Double click function

An easy way to unregister all events for a control is to use the
unregisterallevents function. When there are no events registered,
eventlisteners returns an empty cell array:

h.unregisterallevents

8-82

MATLAB COM Client Support

h.eventlisteners
ans =

{}

Clicking the mouse in the control window now does nothing since there are
no active events.

If you have events that are registered with a common event handling routine,
such as sampev.m used in the example below, you can use unregisterevent to
unregister all of these events in one operation. The example that follows first
registers all events from the server with a common handling routine sampev.
MATLAB now handles any type of event from this server by executing sampev:

h.registerevent('sampev');

Verify the registration by listing all event listeners for that server:

h.eventlisteners
ans =

'click' 'sampev'
'dblclick' 'sampev'
'mousedown' 'sampev'

Now unregister all events for the server that use the sampev event handling
routine:

h.unregisterevent('sampev');
h.eventlisteners
ans =

{}

Responding to Events from an Automation Server
The next section shows how to handle events fired by an Automation server.
The example creates a server running Internet Explorer, registers a common
handler for all events, and then has you fire events by browsing to Web sites
using the Internet Explorer application.

Tasks described in this section are

• “Creating an Event Handler” on page 8-84

8-83

8 COM Support in MATLAB (Windows Only)

• “Creating a Server” on page 8-84

• “Listing Server Events” on page 8-84

• “Registering Server Events” on page 8-85

• “Responding to Server Events” on page 8-85

• “Unregistering Server Events” on page 8-86

• “Closing the Application” on page 8-86

Creating an Event Handler. This example registers all events with the
same handler routine, serverevents. Since this example does not ship with
MATLAB, you have to create the event handler routine yourself.

Create the file serverevents.m, inserting the following code. Make sure
the file is in your current directory.

function serverevents(varargin)

% Display incoming event name
eventname = varargin{end}

% Display incoming event args
eventargs = varargin{end-1}

Creating a Server. Next, in your MATLAB session, use the following
commands to create your Automation server application.

% Create a server running Internet Explorer.
h = actxserver('internetexplorer.application');

% Make the server application visible.
h.set('Visible', 1);

Listing Server Events. Use the events function to list all events the control
or server is capable of responding to, and eventlisteners to list only those
events that are currently registered.

h.events

MATLAB displays event information similar to:

8-84

MATLAB COM Client Support

:

StatusTextChange = void StatusTextChange(string Text)

ProgressChange = void ProgressChange(int32 Progress,int32 ProgressMax)

CommandStateChange = void CommandStateChange(int32 Command,bool Enable)

:

No events are registered at this time, so eventlisteners returns an empty
cell array.

h.eventlisteners

MATLAB displays:

ans =
{}

Registering Server Events. Now use your event handler serverevents.

h.registerevent('serverevents');
h.eventlisteners

MATLAB displays:

ans =
: :

'statustextchange' 'serverevents'
'progresschange' 'serverevents'
'commandstatechange' 'serverevents'

: :

Responding to Server Events. At this point, all events have been
registered. If any event fires, the common handler routine defined in
serverevents.m executes to handle that event. Use the Internet Explorer
application to browse your favorite Web site, or enter the following command
in the MATLAB Command Window:

h.Navigate2('http://www.mathworks.com');

You should see a long series of events displayed in your client window.

8-85

8 COM Support in MATLAB (Windows Only)

Unregistering Server Events. Use the unregisterevent function to
remove specific events from the registry. If the events were registered with a
common handler, as in this example, specify the name of the common routine
with each event that you want removed from the event registry for that object:

h.unregisterevent({'event1', 'commonhandler'; ...
'event2', 'commonhandler', ...});

Continuing with this example, unregister the progresschange and
commandstatechange events:

h.unregisterevent({'progresschange', 'serverevents'; ...
'commandstatechange', 'serverevents'});

To unregister all events for an object, use unregisterallevents. The
following commands unregister all the events that had been registered for the
Internet Explorer application and then register a single event:

h.unregisterallevents;
h.registerevent({'TitleChange', 'serverevents'});

If you now browse with Internet Explorer, MATLAB only responds to the
TitleChange event.

Closing the Application. It is always advisable to close a server application
when you no longer intend to use it. To unregister all events and close the
application, type:

h.unregisterallevents;
h.Quit;
h.delete;

Responding to Interface Events from an Automation Server
This example, demonstrating how to handle a COM interface event, shows
how to set up an event in a Microsoft Excel’s Workbook object and how to
handle its BeforeClose event.

To create the event handler OnBeforeCloseWorkbook, create the file
OnBeforeCloseWorkbook.m, inserting the following code. Make sure the file
is in your current directory.

8-86

MATLAB COM Client Support

% Event handler for Excel workbook BeforeClose event
function OnBeforeCloseWorkbook(varargin)

disp('BeforeClose event occured');

When you run the following commands

% Create Excel automation server instance

xl = actxserver('Excel.Application');

% Make it visible

xl.Visible = 1;

% Get collection of workbooks and add a new workbook

hWbks = xl.Workbooks;

hWorkbook = hWbks.Add;

% Register OnClose event

hWorkbook.registerevent({'BeforeClose' @OnBeforeCloseWorkbook});

%% Close the workbook. This will fire Close event and call OnClose handler

hWorkbook.Close

MATLAB displays:

BeforeClose event occured

Writing Event Handlers
This section covers the following topics on writing handler routines to respond
to events fired from an ActiveX control or Automation server:

• “Overview of Event Handling” on page 8-88

• “Arguments Passed to Event Handlers” on page 8-88

• “Event Structure” on page 8-89

• “Sample Event Handlers” on page 8-90

• “Writing Event Handlers Using M-File Subfunctions” on page 8-91

8-87

8 COM Support in MATLAB (Windows Only)

Overview of Event Handling
An event is fired when a control or server wants to notify its client that
something of interest has occurred. For example, many controls trigger an
event when the user clicks somewhere in the interface window of a control. In
MATLAB, you can create and register your own M-file functions to respond
to events when they occur. These functions serve as event handlers. You
can create one handler function to handle all events or a separate handler
for each type of event.

For controls, you can register handler functions either at the time you
create the control (using actxcontrol), or at any time afterwards (using
registerevent).

Both actxcontrol and registerevent use an event handler argument. The
event handler argument can be either the name of a single callback routine
or a cell array that associates specific events with their respective event
handlers. Strings used in the event handler argument are not case sensitive.

For servers, you must use registerevent to register those events you want
the client to listen to. For example, to register the Click and DblClick
events, use

h.registerevent({'click' 'myclick'; 'dblclick' 'my2click'});

Use events to list all the events a COM object recognizes. For example, to list
all events for the mwsamp2 control, use

f = figure ('position', [100 200 200 200]);
h = actxcontrol ('mwsamp.mwsampctrl.2', [0 0 200 200], f);

h.events
Click = void Click()
DblClick = void DblClick()
MouseDown = void MouseDown(int16 Button, int16 Shift,

Variant x, Variant y)

Arguments Passed to Event Handlers
When a registered event is triggered, MATLAB passes information from the
event to its handler function, as shown in this table.

8-88

MATLAB COM Client Support

Arguments Passed by MATLAB

Arg. No. Contents Format

1 Object name MATLAB COM class

2 Event ID double

3 Start of Event Argument
List

As passed by the control

end-2 End of Event Argument
List (Argument N)

As passed by the control

end-1 Event Structure structure

end Event Name char array

When writing an event handler function, use the Event Name argument to
identify the source of the event. Get the arguments passed by the control from
the Event Argument List (arguments 3 through end-2). All event handlers
must accept a variable number of arguments:

function event (varargin)
if (varargin{end}) == 'MouseDown') % Check the event name

x_pos = varargin{5}; % Read 5th Event Argument
y_pos = varargin{6}; % Read 6th Event Argument

end

Note The values passed vary with the particular event and control being used.

Event Structure
The second to last argument passed by MATLAB is the Event Structure,
which has the following fields.

8-89

8 COM Support in MATLAB (Windows Only)

Fields of the Event Structure

Field Name Description Format

Type Event Name char array

Source Control Name MATLAB COM class

EventID Event Identifier double

Event Arg Name 1 Event Arg Value 1 As passed by the control

Event Arg Name 2 Event Arg Value 2 As passed by the control

etc. Event Arg N As passed by the control

For example, when the MouseDown event of the mwsamp2 control is triggered,
MATLAB passes this Event Structure to the registered event handler:

Type: 'MouseDown'
Source: [1x1 COM.mwsamp.mwsampctrl.2]

EventID: -605
Button: 1
Shift: 0

x: 27
y: 24

Sample Event Handlers
Specify a single callback, sampev:

f = figure('position', [100 200 200 200]);
h = actxcontrol('mwsamp.mwsampctrl.2', [0 0 200 200], ...

gcf, 'sampev')
h =

COM.mwsamp.mwsampctrl.2

Or specify several events using the cell array format:

h = actxcontrol('mwsamp.mwsampctrl.2', [0 0 200 200], f, ...
{'Click' 'myclick'; 'DblClick' 'my2click'; ...
'MouseDown' 'mymoused'});

The event handlers, myclick.m, my2click.m, and mymoused.m, are

8-90

MATLAB COM Client Support

function myclick(varargin)
disp('Single click function')

function my2click(varargin)
disp('Double click function')

function mymoused(varargin)
disp('You have reached the mouse down function')
disp('The X position is: ')
double(varargin{5})
disp('The Y position is: ')
double(varargin{6})

Alternatively, you can use the same event handler for all the events you want
to monitor using the cell array pairs. Response time is better than using
the callback style.

For example:

f = figure('position', [100 200 200 200]);
h = actxcontrol('mwsamp.mwsampctrl.2', ...
[0 0 200 200], f, {'Click' 'allevents'; ...
'DblClick' 'allevents'; 'MouseDown' 'allevents'})

where allevents.m is

function allevents(varargin)
if (strcmp(varargin{end-1}.Type, 'Click'))

disp ('Single Click Event Fired')
elseif (strcmp(varargin{end-1}.Type, 'DblClick'))

disp ('Double Click Event Fired')
elseif (strcmp(varargin{end-1}.Type, 'MouseDown'))

disp ('Mousedown Event Fired')
end

Writing Event Handlers Using M-File Subfunctions
Instead of having to maintain a separate M-file for every event handler
routine you write, you can consolidate some or all of these routines into a
single M-file using M-file subfunctions.

8-91

8 COM Support in MATLAB (Windows Only)

This example shows three event handler routines, (myclick, my2click, and
mymoused) implemented as subfunctions in the file mycallbacks.m. The call
to str2func converts the input string to a function handle:

function a = mycallbacks(str)
a = str2func(str);

function myclick(varargin)
disp('Single click function')

function my2click(varargin)
disp('Double click function')

function mymoused(varargin)
disp('You have reached the mouse down function')
disp('The X position is: ')
double(varargin{5})
disp('The Y position is: ')
double(varargin{6})

To register one of these events, call mycallbacks, passing the name of the
event handler:

h = actxcontrol('mwsamp.mwsampctrl.2', [0 0 200 200], ...
gcf, 'sampev')

h.registerevent({'Click', mycallbacks('myclick')});

Saving Your Work
Use these MATLAB functions to save and restore the state of a COM control
object.

Function Description

load Load and initialize a COM control object from a file

save Write and serialize a COM control object to a file

Save the current state of a COM control to a file using the save function. The
following example creates an mwsamp2 control and saves its original state
to the file mwsample:

8-92

MATLAB COM Client Support

f = figure('position', [100 200 200 200]);
h = actxcontrol('mwsamp.mwsampctrl.2', [0 0 200 200], f);
h.save('mwsample')

Now, alter the figure by changing its label and the radius of the circle:

h.Label = 'Circle';
h.Radius = 50;
h.Redraw;

Using the load function, you can restore the control to its original state:

h.load('mwsample');
h.get
ans =

Label: 'Label'
Radius: 20

Note The COM save and load functions are only supported for controls at
this time.

Releasing COM Interfaces and Objects
Use these MATLAB functions to release or delete a COM object or interface.

Function Description

delete Delete a COM object or interface

release Release a COM object or interface

When each interface is no longer needed, use the release function to release
the interface and reclaim the memory used by it. When the entire control or
server is no longer needed, use the delete function to delete it. Alternatively,
you can use the delete function on any valid interface. All interfaces for that
object are automatically released and the server or control itself is deleted.

8-93

8 COM Support in MATLAB (Windows Only)

Note In versions of MATLAB earlier than 6.5, failure to explicitly release
interface handles or delete the control or server often results in a memory
leak. This is true even if the variable representing the interface or COM
object has been reassigned. In MATLAB 6.5 and later, the control or server,
along with all interfaces to it, is destroyed on reassignment of the variable or
when the variable representing a COM object or interface goes out of scope.

MATLAB automatically releases all interfaces for a control when the figure
window that contains that control is deleted or closed. MATLAB also
automatically releases all handles for an Automation server when MATLAB
is shut down.

Identifying Objects
Use these MATLAB functions to get information about a COM object.

Function Description

class Return the class of a COM object

isa Detect a COM object of a given class

isevent Determine if an item is an event of a COM object

ismethod Determine if an item is a method of a COM object

isprop Determine if an item is a property of a COM object

Create a COM object, h, in an Automation server running Excel, and also a
Workbooks interface, w, to the object:

h = actxserver('excel.application');
w = h.Workbooks;

To find out the class of variable w, use the class function:

w.class
ans =

Interface.Microsoft_Excel_9.0_Object_Library.Workbooks

8-94

MATLAB COM Client Support

To test a variable against a known class name, use isa:

h.isa('COM.excel.application')
ans =

1

To see if UsableWidth is a property of object h, use isprop:

h.isprop('UsableWidth')
ans =

1

To see if SaveWorkspace is a method of object h, use ismethod. Method names
are case sensitive and cannot be abbreviated:

h.ismethod('SaveWorkspace')
ans =

1

Create the sample mwsamp2 control that comes with MATLAB, and use
isevent to see if DblClick is one of the events that this control recognizes:

f = figure ('position', [100 200 200 200]);
h = actxcontrol ('mwsamp.mwsampctrl.2', [0 0 200 200], f);

h.isevent('DblClick')
ans =

1

Handling COM Data in MATLAB
This section covers the following topics:

• “Passing Data to a COM Object” on page 8-96

• “Handling Data from a COM Object” on page 8-97

• “Unsupported Data Types” on page 8-98

• “Passing Data from MATLAB to ActiveX Objects” on page 8-99

• “Passing SAFEARRAY from MATLAB to COM Object” on page 8-99

• “Reading SAFEARRAY from a COM Object in MATLAB” on page 8-101

8-95

8 COM Support in MATLAB (Windows Only)

• “Displaying MATLAB Syntax for COM Objects” on page 8-102

Passing Data to a COM Object
When you call a COM object from MATLAB, the MATLAB data types you pass
in the call are converted to data types native to the COM object. MATLAB
performs this conversion on each argument that is passed. This section
describes the conversion.

MATLAB arguments are converted by MATLAB into data types that best
represent the data to the COM object. The following table shows all of the
MATLAB base types for passed arguments and the COM types defined for
input arguments. Each row shows a MATLAB type followed by the possible
COM argument matches.

MATLAB Argument Closest Type Allowed Types

handle VT_DISPATCH
VT_UNKNOWN

VT_DISPATCH
VT_UNKNOWN

string VT_BSTR VT_LPWSTR
VT_LPSTR
VT_BSTR
VT_FILETIME
VT_ERROR
VT_DECIMAL
VT_CLSID
VT_DATE

int16 VT_I2 VT_UINT
VT_I2
VT_UI2

int32 VT_I4 VT_I4
VT_UI4
VT_INT

single VT_R4 VT_R4

double VT_R8 VT_R8
VT_CY (currency)

8-96

MATLAB COM Client Support

MATLAB Argument Closest Type Allowed Types

bool VT_BOOL VT_BOOL

char VT_I1 VT_I1
VT_UI1

Variant Data. variant is any data type except a structure or a sparse
array. (Refer to the Data Type Summary table in the MATLAB Programming
documentation.)

When used as an input argument, MATLAB treats variant and
variant(pointer) the same way.

MATLAB Argument Closest Type Allowed Types

variant VT_VARIANT VT_VARIANT
VT_USERDEFINED
VT_ARRAY

variant(pointer) VT_VARIANT VT_VARIANT | VT_BYREF

SAFEARRAY Data. When a COM method identifies a SAFEARRAY or
SAFEARRAY(pointer), the MATLAB equivalent is a matrix.

MATLAB Argument Closest Type Allowed Types

SAFEARRAY VT_SAFEARRAY VT_SAFEARRAY

SAFEARRAY(pointer) VT_SAFEARRAY VT_SAFEARRAY |
VT_BYREF

Handling Data from a COM Object
Data returned from a COM object is often incompatible with MATLAB data
types. When this occurs, MATLAB converts the returned value to a data
type native to the MATLAB language. This section describes the conversion
performed on the various data types that can be returned from COM objects.

This table shows how MATLAB converts data from a COM object into
MATLAB variables.

8-97

8 COM Support in MATLAB (Windows Only)

COM Return Type MATLAB Representation

VT_DISPATCH
VT_UNKNOWN

handle

VT_LPWSTR
VT_LPSTR
VT_BSTR
VT_FILETIME
VT_ERROR
VT_DECIMAL
VT_CLSID
VT_DATE

string

VT_UINT
VT_I2
VT_UI2

int16

VT_I4
VT_UI4
VT_INT

int32

VT_R4 single

VT_R8
VT_CY (currency)

double

VT_BOOL bool

VT_I1
VT_UI1

char

VT_VARIANT
VT_USERDEFINED
VT_ARRAY

variant

VT_VARIANT | VT_BYREF variant(pointer)

VT_SAFEARRAY SAFEARRAY

VT_SAFEARRAY | VT_BYREF SAFEARRAY(pointer)

Unsupported Data Types
The following data types are not supported in the MATLAB COM interface:

8-98

MATLAB COM Client Support

• VT_I8

• VT_UI8

• Structure

• Sparse array

• Unsigned integer

• Multidimensional SAFEARRAYs

• Write-only properties

• Enumerated types

Passing Data from MATLAB to ActiveX Objects
The tables also show the mapping of MATLAB data types to COM data types
that you must use to pass data from MATLAB to an ActiveX object. Note that
all other types result in the following warning:

"ActiveX - invalid argument type or value".

Passing SAFEARRAY from MATLAB to COM Object
The SAFEARRAY data type is a standard way to pass arrays between COM
objects. This section explains how MATLAB passes SAFEARRAY data to a
COM object.

• “Default Behavior in MATLAB” on page 8-99

• “Examples” on page 8-99

• “How to Pass a Single-Dimension SAFEARRAY” on page 8-101

• “Passing SAFEARRAY By Reference” on page 8-101

Default Behavior in MATLAB. MATLAB represents an m-by-n matrix as a
two-dimensional SAFEARRAY, where the first dimension has m elements and the
second dimension has n elements. MATLAB passes the SAFEARRAY by value.

Examples. The following examples use a COM object that expects a
SAFEARRAY input parameter.

8-99

8 COM Support in MATLAB (Windows Only)

When MATLAB passes a 1-by-3 array

B = [2 3 4]
B =

2 3 4

the object reads

No. of dimensions: 2
Dim: 1, No. of elements: 1
Dim: 2, No. of elements: 3

Elements:
2.0
3.0
4.0

When MATLAB passes a 3-by-1 array

C = [1;2;3]
C =

1
2
3

the object reads

No. of dimensions: 2
Dim: 1, No. of elements: 3
Dim: 2, No. of elements: 1
Elements:

1.0
2.0
3.0

When MATLAB passes a 2-by-4 array

D = [2 3 4 5;5 6 7 8]

D =
2 3 4 5
5 6 7 8

8-100

MATLAB COM Client Support

the object reads

No. of dimensions: 2
Dim: 1, No. of elements: 2
Dim: 2, No. of elements: 4
Elements:

2.0
3.0
4.0
5.0
5.0
6.0
7.0
8.0

How to Pass a Single-Dimension SAFEARRAY. For information
about passing arguments as one-dimensional arrays to a
COM object, see the Technical Support solution 1-SKYP9 at
http://www.mathworks.com/support/solutions/data/1-SKYP9.html?solution=1-SKY

Passing SAFEARRAY By Reference. For information
about passing arguments by reference to a COM
object, see the Technical Support solution 1-SKYPY at
http://www.mathworks.com/support/solutions/data/1-SKYPY.html?solution=1-SKY

Reading SAFEARRAY from a COM Object in MATLAB
This section explains how MATLAB reads SAFEARRAY data from a COM object.

A one-dimensional SAFEARRAY with n elements from a COM object is rendered
as a 1-by-n matrix. For example, using methods from the MATLAB sample
control mwsamp,

h=actxcontrol('mwsamp.mwsampctrl.1')
a = h.GetI4Vector

MATLAB displays:

a =
1 2 3

8-101

http://www.mathworks.com/support/solutions/data/1-SKYP9.html?solution=1-SKYP9
http://www.mathworks.com/support/solutions/data/1-SKYPY.html?solution=1-SKYPY

8 COM Support in MATLAB (Windows Only)

A two-dimensional SAFEARRAY with n elements is rendered by MATLAB as a
2-by-n matrix, for example:

a = h.GetR8Array

MATLAB displays:

a =
1 2 3
4 5 6

A three-dimensional SAFEARRAY with 2 elements is rendered as a 2-by-2-by-2
cell array, for example:

a = h.GetBSTRArray

MATLAB displays:

a(:,:,1) =

'1 1 1' '1 2 1'
'2 1 1' '2 2 1'

a(:,:,2) =

'1 1 2' '1 2 2'
'2 1 2' '2 2 2'

Displaying MATLAB Syntax for COM Objects
To determine which MATLAB data types to use when passing arguments to
COM objects, use the invoke or methodsview functions. These functions list
all of the methods found in an object, along with a specification of the data
types required for each argument.

In the following example, a server called MyApp has a method TestMeth1 with
the following syntax:

HRESULT TestMeth1 ([out, retval] double* dret);

8-102

MATLAB COM Client Support

This method has no input argument, and it returns a variable of type double.
To display the MATLAB syntax for calling the method, type

h = actxserver('MyApp');
h.invoke

MATLAB displays:

ans =
TestMeth1 = double TestMeth1 (handle)

The signature of TestMeth1 is

double TestMeth1(handle)

MATLAB requires you to use an object handle as an input argument for every
method, in addition to any input arguments required by the method itself.

Using the variable var, which is of type double, type

var = h.TestMeth1;

or

var = TestMeth1(h);

While the following syntax is correct, its use is discouraged:

var = invoke(h,'TestMeth1');

Now consider the server called MyApp1 with the following methods:

HRESULT TestMeth1 ([out, retval] double* dret);
HRESULT TestMeth2 ([in] double* d, [out, retval] double* dret);
HRESULT TestMeth3 ([out] BSTR* sout,

[in, out] double* dinout,
[in, out] BSTR* sinout,
[in] short sh,
[out] long* ln,
[in, out] float* b1,
[out, retval] double* dret);

8-103

8 COM Support in MATLAB (Windows Only)

Type the commands:

h = actxserver('MyApp1');
h.invoke

MATLAB displays the list of methods

ans =

TestMeth1 = double TestMeth1 (handle)

TestMeth2 = double TestMeth1 (handle, double)

TestMeth3 = [double, string, double, string, int32, single] ...

TestMeth3(handle, double, string, int16, single)

TestMeth2 requires an input argument d of type double, as well as returning
a variable dret of type double. Some examples of calling TestMeth2 are

var = h.TestMeth2(5);

or

var = TestMeth2(h, 5);

TestMeth3 requires multiple input arguments, as indicated within the
parentheses on the right side of the equals sign, and returns multiple output
arguments, as indicated within the brackets on the left side of the equals sign.

[double, string, double, string, int32, single] %output arguments

TestMeth3(handle, double, string, int16, single) %input arguments

The first input argument is the required handle, followed by four input
arguments.

TestMeth3(handle, in1, in2, in3, in4)

The first output argument is the return value retval, followed by five output
arguments.

[retval, out1, out2, out3, out4, out5]

This is how the arguments map into a MATLAB command:

[dret, sout, dinout, sinout, ln, b1] = TestMeth3(handle, ...

8-104

MATLAB COM Client Support

dinout, sinout, sh, b1)

where dret is double, sout is string, dinout is double and is both an input
and an output argument, sinout is string (input and output argument), ln
is int32, b1 is single (input and output argument), handle is the handle to
the object, and sh is int16.

Examples of MATLAB as an Automation Client
This section provides examples of using MATLAB as an Automation client
with controls and servers:

• “MATLAB Sample Control” on page 8-105

• “Using MATLAB as an Automation Client” on page 8-105

• “Connecting to an Existing Excel Application” on page 8-107

• “Running a Macro in an Excel Server Application” on page 8-108

MATLAB Sample Control
MATLAB ships with a simple example COM control that draws a circle on
the screen, displays some text, and fires events when the user single- or
double-clicks on the control. Create the control by running the mwsamp.m file
in the directory, winfun\comcli, or type

h = actxcontrol('mwsamp.mwsampctrl.2', [0 0 300 300]);

This control is stored in the MATLAB bin, or executable, directory along
with the control’s type library. The type library is a binary file used by COM
tools to decipher the control’s capabilities. See the section “Writing Event
Handlers” on page 8-87 for other examples that use the mwsamp2 control.

Using MATLAB as an Automation Client
This example uses MATLAB as an Automation client and Microsoft Excel as
the server. It provides a good overview of typical functions. In addition, it is a
good example of using the Automation interface of another application:

% MATLAB Automation client example
%

8-105

8 COM Support in MATLAB (Windows Only)

% Open Excel, add workbook, change active worksheet,
% get/put array, save.

% First, open an Excel Server.
e = actxserver('excel.application');

% Insert a new workbook.
eWorkbook = e.Workbooks.Add;
e.Visible = 1;

% Make the first sheet active.
eSheets = e.ActiveWorkbook.Sheets;

eSheet1 = eSheets.get('Item', 1);
eSheet1.Activate;

% Put a MATLAB array into Excel.
A = [1 2; 3 4];
eActivesheetRange = e.Activesheet.get('Range', 'A1:B2');
eActivesheetRange.Value = A;

% Get back a range.
% It will be a cell array, since the cell range
% can contain different types of data.
eRange = e.Activesheet.get('Range', 'A1:B2');
B = eRange.Value;

% Convert to a double matrix. The cell array must contain only
% scalars.
B = reshape([B{:}], size(B));

% Now, save the workbook.
eWorkbook.SaveAs('myfile.xls');

% Avoid saving the workbook and being prompted to do so
eWorkbook.Saved = 1;
eWorkbook.Close;

% Quit Excel and delete the server.
e.Quit;

8-106

MATLAB COM Client Support

e.delete;

Note Make sure that you always close any workbooks that you add in Excel.
This can prevent potential memory leaks.

Connecting to an Existing Excel Application
You can give MATLAB access to a file that is open by another application
by creating a new COM server from the MATLAB client, and then opening
the file through this server. This example shows how to do this for an Excel
application that has a file weekly_log.xls open:

excelapp = actxserver('Excel.Application');
wkbk = excelapp.Workbooks;
wdata = wkbk.Open('d:\weatherlog\weekly_log.xls');

To see what methods are available, type

wdata.methods
Methods for class Interface.Microsoft_Excel_10.0_

Object_Library._Workbook:

AcceptAllChanges LinkInfo ReloadAs
Activate LinkSources RemoveUser

: : :
: : :

Access data from the spreadsheet by selecting a particular sheet (called 'Week
12' in the example), selecting the range of values (the rectangular area
defined by D1 and F6 here), and then reading from this range:

sheets = wdata.Sheets;
sheet12 = sheets.Item('Week 12');
range = sheet12.get('Range', 'D1', 'F6');
range.value

ans =
'Temp.' 'Heat Index' 'Wind Chill'
[78.4200] [32] [37]

8-107

8 COM Support in MATLAB (Windows Only)

[69.7300] [27] [30]
[77.6500] [17] [16]
[74.2500] [-5] [0]
[68.1900] [22] [35]

wkbk.Close;
excelapp.Quit;

Running a Macro in an Excel Server Application
In the example below, MATLAB runs Microsoft Excel in a COM server and
invokes a macro that has been defined within the active Excel spreadsheet
file. The macro, init_last, takes no input parameters and is called from the
MATLAB client using the statement

handle.ExecuteExcel4Macro('!macroname()');

Start the example by opening the spreadsheet file and recording a macro. The
macro used here simply sets all items in the last column to zero. Save your
changes to the spreadsheet.

Next, in MATLAB, create a COM server running an Excel application, and
open the spreadsheet:

h = actxserver('Excel.Application');
wkbk = h.Workbooks;
file = wkbk.Open('d:\weatherlog\weekly.xls');

Open the sheet that you want to change, and retrieve the current values in
the range of interest:

sheets = file.Sheets;
sheet12 = sheets.Item('Week 12');
range = sheet12.get('Range', 'D1', 'F5');
range.Value
ans =

[78] [32] [37]
[69] [27] [30]
[77] [17] [16]
[74] [-5] [-1]
[68] [22] [35]

8-108

MATLAB COM Client Support

Now execute the macro, and verify that the values have changed as expected:

h.ExecuteExcel4Macro('!init_last()');
range.Value
ans =

[78] [32] [0]
[69] [27] [0]
[77] [17] [0]
[74] [-5] [0]
[68] [22] [0]

MATLAB COM Client Demo
MATLAB includes a demo illustrating the use of the COM Client with
MATLAB. To run the demo, click the Demos tab in the MATLAB Help
browser. Click to expand the folder called External Interfaces and select
Programming with COM.

8-109

8 COM Support in MATLAB (Windows Only)

Additional COM Client Information

In this section...

“Using COM Collections” on page 8-110

“Using MATLAB as a DCOM Client” on page 8-111

“MATLAB COM Support Limitations” on page 8-111

Using COM Collections
COM collections are a way to support groups of related COM objects that can
be iterated over. A collection is itself a special interface with a Count property
(read only), which contains the number of items in the collection, and an Item
method, which allows you to retrieve a single item from the collection.

The Item method is indexed, which means that it requires an argument that
specifies which item in the collection is being requested. The data type of the
index can be any data type that is appropriate for the particular collection
and is specific to the control or server that supports the collection. Although
integer indices are common, the index could just as easily be a string value.
Often, the return value from the Item method is itself an interface. Like all
interfaces, this interface should be released when you are finished with it.

This example iterates through the members of a collection. Each member of
the collection is itself an interface (called Plot and represented by a MATLAB
COM object called hPlot.) In particular, this example iterates through a
collection of Plot interfaces, invokes the Redraw method for each interface,
and then releases each interface:

hCollection = hControl.Plots;
for i = 1:hCollection.Count

hPlot = hCollection.invoke('Item', i);
hPlot.Redraw;
hPlot.release;

end;
hCollection.release;

8-110

Additional COM Client Information

Using MATLAB as a DCOM Client
Distributed Component Object Model (DCOM) is a protocol that allows clients
to use remote COM objects over a network. Additionally, MATLAB can be
used as a DCOM client with remote Automation servers if the operating
system on which MATLAB is running is DCOM enabled.

Note If you use MATLAB as a remote DCOM server, all MATLAB windows
appears on the remote machine.

MATLAB COM Support Limitations
The following is a list of limitations of MATLAB COM support:

• MATLAB only supports indexed collections.

• COM controls are not printed with figure windows.

• “Unsupported Data Types” on page 8-98

8-111

8 COM Support in MATLAB (Windows Only)

MATLAB COM Automation Server Support

In this section...

“Introduction” on page 8-112

“Creating the MATLAB Server” on page 8-112

“Connecting to an Existing MATLAB Server” on page 8-115

Introduction
Automation is a COM protocol that allows one application (the controller)
to control objects exported by another application (the server). MATLAB
on Microsoft Windows supports COM Automation server capabilities. Any
Windows program that can be configured as an Automation controller can
control MATLAB. Some examples of applications that can be Automation
controllers are Microsoft Excel, Microsoft Access, Microsoft Project, and many
Visual Basic and Visual C++ programs.

Note If you plan to build your client application using C, C++, or Fortran, we
recommend you use MATLAB Engine instead of an Automation server.

Creating the MATLAB Server
A controller needs a programmatic identifier (ProgID) to identify the server.
MATLAB’s ProgID is matlab.application.

Exactly how you create an Automation server depends on the controller you
are using. Consult your controller’s documentation for this information.

If your controller is a MATLAB application, you can create the Automation
server using actxserver:

h = actxserver('matlab.application')
h =

COM.matlab.application

8-112

MATLAB COM Automation Server Support

This command automatically creates the Automation server. You can also
create the server manually. See “Creating the Server Manually” on page
8-122.

Shared and Dedicated Servers
The MATLAB Automation server has two modes:

• Shared — One or more client applications connect to the same MATLAB
server. The server is shared between all clients.

• Dedicated — Each client application creates its own dedicated MATLAB
server.

If you use matlab.application as your ProgID, MATLAB creates a shared
server. See “Specifying a Shared or Dedicated Server” on page 8-123.

Startup Directory
The Automation server starts up in the matlabroot\bin\win32 directory. If
this is not the startup directory, the newly created server does not run the
MATLAB startup file (startup.m) and does not have access to files in that
directory.

To access files in the startup directory, do one of the following:

• Set the server’s working directory to the startup directory (using cd) and
add the startup directory to the server’s MATLAB path (using addpath).

• Include the path name to the startup directory when referencing those files.

Get the Status of a MATLAB Automation Server
Using the enableservice function you can learn the current state of a
MATLAB Automation server. The function returns a logical value, where
logical 1 (true) means MATLAB is an Automation server and logical 0 (false)
means MATLAB is not an Automation server.

For example, if you type

enableservice('AutomationServer')

8-113

8 COM Support in MATLAB (Windows Only)

and MATLAB displays:

ans =

1

then MATLAB is currently an Automation server.

Creating a MATLAB Automation Server from Visual Basic .NET
If you are using a Visual Basic client application to access a MATLAB
Automation server, you can start the server using one of the following two
methods:

• New MLApp.MLApp

• CreateObject

The first method requires you to reference the MATLAB type library in your
Visual Basic project. By using the Object Browser of your Visual Basic
client application you can see what methods are available from a MATLAB
Automation server. Use the following procedure to reference the MATLAB
Application Type Library:

1 Select the Project menu.

2 Select Reference from the subsequent menu.

3 Check the box next to the MATLAB Application Type Library.

4 Click OK.

Start the server with the following code:

Matlab = New MLApp.MLApp

View MATLAB automation methods from the Visual Basic Object Browser
under the Library called MLAPP.

Alternatively, use the following code to start the server:

MatLab = CreateObject("Matlab.Application")

8-114

MATLAB COM Automation Server Support

Connecting to an Existing MATLAB Server
It is not always necessary to create a new instance of a MATLAB server
whenever your application needs some task done in MATLAB. Clients
can connect to an existing MATLAB Automation server using the
actxGetRunningServer function or by using a command similar to the Visual
Basic .NET GetObject command.

Using Visual Basic .NET
The Visual Basic .NET command shown here returns a handle h to the
MATLAB server application:

h = GetObject(, "matlab.application")

Note It is important to use the syntax shown above to connect to an existing
MATLAB Automation server. Omit the first argument, and make sure the
second argument is as shown.

The following Visual Basic .NET example connects to an existing MATLAB
server, then executes a plot command in the server. If you do not already have
a MATLAB server running, create one following the instructions in “Creating
a MATLAB Automation Server from Visual Basic .NET” on page 8-114.

Dim h As Object
h = GetObject(, "matlab.application")

' Handle h should be valid now. Test it by calling Execute.
h.Execute ("plot([0 18], [7 23])")

8-115

8 COM Support in MATLAB (Windows Only)

MATLAB Automation Server Functions and Properties

In this section...

“Introduction” on page 8-116

“Executing Commands in the MATLAB Server” on page 8-116

“Date Data Type” on page 8-118

“Exchanging Data with the Server” on page 8-119

“Controlling the Server Window” on page 8-120

“Terminating the Server Process” on page 8-120

“Client-Specific Information” on page 8-120

“Using the Visible Property” on page 8-121

Introduction
As an Automation server, MATLAB provides functions and properties
to enable an Automation controller to manipulate data in the MATLAB
workspace. MATLAB can be both a controller and a server. The examples
in this section use a MATLAB M-file as the client application. “Examples
of a MATLAB Automation Server” on page 8-125 shows you how to access
MATLAB from other applications.

This section explains how to call functions in the MATLAB Automation server
and how to use properties that affect the server. These are shown in the
following tables and are described in individual function reference pages.

For a complete list of these functions, see “Component Object Model and
ActiveX” in the MATLAB Function Reference documentation.

Executing Commands in the MATLAB Server
The client program can execute commands in the MATLAB server using
these functions.

8-116

MATLAB Automation Server Functions and Properties

Function Description

Execute Execute MATLAB command in server

Feval Evaluate MATLAB command in server

Using Execute
Use Execute when you want the MATLAB server to execute a command that
can be expressed in a single string:

h = actxserver('matlab.application');

h.PutWorkspaceData('A', 'base', rand(6))
h.Execute('A(4:6,:) = [];'); % remove rows 4-6
B = h.GetWorkspaceData('A', 'base')
B =

0.6208 0.2344 0.6273 0.3716 0.7764 0.7036
0.7313 0.5488 0.6991 0.4253 0.4893 0.4850
0.1939 0.9316 0.3972 0.5947 0.1859 0.1146

Using Feval
Use Feval when you want the server to execute commands that you cannot
express in a single string. The following example uses variables defined in the
client, rows and cols, to modify the server.

This is a continuation of the example above:

rows = 6; cols = 3;
h.Feval('reshape', 0, 'A=', rows, cols);

MATLAB interprets A in the expression 'A=' as a server variable name.

The reshape operation in the statement above does not make an assignment
to the server variable A; it is equivalent to the following MATLAB statement:

reshape(A,6,3)

which returns a result, but does not assign the new array. If you get the
variable A from the server, it is unchanged:

8-117

8 COM Support in MATLAB (Windows Only)

B = h.GetWorkspaceData('A', 'base')
B =

0.6208 0.2344 0.6273 0.3716 0.7764 0.7036
0.7313 0.5488 0.6991 0.4253 0.4893 0.4850
0.1939 0.9316 0.3972 0.5947 0.1859 0.1146

Use the Feval method returned value to get the result of this type of operation.
For example, the following statement reshapes the server-side array A and
returns the result of this MATLAB operation in the client-side variable a.

a = h.Feval('reshape', 1, 'A=', rows, cols);

The Feval method returns a cell array:

a{:}
ans =

0.6208 0.6273 0.7764
0.7313 0.6991 0.4893
0.1939 0.3972 0.1859
0.2344 0.3716 0.7036
0.5488 0.4253 0.4850
0.9316 0.5947 0.1146

Date Data Type
When you need to pass a VT_DATE type input to a Visual Basic program
or an ActiveX control method, you can use the MATLAB class COM.date.
For example:

d = COM.date(2005,12,21,15,30,05);
get(d)

Value: 7.3267e+005
String: '12/21/2005 3:30:05 PM'

You can use now to set the Value property to a date number:

d.Value = now;

8-118

MATLAB Automation Server Functions and Properties

Exchanging Data with the Server
MATLAB provides functions to read and write data to any workspace of a
MATLAB server. In these commands, pass the name of the variable to read or
write, and the name of the workspace holding that data.

Function Description

GetCharArray Get character array from server

GetFullMatrix Get matrix from server

GetWorkspaceData Get any type of data from server

PutCharArray Store character array in server

PutFullMatrix Store matrix in server

PutWorkspaceData Store any type of data in server

The Get/PutCharArray functions read and write string values to the
MATLAB server.

The Get/PutFullMatrix functions pass data as a SAFEARRAY data type. You
can use these functions with any client that supports the SAFEARRAY type.
This includes MATLAB and Visual Basic clients.

The Get/PutWorkspaceData functions pass data as a variant data type.
Use these functions with any client that supports the variant type. These
functions are especially useful for VBScript clients because VBScript does
not support the SAFEARRAY data type.

In this example, write a string to variable str in the base workspace of the
MATLAB server and read it back to the client:

h = actxserver('matlab.application');
h.PutCharArray('str', 'base', ...

'He jests at scars that never felt a wound.');

S = h.GetCharArray('str', 'base')
S =

He jests at scars that never felt a wound.

8-119

8 COM Support in MATLAB (Windows Only)

Controlling the Server Window
These functions enable you to make the server window visible or to minimize
it.

Function Description

MaximizeCommandWindow Display server window on Windows desktop

MinimizeCommandWindow Minimize size of server window

In this example, create a COM server running MATLAB and minimize it:

h = actxserver('matlab.application');
h.MinimizeCommandWindow;

Terminating the Server Process
When you are finished with the MATLAB server, use these functions to quit
the MATLAB session and terminate the server process.

Function Description

Quit Quit the MATLAB session

delete Terminate MATLAB server process

To quit MATLAB, type

h.Quit;

To terminate the server process, type

h.delete;

Client-Specific Information
This section provides information specific to MATLAB and Visual Basic .NET
clients only.

For MATLAB Clients
To see a summary of all functions along with the required syntax, use the
invoke function as follows:

8-120

MATLAB Automation Server Functions and Properties

handle = actxserver('matlab.application');
handle.invoke

For Visual Basic .NET Clients
Data types for the arguments and return values of the server functions are
expressed as Automation data types, which are language-independent types
defined by the Automation protocol.

For example, BSTR is a wide-character string type defined as an Automation
type, and is the same data format used by Visual Basic to store strings. Any
COM-compliant controller should support these data types, although the
details of how you declare and manipulate these are controller specific.

Using the Visible Property
You have the option of making MATLAB visible or not by setting the Visible
property. When visible, MATLAB appears on the desktop, enabling the user to
interact with it. This might be useful for such purposes as debugging. When
not visible, the MATLAB window does not appear, thus perhaps making for a
cleaner interface and also preventing any interaction with the application.

By default, the Visible property is enabled, or set to 1:

h = actxserver('matlab.application');
h.Visible
ans =

1

You can change the Visible property by setting it to 0 (invisible) or 1 (visible).
The following command removes the server application window from the
desktop:

h.Visible = 0;
h.Visible
ans =

0

8-121

8 COM Support in MATLAB (Windows Only)

Additional Automation Server Information

In this section...

“Creating the Server Manually” on page 8-122

“Specifying a Shared or Dedicated Server” on page 8-123

“Using MATLAB as a DCOM Server” on page 8-123

Creating the Server Manually
An Automation server is created automatically by Windows when a controller
application first establishes a server connection. Alternatively, you may choose
to create the server manually, prior to starting any of the client processes.

To manually create a MATLAB server, use the /Automation switch in the
MATLAB startup command. You can do this from the DOS command line
by typing

matlab /Automation

Alternatively, you can add this switch every time you run MATLAB, as follows:

1 Right-click the MATLAB shortcut icon

and select Properties from the context menu. The Properties dialog box
for matlab.exe opens to the Shortcut tab.

2 In the Target field, add /Automation to the end of the target path for
matlab.exe. Be sure to include a space between the file name and the
symbol /. For example:

"C:\Program Files\MATLAB\R2006a\bin\win32\MATLAB.exe /Automation"

Note When Windows automatically creates a MATLAB server, it too uses the
/Automation switch. In this way, MATLAB servers are differentiated from
other MATLAB sessions. This protects controllers from interfering with any
interactive MATLAB sessions that may be running.

8-122

Additional Automation Server Information

Specifying a Shared or Dedicated Server
You can start the MATLAB Automation server in one of two modes – shared
or dedicated. A dedicated server is dedicated to a single client; a shared server
is shared by multiple clients. The mode is determined by the programmatic
identifier (ProgID) used by the client to start MATLAB.

Starting a Shared Server
The ProgID, matlab.application, specifies the default mode, which is shared.
You can also use the version-specific ProgID, matlab.application.N.M,
where N is the major version and M is the minor version of your MATLAB. For
example, use N = 7 and M = 4 for MATLAB 7.4.

Once MATLAB is started as a shared server, all clients that request a
connection to MATLAB using the shared server ProgID connect to the already
running instance of MATLAB. In other words, there is never more than one
instance of a shared server running, since it is shared by all clients that use
the shared server ProgID.

Starting a Dedicated Server
To specify a dedicated server, use the ProgID, matlab.application.single,
(or the version-specific ProgID, matlab.application.single.N.M).

Each client that requests a connection to MATLAB using a dedicated ProgID
creates a separate instance of MATLAB; it also requests the server not be
shared with any other client. Therefore, there can be several instances of a
dedicated server running simultaneously, since the dedicated server is not
shared by multiple clients.

Using MATLAB as a DCOM Server
Distributed Component Object Model (DCOM) is a protocol that allows COM
connections to be established over a network. If you are using a version of
Windows that supports DCOM and a controller that supports DCOM, you can
use the controller to start a MATLAB server on a remote machine.

To do this, DCOM must be configured properly, and MATLAB must be
installed on each machine that is used as a client or server. (Even though the
client machine may not be running MATLAB in such a configuration, the

8-123

8 COM Support in MATLAB (Windows Only)

client machine must have a MATLAB installation because certain MATLAB
components are required to establish the remote connection.) Consult the
DCOM documentation for how to configure DCOM for your environment.

8-124

Examples of a MATLAB Automation Server

Examples of a MATLAB Automation Server

In this section...

“Example — Running an M-File from Visual Basic .NET” on page 8-125

“Example — Viewing Methods from a Visual Basic .NET Client” on page
8-126

“Example — Calling MATLAB from a Web Application” on page 8-126

“Example — Calling MATLAB from a C# Client” on page 8-129

Example — Running an M-File from Visual Basic .NET
This example calls a user-defined M-file function named solve_bvp from a
Visual Basic client application through a COM interface. It also plots a graph
in a new MATLAB window and performs a simple computation:

Dim MatLab As Object
Dim Result As String
Dim MReal(1, 3) As Double
Dim MImag(1, 3) As Double

MatLab = CreateObject("Matlab.Application")

'Calling m-file from VB
'Assuming solve_bvp exists at specified location
Result = MatLab.Execute("cd d:\matlab\work\bvp")
Result = MatLab.Execute("solve_bvp")

'Executing other MATLAB commands
Result = MatLab.Execute("surf(peaks)")
Result = MatLab.Execute("a = [1 2 3 4; 5 6 7 8]")
Result = MatLab.Execute("b = a + a ")
'Bring matrix b into VB program
MatLab.GetFullMatrix("b", "base", MReal, MImag)

8-125

8 COM Support in MATLAB (Windows Only)

Example — Viewing Methods from a Visual Basic
.NET Client
You can find out what methods are available from a MATLAB Automation
server using the Object Browser of your Visual Basic client application. To do
this, follow this procedure in the client application to reference the MATLAB
Application Type Library:

1 Select the Project menu.

2 Select Reference from the subsequent menu.

3 Check the box next to the MATLAB Application Type Library.

4 Click OK.

This enables you to view MATLAB Automation methods from the Visual
Basic Object Browser under the Library called MLAPP. You can also see a list of
MATLAB Automation methods when you use the term Matlab followed by a
period. For example:

Dim Matlab As MLApp.MLApp
Private Sub View_Methods()
Matlab = New MLApp.MLApp
'The next line shows a list of MATLAB Automation methods
Matlab.
End Sub

Example — Calling MATLAB from a Web Application
This example shows you how to create a Web page
that uses MATLAB as an Automation server. For
another example using ASP.NET, see Technical Support solution 1–3JJZWN at
http://www.mathworks.com/support/solutions/data/1-3JJZWN.html?solution=1-3J

You can invoke MATLAB as an Automation server from any language that
supports COM, so for Web applications, you can use VBScript and JavaScript.
While this example is simple, it illustrates techniques for passing commands
to MATLAB and writing data to and retrieving data from the MATLAB
workspace. See “Exchanging Data with the Server” on page 8-119 for related
functions.

8-126

http://www.mathworks.com/support/solutions/data/1-3JJZWN.html?solution=1-3JJZWN

Examples of a MATLAB Automation Server

VBScript and HTML forms are combined in this example to create an
interface that enables the user to select a MATLAB plot type from a pull-down
menu, click a button, and create the plot in a MATLAB figure window. To
accomplish this, the HTML file contains code that:

• Starts MATLAB as an Automation server via a VBScript.

• When users click a button on the HTML page, a VBScript executes that:

a Determines the type of plot selected.

b Forms a command string to create the type of plot selected.

c Forms a string describing the type of plot selected, which passes to the
MATLAB base workspace in a variable.

d Executes the MATLAB command.

e Retrieves the descriptive string from the MATLAB workspace.

f Updates the text box on the HTML page.

Here is the HTML used to create this example:

<HTML>

<HEAD>

<TITLE>Example of calling MATLAB from VBScript</TITLE>

</HEAD>

<BODY>

Example of calling MATLAB from VBScript

<!-- %%%%%%%%%%%%%%%%%%%% BEGIN SCRIPT %%%%%%%%%%%%%%%%%%%% -->

<SCRIPT LANGUAGE="VBScript">

<!-- Invoke MATLAB as a COM Automation server upon loading page

' Initialize global variables

Dim MatLab 'COM Automation server variable

Dim MLcmd 'string to send to MATLAB for execution

' Invoke COM Automation server

Set MatLab = CreateObject("Matlab.Application")

' End initialization script -->

</SCRIPT>

8-127

8 COM Support in MATLAB (Windows Only)

<!-- %%%%%%%%%%%%%%%%%%%% END SCRIPT %%%%%%%%%%%%%%%%%%%% -->

<!-- Create form to contain controls -->

<FORM NAME="Form">

<!-- Create pulldown menu to select which plot to view -->

<P>Select type of plot:

<SELECT NAME=plot_choice>

<OPTION SELECTED VALUE=first>Line</OPTION>

<OPTION VALUE=second>Peaks</OPTION>

<OPTION VALUE=third>Logo</OPTION>

</SELECT>

<!-- Create button to create plot and fill text area -->

<P>Create figure:

<INPUT TYPE="button" NAME="plot_but" VALUE="Plot">

<!-- %%%%%%%%%%%%%%%%%%%% BEGIN SCRIPT %%%%%%%%%%%%%%%%%%%% -->

<SCRIPT FOR="plot_but" EVENT="onClick" LANGUAGE="VBScript">

<!-- Start script

Dim plot_choice

Dim text_str 'string to display in text area

Dim form_var 'form object variable

Set form_var = Document.Form

plot_choice = form_var.plot_choice.value

' Condition MATLAB command to execute based on plot choice

If plot_choice = "first" Then

MLcmd = "figure; plot(1:10);"

text_str = "Simple line plot of 1 to 10"

Call MatLab.PutCharArray("text","base",text_str)

Elseif plot_choice = "second" Then

MLcmd = "figure; mesh(peaks);"

text_str = "Mesh plot of peaks"

Call MatLab.PutCharArray("text","base",text_str)

Elseif plot_choice = "third" Then

MLcmd = "figure; logo;"

text_str = "MATLAB logo"

Call MatLab.PutCharArray("text","base",text_str)

End If

' Execute command in MATLAB

MatLab.execute(MLcmd)

' Get variable from MATLAB into VBScript

8-128

Examples of a MATLAB Automation Server

Call MatLab.GetWorkspaceData("text","base","text_str")

' Update text area

form_var.plottext.value = text_str

' End script -->

</SCRIPT>

<!-- %%%%%%%%%%%%%%%%%%%% END SCRIPT %%%%%%%%%%%%%%%%%%%% -->

<!-- Create text area to show text -->

<P><TEXTAREA NAME="plottext" ROWS="1" COLS="50"

CONTENTEDITABLE="false"></TEXTAREA>

</FORM>

</BODY>

</HTML>

Example — Calling MATLAB from a C# Client
This example creates data in the client C# program and passes it to MATLAB.
The matrix (containing complex data) is then passed back to the C# program.

The reference to the MATLAB Type Library for C# is:

MLApp.MLAppClass matlab = new MLApp.MLAppClass();

Here is the complete example:

using System;
namespace ConsoleApplication4
{
class Class1
{
[STAThread]
static void Main(string[] args)
{
MLApp.MLAppClass matlab = new MLApp.MLAppClass();

System.Array pr = new double[4];
pr.SetValue(11,0);
pr.SetValue(12,1);
pr.SetValue(13,2);
pr.SetValue(14,3);

8-129

8 COM Support in MATLAB (Windows Only)

System.Array pi = new double[4];
pi.SetValue(1,0);
pi.SetValue(2,1);
pi.SetValue(3,2);
pi.SetValue(4,3);

matlab.PutFullMatrix("a", "base", pr, pi);

System.Array prresult = new double[4];
System.Array piresult = new double[4];

matlab.GetFullMatrix("a", "base", ref prresult, ref piresult);
}
}
}

8-130

9

Web Services in MATLAB

What Are Web Services in MATLAB?
(p. 9-2)

Introduction to Web services in
MATLAB

Using Web Services in MATLAB
(p. 9-7)

Learn how to use Web services in
MATLAB

Building MATLAB Applications with
Web Services (p. 9-11)

Learn more about building MATLAB
applications with Web services

9 Web Services in MATLAB

What Are Web Services in MATLAB?

In this section...

“Introduction” on page 9-2

“Web Service Examples” on page 9-2

“Understanding Data Type Conversions” on page 9-5

“Finding More Information About Web Services” on page 9-6

Introduction
The term Web service encompasses a set of XML-based technologies for
making remote procedure calls over a network. The network can be a local
intranet within an organization or a remote server on the other side of the
globe. In short, Web services let applications running on disparate operating
systems and development platforms communicate with each other.

MATLAB acts as a Web service client by sending requests to a server and
handling the responses. MATLAB implements the following Web service
technologies:

• Simple Object Access Protocol (SOAP)

• Web Services Description Language (WSDL)

SOAP defines a standard for making XML-based exchanges between clients
and servers. The client initiates the client/server interaction, which usually
takes place over HTTP. When the server receives the request, which includes
the operation to be performed and any necessary parameters, it sends back
a response.

Web Service Examples
The following example shows a simple HTTP-based SOAP request for
retrieving the local temperature by zip code:

<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope

xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

9-2

What Are Web Services in MATLAB?

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<soapenv:Body>
<ns1:getTemp

xmlns:ns1="urn:xmethods-Temperature-Demo"
soapenv:encodingStyle=

"http://schemas.xmlsoap.org/soap/encoding/">
<zipcode xsi:type="xsd:string">94041</zipcode>

</ns1:getTemp>
</soapenv:Body>

</soapenv:Envelope>

The SOAP protocol defines an envelope, and inside the envelope, defines
a message body. Also, inside the message body, the SOAP method
getTempRequest is specified, as well as the zipcode parameter.

In the response sent by the server, notice that the SOAP message structure is
similar:

<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope

xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<soapenv:Body>
<ns1:getTempResponse

xmlns:ns1="urn:xmethods-Temperature-Demo"
soapenv:encodingStyle=

"http://schemas.xmlsoap.org/soap/encoding/">
<return xsi:type="xsd:float">68.0</return>

</ns1:getTempResponse>
</soapenv:Body>

</soapenv:Envelope>

In the code, SOAP defines the envelope and message body as well as the
response (return).

Most SOAP implementations use WSDL, an XML-based language, to describe
and locate available services. The following example shows the message and

9-3

9 Web Services in MATLAB

service definitions of the WSDL file for the temperature service from the
previous examples:

<?xml version="1.0" encoding="UTF-8"?>

<definitions name="TemperatureService"

targetNamespace=

"http://www.xmethods.net/sd/TemperatureService.wsdl"

xmlns:tns=

"http://www.xmethods.net/sd/TemperatureService.wsdl"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns="http://schemas.xmlsoap.org/wsdl/">

<message name="getTempRequest">

<part name="zipcode" type="xsd:string"/>

</message>

<message name="getTempResponse">

<part name="return" type="xsd:float"/>

</message>

<portType name="TemperaturePortType">

<operation name="getTemp">

<input message="tns:getTempRequest"/>

<output message="tns:getTempResponse"/>

</operation>

</portType>

<binding name="TemperatureBinding"

type="tns:TemperaturePortType">

<soap:binding style="rpc"

transport="http://schemas.xmlsoap.org/soap/http"/>

<operation name="getTemp">

<soap:operation soapAction=""/>

<input>

<soap:body use="encoded"

namespace="urn:xmethods-Temperature-Demo"

encodingStyle=

"http://schemas.xmlsoap.org/soap/encoding/"/>

</input>

<output>

<soap:body use="encoded"

namespace="urn:xmethods-Temperature-Demo"

encodingStyle=

9-4

What Are Web Services in MATLAB?

"http://schemas.xmlsoap.org/soap/encoding/"/>

</output>

</operation>

</binding>

<service name="TemperatureService">

<documentation>Returns current temperature in a given U.S.

zipcode</documentation>

<port name="TemperaturePort"

binding="tns:TemperatureBinding">

<soap:address

location=

"http://services.xmethods.net:80/soap/servlet/rpcrouter"/>

</port>

</service>

</definitions>

The code defines the request and response message actions (getTempRequest
and getTempResponse) and the service name (TemperatureService).

Understanding Data Type Conversions
Using SOAP data types, MATLAB automatically converts XML data types to
native MATLAB data types and vice versa. The following table contains the
XML data type with the corresponding MATLAB data type.

XML Data Type MATLAB Data Type

string char array

boolean logical scalar

decimal double scalar

float double scalar

double double scalar

duration double scalar

time double scalar

date double scalar

gYearMonth char array

9-5

9 Web Services in MATLAB

XML Data Type MATLAB Data Type

gYear char array

gMonthDay char array

hexbinary double array

base64Binary double array

anyURI char array

QName char array

Finding More Information About Web Services
To learn more about SOAP, see the following resources:

• World Wide Web Consortium (W3C) SOAP specification

• Apache Axis Web Services

• W3 Schools SOAP Tutorial

To learn more about WSDL, see the following resources:

• W3C WSDL specification

• WSDL4J Project

• W3 Schools WSDL Tutorial

To find publicly available Web services and for more information about
popular development platforms for Web services, see the following resources:

• XMethods

• Java Web Services

• Microsoft Developer Network—Web Services

9-6

http://www.w3.org/TR/SOAP/
http://ws.apache.org/axis/
http://www.w3schools.com/soap/default.asp
http://www.w3.org/TR/wsdl
http://sourceforge.net/projects/wsdl4j
http://www.w3schools.com/wsdl/default.asp
http://www.xmethods.net/
http://java.sun.com/webservices/
http://msdn.microsoft.com/webservices/

Using Web Services in MATLAB

Using Web Services in MATLAB

In this section...

“Getting Started” on page 9-7

“Building a Simple Web Service” on page 9-7

Getting Started
In MATLAB, use the createClassFromWsdl function to call Web service
methods. The function creates a MATLAB class based on the methods of the
Web service application program interface (API).

Here is an example of the createClassFromWsdl function using a URL:

createClassFromWsdl('http://example.com/service.wsdl')

The example passes a URL to a WSDL file to the function. The following
example uses a file path instead of a URL:

createClassFromWsdl('\myservicedirectory\service.wsdl')

The example passes a relative file path to the function. Keep in mind that
the target file must contain WSDL.

Note To call remote Web services with MATLAB, you must have a working
Internet connection.

Building a Simple Web Service
The following procedure walks you through the necessary steps to build
a simple Web service. To begin, the procedure shows you how to find the
Currency Exchange Rate Web service:

1 In a Web browser, go to the XMethods Web site at
http://www.xmethods.net/.

9-7

http://www.xmethods.net/

9 Web Services in MATLAB

2 In XMethods Demo Services, click the Currency Exchange Rate link
near the bottom of the page.

3 On the Currency Exchange Rate Web page, find the WSDL URL, as well as
links to analyze the WSDL. Click the View RPC Profile link.

In the RPC Profile page, find the available methods. In this case, the
available method is getRate.

In addition to the method name, notice the input and output parameters
and their data types. The output parameter returns a float data type. In
“Understanding Data Type Conversions” on page 9-5, note that MATLAB
converts float to a double scalar.

4 Enter the following code at the MATLAB command line to pass
the WSDL URL to the functioncreateClassFromWsdl, creating the
CurrencyExchangeService class:

createClassFromWsdl(['http://www.xmethods.net/sd/2001' ...
'/CurrencyExchangeService.wsdl']);

ans =
CurrencyExchangeService

Use the MATLAB methods function to view the methods associated with
the CurrencyExchangeService class:

methods(CurrencyExchangeService)

Methods for class CurrencyExchangeService:

CurrencyExchangeService getRate display

5 In the current MATLAB directory, find the @CurrencyExchangeService
folder. In the folder, you see the following files:

• CurrencyExchangeService.m — Contains the M-code for MATLAB
object constructor

• display.m — Contains the M-code for a generic display method

• getRate.m — Contains the M-code for the getRate method

9-8

Using Web Services in MATLAB

The createClassFromWsdl function automatically creates a file for each
Web service method, a file for a generic display method, and a file for the
Web service MATLAB object.

You can use the MATLAB help function to see the method signature,
such as

help CurrencyExchangeService/getRate

getRate(obj,country1,country2)

Input:
country1 = (string)
country2 = (string)

Output:
Result = (float)

6 Call the getRate method to obtain the exchange rate between two countries.

ces = CurrencyExchangeService;

getRate(ces, 'USA', 'France')
ans =

5.1127

getRate(ces, 'Argentina', 'Chile')
ans =

172.3052

To review, the createClassFromWsdl function performs the following actions:

• Fetches and parses the WSDL to determine the Web service API

• Creates a folder, such as @CurrencyExchangeService, in the current
MATLAB directory

• Creates the necessary M files in the directory, such as getRate.m,
display.m, and CurrencyExchangeService.m, based on the service API

9-9

9 Web Services in MATLAB

For more information about object-oriented programming in MATLAB, see
the MATLAB Programming documentation.

9-10

Building MATLAB Applications with Web Services

Building MATLAB Applications with Web Services

In this section...

“Understanding Web Service Limitations” on page 9-11

“Programming with Web Services” on page 9-11

“Simple M-File Example” on page 9-12

Understanding Web Service Limitations
At the time of this writing, Web service technologies continue to evolve and
change. The following list contains possible limitations to consider before
building MATLAB applications with Web services:

• The majority of Web services are made available via HTTP. Like the
Internet itself, quality of service cannot be guaranteed. Therefore, your
application performance might suffer or might appear unreliable.

• Web services and the related technologies like WSDL and SOAP are
relatively new. As with any new technology, established procedures and
best practices are still being written.

• If you plan to call remote Web services, make sure you validate their
accuracy and reliability. Also, Web services that are free today might not
remain free in the future.

Programming with Web Services
Because the Internet is inherently unpredictable, make sure to take proper
precautions in programming with Web services. One way to minimize the risk
is to use common program control and error-handling routines.

Common programming techniques you might use include

• Try - Catch statements can catch errors that result from method calls as
well as creating the MATLAB class from the WSDL. The following example
shows a method call in a try - catch statement:

9-11

9 Web Services in MATLAB

try
r = getRate(CurrencyExchangeService, 'USA', 'France');

catch
r = Nan;
disp(lasterr);

end

• If statements can check that expressions or statements are true or false.
The following example uses an if statement to cache the WSDL locally:

% Note: Code contains line breaks for formatting
wsdlUrl = ['http://www.xmethods.net/sd/2001' ...

'/CurrencyExchangeService.wsdl'];
wsdlFile = 'CurrencyExchangeService.wsdl';
if ~(exist(wsdlFile,'file') == 2)

urlwrite(wsdlUrl,wsdlFile);
end

• Error functions can be used to throw specific errors. The following example
shows an error function used in an try - catch statement:

try
r = getRate(CurrencyExchangeService, 'USA', 'France');

catch
error('Could not return exchange rate');

end

For more information about program control and error-handling statements,
see the MATLAB Programming documentation.

Simple M-File Example
The following M-file example provides a simple demonstration of programming
with Web services. The script takes an array of country name strings and
uses the Currency Exchange Rate Web service to return the rates of exchange
between each pair of countries. It then runs the max, and min functions on the
exchange rates:

% Note: Code contains line breaks for formatting
% Create a cell array with the country names:

9-12

Building MATLAB Applications with Web Services

C = { ...
'USA', 'France'; ...
'Argentina', 'Chile'; ...
'Morocco', 'Portugal'; ...
'Germany', 'Denmark'};

% Create empty array to contain exchange rate output
rates = {};

wsdlUrl = ['http://www.xmethods.net/sd/2001' ...
'/CurrencyExchangeService.wsdl'];

wsdlFile = 'CurrencyExchangeService.wsdl';
if ~(exist(wsdlFile, 'file') == 2)

urlwrite(wsdlUrl, wsdlFile);
end

% Catch errors during class creation
try

% Create class from WSDL
createClassFromWsdl(wsdlFile);

catch
% Throw error
error('Unable to create WSDL class');

end

ces = CurrencyExchangeService;

% Iterate through the country array
count = length(C);
for x = 1:count

try
% Call the getRate method
r = getRate(ces, C{x,:});

catch
% Throw error
r = NaN;
warning(lasterr);

end
% Concatenate exchange rates to array
rates = horzcat(rates, r);

9-13

9 Web Services in MATLAB

end

for x = 1:count
disp(['Exchange rate for ' C{x,1} ' and ' C{x,2} ':'])
disp(rates{x})

end
disp(' ')

% Display highest rate
disp('Highest exchange rate:');
disp(max([rates{:}]));
disp(' ')

% Display lowest rate
disp('Lowest exchange rate:');
disp(min([rates{:}]));

9-14

10

Serial Port I/O

Introduction (p. 10-3) Serial port capabilities, supported
interfaces, and supported platforms

Overview of the Serial Port (p. 10-5) The serial port interface standard,
signals and pin assignments, the
serial data format, and finding serial
port information for your platform

Getting Started with Serial I/O
(p. 10-19)

Examples to help you get started
with the serial port interface

Creating a Serial Port Object
(p. 10-26)

Create a MATLAB object that
represents the serial I/O device

Connecting to the Device (p. 10-30) Establish a connection between
MATLAB and the serial I/O device

Configuring Communication
Settings (p. 10-31)

Set values for the baud rate and the
serial data format

Writing and Reading Data (p. 10-32) Write data to the device and read
data from the device

Events and Callbacks (p. 10-51) Enhance your serial I/O application
by using events and callbacks

Using Control Pins (p. 10-60) Signal the presence of connected
devices and control the flow of data

Debugging: Recording Information
to Disk (p. 10-66)

Save transferred data and event
information to disk

Saving and Loading (p. 10-72) Save and load serial port objects

10 Serial Port I/O

Disconnecting and Cleaning Up
(p. 10-74)

Disconnect the serial port object
from the device, and remove the
object from memory and from the
workspace

Property Reference (p. 10-76) Properties grouped by category

Properties — Alphabetical List
(p. 10-80)

10-2

Introduction

Introduction

In this section...

“What Is the MATLAB Serial Port Interface?” on page 10-3

“Supported Serial Port Interface Standards” on page 10-4

“Supported Platforms” on page 10-4

“Using the Examples with Your Device” on page 10-4

What Is the MATLAB Serial Port Interface?
The MATLAB serial port interface provides direct access to peripheral devices
such as modems, printers, and scientific instruments that you connect to
your computer’s serial port. This interface is established through a serial
port object. The serial port object supports functions and properties that
allow you to

• Configure serial port communications

• Use serial port control pins

• Write and read data

• Use events and callbacks

• Record information to disk

Additional serial port functionality is available by using Instrument Control
Toolbox. In addition to command-line access, Instrument Control Toolbox
provides a graphical tool called the Test & Measurement Tool, which allows
you to communicate with, configure, and transfer data with your serial device
without writing code. The Test & Measurement Tool generates MATLAB
code for your serial device that you can later reuse to communicate with your
device or to develop GUI-based applications. Instrument Control Toolbox also
includes additional serial I/O utility functions that facilitate object creation
and configuration, instrument communication, and so on. Instrument
Control Toolbox also lets you communicate with GPIB- or VISA-compatible
instruments.

10-3

10 Serial Port I/O

If you want to communicate with PC-compatible data acquisition hardware
such as multifunction I/O boards, you need Data Acquisition Toolbox.

For more information about these products, visit the MathWorks Web site at
http://www.mathworks.com/products.

Supported Serial Port Interface Standards
Over the years, several serial port interface standards have been developed.
These standards include RS-232, RS-422, and RS-485 - all of which are
supported by the MATLAB serial port object. Of these, the most widely used
interface standard for connecting computers to peripheral devices is RS-232.

This guide assume you are using the RS-232 standard, which is discussed in
“Overview of the Serial Port” on page 10-5. Refer to your computer and device
documentation to see which interface standard you can use.

Supported Platforms
The MATLAB serial port interface is supported on Microsoft Windows 32-bit,
Linux 32-bit, and Sun Solaris 64-bit platforms.

Using the Examples with Your Device
Many of the examples in this section reflect specific peripheral devices
connected to a PC serial port — in particular a Tektronix TDS 210 two-channel
oscilloscope connected to the COM1 port. Therefore, many of the string
commands are specific to this instrument.

If your peripheral device is connected to a different serial port, or if it accepts
different commands, modify the examples accordingly.

10-4

http://www.mathworks.com/products

Overview of the Serial Port

Overview of the Serial Port

In this section...

“Introduction” on page 10-5

“What Is Serial Communication?” on page 10-5

“The Serial Port Interface Standard” on page 10-5

“Connecting Two Devices with a Serial Cable” on page 10-6

“Serial Port Signals and Pin Assignments” on page 10-7

“Serial Data Format” on page 10-11

“Finding Serial Port Information for Your Platform” on page 10-16

“Selected Bibliography” on page 10-18

Introduction
For many serial port applications, you can communicate with your device
without detailed knowledge of how the serial port works. If your application
is straightforward, or if you are already familiar with the topics mentioned
above, you might want to begin with “The Serial Port Session” on page 10-19
to see how to use your serial port device with MATLAB.

What Is Serial Communication?
Serial communication is the most common low-level protocol for
communicating between two or more devices. Normally, one device is a
computer, while the other device can be a modem, a printer, another computer,
or a scientific instrument such as an oscilloscope or a function generator.

As the name suggests, the serial port sends and receives bytes of information
in a serial fashion — one bit at a time. These bytes are transmitted using
either a binary (numerical) format or a text format.

The Serial Port Interface Standard
The serial port interface for connecting two devices is specified by the
TIA/EIA-232C standard published by the Telecommunications Industry
Association.

10-5

10 Serial Port I/O

The original serial port interface standard was given by RS-232, which stands
for Recommended Standard number 232. The term RS-232 is still in popular
use, and is used in this guide when referring to a serial communication port
that follows the TIA/EIA-232 standard. RS-232 defines these serial port
characteristics:

• The maximum bit transfer rate and cable length

• The names, electrical characteristics, and functions of signals

• The mechanical connections and pin assignments

Primary communication is accomplished using three pins: the Transmit Data
pin, the Receive Data pin, and the Ground pin. Other pins are available for
data flow control, but are not required.

Other standards such as RS-485 define additional functionality such as
higher bit transfer rates, longer cable lengths, and connections to as many as
256 devices.

Connecting Two Devices with a Serial Cable
The RS-232 standard defines the two devices connected with a serial cable
as the Data Terminal Equipment (DTE) and Data Circuit-Terminating
Equipment (DCE). This terminology reflects the RS-232 origin as a standard
for communication between a computer terminal and a modem.

Throughout this guide, your computer is considered a DTE, while peripheral
devices such as modems and printers are considered DCE’s. Many scientific
instruments function as DTEs.

Because RS-232 mainly involves connecting a DTE to a DCE, the pin
assignments are defined such that straight-through cabling is used, where
pin 1 is connected to pin 1, pin 2 is connected to pin 2, and so on. A DTE
to DCE serial connection using the transmit data (TD) pin and the receive
data (RD) pin is shown below.

10-6

Overview of the Serial Port

Refer to “Serial Port Signals and Pin Assignments” on page 10-7 for more
information about serial port pins.

If you connect two DTEs or two DCEs using a straight serial cable, the TD
pins on each device are connected to each other, and the RD pins on each
device are connected to each other. Therefore, to connect two like devices, you
must use a null modem cable. As shown below, null modem cables cross the
transmit and receive lines in the cable.

Note You can connect multiple RS-422 or RS-485 devices to a serial port. If
you have an RS-232/RS-485 adaptor, you can use the MATLAB serial port
object with these devices.

Serial Port Signals and Pin Assignments
Serial ports consist of two signal types: data signals and control signals. To
support these signal types, as well as the signal ground, the RS-232 standard
defines a 25-pin connection. However, most PCs and UNIX platforms use
a 9-pin connection. In fact, only three pins are required for serial port
communications: one for receiving data, one for transmitting data, and one
for the signal ground.

10-7

10 Serial Port I/O

The pin assignment scheme for a 9-pin male connector on a DTE is shown
below.

The pins and signals associated with the 9-pin connector are described
below. Refer to the RS-232 standard for a description of the signals and pin
assignments used for a 25-pin connector.

Serial Port Pin and Signal Assignments

Pin Label Signal Name Signal Type

1 CD Carrier Detect Control

2 RD Received Data Data

3 TD Transmitted Data Data

4 DTR Data Terminal Ready Control

5 GND Signal Ground Ground

6 DSR Data Set Ready Control

7 RTS Request to Send Control

8 CTS Clear to Send Control

9 RI Ring Indicator Control

The term data set is synonymous with modem or device, while the term data
terminal is synonymous with computer.

Note The serial port pin and signal assignments are with respect to the DTE.
For example, data is transmitted from the TD pin of the DTE to the RD pin
of the DCE.

10-8

Overview of the Serial Port

Signal States
Signals can be in either an active state or an inactive state. An active state
corresponds to the binary value 1, while an inactive state corresponds to the
binary value 0. An active signal state is often described as logic 1, on, true,
or a mark. An inactive signal state is often described as logic 0, off, false, or
a space.

For data signals, the on state occurs when the received signal voltage is more
negative than -3 volts, while the off state occurs for voltages more positive
than 3 volts. For control signals, the on state occurs when the received signal
voltage is more positive than 3 volts, while the off state occurs for voltages
more negative than -3 volts. The voltage between -3 volts and +3 volts is
considered a transition region, and the signal state is undefined.

To bring the signal to the on state, the controlling device unasserts (or lowers)
the value for data pins and asserts (or raises) the value for control pins.
Conversely, to bring the signal to the off state, the controlling device asserts
the value for data pins and unasserts the value for control pins.

The on and off states for a data signal and for a control signal are shown below.

The Data Pins
Most serial port devices support full-duplex communication meaning that
they can send and receive data at the same time. Therefore, separate pins
are used for transmitting and receiving data. For these devices, the TD, RD,
and GND pins are used. However, some types of serial port devices support

10-9

10 Serial Port I/O

only one-way or half-duplex communications. For these devices, only the TD
and GND pins are used. This guide assumes that a full-duplex serial port
is connected to your device.

The TD pin carries data transmitted by a DTE to a DCE. The RD pin carries
data that is received by a DTE from a DCE.

The Control Pins
The control pins of a 9-pin serial port are used to determine the presence of
connected devices and control the flow of data. The control pins include

• “The RTS and CTS Pins” on page 10-10

• “The DTR and DSR Pins” on page 10-10

• “The CD and RI Pins” on page 10-11

The RTS and CTS Pins. The RTS and CTS pins are used to signal
whether the devices are ready to send or receive data. This type of data
flow control—called hardware handshaking—is used to prevent data loss
during transmission. When enabled for both the DTE and DCE, hardware
handshaking using RTS and CTS follows these steps:

1 The DTE asserts the RTS pin to instruct the DCE that it is ready to receive
data.

2 The DCE asserts the CTS pin indicating that it is clear to send data over
the TD pin. If data can no longer be sent, the CTS pin is unasserted.

3 The data is transmitted to the DTE over the TD pin. If data can no
longer be accepted, the RTS pin is unasserted by the DTE and the data
transmission is stopped.

To enable hardware handshaking in MATLAB, refer to “Controlling the Flow
of Data: Handshaking” on page 10-63.

The DTR and DSR Pins. Many devices use the DSR and DTR pins to signal if
they are connected and powered. Signaling the presence of connected devices
using DTR and DSR follows these steps:

10-10

Overview of the Serial Port

1 The DTE asserts the DTR pin to request that the DCE connect to the
communication line.

2 The DCE asserts the DSR pin to indicate it is connected.

3 DCE unasserts the DSR pin when it is disconnected from the
communication line.

The DTR and DSR pins were originally designed to provide an alternative
method of hardware handshaking. However, the RTS and CTS pins are
usually used in this way, and not the DSR and DTR pins. Refer to your device
documentation to determine its specific pin behavior.

The CD and RI Pins. The CD and RI pins are typically used to indicate the
presence of certain signals during modem-modem connections.

CD is used by a modem to signal that it has made a connection with another
modem, or has detected a carrier tone. CD is asserted when the DCE is
receiving a signal of a suitable frequency. CD is unasserted if the DCE is not
receiving a suitable signal.

RI is used to indicate the presence of an audible ringing signal. RI is asserted
when the DCE is receiving a ringing signal. RI is unasserted when the DCE is
not receiving a ringing signal (e.g., it is between rings).

Serial Data Format
The serial data format includes one start bit, between five and eight data bits,
and one stop bit. A parity bit and an additional stop bit might be included in
the format as well. The diagram below illustrates the serial data format.

The format for serial port data is often expressed using the following notation

number of data bits - parity type - number of stop bits

10-11

10 Serial Port I/O

For example, 8-N-1 is interpreted as eight data bits, no parity bit, and one stop
bit, while 7-E-2 is interpreted as seven data bits, even parity, and two stop bits.

The data bits are often referred to as a character because these bits usually
represent an ASCII character. The remaining bits are called framing bits
because they frame the data bits.

Bytes Versus Values
The collection of bits that comprise the serial data format is called a byte. At
first, this term might seem inaccurate because a byte is 8 bits and the serial
data format can range between 7 bits and 12 bits. However, when serial data
is stored on your computer, the framing bits are stripped away, and only the
data bits are retained. Moreover, eight data bits are always used regardless
of the number of data bits specified for transmission, with the unused bits
assigned a value of 0.

When reading or writing data, you might need to specify a value, which
can consist of one or more bytes. For example, if you read one value from a
device using the int32 format, that value consists of four bytes. For more
information about reading and writing values, refer to “Writing and Reading
Data” on page 10-32.

Synchronous and Asynchronous Communication
The RS-232 standard supports two types of communication protocols:
synchronous and asynchronous.

Using the synchronous protocol, all transmitted bits are synchronized to a
common clock signal. The two devices initially synchronize themselves to
each other, and continually send characters to stay synchronized. Even when
actual data is not really being sent, a constant flow of bits allows each device
to know where the other is at any given time. That is, each bit that is sent is
either actual data or an idle character. Synchronous communications allows
faster data transfer rates than asynchronous methods, because additional bits
to mark the beginning and end of each data byte are not required.

Using the asynchronous protocol, each device uses its own internal clock,
resulting in bytes that are transferred at arbitrary times. So, instead of using
time as a way to synchronize the bits, the data format is used.

10-12

Overview of the Serial Port

In particular, the data transmission is synchronized using the start bit
of the word, while one or more stop bits indicate the end of the word.
The requirement to send these additional bits causes asynchronous
communications to be slightly slower than synchronous. However, it has the
advantage that the processor does not have to deal with the additional idle
characters. Most serial ports operate asynchronously.

Note When used in this guide, the terms synchronous and asynchronous refer
to whether read or write operations block access to the MATLAB command
line. Refer to “Controlling Access to the MATLAB Command Line” on page
10-33 for more information.

How Are the Bits Transmitted?
By definition, serial data is transmitted one bit at a time. The order in which
the bits are transmitted is as follows

1 The start bit is transmitted with a value of 0.

2 The data bits are transmitted. The first data bit corresponds to the least
significant bit (LSB), while the last data bit corresponds to the most
significant bit (MSB).

3 The parity bit (if defined) is transmitted.

4 One or two stop bits are transmitted, each with a value of 1.

The number of bits transferred per second is given by the baud rate. The
transferred bits include the start bit, the data bits, the parity bit (if defined),
and the stop bits.

Start and Stop Bits
As described in “Synchronous and Asynchronous Communication” on page
10-12, most serial ports operate asynchronously. This means that the
transmitted byte must be identified by start and stop bits. The start bit
indicates when the data byte is about to begin; the stop bit(s) indicate(s) when
the data byte has been transferred. The process of identifying bytes with the
serial data format follows these steps:

10-13

10 Serial Port I/O

1 When a serial port pin is idle (not transmitting data), it is in an on state.

2 When data is about to be transmitted, the serial port pin switches to an
off state due to the start bit.

3 The serial port pin switches back to an on state due to the stop bit(s). This
indicates the end of the byte.

Data Bits
The data bits transferred through a serial port might represent device
commands, sensor readings, error messages, and so on. The data can be
transferred as either binary data or ASCII data.

Most serial ports use between five and eight data bits. Binary data is typically
transmitted as eight bits. Text-based data is transmitted as either seven bits
or eight bits. If the data is based on the ASCII character set, a minimum
of seven bits is required because there are 27 or 128 distinct characters. If
an eighth bit is used, it must have a value of 0. If the data is based on the
extended ASCII character set, eight bits must be used because there are 28 or
256 distinct characters.

The Parity Bit
The parity bit provides simple error (parity) checking for the transmitted
data. The types of parity checking are shown below.

Parity Types

Parity Type Description

Even The data bits plus the parity bit result in an even number
of 1s.

Mark The parity bit is always 1.

10-14

Overview of the Serial Port

Parity Types (Continued)

Parity Type Description

Odd The data bits plus the parity bit result in an odd number of
1s.

Space The parity bit is always 0.

Mark and space parity checking are seldom used because they offer minimal
error detection. You might choose to not use parity checking at all.

The parity checking process follows these steps:

1 The transmitting device sets the parity bit to 0 or to 1, depending on the
data bit values and the type of parity-checking selected.

2 The receiving device checks if the parity bit is consistent with the
transmitted data. If it is, the data bits are accepted. If it is not, an error
is returned.

Note Parity checking can detect only 1-bit errors. Multiple-bit errors can
appear as valid data.

For example, suppose the data bits 01110001 are transmitted to your
computer. If even parity is selected, the parity bit is set to 0 by the
transmitting device to produce an even number of 1s. If odd parity is selected,
the parity bit is set to 1 by the transmitting device to produce an odd number
of 1s.

10-15

10 Serial Port I/O

Finding Serial Port Information for Your Platform
This section describes the ways to find serial port information for Windows
and UNIX platforms.

Note Your operating system provides default values for all serial port
settings. However, these settings are overridden by your MATLAB code, and
will have no effect on your serial port application.

Windows Platform
You can access serial port information through the System Properties
dialog. To access this in Windows XP,

1 Right-click My Computer on the desktop, and select Properties.

2 In the System Properties dialog, click the Hardware tab.

3 Click Device Manager.

4 In the Device Manager dialog, expand the Ports node.

5 Double-click the Communications Port (COM1) node.

6 Select the Port Settings tab.

10-16

Overview of the Serial Port

The resulting Ports dialog box is shown below.

UNIX Platform
To find serial port information for UNIX platforms, you need to know the serial
port names. These names might vary between different operating systems.

On Linux, serial port devices are typically named ttyS0, ttyS1, etc. Use
the setserial command to display or configure serial port information. For
example, to display which ports are available

setserial -bg /dev/ttyS*
/dev/ttyS0 at 0x03f8 (irq = 4) is a 16550A
/dev/ttyS1 at 0x02f8 (irq = 3) is a 16550A

10-17

10 Serial Port I/O

To display detailed information about ttyS0

setserial -ag /dev/ttyS0
/dev/ttyS0, Line 0, UART: 16550A, Port: 0x03f8, IRQ: 4

Baud_base: 115200, close_delay: 50, divisor: 0
closing_wait: 3000, closing_wait2: infinte
Flags: spd_normal skip_test session_lockout

Note If the setserial -ag command does not work, make sure that you
have read and write permission for the port.

For all supported UNIX platforms, use the stty command to display or
configure serial port information. For example, to display serial port
properties for ttyS0, enter

stty -a < /dev/ttyS0

To configure the baud rate to 4800 bits per second, enter

stty speed 4800 < /dev/ttyS0 > /dev/ttyS0

Selected Bibliography

[1] TIA/EIA-232-F, Interface Between Data Terminal Equipment and Data
Circuit-Terminating Equipment Employing Serial Binary Data Interchange.

[2] Jan Axelson, Serial Port Complete, Lakeview Research, Madison, WI, 1998.

[3] Instrument Communication Handbook, IOTech, Inc., Cleveland, OH, 1991.

[4] TDS 200-Series Two Channel Digital Oscilloscope Programmer Manual,
Tektronix, Inc., Wilsonville, OR.

[5] Courier High Speed Modems User’s Manual, U.S. Robotics, Inc., Skokie,
IL, 1994.

10-18

Getting Started with Serial I/O

Getting Started with Serial I/O

In this section...

“Example: Getting Started” on page 10-19

“The Serial Port Session” on page 10-19

“Configuring and Returning Properties” on page 10-21

Example: Getting Started
This example illustrates some basic serial port commands.

If you have a device connected to the serial port COM1 and configured for a
baud rate of 4800, execute the following example.

s = serial('COM1');
set(s,'BaudRate',4800);
fopen(s);
fprintf(s,'*IDN?')
out = fscanf(s);
fclose(s)
delete(s)
clear s

The *IDN? command queries the device for identification information, which
is returned to out. If your device does not support this command, or if it is
connected to a different serial port, modify the above example accordingly.

Note *IDN? is one of the commands supported by the Standard Commands
for Programmable Instruments (SCPI) language, which is used by many
modern devices. Refer to your device documentation to see if it supports the
SCPI language.

The Serial Port Session
This example describes the steps you use to perform any serial port task
from beginning to end.

10-19

10 Serial Port I/O

The serial port session comprises all the steps you are likely to take when
communicating with a device connected to a serial port. These steps are:

1 Create a serial port object — Create a serial port object for a specific serial
port using the serial creation function.

Configure properties during object creation if necessary. In particular,
you might want to configure properties associated with serial port
communications such as the baud rate, the number of data bits, and so on.

2 Connect to the device — Connect the serial port object to the device using
the fopen function.

After the object is connected, alter the necessary device settings by
configuring property values, read data, and write data.

3 Configure properties — To establish the desired serial port object behavior,
assign values to properties using the set function or dot notation.

In practice, you can configure many of the properties at any time including
during, or just after, object creation. Conversely, depending on your device
settings and the requirements of your serial port application, you might be
able to accept the default property values and skip this step.

4 Write and read data — Write data to the device using the fprintf or
fwrite function, and read data from the device using the fgetl, fgets,
fread, fscanf, or readasync function.

The serial port object behaves according to the previously configured or
default property values.

5 Disconnect and clean up — When you no longer need the serial port object,
disconnect it from the device using the fclose function, remove it from
memory using the delete function, and remove it from the MATLAB
workspace using the clear command.

The serial port session is reinforced in many of the serial port documentation
examples. Refer to “Example: Getting Started” on page 10-19 to see a basic
example that uses the steps shown above.

10-20

Getting Started with Serial I/O

Configuring and Returning Properties
This example describes how you display serial port property names and
property values, and how you assign values to properties.

You establish the desired serial port object behavior by configuring property
values. You can display or configure property values using the set function,
the get function, or dot notation.

Displaying Property Names and Property Values
Once the serial port object is created, use the set function to display all the
configurable properties to the command line. Additionally, if a property has a
finite set of string values, set also displays these values.

s = serial('COM1');
set(s)

ByteOrder: [{littleEndian} | bigEndian]
BytesAvailableFcn
BytesAvailableFcnCount
BytesAvailableFcnMode: [{terminator} | byte]
ErrorFcn
InputBufferSize
Name
OutputBufferSize
OutputEmptyFcn
RecordDetail: [{compact} | verbose]
RecordMode: [{overwrite} | append | index]
RecordName
Tag
Timeout
TimerFcn
TimerPeriod
UserData

SERIAL specific properties:
BaudRate
BreakInterruptFcn
DataBits
DataTerminalReady: [{on} | off]
FlowControl: [{none} | hardware | software]

10-21

10 Serial Port I/O

Parity: [{none} | odd | even | mark | space]
PinStatusFcn
Port
ReadAsyncMode: [{continuous} | manual]
RequestToSend: [{on} | off]
StopBits
Terminator

Use the get function to display one or more properties and their current
values to the command line. To display all properties and their current values

get(s)
ByteOrder = littleEndian
BytesAvailable = 0
BytesAvailableFcn =
BytesAvailableFcnCount = 48
BytesAvailableFcnMode = terminator
BytesToOutput = 0
ErrorFcn =
InputBufferSize = 512
Name = Serial-COM1
OutputBufferSize = 512
OutputEmptyFcn =
RecordDetail = compact
RecordMode = overwrite
RecordName = record.txt
RecordStatus = off
Status = closed
Tag =
Timeout = 10
TimerFcn =
TimerPeriod = 1
TransferStatus = idle
Type = serial
UserData = []
ValuesReceived = 0
ValuesSent = 0

SERIAL specific properties:
BaudRate = 9600

10-22

Getting Started with Serial I/O

BreakInterruptFcn =
DataBits = 8
DataTerminalReady = on
FlowControl = none
Parity = none
PinStatus = [1x1 struct]
PinStatusFcn =
Port = COM1
ReadAsyncMode = continuous
RequestToSend = on
StopBits = 1
Terminator = LF

To display the current value for one property, supply the property name to get.

get(s,'OutputBufferSize')
ans =

512

To display the current values for multiple properties, include the property
names as elements of a cell array.

get(s,{'Parity','TransferStatus'})
ans =

'none' 'idle'

Use the dot notation to display a single property value.

s.Parity
ans =
none

Configuring Property Values
You can configure property values using the set function

set(s,'BaudRate',4800);

or the dot notation

s.BaudRate = 4800;

10-23

10 Serial Port I/O

To configure values for multiple properties, supply multiple property
name/property value pairs to set.

set(s,'DataBits',7,'Name','Test1-serial')

Note that you can configure only one property value at a time using the dot
notation.

In practice, you can configure many of the properties at any time while the
serial port object exists — including during object creation. However, some
properties are not configurable while the object is connected to the device or
when recording information to disk. Refer to “Property Reference” on page
10-76 for information about when a property is configurable.

Specifying Property Names
Serial port property names are presented using mixed case. While this
makes property names easier to read, use any case you want when specifying
property names. Additionally, you need use only enough letters to identify
the property name uniquely, so you can abbreviate most property names. For
example, you can configure the BaudRate property any of these ways:

set(s,'BaudRate',4800)
set(s,'baudrate',4800)
set(s,'BAUD',4800)

When you include property names in an M-file, you should use the full
property name. This practice can prevent problems with future releases of
MATLAB if a shortened name is no longer unique because of the addition of
new properties.

Default Property Values
Whenever you do not explicitly define a value for a property, the default value
is used. All configurable properties have default values.

Note Your operating system provides default values for all serial port
settings such as the baud rate. However, these settings are overridden by
your MATLAB code and have no effect on your serial port application.

10-24

Getting Started with Serial I/O

If a property has a finite set of string values, the default value is enclosed by
{}. For example, the default value for the Parity property is none.

set(s,'Parity')
[{none} | odd | even | mark | space]

You can find the default value for any property in the property reference pages.

10-25

10 Serial Port I/O

Creating a Serial Port Object

In this section...

“Overview of a Serial Port Object” on page 10-26

“Configuring Properties During Object Creation” on page 10-27

“The Serial Port Object Display” on page 10-27

“Creating an Array of Serial Port Objects” on page 10-28

Overview of a Serial Port Object
The serial function requires the name of the serial port connected to your
device as an input argument. Additionally, you can configure property values
during object creation. For example, to create a serial port object associated
with the serial port COM1, enter

s = serial('COM1');

The serial port object s now exists in the MATLAB workspace. You can
display the class of s with the whos command.

whos s
Name Size Bytes Class

s 1x1 512 serial object

Grand total is 11 elements using 512 bytes

Once the serial port object is created, the properties listed below are
automatically assigned values. These general-purpose properties provide
descriptive information about the serial port object based on the object type
and the serial port.

Descriptive General Purpose Properties

Property Name Description

Name Specify a descriptive name for the serial port object

10-26

Creating a Serial Port Object

Descriptive General Purpose Properties (Continued)

Property Name Description

Port Indicate the platform-specific serial port name

Type Indicate the object type

Display the values of these properties for s with the get function.

get(s,{'Name','Port','Type'})
ans =

'Serial-COM1' 'COM1' 'serial'

Configuring Properties During Object Creation
You can configure serial port properties during object creation. serial accepts
property names and property values in the same format as the set function.
For example, you can specify property name/property value pairs.

s = serial('COM1','BaudRate',4800,'Parity','even');

If you specify an invalid property name, the object is not created. However,
if you specify an invalid value for some properties (for example, BaudRate is
set to 50), the object might be created but you are not informed of the invalid
value until you connect the object to the device with the fopen function.

The Serial Port Object Display
The serial port object provides you with a convenient display that summarizes
important configuration and state information. You can invoke the display
summary these three ways:

• Type the serial port object variable name at the command line.

• Exclude the semicolon when creating a serial port object.

• Exclude the semicolon when configuring properties using the dot notation.

The display summary for the serial port object s is as follows:

Serial Port Object : Serial-COM1

10-27

10 Serial Port I/O

Communication Settings
Port: COM1
BaudRate: 9600
Terminator: 'LF'

Communication State
Status: closed
RecordStatus: off

Read/Write State
TransferStatus: idle
BytesAvailable: 0
ValuesReceived: 0
ValuesSent: 0

Creating an Array of Serial Port Objects
In MATLAB, you can create an array from existing variables by concatenating
those variables together. The same is true for serial port objects. For example,
suppose you create the serial port objects s1 and s2.

s1 = serial('COM1');
s2 = serial('COM2');

You can now create a serial port object array consisting of s1 and s2 using the
usual MATLAB syntax. To create the row array x, enter

x = [s1 s2]

Instrument Object Array

Index: Type: Status: Name:
1 serial closed Serial-COM1
2 serial closed Serial-COM2

To create the column array y, enter

y = [s1;s2];

Note that you cannot create a matrix of serial port objects. For example,
you cannot create the matrix

10-28

Creating a Serial Port Object

z = [s1 s2;s1 s2];

??? Error using ==> serial/vertcat

Only a row or column vector of instrument objects can be created.

Depending on your application, you might want to pass an array of serial
port objects to a function. For example, to configure the baud rate and parity
for s1 and s2 using one call to set:

set(x,'BaudRate',19200,'Parity','even')

Refer to the Serial Port Devices functional reference to see which functions
accept a serial port object array as an input.

10-29

10 Serial Port I/O

Connecting to the Device
Before you can use the serial port object to write or read data, you must
connect it to your device via the serial port specified in the serial function.
You connect a serial port object to the device with the fopen function.

fopen(s)

Some properties are read only while the serial port object is connected
and must be configured before using fopen. Examples include the
InputBufferSize and the OutputBufferSize properties. Refer to “Property
Reference” on page 10-76 to determine when you can configure a property.

Note You can create any number of serial port objects, but you can connect
only one serial port object per MATLAB session to a given serial port at a
time. However, the serial port is not locked by MATLAB, so other applications
or other instances of MATLAB can access the same serial port, which could
result in a conflict, with unpredictable results.

You can examine the Status property to verify that the serial port object is
connected to the device.

s.Status
ans =
open

As illustrated below, the connection between the serial port object and the
device is complete; data is readable and writable.

10-30

Configuring Communication Settings

Configuring Communication Settings
Before you can write or read data, both the serial port object and the
device must have identical communication settings. Configuring serial port
communications involves specifying values for properties that control the
baud rate and the serial data format. The properties described below.

Communication Properties

Property Name Description

BaudRate Specify the rate at which bits are transmitted

DataBits Specify the number of data bits to transmit

Parity Specify the type of parity checking

StopBits Specify the number of bits used to indicate the end of
a byte

Terminator Specify the terminator character

Note If the serial port object and the device communication settings are not
identical, data is not readable or writable.

Refer to the device documentation for an explanation of its supported
communication settings.

10-31

10 Serial Port I/O

Writing and Reading Data

In this section...

“Before You Begin” on page 10-32

“Example — Introduction to Writing and Reading Data” on page 10-32

“Controlling Access to the MATLAB Command Line” on page 10-33

“Writing Data” on page 10-34

“Reading Data” on page 10-39

“Example — Writing and Reading Text Data” on page 10-45

“Example — Parsing Input Data Using strread” on page 10-47

“Example — Reading Binary Data” on page 10-48

Before You Begin
For many serial port applications, there are three important questions that
you should consider when writing or reading data:

• Will the read or write function block access to the MATLAB command line?

• Is the data to be transferred binary (numerical) or text?

• Under what conditions will the read or write operation complete?

For write operations, these questions are answered in “Writing Data” on
page 10-34. For read operations, these questions are answered in “Reading
Data” on page 10-39.

Example — Introduction to Writing and Reading Data
Suppose you want to return identification information for a Tektronix TDS
210 two-channel oscilloscope connected to the serial port COM1. This requires
writing the *IDN? command to the instrument using the fprintf function,
and reading back the result of that command using the fscanf function.

s = serial('COM1');
fopen(s)
fprintf(s,'*IDN?')

10-32

Writing and Reading Data

out = fscanf(s)

The resulting identification information is as follows.

out =
TEKTRONIX,TDS 210,0,CF:91.1CT FV:v1.16 TDS2CM:CMV:v1.04

End the serial port session.

fclose(s)
delete(s)
clear s

Controlling Access to the MATLAB Command Line
You control access to the MATLAB command line by specifying whether a
read or write operation is synchronous or asynchronous.

A synchronous operation blocks access to the command line until the read or
write function completes execution. An asynchronous operation does not block
access to the command line, and you can issue additional commands while the
read or write function executes in the background.

The terms synchronous and asynchronous are often used to describe how the
serial port operates at the hardware level. The RS-232 standard supports an
asynchronous communication protocol. Using this protocol, each device uses
its own internal clock. The data transmission is synchronized using the start
bit of the bytes, while one or more stop bits indicate the end of the byte. Refer
to “Serial Data Format” on page 10-11 for more information on start bits and
stop bits. The RS-232 standard also supports a synchronous mode where all
transmitted bits are synchronized to a common clock signal.

At the hardware level, most serial ports operate asynchronously. However,
using the default behavior for many of the read and write functions, you can
mimic the operation of a synchronous serial port.

10-33

10 Serial Port I/O

Note When used in this guide, the terms synchronous and asynchronous
refer to whether read or write operations block access to the MATLAB
command-line. In other words, these terms describe how the software
behaves, and not how the hardware behaves.

The two main advantages of writing or reading data asynchronously are:

• You can issue another command while the write or read function is
executing.

• You can use all supported callback properties (see “Events and Callbacks”
on page 10-51).

For example, because serial ports have separate read and write pins, you can
simultaneously read and write data. This is illustrated below.

Writing Data
This section describes writing data to your serial port device in three parts:

• “The Output Buffer and Data Flow” on page 10-35 describes the flow of
data from MATLAB to the device.

• “Writing Text Data” on page 10-37 describes how to write text data (string
commands) to the device.

• “Writing Binary Data” on page 10-39 describes how to write binary
(numerical) data to the device.

The functions associated with writing data are shown below.

10-34

Writing and Reading Data

Functions Associated with Writing Data

Function Name Description

fprintf Write text to the device

fwrite Write binary data to the device

stopasync Stop asynchronous read and write operations

The properties associated with writing data are shown below.

Properties Associated with Writing Data

Property Name Description

BytesToOutput Indicate the number of bytes currently in the output
buffer

OutputBufferSize Specify the size of the output buffer in bytes

Timeout Specify the waiting time to complete a read or write
operation

TransferStatus Indicate if an asynchronous read or write operation
is in progress

ValuesSent Indicate the total number of values written to the
device

The Output Buffer and Data Flow
The output buffer is computer memory allocated by the serial port object
to store data that is to be written to the device. When writing data to your
device, the data flow follows these two steps:

1 The data specified by the write function is sent to the output buffer.

2 The data in the output buffer is sent to the device.

The OutputBufferSize property specifies the maximum number of bytes that
you can store in the output buffer. The BytesToOutput property indicates the
number of bytes currently in the output buffer. The default values for these
properties are shown below.

10-35

10 Serial Port I/O

s = serial('COM1');
get(s,{'OutputBufferSize','BytesToOutput'})
ans =

[512] [0]

If you attempt to write more data than can fit in the output buffer, an error
is returned and no data is written.

For example, suppose you write the string command *IDN? to the TDS 210
oscilloscope using the fprintf function. As shown below, the string is first
written to the output buffer as six values.

The *IDN? command consists of six values because the terminator is
automatically written. Moreover, the default data format for the fprintf
function specifies that one value corresponds to one byte. For more
information about bytes and values, refer to “Bytes Versus Values” on page
10-12. fprintf and the terminator are discussed in “Writing Text Data” on
page 10-37.

As shown below, after the string is written to the output buffer, it is then
written to the device via the serial port.

10-36

Writing and Reading Data

Writing Text Data
You use the fprintf function to write text data to the device. For many
devices, writing text data means writing string commands that change device
settings, prepare the device to return data or status information, and so on.

For example, the Display:Contrast command changes the display contrast
of the oscilloscope.

s = serial('COM1');
fopen(s)
fprintf(s,'Display:Contrast 45')

By default, fprintf writes data using the %s\n format because many serial
port devices accept only text-based commands. However, you can specify
many other formats, as described in the fprintf reference pages.

You can verify the number of values sent to the device with the ValuesSent
property.

s.ValuesSent
ans =

20

Note that the ValuesSent property value includes the terminator because
each occurrence of \n in the command sent to the device is replaced with the
Terminator property value.

s.Terminator

10-37

10 Serial Port I/O

ans =
LF

The default value of Terminator is the linefeed character. The terminator
required by your device will be described in its documentation.

Synchronous Versus Asynchronous Write Operations. By default,
fprintf operates synchronously and blocks the MATLAB command line until
execution completes. To write text data asynchronously to the device, you
must specify async as the last input argument to fprintf.

fprintf(s,'Display:Contrast 45','async')

Asynchronous operations do not block access to the MATLAB command line.
Additionally, while an asynchronous write operation is in progress, you can:

• Execute an asynchronous read operation because serial ports have separate
pins for reading and writing

• Make use of all supported callback properties

You can determine which asynchronous operations are in progress with the
TransferStatus property. If no asynchronous operations are in progress,
TransferStatus is idle.

s.TransferStatus
ans =
idle

Rules for Completing a Write Operation with fprintf. A synchronous or
asynchronous write operation using fprintf completes when:

• The specified data is written.

• The time specified by the Timeout property passes.

Additionally, you can stop an asynchronous write operation with the
stopasync function.

10-38

Writing and Reading Data

Writing Binary Data
You use the fwrite function to write binary data to the device. Writing binary
data means writing numerical values. A typical application for writing binary
data involves writing calibration data to an instrument such as an arbitrary
waveform generator.

Note Some serial port devices accept only text-based commands. These
commands might use the SCPI language or some other vendor-specific
language. Therefore, you might need to use the fprintf function for all
write operations.

By default, fwrite translates values using the uchar precision. However,
you can specify many other precisions as described in the reference pages
for this function.

By default, fwrite operates synchronously. To write binary data
asynchronously to the device, you must specify async as the last input
argument to fwrite. For more information about synchronous and
asynchronous write operations, refer to the “Writing Text Data” on page
10-37. For a description of the rules used by fwrite to complete a write
operation, refer to its reference pages.

Reading Data
This section describes reading data from your serial port device in three parts:

• “The Input Buffer and Data Flow” on page 10-40 describes the flow of data
from the device to MATLAB.

• “Reading Text Data” on page 10-42 describes how to read from the device,
and format the data as text.

• “Reading Binary Data” on page 10-44 describes how to read binary
(numerical) data from the device.

The functions associated with reading data are shown below.

10-39

10 Serial Port I/O

Functions Associated with Reading Data

Function
Name Description

fgetl Read one line of text from the device and discard the
terminator

fgets Read one line of text from the device and include the
terminator

fread Read binary data from the device

fscanf Read data from the device and format as text

readasync Read data asynchronously from the device

stopasync Stop asynchronous read and write operations

The properties associated with reading data are shown below.

Properties Associated with Reading Data

Property Name Description

BytesAvailable Indicate the number of bytes available in the input
buffer

InputBufferSize Specify the size of the input buffer in bytes

ReadAsyncMode Specify whether an asynchronous read operation is
continuous or manual

Timeout Specify the waiting time to complete a read or write
operation

TransferStatus Indicate if an asynchronous read or write operation is
in progress

ValuesReceived Indicate the total number of values read from the device

The Input Buffer and Data Flow
The input buffer is computer memory allocated by the serial port object to
store data that is to be read from the device. When reading data from your
device, the data flow follows these two steps:

10-40

Writing and Reading Data

1 The data read from the device is stored in the input buffer.

2 The data in the input buffer is returned to the MATLAB variable specified
by the read function.

The InputBufferSize property specifies the maximum number of bytes that
you can store in the input buffer. The BytesAvailable property indicates the
number of bytes currently available to be read from the input buffer. The
default values for these properties are shown below.

s = serial('COM1');
get(s,{'InputBufferSize','BytesAvailable'})
ans =

[512] [0]

If you attempt to read more data than can fit in the input buffer, an error is
returned and no data is read.

For example, suppose you use the fscanf function to read the text-based
response of the *IDN? command previously written to the TDS 210
oscilloscope. As shown below, the text data is first read into to the input buffer
via the serial port.

Note that for a given read operation, you might not know the number of
bytes returned by the device. Therefore, you might need to preset the
InputBufferSize property to a sufficiently large value before connecting
the serial port object.

10-41

10 Serial Port I/O

As shown below, after the data is stored in the input buffer, it is then
transferred to the output variable specified by fscanf.

Reading Text Data
You use the fgetl, fgets, and fscanf functions to read data from the device,
and format the data as text.

For example, suppose you want to return identification information for the
oscilloscope. This requires writing the *IDN? command to the instrument, and
then reading back the result of that command.

s = serial('COM1');
fopen(s)
fprintf(s,'*IDN?')
out = fscanf(s)
out =
TEKTRONIX,TDS 210,0,CF:91.1CT FV:v1.16 TDS2CM:CMV:v1.04

By default, fscanf reads data using the %c format because the data returned
by many serial port devices is text based. However, you can specify many
other formats as described in the fscanf reference pages.

You can verify the number of values read from the device - including the
terminator — with the ValuesReceived property.

s.ValuesReceived
ans =

56

10-42

Writing and Reading Data

Synchronous Versus Asynchronous Read Operations. You specify
whether read operations are synchronous or asynchronous with the
ReadAsyncMode property. You can configure ReadAsyncMode to continuous or
manual.

If ReadAsyncMode is continuous (the default value), the serial port object
continuously queries the device to determine if data is available to be read. If
data is available, it is asynchronously stored in the input buffer. To transfer
the data from the input buffer to MATLAB, use one of the synchronous
(blocking) read functions such as fgetl or fscanf. If data is available in the
input buffer, these functions return quickly.

s.ReadAsyncMode = 'continuous';
fprintf(s,'*IDN?')
s.BytesAvailable
ans =

56
out = fscanf(s);

If ReadAsyncMode is manual, the serial port object does not continuously
query the device to determine if data is available to be read. To read data
asynchronously, use the readasync function. Then use one of the synchronous
read functions to transfer data from the input buffer to MATLAB.

s.ReadAsyncMode = 'manual';
fprintf(s,'*IDN?')
s.BytesAvailable
ans =

0
readasync(s)
s.BytesAvailable
ans =

56
out = fscanf(s);

Asynchronous operations do not block access to the MATLAB command line.
Additionally, while an asynchronous read operation is in progress, you can

• Execute an asynchronous write operation because serial ports have
separate pins for reading and writing

10-43

10 Serial Port I/O

• Make use of all supported callback properties

You can determine which asynchronous operations are in progress with the
TransferStatus property. If no asynchronous operations are in progress,
then TransferStatus is idle.

s.TransferStatus
ans =
idle

Rules for Completing a Read Operation with fscanf. A read operation
with fscanf blocks access to the MATLAB command line until:

• The terminator specified by the Terminator property is read.

• The time specified by the Timeout property passes.

• The specified number of values specified is read.

• The input buffer is filled.

Reading Binary Data
You use the fread function to read binary data from the device. Reading
binary data means that you return numerical values to MATLAB.

For example, suppose you want to return the cursor and display settings for
the oscilloscope. This requires writing the CURSOR? and DISPLAY? commands
to the instrument, and then reading back the results of those commands.

s = serial('COM1');
fopen(s)
fprintf(s,'CURSOR?')
fprintf(s,'DISPLAY?')

Because the default value for the ReadAsyncMode property is continuous,
data is asynchronously returned to the input buffer as soon as it is available
from the device. You can verify the number of values read with the
BytesAvailable property.

s.BytesAvailable
ans =

69

10-44

Writing and Reading Data

You can return the data to MATLAB using any of the synchronous read
functions. However, if you use fgetl, fgets, or fscanf, you must issue the
function twice because there are two terminators stored in the input buffer. If
you use fread, you can return all the data to MATLAB in one function call.

out = fread(s,69);

By default, fread returns numerical values in double precision arrays.
However, you can specify many other precisions as described in the fread
reference pages. You can convert the numerical data to text using the
MATLAB char function.

val = char(out)'
val =
HBARS;CH1;SECONDS;-1.0E-3;1.0E-3;VOLTS;-6.56E-1;6.24E-1
YT;DOTS;0;45

For more information about synchronous and asynchronous read operations,
refer to “Reading Text Data” on page 10-42. For a description of the rules used
by fread to complete a read operation, refer to its reference pages.

Example — Writing and Reading Text Data
This example illustrates how to communicate with a serial port instrument by
writing and reading text data.

The instrument is a Tektronix TDS 210 two-channel oscilloscope connected to
the COM1 port. Therefore, many of the commands shown below are specific to
this instrument. A sine wave is input into channel 2 of the oscilloscope, and
your job is to measure the peak-to-peak voltage of the input signal.

1 Create a serial port object — Create the serial port object s associated
with serial port COM1.

s = serial('COM1');

2 Connect to the device — Connect s to the oscilloscope. Because the
default value for the ReadAsyncMode property is continuous, data is
asynchronously returned to the input buffer as soon as it is available from
the instrument.

10-45

10 Serial Port I/O

fopen(s)

3 Write and read data — Write the *IDN? command to the instrument using
fprintf, and then read back the result of the command using fscanf.

fprintf(s,'*IDN?')
idn = fscanf(s)
idn =
TEKTRONIX,TDS 210,0,CF:91.1CT FV:v1.16 TDS2CM:CMV:v1.04

You need to determine the measurement source. Possible measurement
sources include channel 1 and channel 2 of the oscilloscope.

fprintf(s,'MEASUREMENT:IMMED:SOURCE?')
source = fscanf(s)
source =
CH1

The scope is configured to return a measurement from channel 1. Because
the input signal is connected to channel 2, you must configure the
instrument to return a measurement from this channel.

fprintf(s,'MEASUREMENT:IMMED:SOURCE CH2')
fprintf(s,'MEASUREMENT:IMMED:SOURCE?')
source = fscanf(s)
source =
CH2

You can now configure the scope to return the peak-to-peak voltage, and
then request the value of this measurement.

fprintf(s,'MEASUREMENT:MEAS1:TYPE PK2PK')
fprintf(s,'MEASUREMENT:MEAS1:VALUE?')

Transfer data from the input buffer to MATLAB using fscanf.

ptop = fscanf(s,'%g')
ptop =
2.0199999809E0

10-46

Writing and Reading Data

4 Disconnect and clean up — When you no longer need s disconnect it
from the instrument and remove it from memory and from the MATLAB
workspace.

fclose(s)
delete(s)
clear s

Example — Parsing Input Data Using strread
This example illustrates how to use the strread function to parse and format
data that you read from a device. strread is particularly useful when you
want to parse a string into one or more variables, where each variable has its
own specified format.

The instrument is a Tektronix TDS 210 two-channel oscilloscope connected to
the serial port COM1.

1 Create a serial port object — Create the serial port object s associated
with serial port COM1.

s = serial('COM1');

2 Connect to the device — Connect s to the oscilloscope. Because the
default value for the ReadAsyncMode property is continuous, data is
asynchronously returned to the input buffer as soon as it is available from
the instrument.

fopen(s)

3 Write and read data — Write the RS232? command to the instrument using
fprintf, and then read back the result of the command using fscanf.
RS232? queries the RS-232 settings and returns the baud rate, the software
flow control setting, the hardware flow control setting, the parity type,
and the terminator.

fprintf(s,'RS232?')
data = fscanf(s)
data =
9600;0;0;NONE;LF

10-47

10 Serial Port I/O

Use the strread function to parse and format the data variable into five
new variables.

[br,sfc,hfc,par,tm] = strread(data,'%d%d%d%s%s','delimiter',';')

br =

9600

sfc =

0

hfc =

0

par =

'NONE'

tm =

'LF'

4 Disconnect and clean up — When you no longer need s, you should
disconnect it from the instrument, and remove it from memory and from
the MATLAB workspace.

fclose(s)
delete(s)
clear s

Example — Reading Binary Data
This example illustrates how you can download the TDS 210 oscilloscope
screen display to MATLAB. The screen display data is transferred and saved
to disk using the Windows bitmap format. This data provides a permanent
record of your work, and is an easy way to document important signal and
scope parameters.

Because the amount of data transferred is expected to be fairly large, it is
asynchronously returned to the input buffer as soon as it is available from the
instrument. This allows you to perform other tasks as the transfer progresses.
Additionally, the scope is configured to its highest baud rate of 19,200.

1 Create a serial port object — Create the serial port object s associated
with serial port COM1.

s = serial('COM1');

10-48

Writing and Reading Data

2 Configure property values — Configure the input buffer to accept a
reasonably large number of bytes, and configure the baud rate to the
highest value supported by the scope.

s.InputBufferSize = 50000;
s.BaudRate = 19200;

3 Connect to the device — Connect s to the oscilloscope. Because the
default value for the ReadAsyncMode property is continuous, data is
asynchronously returned to the input buffer as soon as it is available from
the instrument.

fopen(s)

4 Write and read data — Configure the scope to transfer the screen display
as a bitmap.

fprintf(s,'HARDCOPY:PORT RS232')
fprintf(s,'HARDCOPY:FORMAT BMP')
fprintf(s,'HARDCOPY START')

Wait until all the data is sent to the input buffer, and then transfer the data
to the MATLAB workspace as unsigned 8-bit integers.

out = fread(s,s.BytesAvailable,'uint8');

5 Disconnect and clean up — When you no longer need s, disconnect it
from the instrument and remove it from memory and from the MATLAB
workspace.

fclose(s)
delete(s)
clear s

Viewing the Bitmap Data
To view the bitmap data, follow these steps:

1 Open a disk file.

2 Write the data to the disk file.

10-49

10 Serial Port I/O

3 Close the disk file.

4 Read the data into MATLAB using the imread function.

5 Scale and display the data using the imagesc function.

Note that the file I/O versions of the fopen, fwrite, and fclose functions
are used.

fid = fopen('test1.bmp','w');
fwrite(fid,out,'uint8');
fclose(fid)
a = imread('test1.bmp','bmp');
imagesc(a)

Because the scope returns the screen display data using only two colors, an
appropriate colormap is selected.

mymap = [0 0 0; 1 1 1];
colormap(mymap)

The resulting bitmap image is shown below.

10-50

Events and Callbacks

Events and Callbacks

In this section...

“Introduction” on page 10-51

“Example — Introduction to Events and Callbacks” on page 10-51

“Event Types and Callback Properties” on page 10-52

“Storing Event Information” on page 10-54

“Creating and Executing Callback Functions” on page 10-57

“Enabling Callback Functions After They Error” on page 10-58

“Example — Using Events and Callbacks” on page 10-58

Introduction
You can enhance the power and flexibility of your serial port application by
using events. An event occurs after a condition is met and might result in
one or more callbacks.

While the serial port object is connected to the device, you can use events
to display a message, display data, analyze data, and so on. Callbacks are
controlled through callback properties and callback functions. All event types
have an associated callback property. Callback functions are M-file functions
that you construct to suit your specific application needs.

You execute a callback when a particular event occurs by specifying the name
of the M-file callback function as the value for the associated callback property.

Example — Introduction to Events and Callbacks
This example uses the M-file callback function instrcallback to display a
message to the command line when a bytes-available event occurs. The event
is generated when the terminator is read.

s = serial('COM1');
fopen(s)
s.BytesAvailableFcnMode = 'terminator';
s.BytesAvailableFcn = @instrcallback;

10-51

10 Serial Port I/O

fprintf(s,'*IDN?')
out = fscanf(s);

The resulting display from instrcallback is shown below.

BytesAvailable event occurred at 17:01:29 for the object:
Serial-COM1.

End the serial port session.

fclose(s)
delete(s)
clear s

You can use the type command to display instrcallback at the command
line.

Event Types and Callback Properties
The serial port event types and callback properties are described below.

This table consists of two columns and nine rows. In the first column (event
type), the second item (bytes available) applies to rows 2 through 4. Also, in
the first column the last item (timer) applies to rows 8 and 9.

Event Types and Callback Properties

Event Type Associated Properties

Break interrupt BreakInterruptFcn

BytesAvailableFcn

BytesAvailableFcnCount

Bytes available

BytesAvailableFcnMode

Error ErrorFcn

Output empty OutputEmptyFcn

Pin status PinStatusFcn

10-52

Events and Callbacks

Event Types and Callback Properties (Continued)

Event Type Associated Properties

TimerFcnTimer

TimerPeriod

Break-Interrupt Event
A break-interrupt event is generated immediately after a break interrupt is
generated by the serial port. The serial port generates a break interrupt when
the received data has been in an inactive state longer than the transmission
time for one character.

This event executes the callback function specified for the BreakInterruptFcn
property. It can be generated for both synchronous and asynchronous read
and write operations.

Bytes-Available Event
A bytes-available event is generated immediately after a predetermined
number of bytes are available in the input buffer or a terminator is read, as
determined by the BytesAvailableFcnMode property.

If BytesAvailableFcnMode is byte, the bytes-available event executes the
callback function specified for the BytesAvailableFcn property every time
the number of bytes specified by BytesAvailableFcnCount is stored in the
input buffer. If BytesAvailableFcnMode is terminator, the callback function
executes every time the character specified by the Terminator property
is read.

This event can be generated only during an asynchronous read operation.

Error Event
An error event is generated immediately after an error occurs.

This event executes the callback function specified for the ErrorFcn property.
It can be generated only during an asynchronous read or write operation.

10-53

10 Serial Port I/O

An error event is generated when a time-out occurs. A time-out occurs if
a read or write operation does not successfully complete within the time
specified by the Timeout property. An error event is not generated for
configuration errors such as setting an invalid property value.

Output-Empty Event
An output-empty event is generated immediately after the output buffer is
empty.

This event executes the callback function specified for the OutputEmptyFcn
property. It can be generated only during an asynchronous write operation.

Pin Status Event
A pin status event is generated immediately after the state (pin value)
changes for the CD, CTS, DSR, or RI pins. Refer to “Serial Port Signals and
Pin Assignments” on page 10-7 for a description of these pins.

This event executes the callback function specified for the PinStatusFcn
property. It can be generated for both synchronous and asynchronous read
and write operations.

Timer Event
A timer event is generated when the time specified by the TimerPeriod
property passes. Time is measured relative to when the serial port object is
connected to the device.

This event executes the callback function specified for the TimerFcn property.
Note that some timer events might not be processed if your system is
significantly slowed or if the TimerPeriod value is too small.

Storing Event Information
You can store event information in a callback function or in a record file.
Event information is stored in a callback function using two fields: Type and
Data. The Type field contains the event type, while the Data field contains
event-specific information. As described in “Creating and Executing Callback
Functions” on page 10-57, these two fields are associated with a structure that
you define in the callback function header. Refer to “Debugging: Recording

10-54

Events and Callbacks

Information to Disk” on page 10-66 to learn about recording data and event
information to a record file.

The event types and the values for the Type and Data fields are shown below.

The table consists of three columns and 15 rows. Items in the first column
(event type) span several rows, as follows:

Break interrupt: rows 1 and 2

Bytes available: rows 3 and 4

Error: rows 5 through 7

Output empty: rows 8 and 9

Pin status: rows 10 through 13

Timer: rows 14 and 15

Event Information

Event Type Field Field Value

Type BreakInterruptBreak interrupt

Data.AbsTime day-month-year
hour:minute:second

Type BytesAvailableBytes available

Data.AbsTime day-month-year
hour:minute:second

Type Error

Data.AbsTime day-month-year
hour:minute:second

Error

Data.Message An error string

10-55

10 Serial Port I/O

Event Information (Continued)

Event Type Field Field Value

Type OutputEmptyOutput empty

Data.AbsTime day-month-year
hour:minute:second

Type PinStatus

Data.AbsTime day-month-year
hour:minute:second

Data.Pin CarrierDetect,
ClearToSend,
DataSetReady, or
RingIndicator

Pin status

Data.PinValue on or off

Type TimerTimer

Data.AbsTime day-month-year
hour:minute:second

The Data field values are described below.

The AbsTime Field
AbsTime is defined for all events, and indicates the absolute time the
event occurred. The absolute time is returned using the clock format:
day-month-year hour:minute:second

The Pin Field
Pin is used by the pin status event to indicate if the CD, CTS, DSR, or RI pins
changed state. Refer to “Serial Port Signals and Pin Assignments” on page
10-7 for a description of these pins.

The PinValue Field
PinValue is used by the pin status event to indicate the state of the CD, CTS,
DSR, or RI pins. Possible values are on or off.

10-56

Events and Callbacks

The Message Field
Message is used by the error event to store the descriptive message that is
generated when an error occurs.

Creating and Executing Callback Functions
You can specify the callback function to be executed when a specific event type
occurs by including the name of the M-file as the value for the associated
callback property. You can specify the callback function as a function handle
or as a string cell array element. Function handles are described in the
function_handle reference pages.

For example, to execute the callback function mycallback every time the
terminator is read from your device

s.BytesAvailableFcnMode = 'terminator';
s.BytesAvailableFcn = @mycallback;

Alternatively, you can specify the callback function as a cell array.

s.BytesAvailableFcn = {'mycallback'};

M-file callback functions require at least two input arguments. The first
argument is the serial port object. The second argument is a variable that
captures the event information shown in the table, Event Information on page
10-55. This event information pertains only to the event that caused the
callback function to execute. The function header for mycallback is shown
below.

function mycallback(obj,event)

You pass additional parameters to the callback function by including both the
callback function and the parameters as elements of a cell array. For example,
to pass the MATLAB variable time to mycallback

time = datestr(now,0);
s.BytesAvailableFcnMode = 'terminator';
s.BytesAvailableFcn = {@mycallback,time};

Alternatively, you can specify the callback function as a string in the cell array.

s.BytesAvailableFcn = {'mycallback',time};

10-57

10 Serial Port I/O

The corresponding function header is

function mycallback(obj,event,time)

If you pass additional parameters to the callback function, they must be
included in the function header after the two required arguments.

Note You can also specify the callback function as a string. In this case, the
callback is evaluated in the MATLAB workspace and no requirements are
made on the input arguments of the callback function.

Enabling Callback Functions After They Error
If an error occurs while a callback function is executing the following occurs:

• The callback function is automatically disabled.

• A warning is displayed at the command line, indicating that the callback
function is disabled.

If you want to enable the same callback function, set the callback property
to the same value or disconnect the object with the fclose function. If you
want to use a different callback function, the callback is enabled when you
configure the callback property to the new value.

Example — Using Events and Callbacks
This example uses the M-file callback function instrcallback to display
event-related information to the command line when a bytes-available event
or an output-empty event occurs.

1 Create a serial port object — Create the serial port object s associated
with serial port COM1.

s = serial('COM1');

2 Connect to the device — Connect s to the Tektronix TDS 210 oscilloscope.
Because the default value for the ReadAsyncMode property is continuous,
data is asynchronously returned to the input buffer as soon as it is available
from the instrument.

10-58

Events and Callbacks

fopen(s)

3 Configure properties — Configure s to execute the callback function
instrcallback when a bytes-available event or an output-empty event
occurs. Because instrcallback requires the serial port object and event
information to be passed as input arguments, the callback function is
specified as a function handle.

s.BytesAvailableFcnMode = 'terminator';
s.BytesAvailableFcn = @instrcallback;
s.OutputEmptyFcn = @instrcallback;

4 Write and read data — Write the RS232? command asynchronously to the
oscilloscope. This command queries the RS-232 settings and returns the
baud rate, the software flow control setting, the hardware flow control
setting, the parity type, and the terminator.

fprintf(s,'RS232?','async')

instrcallback is called after the RS232? command is sent, and when the
terminator is read. The resulting displays are shown below.

OutputEmpty event occurred at 17:37:21 for the object:
Serial-COM1.

BytesAvailable event occurred at 17:37:21 for the object:
Serial-COM1.

Read the data from the input buffer.

out = fscanf(s)
out =
9600;0;0;NONE;LF

5 Disconnect and clean up — When you no longer need s, disconnect it
from the instrument and remove it from memory and from the MATLAB
workspace.

fclose(s)
delete(s)
clear s

10-59

10 Serial Port I/O

Using Control Pins

In this section...

“Properties of Serial Port Control Pins” on page 10-60

“Signaling the Presence of Connected Devices” on page 10-60

“Controlling the Flow of Data: Handshaking” on page 10-63

Properties of Serial Port Control Pins
As described in “Serial Port Signals and Pin Assignments” on page 10-7, 9-pin
serial ports include six control pins. The properties associated with the serial
port control pins are shown below.

Control Pin Properties

Property Name Description

DataTerminalReady Specify the state of the DTR pin

FlowControl Specify the data flow control method to use

PinStatus Indicate the state of the CD, CTS, DSR, and RI
pins

RequestToSend Specify the state of the RTS pin

Signaling the Presence of Connected Devices
DTEs and DCEs often use the CD, DSR, RI, and DTR pins to indicate whether
a connection is established between serial port devices. Once the connection is
established, you can begin to write or read data.

You can monitor the state of the CD, DSR, and RI pins with the PinStatus
property. You can specify or monitor the state of the DTR pin with the
DataTerminalReady property.

The following example illustrates how these pins are used when two modems
are connected to each other.

10-60

Using Control Pins

Example — Connecting Two Modems
This example connects two modems to each other via the same computer,
and illustrates how you can monitor the communication status for the
computer-modem connections, and for the modem-modem connection. The
first modem is connected to COM1, while the second modem is connected to
COM2.

1 Create the serial port objects — After the modems are powered on, the
serial port object s1 is created for the first modem, and the serial port
object s2 is created for the second modem.

s1 = serial('COM1');
s2 = serial('COM2');

2 Connect to the devices — s1 and s2 are connected to the modems. Because
the default value for the ReadAsyncMode property is continuous, data
is asynchronously returned to the input buffers as soon as it is available
from the modems.

fopen(s1)
fopen(s2)

Because the default DataTerminalReady property value is on, the computer
(data terminal) is now ready to exchange data with the modems. You can
verify that the modems (data sets) can communicate with the computer
by examining the value of the Data Set Ready pin with the PinStatus
property.

s1.Pinstatus
ans =

CarrierDetect: 'off'
ClearToSend: 'on'

DataSetReady: 'on'
RingIndicator: 'off'

The value of the DataSetReady field is on because both modems were
powered on before they were connected to the objects.

3 Configure properties — Both modems are configured for a baud rate of
2400 bits per second and a carriage return (CR) terminator.

10-61

10 Serial Port I/O

s1.BaudRate = 2400;
s1.Terminator = 'CR';
s2.BaudRate = 2400;
s2.Terminator = 'CR';

4 Write and read data — Write the atd command to the first modem. This
command puts the modem “off the hook,” which is equivalent to manually
lifting a phone receiver.

fprintf(s1,'atd')

Write the ata command to the second modem. This command puts the
modem in “answer mode,” which forces it to connect to the first modem.

fprintf(s2,'ata')

After the two modems negotiate their connection, verify the connection
status by examining the value of the Carrier Detect pin using the
PinStatus property.

s1.PinStatus
ans =

CarrierDetect: 'on'
ClearToSend: 'on'

DataSetReady: 'on'
RingIndicator: 'off'

Verify the modem-modem connection by reading the descriptive message
returned by the second modem.

s2.BytesAvailable
ans =

25
out = fread(s2,25);
char(out)'
ans =
ata
CONNECT 2400/NONE

Now break the connection between the two modems by configuring the
DataTerminalReady property to off. You can verify that the modems are
disconnected by examining the Carrier Detect pin value.

10-62

Using Control Pins

s1.DataTerminalReady = 'off';
s1.PinStatus
ans =

CarrierDetect: 'off'
ClearToSend: 'on'

DataSetReady: 'on'
RingIndicator: 'off'

5 Disconnect and clean up — Disconnect the objects from the modems and
remove the objects from memory and from the MATLAB workspace.

fclose([s1 s2])
delete([s1 s2])
clear s1 s2

Controlling the Flow of Data: Handshaking
Data flow control or handshaking is a method used for communicating
between a DCE and a DTE to prevent data loss during transmission. For
example, suppose your computer can receive only a limited amount of data
before it must be processed. As this limit is reached, a handshaking signal
is transmitted to the DCE to stop sending data. When the computer can
accept more data, another handshaking signal is transmitted to the DCE to
resume sending data.

If supported by your device, you can control data flow using one of these
methods:

• Hardware handshaking

• Software handshaking

Note Although you might be able to configure your device for both hardware
handshaking and software handshaking at the same time, MATLAB does not
support this behavior.

You can specify the data flow control method with the FlowControl property.
If FlowControl is hardware, hardware handshaking is used to control data

10-63

10 Serial Port I/O

flow. If FlowControl is software, software handshaking is used to control
data flow. If FlowControl is none, no handshaking is used.

Hardware Handshaking
Hardware handshaking uses specific serial port pins to control data flow. In
most cases, these are the RTS and CTS pins. Hardware handshaking using
these pins is described in “The RTS and CTS Pins” on page 10-10.

If FlowControl is hardware, the RTS and CTS pins are automatically
managed by the DTE and DCE. You can return the CTS pin value with
the PinStatus property. Configure or return the RTS pin value with the
RequestToSend property.

Note Some devices also use the DTR and DSR pins for handshaking.
However, these pins are typically used to indicate that the system is ready for
communication, and are not used to control data transmission. In MATLAB,
hardware handshaking always uses the RTS and CTS pins.

If your device does not use hardware handshaking in the standard way, then
you might need to manually configure the RequestToSend property. In this
case, you should configure FlowControl to none. If FlowControl is hardware,
then the RequestToSend value that you specify might not be honored. Refer
to the device documentation to determine its specific pin behavior.

Software Handshaking
Software handshaking uses specific ASCII characters to control data flow.
These characters, known as Xon and Xoff (or XON and XOFF), are described
below.

10-64

Using Control Pins

Software Handshaking Characters

Character Integer Value Description

Xon 17 Resume data transmission

Xoff 19 Pause data transmission

When using software handshaking, the control characters are sent over the
transmission line the same way as regular data. Therefore, only the TD, RD,
and GND pins are needed.

The main disadvantage of software handshaking is that Xon or Xoff characters
are not writable while numerical data is being written to the device. This is
because numerical data might contain a 17 or 19, which makes it impossible
to distinguish between the control characters and the data. However, you can
write Xon or Xoff while data is being asynchronously read from the device
because you are using both the TD and RD pins.

Example: Using Software Handshaking
Suppose you want to use software flow control with the example described
in “Example — Reading Binary Data” on page 10-48. To do this, you must
configure the oscilloscope and serial port object for software flow control.

fprintf(s,'RS232:SOFTF ON')
s.FlowControl = 'software';

To pause data transfer, write the numerical value 19 to the device.

fwrite(s,19)

To resume data transfer, write the numerical value 17 to the device.

fwrite(s,17)

10-65

10 Serial Port I/O

Debugging: Recording Information to Disk

In this section...

“Introduction” on page 10-66

“Recording Properties” on page 10-66

“Example: Introduction to Recording Information” on page 10-67

“Creating Multiple Record Files” on page 10-67

“Specifying a Filename” on page 10-68

“The Record File Format” on page 10-68

“Example: Recording Information to Disk” on page 10-69

Introduction
Recording information to disk provides a permanent record of your serial port
session, and is an easy way to debug your application. While the serial port
object is connected to the device, you can record the following information
to a disk file:

• The number of values written to the device, the number of values read from
the device, and the data type of the values

• Data written to the device, and data read from the device

• Event information

Recording Properties
You record information to a disk file with the record function. The following
table shows the properties associated with recording information to disk.

Recording Properties

Property Name Description

RecordDetail Specify the amount of information saved to a record file

RecordMode Specify whether data and event information is saved to
one record file or to multiple record files

10-66

Debugging: Recording Information to Disk

Recording Properties (Continued)

Property Name Description

RecordName Specify the name of the record file

RecordStatus Indicate if data and event information are saved to a
record file

Example: Introduction to Recording Information
This example records the number of values written to and read from the
device, and stores the information to the file myfile.txt.

s = serial('COM1');
fopen(s)
s.RecordName = 'myfile.txt';
record(s)
fprintf(s,'*IDN?')
idn = fscanf(s);
fprintf(s,'RS232?')
rs232 = fscanf(s);

End the serial port session.

fclose(s)
delete(s)
clear s

You can use the type command to display myfile.txt at the command line.

Creating Multiple Record Files
When you initiate recording with the record function, the RecordMode
property determines if a new record file is created or if new information is
appended to an existing record file.

You can configure RecordMode to overwrite, append, or index. If RecordMode
is overwrite, the record file is overwritten each time recording is initiated. If
RecordMode is append, the new information is appended to the file specified
by RecordName. If RecordMode is index, a different disk file is created each

10-67

10 Serial Port I/O

time recording is initiated. The rules for specifying a record filename are
discussed in the next section.

Specifying a Filename
You specify the name of the record file with the RecordName property. You can
specify any value for RecordName — including a directory path — provided the
filename is supported by your operating system. Additionally, if RecordMode
is index, the filename follows these rules:

• Indexed filenames are identified by a number. This number precedes the
filename extension and is increased by 1 for successive record files.

• If no number is specified as part of the initial filename, the first record file
does not have a number associated with it. For example, if RecordName is
myfile.txt, myfile.txt is the name of the first record file, myfile01.txt
is the name of the second record file, and so on.

• RecordName is updated after the record file is closed.

• If the specified filename already exists, the existing file is overwritten.

The Record File Format
The record file is an ASCII file that contains a record of one or more serial
port sessions. You specify the amount of information saved to a record file
with the RecordDetail property.

RecordDetail can be compact or verbose. A compact record file contains the
number of values written to the device, the number of values read from the
device, the data type of the values, and event information. A verbose record
file contains the preceding information as well as the data transferred to
and from the device.

Binary data with precision given by uchar, schar, (u)int8, (u)int16, or
(u)int32 is recorded using hexadecimal format. For example, if the integer
value 255 is read from the instrument as a 16-bit integer, the hexadecimal
value 00FF is saved in the record file. Single- and double-precision
floating-point numbers are recorded as decimal values using the %g format,
and as hexadecimal values using the format specified by the IEEE Standard
754-1985 for Binary Floating-Point Arithmetic.

10-68

Debugging: Recording Information to Disk

The IEEE floating-point format includes three components: the sign bit, the
exponent field, and the significant field. Single-precision floating-point values
consist of 32 bits. The value is given by

Double-precision floating-point values consist of 64 bits. The value is given by

The floating-point format component, and the associated single-precision and
double-precision bits are shown below.

Component Single-Precision Bits Double-Precision Bits

sign 1 1

exp 2–9 2–12

significand 10–32 13–64

Bit 1 is the left-most bit as stored in the record file.

Example: Recording Information to Disk
This example illustrates how to record information transferred between a
serial port object and a Tektronix TDS 210 oscilloscope. Additionally, the
structure of the resulting record file is presented.

1 Create the serial port object — Create the serial port object s associated
with the serial port COM1.

s = serial('COM1');

2 Connect to the device — Connect s to the oscilloscope. Because the
default value for the ReadAsyncMode property is continuous, data is
asynchronously returned the input buffer as soon as it is available from
the instrument.

fopen(s)

10-69

10 Serial Port I/O

3 Configure property values — Configure s to record information to multiple
disk files using the verbose format. Recording is then initiated with the
first disk file defined as WaveForm1.txt.

s.RecordMode = 'index';
s.RecordDetail = 'verbose';
s.RecordName = 'WaveForm1.txt';
record(s)

4 Write and read data — The commands written to the instrument, and
the data read from the instrument are recorded in the record file. Refer
to “Example — Writing and Reading Text Data” on page 10-45 for an
explanation of the oscilloscope commands.

fprintf(s,'*IDN?')
idn = fscanf(s);
fprintf(s,'MEASUREMENT:IMMED:SOURCE CH2')
fprintf(s,'MEASUREMENT:IMMED:SOURCE?')
source = fscanf(s);

Read the peak-to-peak voltage with the fread function. Note that the data
returned by fread is recorded using hex format.

fprintf(s,'MEASUREMENT:MEAS1:TYPE PK2PK')
fprintf(s,'MEASUREMENT:MEAS1:VALUE?')
ptop = fread(s,s.BytesAvailable);

Convert the peak-to-peak voltage to a character array.

char(ptop)'
ans =
2.0199999809E0

The recording state is toggled from on to off. Because the RecordMode
value is index, the record filename is automatically updated.

record(s)
s.RecordStatus
ans =
off
s.RecordName
ans =

10-70

Debugging: Recording Information to Disk

WaveForm2.txt

5 Disconnect and clean up — When you no longer need s, disconnect it
from the instrument, and remove it from memory and from the MATLAB
workspace.

fclose(s)
delete(s)
clear s

The Record File Contents
The contents of the WaveForm1.txt record file are shown below. Because
the RecordDetail property was verbose, the number of values, commands,
and data were recorded. Note that data returned by the fread function is in
hex format.

type WaveForm1.txt

Legend:

* - An event occurred.

> - A write operation occurred.

< - A read operation occurred.

1 Recording on 22-Jan-2000 at 11:21:21.575. Binary data in...

2 > 6 ascii values.

*IDN?

3 < 56 ascii values.

TEKTRONIX,TDS 210,0,CF:91.1CT FV:v1.16 TDS2CM:CMV:v1.04

4 > 29 ascii values.

MEASUREMENT:IMMED:SOURCE CH2

5 > 26 ascii values.

MEASUREMENT:IMMED:SOURCE?

6 < 4 ascii values.

CH2

7 > 27 ascii values.

MEASUREMENT:MEAS1:TYPE PK2PK

8 > 25 ascii values.

MEASUREMENT:MEAS1:VALUE?

9 < 15 uchar values.

32 2e 30 31 39 39 39 39 39 38 30 39 45 30 0a

10 Recording off.

10-71

10 Serial Port I/O

Saving and Loading

In this section...

“Using save and load” on page 10-72

“Using Serial Port Objects on Different Platforms” on page 10-73

Using save and load
You can save serial port objects to a MAT-file just as you would any workspace
variable - using the save command. For example, suppose you create the
serial port object s associated with the serial port COM1, configure several
property values, and perform a write and read operation.

s = serial('COM1');
s.BaudRate = 19200;
s.Tag = 'My serial object';
fopen(s)
fprintf(s, '*IDN?')
out = fscanf(s);

To save the serial port object and the data read from the device to the MAT-file
myserial.mat

save myserial s out

Note You can save data and event information as text to a disk file with
the record function.

You can recreate s and out in the workspace using the load command.

load myserial

Values for read only properties are restored to their default values upon
loading. For example, the Status property is restored to closed. Therefore, to
use s, you must connect it to the device with the fopen function. To determine
if a property is read only, examine its reference pages.

10-72

Saving and Loading

Using Serial Port Objects on Different Platforms
If you save a serial port object from one platform, and then load that object on
a different platform having different serial port names, you need to modify the
Port property value. For example, suppose you create the serial port object s
associated with the serial port COM1 on a Windows platform. If you want to
save s for eventual use on a Linux platform, configure Port to an appropriate
value such as ttyS0 after the object is loaded.

10-73

10 Serial Port I/O

Disconnecting and Cleaning Up

In this section...

“Disconnecting a Serial Port Object” on page 10-74

“Cleaning Up the MATLAB Environment” on page 10-74

Disconnecting a Serial Port Object
When you no longer need to communicate with the device, disconnect it from
the serial port object with the fclose function.

fclose(s)

Examine the Status property to verify that the serial port object and the
device are disconnected.

s.Status
ans =
closed

After fclose is issued, the serial port associated with s is available. Now
connect another serial port object to it using fopen.

Cleaning Up the MATLAB Environment
When the serial port object is no longer needed, remove it from memory with
the delete function.

delete(s)

Before using delete, disconnect the serial port object from the device with
the fclose function.

A deleted serial port object is invalid, which means that you cannot connect it
to the device. In this case, remove the object from the MATLAB workspace. To
remove serial port objects and other variables from the MATLAB workspace,
use the clear command.

clear s

10-74

Disconnecting and Cleaning Up

Use clear on a serial port object that is still connected to a device to remove
the object from the workspace but leave it connected to the device. Restore
cleared objects to MATLAB with the instrfind function.

10-75

10 Serial Port I/O

Property Reference

In this section...

“The Property Reference Page Format” on page 10-76

“Serial Port Object Properties” on page 10-76

The Property Reference Page Format
Each serial port property description contains some or all of this information:

• The property name

• A description of the property

• The property characteristics, including:

- Read only — The condition under which the property is read only

A property can be read-only always, never, while the serial port object
is open, or while the serial port object is recording. You can configure a
property value using the set function or dot notation. You can return
the current property value using the get function or dot notation.

- Data type — the property data type

This is the data type you use when specifying a property value.

• Valid property values including the default value

When property values are given by a predefined list, the default value
is usually indicated by {}.

• An example using the property

• Related properties and functions

Serial Port Object Properties
The serial port object properties are briefly described below, and organized
into categories based on how they are used. Following this section the
properties are listed alphabetically and described in detail.

10-76

Property Reference

Communications
Properties

BaudRate Specify the rate at which bits are transmitted

DataBits Specify the number of data bits to transmit

Parity Specify the type of parity checking

StopBits Specify the number of bits used to indicate the end
of a byte

Terminator Specify the terminator character

Write Properties

BytesToOutput Indicate the number of bytes currently in the output
buffer

OutputBufferSize Specify the size of the output buffer in bytes

Timeout Specify the waiting time to complete a read or write
operation

TransferStatus Indicate if an asynchronous read or write operation is
in progress

ValuesSent Indicate the total number of values written to the
device

Read Properties

BytesAvailable Indicate the number of bytes available in the input
buffer

InputBufferSize Specify the size of the input buffer in bytes

ReadAsyncMode Specify whether an asynchronous read operation is
continuous or manual

Timeout Specify the waiting time to complete a read or write
operation

10-77

10 Serial Port I/O

Read Properties

TransferStatus Indicate if an asynchronous read or write operation is
in progress

ValuesReceived Indicate the total number of values read from the
device

Callback Properties

BreakInterruptFcn Specify the M-file callback function to execute
when a break-interrupt event occurs

BytesAvailableFcn Specify the M-file callback function to execute
when a specified number of bytes is available
in the input buffer, or a terminator is read

BytesAvailableFcnCount Specify the number of bytes that must be
available in the input buffer to generate a
bytes-available event

BytesAvailableFcnMode Specify if the bytes-available event is generated
after a specified number of bytes is available in
the input buffer, or after a terminator is read

ErrorFcn Specify the M-file callback function to execute
when an error event occurs

OutputEmptyFcn Specify the M-file callback function to execute
when the output buffer is empty

PinStatusFcn Specify the M-file callback function to execute
when the CD, CTS, DSR, or RI pins change
state

TimerFcn Specify the M-file callback function to execute
when a predefined period of time passes

TimerPeriod Specify the period of time between timer events

10-78

Property Reference

Control Pin
Properties

DataTerminalReady Specify the state of the DTR pin

FlowControl Specify the data flow control method to use

PinStatus Indicate the state of the CD, CTS, DSR, and RI pins

RequestToSend Specify the state of the RTS pin

Recording
Properties

RecordDetail Specify the amount of information saved to a record
file

RecordMode Specify whether data and event information are saved
to one record file or to multiple record files

RecordName Specify the name of the record file

RecordStatus Indicate if data and event information are saved to
a record file

General Purpose
Properties

ByteOrder Specify the order in which the device stores bytes

Name Specify a descriptive name for the serial port object

Port Indicate the platform-specific serial port name

Status Indicate if the serial port object is connected to the
device

Tag Specify a label to associate with a serial port object

Type Indicate the object type

UserData Specify data that you want to associate with a serial
port object

10-79

10 Serial Port I/O

Properties — Alphabetical List

10-80

BaudRate

Purpose Specify the rate at which bits are transmitted

Description You configure BaudRate as bits per second. The transferred bits include
the start bit, the data bits, the parity bit (if used), and the stop bits.
However, only the data bits are stored.

The baud rate is the rate at which information is transferred in a
communication channel. In the serial port context, “9600 baud” means
that the serial port is capable of transferring a maximum of 9600 bits
per second. If the information unit is one baud (one bit), the bit rate and
the baud rate are identical. If one baud is given as 10 bits, (for example,
eight data bits plus two framing bits), the bit rate is still 9600 but the
baud rate is 9600/10, or 960. You always configure BaudRate as bits per
second. Therefore, in the above example, set BaudRate to 9600.

Note Both the computer and the peripheral device must be configured
to the same baud rate before you can successfully read or write data.

Standard baud rates include 110, 300, 600, 1200, 2400, 4800, 9600,
14400, 19200, 38400, 57600, 115200, 128000 and 256000 bits per
second. To display the supported baud rates for the serial ports on your
platform, refer to “Finding Serial Port Information for Your Platform”
on page 10-16.

Characteristics Read only Never

Data type Double

Values The default value is 9600.

See Also Properties

DataBits, Parity, StopBits

10-81

BreakInterruptFcn

Purpose Specify the M-file callback function to execute when a break-interrupt
event occurs

Description You configure BreakInterruptFcn to execute an M-file callback
function when a break-interrupt event occurs. A break-interrupt event
is generated by the serial port when the received data is in an off (space)
state longer than the transmission time for one byte.

Note A break-interrupt event can be generated at any time during the
serial port session.

If the RecordStatus property value is on, and a break-interrupt event
occurs, the record file records this information:

• The event type as BreakInterrupt

• The time the event occurred using the format day-month-year
hour:minute:second:millisecond

Refer to “Creating and Executing Callback Functions” on page 10-57 to
learn how to create a callback function.

Characteristics Read only Never

Data type Callback function

Values The default value is an empty string.

See Also Functions

record

Properties

RecordStatus

10-82

ByteOrder

Purpose Specify the byte order of the device

Description You configure ByteOrder to be littleEndian or bigEndian. If
ByteOrder is littleEndian, the device stores the first byte in the first
memory address. If ByteOrder is bigEndian, the device stores the last
byte in the first memory address.

For example, suppose the hexadecimal value 4F52 is to be stored in
device memory. Because this value consists of two bytes, 4F and 52, two
memory locations are used. Using big-endian format, 4F is stored first
in the lower storage address. Using little-endian format, 52 is stored
first in the lower storage address.

Note You should configure ByteOrder to the appropriate value for your
device before performing a read or write operation. Refer to your device
documentation for information about the order in which it stores bytes.

Characteristics Read only Never

Data type String

Values {littleEndian} The byte order of the device is little-endian.

bigEndian The byte order of the device is big-endian.

See Also Properties

Status

10-83

BytesAvailable

Purpose Indicate the number of bytes available in the input buffer

Description BytesAvailable indicates the number of bytes currently available to be
read from the input buffer. The property value is continuously updated
as the input buffer is filled, and is set to 0 after the fopen function is
issued.

You can make use of BytesAvailable only when reading data
asynchronously. This is because when reading data synchronously,
control is returned to the MATLAB command line only after the input
buffer is empty. Therefore, the BytesAvailable value is always 0.
Refer to “Reading Text Data” on page 10-42 to learn how to read data
asynchronously.

The BytesAvailable value can range from zero to the size of the input
buffer. Use the InputBufferSize property to specify the size of the
input buffer. Use the ValuesReceived property to return the total
number of values read.

Characteristics Read only Always

Data type Double

Values The default value is 0.

See Also Functions

fopen

Properties

InputBufferSize, TransferStatus, ValuesReceived

10-84

BytesAvailableFcn

Purpose Specify the M-file callback function to execute when a specified number
of bytes is available in the input buffer, or a terminator is read

Description You configure BytesAvailableFcn to execute an M-file callback function
when a bytes-available event occurs. A bytes-available event occurs
when the number of bytes specified by the BytesAvailableFcnCount
property is available in the input buffer, or after a terminator is read, as
determined by the BytesAvailableFcnMode property.

Note A bytes-available event can be generated only for asynchronous
read operations.

If the RecordStatus property value is on, and a bytes-available event
occurs, the record file records this information:

• The event type as BytesAvailable

• The time the event occurred using the format day-month-year
hour:minute:second:millisecond

Refer to “Creating and Executing Callback Functions” on page 10-57 to
learn how to create a callback function.

Characteristics Read only Never

Data type Callback function

Values The default value is an empty string.

Example Create the serial port object s for a Tektronix TDS 210 two-channel
oscilloscope connected to the serial port COM1.

s = serial('COM1');

10-85

BytesAvailableFcn

Configure s to execute the M-file callback function instrcallback
when 40 bytes are available in the input buffer.

s.BytesAvailableFcnCount = 40;
s.BytesAvailableFcnMode = 'byte';
s.BytesAvailableFcn = @instrcallback;

Connect s to the oscilloscope.

fopen(s)

Write the *IDN? command, which instructs the scope to return
identification information. Because the default value for the
ReadAsyncMode property is continuous, data is read as soon as it is
available from the instrument.

fprintf(s,'*IDN?')

The resulting output from instrcallback is shown below.

BytesAvailable event occurred at 18:33:35 for the object:
Serial-COM1.

56 bytes are read and instrcallback is called once. The resulting
display is shown above.

s.BytesAvailable
ans =

56

Suppose you remove 25 bytes from the input buffer and then issue
the MEASUREMENT? command, which instructs the scope to return its
measurement settings.

out = fscanf(s,'%c',25);
fprintf(s,'MEASUREMENT?')

The resulting output from instrcallback is shown below.

BytesAvailable event occurred at 18:33:48 for the object:

10-86

BytesAvailableFcn

Serial-COM1.

BytesAvailable event occurred at 18:33:48 for the object:
Serial-COM1.

There are now 102 bytes in the input buffer, 31 of which are left over
from the *IDN? command. instrcallback is called twice—once when
40 bytes are available and once when 80 bytes are available.

s.BytesAvailable
ans =

102

See Also Functions

record

Properties

BytesAvailableFcnCount, BytesAvailableFcnMode, RecordStatus,
Terminator, TransferStatus

10-87

BytesAvailableFcnCount

Purpose Specify the number of bytes that must be available in the input buffer
to generate a bytes-available event

Description You configure BytesAvailableFcnCount to the number of bytes that
must be available in the input buffer before a bytes-available event is
generated.

Use the BytesAvailableFcnMode property to specify whether the
bytes-available event occurs after a certain number of bytes are
available or after a terminator is read.

The bytes-available event executes the M-file callback function specified
for the BytesAvailableFcn property.

You can configure BytesAvailableFcnCount only when the object is
disconnected from the device. You disconnect an object with the fclose
function. A disconnected object has a Status property value of closed.

Characteristics Read only While open

Data type Double

Values The default value is 48.

See Also Functions

fclose

Properties

BytesAvailableFcn, BytesAvailableFcnMode, Status

10-88

BytesAvailableFcnMode

Purpose Specify if the bytes-available event is generated after a specified number
of bytes is available in the input buffer, or after a terminator is read

Description You can configure BytesAvailableFcnMode to be terminator or byte. If
BytesAvailableFcnMode is terminator, a bytes-available event occurs
when the terminator specified by the Terminator property is reached.
If BytesAvailableFcnMode is byte, a bytes-available event occurs
when the number of bytes specified by the BytesAvailableFcnCount
property is available.

The bytes-available event executes the M-file callback function specified
for the BytesAvailableFcn property.

You can configure BytesAvailableFcnMode only when the object is
disconnected from the device. You disconnect an object with the fclose
function. A disconnected object has a Status property value of closed.

Characteristics Read only While open

Data type String

Values {terminator} A bytes-available event is generated when the
terminator is read.

byte A bytes-available event is generated when the
specified number of bytes are available.

See Also Functions

fclose

Properties

BytesAvailableFcn, BytesAvailableFcnCount, Status, Terminator

10-89

BytesToOutput

Purpose Indicate the number of bytes currently in the output buffer

Description BytesToOutput indicates the number of bytes currently in the output
buffer waiting to be written to the device. The property value is
continuously updated as the output buffer is filled and emptied, and is
set to 0 after the fopen function is issued.

You can make use of BytesToOutput only when writing data
asynchronously. This is because when writing data synchronously,
control is returned to the MATLAB command line only after the output
buffer is empty. Therefore, the BytesToOutput value is always 0.
Refer to “Writing Text Data” on page 10-37 to learn how to write data
asynchronously.

Use the ValuesSent property to return the total number of values
written to the device.

Note If you attempt to write out more data than can fit in the output
buffer, an error is returned and BytesToOutput is 0. Specify the size of
the output buffer with the OutputBufferSize property.

Characteristics Read only Always

Data type Double

Values The default value is 0.

See Also Functions

fopen

Properties

OutputBufferSize, TransferStatus, ValuesSent

10-90

DataBits

Purpose Specify the number of data bits to transmit

Description You can configure DataBits to be 5, 6, 7, or 8. Data is transmitted as a
series of five, six, seven, or eight bits with the least significant bit sent
first. At least seven data bits are required to transmit ASCII characters.
Eight bits are required to transmit binary data. Five and six bit data
formats are used for specialized communications equipment.

Note Both the computer and the peripheral device must be configured
to transmit the same number of data bits.

In addition to the data bits, the serial data format consists of a start bit,
one or two stop bits, and possibly a parity bit. You specify the number of
stop bits with the StopBits property, and the type of parity checking
with the Parity property.

To display the supported number of data bits for the serial ports on your
platform, refer to “Finding Serial Port Information for Your Platform”
on page 10-16.

Characteristics Read only Never

Data type Double

Values DataBits can be 5, 6, 7, or 8. The default value is 8.

See Also Properties

Parity, StopBits

10-91

DataTerminalReady

Purpose Specify the state of the DTR pin

Description You can configure DataTerminalReady to be on or off. If
DataTerminalReady is on, the Data Terminal Ready (DTR) pin is
asserted. If DataTerminalReady is off, the DTR pin is unasserted.

In normal usage, the DTR and Data Set Ready (DSR) pins work
together, and are used to signal if devices are connected and powered.
However, there is nothing in the RS-232 standard that states the DTR
pin must be used in any specific way. For example, DTR and DSR might
be used for handshaking. You should refer to your device documentation
to determine its specific pin behavior.

You can return the value of the DSR pin with the PinStatus
property. Handshaking is described in “Controlling the Flow of Data:
Handshaking” on page 10-63.

Characteristics Read only Never

Data type String

Values {on} The DTR pin is asserted.

off The DTR pin is unasserted.

See Also Properties

FlowControl, PinStatus

10-92

ErrorFcn

Purpose Specify the M-file callback function to execute when an error event
occurs

Description You configure ErrorFcn to execute an M-file callback function when an
error event occurs.

Note An error event is generated only for asynchronous read and write
operations.

An error event is generated when a time-out occurs. A time-out occurs if
a read or write operation does not successfully complete within the time
specified by the Timeout property. An error event is not generated for
configuration errors such as setting an invalid property value.

If the RecordStatus property value is on, and an error event occurs, the
record file records this information:

• The event type as Error

• The error message

• The time the event occurred using the format day-month-year
hour:minute:second:millisecond

Refer to “Creating and Executing Callback Functions” on page 10-57 to
learn how to create a callback function.

Characteristics Read only Never

Data type Callback function

Values The default value is an empty string.

See Also Functions

record

10-93

ErrorFcn

Properties

RecordStatus, Timeout

10-94

FlowControl

Purpose Specify the data flow control method to use

Description You can configure FlowControl to be none, hardware, or software. If
FlowControl is none, data flow control (handshaking) is not used. If
FlowControl is hardware, hardware handshaking is used to control
data flow. If FlowControl is software, software handshaking is used
to control data flow.

Hardware handshaking typically utilizes the Request to Send (RTS) and
Clear to Send (CTS) pins to control data flow. Software handshaking
uses control characters (Xon and Xoff) to control data flow. Refer to
“Controlling the Flow of Data: Handshaking” on page 10-63 for more
information about handshaking.

You can return the value of the CTS pin with the PinStatus property.
You can specify the value of the RTS pin with the RequestToSend
property. However, if FlowControl is hardware, and you specify a value
for RequestToSend, that value might not be honored.

Note Although you might be able to configure your device for both
hardware handshaking and software handshaking at the same time,
MATLAB does not support this behavior.

Characteristics Read only Never

Data type String

Values
{none} No flow control is used.

hardware Hardware flow control is used.

software Software flow control is used.

10-95

FlowControl

See Also Properties

PinStatus, RequestToSend

10-96

InputBufferSize

Purpose Specify the size of the input buffer in bytes

Description You configure InputBufferSize as the total number of bytes that can
be stored in the input buffer during a read operation.

A read operation is terminated if the amount of data stored in the input
buffer equals the InputBufferSize value. You can read text data with
the fgetl, fgets, or fscanf functions. You can read binary data with
the fread function.

You can configure InputBufferSize only when the serial port object is
disconnected from the device. You disconnect an object with the fclose
function. A disconnected object has a Status property value of closed.

If you configure InputBufferSize while there is data in the input
buffer, that data is flushed.

Characteristics Read only While open

Data type Double

Values The default value is 512.

See Also Functions

fclose, fgetl, fgets, fopen, fread, fscanf

Properties

Status

10-97

Name

Purpose Specify a descriptive name for the serial port object

Description You configure Name to be a descriptive name for the serial port object.

When you create a serial port object, a descriptive name is automatically
generated and stored in Name. This name is given by concatenating
the word “Serial” with the serial port specified in the serial function.
However, you can change the value of Name at any time.

The serial port is given by the Port property. If you modify this property
value, then Name is automatically updated to reflect that change.

Characteristics Read only Never

Data type String

Values Name is automatically defined when the serial port object is created.

Example Suppose you create a serial port object associated with the serial port
COM1.

s = serial('COM1');

s is automatically assigned a descriptive name.

s.Name
ans =
Serial-COM1

See Also Functions

serial

10-98

ObjectVisibility

Purpose Control access to serial port object

Description The ObjectVisibility property provides a way for application
developers to prevent end-user access to the serial port objects created
by their applications. When an object’s ObjectVisibility property is
set to off, instrfind does not return or delete that object.

Objects that are not visible are still valid. If you have access to the
object (for example, from within the M-file that creates it), you can set
and get its properties and pass it to any function that operates on serial
port objects.

Characteristics Usage Any serial port object

Read only Never

Data type String

Values
{on} Object is visible to instrfind.

off Object is not visible from the command line (except
by instrfindall).

Examples The following statement creates a serial port object with its
ObjectVisibility property set to off:

s = serial('COM1','ObjectVisibility','off');
instrfind
ans =

[]

However, because the hidden object is in the workspace (s), you can
access it.

get(s,'ObjectVisibility')
ans =
off

10-99

ObjectVisibility

See Also Functions

instrfind, instrfindall

10-100

OutputBufferSize

Purpose Specify the size of the output buffer in bytes

Description You configure OutputBufferSize as the total number of bytes that can
be stored in the output buffer during a write operation.

An error occurs if the output buffer cannot hold all the data to be
written. You write text data with the fprintf function. You write
binary data with the fwrite function.

You can configure OutputBufferSize only when the serial port object is
disconnected from the device. You disconnect an object with the fclose
function. A disconnected object has a Status property value of closed.

Characteristics Read only While open

Data type Double

Values The default value is 512.

See Also Functions

fprintf, fwrite

Properties

Status

10-101

OutputEmptyFcn

Purpose Specify the M-file callback function to execute when the output buffer
is empty

Description You configure OutputEmptyFcn to execute an M-file callback function
when an output-empty event occurs. An output-empty event is
generated when the last byte is sent from the output buffer to the device.

Note An output-empty event can be generated only for asynchronous
write operations.

If the RecordStatus property value is on, and an output-empty event
occurs, the record file records this information:

• The event type as OutputEmpty

• The time the event occurred using the format day-month-year
hour:minute:second:millisecond

Refer to “Creating and Executing Callback Functions” on page 10-57 to
learn how to create a callback function.

Characteristics Read only Never

Data type Callback function

Values The default value is an empty string.

See Also Functions

record

Properties

RecordStatus

10-102

Parity

Purpose Specify the type of parity checking

Description You can configure Parity to be none, odd, even, mark, or space. If
Parity is none, parity checking is not performed and the parity bit is
not transmitted. If Parity is odd, the number of mark bits (1s) in the
data is counted, and the parity bit is asserted or unasserted to obtain an
odd number of mark bits. If Parity is even, the number of mark bits
in the data is counted, and the parity bit is asserted or unasserted to
obtain an even number of mark bits. If Parity is mark, the parity bit is
asserted. If Parity is space, the parity bit is unasserted.

Parity checking can detect errors of one bit only. An error in two bits
might cause the data to have a seemingly valid parity, when in fact it is
incorrect. Refer to “The Parity Bit” on page 10-14 for more information
about parity checking.

In addition to the parity bit, the serial data format consists of a start
bit, between five and eight data bits, and one or two stop bits. You
specify the number of data bits with the DataBits property, and the
number of stop bits with the StopBits property.

Characteristics Read only Never

Data type String

Values {none} No parity checking

odd Odd parity checking

even Even parity checking

mark Mark parity checking

space Space parity checking

See Also Properties

DataBits, StopBits

10-103

PinStatus

Purpose Indicate the state of the CD, CTS, DSR, and RI pins

Description PinStatus is a structure array that contains the fields CarrierDetect,
ClearToSend, DataSetReady and RingIndicator. These fields indicate
the state of the Carrier Detect (CD), Clear to Send (CTS), Data Set
Ready (DSR) and Ring Indicator (RI) pins, respectively. Refer to “Serial
Port Signals and Pin Assignments” on page 10-7 for more information
about these pins.

PinStatus can be on or off for any of these fields. A value of on
indicates the associated pin is asserted. A value of off indicates the
associated pin is unasserted. A pin status event occurs when any of
these pins changes its state. A pin status event executes the M-file
specified by PinStatusFcn.

In normal usage, the Data Terminal Ready (DTR) and DSR pins
work together, while the Request to Send (RTS) and CTS pins
work together. You can specify the state of the DTR pin with the
DataTerminalReady property. You can specify the state of the RTS pin
with the RequestToSend property.

Refer to “Example — Connecting Two Modems” on page 10-61 for an
example that uses PinStatus.

Characteristics Read only Always

Data type Structure

Values off The associated pin is asserted.

on The associated pin is asserted.

The default value is device dependent.

See Also Properties

DataTerminalReady, PinStatusFcn, RequestToSend

10-104

PinStatusFcn

Purpose Specify the M-file callback function to execute when the CD, CTS, DSR,
or RI pins change state

Description You configure PinStatusFcn to execute an M-file callback function
when a pin status event occurs. A pin status event occurs when the
Carrier Detect (CD), Clear to Send (CTS), Data Set Ready (DSR) or
Ring Indicator (RI) pin changes state. A serial port pin changes state
when it is asserted or unasserted. Information about the state of these
pins is recorded in the PinStatus property.

Note A pin status event can be generated at any time during the serial
port session.

If the RecordStatus property value is on, and a pin status event occurs,
the record file records this information:

• The event type as PinStatus

• The pin that changed its state, and the pin state as either on or off

• The time the event occurred using the format day-month-year
hour:minute:second:millisecond

Refer to “Creating and Executing Callback Functions” on page 10-57 to
learn how to create a callback function.

Characteristics Read only Never

Data type Callback function

Values The default value is an empty string.

See Also Functions

record

10-105

PinStatusFcn

Properties

PinStatus, RecordStatus

10-106

Port

Purpose Specify the platform-specific serial port name

Description You configure Port to be the name of a serial port on your platform. Port
specifies the physical port associated with the object and the device.

When you create a serial port object, Port is automatically assigned the
port name specified for the serial function.

You can configure Port only when the object is disconnected from
the device. You disconnect an object with the fclose function. A
disconnected object has a Status property value of closed.

Characteristics Read only While open

Data type String

Values The Port value is determined when the serial port object is created.

Example Suppose you create a serial port object associated with serial port
COM1.

s = serial('COM1');

The value of the Port property is COM1.

s.Port
ans =
COM1

See Also Functions

fclose, serial

Properties

Name, Status

10-107

ReadAsyncMode

Purpose Specify whether an asynchronous read operation is continuous or
manual

Description You can configure ReadAsyncMode to be continuous or manual. If
ReadAsyncMode is continuous, the serial port object continuously
queries the device to determine if data is available to be read. If data
is available, it is automatically read and stored in the input buffer. If
issued, the readasync function is ignored.

If ReadAsyncMode is manual, the object does not query the device to
determine if data is available to be read. Instead, you must manually
issue the readasync function to perform an asynchronous read
operation. Because readasync checks for the terminator, this function
can be slow. To increase speed, configure ReadAsyncMode to continuous.

Note If the device is ready to transmit data, it will do so regardless of
the ReadAsyncMode value. Therefore, if ReadAsyncMode is manual and a
read operation is not in progress, data might be lost. To guarantee that
all transmitted data is stored in the input buffer, you should configure
ReadAsyncMode to continuous.

You can determine the amount of data available in the input buffer with
the BytesAvailable property. For either ReadAsyncMode value, you can
bring data into the MATLAB workspace with one of the synchronous
read functions such as fscanf, fgetl, fgets, or fread.

Characteristics Read only Never

Data type String

Values {continuous} Continuously query the device to determine if data
is available to be read.

manual Manually read data from the device using the
readasync function.

10-108

ReadAsyncMode

See Also Functions

fgetl, fgets, fread, fscanf, readasync

Properties

BytesAvailable, InputBufferSize

10-109

RecordDetail

Purpose Specify the amount of information saved to a record file

Description You can configure RecordDetail to be compact or verbose. If
RecordDetail is compact, the number of values written to the device,
the number of values read from the device, the data type of the values,
and event information are saved to the record file. If RecordDetail is
verbose, the data written to the device, and the data read from the
device are also saved to the record file.

The event information saved to a record file is shown in the table, Event
Information on page 10-55. The verbose record file structure is shown
in “Example: Recording Information to Disk” on page 10-69.

Characteristics Read only Never

Data type String

Values {compact} The number of values written to the device, the
number of values read from the device, the data type
of the values, and event information are saved to the
record file.

verbose The data written to the device, and the data read
from the device are also saved to the record file.

See Also Functions

record

Properties

RecordMode, RecordName, RecordStatus

10-110

RecordMode

Purpose Specify whether data and event information are saved to one record file
or to multiple record files

Description You can configure RecordMode to be overwrite, append, or index.
If RecordMode is overwrite, the record file is overwritten each time
recording is initiated. If RecordMode is append, data is appended to the
record file each time recording is initiated. If RecordMode is index, a
different record file is created each time recording is initiated, each
with an indexed filename.

You can configure RecordMode only when the object is not recording.
You terminate recording with the record function. A object that is not
recording has a RecordStatus property value of off.

You specify the record filename with the RecordName property. The
indexed filename follows a prescribed set of rules. Refer to “Specifying a
Filename” on page 10-68 for a description of these rules.

Characteristics Read only While recording

Data type String

Values {overwrite} The record file is overwritten.

append Data is appended to an existing record file.

index A different record file is created, each with an
indexed filename.

Example Suppose you create the serial port object s associated with the serial
port COM1.

s = serial('COM1');
fopen(s)

Specify the record filename with the RecordName property, configure
RecordMode to index, and initiate recording.

10-111

RecordMode

s.RecordName = 'MyRecord.txt';
s.RecordMode = 'index';
record(s)

The record filename is automatically updated with an indexed filename
after recording is turned off.

record(s,'off')
s.RecordName
ans =
MyRecord01.txt

Disconnect s from the peripheral device, remove s from memory, and
remove s from the MATLAB workspace.

fclose(s)
delete(s)
clear s

See Also Functions

record

Properties

RecordDetail, RecordName, RecordStatus

10-112

RecordName

Purpose Specify the name of the record file

Description You configure RecordName to be the name of the record file. You can
specify any value for RecordName - including a directory path - provided
the filename is supported by your operating system.

MATLAB supports any filename supported by your operating system.
However, if you access the file through MATLAB, you might need to
specify the filename using single quotes. For example, suppose you
name the record file My Record.txt. To type this file at the MATLAB
command line, you must include the name in quotes.

type('My Record.txt')

You can specify whether data and event information are saved to one
disk file or to multiple disk files with the RecordMode property. If
RecordMode is index, the filename follows a prescribed set of rules.
Refer to “Specifying a Filename” on page 10-68 for a description of
these rules.

You can configure RecordName only when the object is not recording.
You terminate recording with the record function. An object that is not
recording has a RecordStatus property value of off.

Characteristics Read only While recording

Data type String

Values The default record filename is record.txt.

See Also Functions

record

Properties

RecordDetail, RecordMode, RecordStatus

10-113

RecordStatus

Purpose Indicate if data and event information are saved to a record file

Description You can configure RecordStatus to be off or on with the record
function. If RecordStatus is off, then data and event information are
not saved to a record file. If RecordStatus is on, then data and event
information are saved to the record file specified by RecordName.

Use the record function to initiate or complete recording. RecordStatus
is automatically configured to reflect the recording state.

For more information about recording to a disk file, refer to “Debugging:
Recording Information to Disk” on page 10-66.

Characteristics Read only Always

Data type String

Values {off} Data and event information are not written to a
record file.

on Data and event information are written to a
record file.

See Also Functions

record

Properties

RecordDetail, RecordMode, RecordName

10-114

RequestToSend

Purpose Specify the state of the RTS pin

Description You can configure RequestToSend to be on or off. If RequestToSend
is on, the Request to Send (RTS) pin is asserted. If RequestToSend is
off, the RTS pin is unasserted.

In normal usage, the RTS and Clear to Send (CTS) pins work together,
and are used as standard handshaking pins for data transfer. In this
case, RTS and CTS are automatically managed by the DTE and DCE.
However, there is nothing in the RS-232 standard that requires the
RTS pin must be used in any specific way. Therefore, if you manually
configure the RequestToSend value, it is probably for nonstandard
operations.

If your device does not use hardware handshaking in the standard
way, and you need to manually configure RequestToSend, configure
the FlowControl property to none. Otherwise, the RequestToSend
value that you specify might not be honored. Refer to your device
documentation to determine its specific pin behavior.

You can return the value of the CTS pin with the PinStatus
property. Handshaking is described in “Controlling the Flow of Data:
Handshaking” on page 10-63.

Characteristics Read only Never

Data type String

Values {on} The RTS pin is asserted.

off The RTS pin is unasserted.

See Also Properties

FlowControl, PinStatus

10-115

Status

Purpose Indicate if the serial port object is connected to the device

Description Status can be open or closed. If Status is closed, the serial port
object is not connected to the device. If Status is open, the serial port
object is connected to the device.

Before you can write or read data, you must connect the serial port
object to the device with the fopen function. Use the fclose function to
disconnect a serial port object from the device.

Characteristics Read only Always

Data type String

Values {closed} The serial port object is not connected to the device.

open The serial port object is connected to the device.

See Also Functions

fclose, fopen

10-116

StopBits

Purpose Specify the number of bits used to indicate the end of a byte

Description You can configure StopBits to be 1, 1.5, or 2. If StopBits is 1, one
stop bit is used to indicate the end of data transmission. If StopBits
is 2, two stop bits are used to indicate the end of data transmission.
If StopBits is 1.5, the stop bit is transferred for 150% of the normal
time used to transfer one bit.

Note Both the computer and the peripheral device must be configured
to transmit the same number of stop bits.

In addition to the stop bits, the serial data format consists of a start bit,
between five and eight data bits, and possibly a parity bit. You specify
the number of data bits with the DataBits property, and the type of
parity checking with the Parity property.

Characteristics Read only Never

Data type Double

Values {1} One stop bit is transmitted to indicate the end of a
byte.

1.5 The stop bit is transferred for 150% of the normal
time used to transfer one bit.

2 Two stop bits are transmitted to indicate the end
of a byte.

See Also Properties

DataBits, Parity

10-117

Tag

Purpose Specify a label to associate with a serial port object

Description You configure Tag to be a string value that uniquely identifies a serial
port object.

Tag is particularly useful when constructing programs that would
otherwise need to define the serial port object as a global variable, or
pass the object as an argument between callback routines.

You can return the serial port object with the instrfind function by
specifying the Tag property value.

Characteristics Read only Never

Data type String

Values The default value is an empty string.

Example Suppose you create a serial port object associated with the serial port
COM1.

s = serial('COM1');
fopen(s)

You can assign s a unique label using Tag.

set(s,'Tag','MySerialObj')

You can access s in the MATLAB workspace or in an M-file using the
instrfind function and the Tag property value.

s1 = instrfind('Tag','MySerialObj');

See Also Functions

instrfind

10-118

Terminator

Purpose Specify the terminator character

Description You can configure Terminator to an integer value ranging from 0 to
127, which represents the ASCII code for the character, or you can
configure Terminator to the ASCII character. For example, to configure
Terminator to a carriage return, specify the value to be CR or 13. To
configure Terminator to a linefeed, specify the value to be LF or 10. You
can also set Terminator to CR/LF or LF/CR. If Terminator is CR/LF, the
terminator is a carriage return followed by a line feed. If Terminator is
LF/CR, the terminator is a linefeed followed by a carriage return. Note
that there are no integer equivalents for these two values. Additionally,
you can set Terminator to a 1-by-2 cell array. The first element of the
cell is the read terminator and the second element of the cell array is
the write terminator.

When performing a write operation using the fprintf function, all
occurrences of \n are replaced with the Terminator property value.
Note that %s\n is the default format for fprintf. A read operation with
fgetl, fgets, or fscanf completes when the Terminator value is read.
The terminator is ignored for binary operations.

You can also use the terminator to generate a bytes-available event
when the BytesAvailableFcnMode is set to terminator.

Characteristics Read only Never

Data type String

Values An integer value ranging from 0 to 127, or the equivalent ASCII
character. CR/LF and LF/CR are also accepted values. You specify
different read and write terminators as a 1-by-2 cell array.

See Also Functions

fgetl, fgets, fprintf, fscanf

10-119

Terminator

Properties

BytesAvailableFcnMode

10-120

Timeout

Purpose Specify the waiting time to complete a read or write operation

Description You configure Timeout to be the maximum time (in seconds) to wait to
complete a read or write operation.

If a time-out occurs, the read or write operation aborts. Additionally, if
a time-out occurs during an asynchronous read or write operation, then:

• An error event is generated.

• The M-file callback function specified for ErrorFcn is executed.

Characteristics Read only Never

Data type Double

Values The default value is 10 seconds.

See Also Properties

ErrorFcn

10-121

TimerFcn

Purpose Specify the M-file callback function to execute when a predefined period
of time passes.

Description You configure TimerFcn to execute an M-file callback function when a
timer event occurs. A timer event occurs when the time specified by the
TimerPeriod property passes. Time is measured relative to when the
serial port object is connected to the device with fopen.

Note A timer event can be generated at any time during the serial
port session.

If the RecordStatus property value is on, and a timer event occurs, the
record file records this information:

• The event type as Timer

• The time the event occurred using the format day-month-year
hour:minute:second:millisecond

Some timer events might not be processed if your system is significantly
slowed or if the TimerPeriod value is too small.

Refer to “Creating and Executing Callback Functions” on page 10-57 to
learn how to create a callback function.

Characteristics Read only Never

Data type Callback function

Values The default value is an empty string.

See Also Functions

fopen, record

10-122

TimerFcn

Properties

RecordStatus, TimerPeriod

10-123

TimerPeriod

Purpose Specify the period of time between timer events

Description TimerPeriod specifies the time, in seconds, that must pass before the
callback function specified for TimerFcn is called. Time is measured
relative to when the serial port object is connected to the device with
fopen.

Some timer events might not be processed if your system is significantly
slowed or if the TimerPeriod value is too small.

Characteristics Read only Never

Data type Callback function

Values The default value is 1 second. The minimum value is 0.01 second.

See Also Functions

fopen

Properties

TimerFcn

10-124

TransferStatus

Purpose Indicate if an asynchronous read or write operation is in progress

Description TransferStatus can be idle, read, write, or read&write. If
TransferStatus is idle, no asynchronous read or write operations are
in progress. If TransferStatus is read, an asynchronous read operation
is in progress. If TransferStatus is write, an asynchronous write
operation is in progress. If TransferStatus is read&write, both an
asynchronous read and an asynchronous write operation are in progress.

You can write data asynchronously using the fprintf or fwrite
functions. You can read data asynchronously using the readasync
function, or by configuring the ReadAsyncMode property to continuous.
While readasync is executing, TransferStatus might indicate that
data is being read even though data is not filling the input buffer. If
ReadAsyncMode is continuous, TransferStatus indicates that data is
being read only when data is actually filling the input buffer.

You can execute an asynchronous read and an asynchronous write
operation simultaneously because serial ports have separate read and
write pins. Refer to “Writing and Reading Data” on page 10-32 for
more information about synchronous and asynchronous read and write
operations.

Characteristics Read only Always

Data type String

Values {idle} No asynchronous operations are
in progress.

read An asynchronous read operation
is in progress.

write An asynchronous write operation
is in progress.

read&write Asynchronous read and write
operations are in progress.

10-125

TransferStatus

See Also Functions

fprintf, fwrite, readasync

Properties

ReadAsyncMode

10-126

Type

Purpose Indicate the object type

Description Type indicates the type of the object. Type is automatically defined
after the serial port object is created with the serial function. The
Type value is always serial.

Characteristics Read only Always

Data type String

Values Type is always serial. This value is automatically defined when the
serial port object is created.

Example Suppose you create a serial port object associated with the serial port
COM1.

s = serial('COM1');

The value of the Type property is serial, which is the object class.

s.Type
ans =
serial

You can also display the object class with the whos command.

Name Size Bytes Class

s 1x1 644 serial object

Grand total is 18 elements using 644 bytes

See Also Functions

serial

10-127

UserData

Purpose Specify data that you want to associate with a serial port object

Description You configure UserData to store data that you want to associate with a
serial port object. The object does not use this data directly, but you can
access it using the get function or the dot notation.

Characteristics Read only Never

Data type Any type

Values The default value is an empty vector.

Example Suppose you create the serial port object associated with the serial port
COM1.

s = serial('COM1');

You can associate data with s by storing it in UserData.

coeff.a = 1.0;
coeff.b = -1.25;
s.UserData = coeff;

10-128

ValuesReceived

Purpose Indicate the total number of values read from the device

Description ValuesReceived indicates the total number of values read from the
device. The value is updated after each successful read operation, and
is set to 0 after the fopen function is issued. If the terminator is read
from the device, then this value is reflected by ValuesReceived.

If you are reading data asynchronously, use the BytesAvailable
property to return the number of bytes currently available in the input
buffer.

When performing a read operation, the received data is represented by
values rather than bytes. A value consists of one or more bytes. For
example, one uint32 value consists of four bytes. Refer to “Bytes Versus
Values” on page 10-12 for more information about bytes and values.

Characteristics Read only Always

Data type Double

Values The default value is 0.

Example Suppose you create a serial port object associated with the serial port
COM1.

s = serial('COM1');
fopen(s)

If you write the RS232? command, and read back the response using
fscanf, ValuesReceived is 17 because the instrument is configured
to send the LF terminator.

fprintf(s,'RS232?')
out = fscanf(s)
out =
9600;0;0;NONE;LF
s.ValuesReceived

10-129

ValuesReceived

ans =
17

See Also Functions

fopen

Properties

BytesAvailable

10-130

ValuesSent

Purpose Indicate the total number of values written to the device

Description ValuesSent indicates the total number of values written to the device.
The value is updated after each successful write operation, and is set to
0 after the fopen function is issued. If you are writing the terminator,
ValuesSent reflects this value.

If you are writing data asynchronously, use the BytesToOutput property
to return the number of bytes currently in the output buffer.

When performing a write operation, the transmitted data is represented
by values rather than bytes. A value consists of one or more bytes. For
example, one uint32 value consists of four bytes. Refer to “Bytes Versus
Values” on page 10-12 for more information about bytes and values.

Characteristics Read only Always

Data type Double

Values The default value is 0.

Example Suppose you create a serial port object associated with the serial port
COM1.

s = serial('COM1');
fopen(s)

If you write the *IDN? command using the fprintf function,
ValuesSent is 6 because the default data format is %s\n, and the
terminator was written.

fprintf(s,'*IDN?')
s.ValuesSent
ans =

6

10-131

ValuesSent

See Also Functions

fopen

Properties

BytesToOutput

10-132

A

Examples

Use this list to find examples in the documentation.

A Examples

Importing and Exporting Data
“Creating a MAT-File in C” on page 1-11
“Reading a MAT-File in C” on page 1-12
“Creating a MAT-File in Fortran” on page 1-12
“Reading a MAT-File in Fortran” on page 1-13

MATLAB Interface to Generic DLLs
“Invoking Library Functions” on page 2-9
“Converting to Other Primitive Types” on page 2-17
“Converting to a Reference” on page 2-18
“Strings” on page 2-18
“Enumerated Types” on page 2-19
“Passing a MATLAB Structure” on page 2-22
“Using the Structure as an Object” on page 2-24
“Example of Passing a libstruct Object” on page 2-25
“Constructing a Reference with the libpointer Function” on page 2-26
“Creating a Reference to a Primitive Type” on page 2-27
“Creating a Structure Reference” on page 2-30
“Reference Pointers” on page 2-34

Calling C and Fortran Programs from MATLAB
“The explore Example” on page 3-10
“Examples from the Text” on page 3-48
“MEX Reference Examples” on page 3-48
“MX Examples” on page 3-48
“Engine and MAT Examples” on page 3-48

Creating C Language MEX-Files
“A First Example — Passing a Scalar” on page 4-12

A-2

Creating Fortran MEX-Files

“Passing Strings” on page 4-13
“Passing Two or More Inputs or Outputs” on page 4-14
“Passing Structures and Cell Arrays” on page 4-15
“Handling Complex Data” on page 4-17
“Handling 8-,16-, and 32-Bit Data” on page 4-18
“Manipulating Multidimensional Numerical Arrays” on page 4-18
“Handling Sparse Arrays” on page 4-19
“Calling Functions from C MEX-Files” on page 4-20
“Persistent Arrays” on page 4-30
“Example — Symmetric Indefinite Factorization Using LAPACK” on page
4-44

Creating Fortran MEX-Files
“A First Example — Passing a Scalar” on page 5-12
“Passing Strings” on page 5-13
“Passing Arrays of Strings” on page 5-14
“Passing Matrices” on page 5-15
“Passing Two or More Inputs or Outputs” on page 5-15
“Handling Complex Data” on page 5-16
“Dynamically Allocating Memory” on page 5-17
“Handling Sparse Matrices ” on page 5-18
“Calling Functions from Fortran MEX-Files” on page 5-19

Calling MATLAB from C and Fortran Programs
“Calling MATLAB from a C Application” on page 6-5
“Calling MATLAB from a Fortran Application” on page 6-7
“Attaching to an Existing MATLAB Session” on page 6-8
“Example — Building an Engine Application on Windows” on page 6-17
“Example — Building an Engine Application on UNIX” on page 6-17

A-3

A Examples

Calling Java from MATLAB
“Concatenating Java Objects” on page 7-19
“Finding the Public Data Fields of an Object” on page 7-21
“Methodsview: Displaying a Listing of Java Methods” on page 7-29
“Creating an Array of Objects Within MATLAB” on page 7-40
“Creating a New Array Reference” on page 7-50
“Creating a Copy of a Java Array” on page 7-51
“Passing Java Objects” on page 7-57
“Example — Calling an Overloaded Method” on page 7-62
“Converting to a MATLAB Structure” on page 7-67
“Converting to a MATLAB Cell Array” on page 7-68
“Example — Reading a URL” on page 7-71
“Example — Finding an Internet Protocol Address” on page 7-74
“Example — Communicating Through a Serial Port” on page 7-76
“Example — Creating and Using a Phone Book” on page 7-82

COM Support
“Example — Using Internet Explorer in a MATLAB Figure” on page 8-12
“Example — Grid ActiveX Control in a Figure” on page 8-17
“Example — Reading Data from Excel” on page 8-24
“Writing Event Handlers” on page 8-87
“Using MATLAB as an Automation Client” on page 8-105
“Using COM Collections” on page 8-110
“Example — Running an M-File from Visual Basic .NET” on page 8-125
“Example — Viewing Methods from a Visual Basic .NET Client” on page
8-126
“Example — Calling MATLAB from a Web Application” on page 8-126
“Example — Calling MATLAB from a C# Client” on page 8-129

Serial Port I/O
“Example: Getting Started” on page 10-19

A-4

Serial Port I/O

“Example — Writing and Reading Text Data” on page 10-45
“Example — Parsing Input Data Using strread” on page 10-47
“Example — Reading Binary Data” on page 10-48
“Example — Using Events and Callbacks” on page 10-58
“Example — Connecting Two Modems” on page 10-61
“Example: Recording Information to Disk” on page 10-69
“Saving and Loading” on page 10-72

A-5

A Examples

A-6

Index

IndexA
API

access methods 3-4
memory management 3-39

argument checking 4-12
argument passing, from Java methods

data conversion 7-64
built-in data types 7-65
conversions you can perform 7-66
Java objects 7-65

argument passing, to Java methods
data conversion 7-53

built-in arrays 7-55
built-in data types 7-55
Java object arrays 7-59
Java object cell arrays 7-60
Java objects 7-57
objects of Object class 7-58
string arrays 7-57
string data types 7-56

effect of dimension on 7-60
argument type, Java

effect on method dispatching 7-61
array access methods

mat 1-2
arrays

cell 3-8
empty 3-8
hybrid 4-31
MATLAB 3-6
multidimensional 3-8
persistent 4-30
serial port object 10-28
sparse 4-19
temporary 4-29 5-24

arrays, Java
accessing elements of 7-42

assigning
the empty matrix 7-48
values to 7-46
with single subscripts 7-46

comparison with MATLAB arrays 7-37
concatenation of 7-49
creating a copy 7-51
creating a reference 7-50
creating in MATLAB 7-40
creating with javaArray 7-40
dimensionality of 7-36
dimensions 7-39
indexing 7-37

with colon operator 7-44
with single subscripts 7-43 to 7-44

linear arrays 7-47
passed by reference 7-56
representing in MATLAB 7-35
sizing 7-38
subscripted deletion 7-48
using the end subscript 7-45

ASCII file mode 1-5
ASCII flat file 1-3
automation

client 8-105
controller 8-35 8-112
server 8-112

B
BaudRate 10-81
binary data

reading from a device 10-44
writing to a device 10-39

binary file mode 1-5
BLAS and LAPACK functions 4-38

building MEX files for 4-42 4-45
example of 4-44
handling complex numbers 4-40
passing arguments 4-39

Index-1

Index

specifying the function name 4-39
BreakInterruptFcn 10-82
BSTR 8-121
buffer

input, serial port object 10-40
output, serial port object 10-35

ByteOrder 10-83
BytesAvailable 10-84
BytesAvailableFcn 10-85
BytesAvailableFcnCount 10-88
BytesAvailableFcnMode 10-89
BytesToOutput 10-90

C
C example

convec.c 4-17
doubleelem.c 4-18
findnz.c 4-18
fulltosparse.c 4-19
phonebook.c 4-16
revord.c 4-13
sincall.c 4-20
timestwo.c 4-12
timestwoalt.c 4-13
xtimesy.c 4-15

C language
data types 3-9
debugging 4-46
MEX-files 4-1

C language example
basic 4-12
calling MATLAB functions 4-20
calling user-defined functions 4-20
handling 8-, 16-, 32-bit data 4-18
handling arrays 4-18
handling complex data 4-17
handling sparse arrays 4-19
passing multiple values 4-14
persistent array 4-30

prompting user for input 4-16
strings 4-13

C# COM client 8-129
callback

serial port object 10-51
functions 10-57
properties 10-52

caller workspace 4-26
cat

using with Java arrays 7-49
using with Java objects 7-19

cell
using with Java objects 7-68

cell arrays 3-8 4-15
converting from Java object 7-68

char
overloading toChar in Java 7-67

character encoding
ASCII data formats 1-7
default 1-7
lossless data conversion 1-8
Unicode 1-7

class
using in Java 7-23

classes, Java 7-7
built-in 7-7
defining 7-8
identifying using which 7-31
importing 7-13
loading into workspace 7-13
making available to MATLAB 7-11
sources for 7-7
third-party 7-7
user-defined 7-7

classpath.txt
finding and editing 7-9
using with Java archive files 7-12
using with Java classes 7-11
using with Java packages 7-12

collections 8-110

Index-2

Index

colon
using in Java array access 7-44
using in Java array assignment 7-48

COM
Automation server 8-112
collections 8-110
concepts 8-3
controller 8-112
Count property 8-110
event handler function 8-88
Item method 8-110
launching server 8-122
limitations of MATLAB support 8-111
MATLAB as automation client 8-105
ProgID 8-5 8-45 8-49
server 8-112
use in the MATLAB engine 6-4

commands. See individual commands. 4-2 5-2
compiler

changing on UNIX 3-12
debugging

Microsoft 4-46
selecting on Windows 3-14
supported 3-11

compiling
MAT-file application

UNIX 1-16
Windows 1-18

complex data
in Fortran 5-16

compopts.bat 3-24
computational routine 4-2 5-2 5-5

accessing mxArray data 4-4
concatenation

of Java arrays 7-49
of Java objects 7-19

configuration 3-11
problems 3-35
UNIX 3-12
Windows 3-14 3-17

control pins
serial port object, using 10-60

convec.c 4-17
convec.F 5-16
conversion, data

in Java method arguments 7-53
copying a Java array 7-51
Count property 8-110

D
data access

within Java objects 7-22
data bits 10-14
data format

serial port 10-11
data storage 3-6
data type 4-11

C language 3-9
cell arrays 3-8
checking 4-12
complex double-precision nonsparse

matrix 3-7
empty arrays 3-8
Fortran language 3-9
MAT-file 1-5
MATLAB 3-9
MATLAB string 3-8
multidimensional arrays 3-8
numeric matrix 3-7
objects 3-8
sparse arrays 4-19
sparse matrices 3-9
structures 3-8

data, MATLAB 3-6
exporting from 1-3
importing to 1-2

DataBits 10-91
DataTerminalReady 10-92
dblmat.F 5-17

Index-3

Index

DCE 10-6
DCOM (distributed component object

model) 8-123
using MATLAB as a server 8-123

debugging C language MEX-files 4-46
Linux 4-54
Windows 4-46

debugging Fortran language MEX-files
Linux 5-25
Windows 5-25

diary 1-3
diary file 1-3
directory

eng_mat 3-48
mex 3-48
mx 3-48
refbook 3-48

directory organization
MAT-file application 1-8
Microsoft Windows 3-45
UNIX 3-43

directory path
convention 3-10

display
serial port object 10-27

display function
overloading toString in Java 7-32

distributed component object model.. See DCOM.
DLL files 3-11

locating 3-32
dll libraries

data conversion 2-15
enumerated types 2-19
primitive types 2-15
reference pointers 2-34
references 2-26
strings 2-18
structures 2-20

library functions
getting information about 2-6
invoking functions 2-9
passing arguments 2-10
passing arguments:general rules 2-11
passing arguments:libstruct objects 2-23
passing arguments:references 2-12
passing arguments:structures 2-22

loading the library 2-4
MATLAB interface to 2-1
unloading the library 2-4

documenting MEX-file 4-25 5-21
double

overloading toDouble in Java 7-66
doubleelem.c 4-18
DTE 10-6
dynamic memory allocation

in Fortran 5-17
mxCalloc 4-13

dynamically linked subroutines 3-2

E
empty arrays 3-8
empty matrix

conversion to Java NULL 7-61
in Java array assignment 7-48

empty string
conversion to Java object 7-61

end
use with Java arrays 7-45

eng_mat directory 3-48 6-5
engClose 6-3
engdemo.c 6-5
engEvalString 6-3 to 6-4
engGetVariable 6-3
engGetVisible 6-3
engine

compiling 6-10
linking 6-10

Index-4

Index

engine example
calling MATLAB

from C program 6-5
from Fortran program 6-7

engine functions 6-3 to 6-4
engine library 6-1

communicating with MATLAB
UNIX 6-4
Windows 6-4

engOpen 6-3
engOpenSingleUse 6-3
engOutputBuffer 6-3 to 6-4
engPutVariable 6-3
engSetVisible 6-3
engwindemo.c 1-13 6-5
ErrorFcn 10-93
event handler

function 8-88
writing 8-88

events
serial port object 10-51

storing information 10-54
types 10-52

examples, Java programming
communicating through a serial port 7-76
creating and using a phone book 7-82
finding an internet protocol address 7-74
reading a URL 7-71

exception
floating-point 1-15 6-18

exceptions, Java
handling 7-34

explore example 3-10
extension

MEX-file 3-3

F
-f option 3-17
fengdemo.F 6-7

fieldnames
using with Java objects 7-21

file mode
ASCII 1-5
binary 1-5

files
flat 1-3
linking multiple 4-25 5-21

findnz.c 4-18
floating-point exceptions

Borland C++ Compiler on Windows 1-15
6-19

engine applications 6-18
masking 1-15 6-18
MAT-file applications 1-15

FlowControlHardware 10-95
fopen 1-3 to 1-4
Fortran

data types 3-9
pointers

concept 5-15
declaring 5-5

Fortran examples
convec.F 5-16
dblmat.F 5-17
fulltosparse.F 5-18
matsq.F 5-15
passstr.F 5-14
revord.F 5-13
sincall.F 5-19
timestwo.F 5-12
xtimesy.F 5-16

Fortran language examples
calling MATLAB functions 5-19
handling complex data 5-16
handling sparse matrices 5-18
passing arrays of strings 5-14
passing matrices 5-15
passing multiple values 5-15
passing scalar 4-12 5-12

Index-5

Index

passing strings 5-13
Fortran language MEX-files 5-2

components 5-2
fread 1-3
fulltosparse.c 4-19
fulltosparse.F 5-18
function handles

serial port object callback 10-57
fwrite 1-4

G
-g option 4-46
gateway routine 4-2 5-2

accessing mxArray data 4-2 5-2

H
handshaking

serial port object 10-63
help 4-25 5-21
help files 4-25 5-21
hybrid array

persistent 4-32
temporary 4-32

hybrid arrays 4-31

I
IDE

building MEX-files 3-19
IEEE routines 3-4
import

using with Java classes 7-13
include directory 1-9
indexing Java arrays

using single colon subscripting 7-44
using single subscripting 7-43

InputBufferSize 10-97
internet protocol address

Java example 7-74

ir 3-9 4-19 5-18
isa

using with Java objects 7-24
isjava

using with Java objects 7-24
Item method 8-110

J
Java

API class packages 7-3
archive (JAR) files 7-12
development kit 7-8
Java Virtual Machine (JVM) 7-3
JVM

using a nondefault version 7-4
native method libraries

setting the search path 7-14
packages 7-12

Java, MATLAB interface to
arguments passed to Java methods 7-53
arguments returned from Java methods 7-64
arrays, working with 7-35
benefits of 7-3
classes, using 7-7
examples 7-70
methods, invoking 7-25
objects, creating and using 7-16
overview 7-3

javaArray function 7-40
jc 3-9 4-19 5-18
JNI

setting the search path 7-14
JVM

using a nondefault version 7-4

L
LAPACK and BLAS functions 4-38

building MEX files for 4-42 4-45

Index-6

Index

example of 4-44
handling complex numbers 4-40
passing arguments 4-39
specifying the function name 4-39

libraries
Java native method

setting the search path 7-14
library path

setting on UNIX 1-16
linking DLL files to MEX-files 3-29
linking multiple files 4-25 5-21
load 1-3 1-5

using with Java objects 7-20
loading

serial port objects 10-72
locating DLL files 3-32

M
M-file

creating data 1-3
macros

accessing mxArray data 4-5 5-5
MAT-file

C language
reading 1-12

compiling 1-15
data types 1-5
examples 1-10
Fortran language

creating 1-12
reading 1-13

linking 1-15
subroutines 1-5
UNIX libraries 1-9
using 1-2
Windows libraries 1-9

MAT-file application
UNIX 1-16
Windows 1-18

MAT-file example
creating

C language 1-11
Fortran language 1-12

reading
C language 1-12
Fortran language 1-13

MAT-functions 1-5
mat.h 1-9
matClose 1-6
matDeleteVariable 1-6 to 1-7
matdemo1.f 1-12
matdemo2.f 1-13
matGetDir 1-6
matGetFp 1-6
matGetNextVariable 1-6 to 1-7
matGetNextVariableInfo 1-6 to 1-7
matGetVariable 1-6
matGetVariableInfo 1-6
MATLAB

arrays 3-6
as DCOM server client 8-111
data 3-6
data file format 1-2
data storage 3-6
data type 3-9
engine 6-1
exporting data 1-3
importing data 1-2
MAT-file 1-5

reading arrays from 1-5
saving arrays to 1-5

moving data between platforms 1-4 to 1-5
stand-alone applications 1-2
string 3-8
using as a computation engine 6-1
variables 3-6

matOpen 1-6
matPutVariable 1-6 to 1-7
matPutVariableAsGlobal 1-6 to 1-7

Index-7

Index

matrix
complex double-precision nonsparse 3-7
numeric 3-7
sparse 3-9 5-18

matrix.h 1-9
matsq.F 5-15
memory

allocation 4-13
leak 3-41 4-30
temporary 5-24

memory management 3-39 4-29 5-24
API 3-39
compatibility 3-39
routines 3-4
special considerations 4-29

methods
using with Java methods 7-30

methods, Java
calling syntax 7-25
converting input arguments 7-53
displaying 7-30
displaying information about 7-28
finding the defining class 7-31
overloading 7-61
passing data to 7-53
static 7-27
undefined 7-33

methodsview 7-28
output fields 7-30

mex
-g 4-46

mex build script 3-19 4-12
default options file, UNIX 3-23
default options file, Windows 3-24

switches 3-20
-ada <sfcn.ads> 3-20
-<arch> 3-20
-argcheck 3-20
-c 3-20
-compatibleArrayDims 3-20
-cxx 3-21
-D<name> 3-21
-D<name>=<value> 3-21
-f <optionsfile> 3-21
-fortran 3-21 5-22
-g 3-21
-h[elp] 3-21
-I<pathname> 3-21
-inline 3-21
-L<directory> 3-22
-l<name> 3-21
-largeArrayDims 3-22
-n 3-22
<name>=<value> 3-23
-O 3-22
-outdir <dirname> 3-22
-output <resultname> 3-22
@<rsp_file> 3-20
-setup 3-14 3-22
-U<name> 3-22
-v 3-23

mex directory 3-48
mex.bat 4-12
MEX-file 3-2

advanced topics 4-25
Fortran 5-21

applications of 3-2
arguments 4-3 5-3
C language 4-1
calling 3-3
compiling 4-12

Microsoft Visual C++ 3-29
UNIX 3-12 3-24 3-27
Windows 3-17 3-27 3-29

Index-8

Index

components 4-2
computation error 3-37
configuration problem 3-35
creating C language 4-2 4-12
creating Fortran language 5-2
custom building 3-19
debugging C language 4-46
debugging Fortran language 5-25
DLL linking 3-29
documenting 4-25 5-21
dynamically allocated memory 4-29
examples 4-11 5-12
extensions 3-3
load error 3-36
overview 3-2
passing cell arrays 4-15
passing structures 4-15
problems 3-34 3-37
segmentation error 3-36
syntax errors 3-35
temporary array 4-29
using 3-2
versioning 3-29

mex.m 4-12
mex.sh 4-12
mexa64 extension 3-3
mexAtExit 4-30

register a function 4-30
mexCallMATLAB 4-20 to 4-21 4-29 5-19 to 5-20
mexErrMsgTxt 4-8 4-29 5-10
mexEvalString 4-26 5-22
mexFunction 4-2 5-2

altered name 5-27
parameters 4-2 5-2

mexGetVariable 4-26 5-22
mexglx extension 3-3
mexmac extension 3-3
mexmaci extension 3-3
mexMakeArrayPersistent 4-30
mexMakeMemoryPersistent 4-30

mexopts.bat 3-24
mexPutVariable 4-26 5-22
mexs64 extension 3-3
mexSetTrapFlag 4-29
mexversion.rc 3-29
mexw32 extension 3-3
mexw64 extension 3-3
Microsoft compiler

debugging 4-46
Microsoft Windows

directory organization 3-45
multidimensional arrays 3-8
mx directory 3-48
mxArray 3-6

accessing data 4-2 4-4 to 4-5 5-2 5-5
contents 3-6
improperly destroying 3-39
ir 3-9
jc 3-9
nzmax 3-9
pi 3-9
pr 3-9
temporary with improper data 3-40
type 3-6

mxCalloc 4-13 4-29
in gateway routine 4-8 5-10

mxCopyComplex16ToPtr 5-16
mxCopyPtrToComplex16 5-16
mxCopyPtrToReal8 5-7 5-15
mxCreateDoubleMatrix

in gateway routine 4-8 5-10
mxCreateNumericArray 4-18
mxCreateSparse

in gateway routine 4-8 5-10
mxCreateString 4-13

in gateway routine 4-8 5-10
mxDestroyArray 3-39 4-31 5-24
mxFree 3-39
mxGetCell 4-15
mxGetData 4-15 4-18

Index-9

Index

mxGetField 4-15
mxGetImagData 4-18
mxGetPi 4-17 5-15
mxGetPr 4-15 4-17 5-15
mxGetScalar 4-13 4-15
mxMalloc 4-13 4-29
mxRealloc 4-13 4-29
mxSetCell 3-39 4-31
mxSetData 3-40 3-42 4-31
mxSetField 3-39
mxSetImagData 3-40 3-42
mxSetIr 3-42
mxSetJc 3-42
mxSetPi 3-40 3-42
mxSetPr 3-40 to 3-41 4-31
mxUNKNOWN_CLASS 4-21 5-20

N
Name

serial port property 10-98
ndims

using with Java arrays 7-39
nlhs 4-2 to 4-3 5-2 to 5-3
nrhs 4-2 to 4-3 5-2 to 5-3
null modem cable 10-7
numeric matrix 3-7
nzmax 3-9 5-18

O
objects 3-8

serial port 10-26
objects, Java

accessing data within 7-22
concatenating 7-19
constructing 7-16
converting to MATLAB cell array 7-68
converting to MATLAB structures 7-67
identifying fieldnames 7-21

information about 7-23
class name 7-24
class type 7-24

passing by reference 7-18
saving and loading 7-20

ObjectVisibility 10-99
options file

creating new 3-19
modifying 3-20
preconfigured 3-18
specifying 3-17
when to specify 3-17

OutputBufferSize 10-101
OutputEmptyFcn 10-102
overloading Java methods 7-61

P
Parity 10-103
parity bit 10-14
passing data to Java methods 7-53
passstr.F 5-14
persistent arrays

exempting from cleanup 4-30
phonebook.c 4-16
pi 3-7
PinStatus 10-104
PinStatusFcn 10-105
plhs 4-2 to 4-3 5-2 to 5-3
pointer

Fortran language MEX-file 5-15
Port 10-107
pr 3-7
preprocessor macros

accessing mxArray data 4-5 5-5
prhs 4-2 to 4-3 5-2 to 5-3
properties

serial port object 10-76
protocol

DCOM 8-123

Index-10

Index

R
read/write failures, checking for 1-11
ReadAsyncMode 10-108
reading

binary data from a device 10-44
text data from a device 10-42

record file
serial port object

creating multiple files 10-67
filename 10-68
format 10-68

RecordDetail 10-110
RecordMode 10-111
RecordName 10-113
RecordStatus 10-114
refbook directory 3-48
references

to Java arrays 7-50
RequestToSend 10-115
revord.c 4-13
revord.F 5-13
routine

computational 4-2 5-2
gateway 4-2 5-2
mex 3-4
mx 3-4

RS-232 standard 10-5

S
save 1-4 to 1-5

using with Java objects 7-20
saving

serial port objects 10-72
search path

Java native method libraries
setting the path 7-14

serial port

data format 10-11
devices, connecting 10-6
object creation 10-26
RS-232 standard 10-5
session 10-19
signal and pin assignments 10-7

serial port object
array creation 10-28
callback properties 10-52
configuring communications 10-31
connecting to device 10-30
disconnecting 10-74
display 10-27
event types 10-52
handshaking 10-63
input buffer 10-40
output buffer 10-35
properties 10-76
reading binary data 10-44
reading text data 10-42
recording information to disk 10-66
using control pins 10-60
using events and callbacks 10-51
writing and reading data 10-32
writing binary data 10-39
writing text data 10-37

serializable interface 7-20
server variable 8-112
session

serial port 10-19
shared libraries

data conversion 2-15
enumerated types 2-19
primitive types 2-15
reference pointers 2-34
references 2-26
strings 2-18
structures 2-20

Index-11

Index

library functions
getting information about 2-6
invoking functions 2-9
passing arguments 2-10
passing arguments:general rules 2-11
passing arguments:libstruct objects 2-23
passing arguments:references 2-12
passing arguments:structures 2-22

loading the library 2-4
MATLAB interface to 2-1
unloading the library 2-4

shared libraries directory
UNIX 1-9
Windows 1-9

sharing character data 1-8
sincall.c 4-20
sincall.F 5-19
size

using with Java arrays 7-38
sparse arrays 4-19
sparse matrices 3-9
start bit 10-13
static data, Java

accessing 7-23
assigning 7-23

static methods, Java 7-27
Status 10-116
stop bit 10-13
StopBits 10-117
storing data 3-6
string 3-8
struct

using with Java objects 7-67
structures 4-15
structures, MATLAB 3-8

converting from Java object 7-67
subroutines

dynamically linked 3-2
system configuration 3-11

T
Tag

serial port property 10-118
temporary arrays 4-29

automatic cleanup 4-29
destroying 3-42

temporary memory
cleaning up 3-42

Terminator 10-119
text data

reading from a device 10-42
writing to a device 10-37

Timeout 10-121
TimerFcn 10-122
TimerPeriod 10-124
timestwo.c 4-12
timestwo.F 5-12
timestwoalt.c 4-13
TransferStatus 10-125
troubleshooting

MEX-file creation 3-34
Type

serial port property 10-127

U
UNIX

directory organization 3-43
URL

Java example 7-71
UserData

serial port property 10-128

V
%val 5-6

allocating memory 5-17
Compaq Visual Fortran 5-6

ValuesReceived 10-129
ValuesSent 10-131

Index-12

Index

variable scope 4-26
variables 3-6
versioning MEX-files 3-29

W
which

using with Java methods 7-31
Windows

automation 8-112
COM 8-112
directory organization 3-45
mex -setup 3-14
selecting compiler 3-14

workspace
caller 4-26 5-22
MEX-file function 4-26 5-22

write/read failures, checking for 1-11
writing

binary data to a device 10-39
text data to a device 10-37

writing event handlers 8-88

X
xtimesy.c 4-15
xtimesy.F 5-16

Y
yprime.c 3-12 3-16
yprimef.F 3-12 3-16
yprimefg.F 3-12 3-16

Index-13

MATLAB® 7
Graphics

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

MATLAB Graphics

© COPYRIGHT 1984–2007 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined
in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of
this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government’s
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, SimBiology,
SimHydraulics, SimEvents, and xPC TargetBox are registered trademarks and The
MathWorks, the L-shaped membrane logo, Embedded MATLAB, and PolySpace are
trademarks of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective
holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
March 2006 Online only New for MATLAB 7.2 (Release 2006a)
September 2006 Online only Revised for MATLAB 7.3 (Release 2006b)
March 2007 Online only Revised for MATLAB 7.4 (Release 2007a)
September 2007 Online only Revised for MATLAB 7.5 (Release 2007b)

This publication was previously part of the Using MATLAB
Graphics User Guide.

Contents

Plots and Plotting Tools

1
Figures, Plots, and Graphs . 1-2

Graphing In MATLAB . 1-2
Anatomy of a Graph . 1-3
Figure Toolbars . 1-5
Types of Plots Available in MATLAB 1-6

Plotting Tools — Interactive Plotting 1-10
What Are Plotting Tools? . 1-10
Plotting Tools Interface Overview . 1-11
The Figure Palette . 1-18
The Plot Browser . 1-23
The Property Editor . 1-28
Accessing Object Properties with the Property Inspector . . 1-29

Example — Working with Plotting Tools 1-35
Identifying Workspace Data to Plot 1-35
Adding a Subplot . 1-38

Example — Plotting from the Figure Palette 1-43
Using the Plot Catalog . 1-43
Plotting Expressions . 1-46

Example — Specifying a Data Source 1-49
Creating the Graph . 1-49
Varying the Data Source . 1-49
Data Sources for Multiobject Graphs 1-51

Example — Generating M-Code to Reproduce a
Graph . 1-53
Create a Stem Plot and Generate Code for It 1-53
Data Arguments . 1-56
Limitations . 1-56

v

Editing Plots . 1-57
Why Edit Plots? . 1-57
Interactive Plot Editing . 1-57
Using Functions to Edit Graphs . 1-57

Working in Plot Edit Mode . 1-59
Figure Windows in Plot Edit Mode 1-59
Starting Plot Edit Mode . 1-60
Exiting Plot Edit Mode . 1-61
Selecting Objects in a Graph . 1-61
Cutting, Copying, and Pasting Plot Objects 1-62
Moving and Resizing Objects . 1-65
Setting Object Properties . 1-66
Undo/Redo — Eliminating Mistakes 1-66

Saving Your Work . 1-68
Saving a Graph in MAT-File Format 1-68
Saving to a Different Format — Exporting Figures 1-69
Printing Figures . 1-70
Generating an M-File to Recreate a Graph 1-70

Data Exploration Tools

2
Ways to Explore Graphical Data . 2-2

Introduction . 2-2
Types of Tools . 2-2

Data Cursor — Displaying Data Values Interactively . . 2-4
What Is a Data Cursor? . 2-4
Enabling Data Cursor Mode . 2-5
Display Style — Datatip or Cursor Window 2-14
Selection Style — Select Data Points or Interpolate Points

on Graph . 2-15
Exporting Data Value to Workspace Variable 2-16

Enlarging the View . 2-19
Zooming in 2-D and 3-D . 2-19
Zooming in 2-D Views . 2-19

vi Contents

Panning — Shifting Your View of the Graph 2-23

Rotate 3D — Interactive Rotation of 3-D Views 2-25
Enabling 3-D Rotation . 2-25
Selecting Predefined Views . 2-25
Rotation Style for Complex Graphs 2-26
Undo/Redo — Eliminating Mistakes 2-28

Annotating Graphs

3
How to Annotate Graphs . 3-2

Graph Annotation Features . 3-2
Enclosing Regions of a Graph in a Rectangle or an

Ellipse . 3-6
Textbox Annotations . 3-8
Annotation Lines and Arrows . 3-13
Adding a Colorbar to a Graph . 3-16
Adding a Legend to a Graph . 3-20
Pinning — Attaching to a Point in the Graph 3-23

Alignment Tool — Aligning and Distributing Objects . . 3-27
Alignment Tool Functionality . 3-27
Example — Vertical Distribute, Horizontal Align 3-28
Align/Distribute Menu Options . 3-31
Snap to Grid — Aligning Objects on a Grid 3-33

Adding Titles to Graphs . 3-36
What Is a Title? . 3-36
Using the Title Option on the Insert Menu 3-38
Using the Property Editor to Add a Title 3-38
Using the title Function . 3-39

Adding Axis Labels to Graphs . 3-40
What Are Axis Labels? . 3-40
Using the Label Options on the Insert Menu 3-41
Using the Property Editor to Add Axis Labels 3-41
Using Axis-Label Commands . 3-43

vii

Adding Text Annotations to Graphs 3-46
What Are Text Annotations? . 3-46
Creating Text Annotations with the text or gtext

Function . 3-48
Text Alignment . 3-51
Example — Aligning Text . 3-52
Editing Text Objects . 3-53
Mathematical Symbols, Greek Letters, and TEX

Characters . 3-54
Using Character and Numeric Variables in Text 3-56
Example — Multiline Text . 3-57
Example — Using LaTeX to Format Math Equations 3-58
Drawing Text in a Box . 3-62

Adding Arrows and Lines to Graphs 3-64
Creating Arrows and Lines in Plot Editing Mode 3-64
Editing Arrows and Line Annotations 3-65

Positioning Annotations in Data Space 3-67
Example — Pinning Textarrows and Ellipses 3-67

Basic Plotting Commands

4
Setting Up Figures . 4-2

Creating Figure Windows . 4-2
Displaying Multiple Plots per Figure 4-2
Specifying the Target Axes . 4-5
Default Color Scheme . 4-5

Using High-Level Plotting Functions 4-7
Functions for Plotting Line Graphs 4-7
Programmatic Plotting . 4-8
Creating Line Plots . 4-9
Specifying Line Style . 4-11
Colors, Line Styles, and Markers . 4-12
Specifying the Color and Size of Lines 4-13
Adding Plots to an Existing Graph 4-14
Plotting Only the Data Points . 4-16

viii Contents

Plotting Markers and Lines . 4-17
Line Styles for Black and White Output 4-18
Setting Default Line Styles . 4-19

Line Plots of Matrix Data . 4-22

Plotting Imaginary and Complex Data 4-25

Plotting with Two Y-Axes . 4-27
Introduction . 4-27
Combining Linear and Logarithmic Axes 4-28

Setting Axis Parameters . 4-31
Axis Scaling and Ticks . 4-31
Axis Limits and Ticks . 4-31
Example — Specifying Ticks and Tick Labels 4-34
Setting Aspect Ratio . 4-36

Creating Specialized Plots

5
Bar and Area Graphs . 5-2

Types of Bar Graphs . 5-2
Coloring 2-D Bars According to Height 5-6
Coloring 3-D Bars According to Height 5-10
Stacked Bar Graphs to Show Contributing Amounts 5-12
Specifying X-Axis Data . 5-14
Overlaying Bar Graphs . 5-16
Overlaying Other Plots on Bar Graphs 5-17
Area Graphs . 5-19
Comparing Data Sets with Area Graphs 5-21

Pie Charts . 5-23
Creating a Pie Chart . 5-23
Labeling the Pie Chart . 5-24
Removing a Piece from a Pie Chart 5-26

Histograms . 5-28

ix

Functions for Creating Histograms 5-28
Histograms in Cartesian Coordinates 5-28
Histograms in Polar Coordinates . 5-30
Specifying Number of Bins . 5-31

Discrete Data Graphs . 5-33
Functions for Creating Graphs of Discrete Data 5-33
Two-Dimensional Stem Plots . 5-33
Combining Stem Plots with Line Plots 5-37
Three-Dimensional Stem Plots . 5-38
Stairstep Plots . 5-42

Direction and Velocity Vector Graphs 5-45
Functions for Graphing Vector Quantities 5-45
Compass Plots . 5-46
Feather Plots . 5-47
Two-Dimensional Quiver Plots . 5-49
Three-Dimensional Quiver Plots . 5-51

Contour Plots . 5-54
Functions for Creating Contour Displays 5-54
Creating Simple Contour Plots . 5-55
Labeling Contours . 5-57
Filled Contours . 5-59
Drawing a Single Contour Line at a Desired Level 5-60
Index Contours . 5-63
The Contouring Algorithm . 5-66
Changing the Offset of a Contour . 5-68
Displaying Contours in Polar Coordinates 5-69
Preparing Data for Contouring . 5-73

Interactive Plotting . 5-76
Example — Selecting Plotting Points from the Screen 5-76

Animation . 5-78
Ways to Animate Plots . 5-78
Movies . 5-78
Example — Visualizing an FFT as a Movie 5-79
Erase Modes . 5-80

x Contents

Displaying Bit-Mapped Images

6
Images in MATLAB . 6-2

What Is Image Data? . 6-2
Supported Image Formats . 6-3
Functions for Reading, Writing and Displaying Images . . . 6-4

Image Types . 6-5
Indexed Images . 6-5
Intensity Images . 6-6
RGB (Truecolor) Images . 6-8

Working with 8-Bit and 16-Bit Images 6-10
8-Bit and 16-Bit Indexed Images . 6-10
8-Bit and 16-Bit Intensity Images . 6-11
8-Bit and 16-Bit RGB Images . 6-11
Mathematical Operations Support for uint8 and uint16 . . 6-12
Other 8-Bit and 16-Bit Array Support 6-13
Converting an 8-Bit RGB Image to Grayscale 6-13
Summary of Image Types and Numeric Classes 6-17

Reading, Writing, and Querying Graphics Image
Files . 6-18
Working with Image Formats . 6-18
Reading a Graphics Image . 6-19
Writing a Graphics Image . 6-19
Subsetting a Graphics Image (Cropping) 6-20
Obtaining Information About Graphics Files 6-21

Displaying Graphics Images . 6-22
Summary of Image Types and Display Methods 6-22
Controlling Aspect Ratio and Display Size 6-23

The Image Object and Its Properties 6-27
Image CData . 6-27
Image CDataMapping . 6-28
XData and YData . 6-28
EraseMode . 6-31
Adding Text to Images . 6-33
Additional Techniques for Fast Image Updating 6-34

xi

Printing Images . 6-37

Converting the Data or Graphic Type of Images 6-38

Printing and Exporting

7
Overview of Printing and Exporting 7-3

Print and Export Operations . 7-3
Graphical User Interfaces . 7-3
Command Line Interface . 7-4
Specifying Parameters and Options 7-6
Default Settings and How to Change Them 7-7

How to Print or Export . 7-11
Using Print Preview . 7-11
Printing a Figure . 7-14
Printing to a File . 7-19
Exporting to a File . 7-21
Exporting to the Windows or Macintosh Clipboard 7-32

Examples of Printing and Exporting 7-36
Printing a Figure at Screen Size . 7-36
Printing with a Specific Paper Size 7-37
Printing a Centered Figure . 7-37
Exporting in a Specific Graphics Format 7-39
Exporting in EPS Format with a TIFF Preview 7-40
Exporting a Figure to the Clipboard 7-40

Changing a Figure’s Settings . 7-43
Parameters that Affect Printing . 7-43
Selecting the Figure . 7-45
Selecting the Printer . 7-46
Setting the Figure Size and Position 7-47
Setting the Paper Size or Type . 7-50
Setting the Paper Orientation . 7-52
Selecting a Renderer . 7-54
Setting the Resolution . 7-57
Setting the Axes Ticks and Limits . 7-60

xii Contents

Setting the Background Color . 7-62
Setting Line and Text Characteristics 7-63
Setting the Line and Text Color . 7-66
Specifying a Colorspace for Printing and Exporting 7-69
Excluding User Interface Controls form Printed Output . . 7-71
Producing Uncropped Figures . 7-72

Choosing a Graphics Format . 7-73
What Are Graphic Formats? . 7-73
Frequently Used Graphics Formats 7-74
Factors to Consider in Choosing a Format 7-74
Properties Affected by Choice of Format 7-77
Impact of Rendering Method on the Output 7-80
Description of Selected Graphics Formats 7-80
How to Specify a Format for Exporting 7-83

Choosing a Printer Driver . 7-85
What Are Printer Drivers? . 7-85
Factors to Consider in Choosing a Driver 7-86
Driver-Specific Information . 7-89
How to Specify the Printer Driver to Use 7-92

Troubleshooting . 7-94
Introduction . 7-94
Common Problems . 7-94
Printing Problems . 7-95
Exporting Problems . 7-98
General Problems . 7-102

Handle Graphics Objects

8
Organization of Graphics Objects 8-3

Types of Graphics Objects . 8-4
Introduction . 8-4
Information on Specific Graphics Objects 8-4

xiii

Graphics Windows — the Figure . 8-6
Introduction . 8-6
Figures Used for Graphing Data . 8-7
Figures Used for GUIs . 8-8
Root Object — the Figure Parent . 8-9
More Information on Figures . 8-9

Core Graphics Objects . 8-10
Introduction . 8-10
Description of Core Graphics Objects 8-13
Example — Creating Core Graphics Objects 8-14
Parenting . 8-16
High-Level Versus Low-Level . 8-17
Simplified Calling Syntax . 8-17

Plot Objects . 8-19
Introduction . 8-19
Creating a Plot Object . 8-20
Identifying Plot Objects Programmatically 8-21
Plot Objects and Backward Compatibility 8-22

Linking Graphs to Variables — Data Source
Properties . 8-23
Introduction . 8-23
Data Source Example . 8-23
Changing the Size of Data Variables 8-24

Annotation Objects . 8-25
Introduction . 8-25
Annotation Object Properties . 8-25
Example — Enclosing Subplots with an Annotation

Rectangle . 8-26

Group Objects . 8-28
Introduction . 8-28
Creating a Group . 8-28
Transforming Objects . 8-29

Example — Transforming a Hierarchy of Objects 8-36

Object Properties . 8-40

xiv Contents

Introduction . 8-40
Storing Object Information . 8-40
Changing Values . 8-41
Order Dependence of Setting Property Values 8-41
Default Values . 8-42
Properties Common to All Objects . 8-42

Properties Common to All Objects 8-44

Setting and Querying Property Values 8-45
Using Set and Get . 8-45
Setting Property Values . 8-45
Querying Property Values . 8-47

Factory-Defined Property Values . 8-50

Setting Default Property Values . 8-51
Factory- and User-Defined Values . 8-51
How MATLAB Searches for Default Values 8-51
Defining Default Values . 8-53
Examples — Setting Default Line Styles 8-54

Accessing Object Handles . 8-58
Introduction . 8-58
Special Object Handles . 8-58
The Current Figure, Axes, and Object 8-59
Searching for Objects by Property Values — findobj 8-60
Copying Objects . 8-65
Deleting Objects . 8-67

Controlling Graphics Output . 8-69
Figure Targets . 8-69
Specifying the Target for Graphics Output 8-69
Preparing Figures and Axes for Graphics 8-71
Targeting Graphics Output with newplot 8-72
Example — Using newplot . 8-74
Testing for Hold State . 8-76
Protecting Figures and Axes . 8-77
Handle Validity Versus Handle Visibility 8-79

The Figure Close Request Function 8-80

xv

Introduction . 8-80
Quitting MATLAB . 8-81
Errors in the Close Request Function 8-81
Overriding the Close Request Function 8-81

Saving Handles in M-Files . 8-83
About Saving Handles . 8-83
Save Information First . 8-83

Properties Changed by Built-In Functions 8-85

Objects That Can Contain Other Objects 8-88

Using Panel Containers in Figures — Uipanels 8-89
Introduction . 8-89
Figure Resize Functions . 8-89
Example — Using Figure Panels . 8-90

Grouping Objects Within Axes — hgtransform 8-95
Introduction . 8-95
Example — Translating Grouped Objects 8-95

Controlling Legends . 8-99
Legend Control Options . 8-99
Properties for Controlling Legend Content 8-99
Updating a Legend . 8-101
Example — Excluding a Particular Object From a

Legend . 8-101
Example — One Legend Entry for a Group of Objects 8-102
Example — Showing Children of Group Objects in

Legend . 8-103
Example — Grouping Objects to Reduce the Legend

Entries . 8-104

Callback Properties for Graphics Objects 8-107
What is a Callback? . 8-107
Graphics Object Callbacks . 8-107
User Interface Object Callbacks . 8-107
Figure Callbacks . 8-107

xvi Contents

Function Handle Callbacks . 8-109
Introduction . 8-109
Function Handle Syntax . 8-110
Why Use Function Handle Callbacks 8-111
Example — Using Function Handles in GUIs 8-113

Optimizing Graphics Performance 8-118
Introduction . 8-118
General Performance Guidelines . 8-118
Disable Automatic Modes . 8-119
Changing Graph Data Rapidly . 8-121
Specify Axes with Plotting Function for Better

Performance . 8-124
Performance of Bit-Mapped Images 8-125
Performance of Patch Objects . 8-126
Performance of Surface Objects . 8-127

Figure Properties

9
Figure Objects . 9-2

Related Information About Figures 9-2

Docking Figures in the Desktop . 9-3
Introduction . 9-3
Figure Properties That Affect Docking 9-4
Creating a Nondockable Figure . 9-5

Positioning Figures . 9-6
Introduction . 9-6
The Position Vector . 9-6
Example — Specifying Figure Position 9-9

Figure Colormaps — The Colormap Property 9-11
Introduction . 9-11
Specifying the Figure Colormap . 9-11

Selecting Drawing Methods . 9-13

xvii

Double Buffering . 9-13
Selecting a Renderer . 9-13

Specifying the Figure Pointer . 9-16
Predefined Figure Pointer Symbols 9-16
Defining Custom Pointers . 9-17

Axes Properties

10
Axes Objects — Defining Coordinate Systems for

Graphs . 10-2

Labeling and Appearance Properties 10-3
Introduction . 10-3
Creating Axes with Specific Characteristics 10-3
Axis Labels . 10-4

Positioning Axes . 10-6
Introduction . 10-6
The Position Vector . 10-6
Position Units . 10-8

Automatic Axes Resize . 10-9
Properties Controlling Axes Size . 10-9
Using OuterPosition as the ActivePositionProperty 10-11
ActivePositionProperty = OuterPosition 10-12
ActivePositionProperty = Position . 10-12
Axes Resizing in Subplots . 10-13

Multiple Axes per Figure . 10-15
Introduction . 10-15
Placing Text Outside the Axes . 10-15
Multiple Axes for Different Scaling 10-16

Individual Axis Control . 10-18
Properties Controlling Axis Limits 10-18
Setting Axis Limits . 10-19

xviii Contents

Setting Tick Mark Locations . 10-20
Changing Axis Direction . 10-22

Using Multiple X- and Y-Axes . 10-25
Introduction . 10-25
Example — Double Axis Graphs . 10-25

Automatic-Mode Properties . 10-29

Colors Controlled by Axes . 10-32
Introduction . 10-32
Specifying Axes Colors . 10-32

Axes Color Limits — the CLim Property 10-36
Introduction . 10-36
Simulating Multiple Colormaps in a Figure 10-37
Complete Example Code . 10-38
Calculating Color Limits . 10-38

Defining the Color of Lines for Plotting 10-42
Introduction . 10-42
Defining Your Own ColorOrder . 10-42
Line Styles Used for Plotting — LineStyleOrder 10-44

Index

xix

xx Contents

1

Plots and Plotting Tools

If you are viewing this document in the Help browser, you can watch the
Interactive Plot Creation with the Plot Tools video demo for an overview of
the major functionality. It covers much of the material presented in the
following sections:

Figures, Plots, and Graphs (p. 1-2) About plots, plot GUIs, and the kinds
of plots you can make

Plotting Tools — Interactive Plotting
(p. 1-10)

Introduces the interactive tools you
can use for creating graphs and
setting properties

Example — Working with Plotting
Tools (p. 1-35)

Shows how to work with the Plotting
Tools

Example — Plotting from the Figure
Palette (p. 1-43)

Access workspace variables from the
Plotting Tools

Example — Specifying a Data Source
(p. 1-49)

Link graph data to workspace
variables

Example — Generating M-Code to
Reproduce a Graph (p. 1-53)

Save all the property settings and
other steps used to create a graph

Editing Plots (p. 1-57) Overview of plot editing options.

Working in Plot Edit Mode (p. 1-59) Modify graph appearance
interactively

Saving Your Work (p. 1-68) Ways to save graphs

1 Plots and Plotting Tools

Figures, Plots, and Graphs

In this section...

“Graphing In MATLAB” on page 1-2

“Anatomy of a Graph” on page 1-3

“Figure Toolbars” on page 1-5

“Types of Plots Available in MATLAB” on page 1-6

Graphing In MATLAB
MATLAB® offers you a variety of data plotting functions plus a set of GUI
tools to create, and modify graphic displays. The GUI tools afford most of
the control over graphic properties and options that typed commands such
as annotate, get, and set provide.

A figure is a MATLAB window that contains graphic displays (usually data
plots) and UI components. You create figures explicitly with the figure
function, and implicitly whenever you plot graphics and no figure is active.
By default, figure windows are resizable and include pull-down menus and
toolbars.

A plot is any graphic display you can create within a figure window. Plots
can display tabular data, geometric objects, surface and image objects, and
annotations such as titles, legends, and colorbars. Figures can contain any
number of plots. Each plot is created within a 2-D or a 3-D data space called
an axes. You can explicitly create axes with the axes or subplot functions.

A graph is a plot of data within a 2-D or 3-D axes. Most plots made with
MATLAB are therefore graphs. When you graph a one-dimensional variable
(e.g., rand(100,1)), MATLAB assigns the indices of the data vector (in this
case 1:100) as x-values, and plots the data vector as y-values. Some types of
graphs can display more than one variable at a time, others cannot.

The contents and varieties of figures, plots and graphs that MATLAB can
make are explained in the following sections.

1-2

Figures, Plots, and Graphs

Anatomy of a Graph
MATLAB plotting functions and tools direct their output to a figure window.
Each figure is a separate window that you can dock in the desktop, and
collect together with other plots in a Figure Group. To illustrate the basic
components of a graph, execute the following M-code to create a plot of a
family of sine curves:

x = [0:.2:20];
y = sin(x)./sqrt(x+1);
y(2,:) = sin(x/2)./sqrt(x+1);
y(3,:) = sin(x/3)./sqrt(x+1);
plot(x,y)

The resulting figure contains a 2-D set of axes and looks like this:

Some of the components and tools of figure windows are called out below:

1-3

1 Plots and Plotting Tools

�������	
����
��������������

������
��	
��������

������������	
��
��������

���������
���������	�����

������������
�����������������

MATLAB uses a default line style and color to distinguish the data sets plotted
in the graph. You can change the appearance of these graphic components or
add annotations to the graph to present your data in a particular way.

1-4

Figures, Plots, and Graphs

Figure Toolbars
Figure toolbars provide shortcuts to access commonly used features. These
include operations such as saving and printing, plus tools for interactive
zooming, panning, rotating, querying, and editing plots. The following picture
shows the features available from this toolbar.

�����
���������

�����
��	��

���� ������!
����������

"���������
�����#���

$� %�����
&'�

����
�
����

(��#
� �
�

Note that you can enable two other toolbars from the View menu:

• Camera Toolbar — Use for manipulating 3-D views. See “View Control with
the Camera Toolbar” in the MATLAB 3-D Visualization documentation
for more information.

)�#���������
)������

$������������
*�������

*���
��	��

$��+�����
�!��

%�������
*���

• Plot Edit Toolbar — Use for annotation and setting object properties.
See “Annotation Tools on the Plot Edit Toolbar” on page 3-3 for more
information.

1-5

1 Plots and Plotting Tools

)�����������
��������������������!
�����	����	���������+����,

������!�������+���
���	#�������

$����+������
���������

-���������
������
��	�������

����������.����.
���������������

���	����� ����������
���������

���������������.
����.������	��
����������

Types of Plots Available in MATLAB
MATLAB can construct a wide variety of 2-D and 3-D plots without any
programming required on your part. The following two tables classify and
illustrate most of the kinds of plots you can create. They include line, bar, area,
direction and vector field, radial, and scatter graphs. They also include 2-D
and 3-D functions that generate and plot geometric shapes and objects. Most
2-D plots have 3-D analogs, and there are a variety of volumetric displays for
3-D solids and vector fields. Plot types that begin with “ez” (such as exsurf)
are convenience functions that can plot arguments given as functions.

Two-Dimensional Plotting Functions
The table below shows 2-D plot functions available in MATLAB. If you are
reading this online, you can click any icon to see the documentation for that
function. Techniques for using many of the functions are also discussed in
later sections of this document.

Line
Graphs

Bar
Graphs

Area
Graphs

Direction
Graphs

Radial
Graphs

Scatter
Graphs

plot bar
(grouped)

area feather polar scatter

1-6

Figures, Plots, and Graphs

Line
Graphs

Bar
Graphs

Area
Graphs

Direction
Graphs

Radial
Graphs

Scatter
Graphs

plotyy barh
(grouped)

pie quiver rose spy

loglog bar
(stacked)

fill comet compass plotmatrix

semilogx barh
(stacked)

contourf ezpolar

semilogy hist image

stairs pareto pcolor

contour errorbar ezcontourf

1-7

1 Plots and Plotting Tools

Line
Graphs

Bar
Graphs

Area
Graphs

Direction
Graphs

Radial
Graphs

Scatter
Graphs

ezplot stem

ezcontour

Three-Dimensional Plotting Functions
The table below shows 3-D plot functions available in MATLAB. It includes
functions that generate 3-D data (cylinder, ellipsoid, sphere), but most
plot either arrays of data or functions. If you are reading this online, you can
click any picture in the table to see the documentation for that function. For
information about and examples of using 3-D plotting functions, see “Creating
3-D Graphs” in the 3-D Visualization documentation.

Line
Graphs

Mesh
Graphs
and Bar
Graphs

Area
Graphs

and
Constructive
Objects

Surface
Graphs

Direction
Graphs

Volumetric
Graphs

plot3 mesh pie3 surf quiver3 scatter3

contour3 meshc fill3 surfl comet3 coneplot

contourslicemeshz patch surfc streamslicestreamline

1-8

Figures, Plots, and Graphs

Line
Graphs

Mesh
Graphs
and Bar
Graphs

Area
Graphs

and
Constructive
Objects

Surface
Graphs

Direction
Graphs

Volumetric
Graphs

ezplot3 ezmesh cylinder ezsurf streamribbon

waterfall stem3 ellipsoid ezsurfc streamtube

bar3 sphere

bar3h

Choosing a Plot Type with the Plot Catalog
Most of the plotting functions shown in the previous tables are accessible
through the Figure Palette, one of the Plot Tools you can access via the
figure window View menu. When the Figure Palette is active and you select
one, two or more variables listed within it, you can generate a plot of any
appropriate type by right-clicking and selecting a plot type from the context
menu that appears. The lowest item on that menu is More Plots. When you
select More Plots, the Plot Catalog opens for you to browse through all plot
types and generate one of them, either to display the variables you selected
in the Figure Palette or a MATLAB expression you can specify in the Plot
Catalog window. For more information, see “The Figure Palette” on page 1-18.

1-9

1 Plots and Plotting Tools

Plotting Tools — Interactive Plotting

In this section...

“What Are Plotting Tools?” on page 1-10

“Plotting Tools Interface Overview” on page 1-11

“The Figure Palette” on page 1-18

“The Plot Browser” on page 1-23

“The Property Editor” on page 1-28

“Accessing Object Properties with the Property Inspector” on page 1-29

What Are Plotting Tools?
The modular, interactive plotting environment of MATLAB called plotting
tools enables you to

• Create various type of graphs

• Select variables to plot directly from a workspace browser

• Easily create and manipulate subplots in the figure

• Add annotations such as arrows, lines, and text

• Set properties on graphics objects

You can open and configure plotting tools in many ways. To create a figure
with the plotting tools attached, use the plottools command. You can also
start the plotting tools from the figure toolbar by clicking the Show Plot

Tools icon .

Remove the plotting tools from a figure using the Hide Plot Tools icon .

You can display the three basic plotting tools from the View menu by selecting
Figure Palette, Plot Browser, or Property Editor .

The next section describes the individual components making up the plotting
tools.

1-10

Plotting Tools — Interactive Plotting

Plotting Tools Interface Overview
The Plotting Tools interface includes three panels that are associated with
a figure.

• Figure Palette — Use to create and arrange subplot axes, view and plot
workspace variables, and add annotations. Display the Figure Palette
using the figurepalette command.

• Plot Browser — Use to select and control the visibility of the axes or
graphic objects plotted in the figure. You can also add data to any selected
axes by clicking the Add Data button. Display the Plot Browser using
the plotbrowser command.

• Property Editor — Use to set common properties of the selected object. You
can also open the Property Editor using the propertyeditor command. In
the Property Editor you can click the More Properties button to display
the Property Inspector, a GUI that displays most object properties and
allows you to change any property’s value (unless it is read-only). See
“Accessing Object Properties with the Property Inspector” on page 1-29 for
details.

1-11

1 Plots and Plotting Tools

Activating Plotting Tools
The example illustrated below shows the plotting tools attached to a figure
containing two subplots of lineseries data. The code to produce the graphs is

x = 0:pi/100:2*pi;
y1 = sin(x);
y2 = sin(x+.25);
y3 = sin(x+.5);
subplot(2,1,1);
plot(x,y1,x,y2,x,y3);
axis tight;
w1 = cos(x);
w2 = cos(x+.25);
w3 = cos(x+.5);
subplot(2,1,2);
plot(x,w1,x,w2,x,w3);
axis tight;

You summon the plotting tools, either by selecting Figure Palette, Plot
Browser, and Property Editor from the figure’s View menu, or by typing

plottools

in the Command Window. Typing plottools or plottools on restores the
configuration of tools the last time you were using them; use the View menu
to show the ones you need and hide the ones you do not, and the mouse to
dock and undock them. The default configuration of plotting tools is shown
below. Note that MATLAB remembers the current arrangement of plot tools
— whether they are visible or not — each time you exit; if you want to revert
to the default configuration you need to restore the arrangement shown
below manually.

1-12

Plotting Tools — Interactive Plotting

$������!�"������������!�	
��������������������

)�����������
������������

)��������������!
$������!���������

-�	
���$������ ������
������ ������������������ -�	
�� $�����������

Managing Plotting Tools
Each of the plotting tools shown above can be docked or undocked from its
figure, or dismissed by clicking the x at the right end of its titlebar. If you
dismiss a tool and want it back again, you can raise it from the View menu or
by typing one of several commands. For instance, if you had undocked, and
then dismissed the figure palette, you could type either

plottools('on', 'figurepalette') or

1-13

1 Plots and Plotting Tools

figurepalette

Your desktop configuration might then look like this:

Figures Groups. When you activate any plot tool for a figure (or dock the
figure in the desktop), the figure becomes part of a Figures group. Figures
groups are desktop containers that you can dock s in your desktop. Individual
figures are not dockable except within the Figures group container. If you
create subsequent figures, they will also dock in the Figures group, where
they can be panelled or overlapped for viewing. A row of tabs appears along
the bottom, one for each figure in the group.

1-14

Plotting Tools — Interactive Plotting

When you dock a plot tool in a figure group and then dock the figure group
in the desktop, the tool is included in that section of the desktop as well,
as the following illustration shows:

Working with Multiple Figures. When you create a new figure and plot
into it, It is created without plotting tools enabled, even if another figure
already has them open:

figure
plot(y1,w1)

This generates a freestanding plot, like this:

1-15

1 Plots and Plotting Tools

If you then open the plotting tools for the figure by clicking the Open Plotting

Tools icon , the figure docks in the figure window:

1-16

Plotting Tools — Interactive Plotting

The new figure might seem to disappear if the Figures window is hidden, but
it will overlay the existing plot within that window (it does not replace it). You
can switch between the two figures by clicking the tabs at the bottom of the
figure area. Be aware that clicking the x on the right side of a figure’s tab
deletes that figure entirely, without asking for confirmation.

If you want to see both figures at once, use the Tiling Palette

at the upper right corner of the Figures window to arrange
the figures. For example, clicking the Left/Right tiling tool lays out the two
figures side by side:

1-17

1 Plots and Plotting Tools

As the above illustrations shows, plot objects can be selected in both figures,
but only one figure has focus at a time.

The Figure Palette
The Figure Palette contains three panels. Select the panel you want to view
by clicking the respective button, which twists down the panel and exposes
its contents.

The Figure Palette enables you to perform the following tasks with these
panels:

• New Subplots — Add 2-D or 3-D axes to the figure.

1-18

Plotting Tools — Interactive Plotting

• Variables — Browse and plot workspace variables.

• Annotations — Add annotations to graphs.

Adding Subplot Axes
The New Subplots panel enables you to create a grid of either 2-D or
3-D axes. To display the selector, click the grid icon next to the axes type.
MATLAB displays the selector grid.

As you move the cursor, squares darken to indicate the layout of axes that will
be created if you release the mouse button. Click Cancel at the bottom of the
grid to leave the figure unchanged.

The picture above shows the New Subplots panel selected to display
four equally sized axes in the figure. Existing axes resize as required to
accommodate the new layout.

Plotting Workspace Variables
The Variables panel displays current workspace variables. Double-clicking a
variable in this panel opens that variable in the Array Editor. If you select a

1-19

1 Plots and Plotting Tools

variable and right-click to display the context menu, you can select a graphics
function to plot the variable.

For example, the following picture illustrates how to plot the columns of
variable Z. This is equivalent to passing a matrix to the plot function.

The context menu contains a list of possible plot types based on the variable
you select and also enables you to perform certain operation on the variable,
such as opening it in the Array Editor, saving, copying, and so on.

1-20

Plotting Tools — Interactive Plotting

Note that the context menu items may change when you select different
variables because a particular variable might be incompatible some of the
plot types.

Drag and Drop Plotting
You can also drag the variable directly into an axes, in which case MATLAB
selects the first appropriate plot type for that variable. If there are multiple
axes, you must first select the one you want to plot in and then drag the
variable to that axes.

In the previous example, the variable Z would be plotted using the plot
function if you were to drag it into an axes.

If the desired plotting function is not available from the context menu, you
can select More Plots to display the Plot Catalog tool.

The Plot Catalog Tool
The Plot Catalog tool provides access to most of the MATLAB plotting
functions. You can type any workspace variables or MATLAB expressions in
the Plotted Variables field, which are then passed to the selected plotting
function as arguments. Separate variables with a comma.

You can also enter function handles to pass to one of the “ez...” family of
plotting functions from the Analytic Plots category.

Note The Plot Catalog does not prevent you from passing inappropriate or
insufficient data to a plotting function; if the plot appears to be incorrect or if
a plot fails to draw after you press Plot or Plot in New Figure, you should
check the Command Window for warning and error messages.

1-21

1 Plots and Plotting Tools

The following picture shows the Plot Catalog tool and describes its
components.

)�##�'������������������/����������������������
�����������������������
����,

��������/���������#��������
�������	
#���
�����������#��������#����,

*������������	��!���
������	��
�����,

*��������������	��
����
���#���������	��!,

$�����������
�������	
��
����������	
��,

Adding Annotations to Graphs
The Annotations panel enables you to insert annotation objects into a plot.
To add an object, first select the object you want to add, and then click and
drag the mouse to position and size the object.

1-22

Plotting Tools — Interactive Plotting

See “How to Annotate Graphs” on page 3-2 for more information about the
various types of annotation objects.

The Plot Browser
The Plot Browser provides a legend of all the graphs in the figure. It lists each
axes and the objects (lines, surfaces, etc.) used to create the graph.

For example, suppose you plot an 11-by-11 matrix z. The plot function
creates one line for each column in z.

plot(z,'DisplayName','z')

1-23

1 Plots and Plotting Tools

When you set the DisplayName property, the Plot Browser indicates which
line corresponds to which column.

If you want to set the properties of an individual line, double-click on the
line in the Plot Browser. Its properties are displayed in the Property Editor,
which opens on the bottom of the figure.

You can select a line in the graph, and the corresponding entry in the Plot
Browser is highlighted, enabling you to see which column in the variable
produced the line.

1-24

Plotting Tools — Interactive Plotting

Controlling Object Visibility
The check box next to each item in the Plot Browser controls the object’s
visibility. For example, suppose you want to plot only certain columns of data
in z, perhaps the positive values. You can deselect the columns you do not
want to display. The graph updates as you deselect each box and rescales
the axes as required.

Deleting Objects
You can delete any selected item in the Plot Browser by selecting Delete
from the right-click context menu.

1-25

1 Plots and Plotting Tools

Adding Data to Axes
The Plot Browser provides the mechanism by which you add data to axes.
The procedure is as follows:

1 Select a 2-D or 3-D axes from the New Subplots subpanel.

2 After creating the axes, select it in the Plot Browser panel to enable the
Add Data button at the bottom of the panel.

3 Click the Add Data button to display the Add Data to Axes dialog.

The Add Data to Axes dialog enables you to select a plot type and specify the
workspace variables to pass to the plotting function. You can also specify a
MATLAB expression, which is evaluated to produce the data to plot.

Selecting Workspace Variables to Create a Graph. Suppose you want
to create a surface graph from three workspace variables defining the XData,
YData, and ZData (see the surf function for more information on this type of
graph).

1-26

Plotting Tools — Interactive Plotting

In the workspace you have defined three variables, x, y, and z. To create
the graph, configure the Add Data to Axes dialog as shown in the following
picture.

Using a MATLAB Expression to Create a Graph. The following picture
shows the Add Data to Axes dialog specifying a workspace variable x for the
plot’s x data and a MATLAB expression (x.^2 + 3*x + 5) for the y data.

1-27

1 Plots and Plotting Tools

You can use the default X Data value of index if you do not want to specify
x data. In this case, MATLAB plots the y data versus the index of the y
data value, which is equivalent to calling the plot command with only one
argument.

The Property Editor
The Property Editor enables you to access a subset of the selected object’s
properties. When no object is selected, the Property Editor displays the
figure’s properties.

Ways to Display the Property Editor
There are a variety of ways to display the Property Editor:

• Double-click an object when plot edit mode is enabled.

• Select an object and right-click to display its context menu, then select
Properties.

• Select Property Editor from the View menu.

• Use the propertyeditor command.

1-28

Plotting Tools — Interactive Plotting

Changing Plot Types
You can use the property editor to change the type of plot used to display data.
For example, you can change the following line graph to a stem, stairs, area,
or bar graph by changing the Plot Type field.

Accessing Object Properties with the Property
Inspector
The Property Editor enables you to change the most commonly used object
properties. To access more object properties, use the Property Inspector.
Open the Property Inspector by clicking the More Properties button on the
Property Editor or by typing inspect in the Command Window. The following

1-29

1 Plots and Plotting Tools

picture shows the Property Inspector displaying the properties of the same
lineseries object as that in the previous picture.

The default view of properties is an alphabetic list; you can change to a tree
view by clicking the icon in the upper left corner containing plus marks. Click
the “AZ” icon to its right to return to an alphabetized list view. Properties
that contain fields, such as RGB color components, have a plus mark to

1-30

Plotting Tools — Interactive Plotting

their left you can click to expose the individual values. You can change
properties that have enumerated values, such as Marker, via drop-down lists
(downward-pointing triangles on the right edge of the inspector window). The
following figure shows the Marker property being set to diamond using the
Property Inspector (note the tree view in which other groups of properties
have been collapsed):

1-31

1 Plots and Plotting Tools

There are a few properties of objects that the Property Inspector does not
show, for example Parent and Children. For complete descriptions of the
properties of graphics objects, use the Handle Graphics Property Browser.

Getting Help for Object Properties
If you are not sure what a property does or what values it can take on, you
can get a description of it from the Property Inspector. To do so, right-click
on the name or values of a property and select What’s This from the popup
menu; a Help window opens displaying the property reference page for the
current object, scrolled to the property you clicked. The following picture
shows how this works:

1-32

Plotting Tools — Interactive Plotting

%�	��'�������������������
���������������������

$������!�����������
������!����������'
������/������������

1-33

1 Plots and Plotting Tools

Accessing Objects You Cannot Click
If you want to access the properties of light or uicontextmenus objects, you
need to get the handle using MATLAB commands, because you cannot click
on these objects.

For example, to get the handles of all light objects in the current axes, use
findobj.

h = findobj(gca,'Type','light');

Then use the inspect command to display the Property Inspector.

inspect(h) % Inspect all light objects
inspect(h(1)) % Inspect the first light object in list

1-34

Example — Working with Plotting Tools

Example — Working with Plotting Tools

In this section...

“Identifying Workspace Data to Plot” on page 1-35

“Adding a Subplot” on page 1-38

Identifying Workspace Data to Plot
This example illustrates how to use the plotting tools to graph a workspace
variable versus an expression typed into the Add Data to Axes dialog.

Create a variable in the workspace,

x = -2*pi:pi/25:2*pi;

Use the plottools command to create a figure group with the plotting tools
attached.

plottools

Click 2D Axes in the New Subplot panel of the Figure Palette.

1-35

1 Plots and Plotting Tools

Once the axes appears, the Add Data button on the Plot Browser is activated.

Click this button to display the Add Data to Axes dialog. When the Add Data
to Axes dialog is displayed, enter the following values:

• Select plot as the Plot Type.

• Set X Data Source to x.

• Set Y Data Source to sin(x).^2.

• Click OK to plot this data.

1-36

Example — Working with Plotting Tools

MATLAB draws a plot of sin(x).^2 versus x.

Now add another plot to the same axes. Click Add Data again and specify
the data to plot:

• Set X Data Source to x.

• Set Y Data Source set to sin(x).^8.

• Click OK to plot this data.

Select the last plot (the green line) and set the Plot Type in the Property
Editor to Stem. The plot should now look like the following picture.

1-37

1 Plots and Plotting Tools

Adding a Subplot
Add a second axes below the current axes using the New Subplots panel.
Click the right-facing arrowhead next to 2D Axes and move the mouse to
darken two squares, one on top of the other.

1-38

Example — Working with Plotting Tools

This creates a subplot axes below the existing axes. MATLAB resizes the
existing axes so both fit in the figure.

Once MATLAB inserts the new axes, select its entry in the Plot Browser and
then click Add Data.

When the Add Data to Axes dialog is displayed, enter the following values:

• Set X Data Source to x.

• Set Y Data Source to sin(x).^3.

• Click OK to plot this data.

Now add another plot overlaid on the first by clicking Add Data again and
specify the data to plot:

• Set X Data Source to x.

1-39

1 Plots and Plotting Tools

• Set Y Data Source to sin(x).^9.

• Click OK to plot this data.

Select the plot labeled sin(x).^9 under the second axes in the Plot Browser.
Set the Plot Type in the Property Editor to Area.

Setting Axis Limits
Adjust the x-axis in both axes using the Property Editor.

• Select the first axes in the Plot Browser.

• Change X Limits to -7 and 7.

Repeat these steps for the second axes.

Adding Titles and Labels
Select the first axes in the Plot Browser and set the following properties in
the Property Editor:

• Set Title to Even Powers.

• Set X Label to X.

• Click the Y Axis tab and set Y Label to Sine of X.

Select the second axes in the Plot Browser and set the following properties in
the properties panel:

• Set Title to Odd Powers.

• Set Axis label to Sine of X.

• On the Y Axis tab, set Axis label to Sine of X.

Note that the Plot Browser reflects the new axes names.

1-40

Example — Working with Plotting Tools

The following picture shows the result of these steps.

Select the text of the y-axis label on the first axes (now labeled Even Powers
in the Plot Browser) and click the More Properties button on the Property
Editor. Set the Rotation property to 0 and reposition the text by hand.

To make more space for the y-axis label, which is now in a horizontal position,
select the axes and move it to the right with the mouse.

1-41

1 Plots and Plotting Tools

Repeat this process for the second axes (labeled Odd Powers in the Plot
Browser).

The repositioned text label now looks like the following picture.

Note You can always undo your last change to the graph by selecting Undo
from the Edit menu.

1-42

Example — Plotting from the Figure Palette

Example — Plotting from the Figure Palette

In this section...

“Using the Plot Catalog” on page 1-43

“Plotting Expressions” on page 1-46

Using the Plot Catalog
This example shows how to use the Figure Palette to select variables to plot.
Suppose you have three variables in your workspace (x, y, z) created by the
following statements:

[x,y] = meshgrid([-2:.2:2]);
z = x.*exp(-x.^2-y.^2);

You decide to visualize this data as a surface/contour plot (as produced by
the surfc function).

The first step is to display a figure with the Figure Palette tool attached. You
can do this with the figurepalette command.

figurepalette

Expand the Variables panel and shift-click (for multiple selection) on the
three variables you want to pass the plotting function. Since surfc is not in
the list, select More Plots.

1-43

1 Plots and Plotting Tools

1-44

Example — Plotting from the Figure Palette

From the Plot Catalog tool, select the 3D Surfaces in the Categories column
and surfc as the Plot Type, as shown in the following picture. To create the
plot, click the Plot button.

1-45

1 Plots and Plotting Tools

MATLAB creates the following graph.

Plotting Expressions
You can enter MATLAB expressions in the Plot Catalog tool, as well as
variables. For example, suppose you have created the following variables
in the workspace.

t = 0:.01:20;
alpha =.055;

and you want to plot t versus this expression:

exp(-alpha*t).*sin(.5*t)

The first step is to display a figure with the Figure Palette tool attached. You
can do this with the figurepalette command.

1-46

Example — Plotting from the Figure Palette

figurepalette

First select the variable t and right-click to display the context menu. Select
More Plots.

1-47

1 Plots and Plotting Tools

When the Plot Catalog tool is displayed, add the expression to the Plotted
Variables text field. Note that you can reference the variable alpha because
you created it in the base workspace. See MATLAB Workspace for information
about variables in the MATLAB workspace.

Click the Plot button to create the graph. Note that the previous step is the
equivalent of issuing the following command:

plot(t,exp(-alpha*t).*sin(.5*t))

1-48

Example — Specifying a Data Source

Example — Specifying a Data Source

In this section...

“Creating the Graph” on page 1-49

“Varying the Data Source” on page 1-49

“Data Sources for Multiobject Graphs” on page 1-51

Creating the Graph
First define two variables by issuing these statements in the command
window.

t = 0:.01:20;
alpha =.055;

Next plot t versus the expression exp(-alpha*t).*sin(.5*t) using the
plot function or the plot tools.

plot(t,exp(-alpha*t).*sin(.5*t))

Varying the Data Source
Plot objects have properties that enable you to specify the source of the
data that defines the object. For example, you can specify a workspace
variable name or a MATLAB expression as the value of the XDataSource,
YDataSource, or ZDataSource property for a line in a plot (i.e., a lineseries
object). You can then use the Property Editor to change the variable name or
alter the expression, and the plot is updated to reflect the change.

After creating the graph, you can use the Property Editor to couple the plotted
line to the MATLAB expression.

1 Double-click on the plotted line to display its property panel.

2 Enter the MATLAB expression exp(-alpha*t).*cos(.5*t) in the Y Data
Source text field.

1-49

1 Plots and Plotting Tools

You can now modify the expression in the Y Data Source text field and
observe how the graph changes. After changing the text, click the Refresh
Data button to update the data.

In the following picture, alpha is no longer negated, so the function grows
instead of decays. Also the period has been shortened by changing sin(.5*t)
to sin(1.5*t).

1-50

Example — Specifying a Data Source

Data Sources for Multiobject Graphs
Suppose you create a line graph from matrix data. For example,

z = peaks;
h = plot(z,'YDataSource','z');

Because MATLAB creates one lineseries object for each column of z, the
following is true.

The data source for h(1) is z(:,1).

The data source for h(2) is z(:,2).

1-51

1 Plots and Plotting Tools

...

The data source for h(n) is z(:,n).

1-52

Example — Generating M-Code to Reproduce a Graph

Example — Generating M-Code to Reproduce a Graph

In this section...

“Create a Stem Plot and Generate Code for It” on page 1-53

“Data Arguments” on page 1-56

“Limitations” on page 1-56

Create a Stem Plot and Generate Code for It
Suppose you have created the following graph.

t = 0:.2:20;
alpha =.055;
stem(t,exp(-alpha*t).*sin(5*t))

Use the Property Editor to modify the graph. Select the stemseries and
change the marker fill color to dark red, and marker edge color and line color
to dark green. Remove the axes box, and change the font size for the axes
labels to 8 to look like the following picture:

1-53

1 Plots and Plotting Tools

0 2 4 6 8 10 12 14 16 18 20
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

You can generate code to reproduce this graph by selecting Generate M-File
from the Figure menu. MATLAB creates a function that recreates the graph
and opens the generated M-File in the editor.

This feature is particularly useful for capturing property settings and other
modifications you make using the plot tools GUI.

1-54

Example — Generating M-Code to Reproduce a Graph

The M-file appears in an editor window and consists of the following code:

function createfigure(X1, Y1)
%CREATEFIGURE(X1,Y1)
% X1: stem x
% Y1: stem y

% Auto-generated by MATLAB on 24-May-2006 14:23:45

% Create figure
figure1 = figure('Color',[1 1 1]);

% Create axes
axes('Parent',figure1,'FontSize',8);
hold('all');

% Create stem
stem(X1,Y1,'MarkerFaceColor',[0.8471 0.1608 0],...

'MarkerEdgeColor',[0.1686 0.5059 0.3373],...

1-55

1 Plots and Plotting Tools

'Color',[0 0.498 0]);

You must save the M-file before exiting MATLAB if you want to use it in
future sessions.

Data Arguments
Generated functions do not store the data necessary to recreate the graph.
You must supply the data arguments t as X1 and exp(-alpha*t).*sin(5*t)
as Y1 to the function to recreate your graph. Of course, you can call the
generated function with other argument pairs too.

Limitations
Attempting to generate code for graphs containing a large number of graphics
objects (e.g., greater than 20 plotted lines) might be impractical.

1-56

Editing Plots

Editing Plots

In this section...

“Why Edit Plots?” on page 1-57

“Interactive Plot Editing” on page 1-57

“Using Functions to Edit Graphs” on page 1-57

Why Edit Plots?
MATLAB formats a graph to provide readability, setting the scale of axes,
including tick marks on the axes, and using color and line style to distinguish
the plots in the graph. However, if you are creating presentation graphics, you
might want to change this default formatting or add descriptive labels, titles,
legends, and other annotations to help explain your data.

MATLAB supports two ways to edit the plots you create:

• Using the mouse to select and edit objects interactively

• Using MATLAB functions at the command line or in an M-file

Interactive Plot Editing
If you enable plot editing mode in the MATLAB figure window, you can
perform point-and-click editing of your graph. In this mode, you can modify
the appearance of a graphics object by double-clicking on the object and
changing the values of its properties. You access the properties through a
graphical user interface called the Property Editor.

For more information about interactive editing, see “Working in Plot Edit
Mode” on page 1-59.

For information about editing object properties in plot editing mode, see “The
Property Editor” on page 1-28.

Using Functions to Edit Graphs
If you prefer to work from the MATLAB command line or if you are creating
an M-file, you can use MATLAB commands to edit the graphs you create.

1-57

1 Plots and Plotting Tools

Taking advantage of the MATLAB Handle Graphics® system, you can use the
set and get commands to change the properties of the objects in a graph.

Note Plot editing mode provides an alternative way to access the properties
of MATLAB graphic objects. However, you can only access a subset of object
properties through this mechanism. You might need to use a combination of
interactive editing and command-line editing to achieve the effect you desire.

1-58

Working in Plot Edit Mode

Working in Plot Edit Mode

In this section...

“Figure Windows in Plot Edit Mode” on page 1-59

“Starting Plot Edit Mode” on page 1-60

“Exiting Plot Edit Mode” on page 1-61

“Selecting Objects in a Graph” on page 1-61

“Cutting, Copying, and Pasting Plot Objects” on page 1-62

“Moving and Resizing Objects” on page 1-65

“Setting Object Properties” on page 1-66

“Undo/Redo — Eliminating Mistakes” on page 1-66

Figure Windows in Plot Edit Mode
The MATLAB figure window supports a point-and-click editing mode that you
can use to customize the appearance of your graph. This section describes how
to enter plot edit mode and perform basic editing tasks, including selecting,
cutting, copying, pasting, moving, and resizing objects and modifying other
plot properties. The following figure illustrates some capabilities of plot edit
mode.

1-59

1 Plots and Plotting Tools

0����������
����������������	��.�����.����������,

)����������������������������������#���,

0�������"���.������.���������
#�
��������������������������	
�������+����,

��
���'����������+����������������,

$�������������.���	���.���������
��+������!�������	�������		�	,

���������+���'������������������
�
������/���������'������/�
����
��#�
��1��	��������2,

Starting Plot Edit Mode
Before you can select objects in a figure by clicking on them, you must activate
plot editing mode. There are several ways to activate plot edit mode:

• Choose the Edit Plot option on the figure window Tools menu.

• Click the selection button in the figure window toolbar.

1-60

Working in Plot Edit Mode

• Choose an option from the Edit or Insert menu. For example, if you choose
the Axes Properties option on the Edit menu, MATLAB activates plot
edit mode and the axes appear selected.

• Run the plotedit command in the MATLAB Command Window.

• Start the plotting tools with the plottools command.

When a figure window is in plot edit mode, the Edit Plot option on the Tools
menu is checked and the selection button in the toolbar is depressed.

Exiting Plot Edit Mode
To exit plot edit mode, click the selection button or click the Edit Plot option
on the Tools menu. When plot edit mode is turned off, the selection button is
no longer depressed.

Selecting Objects in a Graph
To select an object in a graph,

1 Start plot edit mode.

2 Move the cursor over the object and click it.

Selection handles appear on the selected object.

Note When you manually select an object, its Selected property is set to
on. Handles appear regardless of the setting of its SelectionHighlight
property (which when off prevents handles from appearing outside of plot
edit mode). Plot edit mode does not consider objects selected with set (as in
set(h,'Selected','on')) to be selected, even if they have selection handles.
Programmatically selected objects therefore do not respond to actions such
as typing Delete. They can be dragged, however, because doing so selects
them manually.

1-61

1 Plots and Plotting Tools

Selecting Multiple Objects
To select multiple objects at the same time,

1 Start plot edit mode.

2 Move the cursor over an object and Shift+click to select it. Repeat for each
object you want to select.

You can perform actions on all the selected objects. For example, to remove a
textbox annotation and an arrow annotation from a graph, select the objects
and then select Delete or Cut from the Edit menu (Cut keeps a copy on the
clipboard, Delete does not).

Deselecting Objects
To deselect an object, move the cursor off the object onto the figure window
background and click the left mouse button (this deselects all selected objects
and selects the one you clicked). You can also Shift+click on a selected object
to deselect it (doing this will not deselect any other object).

Cutting, Copying, and Pasting Plot Objects
To cut an object from a graph, or copy and paste an object in a graph, perform
these steps:

1 Start plot edit mode.

2 Select the object.

3 Select the Cut, Copy, or Paste option from the Edit menu or use standard
shortcut keys for your platform.

Alternatively, with plot edit mode enabled, you can right-click on an object
and then select an editing command from the context menu associated with
the object.

Copying and Pasting Multiple Objects
When you cut or copy axes and plot objects such as lineseries or barseries
from a figure and paste them there or elsewhere, the results depend on what
you select and the type of container into which you paste the objects.

1-62

Working in Plot Edit Mode

Copy and Paste Axes. The following semantics apply to copying and
pasting axes into the same or different figure:

Select, Copy, and Paste Axes Result of Pasting Axes

Select axes Ax1 from figure Fig1,
copy and paste it into Fig2, which
has no axes.

New axes Ax2 is created in Fig2.
Ax2 inherits all properties of Ax1,
including all children. Ax1 will be
selected in Fig1; Ax2 will be selected
in Fig2.

Select axes Ax1 from figure Fig1,
copy and paste (from Edit Menu)
into Fig2, that contains axis Ax2
which is not selected.

New axes Ax3 is created in Fig2. All
children of Ax1 are copied to Ax3.
All the selected objects in Fig2 are
deselected, and the pasted axes Ax3
is selected. The selections in Fig1
are unchanged.

Select axes Ax1 from figure Fig1,
copy and paste into Ax2 in the same
or different figure.

New axis Ax3 is created having the
same properties (including position)
and children as Ax1; any selected
objects in Ax2 are deselected, and
axes Ax3 is selected. When pasting
to a new figure, selections in Fig1
will be unchanged.

Select axes Ax1 from figure Fig1,
copy and paste into same or different
axes in Fig1.

New axes Ax2 is added to Fig1, offset
from Ax1, and is the only selected
object.

Note When an axis is pasted into an existing axes, the pasted axes becomes
a peer of the existing axes and is offset slightly to visually indicate that the
paste operation was successful.

Copy and Paste Plot Objects. The following semantics apply to copying
and pasting plot objects (lines are used as examples) from one axes into the
same or different figure:

1-63

1 Plots and Plotting Tools

Select, Copy, and Paste Objects Result of Pasting Objects

Select and copy one or more lines
from axes Ax1 and paste into
selected axes Ax2 in the same or
different figure.

The lines are added to Ax2; the
pasted lines are the only selected
objects in the destination figure.

Select and copy lines from axes Ax1
in Fig1 and paste into figure Fig2,
which contains no axes or has no
axes selected.

New axes Ax2 is created in Fig2
containing the lines, which are
selected in it; Ax2 has default axes
properties.

Select and copy lines from axes Ax1
and paste into selected axes Ax2 and
Ax3.

Lines are pasted into both Ax2 and
Ax3; all the pasted lines are selected.

Select and copy lines from axes Ax1
and paste into selected axes Ax1.

Nothing is pasted, as the extra
content would be redundant.

Copy and Paste Plot Objects from Multiple Axes. The following
semantics apply to copying and pasting plot objects (lines are used as
examples) from one or more axes into the same or different figure:

Select, Copy, and Paste Objects Result of Pasting Objects

Select and copy Line1 from axes Ax1
and Line2 from axes Ax2 and paste
into axes Ax3.

Two lines are pasted into axes Ax3
and are the only selected objects
there.

Select and copy lines from axes Ax1
and axes Ax2 and paste into figure
Fig2, which contains no axes or has
no axes selected.

New axes Ax3 is created in Fig2, into
which all the lines are pasted; Ax3
has default axes properties.

Select and copy multiple lines from
Axes Ax1 and axes Ax2 and paste
into Ax1, Ax2, or some other axes.

Only those lines that did not
originate in an axes are pasted into
it, and the pasted lines are the only
selected objects.

Copy and Paste Multiple Axes and Plot Objects. The following semantics
apply to copying and pasting several axes and selected plot objects (lines are
used as examples) from one or more axes into the same or different figure:

1-64

Working in Plot Edit Mode

Select, Copy, and Paste Objects Result of Pasting Objects

Select Line1 from axes Ax1, select
axes Ax2, and paste into figure Fig2,
which contains no axes or has no
axes selected.

Ax2 and its contents is pasted as new
axes Ax3; another new axis Ax4 is
created into which the line is pasted

Select Line1 from axes Ax1, select
axes Ax2, and paste into axes Ax3.

Line1 is pasted into axes Ax3 and
axes Ax2 is pasted as new axis Ax4.

Select axes Ax1 and Line1 from Ax1,
and paste into Ax1.

New axes Ax2 is created having all
the properties of Ax1 but containing
Line1 as its only child.

Select axes Ax1 and Line1 from Ax1
in Fig1 and paste into figure Fig2,
which contains no axes or has no
axes selected.

Line1 is pasted in new axes Ax2,
and Ax1 and its children (including
Line1) is pasted as new axis Ax3.

Select axes Ax1 and Line1 from Ax1,
and paste into axes Ax2.

New axes Ax3 is created having all
the properties of Ax1 but containing
Line1 as its only child.

Copying and Pasting Annotation Objects
In plot edit mode you can copy and paste annotations such as textboxes,
textarrows, rectangles, and ellipses, in various combinations. If any such
objects happen to be pinned to their axes (see “Pinning — Attaching to a
Point in the Graph” on page 3-23), their copies are pasted unpinned. As
annotation objects are children of figures, they never create new axes when
you paste them.

Moving and Resizing Objects
To move or resize an object in a graph, perform these steps:

1 Start plot edit mode.

2 Select the object. Selection handles appear on the object When the cursor
is over the object, it turns into crossed arrows; outside the selection it
reverts to a pointer.

1-65

1 Plots and Plotting Tools

To move the object, drag it to the new location. You can also nudge it one pixel
up, down, left, or right with the appropriate arrow key on your keyboard. If
you have selected Snap to Layout Grid from the Tools menu, each keypress
makes objects move to the next grid position.

To resize the object, drag a selection handle.

You can shift-click to select multiple objects and move them as a group. Arrow
keys work well for this. However, when you resize one of several selected
objects, only that object changes size.

Note You can move text objects, but you cannot resize them (annotation text
boxes can be resized, however). You can resize axes objects, but you can only
move them by dragging their edges (or via their selection handles, one at
a time).

Setting Object Properties
In MATLAB, every object in a graph supports a set of properties that
control the graph’s appearance and behavior. For example, line objects have
properties that control thickness, color, and line style.

Double-clicking on an object displays the Property Editor. To edit the
properties of the axes or figure, double-click on a region that does not contain
other objects.

See “The Property Editor” on page 1-28 for more information.

Undo/Redo — Eliminating Mistakes
The figure Edit menu contains two items that enable you to undo recent
operation.

Undo — Remove the effect of the last operation.

Redo — Perform again the last operation that you removed by selecting
Undo.

1-66

Working in Plot Edit Mode

For example, if you create a plot, zoom in, pan the view, and then undo the
pan operation, the menu looks as follows:

You could now undo the previous zoom operation or redo the pan operation
you just undid.

1-67

1 Plots and Plotting Tools

Saving Your Work

In this section...

“Saving a Graph in MAT-File Format” on page 1-68

“Saving to a Different Format — Exporting Figures” on page 1-69

“Printing Figures” on page 1-70

“Generating an M-File to Recreate a Graph” on page 1-70

Saving a Graph in MAT-File Format

Note To save a figure in a format that is compatible with MATLAB versions
before MATLAB 7, refer to “Plot Objects and Backward Compatibility” on
page 8-22 for more information.

MATLAB supports a binary format in which you can save figures so that they
can be opened in subsequent MATLAB sessions. MATLAB assigns these files
the .fig filename extension.

To save a graph in a figure file,

1 Select Save from the figure window File menu or click the Save button
on the toolbar. If this is the first time you are saving the file, the Save
As dialog box appears.

2 Make sure that the Save as type is MATLAB Figure (*.fig).

3 Specify the name you want assigned to the figure file.

4 Click OK.

The graph is saved as a figure file (.fig), which is a binary file format used
to store figures.

You can also use the saveas command.

Use the hgsave command to create backward compatible FIG-files.

1-68

Saving Your Work

If you want to save the figure in a format that can be used by another
application, see “Saving to a Different Format — Exporting Figures” on page
1-69.

Opening a Figure File
To open a figure file, perform these steps:

1 Select Open from the File menu or click the Open button on the toolbar.

2 Select the figure file you want to open and click OK.

The figure file appears in a new figure window.

You can also use the open command.

Saving to a Different Format — Exporting Figures
To save a figure in a format that can be used by another application, such as
the standard graphics file formats TIFF or EPS, perform these steps:

1 Select Export Setup from the File menu. This dialog provides options
you can specify for the output file, such as the figure size, fonts, line size
and style, and output format.

2 Select Export from the Export Setup dialog. A standard Save As dialog
appears.

3 Select the format from the list of formats in the Save as type drop-down
menu. This selects the format of the exported file and adds the standard
filename extension given to files of that type.

4 Enter the name you want to give the file, less the extension.

5 Click Save.

Copying a Figure to the Clipboard
On Windows systems, you can also copy a figure to the clipboard and then
paste it into another application:

1-69

1 Plots and Plotting Tools

1 Select Copy Options from the Edit menu. The Copying Options page of
the Preferences dialog box appears.

2 Complete the fields on the Copying Options page and click OK.

3 Select Copy Figure from the Edit menu.

The figure is copied to the Windows clipboard. You can then paste the
figure from the Windows clipboard into a file in another application.

Printing Figures
Before printing a figure,

1 Select Print Preview from the File menu to set printing options, including
plot size and position, and paper size and orientation.

The Print Preview dialog box opens.

2 Make changes in the dialog box. Changes you can make are arranged by
tabs on the left-hand pane. If you want the printed output to match the
annotated plot you see on the screen exactly,

a On the Layout tab, click Auto (Actual Size, Centered).

b On the Advanced tab, click Keep screen limits and ticks.

For information about other options for print preview, click the Help button
in the dialog box.

To print a figure, select Print from the figure window File menu and complete
the Print dialog box that appears.

You can also use the print command.

Generating an M-File to Recreate a Graph
You can generate an M-file from a graph, which you can then use to regenerate
the graph. This approach is a useful way to generate M-code for work you
have performed with the plotting tools. To use this option,

1 Select Generate M-file from the File menu.

1-70

Saving Your Work

MATLAB displays the generated code in the MATLAB Editor.

2 Save the M-file using Save As from the Editor File menu.

Running the Saved M-File
Most of the generated M-files require you to pass in data as arguments. The
M-file assumes you are using the same data originally used to create the
graph.

Comments at the beginning of the M-file state the type of data expected.
For example, the following statements illustrate a case where three input
vectors are required.

function createplot(X1, Y1, Y2)
%CREATEPLOT(X1,Y1,Y2)
% X1: vector of x data
% Y1: vector of y data
% Y2: vector of y data

See “Example — Generating M-Code to Reproduce a Graph” on page 1-53
for another example.

1-71

1 Plots and Plotting Tools

1-72

2

Data Exploration Tools

Ways to Explore Graphical Data
(p. 2-2)

Overview of tools for exploring graph
data

Data Cursor — Displaying Data
Values Interactively (p. 2-4)

Data cursors enable you to read data
directly off a graph, save it in the
workspace, and label data points

Enlarging the View (p. 2-19) Behavior of zoom tools in 2- and 3-D

Panning — Shifting Your View of the
Graph (p. 2-23)

Tool that grabs the graph with the
mouse and moves it within the axes

Rotate 3D — Interactive Rotation of
3-D Views (p. 2-25)

Move the viewpoint around 3-D
objects

2 Data Exploration Tools

Ways to Explore Graphical Data

In this section...

“Introduction” on page 2-2

“Types of Tools” on page 2-2

Introduction
After determining what type of graph best represents your data, you can
further enhance the visual display of information using the tools discussed in
this section. These tools enable you to explore data interactively, eliminating
the need to set the plethora of graphics properties required to achieve the
same results using MATLAB commands.

Once you have achieved the desired results, you can then generate the
MATLAB code necessary to reproduce the graph you created interactively.
See “Example — Generating M-Code to Reproduce a Graph” on page 1-53
for more information.

Types of Tools
See the following sections for information on specific tools.

• “Data Cursor — Displaying Data Values Interactively” on page 2-4

• “Enlarging the View” on page 2-19

• “Panning — Shifting Your View of the Graph” on page 2-23

• “Rotate 3D — Interactive Rotation of 3-D Views” on page 2-25

• Camera Toolbar — Interacting with 3-D Views

You can perform data analysis directly on graphs with curve fitting and time
series tools; see

• “Linear Regression Analysis”

• “Interactive Fitting”

• “Time Series Tools”

2-2

Ways to Explore Graphical Data

These and other topics are covered in the “Preparing Data for Analysis”
section of the Data Analysis documentation. You can also use cftool if you
have Curve Fitting Toolbox.

2-3

2 Data Exploration Tools

Data Cursor — Displaying Data Values Interactively

In this section...

“What Is a Data Cursor?” on page 2-4

“Enabling Data Cursor Mode” on page 2-5

“Display Style — Datatip or Cursor Window” on page 2-14

“Selection Style — Select Data Points or Interpolate Points on Graph” on
page 2-15

“Exporting Data Value to Workspace Variable” on page 2-16

What Is a Data Cursor?
Data cursors enable you to read data directly from a graph by displaying the
values of points you select on plotted lines, surfaces, images, and so on. You
can place multiple datatips in a plot and move them interactively. If you save
the figure, the datatips in it are saved, along with any other annotations
present.

When data cursor mode is enabled, you can

• Click on any graphics object defined by data values and display the x, y,
and z (if 3-D) values of the nearest data point.

• Interpolate the values of points between data points.

• Display multiple data tips on graphs.

• Display the data values in a cursor window that you can locate anywhere
in the figure window or as a data tip (small text box) located next to the
data point.

• Export data values as workspace variables.

• Print or export the graph with data tip or cursor window displayed for
annotation purposes.

• Edit the data tip display function to customize what information is
displayed and how it is presented

• Select a different data tip display function

2-4

Data Cursor — Displaying Data Values Interactively

Enabling Data Cursor Mode

Select the data cursor icon in the figure toolbar or select the Data
Cursor item in the Tools menu.

Once you have enabled data cursor mode, clicking the mouse on a line or other
graph object displays data values of the point clicked. Clicking elsewhere does
not create or update data tips. To place additional data tips, as the picture
below shows, see “Creating Multiple Data Tips” on page 2-11, below. In the
picture, the black squares are located at points selected by the Data Cursor
tool, and the data tips next to them display the x and y-values of those points.

The illustrations below use traffic count data stored in count.dat:

load count.dat
plot(count)

2-5

2 Data Exploration Tools

Moving the Marker
You can move the marker using the arrow keys and the mouse. The up and
right arrows move the marker to data points having greater index values in
the data arrays. The down and left arrow keys move the marker to data points
having lesser index values. When you set Selection Style to Mouse Position
using the tool’s context menu, you can drag markers and position them
anywhere along a line. However, you cannot drag markers between different

2-6

Data Cursor — Displaying Data Values Interactively

line or other series on a plot. The cursor changes to crossed arrows when it
comes close enough to a marker for you to drag the datatip, as shown below:

)������������3
����������	���������
�������	������������,

Positioning the Datatip Text Box
You can position the data tip text box in any one of four positions with respect
to the data point: upper right (the default), upper left, lower left, and lower
right.

To position the datatip, press, but do not release the mouse button while over
the datatip text box and drag it to one of the four positions, as shown below:

2-7

2 Data Exploration Tools

You can reposition a datatip, but not its text box, using the arrow keys as well.

Dragging the Datatip to Different Locations
You can drag the datatip to different locations on the graph object by clicking
down on the datatip and dragging the mouse. You can also use the arrow keys
to move the datatip.

)������������3
����������	���������
�������	������������,

2-8

Data Cursor — Displaying Data Values Interactively

Note Surface plots and 3-D bar graphs can contain NaN values. If you drag
a datatip to a location coded as NaN, the datatip will disappear (because its
coordinates become (NaN,NaN,NaN)). You can continue to drag it invisibly,
however, and it will reappear when it is over a non-NaN location. However,
if you create a new datatip while the previous current one is invisible, the
previous one cannot be retrieved.

Datatips on Image Objects
Datatips on images display the x- and y-coordinates as well as the RGB values
and a color index (for indexed images), as show below:

Datatips on 3-D Objects
You can use datatips to read data points on 3-D graphs as well. In 3-D views,
data tips display the x-, y- and z-coordinates.

2-9

2 Data Exploration Tools

−3

−2

−1

0

1

2

3 −3
−2

−1
0

1
2

3

−6

−4

−2

0

2

4

6

8

X: −0.51724
Y: −0.72414
Z: 3.6812

2-10

Data Cursor — Displaying Data Values Interactively

Creating Multiple Data Tips
Normally, there is only one datatip displayed at one time. However, you can
display multiple datatips simultaneously on a graph. This is a simple way to
annotate a number of points on a graph.

Use the following procedure to create multiple datatips.

1 Enable data cursor mode from the figure toolbar. The cursor changes to
a cross.

2 Click on the graph to insert a datatip.

3 Right-click to display the context menu. Select Create New Datatip.

4 Click on the graph to place the second datatip.

2-11

2 Data Exploration Tools

Customizing Data Cursor Text
You can customize the text displayed by the data cursor using the
datacursormode function. Use the last two items in the Data Cursor context
menu to for this purpose:

• Edit Text Update Function — Opens an editor window to let you modify
the function currently being used to place text in datatips

2-12

Data Cursor — Displaying Data Values Interactively

• Select Text Update Function — Opens an input file dialog for you to
navigate to and select an M-file to use to format text in datatips you
subsequently create

When you select Edit Text Update Function for the first time, an editor
window opens with the default text update callback, which consists of the
following code:

function output_txt = myfunction(obj,event_obj)

% Display the position of the data cursor

% obj Currently not used (empty)

% event_obj Handle to event object

% output_txt Data cursor text string (string or cell array of strings).

pos = get(event_obj,'Position');

output_txt = {['X: ',num2str(pos(1),4)],...

['Y: ',num2str(pos(2),4)]};

% If there is a Z-coordinate in the position, display it as well

if length(pos) > 2

output_txt{end+1} = ['Z: ',num2str(pos(3),4)];

end

You can modify this code to display properties of the graphics object other
than position. If you want to do so, you should first save this code to an M-file
before changing it, and select that file if you want to revert to default datatip
displays during the same session.

If for example you save it as def_datatip_cb.m, and then modify the code and
save it to another M-file, you can then choose between the default behavior
and customized behavior by choosing Select Text Update Function from
the context menu and selecting one of the callbacks you saved.

See the Examples section of the datacursormode reference page for more
information on using data cursor objects and update functions.

Deleting Datatips
You can remove the most recently added datatip or all datatips. When in data
cursor mode, right-click to display the context menu.

2-13

2 Data Exploration Tools

• Select Delete Current Datatip or press the Delete key to remove the
last datatip that you added.

• Select Delete All Datatips to remove all datatips.

Display Style — Datatip or Cursor Window
By default, the data cursor displays values as a datatip (small text box located
next to the data point). You can also display a single data value in a cursor
window that is anchored within the figure window. You can place multiple
datatips on a graph, which makes this display style useful for annotations.

The cursor window style is particularly useful when you want to drag the data
cursor to explore image and surface data; numeric information in the window
updates without obscuring the any of the figure’s symbology.

To use the cursor window, change the display style as follows:

1 While in data cursor mode, right-click to display the context menu.

2 Mouse over the Display Style item.

3 Select Window Inside Figure.

2-14

Data Cursor — Displaying Data Values Interactively

Note If you change the data cursor Display Style from Datatip to
Window Inside Figure with the context menu, only the most recent
data tip is displayed; all other existing data tips are removed because the
window can display only one datatip at a time.

Selection Style — Select Data Points or Interpolate
Points on Graph
By default, the data cursor displays the values of the data point nearest to
the point you click with the mouse, and the data marker snaps to this point.
The data cursor can also determine the values of points that lie in between

2-15

2 Data Exploration Tools

the data defining the graph, by linearly interpolating between the two data
points closest to the location you click the mouse.

Enabling Interpolation Mode
If you want to be able to select any point along a graph and display its value,
use the following procedure:

1 While in data cursor mode, right-click to display the context menu.

2 Mouse over the Selection Style item.

3 Select Mouse Position.

Note that interpolation mode is not honored when you are using the arrow
keys to move a datatip to a new location.

Exporting Data Value to Workspace Variable
You can export the values displayed with the data cursor to MATLAB
workspace variables. To do this, display the right-click context menu while in
data cursor mode and select Export Cursor Data to Workspace.

2-16

Data Cursor — Displaying Data Values Interactively

MATLAB then displays a dialog that enables you to name the workspace
variable.

When you click OK, MATLAB creates a structure with the specified name in
your base workspace, containing the following fields:

• Target — Handle of the graphics object containing the data point

• Position — x- and y- (and z-) coordinates of the data cursor location in
axes data units

Line and lineseries objects have an additional field:

• DataIndex — A scalar index into the data arrays that correspond to the
nearest data point. The value is the same for each array.

For example, if you saved the workspace variable as cursor_info, then you
would access the position data by referencing the Position field.

2-17

2 Data Exploration Tools

cursor_info.Position
ans =

0.4189 0.1746 0

2-18

Enlarging the View

Enlarging the View

In this section...

“Zooming in 2-D and 3-D” on page 2-19

“Zooming in 2-D Views” on page 2-19

Zooming in 2-D and 3-D
Zooming changes the magnification of a graph without changing the size of
the figure or axes. Zooming is useful to see greater detail in a small area.
As explained below, zooming behaves differently depending on whether it is
applied to a 2-D or 3-D view.

Enable zooming by clicking one of the zoom icons . Select + to zoom
in and – to zoom out.

Note, when in zoom in mode, you can use Shift+click to zoom out (i.e.,
press and hold down the Shift key while clicking the mouse). You can also
right-click and zoom out or restore the plot to its original view using the
context menu.

Zooming in 2-D Views
In 2-D views, click the area of the axes where you want to zoom in, or drag
the cursor to draw a box around the area you want to zoom in on. MATLAB
redraws the axes, changing the limits to display the specified area.

For example, selecting the region of the following plot,

2-19

2 Data Exploration Tools

results in a rescaling of the axes to display only that region.

2-20

Enlarging the View

Undoing Zoom Actions
If you want to reset the graph to its original view, right-click to display the
context menu and select Reset to Original View. You can also use the Undo
item on the Edit menu to undo each operation you performed on your graph.

Zoom Constrained to Horizontal or Vertical
In 2-D views, you can constrain zoom to operate in either the horizontal or
vertical direction. To do this, right-click to display the context menu while
in zoom mode and select the desired zoom option.

Zooming in 3-D Views
In 3-D views, moving the cursor up or to the right zooms in, while moving the
cursor down or to the left zooms out. Both toolbar icons enable the same
behavior. 3-D zooming does not change the axes limits, as in 2-D zooming.
Instead it changes the view (specifically, the axes CameraViewAngle property)
as if you were looking through a camera with a zoom lens.

2-21

2 Data Exploration Tools

2-22

Panning — Shifting Your View of the Graph

Panning — Shifting Your View of the Graph
You can move your view of a graph up and down as well as left and right with
the pan tool. Panning is useful when you have zoomed in on a graph and want
to translate the plot to view different portions.

Click this icon on the figure toolbar to enable panning . In pan mode you
can freely move up, down, left or right, or you can constrain movement to
be vertical or horizontal only by right-clicking and selecting one of the Pan
Options from the pan tool’s context menu.

You can pan across both 2-D and 3-D views. 2-D panning has the effect
of changing the axis limits that you are viewing, but it does not change
the actual limits of the plot. For example, suppose you have a time-series
waveform that you want to zoom in on to view detail, but you also want to be
able to scan the entire plot.

2-23

2 Data Exploration Tools

0 100 200 300 400 500 600 700 800
−2000

0

2000

4000

0 100 200 300 400 500 600 700 800
−2000

0

2000

4000

540 560 580 600 620 640 660 680 700

0

500

1000

1500

3-D panning moves the axes with the object, because the 3-D view is not
aligned to the x-, y-, or z-axis. The axes limits do not change as in 2-D panning.

2-24

Rotate 3D — Interactive Rotation of 3-D Views

Rotate 3D — Interactive Rotation of 3-D Views

In this section...

“Enabling 3-D Rotation” on page 2-25

“Selecting Predefined Views” on page 2-25

“Rotation Style for Complex Graphs” on page 2-26

“Undo/Redo — Eliminating Mistakes” on page 2-28

Enabling 3-D Rotation
MATLAB enables you to rotate graphs to any orientation with the mouse.
Rotation involves the reorientation of the axes and all the graphics objects it
contains. Therefore none of the data defining the graphics objects is affected
by rotation; instead the orientation of the x-, y-, and z-axes changes with
respect to the viewer.

There are three ways to enable Rotate 3D mode:

• Select Rotate 3D from the Tools menu.

• Click the Rotate 3D icon in the figure toolbar .

• Execute the rotate3d command.

Once the mode is enabled, you press and hold the mouse button while moving
the cursor to rotate the graph.

Selecting Predefined Views
When Rotate 3D mode is enabled, you can control various rotation options
from the right-click context menu.

You can rotate to predefined views on the right-click context menu:

• Reset to Original View — Reset to the default MATLAB view (azimuth
-37.5°, elevation 30°).

• Go to X-Y View — View graph along the z-axis (azimuth 0°, elevation 90°).

2-25

2 Data Exploration Tools

• Go to X-Z View — View graph along the y-axis (azimuth 0°, elevation 0°).

• Go to Y-Z View — View graph along the x-axis (azimuth 90°, elevation 0°).

Rotation Style for Complex Graphs
You can select from two rotation styles on the right-click context menu’s
Rotation Options submenu:

• Plot Box Rotate — Display only the axes bounding box for faster rotation
of complex objects. Use this option if the default Continuous Rotate
style is unacceptably slow.

• Continuous Rotate — Display all graphics during rotation.

Axes Behavior During Rotation
You can select two types of behavior with respect to the aspect ratio of axes
during rotation:

• Stretch-to-Fill Axes – Default axes behavior is optimized for 2-D plots.
Graphs fit the rectangular shape of the figure.

• Fixed Aspect Ratio Axes – Maintains a fixed shape of objects in the axes
as they are rotated. Use this setting when rotating 3-D plots.

The following pictures illustrate a sphere as it is rotated with Stretch-to-Fill
Axes selected. Note that the sphere is not round.

2-26

Rotate 3D — Interactive Rotation of 3-D Views

The next picture shows how the Fixed Aspect Ratio Axes option results in a
sphere that maintains its proper shape as it is rotated.

2-27

2 Data Exploration Tools

Undo/Redo — Eliminating Mistakes
The figure Edit menu contains two items that enable you to undo any zoom,
pan, or rotate operation.

Undo — Remove the effect of the last operation.

Redo — Perform again the last operation that you removed by selecting
Undo.

For example, if you create a plot, zoom in, pan the view, and then undo the
pan operation, the menu looks as follows:

2-28

Rotate 3D — Interactive Rotation of 3-D Views

You could now undo the previous zoom operation or redo the pan operation
you just undid.

2-29

2 Data Exploration Tools

2-30

3

Annotating Graphs

How to Annotate Graphs (p. 3-2) Summary of the options for
formatting graphs

Alignment Tool — Aligning and
Distributing Objects (p. 3-27)

How to arrange axes and annotations
within a graph

Adding Titles to Graphs (p. 3-36) Illustrates the procedure for adding
a title to a graph

Adding Axis Labels to Graphs
(p. 3-40)

Illustrates the procedure for adding
axis labels to a graph, and how to
add, position, modify, and remove
legends from graphs

Adding Text Annotations to Graphs
(p. 3-46)

Techniques for using text with
graphs, including alignment,
symbols and Greek letters, using
variables in text strings, multiline
text, and text background color

Adding Arrows and Lines to Graphs
(p. 3-64)

Illustrates the procedure for adding
callout arrows and lines to graphs

Positioning Annotations in Data
Space (p. 3-67)

How to pin figure annotations to
data space on an axes

3 Annotating Graphs

How to Annotate Graphs

In this section...

“Graph Annotation Features” on page 3-2

“Enclosing Regions of a Graph in a Rectangle or an Ellipse” on page 3-6

“Textbox Annotations” on page 3-8

“Annotation Lines and Arrows” on page 3-13

“Adding a Colorbar to a Graph” on page 3-16

“Adding a Legend to a Graph” on page 3-20

“Pinning — Attaching to a Point in the Graph” on page 3-23

Graph Annotation Features
Annotating graphs with text and other explanatory material can improve the
graph’s ability to convey information. MATLAB provides a variety of features
for annotating graphs, including those that

• Add text, lines and arrows, rectangles, ellipses, and other annotation
objects anywhere on the figure

• Anchor annotations to locations in data space

• Add a legend and colorbar

• Add axis labels and titles

• Edit the properties of graphics objects

The following sections provide more information.

• “Enclosing Regions of a Graph in a Rectangle or an Ellipse” on page 3-6

• “Textbox Annotations” on page 3-8

• “Annotation Lines and Arrows” on page 3-13

• “Adding a Colorbar to a Graph” on page 3-16

• “Adding a Legend to a Graph” on page 3-20

3-2

How to Annotate Graphs

• “Pinning — Attaching to a Point in the Graph” on page 3-23

Annotation Tools on the Plot Edit Toolbar
Select Plot Edit Toolbar from the View menu to display the toolbar.

)�����������
��������������������!
�����	����	���������+����,

$����+������
���������

������!�������+���
���	#�������

-������������
��� ��	�������

����������.����.
��������������

���	����� ����������
���������

����������������.�����.
�����	�������������

Annotation Tools on the Figure Palette
Basic annotation tools are available from the figure palette. Select Figure
Palette from the View menu to display the figure palette.

3-3

3 Annotating Graphs

Adding Annotations from the Insert Menu
Annotation features are available from the Insert menu.

3-4

How to Annotate Graphs

Command Interface
You can add annotations using MATLAB commands. The following table lists
the functions used to create annotations.

MATLAB Functions for Creating Annotations

Function Purpose

annotation Create annotations including lines, arrows, text arrows,
double arrows, text boxes, rectangles, and ellipses

xlabel,
ylabel,
zlabel

Add a text label to the respective axis

title Add a title to a graph

3-5

3 Annotating Graphs

MATLAB Functions for Creating Annotations (Continued)

Function Purpose

colorbar Add a colorbar to a graph

legend Add a legend to a graph

Removing Annotations
You can delete any annotation manually, and (if it has an explicit handle)
programmatically. See “Deleting Annotations” in the MATLAB function
reference documentation for details.

Enclosing Regions of a Graph in a Rectangle or an
Ellipse
You can add a rectangle or an ellipse to draw attention to a specific region of
a graph. While either object is selected, you can move and resize it as well
as display a right-click context menu that enables you to modify behavior
and appearance.

Insert the rectangle or ellipse by clicking the corresponding button in the
plot edit toolbar

or by selecting Rectangle or Ellipse from the Insert menu. MATLAB
changes the cursor to a cross indicating you can click down, drag, and release
the left mouse button to define the size and shape of the object.

Pinning Rectangles and Ellipses
You can attach the rectangle to a particular point in the figure by pinning it to
that point. There are three ways to pin the rectangle:

• Right-click the rectangle to display its context menu. Select Pin to axes
to set a pin in the default location.

3-6

How to Annotate Graphs

• Select the pin button in the figure toolbar (see “Pinning — Attaching to a
Point in the Graph” on page 3-23).

• Select Pin to axes from the Tools menu. The cursor changes to a pin; click
anywhere within the object to set a pin at that location.

By default (using the first of the options described above), pinning attaches
the lower left corner of the rectangle or ellipse to its current location in the
axes data units. You can move the point of attachment by clicking the corner
and dragging the anchor to another point. The cursor changes to a pin while
you are dragging.

Note that you cannot drag or resize a rectangle or an ellipse when it is pinned.

Modifying the Rectangle or Ellipse from the Context Menu
Right-click the rectangle or ellipse to display its context menu.

3-7

3 Annotating Graphs

The menu contains the following options:

• Cut, Copy, Delete — Cut to clipboard, copy to clipboard, or delete the
selected object.

• Pin to axes — Pin the lower left corner to the current location (you can
move the point of attachment by clicking and dragging the point while in
plot edit mode).

• Unpin — Detach the rectangle from the attachment point.

• Face Color — Fill color for the rectangle or ellipse

• Edge Color — Color of the line used to draw the rectangle or ellipse

• Line Width — Width of the line used to draw the rectangle or ellipse

• Line Style — Type of line used to draw the rectangle or ellipse

• Properties — Display the Property Editor with textbox properties.

• Show M-code — Create M-code that recreates the graph.

Setting Rectangle and Ellipse Properties
You can use the Property Editor to set rectangle and ellipse properties by
selecting Properties from the context menu. The Property Editor displays
the same properties that are described above in the context menu section.

You can click the More Properties button on the Property Editor to display
the Property Inspector. The Property Inspector displays all properties for the
selected annotation object. However, you should not change some of these
properties because doing so can affect the proper functioning of the annotation
object. See the following sections for descriptions of the properties you can
change on the respective objects.

• Annotation Rectangle Properties

• Annotation Ellipse Properties

Textbox Annotations
A textbox is a rectangle that can contain multiline text. You can attach the
textbox to any point in the figure.

3-8

How to Annotate Graphs

Insert a textbox by clicking the textbox button in the figure toolbar ,
then click where you want to place the text string. The default behavior for
textboxes is for them to resize to accommodate the amount of text you enter
into them. You can also resize the textbox after typing or click and drag the
box to a certain size when you create it (when you do this, the textbox stays
that size no matter how much text you place within it).

You can also select TextBox from the Insert menu.

Selecting Textbox Objects
The selection behavior of the textbox object differs from other annotation
objects.

• To move a textbox, click the text once to select it.

• To edit the a textbox, double-click within the box.

• To display the Property Editor with textbox properties, right-click to
display the context menu and select Properties.

Pinning the Textbox
You can attach the textbox to a particular point in the figure by pinning it to
that point. There are three ways to pin the textbox:

• Right-click within the textbox to display its context menu and select Pin
to Axes.

• Select the pin button in the figure toolbar and click a handle of the textbox
(See “Pinning — Attaching to a Point in the Graph” on page 3-23).

• Select Pin Object from the Edit menu.

By default, pinning attaches the lower left corner of the textbox to its location
in the axes data space. You can move the point of attachment by clicking on
the corner and dragging the anchor to another point.

3-9

3 Annotating Graphs

Note that you cannot drag the textbox when it is pinned.

Modifying the Textbox from the Context Menu
Right-clicking in a textbox displays its context menu, which enables you to
perform a number of operations on the textbox. In the following picture, the
textbox Background Color has been set to yellow and its Font has been set
to bold using the context menu. The textbox has its default resizing behavior,
as indicated by the checked item Fit Box to Text:

3-10

How to Annotate Graphs

When you create a textbox without dragging it to have a specific size, Fit
Box to Text is enabled, and the box will grow or shrink as you type or edit
its text. If you drag when creating a textbox, or change its size by dragging
any of its handles in plot edit mode, Fit Box to Text is disabled, but you can
re-enable it using the context menu.

The menu contains the following options:

• Cut, Copy, Delete — Cut to clipboard, copy to clipboard, or delete the
textbox.

3-11

3 Annotating Graphs

• Pin to axes — Pin the textbox to the current location (you can move the
point of attachment by clicking and dragging the textbox while in plot
edit mode).

• Unpin — Detach the textbox from the attachment point.

• Edit — Enable edit mode to change the text. You can also double-click the
textbox with the left mouse button to enable edit mode.

• Fit Box to Text — Resize textbox to accommodate text extents (or not)

• Text Color — Color of the text characters

• Background Color — Fill color of the rectangle enclosing the text

• Edge Color — Color of the textbox edge line (you must set Line Style to a
value other than none to display edges)

• Font — Type of font used for the text

• Interpreter — Interpret characters as TEX (latex or tex) or as literal
characters (none).

• Line Width — Width of the textbox edge line

• Line Style — Style of line used for the textbox edge

• Properties — Display the Property Editor with textbox properties.

• Show M-code — Create M-code that recreates the graph.

Setting Textbox Properties
You can use the Property Editor to set textbox properties by selecting Show
Property Editor from the textbox context menu. It displays the same
properties that are described above in the context menu section.

You can click the More Properties button on the Property Editor to display
the Property Inspector. The Property Inspector displays all textbox properties.
However, you should not change some of these properties because doing so
can affect the proper functioning of the textbox.

See Textbox Properties in the reference documentation for a description of the
properties you can change.

3-12

How to Annotate Graphs

Annotation Lines and Arrows
You can add lines and three types of arrows to a graph and attach them to any
point in the figure. The three types of arrows include

• Single-headed arrow

• Arrow with attached text box

• Double-headed arrow

Insert a line or arrow by clicking the appropriate button in the figure toolbar

, then click down, drag the line or arrow to the desired point,
and release the mouse. The arrowhead appears at the terminal end.

With the line or arrow selected, right-click to display the context menu, which
provides access to a number of options.

Inserting a Text Arrow
A text arrow combines a textbox with an arrow. It is useful for labeling points
on a graph. Add a text arrow to a graph by selecting the arrow button that
has a T above the arrow. Insert the text arrow and type text in the box.

Pinning the Arrowhead End
You can attach the arrowhead end to the point of interest on the graph while
letting the text box automatically reposition itself as you zoom or pan the
graph.

There are three ways to pin annotations:

• Right-click the object to display its context menu and select Pin.

• Select the pin button in the plot edit toolbar (See “Pinning — Attaching to
a Point in the Graph” on page 3-23).

• Select Pin Object from the Edit menu.

3-13

3 Annotating Graphs

Modifying the Text Arrow from the Context Menu
Right-clicking on a text arrow displays its context menu, which enables you
to perform a number of operations on the text arrow. The context menus for
lines, arrows, and double arrows contain similar items:

• Cut, Copy, Delete — Cut to clipboard, copy to clipboard, or delete the
textbox.

• Pin to axes — Pin the textbox to the current location (you can move the
point of attachment by clicking and dragging the point while in plot edit
mode).

• Unpin — Detach the textbox from the attachment point.

• Reverse Direction — Swap the arrow head and the textbox or move the
arrowhead to the other end of a plain arrow.

• Edit Text — Enable edit mode to change the text characters.

• Color — Color of the text characters, textbox edge, and arrow

• Text Background Color — Color of the rectangle enclosing the text

• Font — Type of font used for the text

3-14

How to Annotate Graphs

• Line Width — Width of the textbox edge line

• Line Style — Style of line used for the textbox edge

• Head Style — Type of arrowhead to use

• Head Size — Size of the arrowhead in points

• Properties — Display the Property Editor with textbox properties.

• Show M-code — Create M-code that recreates the graph.

For example, the following illustration shows the text border enabled and the
text background color set to yellow.

3-15

3 Annotating Graphs

Setting Line and Arrow Properties
You can use the Property Editor to set line and arrow properties by selecting
Properties from the context menu. The Property Editor displays the same
properties that are described above in the context menu section.

You can click the More Properties button on the Property Editor to display
the Property Inspector. The Property Inspector displays all properties for
the selected annotation object. However, you should not change some of
these properties, because doing so can affect the proper functioning of the
annotation. See the following sections in the reference documentation for
descriptions of the properties you can change on the respective objects.

• Annotation Line Properties

• Annotation Arrow Properties

• Annotation Textarrow Properties

• Annotation Doublearrow Properties

Adding a Colorbar to a Graph
Colorbars display the current colormap and indicate the mapping from data
values to colors. The following picture shows a surface plot with 2-D contour
lines below. Note how the colorbar at the right indicates how the z-axis data
values correspond to colors in both the surface and contour graphs.

Add a colorbar by clicking the colorbar button in the toolbar or by
selecting Colorbar from the Insert menu. When plot editing is enabled, you
can select and then move and resize the colorbar. The following commands
will also create this plot:

surfc(peaks(30))
colorbar

3-16

How to Annotate Graphs

You can also use the colorbar function to add a colorbar to a 2-D graph.

Positioning Options for Colorbars
There are a variety of ways to reposition a colorbar in the figure.

• Enable plot edit mode, then select and drag the colorbar to the desired
location.

• Right-click over the colorbar to display its context menu. Mouse over
Locations and select one of the predefined locations for the colorbar.

• Right-click over the colorbar to display its context menu and select
Properties. This displays the Property Editor, which provides a graphical
positioning device for the colorbar.

Labeling Colorbar Ticks
The default colorbar labels ticks with numeric values, which are placed at
intervals specified by the colorbar’s YTick parameter (for vertical colorbars) or
its XTick parameter (for horizontal colorbars), within upper and lower limits
specified by CData. You can override these limits by using the caxis function.

3-17

3 Annotating Graphs

You can specify strings in place of the numeric labels on colorbars. This is
useful for display of data on nominal or ordinal scales and for when you
want to interpret the meaning of entries in the colormap for the viewer. To
substitute strings for numbers along a colorbar, you define a label for each
tick location. You do this by specifying a cell array of strings for YTicklabel
(vertical colorbars) or XTickLabel (horizontal colorbars), as the examples
below show.

Example 1: Default Vertical Colorbar with YTickLabels

contourf(peaks(60));
colormap(jet(8));
hcb = colorbar('YTickLabel',...
{'Freezing','Cold','Cool','Neutral',...
'Warm','Hot','Burning','Nuclear'});
set(hcb,'YTickMode','manual')

Example 2: Horizontal Colorbar with XTickLabels

figure
contourf(peaks(60));

3-18

How to Annotate Graphs

colormap(jet(8));
hcb = colorbar('Location','SouthOutside','XTickLabel',...
{'Freezing','Cold','Cool','Neutral',...
'Warm','Hot','Burning','Nuclear'});
set(hcb,'XTickMode','manual')

In these examples, the number of colors and the number of labels were set
to be the same (8). This is typical for nominal (categorical) data, but not
necessary if you do not object to having a range of colors associated with each
label.

Note that if ticks change, for instance if YTick (XTick) values change or
the plot is rescaled while YTickMode (XTickMode) or YTickLabelMode
(XTickLabelMode) is auto, too few or too many colorbar labels may be
displayed, and can sit next to colors they do not represent. When there are
fewer labels than ticks, the labels will cycle, with the lowest one following the
highest one, etc., to give each tick a label. This is probably not what you
want, so you need to reset YTick (XTick) values in such cases. Finding the
correct values can take some experimentation. The set functions in the
above examples prevent MATLAB from changing the number of ticks when
you resize figures.

3-19

3 Annotating Graphs

Selecting a Different Colormap
If you change the figure colormap, the colorbar updates automatically. Use
one of the following methods to change the colormap.

• Right-click over the colorbar to display its context menu. Mouse over
Standard Colormaps and select from the displayed list.

• Right-click over the colorbar to display its context menu and select
Properties. Click the figure background to load the figure properties into
the Property Editor. Select the colormap from the pull-down list.

• Use the colormap function.

Modifying the Colormap
You can use a colorbar to modify the current colormap. To do this, select
Interactive Colormap Shift from the right-click context menu. In this
mode, you can left-click down on any color in the colorbar and, by dragging
the mouse, shift the color-to-data mapping.

To perform more sophisticated operations on the colormap, launch the
colormap editor by selecting Launch Colormap Editor from the colorbar’s
context menu. See the colormapeditor reference page for more information.

Adding a Legend to a Graph
Legends provide a key to the various data plotted on a graph. The following
picture shows the legend for a graph of four functions of a variable plotted
with lines of different colors. A graph can have only one legend, which applies
to and will symbolize all data series contained by an axes, according to their
form (e.g., lines, bars, pies, etc.). Note how you can assign an appropriate
string to each line in the legend.

3-20

How to Annotate Graphs

Add a legend by clicking the legend button in the toolbar or by selecting
Legend from the Insert menu. When plot editing is enabled, you can select
and then move and resize the legend.

You can also use the legend function to add a legend to a graph, which gives
additional controls over appearance. You must use this command in order to
display a legend with more than 20 entries, as the legend toolbar button is
limited to displaying legends for 20 elements (columns) of a lineseries only.

Specifying the Text
By default, the legend labels each plotted object (line, surface, etc.) with the
strings data1, data2, etc. You can change this text by double-clicking on the
text to enable edit mode. In edit mode, you can retype the text string.

You can use TEX characters in the text strings to produce symbols. You can
disable interpretation of characters as TEX sequences by selecting none from
the Interpreter submenu of the legend’s right-click context menu.

See the Table of TEX symbols in the Text Properties reference documentation
for more information.

Positioning the Legend
There are a number of ways to position the legend.

3-21

3 Annotating Graphs

• Enable plot edit mode, select the legend, and drag it to the desired location.

• Right-click the legend to display its context menu, mouse over Location,
and select one of the predefined locations from the submenu.

• Right-click the legend to display its context menu and select Properties
to display the Property Editor, which provides a graphical device for
positioning the legend.

You can also select a vertical or horizontal orientation for the legend. Use the
Orientation item in the context menu to make this selection.

Changing the Appearance of the Legend
You can specify the following legend characteristics from the context menu:

• Color — Set the background color of the legend. In addition, you can
specify the Color property as 'none' to make the legend background be
transparent.

• EdgeColor — Set the color of the line enclosing the legend box.

• TextColor — Set the color of the legend text.

You can use a colorspec or an RGB color triplet to set the above three
properties.

• LineWidth — Set the width of the edge line.

• Font — Set the font, font style, and font size of the text used in the legend.

• Interpreter — Set the text Interpreter property to use TEX or plain text.

• Orientation — Orient the legend entries side by side (horizontal) or on
top of each other.

• Properties — Display the Property Editor with legend properties.

• Show M-code — Generates M-code for recreating the legend.

Controlling the Appearance of Grouped Objects on a Legend
When you create a legend for groups of graphic objects such as lineseries,
barseries, or stemseries, the default legend will show an individual legend
entry for each of the graphics objects. Sometimes you might want only certain
objects to appear in a legend, to show one legend entry for the entire series,

3-22

How to Annotate Graphs

or to show the individual children of a series (however, not all series have
children; you can use the Handle Graphics Property Browser to determine
this). You can control how groups appear in the legend by setting values for
their Annotation property via M-code. For information on how to customize
legends in this manner, see “Controlling Legends” on page 8-99.

You can view the values of an object’s Annotation property in the Property
Inspector, but you can not set them there; you need to use M-code.

Pinning — Attaching to a Point in the Graph
Pinning is the attachment of an object to a particular point in the figure.
Pinning enables you to pan or resize the figure while keeping annotations
associated with the same point. For example, the following picture shows
regions in two different graphs associated by pinning both ends of a double
arrow.

3-23

3 Annotating Graphs

3-24

How to Annotate Graphs

If you perform a horizontal zoom on the top axes (select Horizontal Zoom
from the Options submenu of the Tools menu) and then pan the graph to
show the first 120 seconds of the data, the double arrow continues to point
to the same locations on the graph.

Pinning Objects
To pin an object, first enable pinning mode by clicking the pin object button

in the plot edit toolbar or selecting Pin Object from the Edit menu.
Then click the point you want to pin.

3-25

3 Annotating Graphs

To unpin an object, right-click to display the context menu and select Unpin.

You can pin annotation lines, arrows, rectangles, ellipses, and text boxes.

When this mode is enabled, axes, rectangle, arrows, and lines automatically
align their upper left corners to the grid. As you move or resize one of these
objects, the size or position snaps to the next grid location.

3-26

Alignment Tool — Aligning and Distributing Objects

Alignment Tool — Aligning and Distributing Objects

In this section...

“Alignment Tool Functionality” on page 3-27

“Example — Vertical Distribute, Horizontal Align” on page 3-28

“Align/Distribute Menu Options” on page 3-31

“Snap to Grid — Aligning Objects on a Grid” on page 3-33

Alignment Tool Functionality
The Alignment Tool enables you to position objects with respect to each
other and to adjust the spacing between selected objects. The specified
align/distribute operations apply to all components that are selected when
you click the Apply or OK buttons.

Display the Alignment Tool by clicking the Align/Distribute button or by
selecting Align Distribute Tool from the Tools menu.

3-27

3 Annotating Graphs

The Alignment Tool provides two types of positioning operations:

• Align — Align all selected objects to a single reference line.

• Distribute — Space all selected objects uniformly with respect to each
other.

You can align and distribute objects in the vertical and horizontal directions.
The following sections provide more information.

• “Example — Vertical Distribute, Horizontal Align” on page 3-28

• “Align/Distribute Menu Options” on page 3-31

• “Snap to Grid — Aligning Objects on a Grid” on page 3-33

Example — Vertical Distribute, Horizontal Align
This example illustrates how to align three textboxes with three corresponding
axes. In this example, the text boxes were just plunked down close to the

3-28

Alignment Tool — Aligning and Distributing Objects

desired position and then right aligned and distributed to have 40 pixels
between them.

The following picture shows the initial layout.

Use Shift+click to select all three textboxes and then configure the Alignment
Tool as shown in the following picture.

• Set vertical distribution to 40 pixels.

• Set horizontal alignment to right-aligned.

• Click Apply.

3-29

3 Annotating Graphs

3-30

Alignment Tool — Aligning and Distributing Objects

The following picture shows the result.

Align/Distribute Menu Options
The Tools menu contains the alignment and distribution options that are
available via the Alignment Tool.

3-31

3 Annotating Graphs

The Smart Align and Distribute option aligns objects into rows and
columns with equal spacing between each object. It is useful when you have a
number of objects to align that can be positioned in an m-by-n grid.

For example, the following figure contains six axes that have been placed
approximately into two columns in the figure.

0 500 1000 1500
50

100

150

200

5 10 15 20 25 30 35
−4

−2

0

2

700 750 800 700 750 800
−1

−0.5

0

0.5

1

10 20 30 40 50
0

5

10
x 10

5

−1 −0.5 0 0.5 1
2

2.5

3

3.5

4

10 20 30 40 50 60
0.4

0.6

0.8

1

To align all axes in a grid, select each axes (Shift+click each one), then select
Smart Align and Distribute from the Tools menu.

3-32

Alignment Tool — Aligning and Distributing Objects

The resulting alignment and distribution of the axes are shown below.

0 500 1000 1500
50

100

150

200

5 10 15 20 25 30 35
−4

−2

0

2

700 750 800 700 750 800
−1

−0.5

0

0.5

1

10 20 30 40 50
0

5

10
x 10

5

−1 −0.5 0 0.5 1
2

2.5

3

3.5

4

10 20 30 40 50 60
0.4

0.6

0.8

1

Snap to Grid — Aligning Objects on a Grid
Figures have a layout grid that can aid the hand layout of objects displayed in
the figure. You can also enable a snap-to-grid feature that forces objects to
align with the grid increments when moved.

To display the grid on the figure background, select View Layout Grid from
the Tools menu.

3-33

3 Annotating Graphs

To force objects to align with the grid, select Snap To Layout Grid from
the Tools menu.

To move objects in the figure, enable Plot Edit mode by selecting Edit Plot
from the Tools menu. Click to select an object and then drag it to the desired
location.

The following picture illustrates a figure with four subplots. You can select
any of the four axes and move them. Note that all axis labels and the title
move with the axes. Annotation objects move independently of the plot axes.

3-34

Alignment Tool — Aligning and Distributing Objects

3-35

3 Annotating Graphs

Adding Titles to Graphs

In this section...

“What Is a Title?” on page 3-36

“Using the Title Option on the Insert Menu” on page 3-38

“Using the Property Editor to Add a Title” on page 3-38

“Using the title Function” on page 3-39

What Is a Title?
In MATLAB, a title is a text string at the top of an axes. It appears in the
figure border, not within the axes it describes. Titles typically define the
subject of the graph. The following figure shows a title, centered at its top.

3-36

Adding Titles to Graphs

0 5 10 15
0

50

100

150

200

250

300

350

Time t (Years)

P
op

ul
at

io
n

S
iz

e

Lotka−Volterra Predator−Prey Population Model

Prey

Predator

Many predators;
prey population

will decline

Few predators;
prey population
will increase

Note While you can use text annotations to create a title for your graph, it is
not recommended. Titles are anchored to the top of the axes they describe;
text annotations are not. If you move or resize your axes, the title remains at
the top. Additionally, if you cut a title and then paste it back into a figure, the
title is no longer anchored to the axes.

You can add a title to a graph in several ways, described in the following
sections.

3-37

3 Annotating Graphs

Using the Title Option on the Insert Menu
To add a title to a graph using the Insert menu,

1 Click the Insert menu in the figure menu bar and choose Title. MATLAB
opens a text entry box at the top of the axes.

Note When you select the Title option, MATLAB enables plot editing
mode automatically.

2 Enter the text of the label.

3 When you are finished entering text, click anywhere in the figure
background to close the text entry box around the title. If you click on
another object in the figure, such as an axes or line, you close the title text
entry box and also automatically select the object you clicked.

To change the font used in the title to bold, you must edit the title. You can
edit the title as you would any other text object in a graph.

Using the Property Editor to Add a Title
To add a title to a graph using the Property Editor,

1 Start plot editing mode by selecting Edit Plot from the figure Tools menu.

2 Double-click an empty region of the axes in the graph. This starts the
Property Editor. You can also start the Property Editor by right-clicking on
the axes and selecting Show Property Editor from the context menu or
by selecting Property Editor from the View menu.

The Property Editor displays a property panel specific to axes objects.
Titles are a property of axes objects.

3 Type the text of your title in the Title text entry box.

3-38

Adding Titles to Graphs

You can change the font, font style, position, and many other aspects of the
title format.

• To move the title, select the text and drag it to the desired position.

• To edit the text, double-click the title and type new characters.

• To change the font and other text properties, select the title and right-click
to display the context menu.

Using the title Function
To add a title to a graph at the MATLAB command prompt or from an M-file,
use the title function.

For example, the following code adds a title to the current axes and sets the
value of the FontWeight property to bold.

title('Lotka-Volterra Predator-Prey Population Model',...
'FontWeight','bold')

To edit a title from the MATLAB command prompt or from an M-file, use
the set function.

3-39

3 Annotating Graphs

Adding Axis Labels to Graphs

In this section...

“What Are Axis Labels?” on page 3-40

“Using the Label Options on the Insert Menu” on page 3-41

“Using the Property Editor to Add Axis Labels” on page 3-41

“Using Axis-Label Commands” on page 3-43

What Are Axis Labels?
In MATLAB, an axis label is a text string aligned with the x-, y-, or z-axis in
a graph. Axis labels can help explain the meaning of the units that each
axis represents.

3-40

Adding Axis Labels to Graphs

Note While you can use free-form text annotations to create axes labels, it is
not recommended. Axis labels are anchored to the axes they describe; text
annotations are not. If you move or resize your axes, the labels automatically
move with the axes. Additionally, if you cut a label and then paste it back into
a figure, the label is no longer anchored to the axes.

You can add axis labels to a graph in several ways, described in the following
sections.

Using the Label Options on the Insert Menu

1 Click the Insert menu and choose the label option that corresponds to the
axis you want to label: X Label, Y Label, or Z Label. MATLAB opens a
text entry box along the axis or around an existing axis label.

Note MATLAB opens up a horizontal text editing box for the y- and z-axis
labels and automatically rotates the label into alignment with the axis
when you finish entering text.

2 Enter the text of the label, or edit the text of an existing label.

3 Click anywhere else in the figure background to close the text entry box
around the label. If you click on another object in the figure, such as an
axes or line, you close the label text entry box but also automatically select
the object you clicked.

Note After you use the Insert menu to add an axis label, plot edit mode is
enabled in the figure, if it was not already enabled.

Using the Property Editor to Add Axis Labels
To add labels to a graph using the Property Editor,

1 Start plot editing mode by selecting Edit Plot from the figure Tools menu.

3-41

3 Annotating Graphs

2 Start the Property Editor by double-clicking on the axes in the graph.
You can also start the Property Editor by right-clicking on the axes and
selecting Properties from the context menu or by selecting Property
Editor from the View menu.

The Property Editor displays the set of property panels specific to axes
objects.

3 Select the X Axis, Y Axis, or Z Axis tab, depending on which axis label you
want to add. Enter the label text in the text entry box.

Rotating Axis Labels
You can rotate axis labels using the Property Editor:

1 Start plot editing mode by selecting Edit Plot from the figure Tools menu.

2 Display the Property Editor by selecting (left-clicking) the axis label you
want to rotate. Right-click over the selected text, then choose Properties
from the context menu.

3 Click the More Properties button to display the Property Inspector.

3-42

Adding Axis Labels to Graphs

4 Select the Rotation property text field. A value of 0 degrees orients the
label in the horizontal position.

5 With the left mouse button down on the selected label, drag the text to the
desired location and release.

Using Axis-Label Commands
You can add x-, y-, and z-axis labels using the xlabel, ylabel, and zlabel
functions. For example, these statements label the axes and add a title.

3-43

3 Annotating Graphs

xlabel('t = 0 to 2\pi','FontSize',16)

ylabel('sin(t)','FontSize',16)

title('\it{Value of the Sine from Zero to Two Pi}','FontSize',16)

0 1 2 3 4 5 6 7
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t = 0 to 2π

si
n(

t)

Value of the Sine from Zero to Two Pi

The labeling commands automatically position the text string appropriately.
MATLAB interprets the characters immediately following the backslash (\)
as TeX commands. These commands draw symbols such as Greek letters
and arrows.

See the text String property for a list of TeX character sequences. See also
the texlabel function for converting MATLAB expressions to TeX symbols.

3-44

Adding Axis Labels to Graphs

Rotating Axis Labels Using Commands
Axis labels are text objects that you can rotate by specifying a value for the
object’s Rotation property. The handles of the x-, y-, and z-axis labels are
stored in the axes XLabel, YLabel, and ZLabel properties respectively.

Therefore, to rotate the y-axis label so that the text is horizontal:

1 Get the handle of the text object using the axes YLabel property.

2 Set the Rotation property to 0.0 degrees.

For example, this statement rotates the text of the y-axis label on the current
axes:

set(get(gca,'YLabel'),'Rotation',0.0)

Repositioning Axis Labels
You can reposition an axis label by dragging the text.

1 Start plot editing mode by selecting Edit Plot from the figure Tools menu.

2 Select the text of the label you want to reposition (handles appear around
the text object).

3 With the left mouse button down on the selected label, drag the text to the
desired location and release.

3-45

3 Annotating Graphs

Adding Text Annotations to Graphs

In this section...

“What Are Text Annotations?” on page 3-46

“Creating Text Annotations with the text or gtext Function” on page 3-48

“Text Alignment” on page 3-51

“Example — Aligning Text” on page 3-52

“Editing Text Objects” on page 3-53

“Mathematical Symbols, Greek Letters, and TEX Characters” on page 3-54

“Using Character and Numeric Variables in Text” on page 3-56

“Example — Multiline Text” on page 3-57

“Example — Using LaTeX to Format Math Equations” on page 3-58

“Drawing Text in a Box” on page 3-62

What Are Text Annotations?
Text annotations are boxes containing text strings that you compose. The
box can have a border and a background, or be invisible. The text can be in
any installed text font, and can include TeX or LaTeX markup. You can add
free-form text annotations anywhere in a MATLAB figure to help explain your
data or bring attention to specific points in your data sets.

3-46

Adding Text Annotations to Graphs

If you enable plot editing mode, you can create text annotations by clicking in
an area of the graph or the figure background and entering text. You can also
add text annotations from the command line, using the text or gtext function.

Using plot editing mode or gtext makes it easy to place a text annotation
anywhere in a graph. Use the text function when you want to position a text
annotation at a specific point in a data set.

Note Text annotations created using the text or gtext function are anchored
to the axes. Text annotations created in plot edit mode are not. If you move or
resize your axes, you will have to reposition your text annotations. For more
information, see “Positioning Annotations in Data Space” on page 3-67.

3-47

3 Annotating Graphs

Creating Text Annotations with the text or gtext
Function
To create a text annotation using the text function, you must specify the text
and its location in the graph, using x- and y-coordinates. You specify the
coordinates in the units of the graph.

Use the gtext function when you want to position a text annotation at a
specific point in the data space with the mouse.

For example, the following code creates text annotations at specific points in
the Lotka-Volterra Predator-Prey Population Model graph.

str1(1) = {'Many Predators;'};
str1(2) = {'Prey Population'};
str1(3) = {'Will Decline'};
text(7,220,str1)

str2(1) = {'Few Predators;'};
str2(2) = {'Prey Population'};
str2(3) = {'Will Increase'};
text(5.5,125,str2)

This example also illustrates how to create multiline text annotations with
cell arrays.

Calculating the Positions of Text Annotations
You can also calculate the positions of text annotations in a graph. The
following code adds annotations at three data points on a graph.

text(3*pi/4,sin(3*pi/4),...
'\leftarrowsin(t) = .707',...
'FontSize',16)

text(pi,sin(pi),'\leftarrowsin(t) = 0',...
'FontSize',16)

text(5*pi/4,sin(5*pi/4),'sin(t) = -.707\rightarrow',...
'HorizontalAlignment','right',...
'FontSize',16)

3-48

Adding Text Annotations to Graphs

The HorizontalAlignment of the text string 'sin(t) = -.707 \rightarrow'
is set to right to place it on the left side of the point [5*pi/4,sin(5*pi/4)]
on the graph. For more information about aligning text annotations, see “Text
Alignment” on page 3-51.

Defining Symbols. For information on using symbols in text strings, see
“Mathematical Symbols, Greek Letters, and TEX Characters” on page 3-54.

You can use text objects to annotate axes at arbitrary locations. MATLAB
locates text in the data units of the axes. For example, suppose you plot the

function with A = 0.25, α = 0.005, and t = 0 to 900.

t = 0:900;
plot(t,0.25*exp(-0.005*t))

3-49

3 Annotating Graphs

To annotate the point where the value of t = 300, calculate the text coordinates
using the function you are plotting.

text(300,.25*exp(-0.005*300),...

'\bullet\leftarrow\fontname{times}0.25{\ite}^{-0.005{\itt}} at {\itt} =

300',...

'FontSize',14)

This statement defines the text Position property as

x = 300, y = 0.25e-0.005 × 300

The default text alignment places this point to the left of the string and
centered vertically with the rectangle defined by the text Extent property.
The following section provides more information about changing the default
text alignment.

3-50

Adding Text Annotations to Graphs

Text Alignment
The HorizontalAlignment and the VerticalAlignment properties control
the placement of the text characters with respect to the specified x-, y-, and
z-coordinates. The following diagram illustrates the options for each property
and the corresponding placement of the text.

The default alignment is

• HorizontalAlignment = left

• VerticalAlignment = middle

MATLAB does not place the text String exactly on the specified Position.
For example, the previous section showed a plot with a point annotated with
text. Zooming in on the plot enables you to see the actual positioning of the
text.

3-51

3 Annotating Graphs

The small dot is the point specified by the text Position property. The larger
dot is the bullet defined as the first character in the text String property.

Example — Aligning Text
Suppose you want to label the minimum and maximum values in a plot with
text that is anchored to these points and that displays the actual values. This
example uses the plotted data to determine the location of the text and the
values to display on the graph. One column from the peaks matrix generates
the data to plot.

Z = peaks;
h = plot(Z(:,33));

The first step is to find the indices of the minimum and maximum values to
determine the coordinates needed to position the text at these points (get,
find). Then create the string by concatenating the values with a description
of what the values are.

x = get(h,'XData'); % Get the plotted data
y = get(h,'YData');
imin = find(min(y) == y); % Find the index of the min and max
imax = find(max(y) == y);
text(x(imin),y(imin),[' Minimum = ',num2str(y(imin))],...
'VerticalAlignment','middle',...
'HorizontalAlignment','left',...
'FontSize',14)

text(x(imax),y(imax),['Maximum = ',num2str(y(imax))],...
'VerticalAlignment','bottom',...

3-52

Adding Text Annotations to Graphs

'HorizontalAlignment','right',...
'FontSize',14)

The text function positions the string relative to the point specified by the
coordinates, in accordance with the settings of the alignment properties. For
the minimum value, the string appears to the right of the text position point;
for the maximum value the string appears above and to the left of the text
position point. The text always remains in the plane of the computer screen,
regardless of the view.

Editing Text Objects
You can edit any of the text labels or annotations in a graph:

1 Start plot edit mode.

2 Double-click the string, or right-click the string and select Edit from the
context menu.

An editing bar (|) appears next to the text.

3-53

3 Annotating Graphs

3 Make any changes to the text.

4 Click anywhere outside the text edit box to end text editing.

Note To create special characters in text, such as Greek letters or
mathematical symbols, use TEX sequences. See the text string property for
a table of characters you can use. If you create special characters by using
the Font dialog box (available via text objects’ context menus, and also found
in the Property Editor) and selecting the Symbol font family, you cannot edit
that text object using MATLAB commands.

Mathematical Symbols, Greek Letters, and TEX
Characters
You can include mathematical symbols and Greek letters in text using
TEX-style character sequences. This section describes how to construct a
TEX character sequence.

Two Levels of TEX Support
MATLAB provides two levels of TEX support, controlled by the text
Interpreter property:

• tex — Support for a subset of TEX markup

• latex — Support for TEX and LaTEX markup

If you do not want the characters interpreted as TEX markup, then set the
interpreter property to none.

Available Symbols and Greek Letters
For a list of symbols and the character sequences used to define them, see the
table of available TEX characters in the Text Properties reference page.

In general, you can define text that includes symbols and Greek letters using
the text function, assigning the character sequence to the String property
of text objects. You can also include these character sequences in the string
arguments of the title, xlabel, ylabel, and zlabel functions.

3-54

Adding Text Annotations to Graphs

Example — Using a Mathematical Expression to Title a Graph
This example uses TEX character sequences to create graph labels. The
following statements add a title and x- and y-axis labels to an existing graph.

title('{\itAe}^{-\alpha\itt}sin\beta{\itt} \alpha<<\beta')
xlabel('Time \musec.')
ylabel('Amplitude')

The backslash character (\) precedes all TEX character sequences. Looking at
the string defining the title illustrates how to use these characters.

3-55

3 Annotating Graphs

�������	
������������������������������������

����������
�����������

*
����������
��	
�!#���������������

����!#���
�����������

�������������!#���
�������	��������

Controlling the Interpretation of TEX Characters
The text Interpreter property controls the interpretation of TEX characters.
If you set this property to none, MATLAB interprets the special characters
literally.

Using Character and Numeric Variables in Text
Any string variable is a valid specification for the text String property. This
section illustrates how to use matrix, cell array, and numeric variables as
arguments to the text function.

Character Variables
For example, each row of the matrix PersonalData contains specific
information about a person (note that all but the longest row are padded with
a space so that each has the same number of columns).

PersonalData = ['Jack Straw ';'489 Main St.';'Wichita KN '];

To display the data, index into the desired row.

text(x1,y1,['Name: ',PersonalData(1,:)])
text(x2,y2,['Address: ',PersonalData(2,:)])
text(x3,y3,['City and State: ',PersonalData(3,:)])

Cell Arrays
Using a cell array enables you to create multiline text with a single text
object. Each cell does not need to be the same number of characters. For
example, the following statements,

3-56

Adding Text Annotations to Graphs

key(1)={'{\itAe}^{-\alpha\itt}sin\beta{\itt}'};
key(2)={'Time in \musec'};
key(3)={'Amplitude in volts'};
text(x,y,key)

produce this output.

Numeric Variables
You can specify numeric variables in text strings using the num2str (number
to string) function. For example, if you type on the command line

x = 21;
['Today is the ',num2str(x),'st day.']

MATLAB concatenates the three separate strings into one.

Today is the 21st day.

Since the result is a valid string, you can specify it as a value for the text
String property.

text(xcoord,ycoord,['Today is the ',num2str(x),'st day.'])

Example — Multiline Text
MATLAB supports multiline text strings using cell arrays. Simply define a
string variable as a cell array with one line per cell. This example defines two
cell arrays, one used for a uicontrol and the other as text.

str1(1) = {'Center each line in the Uicontrol'};
str1(2) = {'Also check out the textwrap function'};
str2(1) = {'Each cell is a quoted string'};
str2(2) = {'You can specify how the string is aligned'};
str2(3) = {'You can use LaTeX symbols like \pi \chi \Xi'};
str2(4) = {'\bfOr use bold \rm\itor italic font\rm'};
str2(5) = {'\fontname{courier}Or even change fonts'};

3-57

3 Annotating Graphs

plot(0:6,sin(0:6))
uicontrol('Style','text','Position',[80 80 200 30],...

'String',str1);
text(5.75,sin(2.5),str2,'HorizontalAlignment','right')

0 1 2 3 4 5 6
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Each cell is a quoted string
You can specify how the string is aligned

You can use LaTeX symbols like π χ Ξ
Or use bold or italic font

Or even change fonts

Example — Using LaTeX to Format Math Equations
The LaTeX markup language evolved from TEX, and has a superset of its
capabilities. LaTeX gives you more elaborate control over specifying and
styling mathematical symbols.

3-58

Adding Text Annotations to Graphs

The following example illustrates some LaTeX typesetting capabilities when
used with the text function. Because the default interpreter is for TEX, you
need to specify the parameter-value pair 'interpreter','latex' when
typesetting equations such as are contained in the following script:

%% LaTeX Examples--Some well known equations rendered in LaTeX

%

figure('color','white','units','inches','position',[2 2 4 6.5]);

axis off

%% A matrix; LaTeX code is

% \hbox {magic(3) is } \left({\matrix{ 8 & 1 & 6 \cr

% 3 & 5 & 7 \cr 4 & 9 & 2 } } \right)

h(1) = text('units','inch', 'position',[.2 5], ...

'fontsize',14, 'interpreter','latex', 'string',...

['$$\hbox {magic(3) is } \left({\matrix{ 8 & 1 & 6 \cr'...

'3 & 5 & 7 \cr 4 & 9 & 2 } } \right)$$']);

%% A 2-D rotation transform; LaTeX code is

% \left[{\matrix{\cos(\phi) & -\sin(\phi) \cr

% \sin(\phi) & \cos(\phi) \cr}}

% \right] \left[\matrix{x \cr y} \right]

%

% $$ \left[{\matrix{\cos(\phi)

% & -\sin(\phi) \cr \sin(\phi) & \cos(\phi) % \cr}}

% \right] \left[\matrix{x \cr y} \right] $$

%

h(2) = text('units','inch', 'position',[.2 4], ...

'fontsize',14, 'interpreter','latex', 'string',...

['$$\left[{\matrix{\cos(\phi) & -\sin(\phi) \cr'...

'\sin(\phi) & \cos(\phi) \cr}} \right]'...

'\left[\matrix{x \cr y} \right]$$']);

%% The Laplace transform; LaTeX code is

% L\{f(t)\} \equiv F(s) = \int_0^\infty\!\!{e^{-st}f(t)dt}

% $$ L\{f(t)\} \equiv F(s) = \int_0^\infty\!\!{e^{-st}f(t)dt} $$

% The Initial Value Theorem for the Laplace transform:

% \lim_{s \rightarrow \infty} sF(s) = \lim_{t \rightarrow 0} f(t)

% $$ \lim_{s \rightarrow \infty} sF(s) = \lim_{t \rightarrow 0}

% f(t) $$

3-59

3 Annotating Graphs

%

h(3) = text('units','inch', 'position',[.2 3], ...

'fontsize',14, 'interpreter','latex', 'string',...

['$$L\{f(t)\} \equiv F(s) = \int_0^\infty\!\!{e^{-st}'...

'f(t)dt}$$']);

%% The definition of e; LaTeX code is

% e = \sum_{k=0}^\infty {1 \over {k!} }

% $$ e = \sum_{k=0}^\infty {1 \over {k!} } $$

%

h(4) = text('units','inch', 'position',[.2 2], ...

'fontsize',14, 'interpreter','latex', 'string',...

'$$e = \sum_{k=0}^\infty {1 \over {k!} } $$');

%% Differential equation

% The equation for motion of a falling body with air resistance

% LaTeX code is

% m \ddot y = -m g + C_D \cdot {1 \over 2} \rho {\dot y}^2 \cdot A

% $$ m \ddot y = -m g + C_D \cdot {1 \over 2} \rho {\dot y}^2

% \cdot A $$

%

h(5) = text('units','inch', 'position',[.2 1], ...

'fontsize',14, 'interpreter','latex', 'string',...

['$$m \ddot y = -m g + C_D \cdot {1 \over 2}'...

'\rho {\dot y}^2 \cdot A$$']);

%% Integral Equation; LaTeX code is

% \int_{0}^{\infty} x^2 e^{-x^2} dx = \frac{\sqrt{\pi}}{4}

% $$ \int_{0}^{\infty} x^2 e^{-x^2} dx = \frac{\sqrt{\pi}}{4} $$

%

h(6) = text('units','inch', 'position',[.2 0], ...

'fontsize',14, 'interpreter','latex', 'string',...

'$$\int_{0}^{\infty} x^2 e^{-x^2} dx = \frac{\sqrt{\pi}}{4}$$');

3-60

Adding Text Annotations to Graphs

magic(3) is

⎛
⎝ 8 1 6

3 5 7
4 9 2

⎞
⎠

[
cos(φ) − sin(φ)
sin(φ) cos(φ)

] [
x
y

]

L{f(t)} ≡ F (s) =
∫ ∞

0

e−stf(t)dt

e =
∞∑

k=0

1
k!

mÿ = −mg + CD · 1
2
ρẏ2 · A

∫ ∞

0

x2e−x2
dx =

√
π

4

3-61

3 Annotating Graphs

You can find out more about the LaTeX system at The LaTeX Project Web site,
http://www.latex-project.org/.

Drawing Text in a Box
When you use the text function to display a character string, the string’s
position is defined by a rectangle called the Extent of the text. You can
display this rectangle either as a box or a filled area. For example, you can
highlight contour labels to make the text easier to read.

[x,y] = meshgrid(-1:.01:1);
z = x.*exp(-x.^2-y.^2);
[c,h]=contour(x,y,z);
h = clabel(c,h);
set(h,'BackgroundColor',[1 1 .6])

3-62

http://www.latex-project.org

Adding Text Annotations to Graphs

For additional features, see the following text properties:

• BackgroundColor — Color of the rectangle’s interior (none by default)

• EdgeColor — Color of the rectangle’s edge (none by default)

• LineStyle — Style of the rectangle’s edge line (first set EdgeColor)

• LineWidth — Width of the rectangle’s edge line (first set EdgeColor)

• Margin — Increase the size of the rectangle by adding a margin to the
text extent.

3-63

3 Annotating Graphs

Adding Arrows and Lines to Graphs

In this section...

“Creating Arrows and Lines in Plot Editing Mode” on page 3-64

“Editing Arrows and Line Annotations” on page 3-65

Creating Arrows and Lines in Plot Editing Mode
With plot editing mode enabled, you can add arrows and lines anywhere in
a figure window.

You can also use arrow characters (TeX characters) to create arrows using the
text function. However, arrows created this way can only point to the left
or right, horizontally. See “Calculating the Positions of Text Annotations”
on page 3-48 for an example.

To add an arrow or line annotation to a graph,

3-64

Adding Arrows and Lines to Graphs

1 Click the Insert menu and choose the Arrow or Line option, or click the
Arrow or Line button in the Plot Edit toolbar.

MATLAB changes the cursor to a cross-hair.

2 Position the cursor in the figure where you want to start the line or arrow
and press either mouse button. Hold the button down and move the mouse
to define the length and direction of the line or arrow.

3 Release the mouse button.

Note After you add an arrow or line, plot edit mode is enabled in the figure, if
it was not already enabled.

Editing Arrows and Line Annotations
You can edit the appearance of arrow and line annotations using the context
menu.

With plot editing mode enabled, right-click the arrow or line annotation to
display its context menu.

3-65

3 Annotating Graphs

You can select an annotation and then choose Show M-code to obtain a code
snippet that you can insert in a function or script to reproduce the annotation.

For more options, select Properties to display the Property Editor.

3-66

Positioning Annotations in Data Space

Positioning Annotations in Data Space

Example — Pinning Textarrows and Ellipses
Some annotation object types (arrow, doublearrow, textarrow, and ellipse)
are attached to figures rather than to axes. This makes it difficult to
programmatically place them precisely on an axes, especially if the axes
changes its position. You can, however, still locate figure-based annotations
in data space by applying a transformation to their coordinates. The
following example shows how to do this using a function called dsxy2figxy
that transforms figure coordinates to axes coordinates for the four types of
annotations listed above.

Before following the steps given below, copy the code for dsxy2figxy and save
in your current directory or elsewhere on the MATLAB path.

1 Create sine function data and make a line plot of it:

x1 = 1:.1:4*pi;
y1 = sin(x1)./sqrt(x1);
figure
plot(x1,y1)
axis tight

2 Interactively place a textarrow on the graph

Using ginput, interactively locate a textarrow annotation. Two clicks are
required by ginput:

disp('Click graph to place arrow; first tail, then head:')

[axx axy] = ginput(2); % Returns list of x, list of y in data space

% Get coords in figure space; gca will be correct even for subplots

% Transform from data space to fig space

[arrowx,arrowy] = dsxy2figxy(gca, axx, axy);

har = annotation('textarrow',arrowx,arrowy);

content = sprintf('(%4.2f,%4.2f)',axx(2), axy(2));

% Plot anno text centered at the tail of the arrow

set(har,'String',content,'Fontsize',8)

3-67

3 Annotating Graphs

3 Place an ellipse on the axes

To place ellipses, a coordinate box (position rectangle) is needed instead of
two x-y tuples. The function dsxy2figxy computes and returns a position
rectangle if it is called with one:

disp('Click in the axes to define the bounding box of an ellipse:')

[axx axy] = ginput(2); % Returns list of x, list of y in data space

abox(1) = min(axx); abox(2) = min(axy); % Get least x and y coords

abox(3) = abs(axx(1)-axx(2)); % Get box width

abox(4) = abs(axy(1)-axy(2)); % Get box height

% Get coords in figure space; gca will be correct even for subplots

[bbox] = dsxy2figxy(gca, abox); % Xform from axes to fig space

annotation('ellipse',bbox);

3-68

Positioning Annotations in Data Space

Here is the code for dsxy2figxy ; copy it to an M-file that can be called when
you execute the example above:

function varargout = dsxy2figxy(varargin)

% dsxy2figxy -- Transform point or position from axis to figure coords

% Transforms [axx axy] or [xypos] from axes hAx (data) coords into coords

% wrt GCF for placing annotation objects that use figure coords into data

% space. The annotation objects this can be used for are

% arrow, doublearrow, textarrow

% ellipses (coordinates must be transformed to [x, y, width, height])

% Note that line, text, and rectangle anno objects already are placed

% on a plot using axes coordinates and must be located within an axes.

% Usage: Compute a position and apply to an annotation, e.g.,

% [axx axy] = ginput(2);

% [figx figy] = getaxannopos(gca, axx, axy);

3-69

3 Annotating Graphs

% har = annotation('textarrow',figx,figy);

% set(har,'String',['(' num2str(axx(2)) ',' num2str(axy(2)) ')'])

%% Obtain arguments (only limited argument checking is performed).

% Determine if axes handle is specified

if length(varargin{1})== 1 && ishandle(varargin{1}) && ...

strcmp(get(varargin{1},'type'),'axes')

hAx = varargin{1};

varargin = varargin(2:end);

else

hAx = gca;

end;

% Parse either a position vector or two 2-D point tuples

if length(varargin)==1 % Must be a 4-element POS vector

pos = varargin{1};

else

[x,y] = deal(varargin{:}); % Two tuples (start & end points)

end

%% Get limits

axun = get(hAx,'Units');

set(hAx,'Units','normalized'); % Need normaized units to do the xform

axpos = get(hAx,'Position');

axlim = axis(hAx); % Get the axis limits [xlim ylim (zlim)]

axwidth = diff(axlim(1:2));

axheight = diff(axlim(3:4));

%% Transform data from figure space to data space

if exist('x','var') % Transform a and return pair of points

varargout{1} = (x-axlim(1))*axpos(3)/axwidth + axpos(1);

varargout{2} = (y-axlim(3))*axpos(4)/axheight + axpos(2);

else % Transform and return a position rectangle

pos(1) = (pos(1)-axlim(1))/axwidth*axpos(3) + axpos(1);

pos(2) = (pos(2)-axlim(3))/axheight*axpos(4) + axpos(2);

pos(3) = pos(3)*axpos(3)/axwidth;

pos(4) = pos(4)*axpos(4)/axheight;

varargout{1} = pos;

end

%% Restore axes units

set(hAx,'Units',axun)

3-70

4

Basic Plotting Commands

Setting Up Figures (p. 4-2) Displaying multiple plots per figure,
targeting a specific axes, figure color
schemes

Using High-Level Plotting Functions
(p. 4-7)

Basic commands for creating line
plots, specifying line styles, colors,
and markers, and setting defaults

Line Plots of Matrix Data (p. 4-22) Line plots of the rows of matrices

Plotting Imaginary and Complex
Data (p. 4-25)

How the plot function handles
complex data as a special case

Plotting with Two Y-Axes (p. 4-27) Creating line plots that have left and
right y-axes

Setting Axis Parameters (p. 4-31) Specifying axis ticks location, tick
labels, and axes aspect ratio

4 Basic Plotting Commands

Setting Up Figures

In this section...

“Creating Figure Windows” on page 4-2

“Displaying Multiple Plots per Figure” on page 4-2

“Specifying the Target Axes” on page 4-5

“Default Color Scheme” on page 4-5

Creating Figure Windows
MATLAB directs graphics output to a window that is separate from the
Command Window. In MATLAB this window is referred to as a figure. The
characteristics of this window are controlled by your computer’s windowing
system and MATLAB figure properties (see a description of each property).
See Chapter 9, “Figure Properties” for some examples illustrating how to
use figure properties.

Graphics functions automatically create new figure windows if none currently
exist. If a figure already exists, MATLAB uses that window. If multiple figures
exist, one is designated as the current figure and is used by MATLAB (this is
generally the last figure used or the last figure you clicked the mouse in).

The figure function creates figure windows. For example,

figure

creates a new window and makes it the current figure. You can make an
existing figure current by clicking it with the mouse or by passing its handle
(the number indicated in the window title bar), as an argument to figure.

figure(h)

Displaying Multiple Plots per Figure
You can display multiple plots in the same figure window and print them on
the same piece of paper with the subplot function.

4-2

Setting Up Figures

subplot(m,n,i) breaks the figure window into an m-by-n matrix of small
subplots and selects the ithe subplot for the current plot. The plots are
numbered along the top row of the figure window, then the second row, and
so forth.

For example, the following statements plot data in four different subregions
of the figure window.

t = 0:pi/20:2*pi;
[x,y] = meshgrid(t);
subplot(2,2,1)
plot(sin(t),cos(t))
axis equal
subplot(2,2,2)
z = sin(x)+cos(y);
plot(t,z)
axis([0 2*pi -2 2])
subplot(2,2,3)
z = sin(x).*cos(y);
plot(t,z)
axis([0 2*pi -1 1])
subplot(2,2,4)
z = (sin(x).^2)-(cos(y).^2);
plot(t,z)
axis([0 2*pi -1 1])

4-3

4 Basic Plotting Commands

Each subregion contains its own axes with characteristics you can control
independently of the other subregions. This example uses the axis function
to set limits and change the shape of the subplots.

See the axes, axis, and subplot functions for more information.

4-4

Setting Up Figures

Specifying the Target Axes
The current axes is the last one defined by subplot. If you want to access a
previously defined subplot, for example to add a title, you must first make
that axes current.

You can make an axes current in three ways:

• Click on the subplot with the mouse.

• Call subplot the m, n, i specifiers.

• Call subplot with the handle (identifier) of the axes.

For example,

subplot(2,2,2)
title('Top Right Plot')

adds a title to the plot in the upper right side of the figure.

You can obtain the handles of all the subplot axes with the statement

h = get(gcf,'Children');

MATLAB returns the handles of all the axes, with the most recently created
one first. That is, h(1) is subplot 224, h(2) is subplot 223, h(3) is subplot
222, and h(4) is subplot 221. For example, to replace subplot 222 with a new
plot, first make it the current axes with

subplot(h(3))

Default Color Scheme
The default figure color scheme produces good contrast and visibility for
the various graphics functions. This scheme defines colors for the window
background, the axis background, the axis lines and labels, the colors of the
lines used for plotting and surface edges, and other properties that affect
appearance.

The colordef function enables you to select from predefined color schemes
and to modify colors individually. colordef predefines three color schemes:

4-5

4 Basic Plotting Commands

• colordef white — Sets the axis background color to white, the window
background color to gray, the colormap to jet, surface edge colors to black,
and defines appropriate values for the plotting color order and other
properties.

• colordef black — Sets the axis background color to black, the window
background color to dark gray, the colormap to jet, surface edge colors
to black, and defines appropriate values for the plotting color order and
other properties.

• colordef none — Set the colors to match that of MATLAB 4. This is
basically a black background with white axis lines and no grid. MATLAB
programs that are based on the MATLAB 4 color scheme may need to call
colordef with the none option to produce the expected results.

You can examine the colordef.m M-file to determine what properties it sets
(enter type colordef at the MATLAB prompt).

4-6

Using High-Level Plotting Functions

Using High-Level Plotting Functions

In this section...

“Functions for Plotting Line Graphs” on page 4-7

“Programmatic Plotting” on page 4-8

“Creating Line Plots” on page 4-9

“Specifying Line Style” on page 4-11

“Colors, Line Styles, and Markers” on page 4-12

“Specifying the Color and Size of Lines” on page 4-13

“Adding Plots to an Existing Graph” on page 4-14

“Plotting Only the Data Points” on page 4-16

“Plotting Markers and Lines” on page 4-17

“Line Styles for Black and White Output” on page 4-18

“Setting Default Line Styles” on page 4-19

Functions for Plotting Line Graphs
MATLAB provides a variety of functions for displaying vector data as line
plots, as well as functions for annotating and printing these graphs. The
following table summarizes the functions that produce basic line plots. These
functions differ in the way they scale the plot’s axes. Each accepts input in the
form of vectors or matrices and automatically scales the axes to accommodate
the data.

Function Description

plot Graph 2-D data with linear scales for both axes

plot3 Graph 3-D data with linear scales for both axes

loglog Graph with logarithmic scales for both axes

semilogx Graph with a logarithmic scale for the x-axis and a
linear scale for the y-axis

4-7

4 Basic Plotting Commands

Function Description

semilogy Graph with a logarithmic scale for the y-axis and a
linear scale for the x-axis

plotyy Graph with y-tick labels on the left and right side

For a synopsis of all the high level plot functions with links to their reference
pages, see “Types of Plots Available in MATLAB” on page 1-6.

Programmatic Plotting
The process of constructing a basic graph to meet your presentation graphics
requirements is outlined in the following table. The table shows seven typical
steps and some example code for each.

If you are performing analysis only, you may want to view various graphs just
to explore your data. In this case, steps 1 and 3 may be all you need. If you
are creating presentation graphics, you may want to fine-tune your graph by
positioning it on the page, setting line styles and colors, adding annotations,
and making other such improvements.

Step Typical Code

1 Prepare your data
x = 0:0.2:12;

y1 = bessel(1,x);

y2 = bessel(2,x);

y3 = bessel(3,x);

2 Select a window and position a plot region
within the window

figure(1)

subplot(2,2,1)

3 Call elementary plotting function
h = plot(x,y1,x,y2,x,y3);

4 Select line and marker characteristics
set(h,'LineWidth',2,{'LineStyle'},
{'--';':';'-.'})

set(h,{'Color'},{'r';'g';'b'})

4-8

Using High-Level Plotting Functions

Step Typical Code

5 Set axis limits, tick marks, and grid lines
axis([0 12 -0.5 1])

grid on

6 Annotate the graph with axis labels, legend,
and text

xlabel('Time')

ylabel('Amplitude')

legend(h,'First','Second','Third')

title('Bessel Functions')

[y,ix] = min(y1);

text(x(ix),y,'First
Min \rightarrow',...
'HorizontalAlignment','right')

7 Export graph
print -depsc -tiff -r200 myplot

Creating Line Plots
The plot function has different forms depending on the input arguments. For
example, if y is a vector, plot(y) produces a linear graph of the elements of y
versus the index of the elements of y. If you specify two vectors as arguments,
plot(x,y) produces a graph of y versus x.

For example, the following statements create a vector of values in the range
[0, 2π] in increments of π/100 and then use this vector to evaluate the sine
function over that range. MATLAB plots the vector on the x-axis and the
value of the sine function on the y-axis.

t = 0:pi/100:2*pi;
y = sin(t);
plot(t,y)
grid on % Turn on grid lines for this plot

MATLAB automatically selects appropriate axis ranges and tick mark
locations.

4-9

4 Basic Plotting Commands

0 1 2 3 4 5 6 7
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

You can plot multiple graphs in one call to plot using x-y pairs. MATLAB
automatically cycles through a predefined list of colors (determined by the
axes ColorOrder property) to allow discrimination between sets of data.
Plotting three curves as a function of t produces

y = sin(t);
y2 = sin(t-0.25);
y3 = sin(t-0.5);
plot(t,y,t,y2,t,y3)

4-10

Using High-Level Plotting Functions

0 1 2 3 4 5 6 7
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Specifying Line Style
You can assign different line styles to each data set by passing line style
identifier strings to plot. For example,

t = 0:pi/100:2*pi;
y = sin(t);
y2 = sin(t-0.25);
y3 = sin(t-0.5);
plot(t,y,'-',t,y2,'--',t,y3,':')

4-11

4 Basic Plotting Commands

The graph shows three lines of different colors and lines styles representing
the value of the sine function with a small phase shift between each line, as
defined by y, y2, and y3. The lines are blue solid, green dashed, and red dotted.

0 1 2 3 4 5 6 7
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Colors, Line Styles, and Markers
The basic plotting functions accepts character-string arguments that specify
various line styles, marker symbols, and colors for each vector plotted. In
the general form,

plot(x,y,'linestyle_marker_color')

4-12

Using High-Level Plotting Functions

linestyle_marker_color is a character string (delineated by single
quotation marks) constructed from

• A line style (e.g., dashed, dotted, etc.)

• A marker type (e.g., x, *, o, etc.)

• A predefined color specifier (c, m, y, k, r, g, b, w)

For example,

plot(x,y,':squarey')

plots a yellow dotted line and places square markers at each data point. If you
specify a marker type, but not a line style, MATLAB draws only the marker.

The specification can consist of one or none of each specifier in any order.
For example, the string

'go--'

defines a dashed line with circular markers, both colored green.

You can also specify the size of the marker and, for markers that are closed
shapes, you can specify separately the colors of the edges and the face.

See the LineSpec discussion for more information.

Specifying the Color and Size of Lines
You can control a number of line style characteristics by specifying values
for line properties:

• LineWidth — Width of the line in units of points

• MarkerEdgeColor — Color of the marker or the edge color for filled markers
(circle, square, diamond, pentagram, hexagram, and the four triangles)

• MarkerFaceColor — Color of the face of filled markers

• MarkerSize — Size of the marker in units of points

For example, these statements,

4-13

4 Basic Plotting Commands

x = -pi:pi/10:pi;
y = tan(sin(x)) - sin(tan(x));
plot(x,y,'--rs','LineWidth',2,...

'MarkerEdgeColor','k',...
'MarkerFaceColor','g',...
'MarkerSize',10)

produce a graph with

• A red dashed line with square markers

• A line width of two points

• The edge of the marker colored black

• The face of the marker colored green

• The size of the marker set to 10 points

Adding Plots to an Existing Graph
You can add plots to an existing graph using the hold command. When you
set hold to on, MATLAB does not remove the existing graph; it adds the new
data to the current graph, rescaling if the new data falls outside the range
of the previous axis limits.

4-14

Using High-Level Plotting Functions

For example, these statements first create a semilogarithmic plot, then add
a linear plot.

semilogx(1:100,'+')
hold all % hold plot and cycle line colors
plot(1:3:300,1:100,'--')
hold off
grid on % Turn on grid lines for this plot

While MATLAB resets the x-axis limits to accommodate the new data, it does
not change the scaling from logarithmic to linear.

10
0

10
1

10
2

10
3

0

10

20

30

40

50

60

70

80

90

100

4-15

4 Basic Plotting Commands

Plotting Only the Data Points
To plot a marker at each data point without connecting the markers with
lines, use a specification that does not contain a line style. For example, given
two vectors,

x = 0:pi/15:4*pi;
y = exp(2*cos(x));

calling plot with only a color and marker specifier

plot(x,y,'r+')

plots a red plus sign at each data point.

4-16

Using High-Level Plotting Functions

0 2 4 6 8 10 12 14
0

1

2

3

4

5

6

7

8

See LineSpec for a list of available line styles, markers, and colors.

Plotting Markers and Lines
To plot both markers and the lines that connect them, specify a line style and
a marker type. For example, the following code plots the data as a red, solid
line and then adds circular markers with black edges at each data point.

x = 0:pi/15:4*pi;
y = exp(2*cos(x));
plot(x,y,'-r',x,y,'ok')

4-17

4 Basic Plotting Commands

0 2 4 6 8 10 12 14
0

1

2

3

4

5

6

7

8

Line Styles for Black and White Output
Line styles and markers enable you to discriminate different plots on the
same graph when color is not available. For example, the following statements
create a graph using a solid ('-*k') line with asterisk markers colored black
and a dash-dot ('-.ok') line with circular markers colored black.

x = 0:pi/15:4*pi;
y1 = exp(2*cos(x));
y2 = exp(2*sin(x));
plot(x,y1,'-*k',x,y2,'-.ok')

4-18

Using High-Level Plotting Functions

0 2 4 6 8 10 12 14
0

1

2

3

4

5

6

7

8

Setting Default Line Styles
You can configure MATLAB to use line styles instead of colors for multiline
plots by setting a default value for the axes LineStyleOrder property. For
example, the command

set(0,'DefaultAxesLineStyleOrder',{'-o',':s','--+'})

defines three line styles and makes them the default for all plots.

To set the default line color to dark gray, use the statement

4-19

4 Basic Plotting Commands

set(0,'DefaultAxesColorOrder',[0.4,0.4,0.4])

See ColorSpec for information on how to specify color as a three-element
vector of RGB values.

Now the plot function uses the line styles and colors you have defined as
defaults. For example, these statements create a multiline plot.

x = 0:pi/10:2*pi;
y1 = sin(x);
y2 = sin(x-pi/2);
y3 = sin(x-pi);
plot(x,y1,x,y2,x,y3)

4-20

Using High-Level Plotting Functions

0 1 2 3 4 5 6 7
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

The default values persist until you quit MATLAB. To remove default values
during your MATLAB session, use the reserved word remove.

set(0,'DefaultAxesLineStyleOrder','remove')
set(0,'DefaultAxesColorOrder','remove')

See “Setting Default Property Values” on page 8-51 for more information.

4-21

4 Basic Plotting Commands

Line Plots of Matrix Data
When you call the plot function with a single matrix argument

plot(Y)

MATLAB draws one line for each column of the matrix. The x-axis is labeled
with the row index vector 1:m, where m is the number of rows in Y. For
example,

Z = peaks;

returns a 49-by-49 matrix obtained by evaluating a function of two variables.
Plotting this matrix

plot(Z)

produces a graph with 49 lines.

4-22

Line Plots of Matrix Data

0 5 10 15 20 25 30 35 40 45 50
−8

−6

−4

−2

0

2

4

6

8

10

In general, if plot is used with two arguments and if either X or Y has more
than one row or column, then

• If Y is a matrix, and x is a vector, plot(x,Y) successively plots the rows or
columns of Y versus vector x, using different colors or line types for each.
The row or column orientation varies depending on whether the number of
elements in x matches the number of rows in Y or the number of columns.
If Y is square, its columns are used.

• If X is a matrix and y is a vector, plot(X,y) plots each row or column of X
versus vector y. For example, plotting the peaks matrix versus the vector
1:length(peaks) rotates the previous plot.

4-23

4 Basic Plotting Commands

y = 1:length(peaks);
plot(peaks,y)

−8 −6 −4 −2 0 2 4 6 8 10
0

5

10

15

20

25

30

35

40

45

50

• If X and Y are both matrices of the same size, plot(X,Y) plots the columns
of X versus the columns of Y.

You can also use the plot function with multiple pairs of matrix arguments.

plot(X1,Y1,X2,Y2,...)

This statement graphs each X-Y pair, generating multiple lines. The different
pairs can be of different dimensions.

4-24

Plotting Imaginary and Complex Data

Plotting Imaginary and Complex Data
When the arguments to plot are complex (i.e., the imaginary part is nonzero),
MATLAB ignores the imaginary part except when plot is given a single
complex data argument. For this special case, the command is a shortcut for a
plot of the real part versus the imaginary part. Therefore,

plot(Z)

where Z is a complex vector or matrix, is equivalent to

plot(real(Z),imag(Z))

For example, this statement plots the distribution of the eigenvalues of a
random matrix using circular markers to indicate the data points.

plot(eig(randn(20,20)),'o','MarkerSize',6)

4-25

4 Basic Plotting Commands

−6 −5 −4 −3 −2 −1 0 1 2 3 4
−5

−4

−3

−2

−1

0

1

2

3

4

5

To plot more than one complex matrix, there is no shortcut; the real and
imaginary parts must be taken explicitly.

4-26

Plotting with Two Y-Axes

Plotting with Two Y-Axes

In this section...

“Introduction” on page 4-27

“Combining Linear and Logarithmic Axes” on page 4-28

Introduction
The plotyy function enables you to create plots of two data sets and use both
left and right side y-axes. You can also apply different plotting functions to
each data set. For example, you can combine a line plot with a stem plot
of the same data.

t = 0:pi/20:2*pi;
y = exp(sin(t));
plotyy(t,y,t,y,'plot','stem')

4-27

4 Basic Plotting Commands

0 1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5

3

0 1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5

3

Combining Linear and Logarithmic Axes
You can use plotyy to apply linear and logarithmic scaling to compare two
data sets having different ranges of values.

t = 0:900; A = 1000; a = 0.005; b = 0.005;
z1 = A*exp(-a*t);
z2 = sin(b*t);
[haxes,hline1,hline2] = plotyy(t,z1,t,z2,'semilogy','plot');

This example saves the handles of the lines and axes created to adjust and
label the graph. First, label the axes whose y value ranges from 10 to 1000.

4-28

Plotting with Two Y-Axes

This is the first handle in haxes because it was specified first in the call to
plotyy. Use the axes function to make haxes(1) the current axes, which is
then the target for the ylabel function.

axes(haxes(1))
ylabel('Semilog Plot')

Now make the second axes current and call ylabel again.

axes(haxes(2))
ylabel('Linear Plot')

You can modify the characteristics of the plotted lines in a similar way. For
example, to change the line style of the second line plotted to a dashed line,
use the statement

set(hline2,'LineStyle','--')

See “Using Multiple X- and Y-Axes” on page 10-25 for an example that
employs double x- and y-axes.

4-29

4 Basic Plotting Commands

See LineSpec for additional line properties.

4-30

Setting Axis Parameters

Setting Axis Parameters

In this section...

“Axis Scaling and Ticks” on page 4-31

“Axis Limits and Ticks” on page 4-31

“Example — Specifying Ticks and Tick Labels” on page 4-34

“Setting Aspect Ratio” on page 4-36

Axis Scaling and Ticks
When you create a graph, MATLAB automatically selects the axis limits and
tick-mark spacing based on the data plotted. However, you can also specify
your own values for axis limits and tick marks with the following functions:

• axis — Sets values that affect the current axes object (the most recently
created or the last clicked on).

• axes — (Not axis) creates a new axes object with the specified
characteristics.

• get and set — Enable you to query and set a wide variety of properties
of existing axes.

• gca — Returns the handle (identifier) of the current axes. If there are
multiple axes in the figure window, the current axes is the last graph
created or the last graph you clicked on with the mouse. The following two
sections provide more information and examples:

See “Defining the View” in the 3-D Visualization documentation for more
extensive information on manipulating 3-D views.

Axis Limits and Ticks
MATLAB selects axis limits based on the range of the plotted data. You can
specify the limits manually using the axis function. Call axis with the new
limits defined as a four-element vector.

axis([xmin,xmax,ymin,ymax])

4-31

4 Basic Plotting Commands

Note that the minimum values must be less than the maximum values.

Semiautomatic Limits
If you want MATLAB to autoscale only one of a min/max set of axis limits, but
you want to specify the other, use the MATLAB variable Inf or -Inf for the
autoscaled limit. For example, this graph uses default scaling.

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

Compare the default limits to the following graph, which sets the maximum
limit of the x-axis, but autoscales the minimum limit.

axis([-Inf 5 2 2.5])

4-32

Setting Axis Parameters

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
2

2.05

2.1

2.15

2.2

2.25

2.3

2.35

2.4

2.45

2.5

Axis Tick Marks
MATLAB selects the tick-mark locations based on the range of data so as to
produce equally spaced ticks (for linear graphs). You can specify different tick
marks by setting the axes XTick and YTick properties. Define tick marks as a
vector of increasing values. The values do not need to be equally spaced.

For example, setting the y-axis tick marks for the graph from the preceding
example,

set(gca,'ytick',[2 2.1 2.2 2.3 2.4 2.5])

4-33

4 Basic Plotting Commands

produces a graph with only the specified ticks on the y-axis.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
2

2.1

2.2

2.3

2.4

2.5

Note that if you specify tick-mark values that are outside the axis limits,
MATLAB does not display them (that is, specifying tick marks cannot cause
axis limits to change).

Example — Specifying Ticks and Tick Labels
You can adjust the axis tick-mark locations and the labels appearing at each
tick mark. For example, this plot of the sine function relabels the x-axis with
more meaningful values.

4-34

Setting Axis Parameters

x = -pi:.1:pi;
y = sin(x);
plot(x,y)
set(gca,'XTick',-pi:pi/2:pi)
set(gca,'XTickLabel',{'-pi','-pi/2','0','pi/2','pi'})

These functions (xlabel, ylabel, title, text) add axis labels and draw an
arrow that points to the location on the graph where y = sin(-pi/4).

xlabel('-\pi \leq \Theta \leq \pi')
ylabel('sin(\Theta)')
title('Plot of sin(\Theta)')
text(-pi/4,sin(-pi/4),'\leftarrow sin(-\pi\div4)',...

'HorizontalAlignment','left')

Setting Line Properties on an Existing Plot
Change the line color to purple by first finding the handle of the line object
created by plot and then setting its Color property. Use findobj and the fact
that MATLAB creates a blue line (RGB value [0 0 1]) by default. In the same
statement, set the LineWidth property to 2 points.

set(findobj(gca,'Type','line','Color',[0 0 1]),...
'Color',[0.5,0,0.5],'LineWidth',2)

4-35

4 Basic Plotting Commands

The Greek symbols are created using TeX character sequences.

Setting Aspect Ratio
By default, MATLAB displays graphs in a rectangular axes that has the same
aspect ratio as the figure window. This makes optimum use of space available
for plotting. MATLAB provides control over the aspect ratio with the axis
function.

For example,

t = 0:pi/20:2*pi;
plot(sin(t),2*cos(t))
grid on

produces a graph with the default aspect ratio. The command

axis square

4-36

Setting Axis Parameters

makes the x- and y-axes equal in length.

The square axes has one data unit in x to equal two data units in y. If you
want the x- and y-data units to be equal, use the command

axis equal

This produces an axes that is rectangular in shape, but has equal scaling
along each axis.

If you want the axes shape to conform to the plotted data, use the tight
option in conjunction with equal.

4-37

4 Basic Plotting Commands

axis equal tight

Note In order to format aspect ratio using axis, axes must exist and contain
a plot. That is, you cannot pre-format an axes that has no actual x-, y-, or
z-limits. To overcome this, you can preformat the axes with axis and issue
the hold on command before plotting data.

4-38

5

Creating Specialized Plots

Bar and Area Graphs (p. 5-2) View results over time, comparing
results, and displaying individual
contribution to a total amount

Pie Charts (p. 5-23) Individual contribution to a total
amount

Histograms (p. 5-28) Distribution of data values

Discrete Data Graphs (p. 5-33) Stem and stairstep plots of discrete
data

Direction and Velocity Vector Graphs
(p. 5-45)

Compass, feather, and quiver plots
show direction and magnitude

Contour Plots (p. 5-54) Indicate locations of equal data
values

Interactive Plotting (p. 5-76) User-selectable data point (using
mouse) for plotting

Animation (p. 5-78) Show an additional data dimension
by sequencing plots.

5 Creating Specialized Plots

Bar and Area Graphs

In this section...

“Types of Bar Graphs” on page 5-2

“Coloring 2-D Bars According to Height” on page 5-6

“Coloring 3-D Bars According to Height” on page 5-10

“Stacked Bar Graphs to Show Contributing Amounts” on page 5-12

“Specifying X-Axis Data” on page 5-14

“Overlaying Bar Graphs” on page 5-16

“Overlaying Other Plots on Bar Graphs” on page 5-17

“Area Graphs” on page 5-19

“Comparing Data Sets with Area Graphs” on page 5-21

Types of Bar Graphs
Bar and area graphs display vector or matrix data. These types of graphs
are useful for viewing results over a period of time, comparing results from
different data sets, and showing how individual elements contribute to an
aggregate amount. Bar graphs are suitable for displaying discrete data,
whereas area graphs—like line graphs—are more suitable for displaying
continuous data. The functions that plot bar and area graphs are listed below:

Function Description

bar Displays columns of m-by-n matrix as m groups of
n vertical bars

barh Displays columns of m-by-n matrix as m groups of n
horizontal bars

bar3 Displays columns of m-by-n matrix as m groups of
n vertical 3–D bars

bar3h Displays columns of m-by-n matrix as m groups of n
horizontal 3–D bars

area Displays vector data as stacked area plots

5-2

Bar and Area Graphs

Four of these five functions display bar graphs (there is only one type of
area graph; see “Area Graphs” on page 5-19). Bar graphs differ according to
whether they plot in 2-D or 3-D and create vertical or horizontal bars, as
follows:

Orientation Two–Dimensional Three–Dimensional

Vertical bar bar3

Horizontal barh bar3h

Grouped Bar Graph
By default, a bar graph represents each element in a matrix as one bar.
Bars in a 2–D bar graph, created by the bar function, are distributed along
the x-axis with each element in a column drawn at a different location. All
elements in a row are clustered around the same location on the x-axis.

For example, define Y as a simple matrix and issue the bar function in its
simplest form.

Y = [5 2 1
8 7 3
9 8 6
5 5 5
4 3 2];

bar(Y)

The bars are clustered together by rows and evenly distributed along the
x-axis.

5-3

5 Creating Specialized Plots

Detached 3-D Bars
The bar3 function, in its simplest form, draws each element as a separate 3-D
block, with the elements of each column distributed along the y-axis. Bars
that represent elements in the first column of the matrix are centered at
1 along the x-axis. Bars that represent elements in the last column of the
matrix are centered at size(Y,2) along the x-axis. For example,

bar3(Y)

displays five groups of three bars along the y-axis. Notice that larger bars
obscure Y(1,2) and Y(1,3).

5-4

Bar and Area Graphs

By default, bar3 draws detached bars. The statement bar3(Y,'detach')
has the same effect.

Labeling the Graph. To add axes labels and x tick marks to this bar graph,
use the statements

xlabel('X Axis')
ylabel('Y Axis')
zlabel('Z Axis')
set(gca,'XTick',[1 2 3])

Grouped 3-D Bars
Cluster the bars from each row beside each other by specifying the argument
'group'. For example,

bar3(Y,'group')

groups the bars according to row and distributes the clusters evenly along
the y-axis.

5-5

5 Creating Specialized Plots

Coloring 2-D Bars According to Height
The bar and barh functions make all bars in a series the same color. With a
little effort, however, you can assign a desired color to each bar. The typical
approach is to associate bar colors with bar heights (Y-values). The following
steps describe one way to do this, first using faceted shading and then using
smooth (interpolated) shading:

1 Make up some numbers, plot a default bar plot, and assign a bichromatic
colormap:

n = 13;
Z = rand(n,1);
h = bar(Z);
colormap(summer(n));

5-6

Bar and Area Graphs

Notice that only the first color is used to color the faces.

2 Assign a new color to each bar. bar (and barh) creates a barseries object,
which encapsulates a set of patch objects for the bars. The patches have
face-vertex syntax. You must first get a handle for the children, and then
obtain the vertices for the bars and the vertex color data:

ch = get(h,'Children');
fvd = get(ch,'Faces');
fvcd = get(ch,'FaceVertexCData');

3 Sort the data to obtain an index for traversing the Faces array from the
lowest to highest bar:

[zs, izs] = sortrows(Z,1);

5-7

5 Creating Specialized Plots

4 Traverse the Faces and assign colors to the face-vertex color data as you go:

for i = 1:n
row = izs(i);
fvcd(fvd(row,:)) = i;

end
set(ch,'FaceVertexCData',fvcd)

Note that the code assigns colors to bars based on their YData ranks, rather
than by their YData values. This helps to distinguish bars by color, but also
can assign to bars that are nearly the same height a wider range of colors
than if the colors were directly mapped to YData values.

5 To make the graph more readable, you can set different colors for vertices
on the baseline and on the top, then apply interpolated shading to change
hue going up the bars. The following code colors the two vertices at the

5-8

Bar and Area Graphs

base of each bar using the first color in the colormap, and assigns a color to
the two vertices at the top proportionally to bar height. A longer color ramp
than was used above is needed to obtain smooth gradiations of shading:

k = 128; % Number of colors in color table
colormap(summer(k)); % Expand the previous colormap
shading interp % Needed to graduate colors
for i = 1:n

color = floor(k*i/n); % Interpolate a color index
row = izs(i); % Look up actual row # in data
fvcd(fvd(row,1)) = 1; % Color base vertices 1st index
fvcd(fvd(row,4)) = 1;
fvcd(fvd(row,2)) = color; % Assign top vertices color
fvcd(fvd(row,3)) = color;

end
set(ch,'FaceVertexCData', fvcd); % Apply the vertex coloring
set(ch,'EdgeColor','k') % Give bars black borders

5-9

5 Creating Specialized Plots

Coloring 3-D Bars According to Height
By default, all bars in a series (column) have the same color. You can modify
a 3-D bar plot to color each bar according to how tall it is, but the technique
is slightly different than the one used for coloring 2-D bars, described above.
Applying a monochromatic or bichromatic colormap to such plots helps
viewers see height distinctions more readily. Adding a colorbar can also help.

The graph will read better if you override the default behavior of bar3 to
shade the sides of the bars with contrasting hues. You can color bars by
height and make the sides match the color of the top of each bar by executing
the following code:

Z = magic(5);
h = bar3(Z);

5-10

Bar and Area Graphs

for i = 1:length(h)
zdata = ones(6*length(h),4);
k = 1;
for j = 0:6:(6*length(h)-6)

zdata(j+1:j+6,:) = Z(k,i);
k = k+1;

end
set(h(i),'Cdata',zdata)

end
colormap cool
colorbar

You can then make the plot even more readable by interpolating colors along
the bars and giving their EdgeColor a contrasting color. The following code
accomplishes this:

5-11

5 Creating Specialized Plots

shading interp
for i = 1:length(h)

zdata = get(h(i),'Zdata');
set(h(i),'Cdata',zdata)
set(h,'EdgeColor','k')

end

Stacked Bar Graphs to Show Contributing Amounts
Bar graphs can show how elements in the same row of a matrix contribute to
the sum of all elements in the row. These types of bar graphs are referred to
as stacked bar graphs.

Stacked bar graphs display one bar per row of a matrix. The bars are divided
into n segments, where n is the number of columns in the matrix. For vertical

5-12

Bar and Area Graphs

bar graphs, the height of each bar equals the sum of the elements in the row.
Each segment is equal to the value of its respective element.

Redefining Y

Y = [5 1 2
8 3 7
9 6 8
5 5 5
4 2 3];

Create stacked bar graphs using the optional 'stack' argument. For example,

bar(Y,'stack')
grid on
set(gca,'Layer','top') % display gridlines on top of graph

creates a 2-D stacked bar graph, where all elements in a row correspond to
the same x location.

Horizontal Bar Graphs
For horizontal bar graphs, the length of each bar equals the sum of the
elements in the row. The length of each segment is equal to the value of its
respective element.

5-13

5 Creating Specialized Plots

barh(Y,'stack')
grid on
set(gca,'Layer','top') % Display gridlines on top of graph

Specifying X-Axis Data
Bar graphs automatically generate x-axis values and label the x-axis tick
lines. You can specify a vector of x values (or y values in the case of horizontal
bar graphs) to label the axes.

For example, given temperature data,

temp = [29 23 27 25 20 23 23 27];

obtained from samples taken every five days during a thirty-five day period,

days = 0:5:35;

you can display a bar graph showing temperature measured along the y-axis
and days along the x-axis using

bar(days,temp)

These statements add labels to the x- and y-axis.

5-14

Bar and Area Graphs

xlabel('Day')
ylabel('Temperature (^{o}C)')

Setting Y-Axis Limits
By default, the y-axis range is from 0 to 30. To focus on the temperature range
from 15 to 30, change the y-axis limits.

set(gca,'YLim',[15 30],'Layer','top')

5-15

5 Creating Specialized Plots

Overlaying Bar Graphs
In addition to grouping and stacking barseries, you can overlay several bars
that share the same baseline and y-range by making each series of bars a
different width and plotting the widest ones first. The following example
shows how to accomplish this within an axes:

1 Define x and y data; it probably helps to make spacing of x-values constant:

x=[1 3 5 7 9];
y1=[10 25 90 35 16];
K=0.5;

2 Plot Series 1 in red, and set bar width to one-half an x-unit:

bar1=bar(x, y1, 'FaceColor', 'b', 'EdgeColor', 'b');
set(bar1,'BarWidth',K);

3 Define Series 2, and plot it in blue over the first one:

hold on;
y2=[7 38 31 50 41];
bar2=bar(x, y2, 'FaceColor', 'r', 'EdgeColor', 'r');

4 Set the width of the second series to half that of the first one:

5-16

Bar and Area Graphs

set(bar2,'BarWidth',K/2);
hold off;
legend('series1','series2')

Overlaying Other Plots on Bar Graphs
You can overlay data on a bar graph by creating another axes in the same
position. This enables you to have an independent y-axis for the overlaid
dataset (in contrast to the hold on statement, which uses the same axes).

For example, consider a bioremediation experiment that breaks down
hazardous waste components into nontoxic materials. The trichloroethylene
(TCE) concentration and temperature data from this experiment are

TCE = [515 420 370 250 135 120 60 20];
temp = [29 23 27 25 20 23 23 27];

5-17

5 Creating Specialized Plots

This data was obtained from samples taken every five days during a
thirty-five day period.

days = 0:5:35;

Display a bar graph and label the x- and y-axis using the statements

bar(days,temp)
xlabel('Day')
ylabel('Temperature (^{o}C)')

Overlaying a Line Plot on the Bar Graph
To overlay the concentration data on the bar graph, position a second axes at
the same location as the first axes, but first save the handle of the first axes.

h1 = gca;

Create the second axes at the same location before plotting the second dataset.

h2 = axes('Position',get(h1,'Position'));
plot(days,TCE,'LineWidth',3)

To ensure that the second axes does not interfere with the first, locate the
y-axis on the right side of the axes, make the background transparent, and set
the second axes’ x-tick marks to the empty matrix.

set(h2,'YAxisLocation','right','Color','none','XTickLabel',[])

Align the x-axis of both axes and display the grid lines on top of the bars.

set(h2,'XLim',get(h1,'XLim'),'Layer','top')

5-18

Bar and Area Graphs

Annotating the Graph. These statements annotate the graph.

text(11,380,'Concentration','Rotation',-55,'FontSize',16)
ylabel('TCE Concentration (PPM)')
title('Bioremediation','FontSize',16)

To print the graph, set the current figure’s PaperPositionMode to auto, which
ensures the printed output matches the display.

set(gcf,'PaperPositionMode','auto')

Area Graphs
The area function displays curves generated from a vector or from separate
columns in a matrix. area plots the values in each column of a matrix as a
separate curve and fills the area between the curve and the x-axis.

Area Graphs Showing Contributing Amounts
Area graphs are useful for showing how elements in a vector or matrix
contribute to the sum of all elements at a particular x location. By default,
area accumulates all values from each row in a matrix and creates a curve
from those values.

5-19

5 Creating Specialized Plots

Using this matrix,

Y = [5 1 2
8 3 7
9 6 8
5 5 5
4 2 3];

the statement

area(Y)

displays a graph containing three area graphs, one per column.

The height of the area graph is the sum of the elements in each row. Each
successive curve uses the preceding curve as its base.

Displaying the Grid on Top. To display the grid lines in the foreground
of the area graph and display only five grid lines along the x-axis, use the
statements

set(gca,'Layer','top')
set(gca,'XTick',1:5)

5-20

Bar and Area Graphs

Comparing Data Sets with Area Graphs
Area graphs are useful for comparing different datasets. For example, given a
vector containing sales figures,

sales = [51.6 82.4 90.8 59.1 47.0];

for the five-year period

x = 90:94;

and a vector containing profits figures for the same five-year period,

profits = [19.3 34.2 61.4 50.5 29.4];

display both as two separate area graphs within the same axes. Set the color
of the area interior (FaceColor), its edges (EdgeColor), and the width of the
edge lines (LineWidth). See patch for a complete list of properties.

area(x,sales,'FaceColor',[.5 .9 .6],...
'EdgeColor','b',...
'LineWidth',2)

hold on
area(x,profits,'FaceColor',[.9 .85 .7],...

'EdgeColor','y',...
'LineWidth',2)

hold off

To annotate the graph, use the statements

set(gca,'XTick',[90:94])
set(gca,'Layer','top')
gtext('\leftarrow Sales')
gtext('Profits')
gtext('Expenses')
xlabel('Years','FontSize',14)
ylabel('Expenses + Profits = Sales in 1,000''s','FontSize',14)

5-21

5 Creating Specialized Plots

5-22

Pie Charts

Pie Charts

In this section...

“Creating a Pie Chart” on page 5-23

“Labeling the Pie Chart” on page 5-24

“Removing a Piece from a Pie Chart” on page 5-26

Creating a Pie Chart
Pie charts are a useful way to communicate the percentage that each element
in a vector or matrix contributes to the sum of all elements. pie and pie3
create 2-D and 3-D pie charts. A 3-D pie chart does not show any more or
different information than a 2-D pie chart does; it simply adds depth to the
presentation by plotting the chart on top of a cylindrical base.

This example shows how to use the pie function to visualize the contribution
that three products make to total sales. Given a matrix X where each column
of X contains yearly sales figures for a specific product over a five-year period,

X = [19.3 22.1 51.6;
34.2 70.3 82.4;
61.4 82.9 90.8;
50.5 54.9 59.1;
29.4 36.3 47.0];

sum each row in X to calculate total sales for each product over the five-year
period.

x = sum(X);

You can offset the slice of the pie that makes the greatest contribution using
the explode input argument. This argument is a vector of zero and nonzero
values. Nonzero values offset the respective slice from the chart.

First, create a vector containing zeros.

explode = zeros(size(x));

5-23

5 Creating Specialized Plots

Then find the slice that contributes the most and set the corresponding
explode element to 1.

[c,offset] = max(x);
explode(offset) = 1;

The explode vector contains the elements [0 0 1]. To create the exploded
pie chart, use the statement

h = pie(x,explode); colormap summer

Labeling the Pie Chart
The pie chart’s labels are text graphics objects. To modify the text strings
and their positions, first get the objects’ strings and extents. Braces around
a property name ensure that get outputs a cell array, which is important
when working with multiple objects.

textObjs = findobj(h,'Type','text');

5-24

Pie Charts

oldStr = get(textObjs,{'String'});
val = get(textObjs,{'Extent'});
oldExt = cat(1,val{:});

Create the new strings, then set the text objects’ String properties to the
new strings.

Names = {'Product X: ';'Product Y: ';'Product Z: '};
newStr = strcat(Names,oldStr);
set(textObjs,{'String'},newStr)

Find the difference between the widths of the new and old text strings and
change the values of the Position properties.

val1 = get(textObjs, {'Extent'});
newExt = cat(1, val1{:});
offset = sign(oldExt(:,1)).*(newExt(:,3)-oldExt(:,3))/2;
pos = get(textObjs, {'Position'});
textPos = cat(1, pos{:});
textPos(:,1) = textPos(:,1)+offset;
set(textObjs,{'Position'},num2cell(textPos,[3,2]))

5-25

5 Creating Specialized Plots

Removing a Piece from a Pie Chart
When the sum of the elements in the first input argument is equal to or
greater than 1, pie and pie3 normalize the values. So, given a vector of
elements x, each slice has an area of xi/sum(xi), where xi is an element of x.
The normalized value specifies the fractional part of each pie slice.

When the sum of the elements in the first input argument is less than 1, pie
and pie3 do not normalize the elements of vector x. They draw a partial
pie. For example,

x = [.19 .22 .41];
pie(x)

5-26

Pie Charts

5-27

5 Creating Specialized Plots

Histograms

In this section...

“Functions for Creating Histograms” on page 5-28

“Histograms in Cartesian Coordinates” on page 5-28

“Histograms in Polar Coordinates” on page 5-30

“Specifying Number of Bins” on page 5-31

Functions for Creating Histograms
Histograms show the distribution of data values across a data range. They
do this by dividing the data range into a certain number of intervals (called
“binning” the data), tabulating the number of values that fall into each
interval (or “bin”), and plotting the values in the bins using bars or wedges of
varying height. The functions that create histograms are hist and rose.

Function Description

hist Displays data in a Cartesian coordinate system

rose Displays data in a polar coordinate system

You can specify the number of bins to use as a scalar second argument. If
omitted, the default is 10 (hist) or 20 (rose). Data values passed to hist can
be in any units and can be n-by-m, but rose expects values to be in radians
in a 1–by-n or n-by-1 vector. The height (or length when using rose) of the
bins represents the number of values that fall in each bin. You can also
vary the size of bins by specifying a vector for apportioning bin widths as
the second argument.

Histograms in Cartesian Coordinates
The hist function shows the distribution of the elements in Y as a histogram
with equally spaced bins between the minimum and maximum values in Y. If Y
is a vector and is the only argument, hist creates up to 10 bins. For example,

yn = randn(10000,1);
hist(yn)

5-28

Histograms

generates 10,000 random numbers and creates a histogram with 10 bins
distributed along the x-axis between the minimum and maximum values of yn.

Matrix Input Argument
When Y is a matrix, hist creates a set of bins for each column, displaying each
set in a separate color. The statements

Y = randn(10000,3);
hist(Y)

create a histogram showing 10 bins for each column in Y.

5-29

5 Creating Specialized Plots

Histograms in Polar Coordinates
A rose plot is a histogram created in a polar coordinate system. For example,
consider samples of the wind direction taken over a 12-hour period.

wdir = [45 90 90 45 360 335 360 270 335 270 335 335];

To display this data using the rose function, convert the data to radians, then
use the data as an argument to the rose function. Increase the LineWidth
property of the line to improve the visibility of the plot (findobj).

wdir = wdir * pi/180;
rose(wdir)
hline = findobj(gca,'Type','line');
set(hline,'LineWidth',1.5)

The plot shows that the wind direction was primarily 335° during the 12-hour
period.

5-30

Histograms

 1

 2

 3

 4

30

210

60

240

90

270

120

300

150

330

180 0

Specifying Number of Bins
hist and rose interpret their second argument in one of two ways — as the
locations on the axis or the number of bins. When the second argument is a
vector x, it specifies the locations on the axis and distributes the elements in
length(x) bins. When the second argument is a scalar x, hist and rose
distribute the elements in x bins.

For example, compare the distribution of data created by two MATLAB
functions that generate random numbers. The randn function generates
normally distributed random numbers, whereas the rand function generates
uniformly distributed random numbers.

yn = randn(10000,1);
yu = rand(10000,1);

The first histogram displays the data distribution resulting from the randn
function. The locations on the x-axis and number of bins depend on the vector
x.

5-31

5 Creating Specialized Plots

x = min(yn):.2:max(yn);
subplot(1,2,1)
hist(yn,x)
title('Normally Distributed Random Numbers','FontSize',16)

The second histogram displays the data distribution resulting from the rand
function and explicitly creates 25 bins along the x-axis.

subplot(1,2,2)
hist(yu,25)
title('Uniformly Distributed Random Numbers','FontSize',16)

Note You can change the aspect ratio of the histogram plots using the mouse
to resize the figure window. However, before creating hardcopy output, set the
figure’s PaperPositionMode to auto to produce printed output that matches
the display. set(gcf,'PaperPositionMode','auto')

5-32

Discrete Data Graphs

Discrete Data Graphs

In this section...

“Functions for Creating Graphs of Discrete Data” on page 5-33

“Two-Dimensional Stem Plots” on page 5-33

“Combining Stem Plots with Line Plots” on page 5-37

“Three-Dimensional Stem Plots” on page 5-38

“Stairstep Plots” on page 5-42

Functions for Creating Graphs of Discrete Data
In addition to bar graphs and pie charts, MATLAB has a number of specialized
functions that are appropriate for displaying discrete data. Discrete data
generally represents counts of things, such as traffic accidents by month or
components produced or rejected during the course of a production run. This
section describes how to use stem plots and stairstep plots to display this
type of data. The functions for generating discrete data graphs provided in
MATLAB are

Function Description

stem Displays a discrete sequence of y-data as stems
from x-axis

stem3 Displays a discrete sequence of z-data as stems
from xy-plane

stairs Displays a discrete sequence of y-data as steps
from x-axis

Two-Dimensional Stem Plots
A stem plot displays data as lines (stems) terminated with a marker symbol
at each data value. In a 2-D graph, stems extend from the x-axis.

The stem function displays two-dimensional discrete sequence data. For

example, evaluating the function with the values

5-33

5 Creating Specialized Plots

alpha = .02; beta = .5; t = 0:4:200;
y = exp(-alpha*t).*cos(beta*t);

yields a vector of discrete values for y at given values of t. A line plot shows
the data points connected with a straight line.

plot(t,y)

5-34

Discrete Data Graphs

A stem plot of the same function plots only discrete points on the curve.

stem(t,y)

Add axes labels to the x- and y-axis.

xlabel('Time in \musecs')
ylabel('Magnitude')

If you specify only one argument, the number of samples is equal to the length
of that argument. In this example, the number of samples is a function of t,
which contains 51 elements and determines the length of y.

5-35

5 Creating Specialized Plots

Customizing the Graph
You can specify the line style, the type of marker, and the color used in the
stem plot. For example, adding the string ’:sr’ specifies a dotted line (:), a
square marker (s), and a red color (r). The 'fill' argument colors the face of
the marker.

stem(t,y,'--sr','fill')

Setting the aspect ratio of the x- and y-axis to 2:1 improves the utility of
the graph. You can do this by setting the aspect ratio of the plot box using
pbaspect.

pbaspect([2,1,1])

This is equivalent to setting the PlotBoxApectRatio property directly.

5-36

Discrete Data Graphs

set(gca,'PlotBoxAspectRatio',[2,1,1])

See LineSpec for a list of line styles and marker types.

Combining Stem Plots with Line Plots
Sometimes it is useful to display more than one plot simultaneously with a
stem plot to show how you arrived at a result. For example, create a linearly
spaced vector with 60 elements and define two functions, a and b.

x = linspace(0,2*pi,60);
a = sin(x);
b = cos(x);

Create a stem plot showing the linear combination of the two functions.

stem_handles = stem(x,a+b);

Overlaying a and b as line plots helps visualize the functions. Before plotting
the two curves, set hold to on so MATLAB does not clear the stem plot.

hold on
plot_handles = plot(x,a,'--r',x,b,'--g');
hold off

Use legend to annotate the graph. The stem and plot handles passed to
legend identify the lines to label. Stem plots are composed of two lines; one
draws the markers and the other draws the vertical stems. To create the
legend, use the first handle returned by stem, which identifies the marker line.

legend_handles = [stem_handles(1);plot_handles];
legend(legend_handles,'a + b','a = sin(x)','b = cos(x)')

5-37

5 Creating Specialized Plots

Labeling the axes and creating a title finishes the graph.

xlabel('Time in \musecs')
ylabel('Magnitude')
title('Linear Combination of Two Functions')

Three-Dimensional Stem Plots
stem3 displays 3-D stem plots extending from the xy-plane. With only one
vector argument, MATLAB plots the stems in one row at x = 1 or y = 1,
depending on whether the argument is a column or row vector. stem3 is
intended to display data that you cannot visualize in a 2-D view.

5-38

Discrete Data Graphs

Example – 3-D Stem Plot of an FFT
Fast Fourier transforms are calculated at points around the unit circle on
the complex plane. So, it is interesting to visualize the plot around the unit
circle. Calculating the unit circle

th = (0:127)/128*2*pi;
x = cos(th);
y = sin(th);

and the magnitude frequency response of a step function

f = abs(fft(ones(10,1),128));

displays the data using a 3-D stem plot, terminating the stems with filled
diamond markers.

stem3(x,y,f','d','fill')
view([-65 30])

5-39

5 Creating Specialized Plots

−1

−0.5

0

0.5

1

−1
−0.5

0
0.5

1
0

2

4

6

8

10

Real

Magnitude Frequency Response

Imaginary

A
m

pl
itu

de

Label the Graph
Label the graph with the statements

xlabel('Real')
ylabel('Imaginary')
zlabel('Amplitude')
title('Magnitude Frequency Response')

To change the orientation of the view, turn on mouse-based 3-D rotation.

rotate3d on

5-40

Discrete Data Graphs

Example — Combining Stem and Line Plots
Three-dimensional stem plots work well for visualizing discrete functions that
do not output a large number of data points. For example, you can use stem3

to visualize the Laplace transform basis function, , for a particular
constant value of s.

t = 0:.1:10; % Time limits
s = 0.1+i; % Spiral rate
y = exp(-s*t); % Compute decaying exponential

Using t as magnitudes that increase with time, create a spiral with increasing
height and draw a curve through the tops of the stems to improve definition.

stem3(real(y),imag(y),t)
hold on
plot3(real(y),imag(y),t,'r')
hold off
view(-39.5,62)

5-41

5 Creating Specialized Plots

−1

−0.5

0

0.5

1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0

5

10

Real
Imaginary

M
ag

ni
tu

de

Label the Graph
Add axes labels, with the statements

xlabel('Real')
ylabel('Imaginary')
zlabel('Magnitude')

Stairstep Plots
Stairstep plots display data as the leading edges of a constant interval (i.e.,
zero-order hold state). This type of plot holds the data at a constant y-value
for all values between x(i) and x(i+1), where i is the index into the x data.

5-42

Discrete Data Graphs

This type of plot is useful for drawing time-history plots of digitally sampled
data systems.

Example — Stairstep Plot of a Function
Define a function f that varies over time,

alpha = 0.01;
beta = 0.5;
t = 0:10;
f = exp(-alpha*t).*sin(beta*t);

Use stairs to display the function as a stairstep plot and a linearly
interpolated function.

stairs(t,f)
hold on
plot(t,f,'--*')
hold off

5-43

5 Creating Specialized Plots

0 1 2 3 4 5 6 7 8 9 10

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Stairstep plot of e−(α*t) sinβ*t

t = 0:10

Annotate the graph and set the axes limits.

label = 'Stairstep plot of e^{-(\alpha*t)} sin\beta*t';
text(0.5,-0.2,label,'FontSize',14)
xlabel('t = 0:10','FontSize',14)
axis([0 10 -1.2 1.2])

5-44

Direction and Velocity Vector Graphs

Direction and Velocity Vector Graphs

In this section...

“Functions for Graphing Vector Quantities” on page 5-45

“Compass Plots” on page 5-46

“Feather Plots” on page 5-47

“Two-Dimensional Quiver Plots” on page 5-49

“Three-Dimensional Quiver Plots” on page 5-51

Functions for Graphing Vector Quantities
MATLAB provides four functions for displaying data consisting of direction
vectors and velocity vectors; three create 2-D plots and one creates 3-D plots:

Function Description

compass Displays vectors emanating from the origin of a
polar plot

feather Displays vectors extending from equally spaced
points along a horizontal line

quiver Displays 2-D vectors specified by (u,v) components

quiver3 Displays 3-D vectors specified by (u,v,w)
components

For feather and compass plots, you can define the vectors using one or two
arguments. The arguments specify the u and v components of the vectors
relative to the origin. If you specify two arguments, the first specifies the u
components of the vectors and the second the v components of the vectors.
If you specify one argument, the functions treat the elements as complex
numbers. The real parts are the u components and the imaginary parts are
the v components.

For quiver plots, in addition to the u-v components, you also specify x,y
locations (or x,y,z locations in the case of quiver3) to establish an origin for
each vector.

5-45

5 Creating Specialized Plots

Compass Plots
The compass function shows vectors emanating from the origin of a graph.
The function takes Cartesian coordinates and plots them on a circular grid.

Example — Compass Plot of Wind Direction and Speed
This example shows a compass plot indicating the wind direction and strength
during a 12-hour period. Two vectors define the wind direction and strength.

wdir = [45 90 90 45 360 335 360 270 335 270 335 335];
knots = [6 6 8 6 3 9 6 8 9 10 14 12];

Convert the wind direction, given as angles, into radians before converting
the wind direction into Cartesian coordinates.

rdir = wdir * pi/180;
[x,y] = pol2cart(rdir,knots);
compass(x,y)

5-46

Direction and Velocity Vector Graphs

 5

 10

 15

30

210

60

240

90

270

120

300

150

330

180 0

Wind Direction and Strength at
Logan Airport for
Nov. 3 at 1800 through
Nov. 4 at 0600

Create text to annotate the graph.

desc = {'Wind Direction and Strength at',
'Logan Airport for ',
'Nov. 3 at 1800 through',
'Nov. 4 at 0600'};

text(-28,15,desc)

Feather Plots
The feather function shows vectors emanating from a straight line parallel
to the x-axis. For example, create a vector of angles from 90° to 0° and a vector
the same size, with each element equal to 1.

5-47

5 Creating Specialized Plots

theta = 90:-10:0;
r = ones(size(theta));

Before creating a feather plot, transform the data into Cartesian coordinates
and increase the magnitude of r to make the arrows more distinctive.

[u,v] = pol2cart(theta*pi/180,r*10);
feather(u,v)
axis equal

2 4 6 8 10 12 14 16 18 20

−2

0

2

4

6

8

10

12

5-48

Direction and Velocity Vector Graphs

Plotting Complex Numbers
If the input argument Z is a matrix of complex numbers, feather interprets
the real parts of Z as the x components of the vectors and the imaginary parts
as the y components of the vectors.

t = 0:0.5:10; % Time limits
s = 0.05+i; % Spiral rate
Z = exp(-s*t); % Compute decaying exponential
feather(Z)

0 5 10 15 20 25
−1

−0.5

0

0.5

1

Printing the Graph
This particular graph looks better if you change the figure’s aspect ratio by
stretching the figure lengthwise using the mouse. However, to maintain this
shape in the printed output, set the figure’s PaperPositionMode to auto.

set(gcf,'PaperPositionMode','auto')

In this mode, MATLAB prints the figure as it appears on screen.

Two-Dimensional Quiver Plots
The quiver function shows vectors at given points in two-dimensional space.
The vectors are defined by x and y components.

5-49

5 Creating Specialized Plots

A quiver plot is useful when displayed with another plot. For example, create
10 contours of the peaks function (see “Contour Plots” on page 5-54 for more
information).

n = -2.0:.2:2.0;
[X,Y,Z] = peaks(n);
contour(X,Y,Z,10)

Now use gradient to create the vector components to use as inputs to quiver.

[U,V] = gradient(Z,.2);

5-50

Direction and Velocity Vector Graphs

Set hold to on and add the contour plot.

hold on
quiver(X,Y,U,V)
hold off

Three-Dimensional Quiver Plots
Three-dimensional quiver plots (quiver3) display vectors consisting of (u,v,w)
components at (x,y,z) locations. For example, you can show the path of a

projectile as a function of time,

First, assign values to the constants vz and a.

vz = 10; % Velocity
a = -32; % Acceleration

Then, calculate the height z, as time varies from 0 to 1 in increments of 0.1.

t = 0:.1:1;
z = vz*t + 1/2*a*t.^2;

5-51

5 Creating Specialized Plots

Calculate the position in the x and y directions.

vx = 2;
x = vx*t;
vy = 3;
y = vy*t;

Compute the components of the velocity vectors and display the vectors using
the 3-D quiver plot.

u = gradient(x);
v = gradient(y);
w = gradient(z);
scale = 0;
quiver3(x,y,z,u,v,w,scale)
view([70 18])

5-52

Direction and Velocity Vector Graphs

0
0.5

1
1.5

2
2.5 0 0.5 1 1.5 2 2.5 3 3.5

−10

−8

−6

−4

−2

0

2

5-53

5 Creating Specialized Plots

Contour Plots

In this section...

“Functions for Creating Contour Displays” on page 5-54

“Creating Simple Contour Plots” on page 5-55

“Labeling Contours” on page 5-57

“Filled Contours” on page 5-59

“Drawing a Single Contour Line at a Desired Level” on page 5-60

“Index Contours” on page 5-63

“The Contouring Algorithm” on page 5-66

“Changing the Offset of a Contour” on page 5-68

“Displaying Contours in Polar Coordinates” on page 5-69

“Preparing Data for Contouring” on page 5-73

Functions for Creating Contour Displays
The contouring display functions compute, plot, and label isolines (contour
lines) for one or more matrices. These displays vary according to whether they
plot plain contour lines, filled contour lines, raised contours, or contours in
concert with mesh or surface plots. Two of the functions listed below support
contouring. The low-level contourc function computes isolines but does
not plot them. The clabel function places elevation labels on previously
generated contours.

Function Description

contour Displays 2-D isolines generated from values given
by a matrix Z

contour3 Displays 3-D isolines generated from values given
by a matrix Z

contourf Displays a 2-D contour plot and fills the area between
the isolines with a solid color

5-54

Contour Plots

Function Description

contourc Low-level function to calculate the contour matrix
used by the other contour functions

meshc Creates a mesh plot with a corresponding 2-D
contour plot

surfc Creates a surface plot with a corresponding 2-D
contour plot

clabel Generates labels using the contour matrix returned
from calling the contouring function and displays the
labels in the current figure

Creating Simple Contour Plots
contour and contour3 display 2- and 3-D contours, respectively. They can be
called with separate x, y, and z matrices, but need only one input argument
— a z matrix interpreted as heights with respect to a plane. In this case, the
contour functions determine the number of contours to display based on the
minimum and maximum data values.

To explicitly set the number of contour levels displayed by the functions, you
specify a second optional argument.

Contour Plot of the Peaks Function
The statements

[X,Y,Z] = peaks;
contour(X,Y,Z,20)

display 20 contours of the peaks function in a 2-D view.

5-55

5 Creating Specialized Plots

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3
Twenty Contours of the peaks Function

The statements

[X,Y,Z] = peaks;
contour3(X,Y,Z,20)
h = findobj('Type','patch');
set(h,'LineWidth',2)
title('Twenty Contours of the peaks Function')

5-56

Contour Plots

display 20 contours of the peaks function in a 3-D view and increase the line
width to 2 points.

−3
−2

−1
0

1
2

3

−3
−2

−1
0

1
2

3
−10

−5

0

5

10

Twenty Contours of the peaks Function

Labeling Contours
Each contour level has a value associated with it. clabel uses these values to
display labels for 2-D contour lines. The contour matrix contains the values
clabel uses for the labels. This matrix is returned by contour, contour3,
and contourf and is described in “The Contouring Algorithm” on page 5-66.

clabel optionally returns the handles of the text objects used as labels. You
can then use these handles to set the properties of the label string.

For example, display 10 contour levels of the peaks function,

5-57

5 Creating Specialized Plots

Z = peaks;
[C,h] = contour(Z,10);

then label the contours and display a title.

clabel(C,h)
title({'Contour Labeled Using','clabel(C,h)'})

Note that clabel labels only those contour lines that are large enough to
have an inline label inserted.

−4.922
−3.2974

−3.2974

−1.6727

−1.6727

−1.6727

−1.6727

−1
.6

72
7

−
0.048059

−0.048059

−0.048059

−0.048059

−0.048059

−0.048059

1.
57

66

1.5766

1.5766

1.5766

1.5766

1.5766

1.5766

3.2012

3.2012

3.2012

3.2012

3.2012

4.8259

4.8259

6.4505

Contour Labeled Using
clabel(C,h)

5 10 15 20 25 30 35 40 45

5

10

15

20

25

30

35

40

45

5-58

Contour Plots

The 'manual' option enables you to add labels by selecting the contour you
want to label with the mouse.

You can also use this option to label only those contours you select
interactively.

For example,

clabel(C,h,'manual')

displays a crosshair cursor when your cursor is inside the figure. Pressing any
mouse button labels the contour line closest to the center of the crosshair.

Filled Contours
The contourf displays a two-dimensional contour plot and fills the areas
between contour lines. Use caxis to control the mapping of contour to color.
For example, this filled contour plot of the peaks data uses caxis to map the
fill colors into the center of the colormap.

Z = peaks;
[C,h] = contourf(Z,10);
caxis([-20 20])
title({'Filled Contour Plot Using','contourf(Z,10)'})

5-59

5 Creating Specialized Plots

5 10 15 20 25 30 35 40 45

5

10

15

20

25

30

35

40

45

Filled Contour Plot Using
contourf(Z,10)

Drawing a Single Contour Line at a Desired Level
The contouring functions permit you to specify the number of contour levels or
the particular contour levels to draw. In the case of contour, the two forms of
the function are contour(Z,n) and contour(Z,v). Z is the data matrix, n is
the number of contour lines, and v is a vector of specific contour levels.

MATLAB does not differentiate between a scalar and a one-element vector.
So, if v is a one-element vector specifying a single contour at that level,
contour interprets it as the number of contour lines, not the contour level.
Consequently, contour(Z,v) behaves in the same manner as contour(Z,n).

5-60

Contour Plots

To display a single contour line, define v as a two-element vector with both
elements equal to the desired contour level. For example, create a 3-D contour
of the peaks function.

xrange = -3:.125:3;
yrange = xrange;
[X,Y] = meshgrid(xrange,yrange);
Z = peaks(X,Y);
contour3(X,Y,Z)

To display only one contour level at Z = 1, define v as [1 1].

v = [1 1]
contour3(X,Y,Z,v)

Example — Visualizing Contour Construction
You can think of a contour as the intersection of a 3–D surface with a
horizontal plane. The intersection defines 0 or more level lines that trace
contours. The level lines either form loops or terminate at the outer edges
of the surface. Contour loops can intersect at saddle points, and therefore
require special handling in their vicinity.

Run the following interactive code to visualize how contour lines are
constructed. Use the slider to move the plane up or down through the range
of z-values, and click the Plot Contour button to draw a contour line that
delineates where the plane slices through the surface. Click the Plot Labels
button to add a label to the contour you just plotted. Click Clear Contours to
remove all the contours and labels.

% Create x, y, and z arrays for a parametric surface

[x y]=meshgrid(linspace(0,1,10),linspace(0,1,10));

z = .5*x + y - 1.5*x.*y;

% Display with the surface function in 3-D

fh = figure; colormap cool;

hpl = uipanel(fh,'Units','normalized','position',[.025 .025 .95 .95]);

s=surface('xdata',x,'ydata',y,'zdata',z,'cdata',z);

view(3);hold on;

% Display a second surface, a horixontal plane at z = 0

p=surface('xdata',[0 1;0 1],'ydata',[0 0; 1 1],...

'zdata',[0 0; 0 0],'cdata',[0 0;0 0]);

5-61

5 Creating Specialized Plots

set(p,'facealpha',.25,'facecolor','red'); % Make cut plane transparent

% Create a slider control for contour elevations

hs = uicontrol(hpl,'style','slider','min',0,'max',100,...

'units','normalized','position',[.05 .05 .2 .05],...

'sliderstep', [.01 .05]);

set(hs,'callback',... % Tell the slider what it should do

['lvl=get(hs,''value'')/100;,' ...

'set(p,''zdata'',[lvl lvl; lvl lvl]),' ...

'set(hto,''string'',num2str(lvl)),' ...

'set(hbc,''enable'',''on'')']);

lvl = 0; % Initialize the z-level of the cutting plane

% Create a label for the slider and a text box to show its value

hst = uicontrol(hpl,'Style','text', 'String','Z-level',...

'units','normalized','Position',[.05 .10 .1 .05]);

hto = uicontrol(hpl,'Style','text', 'String','0',...

'units','normalized','Position',[.13 .10 .1 .05]);

% Create a pushbutton control for drawing contours with CONTOUR3

hbc = uicontrol(hpl,'style','pushbutton','enable','off',...

'string','Plot Contour',...

'units','normalized','position',[.80 .05 .15 .05]);

set(hbc,'callback',['[C hc] = contour3(x,y,z, [lvl lvl],''r'');' ...

'set(hbl,''enable'',''on''), set(hbe,''enable'',''on''),' ...

'set(hbc,''enable'',''off'')']);

% Create a pushbutton control for labelling with CLABEL,

% which uses the "contour matrix" returned from CONTOUR3

hbl = uicontrol(hpl,'style','pushbutton','enable','off',...

'string','Plot Labels',...

'units','normalized','position',[.80 .90 .15 ,.05]);

set(hbl,'callback',['clabel(C, hc,''color'',''r'',' ...

'''fontweight'',''bold'');' 'set(hbl,''enable'',''off''), '...

'set(hbe,''enable'',''on'')']);

% Create a pushbutton to clear away the contours and labels

hbe = uicontrol(hpl,'style','pushbutton','enable','off',...

'string','Clear Contours',...

'units','normalized','position',[.05 .90 .15 .05]);

set(hbe,'callback',['delete(findall(gca,''color'',''r''));' ...

'set(hbe,''enable'',''off'')']);

Here is what the figure and its controls look like with a contour plotted at
the cut line:

5-62

Contour Plots

See “The Contouring Algorithm” on page 5-66, below, for an explanation of
how MATLAB computes contour lines.

Index Contours
You can index contours to visually emphasize certain contour levels. This
technique, commonly used on topographic maps to highlight contours at set
altitudes such as 25, 50, 75 ... meters above sea level, provides visual cues
analogous to major ticks on a graph’s axis. It is much easier to read a contour
display that shows index contours because the heavier lines lessen the chance
that one’s eye will jump between adjacent contours in scanning across the plot.

5-63

5 Creating Specialized Plots

Example — Specifying Index Contours
The following code example highlights contours at elevations of -6, -5, -4, ... 7
for the output of the peaks function.

1 Generate a data matrix to contour:

z = peaks(100);

2 Compute 40 contour levels. Select contour levels so as to be round numbers;
zlevs is the vector of contour levels to be plotted:

zmin = floor(min(z(:))); zmax = ceil(max(z(:)));
zinc = (zmax - zmin) / 40;
zlevs = zmin:zinc:zmax;

3 Specify the vertical distance between index contours; here it is unity, but it
can be any modulus of values in zlevs.

zindex = 1;

4 Plot 2-D level lines with the CONTOUR function:

[c2,hc2] = contour(z,zlevs);

5 Create Index Contours by thickening level lines every zindex units

nc = get(hc2,'Children');
for i = 1:length(nc)

ud = get(nc(i),'UserData');
if (mod(ud,zindex) == 0)

set(nc(i),'LineWidth',2);
end

end

A contour line will thicken with each call to set.

6 Annotate to identify the contouring parameters used

s = sprintf('%s %g %s %g %s', 'Peaks Function Contoured at', ...
zinc, 'Units, Indexed every', zindex, 'Units');

title(s)

5-64

Contour Plots

The loop of code in step 5 above works for contour but not contour3, because
contour3 does not create contourgroup objects containing Children. To
accomplish the same result with contour3 you must dereference the handle
to the contours returned by contour3 (hc3, below) differently, as follows:

figure;
[c3,hc3] = contour3(z,zlevs);
for i = 1:length(hc3)

ud = get(hc3(i),'UserData');
if (mod(ud,zindex) == 0)

set(hc3(i),'LineWidth',2);
end

end
s = sprintf('%s %g %s %g %s',...

5-65

5 Creating Specialized Plots

'Peaks Function Contoured in 3-D at', ...
zinc, 'Units, Indexed every', zindex, 'Units');

title(s)

The Contouring Algorithm
The contourc function calculates the contour matrix for the other contour
functions. It is a low-level function that is not called from the command line.

The contouring algorithm first determines which contour levels to draw. If
you specified the input vector v, the elements of v are the contour level values,
and length(v) determines the number of contour levels generated. If you
do not specify v, the algorithm chooses no more than 20 contour levels that
are divisible by 2 or 5.

5-66

Contour Plots

The height matrix Z has either has associated X and Y matrices that locate
each value in Z at the intersection of a row and a column, or these are inferred
when they are unspecified. The width of rows and columns can vary, but
typically is constant (i.e. Z is a regular grid).

Set the current level, c, equal to the lowest contour level to be plotted within
the range [min(Z) max(Z)]. The contouring algorithm checks each edge
of every square in the grid to see if c is between the two z-values for the
edge points. If so, then a contour at that level crosses the edge, and a linear
interpolation is performed:

t=(c-Z0)/(Z1-Z0), where Z0 is the z-value at one edge point, and Z1 is the
z-value at the other edge point.

Start indexing a new contour line (i = 1) for level c by interpolating x and y:

cx(i) = X0+t*(X1-X0)
cy(i) = Y0+t*(Y1-Y0)

Walk around the edges of the square just entered; the next edge with z-values
that bracket c is where the contour exits. Increment i, compute t for the edge,
and then cx(i) and cy(i), as above.

Mark the square as having been visited. Keep checking the edges of each
square entered to determine the exit edge until the line(cx,cy) closes on its
initial point or exits the grid. If the square being entered is already marked,
the contour line closes there. Copy cx, cy, c, and i to the contour line data
structure (the matrix returned by contouring functions, described below).

Reinitialize cx, cy, and i. Move to an unmarked square and test its edges for
intersections; when you find one at level c, repeat the above operations. Any
number of contour lines can exist for a given level.

Clear all the markers, increment the contour level, and repeat until c exceeds
max(Z).

Extra logic is needed for squares where a contour passes through all four
edges (saddle points) to determine which pairs of edges to connect.

5-67

5 Creating Specialized Plots

contour, contour3, and contourf return a two-row matrix specifying all the
contour lines. The format of the matrix is

C = [value1 xdata(1) xdata(2)...
numv ydata(1) ydata(2)...]

The first row of the column that begins each definition of a contour line
contains the value of the contour, as specified by v and used by clabel.
Beneath that value is the number of (x,y) vertices in the contour line.
Remaining columns contain the data for the (x,y) pairs. For example, the
contour matrix calculated by C = contour(peaks(3)) is

The circled values begin each definition of a contour line.

Changing the Offset of a Contour
The surfc and meshc functions display contours beneath a surface or a mesh
plot. These functions draw the contour plot at the axes’ minimum z-axis limit.

5-68

Contour Plots

To specify your own offset, you must change the ZData values of the contour
lines. First, save the handles of the graphics objects created by meshc or surfc.

h = meshc(peaks(20));

The first handle belongs to the mesh or surface. The remaining handles belong
to the contours you want to change. To raise the contour plane, increment the
z coordinate of each contour line by some amount by resetting its Zdata value:

for i = 2:length(h);
newz = get(h(i),'Zdata') + 5;
set(h(i),'Zdata',newz)

end

Displaying Contours in Polar Coordinates
You can contour data defined in the polar coordinate system. As an example,
set up a grid in polar coordinates and convert the coordinates to Cartesian
coordinates.

[th,r] = meshgrid((0:5:360)*pi/180,0:.05:1);
[X,Y] = pol2cart(th,r);

Then generate the complex matrix Z on the interior of the unit circle.

Z = X+i*Y;

X, Y, and Z are points inside the circle.

Create and display a surface of the function .

f = (Z.^4-1).^(1/4);
surf(X,Y,abs(f))

5-69

5 Creating Specialized Plots

Display the unit circle beneath the surface using the statements

hold on
surf(X,Y,zeros(size(X)))
hold off

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
0

0.2

0.4

0.6

0.8

1

1.2

ab
s(

f)

Imaginary Real

Labeling the Graph
These statements add labels.

xlabel('Real','FontSize',14);
ylabel('Imaginary','FontSize',14);
zlabel('abs(f)','FontSize',14);

5-70

Contour Plots

Contours in Cartesian Coordinates
These statements display a contour of the surface in Cartesian coordinates
and label the x- and y-axis.

contour(X,Y,abs(f),30)
axis equal
xlabel('Real','FontSize',14);
ylabel('Imaginary','FontSize',14);

Real

Im
ag

in
ar

y

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

5-71

5 Creating Specialized Plots

Contours on a Polar Axis
You can also display the contour within a polar axes. Create a polar axes
using the polar function, and then delete the line specified with polar.

h = polar([0 2*pi], [0 1]);
delete(h)

With hold on, display the contour on the polar grid.

hold on
contour(X,Y,abs(f),30)

 0.2

 0.4

 0.6

 0.8

 1

30

210

60

240

90

270

120

300

150

330

180 0

5-72

Contour Plots

Preparing Data for Contouring
The various contour plotting functions, as well as the mesh and surface
families of functions, accept 2-D matrices as inputs. For most applications,
these input grids will represent continuous functions of two variables or
relatively continuous fields of data. In many applications, source data might
consist of z-values sampled over a two-dimensional domain in an irregular
fashion, such as discrete spot elevations from GPS measurements (in the form
of x, y, and z data vectors). To prepare such data for contour or mesh display,
you need to interpolate it in some fashion.

MATLAB provides methods for interpolating data into vectors, grids and
triangulated (Delaunay) tessellations. Input observations can be one-, two-,
three- or higher-dimensional. By choosing and using these functions carefully
you can control parameters and constraints for interpolation to model your
assumptions about the underlying nature of the raw data. Typically, you
would use the interp2, meshgrid, and griddata functions to interpolate
z-values for scattered x-y data points into a 2-D grid. See “Interpolation” in
the MATLAB Mathematics documentation for discussion and examples of
data interpolation using these and other functions.

If the surface you are contouring is “noisy,” contours depicting it will exhibit
jaggedness. When you analyze and explore such data, you can filter it to
attentuate high-frequency variations. One way to do this is with a convolution
(with conv2 or filter2) filter, as the following example demonstrates:

Example — Smoothing a Matrix for Plotting Contours
The conv2 and filter functions can remove high-frequency components from
a matrix representing a continuous surface or field to make the underlying
data easier to visualize. This requires few assumptions

1 Create a function of two variables and plot contour lines at a specified,
fixed interval.

Z = peaks(100);
figure;
set (gcf,'position',[400,100,600,600], 'color','w')
subplot(2,2,1);
cl = [-7:1:10]; % Define contour levels for all plots
contour(Z, cl)

5-73

5 Creating Specialized Plots

axis([0 100 0 100]); colormap autumn;
set(gca,'Xtick',[0 100],'Ytick',[0 100]);
title('Peaks Surface (underlying data)')

2 Add uniform random noise with mean of 0 to the surface and plot resulting
contours. Irregularities in the contours tend to obscure the trend of the
data:

ZN = Z + rand(100) - .5;
subplot (2,2,2)
contour(ZN, cl)
axis([0 100 0 100]);
set(gca,'Xtick',[0 100],'Ytick',[0 100]);
title('Peaks Surface (noise added)')

3 Specify a 3x3 convolution kernal, F, for smoothing the matrix and use the
conv2 function to attenuate high spatial frequencies in the surface data:

F = [.05 .1 .05; .1 .4 .1; .05 .1 .05];
ZC = conv2(ZN,F,'same');

4 Visually compare the smoothed surface to the original and the noisy ones:

subplot (2,2,3)
contour(ZC, cl)
axis([0 100 0 100]);
set(gca,'Xtick',[0 100],'Ytick',[0 100]);
title('Noisy Surface (smoothed once)')

5 Smooth the surface one more time using the same operator and compare (a
larger or more uniform kernal could have achieved this in one pass):

ZC2 = conv2(ZC,F,'same');
subplot (2,2,4)
contour(ZC2, cl)
axis([0 100 0 100]);
set(gca,'Xtick',[0 100],'Ytick',[0 100]);
title('Noisy Surface (smoothed twice)')

5-74

Contour Plots

5-75

5 Creating Specialized Plots

Interactive Plotting

Example — Selecting Plotting Points from the Screen
You can interact with graphs or generate x-y coordinates interactively. The
ginput function enables you to use the mouse or the arrow keys to select
points to plot. ginput returns the coordinates of the pointer’s position, either
the current position or the position when a mouse button or key is pressed.
See the ginput function for more information. You can use it to pick points
on a graph to return their x and y values for processing, to outline an area of
interest, or to draw arbitrary shapes.

This example illustrates the use of ginput with the spline function to create
a curve by interpolating in two dimensions.

First, select a sequence of points, [x,y], in the plane with ginput. Then
pass two one-dimensional splines through the points, evaluating them with a
spacing one-tenth of the original spacing.

axis([0 10 0 10])
hold on
% Initially, the list of points is empty.
xy = [];
n = 0;
% Loop, picking up the points.
disp('Left mouse button picks points.')
disp('Right mouse button picks last point.')
but = 1;
while but == 1

[xi,yi,but] = ginput(1);
plot(xi,yi,'ro')
n = n+1;
xy(:,n) = [xi;yi];

end
% Interpolate with a spline curve and finer spacing.
t = 1:n;
ts = 1: 0.1: n;
xys = spline(t,xy,ts);

% Plot the interpolated curve.

5-76

Interactive Plotting

plot(xys(1,:),xys(2,:),'b-');
hold off

This plot shows some typical output.

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

o1

o2

o3

o4

o5

o6

o7
o8

o9

o10
o11

5-77

5 Creating Specialized Plots

Animation

In this section...

“Ways to Animate Plots” on page 5-78

“Movies” on page 5-78

“Example — Visualizing an FFT as a Movie” on page 5-79

“Erase Modes” on page 5-80

Ways to Animate Plots
You can create animated sequences with MATLAB in two different ways:

• Save a number of different pictures and then play them back as a movie.

• Continually erase and then redraw the objects on the screen, making
incremental changes with each redraw.

Movies are better suited to situations where each frame is fairly complex and
cannot be redrawn rapidly. You create each movie frame in advance so the
original drawing time is not important during playback, which is just a matter
of blitting the frame to the screen. A movie is not rendered in real time; it is
simply a playback of previously rendered frames.

The second technique, drawing, erasing, and then redrawing, makes use of
different drawing modes supported by MATLAB. These modes allow faster
redrawing at the expense of some rendering accuracy, so you must consider
which mode to select.

This section provides an example of each technique. To see more sophisticated
demonstrations of these features, type demo at the MATLAB prompt and
explore the animation demonstrations.

Movies
You can save any sequence of graphs and then play the sequence back in a
short movie. There are two steps to this process:

5-78

Animation

• Use getframe to generate each movie frame. Be sure that your computer is
not in screen saver mode when getframe is called, and in the event that
you are using several virtual desktops, that the one on which MATLAB is
running is visible on your monitor.

• Use movie to run the movie a specified number of times at the specified rate.

Typically, you use getframe in a for loop to assemble the array of movie
frames. getframe returns a structure having the following fields:

• cdata — Image data in a uint8 matrix. The matrix has dimensions of
height-by-width on indexed-color systems and height-by-width-by-3 on
truecolor systems.

• colormap — The colormap in an n-by-3 matrix, where n is the number of
colors. On truecolor systems, the colormap field is empty.

See image for more information on images.

Example — Visualizing an FFT as a Movie
This example illustrates the use of movies to visualize the quantity
fft(eye(n)), which is a complex n-by-n matrix whose elements are various
powers of the nth root of unity, exp(i*2*pi/n).

Creating the Movie
Create the movie in a for loop calling getframe to capture the graph. Since
the plot command resets the axes properties, call axis equal within the
loop before getframe.

for k = 1:16
plot(fft(eye(k+16)))
axis equal
M(k) = getframe;

end

Running the Movie
After generating the movie, you can play it back any number of times. To
play it back 30 times, type

5-79

5 Creating Specialized Plots

movie(M,30)

You can readily generate and smoothly play back movies with a few dozen
frames on most computers. Longer movies require large amounts of primary
memory or a very effective virtual memory system.

Movies that Include the Entire Figure
If you want to capture the contents of the entire figure window (for example,
to include GUI components in the movie), specify the figure’s handle as an
argument to the getframe command. For example, suppose you want to add a
slider to indicate the value of k in the previous example.

h = uicontrol('style','slider','position',...
[10 50 20 300],'Min',1,'Max',16,'Value',1)

for k = 1:16
plot(fft(eye(k+16)))
axis equal
set(h,'Value',k)
M(k) = getframe(gcf);

end

In this example, the movie frame contains the entire figure. To play so that it
looks like the original figure, make the playback axes fill the figure window.

clf
axes('Position',[0 0 1 1])
movie(M,30)

Erase Modes
You can select the method MATLAB uses to redraw graphics objects. One
event that causes MATLAB to redraw an object is changing the properties
of that object. You can take advantage of this behavior to create animated
sequences. A typical scenario is to draw a graphics object, then change its
position by respecifying the x-, y,- and z-coordinate data by a small amount
with each pass through a loop.

You can create different effects by selecting different erase modes. This section
illustrates how to use the three modes that are useful for dynamic redrawing:

5-80

Animation

• none — MATLAB does not erase the objects when it is moved.

• background — MATLAB erases the object by redrawing it in the
background color. This mode erases the object and anything below it (such
as grid lines).

• xor — This mode erases only the object and is usually used for animation.

All three modes are faster (albeit less accurate) than the normal mode used
by MATLAB.

Example — Animating with Erase Modes
It is often interesting and informative to see 3-D trajectories develop in time.
This example involves chaotic motion described by a nonlinear differential
equation known as the Lorenz strange attractor. It can be written

in the form

with a vector-valued function y(t) and a matrix A that depends upon y.

The solution orbits about two different attractive points without settling into
a steady orbit about either. This example approximates the solution with the
simplest possible numerical method — Euler’s method with fixed step size.
The result is not very accurate, but it has the same qualitative behavior as
other methods.

A = [-8/3 0 0; 0 -10 10; 0 28 -1];
y = [35 -10 -7]';
h = 0.01;
p = plot3(y(1),y(2),y(3),'.', ...

'EraseMode','none','MarkerSize',5); % Set EraseMode to none
axis([0 50 -25 25 -25 25])
hold on
for i=1:4000

A(1,3) = y(2);

5-81

5 Creating Specialized Plots

A(3,1) = -y(2);
ydot = A*y;
y = y + h*ydot;

% Change coordinates
set(p,'XData',y(1),'YData',y(2),'ZData',y(3))
drawnow

end

The plot3 statement sets EraseMode to none, indicating that the points
already plotted should not be erased when the plot is redrawn. In addition,
the handle of the plot object is saved. Within the for loop, a set statement
references the plot object and changes its internally stored coordinates for
the new location. While this manual cannot show the dynamically evolving
output, this picture shows a snapshot.

5-82

Animation

0
10

20
30

40
50

−20

−10

0

10

20

−20

−10

0

10

20

Note that, as far as MATLAB is concerned, the graph created by this example
contains only one dot. What you see on the screen are remnants of previous
plots that MATLAB has been instructed not to erase. The only way to print
this graph from MATLAB is with a screen capture.

Background Erase Mode. To see the effect of EraseMode background, add
these statements to the previous program.

p = plot3(y(1),y(2),y(3),'square', ...
'EraseMode','background','MarkerSize',10,...
'MarkerEdgeColor',[1 .7 .7],'MarkerFaceColor',[1 .7 .7]);

5-83

5 Creating Specialized Plots

for i=1:4000
A(1,3) = y(2);
A(3,1) = -y(2);
ydot = A*y;
y = y + h*ydot;
set(p,'XData',y(1),'YData',y(2),'ZData',y(3))
drawnow

end
hold off

Since hold is still on, this code erases the previously created graph by setting
the EraseMode property to background and changing the marker to a “pink
eraser” (a square marker colored pink).

Xor Erase Mode. If you change the EraseMode of the first plot3 statement
from none to xor, you will see a moving dot (Marker '.') only. Xor mode
is used to create animations where you do not want to leave remnants of
previous graphics on the screen. However, you should not rely on Xor mode
to work properly in all situations. Some platforms and graphics subsystems
do not support it and where it does work, performance can be much slower
compared to other erase modes or animation methods.

Additional Examples
The MATLAB demo lorenz provides a more accurate numerical
approximation and a more elaborate display of the Lorenz strange attractor
example. Other MATLAB demos illustrate animation techniques.

5-84

6

Displaying Bit-Mapped
Images

Images in MATLAB (p. 6-2) Types of image data, formats, and
Functions used in MATLAB

Image Types (p. 6-5) Types of images supported in
MATLAB

Working with 8-Bit and 16-Bit
Images (p. 6-10)

Operations you can perform on
nondouble image data

Reading, Writing, and Querying
Graphics Image Files (p. 6-18)

Working with standard image file
formats in MATLAB

Displaying Graphics Images (p. 6-22) Commands for displaying a matrix
as an image

The Image Object and Its Properties
(p. 6-27)

Properties of MATLAB image objects

Printing Images (p. 6-37) Printing images in proper
proportions

Converting the Data or Graphic
Type of Images (p. 6-38)

Converting between image types

6 Displaying Bit-Mapped Images

Images in MATLAB

In this section...

“What Is Image Data?” on page 6-2

“Supported Image Formats” on page 6-3

“Functions for Reading, Writing and Displaying Images” on page 6-4

What Is Image Data?
The basic data structure in MATLAB is the array, an ordered set of real or
complex elements. This object is naturally suited to the representation of
images, real-valued, ordered sets of color or intensity data. (MATLAB does
not support complex-valued images.)

MATLAB stores most images as two-dimensional arrays (i.e., matrices), in
which each element of the matrix corresponds to a single pixel in the displayed
image. For example, an image composed of 200 rows and 300 columns of
different colored dots would be stored in MATLAB as a 200-by-300 matrix.
Some images, such as RGB, require a three-dimensional array, where the first
plane in the third dimension represents the red pixel intensities, the second
plane represents the green pixel intensities, and the third plane represents
the blue pixel intensities.

This convention makes working with graphics file format images in MATLAB
similar to working with any other type of matrix data. For example, you can
select a single pixel from an image matrix using normal matrix subscripting.

I(2,15)

This command returns the value of the pixel at row 2, column 15 of the image
I.

The following sections describe the different data and image types you can
use, and give details on how to read, write, work with, and display graphics
images; how to alter the display properties and aspect ratio of an image
during display; how to print an image; and how to convert the data type or
graphics format of an image.

6-2

Images in MATLAB

Data Types
MATLAB supports three different numeric classes for image display:
double-precision floating-point (double), 16-bit unsigned integer (uint16),
and 8-bit unsigned integer (uint8). The image display commands interpret
data values differently depending on the numeric class the data is stored in.
Details on the inner workings of the storage for 8- and 16-bit images are
included in “Working with 8-Bit and 16-Bit Images” on page 6-10.

By default, MATLAB stores most data in arrays of class double. The data in
these arrays is stored as double-precision (64-bit) floating-point numbers. All
MATLAB functions and capabilities work with these arrays.

For images stored in one of the graphics file formats supported by MATLAB,
however, this data representation is not always ideal. The number of pixels in
such an image can be very large; for example, a 1000-by-1000 image has a
million pixels. Since each pixel is represented by at least one array element,
this image would require about 8 megabytes of memory if it were stored as
class double.

To reduce memory requirements, MATLAB supports storing image data in
arrays of class uint8 and uint16. The data in these arrays is stored as 8-bit
or 16-bit unsigned integers. These arrays require one-eighth or one-fourth as
much memory as data in double arrays.

Bit Depth
MATLAB supports reading the most commonly used bit depths (bits per pixel)
of any of the supported graphics file formats. When the data is in memory, it
can be stored as uint8, uint16, or double. For details on which bit depths are
appropriate for each supported format, see imread and imwrite.

Supported Image Formats
MATLAB provides commands for reading, writing, and displaying several
types of graphics file formats for images. As with MATLAB-generated images,
once a graphics file format image is displayed, it becomes a Handle Graphics
image object. MATLAB supports the following graphics file formats, along
with others:

• BMP (Microsoft Windows Bitmap)

6-3

6 Displaying Bit-Mapped Images

• GIF (Graphics Interchange Files)

• HDF (Hierarchical Data Format)

• JPEG (Joint Photographic Experts Group)

• PCX (Paintbrush)

• PNG (Portable Network Graphics)

• TIFF (Tagged Image File Format)

• XWD (X Window Dump)

For more information concerning the bit depths and image types supported
for these formats, see imread and imwrite.

Functions for Reading, Writing and Displaying
Images
Since images are essentially two-dimensional matrices, many MATLAB
functions are capable of operating on and displaying images. The following
are the most useful ones, and are discussed in the sections that follow:

Function Purpose Function Group

axis Plot axis scaling and appearance Display

image Display image (create image object) Display

imagesc Scale data and display as image Display

imread Read image from graphics file File I/O

imwrite Write image to graphics file File I/O

imfinfo Get image information from
graphics file

Utility

ind2rgb Convert indexed image to RGB
image

Utility

6-4

Image Types

Image Types

In this section...

“Indexed Images” on page 6-5

“Intensity Images” on page 6-6

“RGB (Truecolor) Images” on page 6-8

Indexed Images
An indexed image consists of a data matrix, X, and a colormap matrix, map.
map is an m-by-3 array of class double containing floating-point values in the
range [0, 1]. Each row of map specifies the red, green, and blue components
of a single color. An indexed image uses "direct mapping" of pixel values to
colormap values. The color of each image pixel is determined by using the
corresponding value of X as an index into map. Values of X therefore must be
integers. The value 1 points to the first row in map, the value 2 points to the
second row, and so on. You can display an indexed image with the statements

image(X); colormap(map)

A colormap is often stored with an indexed image and is automatically loaded
with the image when you use the imread function. However, you are not
limited to using the default colormap — you can use any colormap that you
choose. The description for the property CDataMapping describes how to alter
the type of mapping used.

The next figure illustrates the structure of an indexed image. The pixels in
the image are represented by integers, which are pointers (indices) to color
values stored in the colormap.

6-5

6 Displaying Bit-Mapped Images

The relationship between the values in the image matrix and the colormap
depends on the class of the image matrix. If the image matrix is of class
double, the value 1 points to the first row in the colormap, the value 2 points
to the second row, and so on. If the image matrix is of class uint8 or uint16,
there is an offset — the value 0 points to the first row in the colormap, the
value 1 points to the second row, and so on. The offset is also used in graphics
file formats, to maximize the number of colors that can be supported. In the
image above, the image matrix is of class double. Because there is no offset,
the value 5 points to the fifth row of the colormap.

Intensity Images
An intensity image is a data matrix, I, whose values represent intensities
within some range. MATLAB stores an intensity image as a single matrix,
with each element of the matrix corresponding to one image pixel. The matrix
can be of class double, uint8, or uint16. While intensity images are rarely
saved with a colormap, MATLAB uses a colormap to display them. In essence,
MATLAB handles intensity images as indexed images.

This figure depicts an intensity image of class double.

6-6

Image Types

To display an intensity image, use the imagesc (“image scale”) function, which
enables you to set the range of intensity values. imagesc scales the image
data to use the full colormap. Use the two-input form of imagesc to display an
intensity image. For example,

imagesc(I,[0 1]); colormap(gray);

The second input argument to imagesc specifies the desired intensity range.
The function imagesc displays I by mapping the first value in the range
(usually 0) to the first colormap entry, and the second value (usually 1) to the
last colormap entry. Values in between are linearly distributed throughout
the remaining colormap colors.

Although it is conventional to display intensity images using a grayscale
colormap, it is possible to use other colormaps. For example, the following
statements display the intensity image I in shades of blue and green.

imagesc(I,[0 1]); colormap(winter);

6-7

6 Displaying Bit-Mapped Images

To display a matrix A with an arbitrary range of values as an intensity image,
use the single-argument form of imagesc. With one input argument, imagesc
maps the minimum value of the data matrix to the first colormap entry, and
maps the maximum value to the last colormap entry. For example, these two
lines are equivalent.

imagesc(A); colormap(gray)
imagesc(A,[min(A(:)) max(A(:))]); colormap(gray)

RGB (Truecolor) Images
An RGB image, sometimes referred to as a “truecolor” image, is stored in
MATLAB as an m-by-n-by-3 data array that defines red, green, and blue color
components for each individual pixel. RGB images do not use a palette. The
color of each pixel is determined by the combination of the red, green, and
blue intensities stored in each color plane at the pixel’s location. Graphics
file formats store RGB images as 24-bit images, where the red, green, and
blue components are 8 bits each. This yields a potential of 16 million colors.
The precision with which a real-life image can be replicated has led to the
nickname “truecolor image.”

An RGB MATLAB array can be of class double, uint8, or uint16. In an RGB
array of class double, each color component is a value between 0 and 1. A pixel
whose color components are (0,0,0) is displayed as black, and a pixel whose
color components are (1,1,1) is displayed as white. The three color components
for each pixel are stored along the third dimension of the data array. For
example, the red, green, and blue color components of the pixel (10,5) are
stored in RGB(10,5,1), RGB(10,5,2), and RGB(10,5,3), respectively.

To display the truecolor image RGB, use the image function. For example,

image(RGB)

6-8

Image Types

The next figure shows an RGB image of class double.

To determine the color of the pixel at (2,3), you would look at the RGB triplet
stored in (2,3,1:3). Suppose (2,3,1) contains the value 0.5176, (2,3,2) contains
0.1608, and (2,3,3) contains 0.0627. The color for the pixel at (2,3) is

0.5176 0.1608 0.0627

6-9

6 Displaying Bit-Mapped Images

Working with 8-Bit and 16-Bit Images

In this section...

“8-Bit and 16-Bit Indexed Images” on page 6-10

“8-Bit and 16-Bit Intensity Images” on page 6-11

“8-Bit and 16-Bit RGB Images” on page 6-11

“Mathematical Operations Support for uint8 and uint16” on page 6-12

“Other 8-Bit and 16-Bit Array Support” on page 6-13

“Converting an 8-Bit RGB Image to Grayscale” on page 6-13

“Summary of Image Types and Numeric Classes” on page 6-17

8-Bit and 16-Bit Indexed Images
MATLAB usually works with double-precision (64-bit) floating-point numbers.
However, to reduce memory requirements for working with images, MATLAB
provides support for storing images as 8-bit or 16-bit unsigned integers by
using the numeric classes uint8 or uint16, respectively. An image whose
data matrix has class uint8 is called an 8-bit image; an image whose data
matrix has class uint16 is called a 16-bit image.

The image function can display 8- or 16-bit images directly without converting
them to double precision. However, image interprets matrix values slightly
differently when the image matrix is uint8 or uint16. The specific
interpretation depends on the image type.

If the class of X is uint8 or uint16, its values are offset by 1 before being
used as colormap indices. The value 0 points to the first row of the colormap,
the value 1 points to the second row, and so on. The image command
automatically supplies the proper offset, so the display method is the same
whether X is double, uint8, or uint16.

image(X); colormap(map);

The colormap index offset for uint8 and uint16 data is intended to support
standard graphics file formats, which typically store image data in indexed
form with a 256-entry colormap. The offset allows you to manipulate and

6-10

Working with 8-Bit and 16-Bit Images

display images of this form in MATLAB using the more memory-efficient
uint8 and uint16 arrays.

Because of the offset, you must add 1 to convert a uint8 or uint16 indexed
image to double. For example,

X64 = double(X8) + 1;
or

X64 = double(X16) + 1;

Conversely, subtract 1 to convert a double indexed image to uint8 or uint16.

X8 = uint8(X64 - 1);
or

X16 = uint16(X64 - 1);

8-Bit and 16-Bit Intensity Images
Whereas the range of double image arrays is usually [0, 1], the range of 8-bit
intensity images is usually [0, 255] and the range of 16-bit intensity images is
usually [0, 65535]. Use the following command to display an 8-bit intensity
image with a grayscale colormap.

imagesc(I,[0 255]); colormap(gray);

To convert an intensity image from double to uint16, first multiply by 65535.

I16 = uint16(round(I64*65535));

Conversely, divide by 65535 after converting a uint16 intensity image to
double.

I64 = double(I16)/65535;

8-Bit and 16-Bit RGB Images
The color components of an 8-bit RGB image are integers in the range [0, 255]
rather than floating-point values in the range [0, 1]. A pixel whose color
components are (255,255,255) is displayed as white. The image command
displays an RGB image correctly whether its class is double, uint8, or uint16.

image(RGB);

6-11

6 Displaying Bit-Mapped Images

To convert an RGB image from double to uint8, first multiply by 255.

RGB8 = uint8(round(RGB64*255));

Conversely, divide by 255 after converting a uint8 RGB image to double.

RGB64 = double(RGB8)/255

To convert an RGB image from double to uint16, first multiply by 65535.

RGB16 = uint16(round(RGB64*65535));

Conversely, divide by 65535 after converting a uint16 RGB image to double.

RGB64 = double(RGB16)/65535;

Mathematical Operations Support for uint8 and
uint16
To use the following MATLAB functions with uint8 and uint16 data, first
convert the data to type double: conv2, convn, fft2, fftn. For example, if
X is a uint8 image, cast the data to type double:

fft(double(X))

In these cases, the output is always double.

The sum function returns results in the same type as its input, but provides
an option to use double precision for calculations.

Integer Mathematics in MATLAB
See “Arithmetic Operations on Integer Data Types” for more information on
how mathematical functions work with data types that are not doubles.

Most of the functions in Image Processing Toolbox accept uint8 and uint16
input. If you plan to do sophisticated image processing on uint8 or uint16
data, you should consider adding Image Processing Toolbox to your MATLAB
computing environment.

6-12

Working with 8-Bit and 16-Bit Images

Other 8-Bit and 16-Bit Array Support
MATLAB supports several other operations on uint8 and uint16 arrays,
including

• Reshaping, reordering, and concatenating arrays using the functions
reshape, cat, permute, and the [] and ' operators

• Saving and loading uint8 and uint16 arrays in MAT-files using save and
load. (Remember that if you are loading or saving a graphics file format
image, you must use the commands imread and imwrite instead.)

• Locating the indices of nonzero elements in uint8 and uint16 arrays using
find. However, the returned array is always of class double.

• Relational operators

Converting an 8-Bit RGB Image to Grayscale
MATLAB can perform arithmetic operations on integer data, which enables
you to convert image types without first converting the numeric class of the
image data.

This example reads an 8-bit RGB image into MATLAB and converts it to a
grayscale image.

rgb_img = imread('ngc6543a.jpg'); % Load the image
image(rgb_img) % Display the RGB image

6-13

6 Displaying Bit-Mapped Images

100 200 300 400 500 600

100

200

300

400

500

600

Now calculate the monochrome luminance by combining the RGB values
according to the NTSC standard, which applies coefficients related to the
eye’s sensitivity to RGB colors.

I = .2989*rgb_img(:,:,1)...
+.5870*rgb_img(:,:,2)...
+.1140*rgb_img(:,:,3);

I is an intensity image with integer values ranging from a minimum of zero,

min(I(:))
ans =

6-14

Working with 8-Bit and 16-Bit Images

0

to a maximum of 255,

max(I(:))
ans =
255

To display the image, use a grayscale colormap with 256 values. This avoids
the need to scale the data-to-color mapping, which would be required if you
used a colormap of a different size. You can use the imagesc function in cases
where the colormap does not contain one entry for each data value.

Now display the image in a new figure using the gray colormap.

figure; colormap(gray(256)); image(I)

6-15

6 Displaying Bit-Mapped Images

100 200 300 400 500 600

100

200

300

400

500

600

Related Information
Other colormaps with a range of colors that vary continuously from dark to
light can produce usable images. For example, try colormap(summer(256))
for a classic oscilloscope look. See colormap for more choices.

The brighten function enables you to increase or decrease the color
intensities in a colormap to compensate for computer display differences or to
enhance the visibility of faint or bright regions of the image (at the expense of
the opposite end of the range).

6-16

Working with 8-Bit and 16-Bit Images

Summary of Image Types and Numeric Classes
This table summarizes the way MATLAB interprets data matrix elements as
pixel colors, depending on the image type and data class.

Image Type double Data uint8 or uint16 Data

Indexed Image is an m-by-n array of
integers in the range [1, p].

Colormap is a p-by-3 array of
floating-point values in the
range [0, 1].

Image is an m-by-n array of
integers in the range [0, p –
1].

Colormap is a p-by-3 array of
floating-point values in the
range [0, 1].

Intensity Image is an m-by-n array of
floating-point values that are
linearly scaled by MATLAB
to produce colormap indices.
Typical range of values is [0,
1].

Colormap is a p-by-3 array of
floating-point values in the
range [0, 1] and is typically
grayscale.

Image is an m-by-n array
of integers that are linearly
scaled by MATLAB to
produce colormap indices.
The typical range of values
is [0, 255] or [0, 65535].

Colormap is a p-by-3 array of
floating-point values in the
range [0, 1] and is typically
grayscale.

RGB
(Truecolor)

Image is an m-by-n-by-3
array of floating-point values
in the range [0, 1].

Image is an m-by-n-by-3
array of integers in the range
[0, 255] or [0, 65535].

6-17

6 Displaying Bit-Mapped Images

Reading, Writing, and Querying Graphics Image Files

In this section...

“Working with Image Formats” on page 6-18

“Reading a Graphics Image” on page 6-19

“Writing a Graphics Image” on page 6-19

“Subsetting a Graphics Image (Cropping)” on page 6-20

“Obtaining Information About Graphics Files” on page 6-21

Working with Image Formats
In its native form, a graphics file format image is not stored as a MATLAB
matrix, or even necessarily as a matrix. Most graphics files begin with a
header containing format-specific information tags, and continue with bitmap
data that can be read as a continuous stream. For this reason, you cannot use
the standard MATLAB I/O commands load and save to read and write a
graphics file format image.

MATLAB provides special functions for reading and writing image data from
graphics file formats. To read a graphics file format image use imread; to
write a graphics file format image, use imwrite; to obtain information about
the nature of a graphics file format image, use imfinfo.

This table gives a clearer picture of which MATLAB commands should be
used with which image types.

Procedure Functions to Use

Load or save a matrix as a MAT-file load

save

Load or save graphics file format image, e.g.
BMP, TIFF

imread

imwrite

6-18

Reading, Writing, and Querying Graphics Image Files

Procedure Functions to Use

Display any image loaded into MATLAB image

imagesc

Utilities imfinfo

ind2rgb

Reading a Graphics Image
The function imread reads an image from any supported graphics image file
in any of the supported bit depths. Most of the images that you will read
are 8-bit. When these are read into memory, MATLAB stores them as class
uint8. The main exception to this rule is that MATLAB supports 16-bit data
for PNG and TIFF images. If you read a 16-bit PNG or TIFF image, it is
stored as class uint16.

Note For indexed images, imread always reads the colormap into an array
of class double, even though the image array itself can be of class uint8 or
uint16.

The following statement reads the image ngc6543a.jpg into the workspace
variable RGB and then displays the image using the image function.

RGB = imread('ngc6543a.jpg');
image(RGB)

You can write (save) image data using the imwrite function. The statements

load clown % An image that is included with MATLAB
imwrite(X,map,'clown.bmp')

create a BMP file containing the clown image.

Writing a Graphics Image
When you save an image using imwrite, the default behavior is to
automatically reduce the bit depth to uint8. Many of the images used in

6-19

6 Displaying Bit-Mapped Images

MATLAB are 8-bit, and most graphics file format images do not require
double-precision data. One exception to the MATLAB rule for saving the
image data as uint8 is that PNG and TIFF images can be saved as uint16.
Because these two formats support 16-bit data, you can override the MATLAB
default behavior by specifying uint16 as the data type for imwrite. The
following example shows writing a 16-bit PNG file using imwrite.

imwrite(I,'clown.png','BitDepth',16);

Subsetting a Graphics Image (Cropping)
Sometimes you want to work with only a portion of an image file or would like
to break it up into subsections. You can specify the pixel coordinates of the
rectangular subsection you want to work with and save it to a file from the
command line. If you do not know the coordinates of the corner points of the
subsection, you can choose them interactively, as the following example shows:

% Read demo RGB image from graphics file.
im = imread('street2.jpg');

% Display image with true aspect ratio
image(im); axis image

% Use ginput to select corner points of a rectangular
% region by pointing and clicking the mouse twice
p = ginput(2);

% Get the x and y corner coordinates as integers
sp(1) = min(floor(p(1)), floor(p(2))); %xmin
sp(2) = min(floor(p(3)), floor(p(4))); %ymin
sp(3) = max(ceil(p(1)), ceil(p(2))); %xmax
sp(4) = max(ceil(p(3)), ceil(p(4))); %ymax

% Index into the original image to create the new image
MM = im(sp(2):sp(4), sp(1): sp(3),:);

% Display the subsetted image with appropriate axis ratio
figure; image(MM); axis image

% Write image to graphics file.
imwrite(MM,'street2_cropped.tif')

6-20

Reading, Writing, and Querying Graphics Image Files

If you knew what the image corner coordinates should be, you could manually
define sp in the above example rather than using ginput.

You can also make MATLAB display a "rubber band box" as you interact with
the image to subset it. See the code example for rbbox for details. For further
information, see the documentation for the MATLAB functions ginput and
image.

Obtaining Information About Graphics Files
The imfinfo function enables you to obtain information about graphics files
in any of the standard formats listed above. The information you obtain
depends on the type of file, but it always includes at least the following:

• Name of the file, including the directory path if the file is not in the current
directory

• File format

• Version number of the file format

• File modification date

• File size in bytes

• Image width in pixels

• Image height in pixels

• Number of bits per pixel

• Image type: RGB (truecolor), intensity (grayscale), or indexed

6-21

6 Displaying Bit-Mapped Images

Displaying Graphics Images

In this section...

“Summary of Image Types and Display Methods” on page 6-22

“Controlling Aspect Ratio and Display Size” on page 6-23

Summary of Image Types and Display Methods
To display a graphics file image, use either image or imagesc. For example,
assuming RGB is an image,

figure('Position',[100 100 size(RGB,2) size(RGB,1)]);
image(RGB); set(gca,'Position',[0 0 1 1])

0

0

0

0

0

0

(This image was created with the support of the Space Telescope Science
Institute, operated by the Association of Universities for Research in

6-22

Displaying Graphics Images

Astronomy, Inc., from NASA contract NAs5-26555, and is reproduced with
permission from AURA/STScI. Digital renditions of images produced by
AURA/STScI are obtainable royalty-free. Credits: J.P. Harrington and K.J.
Orkowski (University of Maryland), and NASA.)

This table summarizes display methods for the three types of images.

Image Type Display Commands Uses Colormap Colors

Indexed image(X);
colormap(map)

Yes

Intensity imagesc(I,[0 1]);
colormap(gray)

Yes

RGB (truecolor) image(RGB) No

Controlling Aspect Ratio and Display Size
The image function displays the image in a default-sized figure and axes.
MATLAB stretches or shrinks the image to fit the display area. Sometimes
you want the aspect ratio of the display to match the aspect ratio of the image
data matrix. The easiest way to do this is with the command axis image.

For example, these commands display the earth image in the demos directory
using the default figure and axes positions.

load earth
image(X); colormap(map)

6-23

6 Displaying Bit-Mapped Images

50 100 150 200 250

50

100

150

200

250

The elongated globe results from stretching the image display to fit the
axes position. Use the axis image command to force the aspect ratio to be
one-to-one.

axis image

6-24

Displaying Graphics Images

50 100 150 200 250

50

100

150

200

250

The command axis image works by setting the DataAspectRatio property of
the axes object to [1 1 1]. See axis and axes for more information on how to
control the appearance of axes objects.

Sometimes you might want to display an image so that each element in the
data matrix corresponds to a single screen pixel. To display an image with
this one-to-one matrix-element-to-screen-pixel mapping, you need to resize
the figure and axes. For example, these commands display the earth image so
that one data element corresponds to one screen pixel.

[m,n] = size(X);
figure('Units','pixels','Position',[100 100 n m])
image(X); colormap(map)
set(gca,'Position',[0 0 1 1])

6-25

6 Displaying Bit-Mapped Images

The figure’s Position property is a four-element vector that specifies the
figure’s location on the screen as well as its size. The second statement above
positions the figure so that its lower left corner is at position (100,100) on the
screen and so that its width and height match the image width and height.
Setting the axes position to [0 0 1 1] in normalized units creates an axes that
fills the figure. The resulting picture is shown.

0

0

0

0

0

6-26

The Image Object and Its Properties

The Image Object and Its Properties

In this section...

“Image CData” on page 6-27

“Image CDataMapping” on page 6-28

“XData and YData” on page 6-28

“EraseMode” on page 6-31

“Adding Text to Images” on page 6-33

“Additional Techniques for Fast Image Updating” on page 6-34

Image CData

Note The commands image and imagesc create image objects. Image objects
are children of axes objects, as are line, patch, surface, and text objects. Like
all Handle Graphics objects, the image object has a number of properties
you can set to fine-tune its appearance on the screen. The most important
properties of the image object with respect to appearance are CData,
CDataMapping, XData, YData and Erasemode. These properties are discussed
in this and the following sections. For detailed information about these and
all the properties of the image object, see image.

The CData property of an image object contains the data array. In the
commands below, h is the handle of the image object created by image, and
the matrices X and Y are the same.

h = image(X); colormap(map)
Y = get(h,'CData');

The dimensionality of the CData array controls whether MATLAB displays
the image using colormap colors or as an RGB image. If the CData array is
two-dimensional, then the image is either an indexed image or an intensity
image, and in either case the image is displayed using colormap colors. If, on
the other hand, the CData array is m-by-n-by-3, then MATLAB displays it as
a truecolor image, ignoring the colormap colors.

6-27

6 Displaying Bit-Mapped Images

Image CDataMapping
The CDataMapping property controls whether an image is indexed or intensity.
An indexed image is displayed by setting the CDataMapping property to
'direct', in which case the values of the CData array are used directly as
indices into the figure’s colormap. When the image command is used with a
single input argument, it sets the value of CDataMapping to 'direct'.

h = image(X); colormap(map)
get(h,'CDataMapping')
ans =

direct

Intensity images are displayed by setting the CDataMapping property to
'scaled'. In this case the CData values are linearly scaled to form colormap
indices. The scale factors are controlled by the axes CLim property. The
imagesc function creates an image object whose CDataMapping property is
set to 'scaled', and it also adjusts the CLim property of the parent axes.
For example,

h = imagesc(I,[0 1]); colormap(map)
get(h,'CDataMapping')
ans =

scaled

get(gca,'CLim')
ans =

[0 1]

XData and YData
The XData and YData properties control the coordinate system of the image.
For an m-by-n image, the default XData is [1 n] and the default YData is [1
m]. These settings imply the following:

• The left column of the image has an x-coordinate of 1.

• The right column of the image has an x-coordinate of n.

6-28

The Image Object and Its Properties

• The top row of the image has a y-coordinate of 1.

• The bottom row of the image has a y-coordinate of m.

For example, the statements

X = [1 2 3 4; 5 6 7 8; 9 10 11 12];
h = image(X); colormap(colorcube(12))
xlabel x; ylabel y

produce the following picture.

x

y

1 2 3 4

0.5

1

1.5

2

2.5

3

3.5

The XData and YData properties of the resulting image object have the default
values shown below.

get(h,'XData')
ans =

1 4

get(h,'YData')
ans =

6-29

6 Displaying Bit-Mapped Images

1 3

However, you can override the default settings to specify your own coordinate
system. For example, the statements

X = [1 2 3 4; 5 6 7 8; 9 10 11 12];
image(X,'XData',[-1 2],'YData',[2 4]); colormap(colorcube(12))
xlabel x; ylabel y

produce the following picture.

x

y

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

1.5

2

2.5

3

3.5

4

4.5

6-30

The Image Object and Its Properties

EraseMode
The EraseMode property controls how MATLAB updates the image on the
screen if the image object’s CData property changes. The default setting of
EraseMode is 'normal'. With this setting, if you change the CData of the
image object using the set command, MATLAB erases the image on the
screen before redrawing the image using the new CData array. The erase step
is a problem if you want to display a series of images quickly and smoothly.

You can achieve fast and visually smooth updates of displayed images as
you change the image CData by setting the image object EraseMode property
to 'none'. With this setting, MATLAB does not take the time to erase the
displayed image — it immediately draws the updated image when the CData
changes.

Suppose, for example, that you have an m-by-n-by-3-by-x array A, containing x
different truecolor images of the same size. You can display them dynamically
with

h = image(A(:,:,:,1),'EraseMode','none');
for i = 2:x

set(h,'CData',A(:,:,:,i))
end

Rather than creating a new image object each time through the loop, this
code simply changes the CData of the image object (which was created on the
first line using the image command). Because the image EraseMode is set to
'none', changes to the CData do not cause the image on the screen to be
erased each time through the loop.

Try the following code example that displays the mri.mat medical image
sequence that ships with MATLAB; it sets erasemode to none, so that there is
no flashing between images whenCData is updated:

load mri
x = size(D);
frames = x(4);
instant = 0.05; % Seconds to pause between frames
h = image(D(:,:,:,1),'EraseMode','none');
colormap(map); axis image;
% Color axes yellow to illustrate differences in erase modes

6-31

6 Displaying Bit-Mapped Images

set(gca,'color','y')
for i = 2:frames % Loop to the last image, replacing CData

set(h,'CData',D(:,:,:,i))
pause(instant)

end
for i =frames:-1:1 % Loop back to the first image

set(h,'CData',D(:,:,:,i))
pause(instant)

end

The first and last frames are the same and look like this:

Now set erasemode to normal or background and again execute the code in the
for loops; you will see the yellow background flash in between image updates.

6-32

The Image Object and Its Properties

Note Setting erasemode to xor can have unpredictable and undesirable
results, depending on your platform and its display system, and may not be
particularly efficient.

When you are using this animation technique with larger data sets, in order
to achieve maximum speed you can turn off double buffering for the figure, as
follows:

set(gcf,'doubleBuffer','off')

Adding Text to Images
You can use basic array indexing to rasterize text strings into an existing
image, as follows:

Draw the text strings using text, and then capture a bitmapped version of
them using getframe. Then find the black pixels and convert their subscripts
to indexes using sub2ind. Use these subscripts to "paint" the text into the
image into which you want to add the text string, then save that image. Here
is an example using the image in the demo MAT-file mandrill.mat:

% Create the text in an axis:
t = text(.05,.1,'Mandrill Face', ...

'FontSize',12, 'FontWeight','demi');

% Capture the text from the screen:
F = getframe(gca,[10 10 200 200]);

% Close the figure:
close

% Select any plane of the resulting RGB image:
c = F.cdata(:,:,1);

% Note: If you have Image Processing Toolbox installed,
% you can convert the RGB data from the frame to black or white:
% c = rgb2ind(F.cdata,2);

% Determine where the text was (black is 0):

6-33

6 Displaying Bit-Mapped Images

[i,j] = find(c == 0);

% Read in or load the image that is to contain the text:
load mandrill

% Use the size of that image, plus the row/column locations
% of the text, to determine locations in the new image:
ind = sub2ind(size(X),i,j);

% Index into new image, replacing pixels with white:
X(ind) = uint8(255);

% Display and color the new image:
imagesc(X)
axis image
colormap(bone)

Additional Techniques for Fast Image Updating
To increase the rate at which MATLAB can update the CData property of
an image object you can optimize CData and set some related figure and
axes properties:

6-34

The Image Object and Its Properties

• Use the smallest datatype possible. Using a uint8 datatype for your image
will be faster than using a double datatype.

Part of the process of setting the image’s CData property includes copying
the matrix for the image’s use. The overall size of the matrix is dependent
on the size of its individual elements. Using smaller individual elements
(i.e., a smaller datatype) decreases matrix size,and reduces the amount
of time needed to copy the matrix.

• Use the smallest acceptable matrix.

If the speed at which the image is displayed is your highest priority, you
may need to compromise on the size and quality of the image. Again,
decreasing the size will reduce the time needed to copy the matrix.

• Make the axes exactly the same size (in pixels) as the CData matrix.

Maintaining a one-to-one correspondence between the data and the
onscreen pixels will eliminate the need for interpolation. For example:

set(gca,'Units','pixels')
pos = get(gca,'Position')
width = pos(3);
height = pos(4);

When the size of your CData exactly equals [width height], each element
of the array corresponds directly to a pixel. Otherwise, MATLAB must
interpolate the values in the "CData" array, so it will fit the axes at their
current size.

• Set the limit mode properties (XLimMode and YLimMode) of your axes to
manual.

If they are set to auto, then every time an object (such as an image, line,
patch, etc.) changes some aspect of its data, the axes must recalculate its
related properties. For example, if you specify

image(firstimage);
set(gca, 'xlimmode','manual',...
'ylimmode','manual',...
'zlimmode','manual',...
'climmode','manual',...
'alimmode','manual');

6-35

6 Displaying Bit-Mapped Images

the axes will not recalculate any of the limit values before redrawing the
image.

• Set the figure’s DoubleBuffer property to off.

set(gcf,'doublebuffer','off');

Set the DoubleBuffer property on for to obtain flicker-free animation.
However, to maximize rendering speed, set DoubleBuffer to off.

• Alternately, you might consider using a movie object if the main point of
your task is to simply display a series of images onscreen.

The MATLAB movie object utilizes underlying system graphics resources
directly, instead of executing MATLAB object code. This is faster than
repeatedly setting an image’s CData property, as outlined above.

6-36

Printing Images

Printing Images
When you set the axes Position to [0 0 1 1] so that it fills the entire
figure, the aspect ratio is not preserved when you print because MATLAB
adjusts the figure size when printing according to the figure’s PaperPosition
property. To preserve the image aspect ratio when printing, set the figure’s
PaperPositionMode to 'auto' from the command line.

set(gcf,'PaperPositionMode','auto')
print

When PaperPositionMode is set to 'auto', the width and height of the
printed figure are determined by the figure’s dimensions on the screen, and
the figure position is adjusted to center the figure on the page. If you want
the default value of PaperPositionMode to be 'auto', enter this line in
your startup.m file.

set(0,'DefaultFigurePaperPositionMode','auto')

Printed images may not always be the same size as they are on your monitor.
The size depends on accurately specifying the numbers of pixels per inch
that you monitor is displaying.

To specify the pixels-per-inch on your display, you need to do the following
(in Windows):

1 Go into your Display Properties by right-clicking on an empty space on
your desktop and choose Properties.

2 Click the Settings pane

3 Click the Advanced pushbutton and choose the General pane

4 Switch DPI setting to Custom setting and hold a real ruler up to the picture
of the ruler on the screen and drag until they match.

Until you do this, neither MATLAB nor any other software can determine how
big images on the screen are, and printed images cannot match the size.

Note that on the Macintosh platform, pixels per inch is hard-coded to 72.

6-37

6 Displaying Bit-Mapped Images

Converting the Data or Graphic Type of Images
Converting between data types changes the way MATLAB interprets the
image data. If you want the resulting array to be interpreted properly as
image data, you need to rescale or offset the data when you convert it. (See
the earlier sections “Image Types” on page 6-5 and “8-Bit and 16-Bit Indexed
Images” on page 6-10 for more information about offsets.)

For certain operations, it is helpful to convert an image to a different image
type. For example, if you want to filter a color image that is stored as an
indexed image, you should first convert it to RGB format. To do this efficiently,
use the ind2rgb function, which originated in Image Processing Toolbox.
When you apply the filter to the RGB image, MATLAB filters the intensity
values in the image, as is appropriate. If you attempt to filter the indexed
image, MATLAB simply applies the filter to the indices in the indexed image
matrix, and the results may not be meaningful.

You can also perform certain conversions just using MATLAB syntax. For
example, if you want to convert a grayscale image to RGB, you can concatenate
three copies of the original matrix along the third dimension.

RGB = cat(3,I,I,I);

The resulting RGB image has identical matrices for the red, green, and blue
planes, so the image is displayed as shades of gray.

Sometimes you will want to change the graphics format of an image, perhaps
for compatibility with another software product. This process is very
straightforward. For example, to convert an image from a BMP to a PNG,
load the BMP using imread, set the data type to uint8, uint16, or double,
and then save the image using imwrite, with 'PNG' specified as your target
format. See imread and imwrite for the specifics of which bit depths are
supported for the different graphics formats, and for how to specify the format
type when writing an image to file.

6-38

7

Printing and Exporting

Overview of Printing and Exporting
(p. 7-3)

Introduction to basic operations,
interfaces, parameters, and defaults
associated with printing and
exporting

How to Print or Export (p. 7-11) Step-by-step instructions for
printing a figure to a printer or to
a file, and for exporting a figure
to a graphics-format file or to the
clipboard

Examples of Printing and Exporting
(p. 7-36)

Examples that provide you with the
information you need to submit a
simple print or export job

Changing a Figure’s Settings
(p. 7-43)

How to change the default settings
for parameters, such as figure size,
paper orientation, background color,
and rendering method

Choosing a Graphics Format (p. 7-73) Factors to consider when choosing
a graphics format for exporting
to a file, and information about
commonly used formats

7 Printing and Exporting

Choosing a Printer Driver (p. 7-85) Factors to consider when using
a nondefault print driver, and
information specific to drivers
supported by MATLAB

Troubleshooting (p. 7-94) Solutions to frequently asked
questions and common problems
encountered while printing or
exporting graphics

7-2

Overview of Printing and Exporting

Overview of Printing and Exporting

In this section...

“Print and Export Operations” on page 7-3

“Graphical User Interfaces” on page 7-3

“Command Line Interface” on page 7-4

“Specifying Parameters and Options” on page 7-6

“Default Settings and How to Change Them” on page 7-7

Print and Export Operations
There are four basic operations that you can perform in printing or
transferring figures you’ve created in MATLAB to specific file formats for
other applications to use.

Operation Description

Print Send a figure from the screen directly to the printer.

Print to File Write a figure to a PostScript file to be printed later.

Export to File Export a figure in graphics format to a file, so that you can
import it into an application.

Export to Clipboard Copy a figure to the Windows clipboard, so that you can paste it
into an application.

Graphical User Interfaces
In addition to typing MATLAB commands, you can use interactive tools for
either Microsoft Windows or UNIX to print and export graphics. The table
below lists the GUIs available for doing this and explains how to open them
from figure windows.

7-3

7 Printing and Exporting

Dialog Box How to Open Description

Print (Windows and UNIX) File > Print or printdlg
function

Send figure to the printer,
select the printer, print to file,
and several other options

Print Preview File > Print Preview or
printpreview function

View and adjust the final
output

Export File > Export Export the figure in graphics
format to a file

Copy Options Edit > Copy Options Set format, figure size, and
background color for Copy to
Clipboard

Figure Copy Template File > Preferences Change text, line, axes, and UI
control properties

You can open the Print and Print Preview dialog boxes from an M-file or from
the command line with the printdlg and printpreview functions.

Command Line Interface
You can print a MATLAB figure from the command line or from an M-file.
Use the set function to set the properties that control how the printed figure
looks. Use the print function to specify the output format and start the print
or export operation.

Note Printed output from MATLAB and Print Previews of it are not
guaranteed to duplicate the look of figures on your display screen in every
detail. Many factors, including the complexity of the figure, available fonts,
and whether a native printer driver or a driver built in to MATLAB is used,
affect the final output and can cause printed output to differ from what you
see on your screen.

Modifying Properties with set
The set function changes the values of properties that control the look of a
figure and objects within it. These properties are stored with the figure; some

7-4

Overview of Printing and Exporting

are also properties of children such as axes or annotations. When you change
one of the properties, the new value is saved with the figure and affects the
look of the figure each time you print it until you change the setting again.

To change the print properties of the current figure, the set command has
the form

set(gcf, 'Property1', value1, 'Property2', value2, ...)

where gcf is a function call that returns the handle of the current figure, and
each property-value pair consists of a named property followed by the value
to which the property is set.

For example,

set(gcf, 'PaperUnits', 'centimeters', 'PaperType', 'A4', ...)

sets the units of measure and the paper size. “Changing a Figure’s Settings”
on page 7-43 describes commonly used print properties. The Figure Properties
reference page contains a complete list of the properties.

Examining Properties with get
You can also use the get function to retrieve the value of a specific property.

a = get(gcf, 'Property')

Note You can also peruse and modify figure and other object properties
with the Property Inspector GUI, which you can open with the inspect
command. To open the current figure in the Property Inspector, type
inspect(gcf)

Printing and Exporting with print
The print function performs any of the four actions shown in the table below.
You control what action is taken, depending on the presence or absence of
certain arguments.

7-5

7 Printing and Exporting

Action Print Command

Print a figure to a printer print

Print a figure to a file for later
printing

print filename

Copy a figure in graphics format to
the clipboard

print -dfileformat

Export a figure to a graphics format
file that you can later import into an
application

print -dfileformat filename

You can also include optional arguments with the print command. For
example, to export Figure No. 2 to file spline2d.eps, with 600 dpi resolution,
and using the EPS color graphics format, use

print -f2 -r600 -depsc spline2d

The functional form of this command is

print('-f2', '-r600', '-depsc', 'spline2d');

Printing on UNIX without a Display
If you run MATLAB with the -nodisplay startup option, or run without the
DISPLAY environment variable set, you can use most print options that apply
to the UNIX platform, but some restrictions apply. See XXX for details.

Specifying Parameters and Options
The table below lists parameters you can modify for the figure to be printed or
exported. To change one of these parameters, use the Print Preview or the
UNIX Print dialog box, or use the set or print function.

See “Changing a Figure’s Settings” on page 7-43 for more detailed instructions.

7-6

Overview of Printing and Exporting

Parameter Description

Figure size Set size of the figure on printed page

Figure position Set position of figure on printed page

Paper size Select printer paper, specified by dimension or
type

Paper orientation Specify way figure is oriented on page

Position mode Specify figure position yourself or have MATLAB
determine position automatically

Graphics format Select format for exported data (e.g., EPS, JPEG)

Resolution Specify how finely your figure is to be sampled

Renderer Select method (algorithm) for drawing graphics

Renderer mode Specify the renderer yourself or have MATLAB
automatically determine which renderer to use

Axes tick marks Keep axes tick marks and limits as shown or have
MATLAB adjust depending on figure size

Background color Keep background color as shown on screen or
force it to white

Line and text color Keep line and text objects as shown on screen or
print them in black and white

UI controls Show or hide all user interface controls in figure

Bounding box Leave space between outermost objects in plot
and edges of its background area

CMYK Automatically convert RGB values to CMYK
values

Character set encoding Select character set for PostScript printers

Default Settings and How to Change Them
If you have not changed the default print and export settings, MATLAB prints
or exports the figure

• 8-by-6 inches with no window frame

7-7

7 Printing and Exporting

• Centered, in portrait format, on 8.5-by-11 inch paper if available

• Using white background color for the figure and axes

• Scaling ticks and limits of the axes to accommodate the printed size

Setting Defaults for a Figure
In general, to change the property settings for a specific figure, follow the
instructions given in the section “Changing a Figure’s Settings” on page 7-43.

Any settings you change with the Print Preview and Print dialog boxes or
with the set function are saved with the figure and affect each printing of the
figure until you change the settings again.

The settings you change with the Figure Copy Template Preferences
and Copy Options Preferences panels alter the figure as it is displayed
on the screen.

Setting Defaults for the Session
MATLAB enables you to set the session defaults for figure properties. Set the
session default for a property using the syntax

set(0, 'DefaultFigurepropertyname', 'value')

where propertyname is one of the named figure properties. This example
sets the paper orientation for all subsequent print operations in the current
MATLAB session.

set(0, 'DefaultFigurePaperOrientation', 'landscape')

The Figure Properties reference page contains a complete list of the properties.

To see what default properties you can set that will be applied to all
subsequent figures in the same MATLAB session, type

set(0,'default')

To see their current settings, type

get(0,'default')

7-8

Overview of Printing and Exporting

Setting Defaults Across Sessions
MATLAB enables you to set the session-to-session defaults for figure
properties, the print driver, and the print function.

Print Device and Print Command. Set the default print driver and the
default print command in your printopt.m file. This file contains instructions
for changing these settings and for displaying the current defaults. Open
printopt.m in your editor by typing the command

edit printopt

Scroll down about 40 lines until you come to this comment line:

%---> Put your own changes to the defaults here (if needed)

Add your changes after that line. For example, to change the default driver,
first find the line that sets dev, and then replace the text string with an
appropriate value. So, to set the default driver to HP LaserJet III, modify
the line to read

dev = '-dljet3';

For the full list of values for dev, see the Drivers section of the print reference
page.

Note If you set dev to be a graphics format, such as -djpeg, MATLAB exports
the figure to that type of file rather than printing it.

Figure Properties. Set the session-to-session default for a property by
including commands like the following in your startup.m file:

set(0, 'DefaultFigurepropertyname', 'value')

where propertyname is one of the named figure properties. For example,

set(0, 'DefaultFigureInvertHardcopy', 'off')

keeps the figure background in the screen color.

7-9

7 Printing and Exporting

This is the same command you use to change a session default, except
by adding it to your startup.m file, it executes automatically every time
MATLAB is invoked.

Note Options you specify in arguments to the print command override
properties set using MATLAB commands or the Print Preview dialog box,
which in turn override any MATLAB default settings specified in printopt.m
or startup.m.

7-10

How to Print or Export

How to Print or Export

In this section...

“Using Print Preview” on page 7-11

“Printing a Figure” on page 7-14

“Printing to a File” on page 7-19

“Exporting to a File” on page 7-21

“Exporting to the Windows or Macintosh Clipboard” on page 7-32

Using Print Preview
Before you print or export a figure, preview the image by selecting Print
Preview from the figure window’s File menu. If necessary, you can use
the set function to adjust specific characteristics of the printed or exported
figure. Adjustments that you make in the Print Preview dialog also set figure
properties; these changes can affect the output you get should you print the
figure later with the print command. See “Changing a Figure’s Settings” on
page 7-43 for details.

7-11

7 Printing and Exporting

Adding a Header to the Printed Page
You can add a header to the page you are about to print by clicking the
Lines/Text tab at the top of the Print Preview dialog box. At the bottom of
that panel are the Header controls, as shown here:

7-12

How to Print or Export

The print header includes any text you want to appear at the top of the printed
page. It can also include the current date. In the Header Text edit box, enter
the text of the header. Under Date Type, select from a number of possible
formats with which to display the current date and/or time. The default is to
include no date. Click the Font button to change the font, font style, font size,
or script type for the header text and date format. If you don’t see the header
as you specified it, click the Refresh button over the preview pane. A page
containing a header plus date in bold italics is shown in the preview below:

7-13

7 Printing and Exporting

Click Print to open the standard print dialog box to print the page. Click
Close to close the dialog box and apply these settings to your figure.

Printing a Figure
This section tells you how to print your figure to a printer:

• “Printing with the Print GUI on Windows” on page 7-15

• “Printing with the Print GUI on UNIX” on page 7-16

• “Printing Using MATLAB Commands” on page 7-19

7-14

How to Print or Export

Printing with the Print GUI on Windows
MATLAB for Windows uses the standard Windows Print dialog box, which
most Windows software products share. To open the Windows Print dialog
box, select Print from the figure window’s File menu or click the Print
button in the Print Preview dialog box.

• To print a figure, first select a printer from the list box, then click OK.

• To save it to a file, click the Print to file check box, click OK, and when
the Print to File window appears, enter the filename you want to save the
figure to. MATLAB creates the file in your current working directory.

Settings you can change in the Windows Print dialog box are as follows:

Properties. To make changes to settings specific to a printer, click the
Properties button. This opens the Windows Document Properties window.

Print range. You can only select All in this panel. The selection does not
affect your printed output.

Copies. Enter the number of copies you want to print.

7-15

7 Printing and Exporting

You can also open the Print dialog programmatically via the printdlg
function.

Printing with the Print GUI on UNIX
MATLAB for UNIX has a Print dialog box containing three tabs. To open the
Print dialog box, select Print from the figure window’s File menu. It opens
showing the General tab’s contents:

To print a figure, click the Name button under Print Service and select
a printer from the list box.

7-16

How to Print or Export

Note MATLAB assumes printers accessed from the Print dialog are
PostScript-enabled. If you want to print to a non-PostScript device, you will
need to use File > Save As and specify the Save as type or issue a print
command specifying the appropriate driver with the -d flag.

The Page Setup tab on the Print dialog looks like this:

You can set paper characteristics and margins with the controls on this tab.
You might want to use the Print Preview dialog instead, however, as it allows
you to do the same things and gives you visual feedback at the same time. For
details, see “Using Print Preview” on page 7-11.

The Appearance Print dialog tab lets you control several aspects of your
print jobs:

7-17

7 Printing and Exporting

The Appearance options include Duplex and Tumble printing, whether a
banner page should precede the printed page, whether to print in color, and
what quality of printing to use. You can also use Print Preview to control
color.

Related settings in the Print Preview dialog box include

Printing in Color. Depending on the capabilities of the printer you are
using, you can print in black and white, grayscale, or color by selecting the
appropriate button in the Color Scale panel of the Print Preview Color
tab. You can also choose a background color that is the same or different
from the figure’s color.

Figure Size and Position on Printed Page. If you want the printed plot
to have the same size as it does on your screen, select Auto (Actual Size,
Centered) on the Layout tab. If you want the printed output to have a
specific size, select Use manual size and position.

7-18

How to Print or Export

See “Setting the Figure Size and Position” on page 7-47 for more information.

Axes Limits and Ticks. To force MATLAB to print the same number of ticks
and the same limit values for the axes as used on the screen, select Keep
screen limits and ticks on the Advanced tab of the Print Preview dialog
box. To let MATLAB scale the limits and ticks of the axes based on the size of
the printed figure, select Recompute limits and ticks.

See “Setting the Axes Ticks and Limits” on page 7-60 for more information.

Printing Using MATLAB Commands
Use the print function to print from the MATLAB command line or from
a program. See “Printing and Exporting with print” on page 7-5 for more
information.

To send the current or most recently active figure to a printer, simply type

print

The Printing Options table on the print reference page shows a full list of
options that you can use with the print function. For example, the following
command prints Figure No. 2 with 600 dpi resolution, using the Canon
BubbleJet BJ200 printer driver:

print -f2 -r600 -dbj200

Printing to a File
Instead of sending your figure to the printer right now, you have the option of
“printing” it to a file, and then sending the file to the printer later on. You can
also append additional figures to the same file using the print command.

This section tells you how to save your figure to a file:

• “Printing to a File with the Print GUI on Windows” on page 7-20

• “Printing to a File with the Print GUI on UNIX” on page 7-20

• “Printing to a File Using MATLAB Commands” on page 7-20

7-19

7 Printing and Exporting

Printing to a File with the Print GUI on Windows

1 To open the Print dialog box, select Print from the figure window’s File
menu.

2 Select the check box labeled Print to file, and click the OK button.

3 The Print to file dialog box appears, allowing you to specify the output
directory and filename.

Printing to a File with the Print GUI on UNIX

1 To open the Print dialog box, select Print from the figure window’s File
menu.

2 Select the radio button labeled File, and either fill in or browse for the
directory and filename.

Printing to a File Using MATLAB Commands
To print the figure to a PostScript file, type

print filename

If you don’t specify the filename extension, MATLAB uses an extension that is
appropriate for the print driver being used.

You can also include an -options argument when printing to a file. For
example, to append the current figure to an existing file, type

print -append filename

The only way to append to a file is by using the print function. There is no
dialog box that enables you to do this.

Note If you print a figure to a file, the file can only be printed and cannot be
imported into another application. If you want to create a figure file that you
can import into an application, see the next section, “Exporting to a File”

7-20

How to Print or Export

Appending Additional Figures to a File. Once you have printed one
figure to a PostScript file, you can append other figures to that same file using
the -append option of the print function. You can only append using the
print function.

This example prints Figure No. 2 to PostScript file myfile.ps, and then
appends Figure No. 3 to the end of the same file:

print -f2 myfile
print -f3 -append myfile

Exporting to a File
Export a figure in a graphics format to a file if you want to import it into
another application, such as a word processor. You can export to a file from
the Windows or UNIX Export Setup dialog box or from the command line.

This section tells you how to export your figure to a file:

• “Using the Export Setup GUI” on page 7-21

• “Exporting Using MATLAB Commands” on page 7-28

It also covers

• “Exporting with getframe” on page 7-29

• “Saving Multiple Figures to an AVI File” on page 7-30

• “Importing MATLAB Graphics into Other Applications” on page 7-30

For further information, see “Choosing a Graphics Format” on page 7-73.

Using the Export Setup GUI
MATLAB displays the export Setup GUI when you select Export Setup from
the File menu of a figure window. This GUI has four dialog boxes that enable
you to adjust the size, rendering, font, and line appearance of your figure
prior to exporting it. You select each of these dialog boxes by clicking Size,
Rendering, Fonts, or Lines from theProperties list. For a description
of each dialog box, see

7-21

7 Printing and Exporting

• “Adjusting the Figure Size” on page 7-22

• “Changing the Rendering” on page 7-23

• “Changing Font Characteristics” on page 7-25

• “Changing Line Characteristics” on page 7-26

Adjusting the Figure Size
Click Size in the Export Setup dialog box to display this dialog box.

The Size dialog box modifies the size of the figure as it will appear when
imported from the export file into your application. If you leave the Width
and Height settings on auto, the figure remains the same size as it appears
on your screen. You can change the size of the figure by entering new values
in the Width and Height text boxes and then clicking Apply to Figure. To
go back to the original settings, click Restore Figure.

To save any settings that you change, or to load settings that you used earlier,
see “Saving and Loading Settings” on page 7-27.

7-22

How to Print or Export

Changing the Rendering
Click Rendering in the Export Setup dialog box to display this dialog box.

You can change the settings in this dialog box as follows:

Colorspace. Use the drop-down list to select a colorspace. Your choices are

• Black and white

• Grayscale

• RGB color

• CMYK color

Custom Color. Click the check box and enter a color to be used for the figure
background. Valid entries are

• white, yellow, magenta, red, cyan, green, blue, or black

• Abbreviated name for the same colors — w, y, m, r, c, g, b, k

• Three-element RGB value — See the help for colorspec for valid values.
Examples: [1 0 1] is magenta. [0 .5 .4] is a dark shade of green.

7-23

7 Printing and Exporting

Custom Renderer. Click the check box and select a renderer from the
drop-down list:

• painters (vector format)

• OpenGL (bitmap format)

• Z-buffer (bitmap format)

Resolution. You can select one of the following from the drop-down list:

• Screen — The same resolution as used on your screen display

• A specific numeric setting — 150, 300, or 600 dpi

• auto — MATLAB selects a suitable setting

Keep axis limits. Click the check box to keep axis tick marks and limits as
shown. If unchecked, have MATLAB adjust depending on figure size.

Show uicontrols. Click the check box to show all user interface controls in
the figure. If unchecked, hide user interface controls.

7-24

How to Print or Export

Changing Font Characteristics
Click Fonts in the Export Setup dialog box to display this dialog box.

You can change the settings in this dialog box as follows:

Custom Size. Click the check box and use the radio buttons to select a
relative or absolute font size for text in the figure.

• Scale font by N % — Increases or decreases the size of all fonts by a
relative amount, N percent. Enter the word auto to have MATLAB select
the appropriate font size.

• With minimum of N points — You can specify a minimum font size when
scaling the font by a percentage.

• Use fixed font size N points — Sets the size of all fonts to an absolute
value, N points.

Custom Name. Click the check box and use the drop-down list to select a
font name from those offered in the drop-down list.

7-25

7 Printing and Exporting

Custom Weight. Click the check box and use the drop-down list to select the
weight or thickness to be applied to text in the figure. Choose from normal,
light, demi, or bold.

Custom Angle. Click the check box and use the drop-down list to select
the angle to be applied to text in the figure. Choose from normal, italic,
or oblique.

Changing Line Characteristics
Click Lines in the Export Setup dialog box to display this dialog box.

You can change the settings in this dialog box as follows:

Custom width. Click the check box and use the radio buttons to select a
relative or absolute line size for the figure.

• Scale line width by N % — Increases or decreases the width of all lines
by a relative amount, N percent. Enter the word auto to have MATLAB
select the appropriate line width.

7-26

How to Print or Export

• With minimum of N points — Specify a minimum line width when
scaling the font by a percentage.

• Use fixed line width N points — Sets the width of all lines to an absolute
value, N points.

Convert solid lines to cycle through line styles. When colored graphics
are imported into an application that does not support color, lines that could
formerly be distinguished by unique color are likely to appear the same. For
example, a red line that shows an input level and a blue line showing output
both appear as black when imported into an application that does not support
colored graphics.

Clicking this check box causes MATLAB to export lines using different line
styles, such as solid, dotted, or dashed lines rather than differentiating
between lines based on color.

Saving and Loading Settings
If you think you might use these export settings at another time, you can save
them now and reload them later. At the bottom of each Export Setup dialog
box, there is a panel labeled Export Styles. To save your current export
styles, type a name into the Save as style named text box, and then click
Save.

If you then click the Load settings from drop-down list, the name of the
style you just saved appears among the choices of export styles you can load.
To load a style, select one of the choices from this list and then click Load.

To delete any style you no longer have use for, select that style name from the
Delete a style drop-down list and click Delete.

Exporting the Figure
When you finish setting the export style for your figure, you can export the
figure to a file by clicking the Export button on the right side of any of the
four Export Setup dialog boxes. As new window labeled Save As opens.

7-27

7 Printing and Exporting

Select a directory to save the file in from the Save in list at the top. Select
a file type for your file from the Save as type drop-down list at the bottom,
and then enter a file name in the File name text box. Click the Save button
to export the file.

For information on the graphics file formats supported by MATLAB, see
“Choosing a Graphics Format” on page 7-73.

Exporting Using MATLAB Commands
Use the print function to print from the MATLAB command line or from
a program. See “Printing and Exporting with print” on page 7-5 for basic
information on printing from the command line.

To export the current or most recently active figure, type

print -dfileformat filename

7-28

How to Print or Export

where fileformat is a graphics format supported by MATLAB and filename
is the name you want to give to the export file. MATLAB selects the filename
extension, if you don’t specify it.

You can also specify a number of options with the print function. These are
shown in the Printing Options table on the print reference page.

For example, to export Figure No. 2 to file spline2d.eps, with 600 dpi
resolution and using the EPS color graphics format, type

print -f2 -r600 -depsc spline2d

Graphics file formats are explained in more detail in the sections “Choosing
a Graphics Format” on page 7-73 and “Description of Selected Graphics
Formats” on page 7-80.

Exporting with getframe
You can use the getframe function with imwrite to export a graphic.
getframe is often used in a loop to get a series of frames (figures) with
the intention of creating a movie. Note that no matter what the intrinsic
resolution of the graphics might be, getframe only captures them at screen
resolution.

Some of the benefits of using this export method over using print are

• You can use getframe to capture a portion of the figure, rather than the
whole figure.

• imwrite offers greater flexibility for setting format-specific options, such
as the bit depth and compression.

The drawbacks of using this method are

• imwrite uses built-in MATLAB formats only

• getframe and imwrite are limited to screen resolution

.Consequently, you do not have access to the Ghostscript formats available to
you when exporting with the print function or Export menu.

7-29

7 Printing and Exporting

How to Use getframe and imwrite. Use getframe to capture a figure and
imwrite to save it to a file. getframe returns a structure containing the fields
cdata and colormap. The colormap field is empty on true color displays. The
following example captures the current figure and exports it to a PNG file.

I = getframe(gcf);
imwrite(I.cdata, 'myplot.png');

You should use the proper syntax of imwrite for the type of image captured.
In the example above, the image is captured from a true color display. Because
the colormap field is empty, it is not passed to imwrite.

Example — Exporting a Figure Using getframe and imwrite. This
example offers device independence—it works for either RGB-mode or
indexed-mode monitors.

X=getframe(gcf);
if isempty(X.colormap)

imwrite(X.cdata, 'myplot.bmp')
else

imwrite(X.cdata, X.colormap, 'myplot.tif')
end

For information about available file formats and format-specific options, see
the imwrite reference page. For information about creating a movie from
a series of frames, see the reference pages for getframe and movie, or see
“Movies” on page 5-78 in Chapter 5, “Creating Specialized Plots”.

Saving Multiple Figures to an AVI File
You can also save multiple figures to an AVI file using the MATLAB avifile
and addframe functions. AVI files can be used for animated sequences
and do not need MATLAB to run, but do require an AVI viewer. For more
information, see “Exporting Audio/Video Data” in the MATLAB Programming
documentation.

Importing MATLAB Graphics into Other Applications
You can include MATLAB graphics in a wide variety of applications for
word processing, slide preparation, modification by a graphics program,

7-30

How to Print or Export

presentation on the Internet, and so on. In general, the process is the same
for all applications:

1 Use MATLAB to create the figure you want to import into another
application.

2 Export the MATLAB figure to one of the supported graphics file formats,
selecting a format that is both appropriate for the type of figure and
supported by the target application. See “Choosing a Graphics Format”
on page 7-73 for help.

3 Use the import features of the target application to import the graphics file.

Edit Before You Export. Vector graphics may be fully editable in a few
high-end applications, but most applications do not support editing beyond
simple resizing. Bitmaps cannot be edited with quality results unless you use
a software package devoted to image processing. In general, you should try to
make all the necessary settings while your figure is still in MATLAB.

Importing into Microsoft Applications. To import your exported figure
into a Microsoft application, select Picture from the Insert menu. Then
select From File and navigate to your exported file. If you use the clipboard to
perform your export operations, you can take advantage of the recommended
MATLAB settings for Word and PowerPoint.

Example — Importing an EPS Graphic into LaTeX. This example shows
how to import an EPS file named peaks.eps into LaTeX.

\documentclass{article}

\usepackage{graphicx}

\begin{document}

\begin{figure}[h]
\centerline{\includegraphics[height=10cm]{peaks.eps}}
\caption{Surface Plot of Peaks}
\end{figure}

\end{document}

7-31

7 Printing and Exporting

EPS graphics can be edited after being imported to LaTeX. For example, you
can specify the height in any LaTeX-compatible dimension. To set the height
to 3.5 inches, use the command

height=3.5in

You can use the angle function to rotate the graph. For example, to rotate the
graph 90 degrees, add

angle=90

to the same line of code that sets the height, i.e., [height=10cm,angle=90].

Exporting to the Windows or Macintosh Clipboard
You can export a figure to the Windows or Macintosh clipboard. The formats
used are discussed below.

• “Windows Clipboard Format” on page 7-32

• “Macintosh Clipboard Format” on page 7-33

• “Exporting to the Clipboard Using GUIs” on page 7-33

• “Exporting to the Windows or Macintosh Clipboard Using MATLAB
Commands” on page 7-35

Windows Clipboard Format
MATLAB uses one of two graphics formats to write clipboard data on
Windows: EMF color vector or BMP 8-bit color bitmap.

By default, MATLAB chooses the graphics format for you, based on the
rendering method used to display the figure. For figures rendered with
OpenGL or Z-buffer, MATLAB uses the BMP format. For figures rendered
with Painter’s, the EMF format is used. For information about how MATLAB
selects a rendering method, see “The Default Renderer for MATLAB” on page
7-55.

To override the selection by MATLAB, specify the format of your choice using
either the Windows Copy Options Preferences dialog box, or the -d switch
in the print command.

7-32

How to Print or Export

Macintosh Clipboard Format
On Macintosh (using Java figures, the default), clipboard data are always
written as RGB truecolor bitmaps. The entire figure window is captured.

Exporting to the Clipboard Using GUIs
Before you export the figure to the clipboard, you can use the Copy Options
Preferences dialog box to select a nondefault graphics format, or to adjust
certain figure settings. These settings become the new defaults for all figures
exported to the clipboard.

Note When exporting to the clipboard in Windows metafile format (e.g.,
print -dmeta), the settings from the figure Copy Options Preferences
template are ignored.

To open the Copy Options Preferences dialog box, select Copy Options from
the figure window’s Edit menu. Any changes you make with this dialog box
affect only the clipboard copy of the figure; they do not affect the way the
figure looks on the screen.

7-33

7 Printing and Exporting

Settings you can change in the Copy Options Preferences dialog box are as
follows:

Clipboard format. To copy the figure in EMF color vector format, select
Metafile. To have MATLAB select the format for you, select Preserve
information. To use BMP 8-bit color bitmap format, select Bitmap.
MATLAB uses the metafile format whenever possible.

7-34

How to Print or Export

Note On Macintosh, the Copy Options dialog box does not have the
Clipboard format options.

Figure background color. To keep the background color the same as it
appears on the screen, select Use figure color. To make the background
white, select Force white background. For a background that is
transparent, for example, a slide background to frame the axes part of a
figure, select Transparent background.

Size. Select Match figure screen size to copy the figure as it appears on
the screen, or leave it unselected to use the Width and height options in the
Export Setup dialog to determine its size.

1 Open the Copy Options Preferences dialog box if you need to make any
changes to those preferences used in copying to the clipboard.

2 Click OK to see the new preferences. These will be used for all future
figures exported to the clipboard.

3 Select Copy Figure from the figure window’s Edit menu to copy the figure
to the clipboard.

Exporting to the Windows or Macintosh Clipboard Using
MATLAB Commands
Export to the clipboard using the print function with a graphics format, but
no filename. You must use one of the following clipboard formats: -dbitmap
or -dmeta. These switches create a Windows bitmap (BMP) or an enhanced
metafile (EMF), respectively.

For example, to export the current figure to the clipboard in enhanced
metafile format, type

print -dmeta

Note When printing, the print -d option specifies a printer driver. When
exporting, the print -d option specifies a graphics format.

7-35

7 Printing and Exporting

Examples of Printing and Exporting

In this section...

“Printing a Figure at Screen Size” on page 7-36

“Printing with a Specific Paper Size” on page 7-37

“Printing a Centered Figure” on page 7-37

“Exporting in a Specific Graphics Format” on page 7-39

“Exporting in EPS Format with a TIFF Preview” on page 7-40

“Exporting a Figure to the Clipboard” on page 7-40

Printing a Figure at Screen Size
By default, MATLAB prints your figure at 8-by-6 inches. This size includes
the area delimited by the background. This example shows how to print or
export your figure the same size it is displayed on your screen.

Using the Graphical User Interface

1 Resize your figure window to the size you want it to be when printed.

2 Select Print Preview from the figure window’s File menu, and select
the Layout tab.

3 In the Placement panel, select Auto (Actual Size, Centered).

4 Click Print in the upper right corner to print the figure.

5 The Print dialog box opens for you to print the figure.

Using MATLAB Commands
Set the PaperPositionMode property to auto before printing the figure.

set(gcf, 'PaperPositionMode', 'auto');
print

7-36

Examples of Printing and Exporting

If later you want to print the figure at its original size, set PaperPositionMode
back to 'manual'.

Printing with a Specific Paper Size
By default, MATLAB uses 8.5-by-11 inch paper. This example shows how to
change the paper size to 8.5-by-14 inches by selecting a paper type (Legal).

Using the Graphical User Interface

1 Select Print Preview from the figure window’s File menu, and select
the Layout tab.

2 Select the Legal paper type from the list in the Paper panel. The Width
and Height fields update to 8.5 and 14, respectively.

3 Make sure that Units is set to inches.

4 Click Print in the upper right corner to print the figure.

5 The Print dialog box opens for you to print the figure.

Using MATLAB Commands
Set the PaperUnits property to inches and the PaperType property to Legal.

set(gcf, 'PaperUnits', 'inches');
set(gcf, 'PaperType', 'Legal');

Alternatively, you can set the PaperSize property to the size of the paper,
in the specified units.

set(gcf, 'PaperUnits', 'inches');
set(gcf, 'PaperSize', [8.5 14]);

Printing a Centered Figure
This example sets the size of a figure to 5.5-by-3 inches and centers it on
the paper.

7-37

7 Printing and Exporting

Using the Graphical User Interface

1 Select Print Preview from the figure window’s File menu, and select
the Layout tab.

2 Make sure Use manual size and position is selected.

3 Enter 5.5 in the Width field and 3 in the Height field.

4 Make sure that Units field is set to inches.

5 Click Center.

6 Click OK.

7 Click Print to open the Print dialog box and print the figure.

Using MATLAB Commands

1 Start by setting PaperUnits to inches.

set(gcf, 'PaperUnits', 'inches')

2 Use PaperSize to return the size of the current paper.

papersize = get(gcf, 'PaperSize')

papersize =
8.5000 11.0000

3 Initialize variables to the desired width and height of the figure.

width = 5.5; % Initialize a variable for width.
height = 3; % Initialize a variable for height.

4 Calculate a left margin that centers the figure horizontally on the paper.
Use the first element of papersize (width of paper) for the calculation.

left = (papersize(1)- width)/2

left =
1.5000

7-38

Examples of Printing and Exporting

5 Calculate a bottom margin that centers the figure vertically on the paper.
Use the second element of papersize (height of paper) for the calculation.

bottom = (papersize(2)- height)/2

bottom =
4

6 Set the figure size and print.

myfiguresize = [left, bottom, width, height];
set(gcf, 'PaperPosition', myfiguresize);
print

Exporting in a Specific Graphics Format
Export a figure to a graphics-format file when you want to import it at a later
time into another application such as a word processor.

Using the Graphical User Interface

1 Select Save As from the figure window’s File menu.

2 Use the Save in field to navigate to the directory in which you want to
save your file.

3 Select a graphics format from the Save as type list.

4 Enter a filename in the File name field. An appropriate file extension,
based on the format you chose, is displayed.

5 Click Save to export the figure.

Using MATLAB Commands
From the command line, you must specify the graphics format as an option.
See the print reference page for a complete list of graphics formats and their
corresponding option strings.

This example exports a figure to an EPS color file, myfigure.eps, in your
current directory.

7-39

7 Printing and Exporting

print -depsc myfigure

This example exports Figure No. 2 at a resolution of 300 dpi to a 24-bit JPEG
file, myfigure.jpg.

print -djpeg -f2 -r300 myfigure

This example exports a figure at screen size to a 24-bit TIFF file,
myfigure.tif.

set(gcf, 'PaperPositionMode', 'auto') % Use screen size
print -dtiff myfigure

Exporting in EPS Format with a TIFF Preview
Use the print function to export a figure in EPS format with a TIFF preview.
When you import the figure, the application can display the TIFF preview in
the source document. The preview is color if the exported figure is color, and
black and white if the exported figure is black and white.

This example exports a figure to an EPS color format file, myfigure.eps,
and includes a color TIFF preview.

print -depsc -tiff myfigure

This example exports a figure to an EPS black-and-white format file,
myfigure.eps, and includes a black-and-white TIFF preview.

print -deps -tiff myfigure

Exporting a Figure to the Clipboard
Export a figure to the clipboard in graphics format when you want to paste it
into another Windows or Macintosh application such as a word processor.

Using the Graphical User Interface
This example exports a figure to the clipboard in enhanced metafile (EMF)
format. Figure settings are chosen that would make the exported figure
suitable for use in a Microsoft Word™or PowerPoint™ slide. Note that
changing the settings modifies the figure displayed on the screen.

7-40

Examples of Printing and Exporting

1 Create a figure containing text. You can use the following code.

x = -pi:0.01:pi;
h = plot(x, sin(x));
title('Sine Plot');

2 Select Preferences from the File menu of either the figure or main
desktop window. Then select Figure Copy Template from the Preferences
dialog box.

3 In the Figure Copy Template Preferences panel, click the PowerPoint
button. The MATLAB suggested settings for PowerPoint are added to the
template.

����$����$���
�����	���������
������4���!��
�������	����
#�����������������,

���������$�����������
���	��������������	��
���

4 In the Lines panel, change the Custom width to 4 points.

5 In the Uicontrols and axes panel, select Keep axes limits and tick
spacing to prevent MATLAB from possibly rescaling tick marks and limits
when you export.

6 Click Apply to Figure. The changes appear in the figure window.

If you don’t like the way your figure looks with the new settings, restore it
to its original settings by clicking the Restore Figure button.

7 In the left pane of the Preferences dialog box, expand the Figure Copy
Template topic. Select Copy Options.

8 In the Copy Options panel, select Metafile to tell MATLAB to export
the figure in EMF format.

7-41

7 Printing and Exporting

9 Check that Transparent background is selected. This choice makes the
figure background transparent and allows the slide background to frame
the axes part of the figure.

10 Clear the Match figure screen size check box so that you can use your
own figure size settings.

11 Click OK.

12 Select Export Setup from the figure window’s File menu.

13 Select the Size properties, and set Width to 6 and Height to 4.5. Make
sure that Units are set to inches.

14 Click Close.

15 Select Copy Figure from the Edit menu. Your figure is now exported to
the clipboard and can be pasted into another Windows application, such
as PowerPoint.

Using MATLAB Commands
Use the print function and one of two clipboard formats (-dmeta, -dbitmap)
to export a figure to the clipboard. Do not specify a filename.

This example exports a figure to the clipboard in enhanced metafile (EMF)
format.

print -dmeta

This example exports a figure to the clipboard in bitmap (BMP) 8-bit color
format.

print -dbitmap

7-42

Changing a Figure’s Settings

Changing a Figure’s Settings

In this section...

“Parameters that Affect Printing” on page 7-43

“Selecting the Figure” on page 7-45

“Selecting the Printer” on page 7-46

“Setting the Figure Size and Position” on page 7-47

“Setting the Paper Size or Type” on page 7-50

“Setting the Paper Orientation” on page 7-52

“Selecting a Renderer” on page 7-54

“Setting the Resolution” on page 7-57

“Setting the Axes Ticks and Limits” on page 7-60

“Setting the Background Color” on page 7-62

“Setting Line and Text Characteristics” on page 7-63

“Setting the Line and Text Color” on page 7-66

“Specifying a Colorspace for Printing and Exporting” on page 7-69

“Excluding User Interface Controls form Printed Output” on page 7-71

“Producing Uncropped Figures” on page 7-72

Parameters that Affect Printing
The table below shows parameters that you can set before submitting your
figure to the printer.

The Parameter column lists all parameters that you can change.

The Default column shows the default setting that MATLAB uses.

The Dialog Box column shows which dialog box to use to set that parameter. If
you can make this setting on only one platform, this is noted in parentheses:
(W) for Windows, and (U) for UNIX.

7-43

7 Printing and Exporting

Some dialog boxes have tabs at the top to enable you to select a certain
category. These categories are denoted in the table below using the format
<dialogbox>/<tabname>. For example, Print Preview/Layout... in this
column means to use the Print Preview dialog box, selecting the Layout tab.

The print Command or set Property column shows how to set the parameter
using the MATLAB print or set function. When using print, the table
shows the appropriate command option (for example, print -loose). When
using set, it shows the property name to set along with the type of object
(for example, (Line) for line objects).

Parameter Default Dialog Box
print Command or
set Property

Select figure Last active window None print -fhandle

Select printer System default Print print -pprinter

Figure size 8-by-6 inches Print
Preview/Layout

PaperSize (Figure)
PaperUnits (Figure)

Position on page 0.25 in. from left, 2.5
in. from bottom

Print
Preview/Layout

PaperPosition
(Figure) PaperUnits
(Figure)

Position mode Manual Print
Preview/Layout

PaperPositionMode
(Figure)

Paper type Letter Print
Preview/Layout

PaperType (Figure)

Paper orientation Portrait Print
Preview/Layout

PaperOrientation
(Figure)

Renderer Selected by MATLAB Print
Preview/Advanced

print -zbuffer
| -painters |
-opengl

Renderer mode Auto Print
Preview/Advanced

RendererMode
(Figure)

Resolution Depends on driver or
graphics format

Print
Preview/Advanced

print -rresolution

7-44

Changing a Figure’s Settings

Parameter Default Dialog Box
print Command or
set Property

Axes tick marks Recompute Print
Preview/Advanced

XTickMode, etc.
(Axes)

Background color Force to white Print Preview/Color Color (Figure)
InvertHardCopy
(Figure)

Font size As in the figure Print
Preview/Lines/Text

FontSize (Text)

Bold font Regular font Print
Preview/Lines/Text

FontWeight (Text)

Line width As in the figure Print
Preview/Lines/Text

LineWidth (Line)

Line style Black or white Figure Copy
Template

LineStyle (Line)

Line and text color Black and white Print
Preview/Lines/Text

Color (Line, Text)

CMYK color RGB color Print Preview/Color
(U)

print -cmyk

UI controls Printed Print
Preview/Advanced

print -noui

Bounding box Tight N/A print -loose

Copy background Transparent Copy Options (W) See “Background
color”

Copy size Same as screen size Copy Options (W) See “Figure Size”

Selecting the Figure
By default, MATLAB prints the current figure. If you have more than one
figure open, the current figure is the last one that was active. To make a
different figure active, click it to bring it to the foreground.

7-45

7 Printing and Exporting

Using MATLAB Commands
Specify a figure handle using the command

print -fhandle

This example sends Figure No. 2 to the printer. A figure’s number is usually
its handle.

print -f2

Selecting the Printer
You can select the printer you want to use with the Print dialog box or with
the print function.

Using the Graphical User Interface

1 Select Print from the figure window’s File menu.

2 Select the printer from the list box near the top of the Print dialog box.

3 Click OK.

Using MATLAB Commands
You can select the printer using the -P switch of the print function.

This example prints Figure No. 3 to a printer called Calliope.

print -f3 -PCalliope

If the printer name has spaces in it, put single quotation marks around the -P
option, as shown here.

print '-Pmy local printer'

Using a Network Print Server. On Windows systems, you can print to a
network print server using the form shown here for a printer named trinity
located on a computer named PRINTERS.

print -P\\PRINTERS\trinity

7-46

Changing a Figure’s Settings

Note On Windows, when you use the -P option to identify a printer to use,
if you specify any driver other than -dwin or -dwinc, MATLAB writes the
output to a file with an appropriate extension but does not send it to the
printer; you can then copy that file to a printer.

Setting the Figure Size and Position
The default output figure size is 8 inches wide by 6 inches high, which
maintains the aspect ratio (width to height) of the MATLAB figure window.
The figure’s default position is centered both horizontally and vertically when
printed to a paper size of 8.5-by-11 inches.

You can change the size and position of the figure:

• “Using the Graphical User Interface” on page 7-47

• “Using MATLAB Commands” on page 7-49

Using the Graphical User Interface
Select Print Preview from the figure window’s File menu to open the Print
Preview dialog box. Click the Layout tab to make changes to the size and
position of your figure on the printed page.

Use the text edit boxes on the left to enter new dimensions for your figure.
Or, use the handlebars on the rulers in the right-hand pane to drag the
margins and location of your figure with the mouse. The outer handlebars
move the figure toward or away the nearest margin, while the central
handlebar repositions the figure on the page without changing its proportions.
Guidelines appear while you are using the handlebars.

7-47

7 Printing and Exporting

Settings you can change in the Layout tab are as follows:

Placement. Choose whether you want the figure to be the same size as it is
displayed on your screen, or you want to manually change its size using the
options in the Layout pane.

When you select the Use manual size and position mode, type the widths of
any of the four margins and the preview image responds after each entry you

7-48

Changing a Figure’s Settings

make. Select units of measure (inches/centimeters/points) with pushbuttons
on the Units section on the bottom of the pane.

You can use the four buttons at the bottom of the Placement section to expand
the figure to fill the page, make its aspect ratio (ratio of y-extent to x-extent)
as printed match that of the figure, center the figure on the page, or restore
the setup to what it was when you opened the Print Preview dialog. Selecting
Fill page can alter the aspect ratio of your image. To get the maximum figure
size without altering the aspect ratio, select Fix aspect ratio.

Auto (actual size, centered). Select this option to center the figure on the
page; it will be the same size as it is in the figure window. The four buttons
below the control are dimmed when you select this option.

Note Changes you make using Print Preview affect the printed output only.
They do not alter the figure displayed on your screen.

Using MATLAB Commands
To print your figure with a specific size or position, make sure the
PaperPositionMode property is set to manual (the default). Then set the
PaperPosition property to the desired size and position.

The PaperPosition property references a four-element row vector that
specifies the position and dimensions of the printed output. The form of the
vector is

[left bottom width height]

where

• left specifies the distance from the left edge of the paper to the left edge
of the figure.

• bottom specifies the distance from the bottom of the paper to the bottom
of the figure.

• width and height specify the figure’s width and height.

7-49

7 Printing and Exporting

The MATLAB default values for PaperPosition are

[0.25 2.5 8.0 6.0]

This example sets the figure size to a width of 4 inches and height of 2 inches,
with the origin of the figure positioned 2 inches from the left edge of the paper
and 1 inch from the bottom edge.

set(gcf, 'PaperPositionMode', 'manual');
set(gcf, 'PaperUnits', 'inches');
set(gcf, 'PaperPosition', [2 1 4 2]);

Note PaperPosition specifies a bottom margin, rather than a top margin
as Print Preview does. When you set the top margin using Print Preview,
MATLAB uses this setting to calculate the bottom margin, and updates the
PaperPosition property appropriately.

Setting the Paper Size or Type
Set the paper size by specifying the dimensions or by choosing from a list of
predefined paper types. If you do not set a paper size or type, MATLAB uses
the default paper size of 8.5-by-11 inches.

Paper-size and paper-type settings are interrelated—if you set a paper type,
MATLAB updates the paper size. For example, if you set the paper type to
US Legal, MATLAB updates the width of the paper to 8.5 inches and the
height to 14 inches.

You can change the paper size and orientation:

• “Using the Graphical User Interface” on page 7-50

• “Using MATLAB Commands” on page 7-52

Using the Graphical User Interface
Select Print Preview from the figure window’s File menu to open the Print
Preview dialog box. Click the Layout tab to make changes to the paper type
and orientation of the figure on the printed page.

7-50

Changing a Figure’s Settings

Settings you can change in the Layout tab are as follows:

Paper Format, Units and Orientation. Select a paper type from the list
under Format. If there is no paper type with suitable dimensions, enter your
own dimensions in the Width and Height fields. Make sure Units is set
appropriately to inches, centimeters, or points. If you change units after
setting a paper width and height, the Width and Height fields update to use
the units you just selected. The page region in the preview pane updates to
show the new paper format or size when you change them.

Use the Orientation buttons to select how you want the figure to be oriented
on the printed page. The illustration under “Setting the Paper Orientation”
on page 7-52 shows the three types of orientation you can choose from.

7-51

7 Printing and Exporting

Note Changes you make using Print Preview affect the printed output only.
They do not alter the figure displayed on your screen.

Using MATLAB Commands
Set the PaperType property to one of the built-in MATLAB paper types, or set
the PaperSize property to the dimensions of the paper.

When you select a paper type, the unit of measure is not automatically
updated. We recommend that you set the PaperUnits property first.

For example, these commands set the units to centimeters and the paper
type to A4.

set(gcf, 'PaperUnits', 'centimeters');
set(gcf, 'PaperType', 'A4');

This example sets the units to inches and sets the paper size of 5-by-7 inches.

set(gcf, 'PaperUnits', 'inches');
set(gcf, 'PaperSize', [5 7]);

If you set a paper size for which there is no matching paper type, the
PaperType property is automatically set to 'custom'.

Setting the Paper Orientation
Paper orientation refers to how the paper is oriented with respect to the
figure. The choices are Portrait (the default), Landscape, and Rotated.

You can change the orientation of the figure:

• “Using the Graphical User Interface” on page 7-53

• “Using MATLAB Commands” on page 7-53

The figure below shows the same figure printed using the three different
orientations.

7-52

Changing a Figure’s Settings

$������� �������� %�������1�!�567���	����2

Note The Rotated orientation is not supported by all printers. When the
printer does not support it, landscape is used.

Using the Graphical User Interface

1 Select Print Preview from the figure window’s File menu and select the
Layout tab. (See “Using the Graphical User Interface” on page 7-50).

2 Select the appropriate option button under Orientation.

3 Click Close.

Using MATLAB Commands
Use the PaperOrientation figure property or the orient function. Use the
orient function if you always want your figure centered on the paper.

The following example sets the orientation to landscape:

set(gcf, 'PaperOrientation', 'landscape');

7-53

7 Printing and Exporting

Centering the Figure. If you set the PaperOrientation property from
portrait to either of the other two orientation schemes, you might find that
what was previously a centered image is now positioned near the paper’s edge.
You can either adjust the position (use the PaperPosition property), or you
can use the orient function, which always centers the figure on the paper.

The orient function takes the same argument names as PaperOrientation.
For example,

orient rotated;

�����������������8��������8�
��	
8���������������8��������!,

�����������������8��������8�
��	
��������
����,

Selecting a Renderer
A renderer is software and/or hardware that processes graphics data (such as
vertex coordinates) to display, print, or export a figure. You can change the
renderer that MATLAB uses when printing a figure:

• “Using the Graphical User Interface” on page 7-56

• “Using MATLAB Commands” on page 7-57

Renderers Supported by MATLAB
MATLAB supports three rendering methods with the following characteristics:

Painter’s

7-54

Changing a Figure’s Settings

• Draws figures using vector graphics

• Generally produces higher resolution results

• The fastest renderer when the figure contains only simple or small graphics
objects

• The only renderer possible when printing with the HPGL print driver or
exporting to an Adobe Illustrator file

• The best renderer for creating PostScript or EPS files

• Cannot render figures that use RGB color for patch or surface objects

• Does not show lighting or transparency

Z-buffer

• Draws figures using bitmap (raster) graphics

• Faster and more accurate than Painter’s

• Can consume a lot of system memory if MATLAB is displaying a complex
scene

• Shows lighting, but not transparency

OpenGL

• Draws figures using bitmap (raster) graphics

• Generally faster than Painter’s or Z-buffer

• In some cases, enables MATLAB to access graphics hardware that is
available on some systems

• Shows both lighting and transparency

For more detailed information about the rendering methods, see Renderer on
the Figure Properties reference page.

The Default Renderer for MATLAB
By default, MATLAB tries to optimize the rendering method based on the
attributes of the figure (its complexity and the settings of various Handle
Graphics properties) and in some cases, the printer driver or file format used.

7-55

7 Printing and Exporting

In general, MATLAB uses

• Painter’s for line plots, area plots (bar graphs, histograms, etc.), and simple
surface plots

• Z-buffer when the computer screen is not true color or when the opengl
function was called with selection_mode set to neverselect

• OpenGL for complex surface plots using interpolated shading and any
figure using lighting

The RendererMode property tells MATLAB whether to automatically select
the renderer based on the contents of the figure (when set to auto), or to use
the Renderer property that you have indicated (when set to manual).

Reasons for Manually Setting the Renderer
Two reasons to set the renderer yourself are

• To make your printed or exported figure look the same as it did on the
screen. The rendering method used for printing and exporting the figure is
not always the same method used to display the figure.

• To avoid unintentionally exporting your figure as a bitmap within a vector
format. For example, MATLAB typically renders high-complexity plots
using OpenGL or Z-buffer. If you export a high-complexity figure to the EPS
or EMF vector formats without specifying a rendering method, MATLAB
might use OpenGL or Z-buffer, each of which creates bitmap graphics.

Storing a bitmap in a vector file can generate a very large file that takes
a long time to print. If you use one of these formats and want to make
sure that your figure is saved as a vector file, be sure to set the rendering
method to Painter’s.

Using the Graphical User Interface

1 Open the Print Preview dialog box by selecting Print Preview from the
figure window’s File menu. Select the Advanced tab.

2 In the Renderer drop-down menu, select the desired rendering method
from the list box.

7-56

Changing a Figure’s Settings

3 Click Close.

Using MATLAB Commands
You can use the Renderer property or a switch with the print function to set
the renderer for printing or exporting. These two lines each set the renderer
for the current figure to Z-buffer.

set(gcf, 'Renderer', 'zbuffer');

or

print -zbuffer

The first example saves the new value of Renderer with the figure; the second
example only affects the current print or export operation.

Note that when you set the Renderer property, the RendererMode property is
automatically reset from auto (the factory default) to manual.

Setting the Resolution
Resolution refers to how accurately your figure is rendered when printed or
exported. Higher resolutions produce higher quality output. The specific
definition of resolution depends on whether your figure is output as a bitmap
or as a vector graphic.

You can change the resolution that MATLAB uses to print a figure:

• “Using the Graphical User Interface” on page 7-59

• “Using the Graphical User Interface on UNIX” on page 7-71

• “Using MATLAB Commands” on page 7-59

Default Resolution and When You Can Change It
The default resolution depends on the renderer used and the graphics format
or printer driver specified. The following two tables summarize the default
resolutions and whether you can change them.

7-57

7 Printing and Exporting

Resolutions Used with Graphics Formats

Graphics Format Default Resolution Can Be Changed?

Built-in MATLAB export
formats, (except for EMF, EPS,
and ILL)

150 dpi (always use OpenGL
or Z-buffer)

Yes

EMF export format (Enhanced
Metafile)

150 dpi Yes

EPS (Encapsulated PostScript) 150 dpi, if OpenGL or Z-buffer;
864 dpi if Painter’s

Yes

ILL export format (Adobe
Illustrator)

72 dpi (always uses Painter’s) No

Ghostscript export formats 72 dpi (always uses OpenGL
or Z-buffer)

No

Resolutions Used with Printer Drivers

Printer Driver Default Resolution Can Be Changed?

Windows and PostScript
drivers

150 dpi, if OpenGL or Z-buffer;
864 dpi if Painter’s

Yes

Ghostscript driver 150 dpi, if OpenGL or Z-buffer;
864 dpi if Painter’s

Yes

HPGL driver 1116 dpi (always uses
Painter’s)

Yes

Choosing a Setting
You might need to determine your resolution requirements through
experimentation, but you can also use the following guidelines.

For Printing. The default resolution of 150 dpi is normally adequate for
typical laser-printer output. However, if you are preparing figures for
high-quality printing, such as a textbook or color brochures, you might want
to use 200 or 300 dpi. The resolution you can use can be limited by the
printer’s capabilities.

7-58

Changing a Figure’s Settings

For Exporting. If you are exporting your figure, base your decision on the
resolution supported by the final output device. For example, if you will
import your figure into a word processing document and print it on a printer
that supports a maximum resolution setting of 300 dpi, you could export
your figure using 300 dpi to get a precise one-to-one correspondence between
pixels in the file and dots on the paper.

Note The only way to set resolution when exporting is with the print
function.

Impact of Resolution on Size and Memory Needed
Resolution affects file size and memory requirements. For both printing and
exporting, the higher the resolution setting, the longer it takes for MATLAB
or your printer to render your figure.

Using the Graphical User Interface
To set the resolution for built-in MATLAB printer drivers:

1 From the Print dialog box, click Properties. This opens a new dialog box.
(This box can differ from one printer to another.)

2 You may be able to set the resolution from this dialog. If not, then click
Advanced to get to a dialog box that enables you to do this.

3 Set the resolution, and then click OK. (The resolution setting might be
labeled by another name, such as “Print Quality.”)

Using MATLAB Commands
If you use a Windows printer driver, you can only set the resolution using the
Windows Document Properties dialog box.

Otherwise, to set the resolution for printing or exporting, the syntax is

print -rnumber

7-59

7 Printing and Exporting

where number is the number of dots per inch. To print or export a figure using
screen resolution, set number to 0 (zero).

This example prints the current figure with a resolution of 100 dpi:

print -r100

This example exports the current figure to a TIFF file using screen resolution:

print -r0 -dtiff myfile.tif

Setting the Axes Ticks and Limits
The MATLAB default output size, 8-by-6 inches, is normally larger than the
screen size. If the size of your printed or exported figure is different from its
size on the screen, MATLAB scales the number and placement of axes tick
marks to suit the output size. This section shows you how to lock them so that
they are the same as they were when displayed.

You can change the resolution that MATLAB uses to print a figure:

• “Using the Graphical User Interface” on page 7-61

• “Using MATLAB Commands” on page 7-62

7-60

Changing a Figure’s Settings

Using the Graphical User Interface
Select Print Preview from the figure window’s File menu to open the Print
Preview dialog box. Select the Advanced tab to make changes to the axes, UI
controls, or renderer settings.

Settings you can change in the Advanced tab are as follows, by panel:

Axes limits and ticks. If the size of your printed or exported figure is
different from its size on the screen, MATLAB scales the number and
placement of axes tick marks to suit the output size. Select Keep screen
limits and ticks to lock them so that they are the same as they were when
displayed. If you want MATLAB to adjust the ticks and limits when scaling
for printing, select Recompute limits and ticks.

Miscellaneous. Use the Renderer drop-down menu to tell MATLAB which
renderer to use in printing the figure. Set the renderer to Painters, Z-buffer,
or OpenGL, or select auto to let MATLAB decide which one to use, depending
on the characteristics of the figure. (See “Selecting a Renderer” on page 7-54).

Use the Resolution drop-down menu to specify the resolution, in dots per
inch (DPI), at which to render and print the figure. You can select 150, 300, or
600 DPI, or type in a different value (positive integer).

7-61

7 Printing and Exporting

Figure UI Controls. By default, user interface controls are included in
your printed or exported figure. Clear the Print UIControls check box to
exclude them. (See “Excluding User Interface Controls form Printed Output”
on page 7-71).

Note Changes you make using Print Preview affect the printed output only.
They do not alter the figure displayed on your screen.

Using MATLAB Commands
To set the XTickMode, YTickMode, and ZTickMode properties to manual, type

set(gca, 'XTickMode', 'manual');
set(gca, 'YTickMode', 'manual');
set(gca, 'ZTickMode', 'manual');

Setting the Background Color
You can keep the background the same as is shown on the screen when
printed, or change the background to white. There are two types of
background color settings in a figure: the axes background and the figure
background. The default displayed color of both backgrounds is gray, but you
can set them to any of several colors.

Regardless of the background colors in your displayed figure, by default,
MATLAB always changes them to white when you print or export. This section
shows you how to retain the displayed background colors in your output.

Using the Graphical User Interface
To retain the background color on a per figure basis:

1 Open the Print Preview dialog box by selecting Print Preview from the
figure window’s File menu. Select the Color tab.

2 Select Same as figure.

3 Click Close.

7-62

Changing a Figure’s Settings

If you are exporting your figure using the clipboard, use the Copy Options
panel of the Preferences dialog box.

Using MATLAB Commands
To retain your background colors, use

set(gcf, 'InvertHardCopy', 'off');

The following example sets the figure background color to blue, the axes
background color to yellow, and then sets InvertHardCopy to off so that
these colors appear in your printed or exported figure.

set(gcf, 'color', 'blue');
set(gca, 'color', 'yellow');
set(gcf, 'InvertHardCopy', 'off');

Setting Line and Text Characteristics
If you transfer your figures to Word or PowerPoint applications, you can set
line and text characteristics to values recommended for those applications.
The Figure Copy Template Preferences dialog box provides Word and
PowerPoint options to make these settings, or you can set certain line and text
characteristics individually.

You can change line and text characteristics:

• “Using the Graphical User Interface” on page 7-64

• “Using MATLAB Commands” on page 7-65

7-63

7 Printing and Exporting

Using the Graphical User Interface
To open Figure Copy Template Preferences, select Preferences from the File
menu, and then click Figure Copy Template in the left pane.

9�������������������������
����	������������
���,
0���
����	������������#����!�������	
�����������	
��������,
0���
���������������/��!�
������������,

7-64

Changing a Figure’s Settings

Settings you can change in the Figure Copy Template Preferences dialog
box are as follows:

Word or PowerPoint. Click Word or PowerPoint to apply settings
recommended for MATLAB.

Text. Use options under Text to modify the appearance of all text in the
figure. You can change the font size, change the text color to black and white,
and change the font style to bold.

Lines. Use the Lines options to modify the appearance of all lines in the
figure:

• Custom width — Change the line width.

• Change style (Black or white) — Change colored lines to black or white.

• Change style (B&W styles) — Change solid lines to different line styles
(e.g., solid, dashed, etc.), and black or white color.

UIControls and axes. If your figure includes user interface controls, you
can choose to show or hide them by clicking Show uicontrols. Also, to keep
axes limits and tick marks as they appear on the screen, click Keep axes
limits and tick spacing. To allow MATLAB to scale axes limits and tick
marks based on the size of the printed figure, clear this box.

Note Changes you make using Print Preview affect the printed output only.
They do not alter the figure displayed on your screen.

Using MATLAB Commands
You can use the set function on selected graphics objects in your figure to
change individual line and text characteristics.

For example, to change line width to 1.8 and line style to a dashed line, use

lineobj = findobj('type', 'line');
set(lineobj, 'linewidth', 1.8);
set(lineobj, 'linestyle', '--');

7-65

7 Printing and Exporting

To change the font size to 15 points and font weight to bold, use

textobj = findobj('type', 'text');
set(textobj, 'fontunits', 'points');
set(textobj, 'fontsize', 15);
set(textobj, 'fontweight', 'bold');

Setting the Line and Text Color
When colored lines and text are dithered to gray by a black-and-white printer,
it does not produce good results for thin lines and the thin lines that make up
text characters. You can, however, force all line and text objects in the figure
to print in black and white, thus improving their appearance in the printed
copy. When you select this setting, the lines and text are printed all black or
all white, depending on the background color.

The default is to leave lines and text in the color that appears on the screen.

Note Your background color might not be the same as what you see on the
screen. See the Color tab for an option that preserves the background color
when printing.

You can change the resolution that MATLAB uses to print a figure:

• “Using the Graphical User Interface” on page 7-66

• “Using MATLAB Commands” on page 7-68

Using the Graphical User Interface
Select Print Preview from the figure window’s File menu to open the Print
Preview dialog box. Select the Lines and Text tab to make changes to the
color of all lines and text on the printed page. The controls for the Lines and
Text tab are shown below:

7-66

Changing a Figure’s Settings

Settings you can change in Lines and Text are as follows:

7-67

7 Printing and Exporting

Lines. The default option in this panel causes lines to print at the same
width they are portrayed in the figure window. You can scale line width
from 0 percent upwards for printing using the Scale By field. To print lines
at a particular point size, select Custom. All lines on the plot will be the
same weight when you use the Custom option; the Scale By option respects
relative line weight.

When you scale lines downward, you can prevent them from becoming too
faint by setting the Min Width option to Custom and specifying a minimum
line width in points in that field.

Text. The default is to print text in the same font and at the same size as it
is in the figure. To change the font (for all text) select Custom and choose
a new font from the drop-down list that is then enabled. Scale the font size
using the Scale By option. To print text at a particular point size, select
Custom. All text on the plot will be printed at the point size you specify when
you use the Custom option; the Scale By option respects relative font size.
You can specify the Font Weight (normal, light, demi, or bold) and Font
Angle (normal, italic, or oblique) for all text as well, using the drop-down
menus at the bottom of the Text panel.

Header. Type any text that you want to appear at the top of the printed
figure in the Header Text edit field. If you want today’s date and/or time
appended to the header text, select the appropriate format from the Date
Style popup menu. To specify and style the header font (which is independent
of the font used in the figure), click the Font button and choose a font name,
size, and style from the Font selection window that appears.

Note Changes you make using Print Preview affect the printed output only.
They do not alter the figure displayed on your screen.

Using MATLAB Commands
There is no equivalent MATLAB command that sets line and text color
depending on background color. Set the color of lines and text using the set
function on either line or text objects in your figure.

This example sets all lines and text to black:

7-68

Changing a Figure’s Settings

set(findobj('type', 'line'), 'color', 'black');
set(findobj('type', 'text'), 'color', 'black');

Specifying a Colorspace for Printing and Exporting
By default, MATLAB produces color output in the RGB color space (red,
green, blue). If you plan to publish and print MATLAB figures using printing
industry standard four-color separation, you might want to use the CMYK
color space (cyan, magenta, yellow, black).

Using the Graphical User Interface on Windows
Select Print Preview from the figure window’s File menu to open the Print
Preview dialog box. Select the Color tab to make changes to the color of
all lines and text on the printed page. The controls for the Color tab are
shown below:

7-69

7 Printing and Exporting

You can print the contents of your figure in color, grayscale, or black-and-white
by selecting the appropriate button in the panel. When you select
Color, you can choose between an RGB (red/green/blue) or a CMYK
(cyan/magenta/yellow/black) color specification, if your printer is capable of it.

7-70

Changing a Figure’s Settings

Independently of the Color Scale controls, you can specify a Background
color for printing. Select Same as figure to use the color used in the figure
itself (default is gray), or specify a Custom color from the combo box popup
menu. The choices are black, white, and several RGB color triplet values;
you type any valid MATLAB colorspec in this field as well, such as g, magenta,
or .3 .4 .5.

The background color you specify is respected even if you choose Black and
White or Gray Scale in the Color Scale panel.

Using the Graphical User Interface on UNIX

1 Select Print from the figure window’s File menu.

2 Click the Appearance tab.

3 In the Color Appearance panel, select Color.

4 Click Print.
On any platform, you can also indicate whether to print in color, grayscale or
black-and-white with the Print Preview dialog box.

Using MATLAB Commands
Use the -cmyk option with the print function. This example prints the
current figure in CMYK using a PostScript Level II color printer driver.

print -dpsc2 -cmyk

Excluding User Interface Controls form Printed
Output
User interface controls are objects that you create and add to a figure. For
example, you can add a button to a figure that, when clicked, conveniently
runs another M-file. By default, user interface controls are included in your
printed or exported figure. This section shows how to exclude them.

7-71

7 Printing and Exporting

Using the Graphical User Interface

1 Open the Print Preview dialog box by selecting Print Preview from the
figure window’s File menu, and then select the Advanced tab.

2 Under Miscellaneous, clear the Print UIControls check box.

3 Click Close.

Using MATLAB Commands
Use the -noui switch. This example specifies a color PostScript driver and
excludes UI controls.

print -dpsc -noui

This example exports the current figure to a color EPS file and excludes UI
controls.

print -depsc -noui myfile.eps

Producing Uncropped Figures
In most cases, MATLAB crops the background tightly around the objects in
the figure. Depending on the printer driver or file format you use, you might
be able to produce uncropped output. An uncropped figure has increased
background area and is often desirable for figures that contain UI controls.

The setting you make in MATLAB changes the PostScript BoundingBox
property saved with the figure.

Using MATLAB Commands
Use the -loose option with the print function. For Windows, the uncropped
option is only available if you print to a file.

This example exports the current figure, uncropped, to an EPS file.

print -deps -loose myfile.eps

7-72

Choosing a Graphics Format

Choosing a Graphics Format

In this section...

“What Are Graphic Formats?” on page 7-73

“Frequently Used Graphics Formats” on page 7-74

“Factors to Consider in Choosing a Format” on page 7-74

“Properties Affected by Choice of Format” on page 7-77

“Impact of Rendering Method on the Output” on page 7-80

“Description of Selected Graphics Formats” on page 7-80

“How to Specify a Format for Exporting” on page 7-83

What Are Graphic Formats?
A graphics file format is a specification for storing and organizing data in a
file. MATLAB supports many different graphics file formats. Some are built
into MATLAB and others are Ghostscript formats. File formats also differ in
color support, graphics style (bitmap or vector), and bit depth.

This section provides information to help you decide which graphics format to
use when exporting your figure to a file or to the Windows clipboard. It covers

Before deciding on a graphics format, check what formats are supported by
your target application and platform. See the print reference page for a
complete list of graphics formats supported in MATLAB. Once you decide
on which format to use in exporting your figure, follow the instructions in
“Exporting to a File” on page 7-21 or “Exporting to the Windows or Macintosh
Clipboard” on page 7-32.

7-73

7 Printing and Exporting

Frequently Used Graphics Formats
Here are some of the more frequently used graphics formats. For a complete
list, see the Graphics Format table on the print reference page. For a more
complete description of these formats, see “Description of Selected Graphics
Formats” on page 7-80.

Format Description
Command Line -device
Parameter

EPS color, and
black and white

Export line plots or simple graphs to a
file.

Note An EPS file does not display within
some applications unless you add a TIFF
preview image to it. See the example
“Exporting in EPS Format with a TIFF
Preview” on page 7-40.

-deps (black and white)

-depsc (color)

-depsc -tiff (TIFF preview)

JPEG 24-bit Export plots with surface lighting or
transparency to a file. This format can be
displayed by most Web browsers.

-djpeg

-djpegnumber,

where number is the
compression.

TIFF 24-bit
bitmap color

Export plots with surface lighting or
transparency to a file. Widely available.
A good format to choose if you are not sure
what formats your application supports.

-dtiff

BMP 8-bit color
bitmap

Export a figure to the clipboard (Windows
only).

-dbitmap

EMF color vector
format

Export a figure to the clipboard (Windows
only).

-dmeta

Factors to Consider in Choosing a Format
There are at least five main factors to consider when choosing a graphics
format to use in exporting a figure:

7-74

Choosing a Graphics Format

• Implementation — Is it a built-in MATLAB or Ghostscript format?

• Graphics Format — Is it bitmap or vector graphics format?

• Bit Depth — What bit depth does the format offer?

• Color Support — What color support does it have?

• Model/Publication — Is it a Simulink® model or specific publication type?

The Graphics Format table on the print reference page provides information
on the first four of these factors for each format that MATLAB supports.

Built-In MATLAB or Ghostscript Formats
Some graphics formats are built-in MATLAB formats and others are provided
by Ghostscript. In some cases (such as the Windows Bitmap format), the
format is available both as a built-in format and a Ghostscript format. In
general, when this is the case, we recommend that you choose the MATLAB
format, especially if you plan to read the image back into MATLAB later.

The choice of MATLAB versus Ghostscript is important when any of these
properties affects your output:

• “Font Support” on page 7-77

• “Resolution” on page 7-78

• “Importing into MATLAB” on page 7-78

Choosing Bitmap or Vector Graphic Output
MATLAB file formats are created using either bitmap or vector graphics.
Bitmap formats store graphics as 2-D arrays of pixels. Vector formats use
drawing commands to store graphics as geometric objects. Whether to use a
bitmap or vector format depends mostly on the type of objects in your figure.

The choice of bitmap versus vector graphics is important when any of these
properties or capabilities affects your output:

• “Degree of Complexity” on page 7-78

• “Lighting and Transparency” on page 7-78

7-75

7 Printing and Exporting

• Line and text quality

• “File Size” on page 7-79

• “Resizing After Import” on page 7-79

To create vector output, the Painters renderer is required. Under some
circumstances you might need to manually select it in the Print Preview
or Export Setup GUI. The painters renderer does not support lighting or
transparency.

To create bitmap output, either the OpenGL or the Z-buffer renderer is
required. Under some circumstances you might need to manually select one
of these in the Print Preview or Export Setup GUI. These renderers both
support lighting, but only OpenGL supports transparency.

See “Impact of Rendering Method on the Output” on page 7-80 for more
information.

Bit Depth
Bit depth is the number of bits a format uses to store each pixel. This
determines the number of colors the exported figure can contain.

Bit depth applies mostly to bitmap graphics. An 8-bit image uses 8 bits per
pixel (bpp), enabling it to define 28, or 256, unique colors. The other supported
bit depths are 1-bit (2 colors), 4-bit (16 colors), and 24-bit (16 million colors).

In vector files that don’t normally have a bit depth, the color of objects is
specified by drawing commands stored in the file. However, vector files can
contain bitmaps under the following conditions:

• Image objects saved in vector formats are always saved as bitmaps,
regardless of the rendering method used.

• For vector files created using the OpenGL or Z-buffer renderer, everything
in the figure is saved as a bitmap.

The Graphics Format table on the print reference page indicates the bit
depth of each format. If file size is not critical, make sure you choose a format
with a bit depth that supports the number of colors or shades of gray in your
displayed figure.

7-76

Choosing a Graphics Format

Color Support
Each graphics format can produce color, grayscale, or monochrome output.
Check the Graphics Format table to see the level of color support for each
format type. To preserve the color in your exported file, you must select a
color graphics format. Bit depth also affects color.

Exporting Simulink Models
Simulink models can only be exported to EPS or a Ghostscript format. Note
that you can only use the print function to export a model, not the Export
dialog box.

High Resolution or Web Publications
If you want to use a figure in a journal or other publication, use a format that
enables you to set a high resolution, such as TIFF or EPS.

If you want to use a figure in a Web publication, use either the PNG or the
JPEG format. If you need to save an image as a GIF file, you can use the
imwrite function. You need to convert M-by-N-by-3 truecolor CData (such as
the getframe function provides) to an M–by–N 8–bit array and a colormap
in order to write a GIF. Alternatively, you can export your figure as a TIFF
file and convert it to a GIF using another software application, or capture a
figure as an image using a screen capture utility and save it in formats the
utility supports.

Properties Affected by Choice of Format
The figure properties listed in this section are affected when you select a
graphics format when exporting to a file or the Windows clipboard.

Font Support
Ghostscript formats support a limited number of fonts. If you use an
unsupported font, MATLAB substitutes Courier. See “PostScript and
Ghostscript Supported Fonts” on page 7-88 for more information.

7-77

7 Printing and Exporting

Resolution
Generally, higher resolution means higher quality. Your choice of resolution
should be based in part on the device to which you will ultimately print it.
Experimentation with different resolution settings can be helpful.

You cannot change the resolution of a Ghostscript format. The resolution is
low (72 dpi) and might not be appropriate for publications.

Importing into MATLAB
If you want to read an exported figure back into MATLAB, it is best to use
one of the built-in MATLAB formats. You should not use PostScript or a
proprietary format such as Adobe Illustrator (.ai), Windows metafile (.emf),
or portable document format (.pdf) files.

Degree of Complexity
Bitmaps are preferable for high-complexity plots, where complexity is
determined by the number of polygons, the number of polygons with
interpolated shading, the number of markers, the presence of truecolor
images, and other factors. An example of a high-complexity plot is a surface
plot that uses interpolated shading.

Vector formats are preferable for most 2-D plots and for some low-complexity
surface plots.

Lighting and Transparency
Surface lighting and transparency are only supported by bitmap graphics
formats. If you use a vector format, the lighting and transparency disappear.
Note that of the two renderers intended for bitmaps (OpenGL and Z-buffer)
only OpenGL supports transparency.

Note If you export to an EPS (vector) file using the Painters renderer and
include a TIFF preview, the preview image is a bitmap and shows lighting or
transparency when displayed on your screen. Remember that the underlying
format vector file, which is what normally gets printed, does not support
these features.

7-78

Choosing a Graphics Format

Lines and Text
Generally, vector formats create better lines and text than bitmap formats.
MATLAB renderers do not antialias lines or text.

File Size
In general, bitmap formats produce smaller files for complex plots than vector
formats, and vector formats produce smaller files for simple plots than bitmap
formats.

You can calculate the size of a figure exported to an uncompressed bitmap by
multiplying the figure size by its resolution and the bit depth of the chosen
format. For example, if a figure is 2 inches by 3 inches and has a resolution of
100 dpi (dots per inch), it will consist of (2x100)x(3x100), or 60,000 pixels. If
exported to an 8-bit file, it uses 480,000 bits, or 60 KB. If exported to a 24-bit
file, it uses three times the number of bytes, or 180 KB.

Vector format file size is affected by the complexity and number of objects in
your figure. As the complexity and number of objects increase, the number of
drawing commands increases.

Resizing After Import
You can resize a vector graphics figure after importing it into another software
application without losing quality. (Not all applications that support vector
formats enable you to resize them.)

This is not true of bitmap formats. Resizing a bitmap causes round-off
errors that result in jagged edges and degradation of picture quality. This
degradation is particularly obvious in lines and text and is highly discouraged.

Color
The Graphics Format table on the print reference page indicates the color
support and bit depth of each format. If file size is not critical, make sure
you choose a format with a bit depth that supports the number of colors or
shades of gray in your displayed figure.

7-79

7 Printing and Exporting

Impact of Rendering Method on the Output
If you specify a bitmap format when exporting, the exported file always
contains a bitmap regardless of your current renderer setting. If you have
the renderer set to Painters, which normally produces a vector format, that
setting is ignored under these circumstances.

Vector format files, however, can store your figure as a vector or bitmap
graphic depending on the renderer used to export it. If you do not specify a
rendering method and MATLAB chooses the OpenGL or Z-buffer renderer,
your exported vector file contains a bitmap. If you want your figure exported
as a vector graphic, be sure to set the rendering method to Painter’s.

Description of Selected Graphics Formats
This section contains details about some of the export file formats MATLAB
supports. For information about formats not listed here, consult a graphics
file format reference.

Formats covered in this section are

• “Adobe Illustrator 88 Files” on page 7-80

• “EMF Files” on page 7-81

• “EPS Files” on page 7-81

• “TIFF Files” on page 7-82

• “JPEG Files” on page 7-83

Adobe Illustrator 88 Files
Adobe Illustrator (ILL) is a vector format that is fully compatible with Adobe
Illustrator software. An Illustrator file created in MATLAB can be further
processed with Adobe Illustrator running on any platform. (Note that when
you view it in Illustrator, it has no template.)

By default, Illustrator files are color and saved in portrait orientation. The
Illustrator group command is used to give the illustrations a hierarchy similar
to that of the Handle Graphics or Simulink graphic.

Some limitations of the Illustrator format are

7-80

Choosing a Graphics Format

• Interpolated patches and surfaces cannot be created. The color of each
polygon is determined by the average of the CData values for all of the
polygon’s vertices.

• Images cannot be exported in this format.

• The resolution setting of 72 dpi cannot be changed.

• No fonts are downloaded to the Illustrator file. Any unavailable fonts are
replaced with fonts that are available.

EMF Files
Enhanced Metafiles (EMF) are vector files similar in nature to Encapsulated
PostScript (EPS), capable of producing near publication-quality graphics.
EMF is an excellent format to use if you plan to import your image into a
Microsoft application and want the flexibility to edit and resize your image
once it has been imported. It is the only MATLAB supported vector format
you can edit from within a Microsoft application. (Note that your editing
ability is limited. For the best results, do all your editing in MATLAB.)

A drawback of using EMF files is that they are generally only supported by
Windows-based applications.

EPS Files
The Encapsulated PostScript (EPS) vector format is the most reliable and
consistent file format MATLAB supports. It is widely recognized in desktop
publishing and word processing packages on both UNIX and Windows
platforms. EPS is the only MATLAB supported export format that can
produce CMYK output. (PostScript printer drivers also support this feature.)

This format is your best choice for producing publication-quality graphics. It
might not be appropriate for figures containing interpolated shading because
it creates a very large file that is difficult to print. For such figures, use the
TIFF format with a high-resolution setting. For more information about
format choices, see “Choosing Bitmap or Vector Graphic Output” on page 7-75.

When imported into Microsoft applications, an EPS file does not display
unless you add a TIFF preview image to it.

7-81

7 Printing and Exporting

The preview image is simple to add (see the next section, “Creating a Preview
Image”). However, if you print your file to a non-PostScript printer, the TIFF
preview is used as the printed image. The resolution of the preview image is
72 dpi, resulting in much lower quality than the EPS image. If there is no
preview image, your printout to a non-PostScript printer contains an error
message in place of the graphic. Many high-end graphics packages, like Adobe
Illustrator, can print an EPS file to a non-PostScript printer.

You cannot edit figures when using EPS files in Microsoft applications; they
can only be annotated.

Note The best vector format to use with Microsoft applications is EMF. See
“EMF Files” on page 7-81.

EPS format has limited font support. When MATLAB exports a graphic to
the EPS file format, it does not try to determine whether the fonts you have
used in your axes text objects are supported by the EPS format. Unsupported
fonts are replaced with Courier.

Creating a Preview Image. You cannot create TIFF preview images
using the graphical user interface. Use the print command with the -tiff
switch. For example, to create an EPS Level 2 image with TIFF preview in
file myfile.eps, type

print -depsc2 -tiff myfile.eps

TIFF Files
The Tagged Image File Format (TIFF) is a very widely used bitmap format
and can produce publication-quality graphics if you use a high-resolution
setting (such as 200 or 300 dpi).

TIFF is a good format to choose if you are not sure what formats your target
application supports, or if you want to import the graphic into more than one
application without having to export it to several different formats. It can also
be imported into most image-processing applications and converted to other
formats, if necessary. For example, the print command does not produce GIF
files, but there are many applications that can convert TIFF files to GIF.

7-82

Choosing a Graphics Format

You can also use getframe to create a snapshot of a figure and imwrite to
save that image as a GIF file.

JPEG Files
The Joint Photographic Experts Group (JPEG) bitmap format is one of
the dominant formats used in Web graphics. The 24-bit version MATLAB
supports more colors than the popular GIF format.

JPEG files always use JPEG compression. This is a lossy compression scheme,
meaning that some data is thrown away during compression. When you
export to a JPEG image, you can set the amount of compression to use. The
more compression you use, the more data is thrown away. The compression
amount is referred to as JPEG quality, where the highest setting results in
the highest quality image, but the lowest amount of compression.

Setting JPEG Quality. You cannot set the quality using the graphical user
interface. Use the print command with the -djpeg format switch, including
the desired quality value as a suffix. This example exports to a JPEG file
using a quality setting of 100.

print -djpeg100 myfile.jpg

By default, MATLAB uses a quality setting of 75. Possible values are from
1 to 100. Note that the highest setting of 100 still results in some data loss,
although the result is usually visually indistinguishable from the original.

How to Specify a Format for Exporting
To select a graphics format to use when exporting, choose a format from the
Graphics Format table on the print reference page, and specify that format
in either the Export dialog box or in the MATLAB print function.

Using the Graphical User Interface
When exporting your figure to a file:

1 Select Export from the figure window’s File menu.

2 Select a format from the Save as type list box.

7-83

7 Printing and Exporting

3 Enter the filename you want to use and browse for the directory to save
the file in.

4 Click Save.

Using MATLAB Commands
To specify a nondefault graphics format for the figure you are exporting,
include the -d switch with the print command. For example, to export the
current figure to file spline2d.eps, with 600 dpi resolution, and using the
EPS color graphics format, type

print -r600 -depsc spline2d

Note When printing, the print -d option specifies a printer driver. When
exporting, the print -d option specifies a graphics format.

7-84

Choosing a Printer Driver

Choosing a Printer Driver

In this section...

“What Are Printer Drivers?” on page 7-85

“Factors to Consider in Choosing a Driver” on page 7-86

“Driver-Specific Information” on page 7-89

“How to Specify the Printer Driver to Use” on page 7-92

What Are Printer Drivers?
A MATLAB printer driver formats your figure into instructions that your
printer understands. There are two main types of MATLAB printer drivers:
built-in MATLAB, and Ghostscript. See the Printer Driver table on the print
reference page for a complete list of supported drivers. Specifying the printer
driver does not change the selected printer. This following sections provide
information to help you decide which printer driver to use when printing
your figure.

Built-in MATLAB Drivers
Built-in MATLAB drivers are written specifically for MATLAB and include
Windows, PostScript, and HPGL.

MATLAB provides built-in Windows printer drivers so that your print
requests can work with the Windows Print Manager. The Print Manager
enables you to monitor printer queues and control various aspects of the
printing process.

HPGL support is provided for the HP 7475A plotter and fully compatible
plotters. HPGL files can also be imported into documents of other applications,
such as Microsoft Word, although add-on filters for them may be needed.

Ghostscript Drivers
Ghostscript drivers use Ghostscript to convert your figure into
printer-model-specific instructions. MATLAB generates a PostScript
representation of the figure and Ghostscript generates the printer instructions
from that. Examples of Ghostscript drivers are Epson and HP.

7-85

7 Printing and Exporting

Factors to Consider in Choosing a Driver
The choice of printer driver depends upon several considerations:

• What platform you are using

• What kind of printer you have

• What color model you want to use

• What font support you need

• Any driver-specific settings you need

The following flowchart gives an overview of how to choose a driver based on
the platform you are using and the type of printer you have.

���������	
����
�����
����

�������	
��������
�������

��������	
��
��������	�����

������
���������
��������

�
���������

������
��������
��������	�����

�������
��������
��������	�����

���

���

�

�

���

�

Deciding What Type of Printer Driver to Use

7-86

Choosing a Printer Driver

Platform Considerations
On Windows, you can use any of the driver types shown in the flowchart. If
you use the Windows driver, you can use the Windows Print Manager.

On UNIX, you can use either PostScript or Ghostscript drivers.

On either platform, if you have a PostScript-compatible printer, it is better
to use a PostScript driver than a Ghostscript driver, because doing so avoids
the unnecessary Ghostscript conversion step and is likely to create more
accurate renditions.

Printer Type
Printer support is different among the Windows, PostScript, and Ghostscript
drivers. Consult the manual for your printer to see what driver to use.

Windows drivers support most printer models, but sometimes the printer’s
native driver is incompatible with the MATLAB Windows driver. If you
are getting printing errors, see “Trouble with Native Drivers on Windows”
on page 7-90.

Some Ghostscript drivers are specific to certain printer models. For example,
MATLAB provides different drivers to support the HP DeskJet 500, 500C, and
550C models, plus a generic driver for the series. When this is the case, try
the model-specific driver first. If that doesn’t work, try the generic driver.

Color Model
By default, MATLAB uses a black-and-white driver. The built-in MATLAB
and Ghostscript drivers print both color and black and white. The Printer
Drivers table on the print reference page indicates which drivers are color.

Colored surfaces and images print in grayscale when you use a
black-and-white driver. Colored lines and text can be printed in color,
grayscale, or black and white, depending on the color support of the driver
and color capability of your printer. Results can vary depending on whether
images, text, lines, patches, or surfaces are being printed.

7-87

7 Printing and Exporting

Font Support
In MATLAB, the fonts supported for printing depend upon the MATLAB
printer driver you specify and sometimes upon which platform you are using.

PostScript and Ghostscript Supported Fonts. The table below lists the
fonts supported by the MATLAB PostScript and Ghostscript drivers. This
same set of fonts is supported on both Windows and UNIX. If you use a font
that is not on this list, it is replaced with Courier.

AvantGarde Helvetica-Narrow Times-Roman

Bookman NewCenturySchlbk ZapfChancery

Courier Palatino ZapfDingbats

Helvetica Symbol

If you set the font using the set function, use the names exactly as
shown above. This example sets the font of the current text object to
Helvetica-Narrow using MATLAB commands.

set(gca, 'FontName', 'Helvetica-Narrow');

If you use the Property Editor dialog box (available under Axes Properties
or Current Object Properties on the Edit menu) to set the font, the list of
available fonts shows those that are supported by your system. If you choose
one that is not in the table above, your resulting file uses Courier.

Windows Drivers Supported Fonts. The MATLAB Windows drivers
support any system-supported font. To see the list of fonts installed on your
system, open the Font name list on the Text or Style tab of the Property
Editor.

If you use the set function to set fonts, type in the name exactly as it appears
in the Property Editor. For example, if you have the Script font installed on
your system, set the title of your figure to Script using the following code.

h = get(gca, 'Title');
set(h, 'FontName', 'Script');

7-88

Choosing a Printer Driver

If you specify a font supplied with MATLAB that is not available on your
platform as a system font, figures might not print or export properly.

HPGL Driver Supported Fonts. HPGL drivers support only one font.
However, you can set its size and color.

Settings That Are Driver Specific
Some print settings are only supported by specific drivers. This table
summarizes the settings and which driver supports them.

Setting Driver(s)

Appending figures to a PostScript file PostScript

BoundingBox (setting figure to print
uncropped)

PostScript, Ghostscript

CMYK PostScript

Resolution set with user interface PostScript, Windows

Resolution set with print function PostScript

Driver-Specific Information
This section provides additional information about the various types of printer
drivers available to MATLAB users. It covers the following topics:

• “Setting the Windows Driver” on page 7-90

• “Trouble with Native Drivers on Windows” on page 7-90

• “Level 1 or Level 2 PostScript Drivers” on page 7-91

• “Early PostScript 1 Printers” on page 7-91

• “Background Fills in HPGL Drivers” on page 7-91

• “Color Selection in HPGL Drivers” on page 7-91

• “Limitations of HPGL Drivers” on page 7-92

7-89

7 Printing and Exporting

Setting the Windows Driver
When you specify a Windows driver (-dwin or -dwinc), MATLAB interprets
this to mean that the print request will use the Windows Print Manager. It
also means that MATLAB will assign the default Windows driver based on
your current printer’s color property setting. In other words, MATLAB does
not differentiate between -dwin or -dwinc in printopt.m and you might not
get the expected output color: if you choose -dwin, lines and text will print
in black and white; with -dwinc, lines and text print in their screen colors
(assuming your printer does print in color).

There are two ways to ensure that MATLAB uses -dwin or -dwinc: specify
the driver when you print, or use the printer’s Document Properties dialog
box to set the default driver.

You can use the printer’s Document Properties dialog box to set the default
driver for all print requests. This dialog box sets the printer’s color property,
which in turn sets the default Windows driver.

To access this dialog box, click the Properties button on the Windows Print
or Print Setup dialog box. See your Windows and printer’s documentation if
you need help with this dialog box. Document Properties dialog boxes vary
from printer to printer.

Sometimes, even when you use the Windows Document Properties dialog box,
you can receive incorrect color results because some Windows printers return
inaccurate information about their color property setting.

Trouble with Native Drivers on Windows
Occasionally, printing problems are due to a bug in the native printer driver or
an incompatibility between the native printer driver and the MATLAB driver.

If you are having trouble, try installing a different native printer driver. A
newer version might be available from the manufacturer or reseller. You may
also be able to use the native driver from a different printer, such as an earlier
model from the same manufacturer.

If this doesn’t help, try using a PostScript or Ghostscript driver.

7-90

Choosing a Printer Driver

Level 1 or Level 2 PostScript Drivers
Choosing between the Level 1 and Level 2 MATLAB PostScript drivers does
not affect the quality of your output. Make the choice based on what your
printer supports and on any file size or speed concerns.

Level 1 PostScript produces good results on a Level 2 printer, but Level 2
PostScript does not print properly on a Level 1 printer.

Level 2 PostScript files are generally smaller and render more quickly than
Level 1 files. If your printer supports Level 2 PostScript, use one of the Level
2 drivers. If your printer does not support Level 2, or if you’re not sure, use
a Level 1 driver.

Early PostScript 1 Printers
If you have an early PostScript 1 printer, such as some of the PostScript
printers manufactured before 1990, you may notice problems in the text of
MATLAB printouts. Your printer might not support the ISOLatin1Encoding
operator that MATLAB uses for PostScript files. If this is the case, use Adobe’s
PostScript default character-set encoding. You can specify this by using the
-adobecset option with the print command.

Background Fills in HPGL Drivers
The HPGL driver cannot do background fills. Therefore, you should ensure
that your figure is set to print with a white background (the default), and
that any lines and text in your figure are drawn in a color dark enough to be
seen on a white background. For more information about background color,
see “Setting the Background Color” on page 7-62.

Color Selection in HPGL Drivers
The HP 7475A plotter supports six pens, none of which can be white. If
MATLAB tries to draw in white while rendering in HPGL mode, the driver
ignores all drawing commands until a different color is chosen.

Pen 1, which is assumed to be black, is used for drawing axes. The remaining
pens are used for the first five colors specified in the ColorOrder property
of the current axes object. If ColorOrder specifies fewer than five colors,
the unspecified pens are not used.

7-91

7 Printing and Exporting

For Simulink systems, which ordinarily use a maximum of eight colors, the
six pens available on the plotter are assumed to be

• Pen 1: black

• Pen 2: red

• Pen 3: green

• Pen 4: blue

• Pen 5: cyan

• Pen 6: magenta

If you attempt to draw a MATLAB object containing a color that is not a known
pen color, the driver chooses the nearest approximation to the unlisted color.

Limitations of HPGL Drivers
The HPGL driver has these limitations:

• Display colors and plotted colors sometimes differ.

• Areas (faces on mesh and surface plots, patches, blocks, and arrowheads)
are not filled.

• There is no hidden line or surface removal.

• Text is printed in the plotter’s default font.

• Line width is determined by pen width.

• Images and UI controls cannot be plotted.

• Interpolated edge lines between two vertices are drawn with the pen whose
color best matches the average color of the two vertices.

• Figures cannot be rendered using Z-buffer or OpenGL; this driver always
uses the Painter’s algorithm.

How to Specify the Printer Driver to Use
If you need to use a driver other than the default driver for your system, choose
a new driver from the Printer Driver table on the print reference page, and
set it either as a new default or just for the current figure you are working on.

7-92

Choosing a Printer Driver

Setting the Default Driver for All Figures
If you do not indicate a specific printer driver, MATLAB uses the default
driver specified by the variable dev in the printopt.m file. The factory default
driver depends on the platform.

Platform Factory Default Printer Driver Driver Code

Windows Black-and-white Windows -dwin

UNIX & MAC Black-and-white Level II
PostScript

-dps2

To change the default driver for all figures, edit printopt.m and change the
value for dev to match one of the driver codes listed in the Printer Drivers
table on the print reference page (printopt.m contains instructions for
modifying it). See “Setting Defaults Across Sessions” on page 7-9 for details.

Setting a Driver for the Current Figure Only
You can change the printer driver from the MATLAB command line. To
specify a nondefault printer driver for the figure you are printing, include the
-d switch with the print command. For example, to print the current figure
using the MATLAB built-in Windows color printer driver winc, type

print -dwinc

Note When printing, the print -d option specifies a printer driver. When
exporting, the print -d option specifies a graphics format.

7-93

7 Printing and Exporting

Troubleshooting

In this section...

“Introduction” on page 7-94

“Common Problems” on page 7-94

“Printing Problems” on page 7-95

“Exporting Problems” on page 7-98

“General Problems” on page 7-102

Introduction
This section describes some common problems you might encounter when
printing or exporting your figure. If you don’t find your problem listed here,
try searching the Knowledge Base maintained by the MathWorks Technical
Support Department. Go to http://www.mathworks.com/support and enter
a topic in the search field.

Common Problems

• Printing Problems

- “Printer Drivers” on page 7-95

- “Default Settings” on page 7-96

- “Color vs. Black and White” on page 7-97

- “Printer Selection” on page 7-97

- “Rotated Text” on page 7-98

- “ResizeFcn Warning” on page 7-98

• Exporting Problems

- “Background Color” on page 7-98

- “Default Settings” on page 7-99

- “Microsoft Word” on page 7-99

- “File Format” on page 7-100

7-94

http://www.mathworks.com/support

Troubleshooting

- “Size of Exported File” on page 7-101

- “Making Movies” on page 7-101

- “Extended Operations” on page 7-101

• General Problems

- “Background Color” on page 7-102

- “Default Settings” on page 7-102

- “Dimensions of Output” on page 7-103

- “Axis and Tick Labels” on page 7-103

- “UI Controls” on page 7-104

- “Cropping” on page 7-104

- “Text Object Font” on page 7-104

Printing Problems

Printer Drivers
I am using a Windows printer driver and encountering problems such
as segmentation violations, general protection faults, application
errors, and unexpected output.

Try one of the following solutions:

• Check the table of drivers in the print reference page to see if there are
other drivers you can try.

- If your printer is PostScript compatible, try printing with one of the
MATLAB built-in PostScript drivers.

- If your printer is not PostScript compatible, see if one of the MATLAB
built-in Ghostscript devices is appropriate for your printer model. These
devices use Ghostscript to convert PostScript files into other formats,
such as HP LaserJet and Canon BubbleJet.

• Contact the printer vendor to obtain a different native printer driver. The
behavior you are experiencing might occur only with certain versions of the
native printer driver. If this doesn’t help and you are using Windows, try

7-95

7 Printing and Exporting

reinstalling the drivers that were shipped with your Windows installation
disk.

• Export the figure to a graphics-format file, and then import it into another
application before printing it. For information about exporting figures with
MATLAB, see “Exporting to a File” on page 7-21.

PostScript Output
When I use the print function with the -deps switch, I receive this
error message.

Encapsulated PostScript files cannot be sent to the printer.
File saved to disk under name 'figure2.eps'

As the error message indicates, your figure was saved to a file. EPS is a
graphics file format and cannot be sent to a printer using a printer driver. To
send your figure directly to a printer, try using one of the PostScript driver
switches. See the table of drivers in the print reference page. To print an EPS
file, you must first import it into a word processor or other software program.

Default Settings
My printer uses a different default paper type than the MATLAB
default type of letter. How can I change the default paper type so
that I don’t have to set it for each new figure?

You can set the default value for any property by adding a line to startup.m.
Adding the following line sets the default paper type to A4.

set(0, 'DefaultFigurePaperType', 'A4');

In your call to set, combine the word Default with the name of the object
Figure and the property name PaperType.

I set the paper orientation to landscape, but each time I go to print
a new figure, the orientation setting is portrait again. How can I
change the default orientation so that I won’t have to set it for each
new figure?

7-96

Troubleshooting

See the explanation for the previous question. Adding the following line to
startup.m sets the default paper orientation to landscape.

set(0, 'DefaultFigurePaperOrient', 'landscape')

Color vs. Black and White
I want the lines in my figure to print in black, but they keep printing
in color.

You must be using a color printer driver. You can specify a black-and-white
driver using the print function or the Print Preview dialog box to force the
lines for the current figure to print in black. See “Setting the Line and Text
Color” on page 7-66 for instructions.

A white line in my figure keeps coming out black when I print it.

There are two things that can cause this to happen. Most likely, the line
is positioned over a dark background. By default, MATLAB inverts your
background to white when you print, and changes any white lines over the
background to black. To avoid this, retain your background color when you
print. See “Setting the Background Color” on page 7-62.

The other possibility is that you are using a Windows printer driver and the
printer is sending inaccurate color information to MATLAB. See .

I am using a color printer, but my figure keeps printing in black
and white.

By default, MATLAB uses a black-and-white printer driver. You need to
specify a color printer driver. For instructions, see “Choosing a Printer Driver”
on page 7-85. If you are already using a Windows color driver, the printer
might be returning inaccurate information about its color property. See .

Printer Selection
I have more than one printer connected to my system. How do I
specify which one to print my figure with?

7-97

7 Printing and Exporting

You can use either the Print dialog box, or the MATLAB print function,
specifying the printer with the -P switch. For instructions using either
method, see “Selecting the Printer” on page 7-46.

Rotated Text
I have some rotated text in my figure. It looks fine on the screen, but
when I print it, the resolution is poor.

You are probably using bitmapped fonts, which don’t rotate well. Try using
TrueType fonts instead.

ResizeFcn Warning
I get a warning about my ResizeFcn being used when I print my figure.

By default, MATLAB resizes your figure when converting it to printer
coordinates. Therefore, MATLAB calls any ResizeFcn you have created for
the figure and issues a warning. You can avoid this warning by setting the
figure to print at screen size.

Exporting Problems

Background Color
I generated a figure with a black background and selected “Use figure
color” from the Copy Options panel of the Preferences dialog box.
But when I exported my figure, its background was changed to white.

You must have exported your figure to a file. The settings in Copy Options
only apply to figures copied to the clipboard.

There are two ways to retain the displayed background color: use the Print
Preview dialog box or set the InvertHardCopy property to off. See “Setting
the Background Color” on page 7-62 for instructions on either method.

7-98

Troubleshooting

Default Settings
I want to export all of my figures using the same size. Is there some
way to do this so that I don’t have to set the size for each individual
figure?

You can set the default value for any property by adding a line to startup.m.
Adding the following line sets the default figure size to 4-by-3 inches.

set(0, 'DefaultFigurePaperPosition', [0 0 4 3]);

In your call to set, combine the word Default with the name of the object
Figure and the property name PaperPosition.

I use the clipboard to export my figures as metafiles. Is there some
way to force all of my copy operations to use the metafile format?

On Windows, use the Copy Options panel of the Preferences dialog box.
Any settings made here, including whether MATLAB copies your figure as
a metafile or bitmap, apply to all copy operations. See “Exporting to the
Windows or Macintosh Clipboard” on page 7-32 for instructions.

Microsoft Word
I exported my figure to an EPS file, and then tried to import it into
my Word document. My printout has an empty frame with an error
message saying that my EPS picture was not saved with a preview
and will only print to a PostScript printer. How do I include a TIFF
preview?

Use the print command with the -tiff switch. For example,

print -deps -tiff filename

Note that if you print to a non-PostScript printer with Word, the preview
image is used for printing. This is a low-resolution image that lacks the
quality of an EPS graphic. For more information about preview images and
other aspects of EPS files, see “EPS Files” on page 7-81.

When I try to resize my figure in Word, its quality suffers.

7-99

7 Printing and Exporting

You must have used a bitmap format. Bitmap files generally do not resize
well. If you are going to export using a bitmap format, try to set the figure’s
size while it’s still in MATLAB. See “Setting the Figure Size and Position”
on page 7-47 for instructions.

As an alternative, you can use one of the vector formats, EMF or EPS. Figures
exported in these formats can be resized in Word without affecting quality.

I exported my figure as an EMF to the clipboard. When I paste it into
Word, some of the labels are printed incorrectly.

This problem occurs with some versions of Word and Windows. Try editing
the labels in Word.

File Format
I tried to import my exported figure into a word processing
document, but I got an error saying the file format is unrecognized.

There are two likely causes: you used the print function and forgot to specify
the export format, or your word processing program does not support the
export format. Include a format switch when you use the print function;
simply including the file extension is not sufficient. For instructions, see
“Exporting to a File” on page 7-21.

If this does not solve your problem, check what formats the word processor
supports.

I tried to append a figure to an EPS file, and received an error
message

You cannot append figures to an EPS file. The -append option is only valid
for PostScript files, which should not be confused with EPS files. PostScript
is a printer driver; EPS is a graphics file format.

Of the supported export formats, only HDF supports storing multiple figures,
but you must use the imwrite function to append them. For an example,
see the reference page for imwrite.

7-100

Troubleshooting

Size of Exported File
I’ve always used the EPS format to export my figures, but recently
it started to generate huge files. Some of my files are now several
megabytes!

Your graphics have probably become complicated enough that MATLAB is
using the OpenGL or Z-buffer renderer instead of the Painter’s renderer. It
does this to improve display time or to handle attributes that Painter’s cannot,
such as lighting. However, using OpenGL or Z-buffer causes a bitmap to be
stored in your EPS file, which with large figures leads to a large file.

There are two ways to fix the problem. You can specify the Painter’s renderer
when you export to EPS, or you can use a bitmap format, such as TIFF. The
best renderer and type of format to use depend upon the figure. See “Choosing
Bitmap or Vector Graphic Output” on page 7-75 if you need help deciding. For
information about the rendering methods and how to set them, see “Selecting
a Renderer” on page 7-54.

Making Movies
I am processing a large number of frames in MATLAB. I would like
these frames to be saved as individual files for later conversion into a
movie. How can I do this?

Use getframe to capture the frames, imwrite to write them to a file, and
movie to create a movie from the files. For more information about using
getframe and imwrite to capture and write the frames, see “Exporting with
getframe” on page 7-29. For more information about creating a movie from
the captured frames, see the reference page for movie.

You can also save multiple figures to an AVI file. AVI files can be used for
animated sequences that do not need MATLAB to run. However, they do
require an AVI viewer. For more information, see “Exporting Audio/Video
Data” in the MATLAB Programming documentation.

Extended Operations
There are some export operations that cannot be performed using
the Export dialog box.

7-101

7 Printing and Exporting

You need to use the print function to do any of the following operations:

• Export to a supported file format not listed in the Export dialog box.
The formats not available from the Export dialog box include HDF, some
variations of BMP and PCX, and the raw data versions of PBM, PGM,
and PPM.

• Specify a resolution.

• Specify one of the following options:

- TIFF preview

- Loose bounding box for EPS files

- Compression quality for JPEG files

- CMYK output on Windows

• Perform batch exporting.

General Problems

Background Color
When I output my figure, its background is changed to white. How
can I get it to have the displayed background color?

By default, when you print or export a figure, MATLAB inverts the
background color to white. There are two ways to retain the displayed
background color: use the Print Preview dialog box or set the InvertHardCopy
property to off. See “Setting the Background Color” on page 7-62 for
instructions on either method.

If you are exporting your figure to the clipboard, you can also use the Copy
Options panel of the Preferences dialog box. Setting the background here
sets it for all figures copied to the clipboard.

Default Settings
I need to produce diagrams for publications. There is a list of
requirements that I must meet for size of the figure, fonts types, etc.
How can I do this easily and consistently?

7-102

Troubleshooting

You can set the default value for any property by adding a line to startup.m.
As an example, the following line sets the default axes label font size to 12.

set(0, 'DefaultAxesFontSize', 12);

In your call to set, combine the word Default with the name of the object
Axes and the property name FontSize.

Dimensions of Output
The dimensions of my output are huge. How can I make it smaller?

Check your settings for figure size and resolution, both of which affect the
output dimensions of your figure.

The default figure size is 8-by-6 inches. You can use the Print Preview dialog
box or the PaperPosition property to set the figure size. See “Setting the
Figure Size and Position” on page 7-47.

The default resolution depends on the export format or printer driver used.
For example, built-in MATLAB bitmap formats, like TIFF, have a default
resolution of 150 dpi. You can change the resolution by using the print
function and the -r switch. For default resolution values and instructions on
how to change them, see “Setting the Resolution” on page 7-57.

I selected “Auto (actual size, centered)” from the Print Preview menu,
but my output looks a little bigger, and my font looks different.

You probably output your figure using a higher resolution than your screen
uses. Set your resolution to be the same as the screen’s.

As an alternative, if you are exporting your figure, see if your application
enables you to select a resolution. If so, import the figure at the same
resolution it was exported with. For more information about resolution and
how to set it when exporting, see “Setting the Resolution” on page 7-57.

Axis and Tick Labels
When I resize my figure below a certain size, my x-axis label and the
bottom half of the x-axis tick labels are missing from the output.

7-103

7 Printing and Exporting

Your figure size might be too small to accommodate the labels. Labels are
positioned a fixed distance from the x-axis. Since the x-axis itself is positioned
a relative distance away from the window’s edge, the label text might not fit.
Try using a larger figure size or smaller fonts. For instructions on setting the
size of your figure, see “Setting the Figure Size and Position” on page 7-47.
For information about setting font size, see the Text Properties reference page.

In my output, the x-axis has fewer ticks than it did on the screen.

MATLAB has rescaled your ticks because the size of your output figure is
different from its displayed size. There are two ways to prevent this: select
Keep screen limits and ticks from the Advanced tab of the Print Preview
dialog box, or set the XTickMode, YTickMode, and ZTickMode properties to
manual. See “Setting the Axes Ticks and Limits” on page 7-60 for details.

UI Controls
My figure contains UI controls. How do I prevent them from
appearing in my output?

Use the print function with the -noui switch. For details, see “Excluding
User Interface Controls form Printed Output” on page 7-71.

Cropping
I can’t output my figure using the uncropped setting (i.e., a loose
BoundingBox).

Only PostScript printer drivers and the EPS export format support uncropped
output. There is a workaround for Windows printer drivers, however. Using
the print function, save your figure to a file that can be printed later. For an
example see “Producing Uncropped Figures” on page 7-72.

Text Object Font
I have a problem with text objects when printing with a PostScript
printer driver or exporting to EPS. The fonts are correct on the
screen, but are changed in the output.

7-104

Troubleshooting

You have probably used a font that is not supported by EPS and PostScript.
All unsupported fonts are converted to Courier. See “PostScript and
Ghostscript Supported Fonts” on page 7-88 for the list of the supported fonts.

7-105

7 Printing and Exporting

7-106

8

Handle Graphics Objects

Organization of Graphics Objects
(p. 8-3)

Illustrates the graphics object
hierarchy

Types of Graphics Objects (p. 8-4) Describes the categories of graphics
objects

Graphics Windows — the Figure
(p. 8-6)

Overview of the MATLAB graphics
window

Core Graphics Objects (p. 8-10) Core objects used to create graphs
and construct composite objects

Plot Objects (p. 8-19) Composite objects that are used to
create graphs

Linking Graphs to Variables — Data
Source Properties (p. 8-23)

Link graph to source of data.

Annotation Objects (p. 8-25) Create annotation object
programmatically

Group Objects (p. 8-28) Form groups of objects that behave
as one object with respect to certain
properties

Example — Transforming a
Hierarchy of Objects (p. 8-36)

Shows how to transform object
hierarchies

Object Properties (p. 8-40) Overview of object properties

Properties Common to All Objects
(p. 8-44)

Table lists properties that all object
contain.

Setting and Querying Property
Values (p. 8-45)

How to set and query property
values and how to return to original
(factory default) values

8 Handle Graphics Objects

Factory-Defined Property Values
(p. 8-50)

Predefined property values.

Setting Default Property Values
(p. 8-51)

How MATLAB determines what
values to use for a given object’s
properties and how to define default
values

Accessing Object Handles (p. 8-58) Obtain the handles of existing
objects

Controlling Graphics Output
(p. 8-69)

Control target window for graphics
output

The Figure Close Request Function
(p. 8-80)

Manage how MATLAB closes figures.

Saving Handles in M-Files (p. 8-83) How to manage object handles
within a graphics M-file

Properties Changed by Built-In
Functions (p. 8-85)

List of the properties that are
changed by MATLAB built-in
functions

Objects That Can Contain Other
Objects (p. 8-88)

How to use figure and axes
containers to write resize functions

Using Panel Containers in Figures
— Uipanels (p. 8-89)

How to use panel containers in
figure.

Grouping Objects Within Axes —
hgtransform (p. 8-95)

How to group objects within axes.

Controlling Legends (p. 8-99)

Callback Properties for Graphics
Objects (p. 8-107)

Object properties for which you can
define callbacks

Function Handle Callbacks (p. 8-109) How to use function handle callbacks

Optimizing Graphics Performance
(p. 8-118)

Techniques for improving the speed
of grahics rendering.

8-2

Organization of Graphics Objects

Organization of Graphics Objects
Graphics objects are the basic drawing elements used by MATLAB to display
data. Each instance of an object is associated with a unique identifier called
a handle. Using this handle, you can manipulate the characteristics (called
object properties) of an existing graphics object. You can also specify values
for properties when you create a graphics object.

These objects are organized into a hierarchy, as shown by the following
diagram.

The hierarchical nature of Handle Graphics is based on the interdependencies
of the various graphics objects. For example, to draw a line object, MATLAB
needs an axes object to orient and provide a frame of reference to the line. The
axes, in turn, needs a figure window to display the axes and its child objects.

8-3

8 Handle Graphics Objects

Types of Graphics Objects

In this section...

“Introduction” on page 8-4

“Information on Specific Graphics Objects” on page 8-4

Introduction
There are two basic types of graphics objects:

• Core graphics objects — Used by high-level plotting functions and by
composite objects to create plot objects

• Composite objects — Composed of core graphics objects that have been
grouped together to provide a more convenient interface

Composite objects form the basis for four subcategories of graphics objects.

• Plot objects — Composed of basic graphics objects, but enable properties
to be set on plot object level

• Annotation objects — Exist on a layer separate from other graphics objects

• Group objects — Create groups of objects that can behave as one in certain
respects. You can parent any axes child object (except light) to a group
object, including other group object.

• UI objects — User interface objects are used to construct graphical user
interfaces.

Graphics objects are interdependent, so the graphics display typically
contains a variety of objects that, in conjunction, produce a meaningful graph
or picture.

Information on Specific Graphics Objects
See the following sections for more information on the various types of
graphics objects:

• “Graphics Windows — the Figure” on page 8-6

8-4

Types of Graphics Objects

• “Core Graphics Objects” on page 8-10

• “Plot Objects” on page 8-19

• “Annotation Objects” on page 8-25

• “Group Objects” on page 8-28

• “Object Properties” on page 8-40

For information on user interface objects and their application, see “Creating
Graphical User Interfaces” in the MATLAB documentation.

8-5

8 Handle Graphics Objects

Graphics Windows — the Figure

In this section...

“Introduction” on page 8-6

“Figures Used for Graphing Data” on page 8-7

“Figures Used for GUIs” on page 8-8

“Root Object — the Figure Parent” on page 8-9

“More Information on Figures” on page 8-9

Introduction
Figures are the windows in which MATLAB displays graphics. Figures
contain menus, toolbars, user-interface objects, context menus, axes and, as
axes children, all other types of graphics objects.

MATLAB places no limits on the number of figures you can create (your
computer systems might impose limitations, however).

Figures play two distinct roles in MATLAB:

• Containing data graphs

• Containing graphical user interfaces

Figures can contain both graphs and GUIs components at the same time. For
example, a GUI might be designed to plot data and therefore contain an axes
as well as user interface objects. See “Example — Using Figure Panels” on
page 8-90 for an example of such a GUI.

The following diagram illustrates the types of objects that figures can contain.

8-6

Graphics Windows — the Figure

Note that both figures and axes have children that act as containers. A
uipanel can contain user interface objects and be parented to a figure and
group objects (hggroup and hgtransform) can contain axes children (except
light objects) and be parented to an axes.

See “Objects That Can Contain Other Objects” on page 8-88 for more
information.

Figures Used for Graphing Data
MATLAB functions that draw graphics (e.g., plot and surf) create figures
automatically if none exist. If there are multiple figures open, one figure
is always designated as the “current” figure, and is the target for graphics
output.

The gcf command returns the handle of the current figure or creates a new
figure if one does not exist. For example, you can enter the following command
to see a list of figure properties.

get(gcf)

The root object CurrentFigure > property returns the handle of the current
figure, if one exists, or returns empty if there are no figures open. For example,

get(0,'CurrentFigure')
ans =
[]

8-7

8 Handle Graphics Objects

See “Controlling Graphics Output” on page 8-69 for more information on how
MATLAB determines where to display graphics.

Figure Children for Graphs
Figures that display graphs need to contain axes to provide the frame of
reference for objects such as lines and surfaces, which are used to represent
data. These data representing objects can be contained in group objects or
contained directly in the axes. See “Example — Transforming a Hierarchy of
Objects” on page 8-36 for an example of how to use group objects.

Figures can contain multiple axes arranged in various locations within the
figure and can be of various sizes. See “Automatic Axes Resize” on page 10-9
and “Multiple Axes per Figure” on page 10-15 for more information on axes.

Figures Used for GUIs
GUIs range from sophisticated applications to simple warning dialog boxes.
You can modify many aspects of the figure to fit the intended use by setting
figure properties. For example, the following figure properties are often useful
when creating GUIs.

• Show or hide the figure menu, while displaying custom-designed menus
(MenuBar)

• Change the figure title (Name)

• Control user access to the figure handle (HandleVisibility)

• Create a callback that executes whenever the user resizes the figure
(ResizeFcn)

• Control display of the figure toolbar (Toolbar)

• Assign a context menu (UIContextMenu)

• Define callbacks that execute when users click drag or release the
mouse over the figure (WindowButtonDownFcn, WindowButtonMotionFcn,
WindowButtonUpFcn). Also see the ButtonDownFcn property.

• Specify whether the figure is modal (WindowStyle)

8-8

Graphics Windows — the Figure

See the Figure Properties reference page for more information on figure
characteristics you can specify.

See the “Creating Graphical User Interfaces” documentation for more
information about using figure to create GUIs.

Root Object — the Figure Parent
The parent of a figure is the root object. You cannot instantiate the root object
because its purpose is only to store information. It maintains information on
the state of MATLAB, your computer system, and some MATLAB defaults.

There is only one root object and all other objects are its descendants. You do
not create the root object; it exists when you start MATLAB. You can, however,
set the values of root properties and thereby affect the graphics display.

For more information see Root Properties object properties.

More Information on Figures
See the figure reference page for information on creating figures.

See “Callback Properties for Graphics Objects” on page 8-107 for information
on figure events for which you can define callbacks.

See Chapter 9, “Figure Properties” for information on other figure properties.

8-9

8 Handle Graphics Objects

Core Graphics Objects

In this section...

“Introduction” on page 8-10

“Description of Core Graphics Objects” on page 8-13

“Example — Creating Core Graphics Objects” on page 8-14

“Parenting” on page 8-16

“High-Level Versus Low-Level” on page 8-17

“Simplified Calling Syntax” on page 8-17

Introduction
Core graphics objects include basic drawing primitives like line, text, and
polygon shells (patch objects); specialized objects like surfaces, which are
composed of a rectangular grid of vertices; images; and light objects, which
are not visible but affect the way some objects are colored.

Axes contain objects that represent data, such as line, surfaces, contourgroups,
etc.

The following table lists the core graphics objects and links to the reference
pages of the functions used to create each object.

Core Graphics Objects

Function Purpose

axes Axes objects define the coordinate system for
displaying graphs. Axes are always contained within
a figure.

image 2-D representation of a matrix where numeric values
are mapped to colors. Images can also be 3-D arrays
of RGB values.

light Directional light source located within the axes.
Lights affect patches and surfaces, but cannot
themselves be seen.

8-10

Core Graphics Objects

Core Graphics Objects (Continued)

Function Purpose

line A line is drawn by connecting the data points that
define it.

patch Filled polygons with separate edge properties. A
single patch can contain multiple faces, each colored
independently with solid or interpolated colors.

rectangle 2-D object that has settable edge and face color, and
variable curvature (can draw ellipses)

surface 3-D grid of quadrilaterals created by plotting the
value of each element in a matrix as a height above
the x-y plane

text Character strings positioned in the coordinate
system defined by the axes

8-11

8 Handle Graphics Objects

The following picture illustrates some typical core graphics objects.

8-12

Core Graphics Objects

Description of Core Graphics Objects
This section describes the core graphics objects.

Axes
Axes objects define a frame of reference in a figure window for the display
objects that are generally defined by data. For example, MATLAB creates a
line by connecting each data point with a line segment. The axes determines
the location of each data point in the figure by defining axis scales (x, y, and
z or radius and angle, etc.)

Axes are children of figures and are parents of core, plot, and group objects.

Note that, while annotation objects are also children of axes, they can be
parented only to the hidden annotation axes (see the annotation function
for more information).

All functions that draw graphics (e.g., plot, surf, mesh, and bar) create an
axes object if one does not exist. If there are multiple axes within the figure,
one axes is always designated as the “current” axes, and is the target for
display of the above-mentioned graphics objects (uicontrols and uimenus are
not children of axes).

Image
A MATLAB image consists of a data matrix and possibly a colormap. There
are three basic image types that differ in the way that data matrix elements
are interpreted as pixel colors — indexed, intensity, and truecolor. Since
images are strictly 2-D, you can view them only at the default 2-D view.

Light
Light objects define light sources that affect all patch and surface objects
within the axes. You cannot see lights, but you can set properties that control
the style of light source, color, location, and other properties common to all
graphics objects.

Line
Line objects are the basic graphics primitives used to create most 2-D and
some 3-D plots. High-level functions plot, plot3, and loglog (and others)

8-13

8 Handle Graphics Objects

create line objects. The coordinate system of the axes positions and orients
the line.

Patch
Patch objects are filled polygons with edges. A single patch can contain
multiple faces, each colored independently with solid or interpolated colors.
fill, fill3, and contour3 create patch objects. The coordinate system of the
axes positions and orients the patch.

Rectangle
Rectangle objects are 2-D filled areas having a shape that can range from a
rectangle to an ellipse. Rectangles are useful for creating flow-chart-type
drawings.

Surface
Surface objects are 3-D representations of matrix data created by plotting the
value of each matrix element as a height above the x-y plane. Surface plots
are composed of quadrilaterals whose vertices are specified by the matrix
data. MATLAB can draw surfaces with solid or interpolated colors or with
only a mesh of lines connecting the points. The coordinate system of the axes
positions and orients the surface.

The high-level function pcolor and the surf and mesh group of functions
create surface objects.

Text
Text objects are character strings. The coordinate system of the parent axes
positions the text. The high-level functions title, xlabel, ylabel, zlabel,
and gtext create text objects.

Example — Creating Core Graphics Objects
Object creation functions have a syntax of the form

handle = function('propertyname',propertyvalue,...)

8-14

Core Graphics Objects

You can specify a value for any object property (except those that are read
only) by passing property name/value pairs as arguments. The function
returns the handle of the object it creates, which you can use to query and
modify properties after creating the object.

This example evaluates a mathematical function and creates three graphics
objects using the property values specified as arguments to the figure, axes,
and surface commands. MATLAB uses default values for all other properties.

[x,y] = meshgrid([-2:.4:2]);
Z = x.*exp(-x.^2-y.^2);
fh = figure('Position',[350 275 400 300],'Color','w');
ah = axes('Color',[.8 .8 .8],'XTick',[-2 -1 0 1 2],...

'YTick',[-2 -1 0 1 2]);
sh = surface('XData',x,'YData',y,'ZData',Z,...

'FaceColor',get(ah,'Color')+.1,...
'EdgeColor','k','Marker','o',...
'MarkerFaceColor',[.5 1 .85]);

Note that the surface function does not use a 3-D view like the high-level
surf functions. Object creation functions simply add new objects to the
current axes without changing axes properties, except the Children property,

8-15

8 Handle Graphics Objects

which now includes the new object and the axis limits (XLim, YLim, and ZLim),
if necessary.

You can change the view using the camera commands or use the view
command.

view(3)

Parenting
By default, all statements that create graphics objects do so in the current
figure and the current axes (if the object is an axes child). However, you can
specify the parent of an object when you create it. For example, the statement

axes('Parent',figure_handle,...)

creates an axes in the figure identified by figure_handle. You can also move
an object from one parent to another by redefining its Parent property.

set(gca,'Parent',figure_handle)

8-16

Core Graphics Objects

High-Level Versus Low-Level
Many MATLAB graphics functions call the object creation functions to draw
graphics objects. However, high-level routines also clear the axes or create
a new figure, depending on the settings of the axes and figure NextPlot
properties.

In contrast, core object creation functions simply create their respective
graphics objects and place them in the current parent object. They do not
respect the settings of the figure or axes NextPlot property.

For example, if you call the line function,

line('XData',x,'YData',y,'ZData',z,'Color','r')

MATLAB draws a red line in the current axes using the specified data values.
If there is no axes, MATLAB creates one. If there is no figure window in
which to create the axes, MATLAB creates it as well.

If you call the line function a second time, MATLAB draws the second line
in the current axes without erasing the first line. This behavior is different
from high-level functions like plot that delete graphics objects and reset all
axes properties (except Position and Units). You can change the behavior of
high-level functions by using the hold command or by changing the setting of
the axes NextPlot property.

See “Controlling Graphics Output” on page 8-69 for more information on this
behavior and on using the NextPlot property.

Simplified Calling Syntax
Object creation functions have convenience forms that allow you to use a
simpler syntax. For example,

text(.5,.5,.5,'Hello')

is equivalent to

text('Position',[.5 .5 .5],'String','Hello')

8-17

8 Handle Graphics Objects

Note that using the convenience form of an object creation function can
cause subtle differences in behavior when compared to formal property
name/property value syntax.

A Note About Property Names
By convention, MATLAB documentation capitalizes the first letter of each
word that makes up a property name, such as LineStyle or XTickLabelMode.
While this makes property names easier to read, MATLAB does not check for
uppercase letters. In addition, you need use only enough letters to identify
the name uniquely, so you can abbreviate most property names.

In M-files, however, using the full property name can prevent problems with
futures releases of MATLAB if a shortened name is no longer unique because
of the addition of new properties.

8-18

Plot Objects

Plot Objects

In this section...

“Introduction” on page 8-19

“Creating a Plot Object” on page 8-20

“Identifying Plot Objects Programmatically” on page 8-21

“Plot Objects and Backward Compatibility” on page 8-22

Introduction
A number of high-level plotting functions create plot objects. The properties
of plot objects provide easy access to the important properties of the core
graphics objects that the plot objects contain.

Plot object parents can be axes or group objects (hggroup or hgtransform).
See “Objects That Can Contain Other Objects” on page 8-88 for examples.

This table lists the plot objects and the graphing functions that use them.
Click object names to see a description of their properties.

Plot Objects

Object Purpose

areaseries Used to create area graphs

barseries Used to create bar graphs

contourgroup Used to create contour graphs

errorbarseries Used to create errorbar graphs

8-19

8 Handle Graphics Objects

Plot Objects (Continued)

Object Purpose

lineseries Used by line plotting functions (plot, plot3, etc.)

quivergroup Used to create quiver and quiver3 graphs

scattergroup Used to create scatter and scatter3 graphs

stairseries Used to create stairstep graphs (stairs)

stemseries Used to create stem and stem3 graphs

surfaceplot Used by the surf and mesh group of functions

Creating a Plot Object
For example, the following statements create a contour graph of the peaks
function and then set the line style and width of the contour lines.

[x,y,z] = peaks;
[c,h] = contour(x,y,z);
set(h,'LineWidth',3,'LineStyle',':')

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

8-20

Plot Objects

The contour plot object enables you to set the line width and style of the
contour graph by setting two properties. Looking at the core objects contained
in the contour plot object reveals a number of patch objects whose edges are
used to implement the contour line, which you would otherwise need to set
individually.

child_handles = get(h,'Children');
get(child_handles,'Type')
ans =

'patch'
'patch'
'patch'
'patch'
'patch'
'patch'
'patch'
'patch'
'patch'
'patch'
'patch'
'patch'

Identifying Plot Objects Programmatically
Plot objects all return hggroup as the value of the Type property. If you want
to be able to identify plot objects programmatically but do not have access to
the object’s handle, set a value for the object’s Tag property.

For example, the following statements create a bar graph with five barseries
objects and assign a different value for the Tag property on each object.

h = bar(rand(5));
set(h,{'Tag'},{'bar1','bar2','bar3','bar4','bar5'}')

Note that the cell array of property values must be transposed (') to have the
proper shape. See the set function for more information on setting properties.

No User Default Values
Note that you cannot define default values for plot objects.

8-21

8 Handle Graphics Objects

Plot Objects and Backward Compatibility

Note The v6 option discussed in this section is now obsolete and will be
removed in a future version of MATLAB.

Plotting functions that create plot objects can introduce incompatibilities with
code written before MATLAB Version 7.x. However, all plotting functions that
return handles to plot objects support an optional argument ('v6') that forces
the functions to use core objects, as was the case in MATLAB before Version 7.

• See “Plot Objects” on page 8-19 for a list of functions that create plot objects.

• See “Core Graphics Objects” on page 8-10 for a list of core graphics objects.

Saving Figures That Are Compatible with Previous Version
of MATLAB
Create backward-compatible FIG-files by following these two steps.

• Ensure that any plotting functions used to create the contents of the figure
are called with the 'v6' argument, where applicable.

• Use the '-v6' option with the hgsave command.

For example,

h = figure;
t = 0:pi/20:2*pi;
plot('v6',t,sin(t).*2)
hgsave(h,'myFigFile','-v6')

You can set a general MATLAB preference to ensure that figures saved by
selecting the Save item under the figure File menu are backward compatible.
To access MATLAB preferences, select Preferences from the Desktop File
menu. Expand the General node and select MAT Files. Click Ensure
backward compatibility (-v6). Note that this setting affects all FIG-files
and MAT-files that you create.

8-22

Linking Graphs to Variables — Data Source Properties

Linking Graphs to Variables — Data Source Properties

In this section...

“Introduction” on page 8-23

“Data Source Example” on page 8-23

“Changing the Size of Data Variables” on page 8-24

Introduction
Plot objects enable you to link a MATLAB expression with properties that
contain data. For example, the lineseries object has data source properties
associated with the XData, YData, and ZData properties. These properties are
called XDataSource, YDataSource, and ZDataSource.

To use a data source property,

1 Assign the name of a variable to the data source property that you want
linked to an expression.

2 Calculate a new value for the variable.

3 Call the refreshdata function to update the plot object data.

refreshdata enables you to specify whether to use a variable in the base
workspace or the workspace of the function from which you call refreshdata.

Data Source Example
The following example illustrates how to use this technique.

function datasource_ex
t = 0:pi/20:2*pi;
y = exp(sin(t));
h = plot(t,y,'YDataSource','y');
for k = 1:.1:10
y = exp(sin(t.*k));
refreshdata(h,'caller') % Evaluate y in the function workspace
drawnow; pause(.1)

end

8-23

8 Handle Graphics Objects

Changing the Size of Data Variables
If you change one data source property to a variable that contains data of a
different dimension, you might cause the function to generate a warning
and not render the graph until you have changed all data source properties
to appropriate values.

8-24

Annotation Objects

Annotation Objects

In this section...

“Introduction” on page 8-25

“Annotation Object Properties” on page 8-25

“Example — Enclosing Subplots with an Annotation Rectangle” on page
8-26

Introduction
Users typically create annotation objects from the Plot Edit toolbar or
the Insert menu (select Plot Edit in the View menu to display the Plot
Edit toolbar). However, you can also create annotation objects using the
annotation function.

Annotation objects are created in a hidden axes that extends the full width
and height of the figure. This enables you to specify the locations of annotation
objects anywhere in the figure using normalized coordinates (the lower left
corner is the point 0,0, the upper right corner is the point 1,1).

Annotation Object Properties

Note You should not change any of the properties of the annotation axes or
parent any graphics objects to this axes. Use the annotation function or the
graphics tools to create annotation objects.

The following links access descriptions of the properties you can set on the
respective annotation objects.

• Annotation arrow properties

• Annotation doublearrow properties

• Annotation ellipse properties

• Annotation line properties

• Annotation rectangle properties

8-25

8 Handle Graphics Objects

• Annotation textarrow properties

• Annotation textbox properties

To modify the appearance of annotation objects created with the plotting tools,
use “The Property Editor” on page 1-28.

Example — Enclosing Subplots with an Annotation
Rectangle
The following example shows how to create a rectangle annotation object
and use it to highlight two subplots in a figure. This example uses the axes
properties Position and TightInset to determine the location and size of the
annotation rectangle.

1 First create an array of subplots.

x = -2*pi:pi/12:2*pi;
y = x.^2;
subplot(2,2,1:2)
plot(x,y)
h1=subplot(223);
y = x.^4;
plot(x,y)
h2=subplot(224);
y = x.^5;
plot(x,y)

2 Determine the location and size of the annotation rectangle required to
enclose axes, tick mark labels, and title using the axes Position and
TightInset properties.

p1 = get(h1,'Position');
t1 = get(h1,'TightInset');
p2 = get(h2,'Position');
t2 = get(h2,'TightInset');
x1 = p1(1)-t1(1); y1 = p1(2)-t1(2);
x2 = p2(1)-t2(1); y2 = p2(2)-t2(2);
w = x2-x1+t1(1)+p2(3)+t2(3); h = p2(4)+t2(2)+t2(4);

8-26

Annotation Objects

3 Create the annotation rectangle to enclose the lower two subplots. Make
the rectangle a translucent red with a solid border.

annotation('rectangle',[x1,y1,w,h],...
'FaceAlpha',.2,'FaceColor','red','EdgeColor','red');

8-27

8 Handle Graphics Objects

Group Objects

In this section...

“Introduction” on page 8-28

“Creating a Group” on page 8-28

“Transforming Objects” on page 8-29

Introduction
Group objects enable you to treat a number of axes child objects as one group.
For example, you can make the entire group visible or invisible, select all
objects when only one is clicked, or apply a transform matrix to reposition the
objects by setting only one property on the group object.

There are two group objects:

• hggroup — Use when you want to create a group of objects and control
the visibility or selectability of the group based on what happens to any
individual object in the group. Create hggroup objects with the hggroup
function.

• hgtransform — Use when you want to transform a group of objects.
Transforms include rotation, translation, scaling, etc. See “Example —
Transforming a Hierarchy of Objects” on page 8-36 for an example. Create
hgtransform objects with the hgtransform function.

Note that the difference between the hggroup and hgtransform objects is
ability of the hgtransform object to apply a transform matrix (via its Matrix
property) to all objects for which it is the parent.

Note You cannot parent light objects to hggroup or hgtransform objects.

Creating a Group
You create a group by parenting axes children to an hggroup or hgtransform
object. For example,

8-28

Group Objects

hb = bar(rand(5)); % creates 5 barseries objects
hg = hggroup;
set(hb,'Parent',hg) % parent the barseries to the hggroup
set(hg,'Visible','off') % makes all barseries invisible

Group objects can be the parent of any number of axes children, including
other group objects.

Note Many plotting functions clear the axes (i.e., remove axes children)
before drawing the graph. Clearing the axes also deletes any hggroup or
hgtransform objects in the axes.

Transforming Objects
The hgtransform object’s Matrix property enables you to apply a transform
to all the hgtransform’s children in unison. Typical transforms include
rotation, translation, and scaling. You define a transform with a four-by-four
transformation matrix, which is described in the following sections.

Creating a Transform Matrix
The makehgtform function simplifies the construction of matrices to perform
rotation, translation, and scaling. See the “Example — Transforming a
Hierarchy of Objects” on page 8-36 section for information on creating
transform matrices using makehgtform.

Rotation
Rotation transforms rotate objects about the x-, y-, or z-axis, with positive
angles rotating counterclockwise while sighting along the respective axis
toward the origin. If the desired angle of rotation is [[THETA]], the following
matrices define this rotation about the respective axis.

1 0 0 0

0 0

0 0

0 0 0 1

cos sin

sin cos

θ θ
θ θ

x x

x x

−
⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

8-29

8 Handle Graphics Objects

To create a transform matrix for rotation about an arbitrary axis, use the
makehgtform function.

Translation
Translation transforms move objects with respect to their current locations.
Specify the translation as distances tx, ty, and tz in data space units. The
following matrix shows the location of these elements in the transform matrix.

1 0 0

0 1 0

0 0 1

0 0 0 1

t

t

t

x

y

z

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

Scaling
Scaling transforms change the sizes of objects. Specify scale factors sx, sy, and
sz and construct the following matrix.

s

s

s

x

y

z

0 0 0

0 0 0

0 0 0

0 0 0 1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

The Default Transform
The default transform is the identity matrix, which you can create with the
eye function. Here is the identity matrix:

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

8-30

Group Objects

See “Undoing Transform Operations” on page 8-32 for related information.

Absolute vs. Relative Transforms
Transforms are specified in absolute terms, not relative to the current
transform. For example, if you apply a transform that translates the
hgtransform object 5 units in the x direction and then you apply another
transform that translates it 4 units in the y direction, the resulting position of
the object is 4 units in the y direction from its original position.

If you want transforms to accumulate, you must concatenate the individual
transforms into a single matrix. See “Combining Transforms into One Matrix”
on page 8-31 for more information.

Combining Transforms into One Matrix
It is usually more efficient to combine various transform operations into one
matrix by concatenating (multiplying) the individual matrices and setting
the Matrix property to the result. Note that matrix multiplication is not
commutative, so the order in which you multiply the matrices affects the
result. For example, suppose you want to perform an operation that scales,
translates, and then rotates. You would multiply the matrices as follows:

C = R*T*S % operations are performed from right to left

where S is the scaling matrix, T is the translation matrix, R is the rotation
matrix, and C is the composite of the three operations. You then set the
hgtransform object’s Matrix property to C:

set(hgtransform_handle,'Matrix',C)

Note that the following sets of statements are not equivalent:

set(hgtransform_handle,'Matrix',C)% Transform as above
set(hgtransform_handle,'Matrix',eye(4)) % Undo transform

versus

C = eye(4)*R*T*S % Multiply identity matrix as last step
set(hgtransform_handle,'Matrix',C)

8-31

8 Handle Graphics Objects

Concatenating the identity matrix to other matrices has no effect on the
composite matrix.

Undoing Transform Operations
Since transform operations are specified in absolute terms (not relative to the
current transform), you can undo a series of transforms by setting the current
transform to the identity matrix. For example, the following statement

set(hgtransform_handle,'Matrix',eye(4))

returns the object hgtransform_handle to its untransformed orientation.

Rotations Away From the Origin
Since rotations are performed about the origin, it is often necessary to
translate the hgtransform object so that the desired axis of rotation is
temporarily at the origin. After applying the rotation transform matrix,
you then translate the hgtransform object back to its original position. The
following example illustrates how to do this.

Suppose you want to rotate a surface about the y-axis at the center of the
surface (the y-axis that passes through the point x = 20 in this example).

Note If you are using the MATLAB Help browser, you can run this example
or open it in the MATLAB editor.

1 Create a surface and an hgtransform object. Parent the surface to the
hgtransform object.

h = surf(peaks(40)); view(-20,30)
t = hgtransform;
set(h,'Parent',t)

8-32

Group Objects

The following picture shows the surface.

2 Create and set a y-axis rotation matrix to rotate the surface by -15 degrees.

ry_angle = -15*pi/180; % Convert to radians
Ry = makehgtform('yrotate',ry_angle);
set(t,'Matrix',Ry)

8-33

8 Handle Graphics Objects

Notice that the surface rotated -15 degrees about the y-axis that passes
through the origin. However, to rotate about the y-axis that passes through
the point x = 20, you must translate the surface in x by 20 units.

3 Create two translation matrices, one to translate the surface -20 units in x
and another to translate 20 units back. Concatenate the two translation
matrices with the rotation matrix in the correct order and set the transform.

Tx1 = makehgtform('translate',[-20 0 0]);
Tx2 = makehgtform('translate',[20 0 0]);
set(t,'Matrix',Tx2*Ry*Tx1)

8-34

Group Objects

8-35

8 Handle Graphics Objects

Example — Transforming a Hierarchy of Objects
This example creates a hierarchy of hgtransform objects, which are then
transformed in sequence to create a cube from six squares. The example
illustrates how you can parent hgtransform objects to other hgtransform
objects to create a hierarchy and how transforming members of a hierarchy
affects subordinate members.

The following picture illustrates the hierarchy.

8-36

Example — Transforming a Hierarchy of Objects

8-37

8 Handle Graphics Objects

Note If you are using the MATLAB Help browser, you can run this example
or open it in the MATLAB editor.

1 Set the figure Renderer property to zbuffer so MATLAB uses double
buffering to prevent flashing during the loop. Set up the figure and the view.

set(gcf,'Renderer','zbuffer');
% Set axis limits and view
set(gca,'XLim',[0 4], 'YLim',[0 4], 'ZLim', [0 3]);
view(3); axis equal; grid on

2 Define a hierarchy of hgtransform objects.

t(1) = hgtransform;
t(2) = hgtransform('parent',t(1));
t(3) = hgtransform('parent',t(2));
t(4) = hgtransform('parent',t(3));
t(5) = hgtransform('parent',t(4));
t(6) = hgtransform('parent',t(5));

3 Create the patch and text objects and parent each pair to the respective
hgtransform object.

Note that the data defining each patch object and the locations of all text
objects are the same and are assigned by a single call to set. The objects
are then translated to the desired positions on screen.

% Patch data
X = [0 0 1 1];
Y = [0 1 1 0];
Z = [0 0 0 0];
% Text data
Xtext = .5;
Ytext = .5;
Ztext = .15;
% Parent corresponding pairs of objects (patch and text)
% into the object hierarchy
p(1) = patch('FaceColor','red','Parent',t(1));
txt(1) = text('String','Bottom','Parent',t(1));

8-38

Example — Transforming a Hierarchy of Objects

p(2) = patch('FaceColor','green','Parent',t(2));
txt(2) = text('String','Right','Parent',t(2));
p(3) = patch('FaceColor','blue','Parent',t(3));
txt(3) = text('String','Back','Color','white','Parent',t(3));
p(4) = patch('FaceColor','yellow','Parent',t(4));
txt(4) = text('String','Top','Parent',t(4));
p(5) = patch('FaceColor','cyan','Parent',t(5));
txt(5) = text('String','Left','Parent',t(5));
p(6) = patch('FaceColor','magenta','Parent',t(6));
txt(6) = text('String','Front','Parent',t(6));
% Set the patch x, y, and z data
set(p,'XData',X,'YData',Y,'ZData',Z)
% Set the position and alignment of the text
set(txt,'Position',[Xtext Ytext Ztext],...

'HorizontalAlignment','center',...
'VerticalAlignment','middle')

4 Translate the squares (patch objects) to the desired locations. Note that as
hgtransform object 2 is translated, all its children (including hgtransform
objects 3 through 6) are also translated. Therefore, each translation
requires moving the square by only one unit in either the x or y direction.
Hgtransform object 1 is left at its original position.

% Set up initial translation transform matrices
% Translate 1 unit in x
Tx = makehgtform('translate',[1 0 0]);
% Translate 1 unit in y
Ty = makehgtform('translate',[0 1 0]);
% Set the Matrix property of each hgtransform object (2-6)
set(t(2),'Matrix',Tx);
drawnow
set(t(3),'Matrix',Ty);
drawnow
set(t(4),'Matrix',Tx);
drawnow
set(t(5),'Matrix',Ty);
drawnow
set(t(6),'Matrix',Tx);

8-39

8 Handle Graphics Objects

Object Properties

In this section...

“Introduction” on page 8-40

“Storing Object Information” on page 8-40

“Changing Values” on page 8-41

“Order Dependence of Setting Property Values” on page 8-41

“Default Values” on page 8-42

“Properties Common to All Objects” on page 8-42

Introduction
A graphics object’s properties control many aspects of its appearance and
behavior. Properties include general information such as the object’s type, its
parent and children, and whether it is visible, as well as information unique
to the particular class of object.

For example, from any given figure object you can obtain the identity of the
last key pressed in the window, the location of the pointer, or the handle of the
most recently selected menu.

Note The simplest way to access the documentation of all object properties
is using the Handle Graphics Property Browser.

Storing Object Information
MATLAB organizes graphics information into a hierarchy and stores
information about objects in properties. For example, root properties contain
the handle of the current figure and the current location of the pointer
(cursor), figure properties maintain lists of their descendants and keep track
of certain events that occur within the window, and axes properties contain
information about how each child object uses the figure colormap and the
color order used by the plot function.

8-40

Object Properties

Changing Values
You can query the current value of any property and specify most property
values (although some are set by MATLAB and are read only). Property
values apply uniquely to a particular instance of an object; setting a value for
one object does not change this value for other objects of the same type.

Order Dependence of Setting Property Values
MATLAB sets the values of properties in the order in which properties are
assigned values in a statement. For example, the following calls to the figure
function create very different results. This statement,

figure('Position',[1 1 400 300],'Units','inches')

creates a figure in the lower left corner of the screen that is 400 pixels in
width and 300 pixels in height. If you reverse the order of the Position
and Units properties, MATLAB creates a figure that is too large to display
(400 by 300 inches):

figure('Units','inches','Position',[1 1 400 300])

Properties Are Interpreted from Left to Right
In the first figure above, MATLAB creates a figure of the specified size using
the default Units (pixels) and then sets the Units to inches. In the second
case MATLAB sets the Units to inches and uses these units to interpret the
specified figure Position. MATLAB interprets the property values from
left to right:

set(gcf,'Units','pixels')
get(gcf,'Position')
ans =

1.0e+004 *
0.0097 2.7760 0.1924 0.1137

% Change the Units, set the Position,
% and change Units again in one statement
set(gcf,'Units','pixels','Position',[1 1 400 300],'Units','inches')
get(gcf,'Position')
ans =

0 0 4.1667 3.1250

8-41

8 Handle Graphics Objects

Default Values
You can set default values that affect all subsequently created objects.
Whenever you do not define a value for a property, either as a default or when
you create the object, MATLAB uses “factory-defined” values.

Note that plot objects do not allow you to set default values.

The reference entry for each object creation function provides a complete list
of the properties associated with the graphics object.

Properties Common to All Objects
Some properties are common to all graphics objects, as illustrated in the
following table.

Property Description

BeingDeleted Has a value of on when object’s DeleteFcn has been called

BusyAction Controls the way MATLAB handles callback routine interruption
defined for the particular object

ButtonDownFcn Callback routine that executes when button press occurs

Children Handles of all this object’s child objects

Clipping Mode that enables or disables clipping (meaningful only for axes
children)

CreateFcn Callback routine that executes when this type of object is created

DeleteFcn Callback routine that executes when you issue a command that
destroys the object

HandleVisibility Allows you to control the availability of the object’s handle from the
command line and from within callback routines

HitTest Determines if object can become the current object when selected by
a mouse click

Interruptible Determines whether a callback routine can be interrupted by a
subsequently invoked callback routine

Parent The object’s parent

Selected Indicates whether object is selected

8-42

Object Properties

Property Description

SelectionHighlight Specifies whether object visually indicates the selection state

Tag User-specified object label

Type The type of object (figure, line, text, etc.)

UserData Any data you want to associate with the object

Visible Determines whether or not the object is visible

8-43

8 Handle Graphics Objects

Properties Common to All Objects
Some properties are common to all graphics objects, as illustrated in the
following table.

Property Description

BeingDeleted Has a value of on when object’s DeleteFcn has been called

BusyAction Controls the way MATLAB handles callback routine interruption
defined for the particular object

ButtonDownFcn Callback routine that executes when button press occurs

Children Handles of all this object’s child objects

Clipping Mode that enables or disables clipping (meaningful only for axes
children)

CreateFcn Callback routine that executes when this type of object is created

DeleteFcn Callback routine that executes when you issue a command that
destroys the object

HandleVisibility Allows you to control the availability of the object’s handle from the
command line and from within callback routines

HitTest Determines if object can become the current object when selected by
a mouse click

Interruptible Determines whether a callback routine can be interrupted by a
subsequently invoked callback routine

Parent The object’s parent

Selected Indicates whether object is selected

SelectionHighlight Specifies whether object visually indicates the selection state

Tag User-specified object label

Type The type of object (figure, line, text, etc.)

UserData Any data you want to associate with the object

Visible Determines whether or not the object is visible

8-44

Setting and Querying Property Values

Setting and Querying Property Values

In this section...

“Using Set and Get” on page 8-45

“Setting Property Values” on page 8-45

“Querying Property Values” on page 8-47

Using Set and Get
The set and get functions specify and retrieve the value of existing graphics
object properties. They also enable you to list possible values for properties
that have a fixed set of values. (You can also use the Property Editor to set
many property values.

The basic syntax for setting the value of a property on an existing object is

set(object_handle,'PropertyName','NewPropertyValue')

To query the current value of a specific object’s property, use a statement like

returned_value = get(object_handle,'PropertyName');

Property names are always quoted strings. Property values depend on the
particular property.

See “Accessing Object Handles” on page 8-58 and the findobj command for
information on finding the handles of existing objects.

Setting Property Values
You can change the properties of an existing object using the set function and
the handle returned by the creating function. For example, this statement
moves the y-axis to the right side of the plot on the current axes.

set(gca,'YAxisLocation','right')

If the handle argument is a vector, MATLAB sets the specified value on all
identified objects.

8-45

8 Handle Graphics Objects

You can specify property names and property values using structure arrays
or cell arrays. This can be useful if you want to set the same properties on
a number of objects. For example, you can define a structure to set axes
properties appropriately to display a particular graph.

view1.CameraViewAngleMode = 'manual';
view1.DataAspectRatio = [1 1 1];
view1.ProjectionType = 'Perspective';

To set these values on the current axes, type

set(gca,view1)

Listing Possible Values
You can use set to display the possible values for many properties without
actually assigning a new value. For example, this statement obtains the
values you can specify for line object markers.

set(obj_handle,'Marker')

MATLAB returns a list of values for the Marker property for the type of object
specified by obj_handle. Braces indicate the default value.

[+ | o | * | . | x | square | diamond | v | ^ | > | < | pentagram
| hexagram | {none}]

To see a list of all settable properties along with possible values of properties
that accept string values, use set with just an object handle.

set(object_handle)

For example, for a surface object, MATLAB returns

CData
CDataScaling: [{on} | off]
EdgeColor: [none | {flat} | interp] ColorSpec.
EraseMode: [{normal} | background | xor | none]
FaceColor: [none | {flat} | interp | texturemap] ColorSpec.
LineStyle: [{-} | -- | : | -. | none]

.

.

8-46

Setting and Querying Property Values

.
Visible: [{on} | off]

If you assign the output of the set function to a variable, MATLAB returns
the output as a structure array. For example,

a = set(gca);

The field names in a are the object’s property names and the field values are
the possible values for the associated property. For example,

a.GridLineStyle
ans =

'-'
'--'
':'
'-.'
'none'

returns the possible values for the axes grid line styles. Note that while
property names are not case sensitive, MATLAB structure field names are.
For example,

a.gridlinestyle
??? Reference to non-existent field 'gridlinestyle'.

returns an error.

Querying Property Values
Use get to query the current value of a property or of all the object’s properties.
For example, check the value of the current axes PlotBoxAspectRatio
property.

get(gca,'PlotBoxAspectRatio')
ans =

1 1 1

MATLAB lists the values of all properties, where practical. However, for
properties containing data, MATLAB lists the dimensions only (for example,
CurrentPoint and ColorOrder).

8-47

8 Handle Graphics Objects

AmbientLightColor = [1 1 1]
Box = off
CameraPosition = [0.5 0.5 2.23205]
CameraPositionMode = auto
CameraTarget = [0.5 0.5 0.5]
CameraTargetMode = auto
CameraUpVector = [0 1 0]
CameraUpVectorMode = auto
CameraViewAngle = [32.2042]
CameraViewAngleMode = auto
CLim: [0 1]
CLimMode: auto
Color: [0 0 0]
CurrentPoint: [2x3 double]
ColorOrder: [7x3 double]

.

.

.
Visible = on

Querying Individual Properties
You can obtain the data from the property by getting that property
individually.

get(gca,'ColorOrder')
ans =

0 0 1.0000
0 0.5000 0

1.0000 0 0
0 0.7500 0.7500

0.7500 0 0.7500
0.7500 0.7500 0
0.2500 0.2500 0.2500

Returning a Structure
If you assign the output of get to a variable, MATLAB creates a structure
array whose field names are the object property names and whose field values
are the current values of the named property.

8-48

Setting and Querying Property Values

For example, if you plot some data, x and y,

h = plot(x,y);

and get the properties of the line object created by plot,

a = get(h);

you can access the values of the line properties using the field name. This call
to the text command places the string ’x and y data’ at the first data point
and colors the text to match the line color.

text(x(1),y(1),'x and y data','Color',a.Color)

If x and y are matrices, plot draws one line per column. To label the plot of
the second column of data, reference that line.

text(x(1,2),y(1,2),'Second set of data','Color',a(2).Color)

Querying Groups of Properties
You can define a cell array of property names and conveniently use it to obtain
the values for those properties. For example, suppose you want to query the
values of the axes “camera mode” properties. First define the cell array.

camera_props(1) = {'CameraPositionMode'};
camera_props(2) = {'CameraTargetMode'};
camera_props(3) = {'CameraUpVectorMode'};
camera_props(4) = {'CameraViewAngleMode'};

Use this cell array as an argument to obtain the current values of these
properties.

get(gca,camera_props)
ans =

'auto' 'auto' 'auto' 'auto'

8-49

8 Handle Graphics Objects

Factory-Defined Property Values
MATLAB defines values for all properties, which are used if you do not specify
values as arguments or as defaults. You can obtain a list of all factory-defined
values with the statement

a = get(0,'Factory');

get returns a structure array whose field names are the object type and
property name concatenated, and field values are the factory value for the
indicated object and property. For example, this field,

UimenuSelectionHighlight: 'on'

indicates that the factory value for the SelectionHighlight property on
uimenu objects is on.

You can get the factory value of an individual property with

get(0,'FactoryObjectTypePropertyName')

For example,

get(0,'FactoryTextFontName')

8-50

Setting Default Property Values

Setting Default Property Values

In this section...

“Factory- and User-Defined Values” on page 8-51

“How MATLAB Searches for Default Values” on page 8-51

“Defining Default Values” on page 8-53

“Examples — Setting Default Line Styles” on page 8-54

Factory- and User-Defined Values
All object properties have values built into MATLAB (i.e., factory-defined
values). You can also define your own default values at any point in the
object hierarchy.

Note that you cannot define default values for plot objects.

How MATLAB Searches for Default Values
MATLAB searches for a default value beginning with the current object and
continuing through the object’s ancestors until it finds a user-defined default
value or until it reaches the factory-defined value. Therefore, a search for
property values is always satisfied.

The closer to the root of the hierarchy you define the default, the broader its
scope. If you specify a default value for line objects on the root level, MATLAB
uses that value for all lines (because the root is at the top of the hierarchy). If
you specify a default value for line objects on the axes level, then MATLAB
uses that value for line objects drawn only in that axes.

If you define default values on more than one level, the value defined on the
closest ancestor takes precedence because MATLAB terminates the search
as soon as it finds a value.

Note that setting default values affects only those objects created after you set
the default. Existing graphics objects are not affected.

8-51

8 Handle Graphics Objects

This diagram shows the steps MATLAB follows in determining the value
of a graphics object property.

8-52

Setting Default Property Values

Defining Default Values
To specify default values, create a string beginning with the word Default
followed by the object type and finally the object property. For example, to
specify a default value of 1.5 points for the line property LineWidth at the
level of the current figure, use the statement

set(gcf,'DefaultLineLineWidth',1.5)

The string DefaultLineLineWidth identifies the property as a line property.
To specify the figure color, use DefaultFigureColor. Note that it is
meaningful to specify a default figure color only on the root level.

set(0,'DefaultFigureColor','b')

Use get to determine what default values are currently set on any given
object level; for example,

get(gcf,'default')

returns all default values set on the current figure.

Setting Properties to the Default
Specifying a property value of 'default' sets the property to the first
encountered default value defined for that property. For example, these
statements result in a green surface EdgeColor:

set(0,'DefaultSurfaceEdgeColor','k')
h = surface(peaks);
set(gcf,'DefaultSurfaceEdgeColor','g')
set(h,'EdgeColor','default')

Because a default value for surface EdgeColor exists on the figure level,
MATLAB encounters this value first and uses it instead of the default
EdgeColor defined on the root.

Removing Default Values
Specifying a property value of 'remove' gets rid of user-defined default
values. The statement

8-53

8 Handle Graphics Objects

set(0,'DefaultSurfaceEdgeColor','remove')

removes the definition of the default Surface EdgeColor from the root.

Setting Properties to Factory-Defined Values
Specifying a property value of 'factory' sets the property to its
factory-defined value. (Theproperty descriptions provides access to the factory
settings for properties having predefined sets of values.)

For example, these statements set the EdgeColor of surface h to black (its
factory setting) regardless of what default values you have defined.

set(gcf,'DefaultSurfaceEdgeColor','g')
h = surface(peaks);
set(h,'EdgeColor','factory')

Reserved Words
Setting a property value to default, remove, or factory produces the effects
described in the previous sections. To set a property to one of these words
(e.g., a text or uicontrol String property set to the word Default), you must
precede the word with the backslash character. For example,

h = uicontrol('Style','edit','String','\Default');

Examples — Setting Default Line Styles
The plot function cycles through the colors defined by the axes ColorOrder
property when displaying multiline plots. If you define more than one value
for the axes LineStyleOrder property, MATLAB increments the line style
after each cycle through the colors.

You can set default property values that cause the plot function to produce
graphs using varying linestyles, but not varying colors. This is useful when
you are working on a monochrome display or printing on a black and white
printer.

First Example
This example creates a figure with a white plot (axes) background color, then
sets default values for axes objects on the root level.

8-54

Setting Default Property Values

whitebg('w') %create a figure with a white color scheme
set(0,'DefaultAxesColorOrder',[0 0 0],...

'DefaultAxesLineStyleOrder','-|--|:|-.')

Whenever you call plot,

Z = peaks; plot(1:49,Z(4:7,:))

it uses one color for all data plotted because the axes ColorOrder contains
only one color, but cycles through the linestyles defined for LineStyleOrder.

0 10 20 30 40 50
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

Second Example
This example sets default values on more than one level in the hierarchy.
These statements create two axes in one figure window, setting default values
on the figure level and the axes level.

t = 0:pi/20:2*pi;
s = sin(t);
c = cos(t);
% Set default value for axes Color property

8-55

8 Handle Graphics Objects

figh = figure('Position',[30 100 800 350],...
'DefaultAxesColor',[.8 .8 .8]);

axh1 = subplot(1,2,1); grid on
% Set default value for line LineStyle property in first axes
set(axh1,'DefaultLineLineStyle','-.')
line('XData',t,'YData',s)
line('XData',t,'YData',c)
text('Position',[3 .4],'String','Sine')
text('Position',[2 -.3],'String','Cosine',...

'HorizontalAlignment','right')

axh2 = subplot(1,2,2); grid on
% Set default value for text Rotation property in second axes
set(axh2,'DefaultTextRotation',90)
line('XData',t,'YData',s)
line('XData',t,'YData',c)
text('Position',[3 .4],'String','Sine')
text('Position',[2 -.3],'String','Cosine',...

'HorizontalAlignment','right')

Issuing the same line and text statements to each subplot region results in
a different display, reflecting different default settings.

8-56

Setting Default Property Values

0 2 4 6 8
−1

−0.5

0

0.5

1

Sine

Cosine

0 2 4 6 8
−1

−0.5

0

0.5

1

S
in

e

C
os

in
e

Because the default axes Color property is set on the figure level of the
hierarchy, MATLAB creates both axes with the specified gray background
color.

The axes on the left (subplot region 121) defines a dash-dot line style (-.) as
the default, so each call to the line function uses dash-dot lines. The axes
on the right does not define a default line style, so MATLAB uses solid lines
(the factory setting for lines).

The axes on the right defines a default text Rotation of 90 degrees, which
rotates all text by this amount. MATLAB obtains all other property values
from their factory settings, which results in nonrotated text on the left.

To install default values whenever you run MATLAB, specify them in your
startup.m file. Note that MATLAB might install default values for some
appearance properties when started by calling the colordef command.

8-57

8 Handle Graphics Objects

Accessing Object Handles

In this section...

“Introduction” on page 8-58

“Special Object Handles” on page 8-58

“The Current Figure, Axes, and Object” on page 8-59

“Searching for Objects by Property Values — findobj” on page 8-60

“Copying Objects” on page 8-65

“Deleting Objects” on page 8-67

Introduction
MATLAB assigns a handle to every graphics object it creates. All object
creation functions optionally return the handle of the created object. If you
want to access the object’s properties (e.g., from an M-file) you should assign
its handle to a variable at creation time to avoid searching for it later.

You can always obtain the handle of an existing object with the findobj
function or by listing its parent’s Children property.

See “Searching for Objects by Property Values — findobj” on page 8-60 for
examples.

See “Protecting Figures and Axes” on page 8-77 for more information on how
object handles are hidden from normal access.

Special Object Handles
The root object’s handle is always zero. The handle of a figure is either

• An integer that, by default, is displayed in the window title bar

• A floating point number requiring full MATLAB internal precision

The figure IntegerHandle property controls the type of handle the figure
receives.

8-58

Accessing Object Handles

All other graphics object handles are floating-point numbers. You must
maintain the full precision of these numbers when you reference handles.
Rather than attempting to read handles off the screen and retype them, you
must store the value in a variable and pass that variable whenever MATLAB
requires a handle.

The Current Figure, Axes, and Object
An important concept in Handle Graphics is that of being current. The
current figure is the window designated to receive graphics output. Likewise,
the current axes is the target for commands that create axes children. The
current object is the last graphics object created or clicked on by the mouse.

MATLAB stores the three handles corresponding to these objects in the
ancestor’s property list.

%���)
�����-�	
��)
���������

)
�������+���

������������� �����������
�������������

These properties enable you to obtain the handles of these key objects.

get(0,'CurrentFigure');
get(gcf,'CurrentAxes');
get(gcf,'CurrentObject');

The following commands are shorthand notation for the get statements.

• gcf — Returns the value of the root CurrentFigure property

• gca — Returns the value of the current figure’s CurrentAxes property

• gco — Returns the value of the current figure’s CurrentObject property

You can use these commands as input arguments to functions that require
object handles. For example, you can click on a line object and then use gco to
specify the handle to the set command,

8-59

8 Handle Graphics Objects

set(gco,'Marker','square')

or list the values of all current axes properties with

get(gca)

You can get the handles of all the graphic objects in the current axes (except
those with hidden handles),

h = get(gca,'Children');

and then determine the types of the objects.

get(h,'type')
ans =

'text'
'patch'
'surface'
'line'

While gcf and gca provide a simple means of obtaining the current figure
and axes handles, they are less useful in M-files. This is particularly true if
your M-file is part of an application layered on MATLAB where you do not
necessarily have knowledge of user actions that can change these values.

See “Controlling Graphics Output” on page 8-69 for information on how to
prevent users from accessing the handles of graphics objects that you want to
protect.

Searching for Objects by Property Values — findobj
The findobj function provides a means to traverse the object hierarchy
quickly and obtain the handles of objects having specific property values.
To serve as a means of identification, all graphics objects have a Tag
property that you can set to any string. You can then search for the specific
property/value pair.

For example, suppose you create a checkbox that is sometimes inactivated in
the GUI. By assigning a unique value for the Tag property, you can always
find that particular instance and set its properties.

uicontrol('Style','checkbox','Tag','save option')

8-60

Accessing Object Handles

Use findobj to locate the object whose Tag property is set to 'save option’
and disable it.

set(findobj('Tag','save option'),'Enable','off')

If you do not specify a starting object, findobj searches from the root object,
finding all occurrences of the property name/property value combination that
you specify.

Example — Finding Objects
This plot of the sine function contains text objects labeling particular values
of the function.

0 1 2 3 4 5 6 7
−1

−0.5

0

0.5

1

t = 0 to 2pi

si
n(

t)

Value of the Sine from Zero to Two Pi

←sin(t) = .707

←sin(t) = 0

sin(t) = −.707 →

←sin(t) = .707

Suppose you want to move the text string labeling the value sin(t) = .707 from
its current location at [pi/4,sin(pi/4)] to the point [3*pi/4,sin(3*pi/4)]
where the function has the same value (shown grayed out in the picture). To
do this, you need to determine the handle of the text object labeling that point
and change its Position property.

8-61

8 Handle Graphics Objects

To use findobj, pick a property value that uniquely identifies the object. This
example uses the text String property.

text_handle = findobj('String','\leftarrowsin(t) = .707');

Next move the object to the new position, defining the text Position in axes
units.

set(text_handle,'Position',[3*pi/4,sin(3*pi/4),0])

findobj also lets you restrict the search by specifying a starting point in the
hierarchy, instead of beginning with the root object. This results in faster
searches if there are many objects in the hierarchy. In the previous example,
you know the text object of interest is in the current axes, so you can type

text_handle = findobj(gca,'String','\leftarrowsin(t) = .707');

Example — Using Logical Operators and Regular Expression
Suppose you create the following graph and want to modify certain properties
of the objects created.

x = 0:30;
y = [1.5*cos(x);4*exp(-.1*x).*cos(x);exp(.05*x).*cos(x)]';
h = stem(x,y);
set(h(1),'Color','black',...

'Marker','o',...
'Tag','Decaying Exponential')

set(h(2),'Color','black',...
'Marker','square',...
'Tag','Growing Exponential')

set(h(3),'Color','black',...
'Marker','*',...
'Tag','Steady State')

8-62

Accessing Object Handles

−5 0 5 10 15 20 25 30 35
−4

−3

−2

−1

0

1

2

3

4

5

The following instance diagram shows the graphics objects created in the
graph. Each of the three sets of data produces a stemseries object, which
in turn uses two lines to create the stem graph; one line for the stems and
one for the markers that terminate each stem. There is also a line used for
the baseline.

8-63

8 Handle Graphics Objects

Controlling the Depth of the Search. Now make the baseline into a
dashed line. Because it is parented directly to the axes, you can use the
following statement to access only this line:

set(findobj(gca,'-depth',1,'Type','line'),'LineStyle','--')

By setting -depth to 1, findobj searches only the axes and its immediate
children. As you can see from the above instance diagram, the baseline is the
only line object parented directly to the axes.

Limiting the Search with Regular Expressions. Increase the value of the
MarkerSize property by 2 points on all stemseries objects that do not have
their property Tag set to 'Steady State'.

h = findobj('-regexp','Tag','^(?!Steady State$).');
set(h,{'MarkerSize'},num2cell(cell2mat(get(h,'MarkerSize'))+2))

See the regexp function for more information on using regular expressions
in MATLAB.

Using Logical Operators. Change the color of the stem lines, but not the
stem markers. To do this, you must access the line objects contained by the
three stemseries objects. You cannot just set the stemseries Color property
because it sets both the line and marker colors.

Search for objects that are of Type line, have Marker set to none, and do not
have LineStyle set to '--', which is the baseline.

h = findobj('type','line','Marker','none',...
'-and','-not','LineStyle','--');

set(h,'Color','red')

The following picture shows the graph after making the various changes
described in this section.

8-64

Accessing Object Handles

0 5 10 15 20 25 30
−4

−3

−2

−1

0

1

2

3

4

Copying Objects
You can copy objects from one parent to another using the copyobj function.
The new object differs from the original object only in the value of its Parent
property and its handle; it is otherwise a clone of the original. You can copy a
number of objects to a new parent, or one object to a number of new parents,
as long as the result maintains the correct parent/child relationship.

When you copy an object having child objects, MATLAB copies all children
as well.

Example — Copying Objects
Suppose you are plotting a variety of data and want to label the point having
the x- and y-coordinates determined by in each plot. The
text function allows you to specify the location of the label in the coordinates
defined by the x- and y-axis limits, simplifying the process of locating the text.

8-65

8 Handle Graphics Objects

text('String','\{5\pi\div4, sin(5\pi\div4)\}\rightarrow',...
'Position',[5*pi/4,sin(5*pi/4),0],...
'HorizontalAlignment','right')

In this statement, the text function

• Labels the data point with the string using TeX
commands to draw a right-facing arrow and mathematical symbols

• Specifies the Position in terms of the data being plotted

• Places the data point to the right of the text string by changing the
HorizontalAlignment to right (the default is left)

To label the same point with the same string in another plot, copy the text
using copyobj. Because the last statement did not save the handle to the text
object, you can find it using findobj and the 'String' property.

text_handle = findobj('String',...
'\{5\pi\div4,sin(5\pi\div4)\}\rightarrow');

After creating the next plot, add the label by copying it from the first plot.

copyobj(text_handle,gca).

8-66

Accessing Object Handles

This particular example takes advantage of the fact that text objects define
their location in the axes data space. Therefore the text Position property
did not need to change from one plot to another.

Deleting Objects
You can remove a graphics object with the delete command, using the object’s
handle as an argument. For example, you can delete the current axes (and all
of its descendants) with the statement

delete(gca)

You can use findobj to get the handle of a particular object you want to
delete. For example, to find the handle of the dotted line in this multiline plot,

8-67

8 Handle Graphics Objects

use findobj to locate the object whose LineStyle property is ':'

line_handle = findobj('LineStyle',':');

then use this handle with the delete command.

delete(line_handle)

You can combine these two statements, substituting the findobj statement
for the handle.

delete(findobj('LineStyle',':'))

8-68

Controlling Graphics Output

Controlling Graphics Output

In this section...

“Figure Targets” on page 8-69

“Specifying the Target for Graphics Output” on page 8-69

“Preparing Figures and Axes for Graphics” on page 8-71

“Targeting Graphics Output with newplot” on page 8-72

“Example — Using newplot” on page 8-74

“Testing for Hold State” on page 8-76

“Protecting Figures and Axes” on page 8-77

“Handle Validity Versus Handle Visibility” on page 8-79

Figure Targets
MATLAB allows many figure windows to be open simultaneously during a
session. A MATLAB application might create figures to display graphical
user interfaces as well as plotted data. It is necessary then to protect some
figures from becoming the target for graphics display and to prepare (e.g.,
reset properties and clear existing objects from) others before receiving new
graphics.

Specifying the Target for Graphics Output
By default, MATLAB functions that create graphics objects display them
in the current figure and current axes (if an axes child). You can direct the
output to another parent by explicitly specifying the Parent property with
the creating function. For example,

plot(1:10,'Parent',axes_handle)

where axes_handle is the handle of the target axes. The uicontrol and
uimenu functions have a convenient syntax that enables you to specify the
parent as the first argument,

uicontrol(figure_handle,...)
uimenu(parent_menu_handle,...)

8-69

8 Handle Graphics Objects

or you can set the Parent property. Many plotting functions accept an axes
handle as the first argument as well.

Making a Figure and Axes Current
You can specify which figure and which axes within the figure are the target
for graphics output. There are two ways to do this, each with different
associated behavior.

Making Current and Update. If figure_handle is the handle to an
existing figure, then the following statement,

figure(figure_handle)

• Makes figure_handle the current figure

• Restacks figure_handle to be the front-most figure displayed

• Makes figure_handle visible if it was not

• Refreshes figure_handle and process all pending window events

The same behavior applies to axes. Therefore, the following statement,

axes(axes_handle)

• Makes axes_handle the current axes

• Restacks axes_handle to be the front-most axes displayed

• Makes axes_handle visible if it was not

• Refreshes the figure containing the axes and process all pending window
events for that figure

Make Current Without Changing State. You can make a figure or axes
current without causing MATLAB to change the object’s state by setting the
figure’s root object CurrentFigure property or the figure object’s CurrentAxes
property to the handle of the figure or axes you want to accept graphics output.

If figure_handle is the handle to an existing figure, then the following
statement,

set(0,'CurrentFigure',figure_handle)

8-70

Controlling Graphics Output

makes figure_handle the current figure without changes its state. Similarly,
if axes_handle is the handle of an axes object, then the following statement

set(h,'CurrentAxes',axes_handle)

makes it the current axes assuming h is the handle of the figure that contains
it.

Preparing Figures and Axes for Graphics
By default, commands that generate graphics output display the graphics
objects in the current figure without clearing or resetting figure properties.
However, if the graphics objects are axes children, MATLAB clears the axes
and resets most axes properties to their default values before displaying the
objects.

You can change this behavior by setting the figure and axes NextPlot
properties.

Using NextPlot to Control Output Target
MATLAB high-level graphics functions check the values of the NextPlot
properties to determine whether to add, clear, or clear and reset the figure
and axes before drawing. Low-level object creation functions do not check the
NextPlot properties. They simply add the new graphics objects to the current
figure and axes.

Low-level functions are designed primarily for use in M-files where you can
implement whatever drawing behavior you want. However, when you develop
a MATLAB-based application, controlling MATLAB drawing behavior is
essential to creating a program that behaves predictably.

This table summarizes the possible values for the NextPlot property.

NextPlot Figure Axes

new Create a new figure and
use it as the current
figure.

Not an option for axes.

8-71

8 Handle Graphics Objects

NextPlot Figure Axes

add Add new graphics
objects without clearing
or resetting the current
figure. (Default setting)

Add new graphics
objects without clearing
or resetting the current
axes.

replacechildren Remove all child
objects, but do not
reset figure properties.
Equivalent to clf.

Remove all child
objects, but do not
reset axes properties.
Equivalent to cla.

replace Remove all child
objects and reset figure
properties to their
defaults. Equivalent to
clf reset.

Remove all child
objects and reset axes
properties to their
defaults. Equivalent
to cla reset. (Default
setting)

Note that a reset returns all properties, except Position and Units, to
their default values.

The hold command provides convenient access to the NextPlot properties.
The statement

hold on

sets both figure and axes NextPlot properties to add.

The statement

hold off

sets the axes NextPlot property to replace.

Targeting Graphics Output with newplot
MATLAB provides the newplot function to simplify the process of writing
graphics M-files that conform to the settings of the NextPlot properties.

8-72

Controlling Graphics Output

newplot checks the values of the NextPlot properties and takes the
appropriate action based on these values. You should place newplot at the
beginning of any M-file that calls object creation functions.

When your M-file calls newplot, the following possible actions occur:

1 newplot checks the current figure’s NextPlot property:

• If there are no figures in existence, newplot creates one and makes it the
current figure.

• If the value of NextPlot is add, newplot makes the figure the current
figure.

• If the value of NextPlot is new, newplot creates a new figure and makes
it the current figure

• If the value of NextPlot is replacechildren, newplot deletes the
figure’s children (axes objects and their descendants) and makes this
figure the current figure.

• If the value of NextPlot is replace, newplot deletes the figure’s
children, resets the figure’s properties to the defaults, and makes this
figure the current figure.

2 newplot checks the current axes’ NextPlot property:

• If there are no axes in existence, newplot creates one and makes it the
current axes.

• If the value of NextPlot is add, newplot makes the axes the current axes.

• If the value of NextPlot is replacechildren, newplot deletes the axes’
children and makes this axes the current axes.

• If the value of NextPlot is replace, newplot deletes the axes’ children,
resets the axes’ properties to the defaults, and makes this axes the
current axes.

MATLAB Default Behavior
Consider the default situation where the figure NextPlot property is add and
the axes NextPlot property is replace. When you call newplot, it

8-73

8 Handle Graphics Objects

1 Checks the value of the current figure’s NextPlot property (which is add)
and determines MATLAB can draw into the current figure with no further
action. If there is no current figure, newplot creates one, but does not
recheck its NextPlot property.

2 Checks the value of the current axes’ NextPlot property (which is replace),
deletes all graphics objects from the axes, resets all axes properties (except
Position and Units) to their defaults, and returns the handle of the
current axes.

Example — Using newplot
To illustrate the use of newplot, this example creates a function that is
similar to the built-in plot function, except it automatically cycles through
different line styles instead of using different colors for multiline plots.

function my_plot(x,y)
cax = newplot; % newplot returns handle of current axes
LSO = ['- ';'--';': ';'-.'];
set(cax,'FontName','Times','FontAngle','italic')
set(get(cax,'Parent'),'MenuBar','none') %
line_handles = line(x,y,'Color','b');
style = 1;
for i = 1:length(line_handles)

if style > length(LSO), style = 1;end
set(line_handles(i),'LineStyle',LSO(style,:))
style = style + 1;

end
grid on

The function my_plot uses the high-level line function syntax to plot the
data. This provides the same flexibility in input argument dimension that
the built-in plot function supports. The line function does not check the
value of the figure or axes NextPlot property. However, because my_plot
calls newplot, it behaves the same way the high-level plot function does
— with default values in place, my_plot clears and resets the axes each
time you call it.

8-74

Controlling Graphics Output

my_plot uses the handle returned by newplot to access the target figure and
axes. This example sets axes font properties and disables the figure’s menu
bar. Note how the figure handle is obtained via the axes Parent property.

This picture shows typical output for the my_plot function.

my_plot(1:10,peaks(10))

Basic Plotting M-File Structure
This example illustrates the basic structure of graphics M-files:

• Call newplot early to conform to the NextPlot properties and to obtain the
handle of the target axes.

• Reference the axes handle returned by newplot to set any axes properties
or to obtain the figure’s handle.

• Call object creation functions to draw graphics objects with the desired
characteristics.

8-75

8 Handle Graphics Objects

The MATLAB default settings for the NextPlot properties facilitate writing
M-files that adhere to the standard behavior: reuse the figure window,
but clear and reset the axes with each new graph. Other values for these
properties allow you to implement different behaviors.

Replacing Only the Child Objects — replacechildren
The replacechildren value for NextPlot causes newplot to remove child
objects from the figure or axes, but does not reset any property values (except
the list of handles contained in the Children property).

This can be useful after setting properties you want to use for subsequent
graphs without having to reset properties. For example, if you type on the
command line

set(gca,'ColorOrder',[0 0 1],'LineStyleOrder','-|--|:|-.',...
'NextPlot','replacechildren')

plot(x,y)

plot produces the same output as the M-file my_plot in the previous section,
but only within the current axes. Calling plot still erases the existing graph
(i.e., deletes the axes children), but it does not reset axes properties. The
values specified for the ColorOrder and LineStyleOrder properties remain
in effect.

Testing for Hold State
There are situations in which your M-file should change the visual appearance
of the axes to accommodate new graphics objects. For example, if you want
the M-file my_plot from the previous example to accept 3-D data, it makes
sense to set the view to 3-D when the input data has z-coordinates.

However, to be consistent with the behavior of the MATLAB high-level
routines, it is good practice to test whether hold is on before changing parent
axes or figure properties. When hold is on, the axes and figure NextPlot
properties are both set to add.

The M-file my_plot3 accepts 3-D data and also checks the hold state, using
ishold, to determine whether it should change the view.

function my_plot3(x,y,z)

8-76

Controlling Graphics Output

cax = newplot;
hold_state = ishold; % ishold tests the current hold state
LSO = ['- ';'--';': ';'-.'];
if nargin == 2

hlines = line(x,y,'Color','k');
if ~hold_state % Change view only if hold is off

view(2)
end

elseif nargin == 3
hlines = line(x,y,z,'Color','k');
if ~hold_state % Change view only if hold is off

view(3)
end

end
ls = 1;
for hindex = 1:length(hlines)

if ls > length(LSO),ls = 1;end
set(hlines(hindex),'LineStyle',LSO(ls,:))
ls = ls + 1;

end

If hold is on when you call my_plot3, it does not change the view. If hold is
off, my_plot3 sets the view to 2-D or 3-D, depending on whether there are
two or three input arguments.

Protecting Figures and Axes
There are situations in which it is important to prevent particular figures or
axes from becoming the target for graphics output (i.e., preventing them from
becoming the gcf or gca). An example is a figure containing the uicontrols
that implement a user interface.

You can prevent MATLAB from drawing into a particular figure or axes
by removing its handle from the list of handles that are visible to the
newplot function, as well as any other functions that either return or
implicitly reference handles (i.e., gca, gcf, gco, cla, clf, close, and
findobj). Two properties control handle hiding: HandleVisibility and
ShowHiddenHandles.

8-77

8 Handle Graphics Objects

HandleVisibility Property
HandleVisibility is a property of all objects. It controls the scope of handle
visibility within three different ranges. Property values can be

• on — The object’s handle is available to any function executed on the
MATLAB command line or from an M-file. This is the default setting.

• callback — The object’s handle is hidden from all functions executing
on the command line, even if it is on the top of the screen stacking order.
However, during callback routine execution (MATLAB statements or
functions that execute in response to user action), the handle is visible to
all functions, such as gca, gcf, gco, findobj, and newplot. This setting
enables callback routines to take advantage of the MATLAB handle access
functions, while ensuring that users typing at the command line do not
inadvertently disturb a protected object.

• off — The object’s handle is hidden from all functions executing on the
command line and in callback routines. This setting is useful when you
want to protect objects from possibly damaging user commands.

For example, if a GUI accepts user input in the form of text strings, which are
then evaluated (using the eval function) from within the callback routine, a
string such as 'close all' could destroy the GUI. To protect against this
situation, you can temporarily set HandleVisibility to off on key objects.

user_input = get(editbox_handle,'String');
set(gui_handles,'HandleVisibility','off')
eval(user_input)
set(gui_handles,'HandleVisibility','commandline')

Values Returned by gca and gcf. When a protected figure is topmost
on the screen, but has unprotected figures stacked beneath it, gcf returns
the topmost unprotected figure in the stack. The same is true for gca. If
no unprotected figures or axes exist, calling gcf or gca causes MATLAB to
create one in order to return its handle.

Accessing Protected Objects
The root ShowHiddenHandles property enables and disables handle visibility
control. By default, ShowHiddenHandles is off, which means MATLAB obeys
the setting of the HandleVisibility property. When ShowHiddenHandles is

8-78

Controlling Graphics Output

set to on, all handles are visible from the command line and within callback
routines. This can be useful when you want access to all graphics objects
that exist at a given time, including the handles of axes text labels, which
are normally hidden.

The close function also allows access to nonvisible figures using the hidden
option. For example,

close('hidden')

closes the topmost figure on the screen, even if it is protected. Combining all
and hidden options,

close('all','hidden')

closes all figures.

Handle Validity Versus Handle Visibility
All handles remain valid regardless of whether they are visible or not. If you
know an object’s handle, you can set and get its properties. By default, figure
handles are integers that are displayed at the top of the window.

You can provide further protection to figures by setting the IntegerHandle
property to off. MATLAB then uses a floating-point number for figure
handles.

8-79

8 Handle Graphics Objects

The Figure Close Request Function

In this section...

“Introduction” on page 8-80

“Quitting MATLAB” on page 8-81

“Errors in the Close Request Function” on page 8-81

“Overriding the Close Request Function” on page 8-81

Introduction
MATLAB executes a callback routine defined by the figure’s CloseRequestFcn
whenever you

• Issue a close command on a figure.

• Quit MATLAB while there are visible figures. (If a figure’s Visible
property is set to off, MATLAB does not execute its close request function
when you quit MATLAB; the figure is just deleted).

• Close a figure from the windowing system using a close box or a close
menu item.

The close request function enables you to prevent or delay the closing of a
figure or the termination of a MATLAB session. This is useful to perform
such actions as

• Displaying a dialog box requiring the user to confirm the action

• Saving data before closing

• Preventing unintentional command-line deletion of a graphical user
interface built with MATLAB

The default callback routine for the CloseRequestFcn is an M-file called
closereq. It contains the statements

if isempty(gcbf)

if length(dbstack) == 1

warning('MATLAB:closereq',...

'Calling closereq from the command line is now obsolete, use close instead');

8-80

The Figure Close Request Function

end

close force

else

delete(gcbf);

end

This callback honors HandleVisibility and therefore does not delete the
figure when you use the close command without specifying the figure handle.
For example,

h = figure('HandleVisibility','off')
close % figure does not close
close all % figure does not close
close(h) % figure closes

Quitting MATLAB
When you quit MATLAB, the current figure’s CloseRequestFcn is called,
and if the figure is deleted, the next figure in the root’s list of children
(i.e., the root’s Children property) becomes the current figure, and its
CloseRequestFcn is in turn executed, and so on. You can use gcbf to specify
the figure handle from within a user-written close request function.

If you change a figure’s CloseRequestFcn so that it does not delete the figure,
then issuing the close command on that figure does not cause it to be deleted.
Furthermore, if you attempt to quit MATLAB, the quit is aborted because
MATLAB does not delete the figure.

Errors in the Close Request Function
If the CloseRequestFcn generates an error when executed, MATLAB aborts
the close operation. However, errors in the CloseRequestFcn do not abort
attempts to quit MATLAB. If an error occurs in a figure’s CloseRequestFcn,
MATLAB closes the figure unconditionally following a quit or exit command.

Overriding the Close Request Function
The delete command always deletes the specified figure, regardless of the
value of its CloseRequestFcn. For example, the statement

delete(get(0,'Children'))

8-81

8 Handle Graphics Objects

deletes all figures whose handles are not hidden (i.e., the figures’
HandleVisibility property is not set to off). If you want to delete all
figures regardless of whether their handles are hidden, you can set the root
ShowHiddenHandles property to on. The root Children property then contains
the handles of all figures. For example, the statements

set(0,'ShowHiddenHandles','yes')
delete(get(0,'Children'))

unconditionally delete all figures.

8-82

Saving Handles in M-Files

Saving Handles in M-Files

In this section...

“About Saving Handles” on page 8-83

“Save Information First” on page 8-83

About Saving Handles
Graphics M-files frequently use handles to access property values and to
direct graphics output to a particular target. MATLAB provides utility
routines that return the handles to key objects (such as the current figure
and axes). In M-files, however, these utilities might not be the best way to
obtain handles because

• Querying MATLAB for the handle of an object or other information is less
efficient than storing the handle in a variable and referencing that variable.

• The current figure, axes, or object might change during M-file execution
because of user interaction.

Save Information First
It is good practice to save relevant information about the MATLAB state in
the beginning of your M-file. For example, you can begin an M-file with

cax = newplot;
cfig = get(cax,'Parent');
hold_state = ishold;

rather than querying this information each time you need it. Remember
that utility commands like ishold obtain the values they return whenever
called. (The ishold command issues a number of get commands and string
compares (strcmp) to determine the hold state.)

If you are temporarily going to alter the hold state within the M-file, you
should save the current values of the NextPlot properties so you can reset
them later.

ax_nextplot = lower(get(cax,'NextPlot'));
fig_nextplot = lower(get(cfig,'NextPlot'));

8-83

8 Handle Graphics Objects

.

.

.
set(cax,'NextPlot',ax_nextplot)
set(cfig,'NextPlot',fig_nextplot)

8-84

Properties Changed by Built-In Functions

Properties Changed by Built-In Functions
To achieve their intended effect, many built-in functions change axes
properties, which can then affect the workings of your M-file. This table lists
the MATLAB built-in graphics functions and the properties they change. Note
that these properties change only if hold is off.

Function Axes Property: Set To

fill Box: on

CameraPosition: 2-D view

CameraTarget: 2-D view

CameraUpVector: 2-D view

CameraViewAngle: 2-D view

fill3 CameraPosition: 3-D view

CameraTarget: 3-D view

CameraUpVector: 3-D view

CameraViewAngle: 3-D view

XScale: linear

YScale: linear

ZScale: linear

8-85

8 Handle Graphics Objects

Function Axes Property: Set To

image
(high-level)

Box: on

Layer: top

CameraPosition: 2-D view

CameraTarget: 2-D view

CameraUpVector: 2-D view

CameraViewAngle: 2-D view

XDir: normal

XLim: [0 size(CData,2)]+0.5

XLimMode: manual

YDir: reverse

YLim: [0 size(CData,1)]+0.5YLimMode: manual

loglog Box: on

CameraPosition: 2-D view

CameraTarget: 2-D view

CameraUpVector: 2-D view

CameraViewAngle: 2-D view

XScale: log

YScale: log

plot Box: on

CameraPosition: 2-D view

CameraTarget: 2-D view

CameraUpVector: 2-D view

CameraViewAngle: 2-D view

8-86

Properties Changed by Built-In Functions

Function Axes Property: Set To

plot3 CameraPosition: 3-D view

CameraTarget: 3-D view

CameraUpVector: 3-D view

CameraViewAngle: 3-D view

XScale: linear

YScale: linear

ZScale: linear

semilogx Box: on

CameraPosition: 2-D view

CameraTarget: 2-D view

CameraUpVector: 2-D view

CameraViewAngle: 2-D view

XScale: log

YScale: linear

semilogy Box: on

CameraPosition: 2-D view

CameraTarget: 2-D view

CameraUpVector: 2-D view

CameraViewAngle: 2-D view

XScale: linear

YScale: log

8-87

8 Handle Graphics Objects

Objects That Can Contain Other Objects
Certain graphics objects can contain other objects. Consider a graph for
example. In a graph, data is represented by an object like a line. Normally,
the parent of the line is an axes (i.e., the handle of the line’s Parent property
is set to the handle of the axes that contains it). A figure is normally the
parent of an axes. A typical object diagram of a graph would look like this:

When graphs become more complicated and represent data with multiple
objects, it can be useful to group these objects together so you can perform
operations on the group as a whole.

The following sections discuss how to use two container objects that group
axes children within a graph and user interface components within a figure.

8-88

Using Panel Containers in Figures — Uipanels

Using Panel Containers in Figures — Uipanels

In this section...

“Introduction” on page 8-89

“Figure Resize Functions” on page 8-89

“Example — Using Figure Panels” on page 8-90

Introduction
Figures can contain axes and user interface objects directly, or you can parent
these objects to uipanels, which you then parent to a figure. Uipanels are
useful for the design of GUIs because they enable you to define subregions
in a figure in which you can lay out components.

MATLAB interprets the Position property of all objects parented to a uipanel
relative to the uipanel’s position. If you move the uipanel, the children
automatically move with it.

Uipanels can also contain other uipanels, as well as axes, uicontrols, and
uibuttongroups. See the uipanel reference page for more information on
uipanels.

You can create multiple axes in a uipanel and direct plotting into any of them.
However, some plotting functions do not allow you to specify the parent of the
graphics objects they create, so they create a new axes (and possibly a figure).
To include such a graph in a uipanel, you can reparent the axes to the panel
once the plot is made.

Figure Resize Functions
Containing various parts of a GUI in uipanels simplifies the process of
programming figure resize behavior because you can write a separate resize
function for each panel. The following example illustrates how to do this.

8-89

8 Handle Graphics Objects

Example — Using Figure Panels
This example uses three uipanel objects as containers for the GUI’s
components. All three uipanels are then parented to the figure, as shown in
the following containment hierarchy.

Here is a picture of the GUI with some data plotted in the axes.

8-90

Using Panel Containers in Figures — Uipanels

Complete Example Code

Note If you are using the MATLAB Help browser, you can run this example
or open it in the MATLAB editor.

This GUI enables you to select workspace variables from a list box and select
a plot type from a pop-up menu. You can add plots to the existing graph by
clicking the Hold toggle button and initiate the plot by clicking the Create
Plot button.

Use the link above to run the example and open the GUI code in the MATLAB
editor.

8-91

8 Handle Graphics Objects

Creating the Uipanels
The following code shows the definition of the figure and the bottom panel.
Setting Units to characters ensures that your GUI is properly sized on
different computer systems. The Position property specifies the location and
size of each component in units set by the Units property.

% Create the figure
f = figure('Units','characters',...

'Position',[30 30 120 35],...
'Color',panelColor,...
'HandleVisibility','callback',...
'IntegerHandle','off',...
'Renderer','painters',...
'ResizeFcn',@figResize);

% Create the bottom uipanel
botPanel = uipanel('BorderType','etchedin',...

'BackgroundColor',panelColor,...
'Units','characters',...
'Position',[1/20 1/20 119.9 8],...
'Parent',f,...
'ResizeFcn',@botPanelResize);

Programming the Resize Functions
As you resize the figure, MATLAB calls the figure resize function (specified
by the object’s ResizeFcn property), which, in this example, computes a new
size for each uipanel. Because the figure resize function resizes the uipanels,
MATLAB automatically calls the resize function of each uipanel once the
figure resize function completes execution. The uipanel resize functions then
adjust the sizes and locations of the components they contain.

8-92

Using Panel Containers in Figures — Uipanels

The following diagram illustrates the sequence of events that occurs when a
user resizes the figure.

The following code shows the figure, bottom panel, and right panel resize
functions. As each function is called, it sets the object’s size and position to
values that are proportional to the original layout.

See “Nested Functions” for more information.

% Figure resize function
function figResize(src,evt)
fpos = get(f,'Position');

8-93

8 Handle Graphics Objects

set(botPanel,'Position',...
[1/20 1/20 fpos(3)-.1 fpos(4)*8/35])

set(rightPanel,'Position',...
[fpos(3)*85/120 fpos(4)*8/35 fpos(3)*35/120 fpos(4)*27/35])

set(centerPanel,'Position',...
[1/20 fpos(4)*8/35 fpos(3)*85/120 fpos(4)*27/35]);

end
% Bottom panel resize function
function botPanelResize(src,evt)
bpos = get(botPanel,'Position');
set(plotButton,'Position',...
[bpos(3)*10/120 bpos(4)*2/8 bpos(3)*24/120 2])

set(holdToggle,'Position',...
[bpos(3)*45/120 bpos(4)*2/8 bpos(3)*24/120 2])

set(popUp,'Position',...
[bpos(3)*80/120 bpos(4)*2/8 bpos(3)*24/120 2])

set(popUpLabel,'Position',...
[bpos(3)*80/120 bpos(4)*4/8 bpos(3)*24/120 2])

end
% Right panel resize function
function rightPanelResize(src,evt)
rpos = get(rightPanel,'Position');
set(listBox,'Position',...
[rpos(3)*4/32 rpos(4)*2/27 rpos(3)*24/32 rpos(4)*20/27]);

set(listBoxLabel,'Position',...
[rpos(3)*4/32 rpos(4)*24/27 rpos(3)*24/32 rpos(4)*2/27]);

end

Note that the center panel does not need a resize function because the axes
automatically resize to fit the container (either a figure or uipanel).

To see the complete code listing for this example, see “Complete Example
Code” on page 8-91.

8-94

Grouping Objects Within Axes — hgtransform

Grouping Objects Within Axes — hgtransform

In this section...

“Introduction” on page 8-95

“Example — Translating Grouped Objects” on page 8-95

Introduction
MATLAB provides two objects that are designed to group any of the objects
normally parented to axes. These two objects are

• Hggroup — Parent objects to an hggroup object when you want to reference
the objects as a group. For example, to select or control visibility of all
the group members.

• Hgtransform — This object also enables you to transform (rotate, translate,
etc.) the objects as a group.

See “Group Objects” on page 8-28 for more information about hggroup and
hgtransform objects.

Example — Translating Grouped Objects
This example shows how using a hierarchy of hgtransform objects makes it
possible to translate the contained graphics objects both independently and as
a group. The example creates a cross-like cursor with a text readout in the
center, which displays data values.

The cursor is constructed from two surfaces, each of which is contained in an
hgtransform object so they can be translated independently to overlap, and
a text object. These two hgtransform objects are then contained by a third
hgtransform object, which also contains the text. This third hgtransform
(with handle T in the diagram and code) enables the cursor to be transformed
as a group.

The following diagram shows the containment hierarchy for this example.
The axes contains a line, which is used to plot the data that the cursor moves
along. The axes also contains the hierarchy of hgtransform objects that
construct the cursor.

8-95

8 Handle Graphics Objects

Note If you are using the MATLAB Help browser, you can run this example
or open it in the MATLAB editor.

Set Up the Axes and Figure
The first step is to create an axes with fixed limits so MATLAB does not
rescale the limits as the cursor moves along the line. Creating the axes
automatically creates a figure to contain it.

Set figure properties to use the OpenGL renderer:

h_axes = axes('XLim',[-10 10],'YLim',[-5 5]);
set(get(h_axes,'Parent'),'Renderer','opengl')

Define the Transform Matrices and Hgtransform Objects
The cross part of the cursor is formed from two surface objects, which are
translated to overlap. Each surface is contained in its own hgtransform
object (handles t1 and t2) because they are translated in different directions.
Both hgtransform objects are themselves contained in another hgtransform
object (handle T).

See makehgtform, hgtransform.

8-96

Grouping Objects Within Axes — hgtransform

% Create transform matrices
tmtx1 = makehgtform('translate',[-.5 0 0]);
tmtx2 = makehgtform('translate',[0 -.5 0]);

% Create hgtransform objects
T = hgtransform; % Contains the cursor
t1 = hgtransform('Parent',T,'Matrix',tmtx1);
t2 = hgtransform('Parent',T,'Matrix',tmtx2);

Create the Surface and Text Objects
The cursor is composed of two surface objects and a text object (to display
data values). The two surfaces are parented to their respective hgtransform
objects. The text is parented directly to the top-level hgtransform. The text
object does not need coordinates because it is translated along with the
surfaces in the top-level hgtransform object (T).

See cylinder, surface, text.

% Define surfaces and text
[sx,sy,sz] = cylinder([0 2 0]); % Use cylinder to generate data
surface(sz,sy,sx,'FaceColor','green',...

'EdgeColor','none','FaceAlpha',.2,'Parent',t1);
surface(sx,sz./1.5,sy,'FaceColor','blue',...

'EdgeColor','none','FaceAlpha',.2,'Parent',t2);
h_text = text('FontSize',12,'FontWeight','bold',...

'HorizontalAlignment','center',...
'VerticalAlignment','Cap','Parent',T);

Generate Data and Plot a Line
This example uses a line plot of a mathematical function to create a path
along which to move the cursor.

% Plot the data x, y, and z
x = -10:.05:10;
y = [cos(x) + exp(-.01*x).*cos(x) + exp(.07*x).*sin(3*x)];
z = 1:length(x);
line(x,y)

8-97

8 Handle Graphics Objects

Translate the Cursor Along the Plotted Line
To move the cursor along the line, a new transform matrix is calculated using
each set of x, y, and z data points and used to set the Matrix property of the
top-level hgtransfrom T. At the same time, the text object String property is
updated to display the value of the current y data point.

The surfaces and the text translate together because all are contained in the
top-level hgtransform object.

% Loop through the line data to move the cursor
for ind = 1:length(x)

set(T,'Matrix',...
makehgtform('translate',[x(ind) y(ind) z(ind)]))
set(h_text,'String',num2str(y(ind)))
drawnow,pause(.01)

end

8-98

Controlling Legends

Controlling Legends

In this section...

“Legend Control Options” on page 8-99

“Properties for Controlling Legend Content” on page 8-99

“Updating a Legend” on page 8-101

“Example — Excluding a Particular Object From a Legend” on page 8-101

“Example — One Legend Entry for a Group of Objects” on page 8-102

“Example — Showing Children of Group Objects in Legend” on page 8-103

“Example — Grouping Objects to Reduce the Legend Entries” on page 8-104

Legend Control Options
Graphics objects that are used to represent data, such as lines, surfaces,
patches, etc. can be represented in figure legends (see legend for information
on creating legends). By setting object properties, you can:

• Include a particular graphics object in the legend (the default)

• Exclude a particular graphics object from the legend

• Group graphics object together by parenting them to an hggroup or
hgtransform object and represent the group as a single item in the legend
(“Group Objects” on page 8-28)

• Display only the children of an object and not the parent in the legend. This
is useful when the graph contains plot objects (“Plot Objects” on page 8-19)

• You can specify the text label used in the legend for any object

Properties for Controlling Legend Content
Graphics objects have two properties that control the options described above:

• Annotation — controls whether the graphics object appears in the legend
and determines if the object or its children appear in the legend.

8-99

8 Handle Graphics Objects

• DisplayName — specifies the text label used by the legend for the object.
However, specifying a string with the legend commands resets the value of
DisplayName property.

Accessing the Annotation Control Objects

�	,�������

��	������#����
�������!

�	,��	��"��!

���������!*�!��
�������!

	����������+���

�������
�������!

)����������	���������+��
���������!�������	��

Querying the Annotation property returns the handle of an hg.Annotation
object. The hg.Annotation object has a property called LegendInformation,
which contains an hg.LegendEntry object. The hg.LegendEntry object has a
property called IconDisplayStyle that you can set to one of three values.

IconDisplayStyle
Value

Behavior

on Represent this object in a figure legend

off Do not include this object in a figure legend

children Display legend entries for this object’s children and
not the object itself (applies only to objects that have
children, otherwise, the same a on)

For example, if object_handle is the handle of a graphics object, you can use
the following statements to set the object’s IconDisplayStyle. In this case,
the graphics object, object_handle, is not included in the legend because its
IconDisplayStyle property is set to off.

hAnnotation = get(object_handle,'Annotation');
hLegendEntry = get(hAnnotation','LegendInformation');
set(hLegendEntry,'IconDisplayStyle','off')

8-100

Controlling Legends

Updating a Legend
If a legend exist and you change its IconDisplayStyle setting, you must
call legend to update the display. See the legend command for the options
available.

Example — Excluding a Particular Object From a
Legend
This example creates a graph (using random data in this case) and also
draws a line that indicates the mean value of the data. The legend displays
a key for the mean data line only because the blue data line object has
its.IconDisplayStyle property of the associated LegendEntry object set to
off.

function annotation_property_line
dat = rand(50,1);
hLine = plot(dat);
plotMean % Nested function draws a line at mean value
set(get(get(hLine,'Annotation'),'LegendInformation'),...

'IconDisplayStyle','off'); % Exclude line from legend
legend('mean')

function plotMean
xlimits = get(gca,'XLim');
meanValue = mean(dat);
meanLine = line([xlimits(1) xlimits(2)],[meanValue meanValue],...

'Color','k','LineStyle','-.');
end

end

Here is the graph:

8-101

8 Handle Graphics Objects

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

mean

Example — One Legend Entry for a Group of Objects
You can group graphics objects in an hggroup or hgtransform object and
represent the whole group as one item in a legend. This example creates two
series of graphs (sines and cosines of the same data).

• The lines drawn to represent the sine are parented to one hggroup object

• The lines drawn to represent the cosine are parented to another hggroup
object

• Both hggroup objects need their associated IconDisplayStyle property
set to on

• The legend then displays entries for both hggroup objects, but not their
children (the plotted lines)

t = 0:.1:2*pi;
for k=1:5

offset = k/7;
m(:,k) = t+offset';

end

8-102

Controlling Legends

hSLines = plot(t,sin(m),'Color','b');hold on
hCLines = plot(t,cos(m),'Color','g');
hSGroup = hggroup;
hCGroup = hggroup;
set(hSLines,'Parent',hSGroup)
set(hCLines,'Parent',hCGroup)
set(get(get(hSGroup,'Annotation'),'LegendInformation'),...

'IconDisplayStyle','on'); % Include this hggroup in the legend
set(get(get(hCGroup,'Annotation'),'LegendInformation'),...

'IconDisplayStyle','on'); % Include this hggroup in the legend
legend('Sine','Cosine')

0 1 2 3 4 5 6 7
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Sine
Cosine

Example — Showing Children of Group Objects in
Legend
You can include the children of a group in the legend by setting the group
object’s IconDisplayStyle to children. This is useful when graphs contain
plot objects, which are groups of core graphics objects. For example, consider
the following contour graph.

[X,Y] = meshgrid(-2:.1:2);

8-103

8 Handle Graphics Objects

Z = X.*exp(-X.^2-Y.^2);
[mC hC] = contour(X,Y,Z);
set(get(get(hC,'Annotation'),'LegendInformation'),...

'IconDisplayStyle','Children');
%{
Assigns each line object's DisplayName property a string
based on the value of the contour interval it represents
%}
k =1; ind = 1; hLines = get(hC,'Children');
while k < size(mC,2),

set(hLines(ind),'DisplayName',num2str(mC(1,k)))
k = k+mC(2,k)+1; ind = ind+1;

end
% Display the legend using DisplayName labels
legend('show')

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
0.4
0.3
0.2
0.1
0
−0.1
−0.2
−0.3
−0.4

Example — Grouping Objects to Reduce the Legend
Entries
Some functions that visualize large data sets create many objects to render
graphs. For example, contourslice uses patch objects to generate contour

8-104

Controlling Legends

slices of volume data. This example groups the 1829 patch objects into
hggroup objects according to which plane the objects represent and sets
corresponding values for the DisplayName property, resulting in a legend
with only three items.

load mri
D = squeeze(D);
phandles = contourslice(D,[],[],[1,15,27],8);view(3)
gh(1) = hggroup; gh(2) = hggroup; gh(3) = hggroup;
%set(gh,'Parent',gca)
for k=1:length(phandles)

zd = get(phandles(k),'ZData');
plane = num2str(zd(1));
switch plane

case '1'
set(phandles(k),'Parent',gh(1),'EdgeColor','r')

case '15'
set(phandles(k),'Parent',gh(2),'EdgeColor','g')

case '27'
set(phandles(k),'Parent',gh(3),'EdgeColor','b')

otherwise
disp('Don''t know what to do with it')

end
end
hA = get(gh,'Annotation');
hLL = get([hA{:}],'LegendInformation');
set([hLL{:}],{'IconDisplayStyle'},...

{'on','on','on'}')
set(gh,{'DisplayName'},{'Level=1','Level=15','Level=27'}')
legend show

8-105

8 Handle Graphics Objects

0
20

40
60

80
100

120

0

50

100

150
0

5

10

15

20

25

30

Level=1
Level=15
Level=27

8-106

Callback Properties for Graphics Objects

Callback Properties for Graphics Objects

In this section...

“What is a Callback?” on page 8-107

“Graphics Object Callbacks” on page 8-107

“User Interface Object Callbacks” on page 8-107

“Figure Callbacks” on page 8-107

What is a Callback?
A callback is a function that executes when a specific event occurs on a
graphics object. You specify a callback by setting the appropriate property
of the object. This section describes the events (specified via properties) for
which you can define callbacks. See “Function Handle Callbacks” on page
8-109 for information on how to define callbacks.

Graphics Object Callbacks
All graphics objects have three properties for which you can define callback
routines:

• ButtonDownFcn — Executes when users click the left mouse button while
the cursor is over the object or within a 5-pixel border around the object

• CreateFcn — Executes during object creation after all properties are set

• DeleteFcn — Executes just before deleting the object

User Interface Object Callbacks
User interface objects (e.g., uicontrol and uimenu) have a Callback property
through which you define the function to execute when users activate these
devices (e.g., click a push button or select a menu).

Figure Callbacks
Figures have additional properties that execute callback routines with the
appropriate user action. Only the CloseRequestFcn property has a callback
defined by default:

8-107

8 Handle Graphics Objects

• CloseRequestFcn — Executes when a request is made to close the figure
(by a close command, by the window manager menu, or by quitting
MATLAB)

• KeyPressFcn — Executes when users press a key while the cursor is within
the figure window

• ResizeFcn — Executes when users resize the figure window

• WindowButtonDownFcn — Executes when users click a mouse button while
the cursor is over the figure background, a disabled uicontrol, or the axes
background

• WindowButtonMotionFcn — Executes when users move the mouse button
within the figure window (but not over menus or title bar)

• WindowButtonUpFcn — Executes when users release the mouse button,
after having pressed the mouse button within the figure

8-108

Function Handle Callbacks

Function Handle Callbacks

In this section...

“Introduction” on page 8-109

“Function Handle Syntax” on page 8-110

“Why Use Function Handle Callbacks” on page 8-111

“Example — Using Function Handles in GUIs” on page 8-113

Introduction
Handle Graphics objects have a number of properties for which you can define
callback functions. When a specific event occurs (e.g., a user clicks a push
button or deletes a figure), the corresponding callback function executes. You
can specify the value of a callback property as a

• String that is a MATLAB command or the name of an M-file

• Cell array of strings

• Function handle or a cell array containing a function handle and additional
arguments

The following sections illustrate how to define function handle callbacks for
Handle Graphics objects.

• “Introduction” on page 8-109 describes how to define a function handle
callback.

• “Why Use Function Handle Callbacks” on page 8-111 provides information
on the advantages of using function handle callbacks.

• “Example — Using Function Handles in GUIs” on page 8-113 shows how to
create a simple GUI that uses function handle callbacks.

For general information on function handles, see the function handle reference
page.

8-109

8 Handle Graphics Objects

Function Handle Syntax
In Handle Graphics, functions that you want to use as function handle
callbacks must define at least two input arguments in the function definition:

• The handle of the object generating the callback (the source of the event)

• The event data structure (can be empty for some callbacks)

MATLAB passes these two arguments implicitly whenever the callback
executes. For example, consider the following statements, which are contained
in a single M-file.

function myGui
% Create a figure and specify a callback
figure('WindowButtonDownFcn',@myCallback)

.

.

.
% Callback subfunction defines two input arguments
function myCallback(src,eventdata)

.

.

.

The first statement creates a figure and assigns a function handle to its
WindowButtondownFcn property (created by using the @ symbol before the
function name). This function handle points to the subfunction myCallback.
The definition of myCallback must specify the two required input arguments
in its function definition line.

Passing Additional Input Arguments
You can define the callback function to accept additional input arguments by
adding them to the function definition. For example,

function myCallback(src,eventdata,arg1,arg2)

When using additional arguments for the callback function, you must set the
value of the property to a cell array (i.e., enclose the function handle and
arguments in curly braces). For example,

8-110

Function Handle Callbacks

figure('WindowButtonDownFcn',{@myCallback,arg1,arg2})

Defining Callbacks as a Cell Array of Strings — Special Case
Defining a callback as a cell array of strings is a special case because MATLAB
treats it differently from a simple string. Setting a callback property to a
string causes MATLAB to evaluate that string in the base workspace when
the callback is invoked. However, setting a callback to a cell array of strings
requires the following:

• The cell array must contain the name of an M-file that is on the MATLAB
path as the first string element.

• The M-file callback must define at least two arguments (the handle of the
callback object and an empty matrix).

• Any additional strings in the cell array are passed to the M-file callback as
arguments.

For example,

figure('WindowButtonDownFcn',{myCallback,arg1})

requires you to define a function M-file that uses three arguments,

function myCallback(src,eventdata,arg1)

Why Use Function Handle Callbacks
Using function handles to specify callbacks provides some advantages over
the use of strings, which must be either MATLAB commands or the name of
an M-file that will be on the MATLAB path at run-time.

Single File for All Code
Function handles enable you to use a single M-file for all callbacks. This is
particularly useful when you are creating graphical user interfaces, because
you can include both the layout commands and callbacks in one file.

For information on how to access subfunctions, see the “Calling a Function
Using Its Handle” section of MATLAB Programming.

8-111

8 Handle Graphics Objects

Keeping Variables in Scope
When MATLAB evaluates function handles, the same variables are in scope
as when the function handle was created. (In contrast, callbacks specified as
strings are evaluated in the base workspace.) This simplifies the process of
managing global data, such as object handles in a GUI.

For example, suppose you create a GUI with a list box that displays workspace
variables and a push button whose callback creates a plot using the variables
selected in the list box. The push button callback needs the handle of the list
box to query the names of the selected variables. Here’s what to do.

1 Create the list box and save the handle:

h_listbox = uicontrol('Style','listbox',... etc.);

2 Pass the list box handle to the push button’s callback, which is defined in
the same M-file:

h_plot_button = uicontrol('Style','pushbutton',...
'Callback',{@plot_button_callback,h_listbox},...,etc.);

The handle of the list box is now available in the plot button’s callback without
relying on global variables or using findobj to search for the handle. See
“Example — Using Function Handles in GUIs” on page 8-113 for an example
that uses this technique.

Callback Object Handle and Event Data
MATLAB passes additional information to the callback when it is executed.
This information includes the handle of the callback object (the source of
the callback event) and event data that is specific to the particular callback
property.

For example, the event data returned for the figure KeyPressFcn property is a
structure that contains information about which keys were pressed.

Information about the event data associated with any given callback property
is included with the property’s documentation. Use the Handle Graphics
Property Browser to access property documentation.

8-112

Function Handle Callbacks

Function Handles Stay in Scope
A function handle can point to a function that is not in scope at the time of
execution. For example, the function can be a subfunction in another M-file.

For a general discussion of function handles, see the “Function Handles” and
“Anonymous Functions” in the MATLAB documentation.

Example — Using Function Handles in GUIs
This example creates a simple GUI that plots workspace variables. It is
defined in a single M-file that contains both the layout commands and the
callbacks. This example uses function handles to specify callback functions.
Callbacks are implemented as nested functions to reduce the need to pass
variables as arguments.

Complete Example Code
The documentation for this example does not list all the code used to lay
out and program the GUI. To see a complete code listing, use the links in
the note box below.

Note If you are using the MATLAB Help browser, you can run this example
or open it in the MATLAB editor.

See “Function Handle Callbacks” on page 8-109 for more information on the
use of function handle callbacks.

The GUI Layout
The following picture shows the GUI after running the example code.
The program creates two variables (testvarX and testVarY) in the base
workspace for testing purposes.

8-113

8 Handle Graphics Objects

The GUI layout is split among three uipanel containers. One contains the
axes, the right side panel contains a list box to display workspace variables,
and the bottom panel contains the plot and hold buttons and the plot type
pop-up menu.

Initialize the GUI
The list box and the hold toggle button need to be initialized before the GUI
is ready to use. This is accomplished by executing their callbacks. Note that
because you are calling these functions directly, MATLAB does not implicitly
pass the first two arguments, as it would if these functions were executed
as callbacks in response to an event. You therefore must explicitly pass all
arguments in these function calls.

8-114

Function Handle Callbacks

% Initialize list box and make sure
% the hold toggle is set correctly
listBoxCallback(listBox,[])
holdToggleCallback(holdToggle,[])

The Callback Functions
The GUI components that have callbacks are the list box, toggle button,
and plot push button. In addition, the figure’s three uipanels define resize
functions that MATLAB executes whenever users resize the figure.

See “Programming the Resize Functions” on page 8-92 for information on
writing callback functions for the figure and uipanel ResizeFcn properties.

List Box Callback. The list box callback generates a list of the current
variables in the base workspace using the evalin and who functions. It then
assigns this list to the list box String property so that it displays these
variable names.

Note how the function takes advantage of the fact that the first argument
passed to the callback is the handle of the callback object (i.e., the source of
the callback event, which is the list box). Therefore, whenever you click in the
list box, MATLAB updates the list to display the current workspace variables.

%% Callback for list box
function listBoxCallback(src,evt)
% Load workspace vars into list box
vars = evalin('base','who');
set(src,'String',vars)

end % listBoxCallback

Plot Button Callback. The plot button callback performs three tasks:

• Gets the names of the variables selected by the user in the list box

• Gets the type of plot selected by the user in the pop-up menu

• Constructs and evaluates the plotting command in the base workspace

%% Callback for plot button
function plotButtonCallback(src,evt)
% Get workspace variables

8-115

8 Handle Graphics Objects

vars = get(listBox,'String');
var_index = get(listBox,'Value');
if length(var_index) ~= 2
errordlg('You must select two variables',...
'Incorrect Selection','modal')
return

end
% Get data from base workspace
x = evalin('base',vars{var_index(1)});
y = evalin('base',vars{var_index(2)});
% Get plotting command
selected_cmd = get(popUp,'Value');
% Make the GUI axes current and create plot
axes(a)
switch selected_cmd
case 1 % user selected plot
plot(x,y)

case 2 % user selected bar
bar(x,y)

case 3 % user selected stem
stem(x,y)

end
end % plotButtonCallback

Hold State Toggle Button Callback. The toggle button callback requires
the handles of the GUI figure and axes. Because these callbacks are written
as nested functions, the figure handle (f) and the axes handle (a) are in scope
within the callback.

You want the GUI to toggle the hold state, but the GUI figure handle is
hidden. It is necessary, therefore, to use the axes handle as the first argument
to the hold function.

%% Callback for hold state toggle button
function holdToggleCallback(src,evt)
button_state = get(src,'Value');
if button_state == get(src,'Max')
% toggle button is depressed
hold(a,'on')
set(src,'String','Hold On')

8-116

Function Handle Callbacks

elseif button_state == get(src,'Min')
% toggle button is not depressed
hold(a,'off')
set(src,'String','Hold Off')

end
end % holdToggleCallback

8-117

8 Handle Graphics Objects

Optimizing Graphics Performance

In this section...

“Introduction” on page 8-118

“General Performance Guidelines” on page 8-118

“Disable Automatic Modes” on page 8-119

“Changing Graph Data Rapidly” on page 8-121

“Specify Axes with Plotting Function for Better Performance” on page 8-124

“Performance of Bit-Mapped Images” on page 8-125

“Performance of Patch Objects” on page 8-126

“Performance of Surface Objects” on page 8-127

Introduction
This section discusses techniques that can help increase the speed with which
MATLAB creates graphs. These techniques generally apply to cases where you
are creating many graphs of similar data and can therefore improve rendering
speed by preventing MATLAB from performing unnecessary operation.

Whether a given technique improves performance depends on the particular
application. The profile function can help you determine where your code
is consuming the most time.

General Performance Guidelines
The following list provides some general guidelines for optimizing
performance:

• Set automatic-mode properties to manual whenever possible to prevent
MATLAB from performing unnecessary operations.

• Modify existing objects instead of creating new ones.

• Use low-level core objects when creating objects repeatedly.

• Do not recreate legends or other annotations in a program loop; add these
after you finish modifying the graph.

8-118

Optimizing Graphics Performance

• Set the text Interpreter property to none if you are not using TeX
characters.

• Try various renderers and erase modes. MATLAB might not have
auto-selected the fastest renderer for your application.

The remainder of this section provides more details on these and other
techniques.

• “Disable Automatic Modes” on page 8-119 — information on optimizing
the use of axes objects.

• “Changing Graph Data Rapidly” on page 8-121 — an example of techniques
for interactive plotting.

• “Performance of Bit-Mapped Images” on page 8-125 — information on
optimizing the use of image objects.

• “Performance of Patch Objects” on page 8-126 — information on optimizing
the use of patch objects.

• “Performance of Surface Objects” on page 8-127 — information on
optimizing the use of surface objects.

Disable Automatic Modes
Graphics objects have properties that control many aspects of their behavior
and appearance. The axes object in particular has many mode properties that
enables it to respond to changes in the data represented in a graph.

For example, when you plot data, the axes determines appropriate axis limits,
tick-mark placement, and labeling. Any changes you make to the plotted data
(adding another line graph, for example) causes the axes to recompute the
axis limits and to determine what values to use for the tick marks.

Fixing Axis Limits
The process of recalculating axis limits and the locations of the tick marks
along each axis contributes to the time it takes to create a graph. If you are
plotting data into the same axes repeatedly, you can improve performance by
manually setting some or all of the axis limits, which, in turn, disables axis
scaling and tick picking.

8-119

8 Handle Graphics Objects

For example, suppose you are plotting time series graphs in which you always
view a 200 second time interval along the x-axis and your data ranges from -1
to 1. The following statement creates an axes with these limits and, in the
process, sets the limit-picking mode to manual. Thereafter, MATLAB does not
change the limits or recalculate tick mark locations (as long as you do not call
a high-level plotting function like plot):

axes('XLim',[0 200],'YLim',[-1 1])

Set All Modes to Manual
To maximize the efficiency with which MATLAB can update your graphs, you
should disable all automatic operation so that MATLAB does not need to
spend time determining if it is even necessary to recalculate a property value.
The following steps illustrate this technique:

1 Create a figure and select the renderer you want to use. Line graphs should
use painters to take advantage of its line thinning algorithm.

figure('Renderer','painters')

Setting a property automatically sets its associated mode property to
manual.

2 Create an axes explicitly and set all properties (such as the axis limits) for
which you can predetermine the appropriate value.

3 Set all other mode property values to manual (see table below).

4 If you are creating line graphs using the painters renderer, set the axes
DrawMode property to fast.

5 If you cannot determine the appropriate value for all mode properties,
create your first graph and then use the set command to set mode
properties to manual. See “Changing Graph Data Rapidly” on page 8-121
for an example.

The following table lists the axes mode properties and provides an explanation
of what the mode controls.

8-120

Optimizing Graphics Performance

Mode Property What It Controls

ALimMode Transparency limits mode

CameraPositionMode Positioning of the viewpoint

CameraTargetMode Positioning of the camera target in the axes

CameraUpVectorMode The direction of “up” in 2-D and 3-D views

CameraViewAngleMode The size of the projected scene and
stretch-to-fit behavior

CLimMode Mapping of data values to colors

DataAspectRatioMode Relative scaling of data units along x-, y-,
and z-axes and stretch-to-fit behavior

DrawMode Controls the way MATLAB renders graphics
objects (use with line graphs)

PlotBoxAspectRatioMode Relative scaling of plot box along x-, y-, and
z-axes and stretch-to-fit behavior

TickDirMode Direction of axis tick marks (in for 2-D, out
for 3-D)

XLimMode

YLimMode

ZLimMode

Limits of the respective x, y, and z axes

XTickMode

YTickMode

ZTickMode

Tick mark spacing along the respective x-,
y-, and z-axes

XTickLabelMode

YTickLabelMode

ZTickLabelMode

Tick mark labels along the respective x-, y-,
and z-axes

Changing Graph Data Rapidly
MATLAB plotting functions perform a wide variety of operations in the
process of creating a graph to make plotting easier. For example, the plot

8-121

8 Handle Graphics Objects

function clears the current axes before drawing new lines, selects a line color
or a marker type, searches for user-defined default values, and so on.

Low-Level Functions for Speed
The features that make plotting functions easy to use also consume computer
resources. If you want to maximize graphing performance, you should use
low-level functions and disable certain automatic features.

Low-level graphics functions (e.g., line vs. plot, surface vs. surf) perform
fewer operation and therefore can be faster when you are creating many
graphics objects. See “High-Level Versus Low-Level” on page 8-17 for more
information on how these functions differ.

Avoid Creating Graphics Objects
Each graphics object requires a certain amount of the computer’s resources to
create and store information, such as the value of all the object’s properties. It
is therefore more efficient to use fewer graphics objects if possible.

For example, you can add NaNs to vertex data (which causes that vertex to
not be rendered) to create line segments that look like separate lines. You
must place the NaNs at identical locations in each vector of data:

x = [rand(5,1);nan;rand(4,1);nan;rand(6,1)];
y = [rand(5,1);nan;rand(4,1);nan;rand(6,1)];
line(x,y);

8-122

Optimizing Graphics Performance

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Update the Object’s Data
If you want to view different data on what is basically the same graph, it
is more efficient to update the data of the existing objects (lines, text, etc.)
rather than recreating the entire graph.

For example, suppose you want to visualize the effect on your data of varying
certain parameters. Follow these steps:

1 Set the limits of any axis that can be determined in advance (you can use
max and min to determine the range of your data).

2 Recalculate the data using the new parameters.

3 Use the new data to update the data properties of the lines, text, etc.
objects used in the graph.

8-123

8 Handle Graphics Objects

4 Call drawnow to flush the event queue and update the figure (and all child
objects in the figure).

The following example illustrates the use of these techniques in a GUI that
uses sliders to vary two parameters in a mathematical expression, which is
then plotted.

Note If you are using the MATLAB Help browser, you can run this example
or open it in the MATLAB editor.

Specify Axes with Plotting Function for Better
Performance
Most plotting functions accept an axes handle as an argument. This handle
determines the target axes for the plot. Specifying the parent axes as an
argument is often faster than using the axes function to make a particular

8-124

Optimizing Graphics Performance

axes the current axes. For example, suppose you want six subplot in one
figure and want to plot to each one in sequence:

x = 0:.05:2*pi;
for k=1:6

h(k) = subplot(6,1,k);
end
for k=1:6

y = sin(x*100*rand)*rand;
plot(h(k),x,y) % Specify target axes in plotting function
% Avoid using axes(h(k); plot(x,y) in a loop

end

Keeping Track of the Target Figure and Axes
You can also explicitly set the figure CurrentAxes property to avoid specifying
the axes handle with a number of functions that can operate on the current
axes by default. For example, in the code below, both stem and axis operate
on the current axes if you do not specify an axes as an argument.

fHandle = figure;
for k=1:6

h(k) = subplot(6,1,k);
end
x = 0:.1:2*pi;
for k=1:6

y = sin(x*100*rand)*rand;
% Explicitly set current axes as a figure property
set(fHandle,'CurrentAxes',h(k)); stem(x,y); axis([0 6.28 -1 1])

end

Both techniques described in this section give better performance than calling
the axes function to control the current axes.

Performance of Bit-Mapped Images
Images can be defined with lower precision (than double) values to reduce
the total amount of data required. MATLAB performs many operations on
nondouble data types you can use smaller image data without converting the
data to type double. See “Working with 8-Bit and 16-Bit Images” on page
6-10 for more information.

8-125

8 Handle Graphics Objects

Direct Color Mapping
Where possible, use indexed images because this type of image can apply
direct mapping of pixel values to colormap values (CDataMapping set to
direct). With direct mapping, MATLAB does not need to scale the data and
then map it to values in the colormap.

See the CDataMapping image property for more information.

Use Truecolor for Smaller Images
The use of truecolor (red, green, and blue values) eliminates the need for color
mapping. However, with very large images, the data can be quite large and
thereby slow performance.

Direct Mapping of Transparency Values
If you are using an alphamap of transparency values, prescale the alpha data
so you can use the most efficient alpha data mapping (AlphaDataMapping
set to none)

See the AlphaDataMapping image property for more information.

Performance of Patch Objects
You can improve the speed with which MATLAB renders patch objects using
the following techniques.

Define Patch Faces as Triangles
If you are using patch objects that have many vertices per patch face, you
should modify your data so that each face has only three vertices, but still
looks like your original object. This eliminates the tessellation step from
the rendering process.

Use Data Thinning
It is sometimes possible (or even desirable) to reduce the number of vertices in
a patch and still produce the desired results.

See the reducepatch and reducevolume functions for more information.

8-126

Optimizing Graphics Performance

Direct Color Mapping
Where possible, use direct color mapping for coloring patches. (CDataMapping
set to direct). With direct mapping, MATLAB does not need to scale the data
and then map it to values in the colormap.

See the CDataMapping patch property for more information.

Use Truecolor for Smaller Patches
The use of truecolor (red, green, and blue values) eliminates the need for color
mapping. However, with very large patches, the data can be quite large and
thereby slow performance.

Direct Mapping of Transparency Values
If you are using an alphamap of transparency values, prescale the alpha data
so you can use the most efficient alpha data mapping (AlphaDataMapping
set to none)

See the AlphaDataMapping patch property for more information.

Performance of Surface Objects
You can improve the speed with which MATLAB renders surface objects using
the following techniques.

Direct Color Mapping
Where possible, use direct color mapping for coloring surfaces. (CDataMapping
set to direct). With direct mapping, MATLAB does not need to scale the data
and then map it to values in the colormap.

See the CDataMapping surface property for more information.

Use Truecolor for Smaller Surfaces
The use of truecolor (red, green, and blue values) eliminates the need for color
mapping. However, with very large surfaces, the data can be quite large and
thereby slow performance.

8-127

8 Handle Graphics Objects

Mapping of Transparency Values
If you are using an alphamap of transparency values, prescale the alpha data
so you can use the most efficient alpha data mapping (AlphaDataMapping
set to none)

See the AlphaDataMapping surface property for more information.

Use Texture-Mapped Face Color
If you are using surface objects in an animation or want to be able to pan and
rotate them quickly, you can achieve better rendering performance with large
surfaces by setting EdgeColor to none and FaceColor to texture.

This technique is particularly useful if you want a high resolution surface
without creating an objects whose data is large and therefore, very slow to
transform. For example,

h1 = surf(peaks(1000));
shading interp
cd1 = get(h1,'CData');
surf(peaks(24),'FaceColor','Texture','EdgeColor','none',...
'CData',cd1)

8-128

9

Figure Properties

Figure Objects (p. 9-2) Where to find information about
figures

Docking Figures in the Desktop
(p. 9-3)

Properties that control figure
docking

Positioning Figures (p. 9-6) Properties used to position figures
and how they are measured

Figure Colormaps — The Colormap
Property (p. 9-11)

Specifying the figure colormap

Selecting Drawing Methods (p. 9-13) How to select rendering methods
and when to use double buffering
and backing store

Specifying the Figure Pointer
(p. 9-16)

How to select from predefined
pointers or define custom pointers

9 Figure Properties

Figure Objects
Figure graphics objects are the windows in which MATLAB displays graphics.
Figure properties enable you to control many aspects of these windows, such
as their size and position on the screen, the coloring of graphics objects
displayed within them, and the scaling of printed pictures.

This section discusses some of the features that are implemented through
figure properties and provides examples of how to use these features.

See Figure Properties for a description of each property

Related Information About Figures
For more information about figures, see the following links:

• “Graphics Windows — the Figure” on page 8-6

• “Preparing Figures and Axes for Graphics” on page 8-71

• “Protecting Figures and Axes” on page 8-77

• “The Figure Close Request Function” on page 8-80

• “Using Panel Containers in Figures — Uipanels” on page 8-89

• “Programming the Resize Functions” on page 8-92

• “Figure Callbacks” on page 8-107

• “Introduction” on page 10-36

• “Displaying Multiple Plots per Figure” on page 4-2

9-2

Docking Figures in the Desktop

Docking Figures in the Desktop

In this section...

“Introduction” on page 9-3

“Figure Properties That Affect Docking” on page 9-4

“Creating a Nondockable Figure” on page 9-5

Introduction
You can dock figures in the MATLAB desktop by clicking the dock button,

, which appears on the right end of the menu bar. Once docked, figures are
placed in a figure group container, which you can also dock and undock.

You can select from a variety of arrangements of the figures in the container.
The following picture shows how to select various figure arrangements. Once
docked, the figure container displays the toolbar and menubar of the figure
with focus.

9-3

9 Figure Properties

Figure Properties That Affect Docking
There are two figure properties that are related to figure docking —
DockControls and WindowStyle.

9-4

Docking Figures in the Desktop

DockControls
The DockControls property controls the display of the controls used to dock
figures. Setting DockControls to off removes the dock button from the
menubar and disables docking from the figure Desktop menu.

WindowStyle
When you set the WindowStyle property to docked, MATLAB docks the
figure in the desktop within a figure group container.

If WindowStyle is set to docked,

• MATLAB automatically sets DockControls to on.

• You cannot set the DockControls property to off.

• You cannot set the figure Position property.

Docking Figures Automatically
If you want MATLAB to always dock figures, set the default value of the
WindowStyle property to docked. The following statement,

set(0,'DefaultFigureWindowStyle','docked')

creates a default value for the WindowStyle property on the root level. Issuing
this statement on the command line sets the WindowStyle of all figures for
the duration of your MATLAB session (unless you change the value).

Place this statement in your startup.m file to make MATLAB always dock
figures. See startup for more information on startup.m.

Creating a Nondockable Figure
In cases where you do not want users to be able to dock figures (e.g., figures
used for GUIs), you should set figure properties as follows:

• DockControls to off

• WindowStyle to normal or modal

• HandleVisibility to off or callback

9-5

9 Figure Properties

Positioning Figures

In this section...

“Introduction” on page 9-6

“The Position Vector” on page 9-6

“Example — Specifying Figure Position” on page 9-9

Introduction
The figure Position property controls the size and location of the figure
window on the root screen. At startup, MATLAB determines the size of your
computer screen and defines a default value for Position. This default
creates figures about one-quarter of the screen’s size and places them centered
left to right and in the top half of the screen.

The Position Vector
MATLAB defines the figure Position property as a vector.

[left bottom width height]

left and bottom define the position of the first addressable pixel in the lower
left corner of the window, specified with respect to the lower left corner of
the screen. width and height define the size of the interior of the window
(i.e., exclusive of the window border).

9-6

Positioning Figures

MATLAB does not measure the window border when placing the figure; the
Position property defines only the internal active area of the figure window.

Because figures are windows under the control of your computer’s windowing
system, you can move and resize figures as you would any other windows.
MATLAB automatically updates the Position property to the new values.

Figure Position for Docked Figures
When a figure is docked in the MATLAB desktop, the Position property is
defined with respect to the figure group container within the desktop. See
“Docking Figures in the Desktop” on page 9-3 for more information.

Units
The figure’s Units property determines the units of the values used to specify
the position on the screen. Possible values for the Units property are

9-7

9 Figure Properties

set(gcf,'Units')
[inches | centimeters | normalized | points | {pixels} |
characters]

with pixels being the default. These choices allow you to specify the figure
size and location in absolute units (such as inches) if you want the window
always to be a certain size, or in units relative to the screen size (such as
pixels).

Characters are units that enable you to define the location and size of the
figure in units that are based on the size of the default system font. See
“Example — Using Figure Panels” on page 8-90 for an example that uses
character units.

Determining Screen Size
Whatever units you use, it is important to know the extent of the screen in
those units. You can obtain this information from the root CDataMapping
property. For example,

get(0,'ScreenSize')
ans =

1 1 1152 900

In this case, the screen is 1152 by 900 pixels. MATLAB returns the
ScreenSize in the units determined by the root Units property. For example,

set(0,'Units','normalized')

normalizes the values returned by ScreenSize.

get(0,'ScreenSize')
ans =

0 0 1 1

Defining the figure Position in terms of the ScreenSize in normalized units
makes the specification independent of variations in screen size. This is useful
if you are writing an M-file that is to be used on different computer systems.

9-8

Positioning Figures

Example — Specifying Figure Position
Suppose you want to define two figure windows that occupy the upper third of
the computer screen (e.g., one for uicontrols and the other to display data). To
position the windows precisely, you must consider the window borders when
calculating the size and offsets to specify for the Position properties.

1 The figure Position property does not include the window borders, so this
example uses a width of 5 pixels on the sides and bottom and 30 pixels on
the top.

bdwidth = 5;
topbdwidth = 30;

2 Ensure root units are pixels and get the size of the screen:

set(0,'Units','pixels')
scnsize = get(0,'ScreenSize');

3 Define the size and location of the figures:

pos1 = [bdwidth,...
2/3*scnsize(4) + bdwidth,...
scnsize(3)/2 - 2*bdwidth,...
scnsize(4)/3 - (topbdwidth + bdwidth)];

pos2 = [pos1(1) + scnsize(3)/2,...
pos1(2),...
pos1(3),...
pos1(4)];

4 Create the figures:

figure('Position',pos1)
figure('Position',pos2)

The two figures now occupy the top third of the screen.

9-9

9 Figure Properties

9-10

Figure Colormaps — The Colormap Property

Figure Colormaps — The Colormap Property

In this section...

“Introduction” on page 9-11

“Specifying the Figure Colormap” on page 9-11

Introduction
MATLAB defines a colormap as a three-column array. Each row of the array
defines a particular color by giving three values in the range [0...1]. These
values specify the RGB values; the intensity of the red, green, and blue video
components.

Colormaps enable you to control how MATLAB maps data values to colors
in surfaces, patches, images, and plotting functions that are based on these
objects. See the following sections for more information.

• “Coloring Mesh and Surface Plots” in 3-D Visualization

• “Specifying Patch Coloring” in 3-D Visualization

• “The Image Object and Its Properties” on page 6-27

Specifying the Figure Colormap
The figure Colormap property contains the colormap array. You can specify
the figure colormap by setting this property to an m-by-3 array, where m is
the number of colors in the colormap.

For example, the following statement creates a figure with a colormap having
128 random colors.

figure('Colormap',rand(128,3));

The colormap function is an easy way to specify the colormap. MATLAB also
provides a number of functions that generate colormaps. For example,

colormap(hsv(96))

9-11

9 Figure Properties

sets the colormap of the current figure to a 96 element version of the hsv
colormap. See the colormap reference page for a list of predefined colormaps.
Note that the default colormap is jet(64).

9-12

Selecting Drawing Methods

Selecting Drawing Methods

In this section...

“Double Buffering” on page 9-13

“Selecting a Renderer” on page 9-13

Double Buffering

Overview
Set DoubleBuffer to on when you are animating lines rendered in painters
with EraseMode set to normal.

More Details
Double buffering is the process of drawing into an offscreen pixel buffer and
then blitting the buffer contents to the screen once the drawing is complete
(instead of drawing directly to the screen, where the process of drawing
is visible as it progresses). Double buffering generally produces flash-free
rendering for simple animations (such as those involving lines, as opposed
to objects containing large numbers of polygons).

The figure DoubleBuffer property accepts the values on and off, with on
being the default. You can select double buffering only when the figure
Renderer property is set to painters. zbuffer and opengl always use double
buffering and ignore this property.

Use double buffering with the animated object’s EraseMode property set to
normal.

Selecting a Renderer

Overview
MATLAB automatically selects the best renderer based on the complexity of
the graphics objects and the options available on your system.

9-13

9 Figure Properties

More Details
A renderer is the software that processes graphics data (such as vertex
coordinates) into a form that MATLAB can use to draw into the figure.
MATLAB supports three renderers:

• Painters

• Z-buffer

• OpenGL

Painters
Painters method is faster when the figure contains only simple or small
graphics. It cannot be used with lighting.

Z-Buffer
Z-buffering is the process of determining how to render each pixel by drawing
only the front-most object, as opposed to drawing all objects back to front,
redrawing objects that obscure those behind. The pixel data is buffered and
then blitted to the screen all at once.

Z-buffering is generally faster for more complex graphics, but can be slower
for very simple graphics. You can set the Renderer property to whatever
produces the fastest drawing (either zbuffer or painters), or let MATLAB
decide which method to use by setting the RendererMode property to auto
(the default).

Printing from Z-Buffer. You can select the resolution of the PostScript file
produced by the print command using the -r option. By default, MATLAB
prints Z-buffered figures at a medium resolution of 150 dpi (the default with
Renderer set to painters is 864 dpi).

The size of the file generated from a Z-buffer figure does not depend on its
contents, just the size of the figure. To decrease the file size, make the
PaperPosition property smaller before printing (or set PaperPositionMode
to auto and resize the figure window).

9-14

Selecting Drawing Methods

OpenGL
OpenGL is available on many computer systems. It is generally faster than
either painters or Z-buffer and in some cases enables MATLAB to use the
system’s graphics hardware (which results in significant speed increase). See
the figure Renderer property for more information.

Limitations of OpenGL. OpenGL has two limitations when compared to
painters and Z-buffer:

• OpenGL does not interpolate colors within the figure colormap; all color
interpolation is performed through the RGB color cube, which can produce
unexpected results.

• OpenGL does not support Phong lighting.

9-15

9 Figure Properties

Specifying the Figure Pointer

In this section...

“Predefined Figure Pointer Symbols” on page 9-16

“Defining Custom Pointers” on page 9-17

Predefined Figure Pointer Symbols
MATLAB indicates the position of the pointer (cursor) within the figure
window using a graphical symbol. You can select a pointer from 15 predefined
symbols (see table below) or you can define your own symbol. By convention,
each of the predefined symbols has a purpose associated with it (although
MATLAB enforces no rules for the use of any symbols).

You specify the pointer symbol by setting the value of the figure Pointer
property. For example, this statement sets the pointer in the current figure
(gcf) to an arrow.

set(gcf,'Pointer','arrow')

The following table shows the predefined symbols, the associated specifier,
and describes typical use.

Purpose Specifier Typical Symbol

Use for editing text ibeam

Locate a point on a graphics object crosshair

Select a point anywhere in the figure arrow

Indicate the system is busy watch

Resize an object from the top-left
corner

topl

Resize an object from the top-right
corner

topr

9-16

Specifying the Figure Pointer

Purpose Specifier Typical Symbol

Resize an object from the bottom-left
corner

botl

Resize an object from the
bottom-right corner

botr

View the actual hot spot circle

Locate a point cross

Use as popular symbol fleur

Resize an object from the left side left

Resize an object from the right side right

Resize an object from the top top

Resize an object from the bottom bottom

Align a point with other objects on
the display

fullcross

See the next section for information
on defining your own pointer shape

custom

Defining Custom Pointers
When you set the Pointer property to custom, MATLAB displays the pointer
you define using the PointerShapeCData and the PointerShapeHotSpot
properties. Custom pointers are 16-by-16 pixels, where each pixel can be
either black, white, or transparent.

Specify the pointer by creating a 16-by-16 matrix containing elements that are

• 1’s where you want the pixel black

• 2’s where you want the pixel white

• NaNs where you want the pixel transparent

9-17

9 Figure Properties

Assign the matrix to the figure PointerShapeCData property. MATLAB
displays the defined pointer whenever the pointer is in the figure window.

The PointerShapeHotSpot property specifies the pixel that indicates
the pointer location. MATLAB then stores this location in the root
PointerLocation property. Set the PointerShapeHotSpot property
to a two-element vector specifying the row and column indices in the
PointerShapeCData matrix that correspond to the pixel specifying the
location. The default value for this property is [1 1], which corresponds to
the upper left corner of the pointer.

Example — Two Custom Pointers
One way to create a custom pointer is to assign values to a 16-by-16 matrix
by hand, as illustrated in the following example.

First, initialize the matrix, setting all values to 2. Create a black border 1
pixel wide. Add alignment marks.

P = ones(16)+1;
P(1,:) = 1; P(16,:) = 1;
P(:,1) = 1; P(:,16) = 1;
P(1:4,8:9) = 1; P(13:16,8:9) = 1;
P(8:9,1:4) = 1; P(8:9,13:16) = 1;
P(5:12,5:12) = NaN; % Create a transparent region in the center
set(gcf,'Pointer','custom','PointerShapeCData',P,...

'PointerShapeHotSpot',[9 9])

The last statement sets the Pointer property to custom, assigns the matrix to
the PointerShapeCData property, and selects element (9,9) as the “hot spot.”

MATLAB now uses the custom pointer within the figure window.

9-18

Specifying the Figure Pointer

Creating Pointers from Functions. You can use a mathematical function to
define the PointerShapeCData matrix. For example, evaluating the function

g = 0:.2:20;
[X,Y] = meshgrid(g);
Z = 2*sin(sqrt(X.^2 + Y.^2));
mesh(Z);

produces an interesting surface.

0

10

20

0

5

10

15

20
−2

0
2

Use the values of Z to create a pointer sampling fewer points so that Z is a
16-by-16 matrix.

9-19

9 Figure Properties

g = linspace(0,20,16);
[X,Y] = meshgrid(g);
Z = 2*sin(sqrt(X.^2 + Y.^2));
set(gcf,'Pointer','custom',...

'PointerShapeCData',flipud((Z>0) + 1))

The statement flipud((Z>0) + 1) sets all values in Z that are greater than
0 to 2 (in MATLAB, true + 1 = 2), less than 0 to 1 (false + 1 = 1) and then flips
the data around so that element (1,1) is the upper left corner.

9-20

10

Axes Properties

Axes Objects — Defining Coordinate
Systems for Graphs (p. 10-2)

What an axes is and what its
properties are

Labeling and Appearance Properties
(p. 10-3)

Properties that affect general
appearance of the axes

Positioning Axes (p. 10-6) How to use the axes Position
property

Automatic Axes Resize (p. 10-9) How axes are positioned within a
figure

Multiple Axes per Figure (p. 10-15) How to use axes to place text outside
the graph axes and how to use
multiple axes within a figure to
achieve different views

Individual Axis Control (p. 10-18) Properties that control the x-, y-, and
z-axis individually

Using Multiple X- and Y-Axes
(p. 10-25)

Multiple axes on a single graph

Automatic-Mode Properties
(p. 10-29)

Properties that are set automatically
with each graph

Colors Controlled by Axes (p. 10-32) Axes colors and color limits (caxis)
to control the mapping of data to
colormaps

Axes Color Limits — the CLim
Property (p. 10-36)

Control mapping for data to colors in
the colormap

Defining the Color of Lines for
Plotting (p. 10-42)

How to control the colors and line
styles used for plotting

10 Axes Properties

Axes Objects — Defining Coordinate Systems for Graphs
MATLAB uses graphics objects to create visual representations of data. For
example, a two-dimensional array of numbers can be represented as lines
connecting the data points defined by each column, as a surface constructed
from a grid of rectangles whose vertices are defined by each element of the
array, as a contour graph where equal values in the array are connected by
lines, and so on.

In all these cases, there must be a frame of reference that defines where to
place each data point on the graph. This frame of reference is the coordinate
system defined by the axes. Axes orient and scale graphs to produce the view
of the data that you see on screen.

MATLAB creates axes to define the coordinate system of each graph. Axes are
always contained within a figure object and themselves contain the graphics
objects that make up the graph.

Axes properties control many aspects of how MATLAB displays graphical
information. This section discusses some of the features that are implemented
through axes properties and provides examples of how to uses these features.

The Axes Properties list all axes properties and provide an overview of the
characteristics that are affected by each property.

10-2

Labeling and Appearance Properties

Labeling and Appearance Properties

In this section...

“Introduction” on page 10-3

“Creating Axes with Specific Characteristics” on page 10-3

“Axis Labels” on page 10-4

Introduction
MATLAB provides a number of properties for labeling and controlling the
appearance of axes. For example, this surface plot shows some of the labeling
possibilities and indicates the controlling property.

Creating Axes with Specific Characteristics
To create this axes, specify values for the indicated properties.

h = axes('Color',[.9 .9 .9],...
'GridLineStyle','--',...
'ZTickLabels','-1|Z = 0 Plane|+1',...

10-3

10 Axes Properties

'FontName','times',...
'FontAngle','italic',...
'FontSize',14,...
'XColor',[0 0 .7],...
'YColor',[0 0 .7],...
'ZColor',[0 0 .7]);

Axis Labels
The individual axis labels are text objects whose handles are normally hidden
from the command line (their HandleVisibility property is set to callback).
You can use the xlabel, ylabel, zlabel, and title functions to create axis
labels. However, these functions affect only the current axes. If you are
labeling axes other than the current axes by referencing the axes handle, then
you must obtain the text object handle from the corresponding axes property.

Getting the Text Object Handle
For example,

get(axes_handle,'XLabel')

returns the handle of the text object used as the x-axis label. Obtaining the
text handle from the axes is useful in M-files and MATLAB-based applications
where you cannot be sure the intended target is the current axes.

The following statements define the x- and y-axis labels and title for the
axes above.

set(get(axes_handle,'XLabel'),'String','Values of X')
set(get(axes_handle,'YLabel'),'String','Values of Y')
set(get(axes_handle,'Title'),'String','\fontname{times}\itZ =
f(x,y)')

Because the labels are text, you must specify a value for the String property,
which is initially set to the empty string (i.e., there are no labels).

MATLAB overrides many of the other text properties to control positioning
and orientation of these labels. However, you can set the Color, FontAngle,
FontName, FontSize, FontWeight, and String properties.

10-4

Labeling and Appearance Properties

Specifying Axis Label Fonts
Note that both axes objects and text objects have font specification properties.
The call to the axes function on the previous page set values for the FontName,
FontAngle, and FontSize properties.

If you want to specify the font for the labels and title, set the font property
values when defining their String property. For example, the x-axis label
statement would be

set(get(h,'XLabel'),'String','Values of X',...
'FontName','times',...
'FontAngle','italic',...
'FontSize',14)

Bitmapped Vs. Truetype Fonts — Text Does Not Rotate
Bitmapped fonts (e.g., Courier) cannot be rotated on the display. Therefore,
when you specify a bitmapped font with the FontName property, this text
might not be rotated correctly, for example, when used as the y-axis label.

To avoid problems with bitmapped fonts, use TrueType fonts. For example,
you might have a TrueType font named Courier New that you can use instead
of Courier. See your system documentation for information on which fonts
are installed on your system.

10-5

10 Axes Properties

Positioning Axes

In this section...

“Introduction” on page 10-6

“The Position Vector” on page 10-6

“Position Units” on page 10-8

Introduction
The axes Position property controls the size and location of an axes within a
figure. The default axes has the same aspect ratio (ratio of width to height)
as the default figure and fills most of the figure, leaving a border around the
edges. However, you can define the axes position as any rectangle and place it
wherever you want within a figure.

The Position Vector
MATLAB defines the axes Position property as a vector.

[left bottom width height]

left and bottom define a point in the figure that locates the lower left corner
of the axes rectangle. width and height specify the dimensions of the axes
rectangle. Viewing the axes in 2-D (azimuth = 0°, elevation = 90°) orients
the x-axis horizontally and the y-axis vertically. From this angle, the plot
box (the area used for plotting, exclusive of the axis labels) coincides with
the axes rectangle.

10-6

Positioning Axes

10-7

10 Axes Properties

By default, MATLAB draws the plot box to fill the axes rectangle, regardless
of its shape. However, axes properties enable control over the shape and
scaling of the plot box.

Position Units
The axes Units property determines the units of measurement for the
Position property. Possible values for this property are

set(gca,'Units')
[inches | centimeters | {normalized} | points | pixels]

with normalized being the default. Normalized units map the lower left
corner of the figure to the point (0,0) and the upper right corner to (1.0,1.0),
regardless of the size of the figure. Normalized units cause axes to resize
automatically whenever you resize the figure. All other units are absolute
measurements that remained fixed as you resize the figure.

10-8

Automatic Axes Resize

Automatic Axes Resize

In this section...

“Properties Controlling Axes Size” on page 10-9

“Using OuterPosition as the ActivePositionProperty” on page 10-11

“ActivePositionProperty = OuterPosition” on page 10-12

“ActivePositionProperty = Position” on page 10-12

“Axes Resizing in Subplots” on page 10-13

Properties Controlling Axes Size
When you create a graph, MATLAB automatically creates an axes to display
the graph. The axes is sized to fit in the figure and automatically resizes as
you resize the figure. Note, however, that MATLAB applies the automatic
resize behavior only when the axes Units property is set to normalized (the
default).

You can control the resize behavior of the axes using the following axes
properties.

• OuterPosition — The boundary of the axes including the axis labels,
title, and a margin. For figures with only one axes, this is the interior
of the figure.

• Position — The boundary of the axes, excluding the tick marks and labels,
title, and axis labels.

• ActivePositionProperty — Specifies whether to use the OuterPosition
or the Position property as the size to preserve when resizing the figure
containing the axes.

• TightInset — The margins added to the width and height of the Position
property to include text labels, title, and axis labels.

• Units — Keep this property set to normalized to enable automatic axes
resizing.

The following graph shows the areas defined by the OuterPosition,
TightInset + Position, and Position properties.

10-9

10 Axes Properties

When you add axis labels and a title, the TightInset changes to accommodate
the additional text, as shown in the following graph.

10-10

Automatic Axes Resize

Now the size of the rectangle defined by the TightInset + Position
properties includes all graph text. The Position and OuterPosition
properties remain unchanged.

Using OuterPosition as the ActivePositionProperty
As you resize the figure, MATLAB maintains the area defined by the
TightInset + Position so the test is not cut off. Compare the next two
graphs, which have both been resized to the same figure size.

10-11

10 Axes Properties

ActivePositionProperty = OuterPosition

ActivePositionProperty = Position

10-12

Automatic Axes Resize

The following picture shows how these properties apply to 3-D graphs.

Axes Resizing in Subplots
Using the OuterPosition property as the ActivePositionProperty is an
effective way to prevent titles and labels from being overwritten when there
are multiple axes in a figure.

The following picture illustrates how MATLAB resizes the axes to
accommodate the multiline titles on the lower two axes.

10-13

10 Axes Properties

The default 3-D view is azimuth = -37.5°, elevation = 30°.

10-14

Multiple Axes per Figure

Multiple Axes per Figure

In this section...

“Introduction” on page 10-15

“Placing Text Outside the Axes” on page 10-15

“Multiple Axes for Different Scaling” on page 10-16

Introduction
The subplot function creates multiple axes in one figure by computing values
for Position that produce the specified number of axes.

The subplot function is useful for laying out a number of graphs equally
spaced in the figure. However, overlapping axes can create some other useful
effects. The following sections provide examples.

Placing Text Outside the Axes
MATLAB always displays text objects within an axes. If you want to create a
graph and provide a description of the information alongside the graph, you
must create another axes to position the text. If you create an axes that is the
same size as the figure and then create a smaller axes to draw the graph, you
can then display text anywhere independently of the graph.

For example, define two axes.

h = axes('Position',[0 0 1 1],'Visible','off');
axes('Position',[.25 .1 .7 .8])

Because the axes units are normalized to the figure, specifying the Position
as [0 0 1 1] creates an axes that encompasses the entire window.

Now plot some data in the current axes. The last axes created is the current
axes, so MATLAB directs graphics output there.

t = 0:900;
plot(t,0.25*exp(-0.005*t))

10-15

10 Axes Properties

Define the text and display it in the full-window axes.

str(1) = {'Plot of the function:'};
str(2) = {' y = A{\ite}^{-\alpha{\itt}}'};
str(3) = {'With the values:'};
str(3) = {' A = 0.25'};
str(4) = {' \alpha = .005'};
str(5) = {' t = 0:900'};
set(gcf,'CurrentAxes',h)
text(.025,.6,str,'FontSize',12)

Multiple Axes for Different Scaling
You can create multiple axes to display graphics objects with different scaling
without changing the data that defines these objects (which would be required
to display them in a single axes).

10-16

Multiple Axes per Figure

h(1) = axes('Position',[0 0 1 1]);
sphere
h(2) = axes('Position',[0 0 .4 .6]);
sphere
h(3) = axes('Position',[0 .5 .5 .5]);
sphere
h(4) = axes('Position',[.5 0 .4 .4]);
sphere
h(5) = axes('Position',[.5 .5 .5 .3]);
sphere
set(h,'Visible','off')

Each sphere is defined by the same data. However, because the parent
axes occupy regions of different size and location, the spheres appear to be
different sizes and shapes.

10-17

10 Axes Properties

Individual Axis Control

In this section...

“Properties Controlling Axis Limits” on page 10-18

“Setting Axis Limits” on page 10-19

“Setting Tick Mark Locations” on page 10-20

“Changing Axis Direction” on page 10-22

Properties Controlling Axis Limits
MATLAB automatically determines axis limits, tick mark placement, and tick
mark labels whenever you create a graph. However, you can specify these
values manually by setting the appropriate property.

When you specify a value for a property controlled by a mode (e.g., the XLim
property has an associated XLimMode property), MATLAB sets the mode to
manual, enabling you to override automatic specification. Because the default
values for these mode properties are automatic, calling high-level functions
such as plot or surf resets these modes to auto.

This section discusses the following properties.

Property Purpose

XLim,YLim,ZLim Sets the axis range

XLimMode,

YLimMode,

ZLimMode

Specifies whether axis limits are determined
automatically by MATLAB or specified
manually by the user

XTick,

YTick,

ZTick

Sets the location of the tick marks along the
axis

10-18

Individual Axis Control

Property Purpose

XTickMode,

YTickMode,

ZTickMode

Specifies whether tick mark locations are
determined automatically by MATLAB or
specified manually by the user

XTickLabel,

YTickLabel,

ZTickLabel

Specifies the labels for the axis tick marks

XTickLabelMode

YTickLabelMode

ZTickLabelMode

Specifies whether tick mark labels are
determined automatically by MATLAB or
specified manually by the user

XDir,YDir,ZDir Sets the direction of increasing axis values

Setting Axis Limits
MATLAB determines the limits automatically for each axis based on the
range of the data. You can override the selected limits by specifying the XLim,
YLim, or ZLim property. For example, consider a plot of the function
evaluated with A = 0.25, α = 0.05, and t = 0 to 900.

t = 0:900;
plot(t,0.25*exp(-0.05*t))

The plot on the left shows the results. MATLAB selects axis limits that
encompass the range of data in both x and y. However, because the plot
contains little information beyond t = 100, changing the x-axis limits improves
the usefulness of the plot. If the handle of the axes is axes_handle, then the
following statement,

set(axes_handle,'XLim',[0 100])

creates the plot on the right.

10-19

10 Axes Properties

You can use the axis command to set limits on the current axes only.

Semiautomatic Limits
You can specify either the minimum or maximum value for an axis limit and
allow the other limit to autorange. Do this by setting an explicit value for the
manual limit and Inf for the automatic limit. For example, the statement

set(axes_handle,'XLim',[0 Inf])

sets the XLimMode property to auto and allows MATLAB to determine the
maximum value for XLim. Similarly, the statement

set(axes_handle,'XLim',[-Inf 800])

sets the XLimMode property to auto and allows MATLAB to determine the
minimum value for XLim.

Setting Tick Mark Locations
MATLAB selects the tick mark location based on the data range to produce
equally spaced ticks (for linear graphs). You can specify alternative locations
for the tick marks by setting the XTick, YTick, and ZTick properties.

For example, if the value 0.075 is of interest for the amplitude of the function
, specify tick marks to include that value.

set(gca,'YTick',[0 0.05 0.075 0.1 0.15 0.2 0.25])

10-20

Individual Axis Control

0 20 40 60 80 100
0

0.05

0.075

0.1

0.15

0.2

0.25
α = 0.05

A
m

pl
itu

de

Time μsec.

You can change tick labeling from numbers to strings using the XTickLabel,
YTickLabel, and ZTickLabel properties.

For example, to label the y-axis value of 0.075 with the string Cutoff, you
can specify all y-axis labels as a string, separating each label with the “|”
character.

set(gca,'YTickLabel','0|0.05|Cutoff|0.1|0.15|0.2|0.25')

10-21

10 Axes Properties

0 20 40 60 80 100
0

0.05

Cutoff

0.1

0.15

0.2

0.25
α = 0.05

A
m

pl
itu

de

Time μsec.

Changing Axis Direction
The XDir, YDir, and ZDir properties control the direction of increasing values
on the respective axis. In the default 2-D view, the x-axis values increase from
left to right and the y-axis values increase from bottom to top. The z-axis
points out of the screen.

You can change the direction of increasing values by setting the associated
property to reverse. For example, setting XDir to reverse,

set(gca,'XDir','reverse')

produces a plot whose x-axis decreases from left to right.

10-22

Individual Axis Control

050100150200
0

10

20

30

40

50

60

70

80

90

100

Years Ago

P
er

ce
nt

 o
f T

od
ay

’s
 R

at
e

Frog Road Kills

In the 3-D view, the y-axis increases from front to back and the z-axis
increases from bottom to top.

0

0.5

1

0

0.5

1
0

0.5

1

Increasing Values →

Normal Axis Direction

← Increasing Values

In
cr

ea
si

ng
 V

al
ue

s
→

Setting the x-, y-, and z-directions to reverse,

10-23

10 Axes Properties

set(gca,'XDir','rev','YDir','rev','ZDir','rev')

yields

0

0.5

1

0

0.5

1

0

0.5

1

← Increasing Values

Reverse Axis Direction

Increasing Values →

←
 In

cr
ea

si
ng

 V
al

ue
s

10-24

Using Multiple X- and Y-Axes

Using Multiple X- and Y-Axes

In this section...

“Introduction” on page 10-25

“Example — Double Axis Graphs” on page 10-25

Introduction
The XAxisLocation and YAxisLocation properties specify on which side
of the graph to place the x- and y-axes. You can create graphs with two
different x-axes and y-axes by superimposing two axes objects and using
XAxisLocation and YAxisLocation to position each axis on a different side of
the graph. This technique is useful to plot different sets of data with different
scaling in the same graph.

Example — Double Axis Graphs
This example creates a graph to display two separate sets of data using the
bottom and left sides as the x- and y-axis for one, and the top and right sides
as the x- and y-axis for the other.

Suppose you have two sets of data having different x- and y-ranges:

x1 = [0:.1:40];
y1 = 4.*cos(x1)./(x1+2);
x2 = [1:.2:20];
y2 = x2.^2./x2.^3;

Using low-level line and axes routines allows you to superimpose objects
easily. Plot the first data, making the color of the line and the corresponding
x- and y-axis the same to more easily associate them.

hl1 = line(x1,y1,'Color','r');
ax1 = gca;
set(ax1,'XColor','r','YColor','r')

Next, create another axes at the same location as the first, placing the x-axis
on top and the y-axis on the right. Set the axes Color to none to allow the
first axes to be visible and color code the x- and y-axis to match the data.

10-25

10 Axes Properties

ax2 = axes('Position',get(ax1,'Position'),...
'XAxisLocation','top',...
'YAxisLocation','right',...
'Color','none',...
'XColor','k','YColor','k');

Draw the second set of data in the same color as the x- and y-axis.

hl2 = line(x2,y2,'Color','k','Parent',ax2);

0 5 10 15 20 25 30 35 40
−1

−0.5

0

0.5

1

1.5

2
0 2 4 6 8 10 12 14 16 18 20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Creating Coincident Grids
Since the two axes are completely independent, MATLAB determines tick
mark locations according to the data plotted in each. It is unlikely the
gridlines will coincide. This produces a somewhat confusing looking graph,
even though the two grids are drawn in different colors. However, if you
manually specify tick mark locations, you can make the grids coincide.

10-26

Using Multiple X- and Y-Axes

The key is to specify the same number of tick marks along corresponding axis
lines (it is also necessary for both axes to be the same size). The following
graph of the same data uses six tick marks per axis, equally spaced within
the original limits. To calculate the tick mark locations, obtain the limits of
each axis and calculate an increment.

xlimits = get(ax1,'XLim');
ylimits = get(ax1,'YLim');
xinc = (xlimits(2)-xlimits(1))/5;
yinc = (ylimits(2)-ylimits(1))/5;

Now set the tick mark locations.

set(ax1,'XTick',[xlimits(1):xinc:xlimits(2)],...
'YTick',[ylimits(1):yinc:ylimits(2)])

Perform this calculation and set the axis limits for both axes. The resulting
graph is visually simpler, even though the y-axis on the left has rather odd
tick mark values.

10-27

10 Axes Properties

0 8 16 24 32 40
−1

−0.4

0.2

0.8

1.4

2
0 4 8 12 16 20

0

0.2

0.4

0.6

0.8

1

10-28

Automatic-Mode Properties

Automatic-Mode Properties
While object creation routines that create axes children do not explicitly
change axes properties, some axes properties are under automatic control
when their associated mode property is set to auto (which is the default). The
following table lists the automatic-mode properties.

Mode Property What It Controls

CameraPositionMode Positioning of the viewpoint

CameraTargetMode Positioning of the camera target in the axes

CameraUpVectorMode The direction of “up” in 2-D and 3-D views

CameraViewAngleMode The size of the projected scene and stretch-to-fit behavior

CLimMode Mapping of data values to colors

DataAspectRatioMode Relative scaling of data units along x-, y-, and z-axes and
stretch-to-fit behavior

PlotBoxAspectRatioMode Relative scaling of plot box along x-, y-, and z-axes and
stretch-to-fit behavior

TickDirMode Direction of axis tick marks (in for 2-D, out for 3-D)

XLimMode

YLimMode

ZLimMode

Limits of the respective x, y, and z axes

XTickMode

YTickMode

ZTickMode

Tick mark spacing along the respective x-, y-, and z-axes

XTickLabelMode

ZTickLabelMode

YTickLabelMode

Tick mark labels along the respective x-, y-, and z-axes

For example, if all property values are set to their defaults and you enter
these statements,

line(1:10,1:10)

10-29

10 Axes Properties

line(1:10,[1:10].^2)

the second line statement causes the YLim property to change from [0 10]
to [0 100].

This is because YLimMode is auto, which always causes MATLAB to recompute
the axis limits.

If you set the value controlled by an automatic-mode property, MATLAB sets
the mode to manual and does not automatically recompute the value.

For example, in the statements

line(1:10,1:10)
set(gca,'XLim',[1 10],'YLim',[1 20])
line(1:10,[1:10].^2)

the set statement sets the x- and y-axis limits and changes the XLimMode and
YLimMode properties to manual. The second line statement now draws a
line that is clipped to the axis limits [1 12] instead of causing the axes to
recompute its limits.

10-30

Automatic-Mode Properties

10-31

10 Axes Properties

Colors Controlled by Axes

In this section...

“Introduction” on page 10-32

“Specifying Axes Colors” on page 10-32

Introduction
Axes properties specify the color of the axis lines, tick marks, labels, and the
background. Properties also control the colors of the lines drawn by plotting
routines and how image, patch, and surface objects obtain colors from the
figure colormap.

The axes properties discussed in this section are listed in the following table.

Property Characteristic it Controls

Color Axes background color

XColor, YColor,
ZColor

Color of the axis lines, tick marks, gridlines, and
labels

Title Title text object handles

XLabel, YLabel,
Zlabel

Axis label text object handles

CLim Controls mapping of graphic object CData to the
figure colormap

CLimMode Automatic or manual control of CLim property

ColorOrder Line color autocycle order

LineStyleOrder Line styles autocycle order (not a color, but related
to ColorOrder)

Specifying Axes Colors
The default axes background color is set up by the colordef command, which
is called in your startup file. However, you can easily define your own color
scheme.

10-32

Colors Controlled by Axes

Changing the Color Scheme
Suppose you want an axes to use a “black-on-white” color scheme. First,
change the background to white and the axis lines, grid, tick marks, and tick
mark labels to black.

set(gca,'Color','w',...
'XColor','k',...
'YColor','k',...
'ZColor','k')

Next, change the color of the text objects used for the title and axis labels.

set(get(gca,'Title'),'Color','k')
set(get(gca,'XLabel'),'Color','k')
set(get(gca,'YLabel'),'Color','k')
set(get(gca,'ZLabel'),'Color','k')

Changing the figure background color to white completes the new color
scheme.

set(gcf,'Color','w')

When you are done, a figure containing a mesh plot looks like the following
figure.

10-33

10 Axes Properties

You can define default values for the appropriate properties and put these
definitions in your startup.m file. Titles and axis labels are text objects, so
you must set a default color for all text objects, which is a good idea anyway
because the default text color of white is not visible on the white background.
Lines created with the low-level line function (but not the plotting routines)
also have a default color of white, so you should change the default line color
as well.

To set default values on the root level, use

set(0,'DefaultFigureColor','w'
'DefaultAxesColor','w',...
'DefaultAxesXColor','k',...
'DefaultAxesYColor','k',...
'DefaultAxesZColor','k',...
'DefaultTextColor','k',...
'DefaultLineColor','k')

10-34

Colors Controlled by Axes

MATLAB colors other axes children (i.e., image, patch, and surface objects)
according to the values of their CData properties and the figure colormap.

10-35

10 Axes Properties

Axes Color Limits — the CLim Property

In this section...

“Introduction” on page 10-36

“Simulating Multiple Colormaps in a Figure” on page 10-37

“Complete Example Code” on page 10-38

“Calculating Color Limits” on page 10-38

Introduction
Many 3-D plotting functions produce graphs that use color as another data
dimension. For example, surface plots map surface height to color. The color
limits control the limits of the color dimension in a way analogous to setting
axis limits.

The axes CLim property controls the mapping of image, patch, and surface
CData to the figure colormap. CLim is a two-element vector [cmin cmax]
specifying the CData value to map to the first color in the colormap (cmin) and
the CData value to map to the last color in the colormap (cmax). Data values
in between are linearly transformed from the second to the penultimate color,
using the expression

colormap_index = fix((CData-cmin)/(cmax-cmin)*cm_length)+1

cm_length is the length of the colormap. When the axes CLimMode property
is auto, MATLAB sets CLim to the range of the CData of all graphics objects
within the axes. However, you can set CLim to span any range of values. This
enables individual axes within a single figure to use different portions of
the figure’s colormap. You can create colormaps with different regions, each
used by a different axes.

See the caxis command for more information on color limits.

See “Introduction” on page 10-36 for an example that calculates color limits.

10-36

Axes Color Limits — the CLim Property

Simulating Multiple Colormaps in a Figure
Suppose you want to display two different images in the same figure. Images
typically have their own colormaps, but you can specify only one colormap per
figure. The solution is to concatenate the two colormaps and then setting the
CLim property of each axes so that the two images map into different portions
of the colormap.

Note Colormap Size Limit. On Windows platforms, the maximum length
of the figure colormap is 256 colors (i.e., 256–by-3).

This example displays two images in one figure and maps the data in each
image to the appropriate sections of the colormap, which has been created
by concatenating the two colormaps together. The colorbar below the two
images shows the entire colormap.

10-37

10 Axes Properties

Complete Example Code
If you are using the MATLAB Help browser, you can:

• Run example

• Open the M-file in the editor

Calculating Color Limits
The key to this example is calculating values for CLim that cause each surface
to use the section of the colormap containing the appropriate colors.

To calculate the new values for CLim, you need to know

• The total length of the colormap (CmLength)

10-38

Axes Color Limits — the CLim Property

• The beginning colormap slot to use for each axes (BeginSlot)

• The ending colormap slot to use for each axes (EndSlot)

• The minimum and maximum CData values of the graphic objects contained
in the axes. That is, the values of the axes CLim property determined by
MATLAB when CLimMode is auto (CDmin and CDmax).

First, define subplot regions and plot the surfaces.

im1 = load('cape.mat');
im2 = load('flujet.mat');
ax1 = subplot(1,2,1);
imagesc(im1.X)
axis(ax1,'image')
ax2 = subplot(1,2,2);
imagesc(im2.X)
axis(ax2,'image')

Concatenate two colormaps and install the new colormap.

colormap([im1.map;im2.map])

Obtain the data you need to calculate new values for CLim.

CmLength = length(colormap); % Colormap length
BeginSlot1 = 1; % Beginning slot
EndSlot1 = length(im1.map); % Ending slot
BeginSlot2 = EndSlot1 + 1;
EndSlot2 = CmLength;
CLim1 = get(ax1,'CLim'); % CLim values for each axis
CLim2 = get(ax2,'CLim');

Defining a Function to Calculate CLim Values
Computing new values for CLim involves determining the portion of the
colormap you want each axes to use relative to the total colormap size and
scaling its Clim range accordingly. You can define a MATLAB function to
do this.

function CLim = newclim(BeginSlot,EndSlot,CDmin,CDmax,CmLength)
% Convert slot number and range

10-39

10 Axes Properties

% to percent of colormap
PBeginSlot = (BeginSlot - 1) / (CmLength - 1);
PEndSlot = (EndSlot - 1) / (CmLength - 1);
PCmRange = PEndSlot - PBeginSlot;
% Determine range and min and max
% of new CLim values
DataRange = CDmax - CDmin;
ClimRange = DataRange / PCmRange;
NewCmin = CDmin - (PBeginSlot * ClimRange);
NewCmax = CDmax + (1 - PEndSlot) * ClimRange;
CLim = [NewCmin,NewCmax];

end

The input arguments are identified in the bulleted list above. The function
first computes the percentage of the total colormap you want to use for a
particular axes (PCmRange) and then computes the CLim range required to use
that portion of the colormap given the CData range in the axes. Finally, it
determines the minimum and maximum values required for the calculated
CLim range and returns these values. These values are the color limits for
the given axes.

Using the Function
Use the newclim function to set the CLim values of each axes. The statement

set(ax1,'CLim',newclim(BeginSlot1,EndSlot1,CLim1(1),CLim1(2),CmLength))

sets the CLim values for the first axes so the surface uses color slots 65 to
120. The lit surface uses the lower 64 slots. You need to reset its CLim values
as well.

set(ax2,'CLim',newclim(BeginSlot2,EndSlot2,CLim2(1),CLim2(2),CmLength))

How the Function Works
MATLAB enables you to specify any values for the axes CLim property, even if
these values do not correspond to the CData of the graphics objects displayed
in the axes. The minimum CLim value is always mapped to the first color in
the colormap and the maximum CLim value is always mapped to the last
color in the colormap, whether or not there are really any CData values
corresponding to these colors. Therefore, if you specify values for CLim that

10-40

Axes Color Limits — the CLim Property

extend beyond the object’s actual CData minimum or maximum, MATLAB
colors the object with only a subset of the colormap.

The newclim function computes values for CLim that map the graphics
object’s actual CData values to the beginning and ending colormap slots that
you specify. It does this by defining a “virtual” graphics object having the
computed CLim values.

10-41

10 Axes Properties

Defining the Color of Lines for Plotting

In this section...

“Introduction” on page 10-42

“Defining Your Own ColorOrder” on page 10-42

“Line Styles Used for Plotting — LineStyleOrder” on page 10-44

Introduction
The axes ColorOrder property determines the color of the individual lines
drawn by the plot and plot3 functions. For multiline graphs, these functions
cycle through the colors defined by ColorOrder, repeating the cycle when
they reach the end of the list.

The colordef command defines various color order schemes for different
background colors. colordef is typically called in the matlabrc file, which is
executed during MATLAB startup.

Defining Your Own ColorOrder
You can redefine ColorOrder to be any m-by-3 matrix of RGB values, where
m is the number of colors. However, high-level functions like plot and plot3
reset most axes properties (including ColorOrder) to the defaults each time
you call them. To use your own ColorOrder definition you must do one of
the following three things:

• Define a default ColorOrder on the figure or root level

• Change the axes NextPlot property to add or replacechildren

• Use the informal form of the line function, which obeys the ColorOrder
but does not clear the axes or reset properties

Changing the Default ColorOrder
You can define a new ColorOrder that MATLAB uses within a particular
figure, for all axes within any figures created during the MATLAB session, or
as a user-defined default that MATLAB always uses.

10-42

Defining the Color of Lines for Plotting

To change the ColorOrder for all plots in the current figure, set a default in
that figure. For example, to set ColorOrder to the colors red, green, and
blue, use the statement

set(gcf,'DefaultAxesColorOrder',[1 0 0;0 1 0;0 0 1])

To define a new ColorOrder that MATLAB uses for all plotting during your
entire MATLAB session, set a default on the root level so axes created in
any figure use your defaults.

set(0,'DefaultAxesColorOrder',[1 0 0;0 1 0;0 0 1])

To define a new ColorOrder that MATLAB always uses, place the previous
statement in your startup.m file.

Setting the NextPlot Property
The axes NextPlot property determines how high-level graphics functions
draw into an existing axes. You can use this property to prevent plot and
plot3 from resetting the ColorOrder property each time you call them, but
still clear the axes of any existing plots.

By default, NextPlot is set to replace, which is equivalent to a cla reset
command (i.e., delete all axes children and reset all properties, except
Position, to their defaults). If you set NextPlot to replacechildren,

set(gca,'NextPlot','replacechildren')

MATLAB deletes the axes children, but does not reset axes properties. This is
equivalent to a cla command without the reset.

After setting NextPlot to replacechildren, you can redefine the ColorOrder
property and call plot and plot3 without affecting the ColorOrder.

Setting NextPlot to add is the equivalent of issuing the hold on command.
This setting prevents MATLAB from resetting the ColorOrder property, but
it does not clear the axes children with each call to a plotting function.

10-43

10 Axes Properties

Using the line Function
The behavior of the line function depends on its calling syntax. When you use
the informal form (which does not include any explicit property definitions),

line(x,y,z)

line obeys the ColorOrder property, but does not clear the axes with each
invocation or change the view to 3-D (as plot3 does). However, line can be
useful for creating your own plotting functions where you do not want the
automatic behavior of plot or plot3, but you do want multiline graphs to
use a particular ColorOrder.

Line Styles Used for Plotting — LineStyleOrder
The axes LineStyleOrder property is analogous to the ColorOrder property.
It specifies the line styles to use for multiline plots created with the plot and
plot3 functions. MATLAB increments the line style only after using all of the
colors in the ColorOrder property. It then uses all the colors again with the
second line style, and so on.

For example, define a default ColoOrder of red, green, and blue and a default
LineStyleOrder of solid, dashed, and dotted lines.

set(0,'DefaultAxesColorOrder',[1 0 0;0 1 0;0 0 1],...
'DefaultAxesLineStyleOrder','-|--|:')

Then plot some multiline data.

t = 0:pi/20:2*pi;
a = ones(length(t),9);
for i = 1:9

a(:,i) = sin(t-i/5)';
end
plot(t,a)

10-44

Defining the Color of Lines for Plotting

0 1 2 3 4 5 6 7
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

MATLAB cycles through all colors for each line style.

10-45

10 Axes Properties

10-46

Index

IndexA
ActivePositionProperty property 10-9
adding data to axes 1-26
animation 5-78

erase modes for 5-80
movies 5-78

annotating graphs 3-1
adding a title 3-36
adding labels 3-40
adding text 3-46
how to 3-2

annotation
adding to plots 3-1

annotations, pinning to axes 3-67
area 5-2 5-19 to 5-20
area graphs 5-2 5-19
arrays, storing images 6-2
arrows

adding to a graph 3-64
aspect ratio of figures 7-47

See also printing
axes

adding labels 3-40
adding text 3-48
aspect ratio

2-D 4-36
automatic modes 10-29
axis control 10-18
axis direction 10-22
CLim property 10-36
color limits 10-36
ColorOrder property 10-42
colors 10-32
cutting and copying 1-62
individual axis control 10-18
labeling 3-43
labels

font properties 10-4
using TeX characters 3-54

locking position 1-65

making grids coincident 10-26
multiaxis 10-25
multiple 4-2 10-15
NextPlot property 8-71
overlapping 10-15
pasting 1-62
positioning 10-6 10-17
preparing to accept graphics 8-71
properties

for labeling 10-3
protecting from output 8-77
scaling

independent 10-16
setting

limits 10-19
line styles used for plotting 10-44

setting limits 4-31
standard plotting behavior 8-76
target for graphics 4-5
tick marks 4-33

locating 10-20
units 10-8
unlocking position 1-65
with two x- and y-axes 10-25

axis 6-4
equal 4-37
illustrated examples, 2-D 4-37
image 6-24
square 4-36
tight 4-37

axis labels, rotating 3-42

B
background color, of text 3-62
bar 5-2 to 5-3
bar graphs 5-2 5-19

3-D 5-4
coloring 2-D bars by height 5-6
coloring 3-D bars by height 5-10

Index-1

Index

grouped
2-D 5-3
3-D 5-5

horizontal 5-13
labeling 5-5 5-14
overlaid with bar graphs 5-16
overlaid with plots 5-17
stacked 5-12

bar3 5-2 5-4
bar3h 5-2
barh 5-2
binary images 6-7
bins, specifying for histogram 5-31
BMP 6-3
buttons on toolbar 3-64

C
callbacks

function handles used for 8-109
using function handles for 8-109

CData property
images 6-27

CDataMapping property
images 6-28

cla 8-72
clabel 5-55 5-57
clf 8-72
close 8-80
close request function

default 8-80
closereq.m 8-80
CloseRequestFcn property 8-80

default value 8-80
errors in 8-81
overriding 8-81

closing figures 8-80
closing MATLAB, errors occurring when 8-81
color limits, calculating 10-38
colorbars

adding to graphs 3-16
labeling ticks 3-17
positioning 3-17

colordef 4-5
colormaps

selection of 3-20
shifting interactively 3-20
simulating multiple 10-37

ColorOrder 10-42
colors

changing color scheme 10-33
controlled by axes 10-32
mapping to data 10-36
specifying figure colors 4-5
used for plotting 10-42

compass 5-45
compass plots 5-46
complex numbers, plotting 4-25

with feather 5-49
containers for graphics objects 8-88
contour 5-54
contour plots 5-54

algorithm 5-66
changing offsets in 5-68
data preparation 5-73
filled 5-59
filtering noisy data for 5-73
in polar coordinates 5-69
indexing contours 5-63
labeling 5-57
specifying contour levels 5-60

contour3 5-54
contourc 5-55 5-66
contourf 5-54

using 5-59
contouring algorithm

explained 5-66
visualizing 5-61

converting the data class of an indexed
image 6-11

Index-2

Index

copying
figures 1-69
options 1-69

copying graphics objects 8-65
current

axes 8-59
figure 8-59
object 8-59

current figure 8-7
cursors. See pointers

D
data cursor 2-4
data tips 2-4 2-14

See also data cursor
data types

8-bit integers 6-3
double-precision 6-3

DataAspectRatio property
images 6-25

default
aspect ratio

of figure windows 7-47
CloseRequestFcn 8-80
factory 8-50
figure color scheme 4-5
property values 8-51 8-57

removing 8-53
search path, diagram 8-52
setting to factory defaults 8-54

default line styles, setting and removing 4-19
deleting graphics objects 8-67
deselecting objects 1-62
discrete data graphs 5-33 5-44

stairstep plots 5-42
stem plots 5-33

double
converting image data to double 6-38
converting to uint16 6-11

converting to uint8 6-12
converting to uint8 or uint16 6-11

double buffering 9-13

E
editing plots 1-57

interactively 1-59
efficient programming 8-83 8-85
ending plot edit mode 1-60
erase modes 5-80

and printing 5-83
background 5-83
images 6-31
none 5-81
xor 5-84

errors closing MATLAB 8-81
examples

animation 5-80
area graphs 5-19
bar graphs 5-3
contour plots 5-54
copying graphics objects 8-65
custom pointers 9-18
direction and velocity graphs 5-45
discrete data graphs 5-33
double axis graphs 10-25
finding object handles 8-61
histograms 5-28
hold 8-77
LaTeX equations 3-58
line 8-74
movies 5-79
multiline text 3-57
newplot 8-74
object creation functions 8-14
overlapping axes 10-15
pie charts 5-23
plot 4-9

complex data 4-25

Index-3

Index

plotting line styles 10-44
ScreenSize property 9-9
setting default property values 8-54
simulating multiple colormaps 10-37
specifying figure position 9-9
subplot 4-2
text 3-48

exporting
Enhanced Metafiles 7-81
using getframe 7-29

exporting figures 1-69
Adobe Illustrator 7-83
EPS files 7-81
formats

choosing a format 7-73
MATLAB and GhostScript 7-75
vector or bitmap 7-75

JPEG files 7-83
LaTeX

importing example 7-31
lighting 7-78
publication quality 7-81
TIFF files 7-82
transparency 7-78

extent of computer screen 9-8

F
factory defaults 8-50
feather 5-45 5-47
feather plots 5-47
figure

colormap 9-11
palette 1-18
toolbar 1-5

figure coordinates, for annotations 3-67
figure files 1-68 to 1-69
figures

CloseRequestFcn 8-80
closing 8-80

copying 1-69
defining custom pointers 9-17
defining pointers 9-16
defining the color of 4-5
exporting 1-69
for plotting 4-2
introduction to 9-2
NextPlot property 8-71
opening 1-69
positioning 9-6
positioning example 9-9
preparing to accept graphics 8-71
printing

default figure size for printing 7-47
protecting from output 8-77
rendering properties 9-13
saving 1-68
saving to other formats 1-69
specifying pointers 9-16
standard plotting behavior 8-76
units 9-7
visible property 8-80
with multiple axes 4-2

files
exporting 1-69
figure .fig 1-68
formats for figures 1-69
opening 1-69
printing 1-70
saving 1-68

fill, properties changed by 8-85
fill3, properties changed by 8-85
findobj 8-60
fonts

axis labels 10-4
formats for figures 1-69
function handles

Handle Graphics callbacks 8-109
functions

convenience forms 8-17

Index-4

Index

high-level vs. low-level 8-17

G
gca 8-59

handle visibility 8-78
gcf 8-59

handle visibility 8-78
gco 8-59
get 8-45
getframe 5-79
GIF 6-4
GIF graphic file format 7-82
ginput 5-76
gradient 5-50
graphical input 5-76
graphics

improving performance of 8-118
graphics file formats

list of formats supported by MATLAB 6-3
graphics images 6-19

16-bit
intensity 6-11

8-bit
intensity 6-11
RGB 6-11

converting from one format to another 6-38
converting to RGB 6-38
reading from file 6-19
writing to file 6-19
See also BMP, HDF, JPG, PCX, PNG, TIFF,

XWD
graphics M-files

structure of 8-75
graphics objects

accessing handles 8-58
accessing hidden handles 8-78
axes 8-13
controlling where they draw 8-69
copying 8-65

deleting 8-67
function handle callbacks 8-109
functions that create

convenience forms 8-17
handle validity versus visibility 8-79
HandleVisibility property 8-78
images 8-13
invisible handles 8-78
lights 8-13
line 8-13
patches 8-14
properties 8-40

changed by functions 8-85
changed when created 8-15
common to all objects 8-42 8-44
factory defined 8-50
getting current values 8-47
listing possible values 8-46
querying in groups 8-49
search path for default values 8-51
searching for 8-60
setting values 8-45

property names 8-18
rectangle 8-14
setting parent of 8-16
surface 8-14
text 8-14

graphs
2–D types 1-6
3-D types 1-8
annotating 3-2
area 5-19 5-21
bar 5-2 5-19

horizontal 5-13
compass plots 5-46
contour plots 5-54 5-72
direction and velocity 5-45 5-52
discrete data 5-33 5-44
feather plots 5-47
generating M-code for 1-70

Index-5

Index

histograms 5-28 5-32
labeling 3-1
pie charts 5-23 5-26
quiver plots 5-49
stairstep plots 5-42
with double axes 10-25

grayscale 6-21
See also intensity images

Greek characters 3-54
using to annotate 3-44
See also text function

grids, coincident 10-26

H
handles to graphics objects 8-58

finding 8-60
handles, saving in M-files 8-83
HandleVisibility property 8-78
HDF 6-4
high-level functions 8-17
hist 5-28
histograms 5-28

in polar coordinates 5-30
labeling the bins 5-31
specifying number of bins 5-31

hold 4-14
and NextPlot 8-72
testing state of 8-76

hold state, testing for 8-76
HorizontalAlignment property 3-51

I
image 6-4 6-23

properties changed by 8-86
image types

binary 6-7
images 6-11

16-bit 6-10
indexed 6-10

8-bit 6-10
indexed 6-10

data types 6-3
erase modes 6-31
indexed 6-5
information about files 6-21
intensity 6-6
numeric classes 6-4
printing 6-37
properties 6-27

CData 6-27
CDataMapping 6-28
XData and YData 6-28

RGB 6-8
size and aspect ratio 6-23
storing in MATLAB 6-2
truecolor 6-8
types 6-5
See also graphics images

imagesc 6-4 6-7
imfinfo 6-4 6-21
imread 6-4 6-19
imwrite 6-4 6-19
ind2rgb 6-38
indexed images

converting the data class of 6-11
indirgb 6-4
intensity images

converting the data class of 6-11
interpreter property 3-56
ishold 8-76

J
JPEG 6-4

Index-6

Index

L
labeling

axes 3-40
labeling graphs 3-1 3-40
LaTeX

for math equations 3-58
. See TeX

legend 5-37
limits

axes 4-31 10-19
line styles

used for plotting 4-12
redefining 10-44

lines
adding as annotations 3-64
adding to existing graph 4-14
marker types 4-12
styles 4-12

LineStyleOrder property 10-44
locking axes position 1-65
loglog, properties changed by 8-86
low-level functions 8-17

M
M-code, saving a graph as 1-70
M-files

basic structure of graphics 8-75
closereq 8-80
to set color mapping 10-40
using newplot 8-72
writing efficient 8-83

mapping data to color 10-36
markers used for plotting 4-12
MATLAB

2–D plot types 1-6
3-D plot types 1-8

MATLAB 4 color scheme 4-6
MATLAB, quitting 8-81

matrix
displaying contours 5-56
plotting 4-22
representing as

area graph 5-19
bar graph 5-4
histogram 5-29

storing images 6-2
meshc 5-68
movie 5-79
movies 5-78

example 5-79
moving

objects 1-65
multiaxis axes 10-25
multiline text 3-57

N
newplot 8-72

example using 8-74
NextPlot property 8-71

add 8-72
new 8-71
replace 8-72
replacechildren 8-72 8-76
setting plotting color order 10-43

O
open 1-69
OpenGL 9-14 to 9-15

printing 7-56
opening figures 1-69
options for copying 1-69
organization of Handle Graphics 8-3
orient

example 7-54
OuterPosition property 10-9

Index-7

Index

P
painters algorithm 9-14
pan

using 2-23
panels

contained in figures 8-89
panning on figures 2-23
paper type

setting from the command line 7-52
paper type for printing

setting from the command line 7-52
PaperPosition property

example 7-50
PaperType property

example 7-52
parent, of graphics object 8-16
PCX 6-4
pie charts 5-23

labeling 5-24
offsetting a slice 5-23
removing a piece 5-26

plot 4-9
properties changed by 8-86

plot browser 1-23
Plot Catalog 1-21
plot edit mode

overview 1-59
selecting objects 1-61
starting and ending 1-60

plot edit toolbar 3-3
plot objects

cutting and copying 1-62
pasting 1-62

plot3
properties changed by 8-87

plotedit 1-60
plots

2–D catalog 1-6
3-D catalog 1-8
editing 1-57

plotting
adding to existing graph 4-14
annotating graphs 3-1
area graphs 5-19
bar graphs 5-2
compass plots 5-46
complex data 4-25
contour plots 5-54
contours, labeling 5-57
creating a plot 4-9
data-point markers 4-12
elementary functions for 4-7
feather plots 5-47
interactive 5-76
line colors 10-42
line styles 4-12
matrices 4-22
multiple bar graphs 5-16
multiple graphs 4-10
overlaying bar graphs 5-17
quiver plots 5-49
specifying line styles 4-11 10-44
stairstep plots 5-42
stem plots 5-33
to subaxis 4-2
vector data 4-7
windows for 4-2

plotting functions
in MATLAB 1-6

plotting tools 1-10
PNG 6-4

writing as 16-bit using imwrite 6-19
Pointer property 9-17
pointers

custom 9-17
example defining 9-18

specifying 9-16
PointerShapeCData property 9-17
PointerShapeHotSpot property 9-17
polar 5-72

Index-8

Index

polar coordinates
contour plots 5-69
rose plot 5-30

position of figure 9-6
Position property 10-9

axes 10-6
figure 9-6

positioning axes 1-65
positioning of axes 10-6
positioning text on a graph 3-48
preferences 1-69
print preview 1-70
printing

and renderer settings 7-80
aspect ratio 7-47

default 7-47
background color 7-62
figure size

setting from the command line 7-46 7-49
7-93

fonts
supported for HPGL 7-89
supported for PostScript and

GhostScript 7-88
supported for Windows drivers 7-88

images 6-37
MATLAB printer driver

definition 7-85
OpenGL 7-56
paper type

setting from the command line 7-52
PaperType property

example 7-52
PostScript

fonts supported for 7-88
quick start 7-36
rendering methods 7-54
resolution

with painters renderer 9-14
with Z-buffer renderer 9-14

troubleshooting 7-94
Z-buffer 9-14

printing figures 1-70
properties 8-45

automatic axes 10-29
changed by built-in functions 8-85
changed by object creation functions 8-15
defining in startup.m 8-57
for labeling axes 10-3
naming convention 8-18
specifying default values 8-53
See also graphics objects

Property Editor 1-28
property values

defaults 8-51
defined by MATLAB 8-50
getting 8-45
resetting to default 8-53
setting 8-45
specifying defaults 8-53
user defined 8-51

Q
quiver 5-45 5-49
quiver plots 5-49

2-D 5-49
3-D 5-51
combined with contour plot 5-51
displaying velocity vectors 5-52

quiver3 5-45

R
renderer

choosing 7-54
impact on printing 7-80

Renderer property
and printing 9-14

rendering

Index-9

Index

options 9-13
Z-buffer 9-14

reset 8-72
resizing objects 1-65
RGB

converting to 6-38
images 6-8

converting the data class of 6-11
rose 5-28 5-30
rotating 3-D views 2-25
rotating axis labels 3-42

S
saveas 1-68
saving figures 1-68
saving graphs 1-68
screen extent, determining 9-8
ScreenSize property 9-8

example 9-9
selecting multiple objects 1-62
selection

of plot objects 1-61
selection button 1-60
semilogx, properties changed by 8-87
semilogy, properties changed by 8-87
set 8-45
ShowHiddenHandles property 8-78
size of computer screen 9-8
spline 5-76
stairs 5-33 5-43
stairstep plot 5-42
starting plot edit mode 1-60
stem 5-33
stem plots 5-33

3-D 5-38
overlaid with line plot 5-37

stem3 5-33 5-38
string variable, in text 3-56
subplot 4-3

surfc 5-68
symbols, TeX characters 3-54

T
Tag property use 8-60
TeX

available characters 3-54
creating mathematical symbols 3-54
symbols in text 3-44 3-55

text
adding to axes 3-48 3-54
for labeling plots 3-48
horizontal and vertical alignment 3-51
multiline 3-57
placing dynamically, example 3-52
placing outside of axes 10-15
positioning 3-50
TeX characters 3-55
using variables in 3-56

text annotations 3-8
tick marks, on axes 4-33 10-20
TIFF 6-4
TightInset property 10-9
title

adding to a graph 3-36
toolbar

buttons 3-64

U
uint16 arrays

converting to double 6-11
operations supported on 6-13
storing images 6-3

uint8 arrays
converting to double 6-11 to 6-12
operations supported on 6-13
storing images 6-3

uipanels 8-89

Index-10

Index

undo/redo 1-66 2-28
units

axes 10-8
used by figures 9-7

Units property 10-9
unlocking axes position 1-65
unselecting objects 1-62

V
vectors

displaying velocity 5-52
velocity vectors displayed with quiver 5-52

VerticalAlignment property 3-51
visibility of graphics objects 1-25 8-79

X
XWD 6-4

Z
Z-buffer 9-14

printing 9-14
zoom

using 2-19

Index-11

MATLAB 7
MAT-File Format

®

How to Contact The MathWorks:

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

MAT-File Format
© COPYRIGHT 1984 - 2006 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, SimBiology, SimHydraulics,
SimEvents, and xPC TargetBox are registered trademarks and The MathWorks, the L-shaped membrane
logo, Embedded MATLAB, and PolySpace are trademarks of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.

Patents
The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
June 1999 Online only New for MATLAB 5.3 (Release 11)
November 2000 PDF only Revised for MATLAB 6.0 (Release 12)
June 2001 PDF only Revised for MATLAB 6.1 (Release 12.1)
July 2002 PDF only Revised for MATLAB 6.5 (Release 13)
January 2003 PDF only Revised for MATLAB 6.5.1 (Release 13 SP1)
June 2004 PDF only Revised for MATLAB 7.0 (Release 14)
October 2004 PDF only Revised for MATLAB 7.0.1 (Release 14SP1)
September 2005 PDF only Minor revision for MATLAB 7.1 (Release 14SP3)
September 2007 PDF only Minor revision for MATLAB 7.5 (Release R2007b)

1

MAT-File Format

Introduction (p. 1-2) Describes Level 5 and Level 4 MAT-files and how to access
them.

Level 5 MAT-File Format (p. 1-4) Describes the internal format of MAT-files that are compatible
with MATLAB® versions 5 and up.

Level 5 MATLAB Array Data
Element Formats (p. 1-14)

Shows how to use the Array data type to represent all types of
MATLAB arrays.

Level 4 MAT-File Format (p. 1-36) Describes the internal format of MAT-files that are compatible
with MATLAB versions 4 and earlier.

1 MAT-File Format

1-2
Introduction
This document describes the internal format of MATLAB ® Level 4 and Level 5
MAT-files. Level 4 MAT-files are compatible with versions of MATLAB up to
Version 4. Level 5 MAT-files are compatible with MATLAB Versions 5 and up.
You can read and write Level 4 MAT-files with the later versions of MATLAB,
but when writing a MAT-file under these circumstances, you need to specify a
switch in the save or matOpen command line to tell MATLAB that the MAT-file
is at Level 4.

A MAT-file stores data in binary (not human-readable) form. In MATLAB, you
create MAT-files using the save function, which writes the arrays currently in
memory to a file as a continuous byte stream. By convention, this file has the
filename extension .mat; thus the name MAT-file. The load function reads the
arrays from a MAT-file into the MATLAB workspace.

Most MATLAB users do not need to know the internal format of a MAT-file.
Even users who must read and write MAT-files from C and Fortran programs
do not need to know the MAT-file format if they use the MAT-file interface.
This interface shields users from dependence on the details of the MAT-file
format.

Note See “Importing and Exporting Data” in the MATLAB External
Interfaces documentation for information on the MAT-file interface. See “C [or
Fortran] MAT-File Functions” in the MATLAB External Interfaces Reference
documentation for information on the functions available with this interface.

However, if you need to read or write MAT-files on a system that does not
support the MAT-file interface, you must write your own read and write
routines. The MAT-file interface is only available for platforms on which
MATLAB is supported. This document provides the details about the MAT-file
format you will need to read and write MAT-files on these systems.

Introduction
Note Whenever possible, The MathWorks strongly advises you to use the
MAT-file interface functions to read and write MAT-files. Any code you write
that depends on the MAT-file format may need to be rewritten when the
format changes in future releases.

MAT-File Formats
This document describes both Level 5 and Level 4 MAT-file formats. The Level
5 MAT-file format supports all the array types supported in MATLAB versions
5 and up, including multidimensional numeric arrays, character arrays, sparse
arrays, cell arrays, structures, and objects. “Level 5 MAT-File Format” on
page 1-4 describes this format.

The Level 4 MAT-file format is a simpler format but it only supports
two-dimensional matrices and character strings. “Level 4 MAT-File Format”
on page 1-36 describes this format.
1-3

1 MAT-File Format

1-4
Level 5 MAT-File Format
Level 5 MAT-files are made up of a 128-byte header followed by one or more
data elements. Each data element is composed of an 8-byte tag followed by the
data in the element. The tag specifies the number of bytes in the data element
and how these bytes should be interpreted; that is, should the bytes be read as
16-bit values, 32-bit values, floating point values or some other data type.

By using tags, the Level 5 MAT-file format provides quick access to individual
data elements within a MAT-file. You can move through a MAT-file by finding
a tag and then skipping ahead the specified number of bytes until the next tag.

“MATLAB Level 5 MAT-File Format” on page 1-5 graphically illustrates this
MAT-file format. The sections that follow provide more details about these
MAT-file elements.

This section covers the following topics:

• “MATLAB Level 5 MAT-File Format” on page 1-5

• “MAT-File Header Format” on page 1-6

• “Data Element Format” on page 1-8

• “Data Compression” on page 1-12

Level 5 MAT-File Format
Figure 1-1: MATLAB Level 5 MAT-File Format

Bytes 1 2 3 4 5 6 7 8

M
AT-File H

eader (128 bytes)

Descriptive text (116 bytes)

Endian IndicatorVersion

Data Type Number of Bytes

Data (variable size) or subelements

Data Type Number of Bytes

D
ata Elem

ent
D

ata Elem
ent

Repeat Tagged Data Elements Until End-of-File

Data Type Number of Bytes D
ata Elem

ent

Data (variable size) or subelements

Data (variable size) or subelements

Subsys Data Offset

Subsys Data Offset
1-5

1 MAT-File Format

1-6
MAT-File Header Format
Level 5 MAT-files begin with a 128-byte header made up of a 124 byte text field
and two, 16-bit flag fields.

This section covers the following topics:

• “Header Text Field” on page 1-6

• “Header Subsystem Data Offset Field” on page 1-7

• “Header Flag Fields” on page 1-7

Header Text Field
The first 116 bytes of the header can contain text data in human-readable form.
This text typically provides information that describes how the MAT-file was
created. For example, MAT-files created by MATLAB include the following
information in their headers:

• Level of the MAT-file (value equals 1 for Level 5)

• Platform on which the file was created

• Date and time the file was created

You can view the text in a MAT-file header using the cat command on UNIX
systems, or the type command on a PC. The output displays the text in this
part of the header. (The display of the header is followed by unreadable
characters representing the binary data in the file.)

cat my_matfile.mat
MATLAB 5.0 MAT-file, Platform: SOL2, Created on: Thu Nov 13
10:10:27 1997

Note When creating a MAT-file, you must write data in the first four bytes of
this header. MATLAB uses these bytes to determine if a MAT-file uses a Level
5 format or a Level 4 format. If any of these bytes contain a zero, MATLAB
will incorrectly assume the file is a Level 4 MAT-file.

Level 5 MAT-File Format
Header Subsystem Data Offset Field
Bytes 117 through 124 of the header contain an offset to subsystem-specific
data in the MAT-file. All zeros or all spaces in this field indicate that there is
no subsystem-specific data stored in the file.

Header Flag Fields
The last four bytes in the header are divided into two, 16-bit flag fields (int16).

Note Programs that create MAT-files always write data in their native
machine format. Programs that read MAT-files are responsible for
byte-swapping.

Field Value

Version When creating a MAT-file, set this field to 0x0100.

Endian
Indicator

Contains the two characters, M and I, written to the
MAT-file in this order, as a 16-bit value. If, when read
from the MAT-file as a 16-bit value, the characters appear
in reversed order (IM rather than MI), it indicates that the
program reading the MAT-file must perform
byte-swapping to interpret the data in the MAT-file
correctly.
1-7

1 MAT-File Format

1-8
Data Element Format
Each data element begins with an 8-byte tag followed immediately by the data
in the element. Figure 1-2 shows this format. (MATLAB also supports a
compressed data element format. See page 1-10 for more information.)

Figure 1-2: MAT-File Data Element Format

This section covers the following topics:

• “The Tag Field” on page 1-8

• “The Data Field” on page 1-10

• “Small Data Element Format” on page 1-10

• “Example Data Element” on page 1-11

The Tag Field
The 8-byte data element tag is composed of two, 32-bit fields:

• Data Type

• Number of Bytes

Data Type. The Data Type field specifies how the data in the element should be
interpreted, that is, its size and format. The MAT-file format supports many
data types including signed and unsigned, 8-bit, 16-bit, 32-bit, and 64-bit data
types, a special data type that represents MATLAB arrays, Unicode encoded
character data, and data stored in compressed format. Table 1-1 lists all these
data types with the values used to specify them. The table also includes

Data Type Number of Bytes

Variable size

Bytes 1 2 7 86543
Tag

Data

Level 5 MAT-File Format
symbols that are used to represent these data types in the examples in this
document.

The UTF-16 and UTF-32 encodings are in the byte order specified by the Endian
Indicator (See “Header Flag Fields” on page 1-7). UTF-8 is byte order neutral.

Table 1-1: MAT-File Data Types

Value Symbol MAT-File Data Type

1 miINT8 8 bit, signed

2 miUINT8 8 bit, unsigned

3 miINT16 16-bit, signed

4 miUINT16 16-bit, unsigned

5 miINT32 32-bit, signed

6 miUINT32 32-bit, unsigned

7 miSINGLE IEEE 754 single format

8 -- Reserved

9 miDOUBLE IEEE 754 double format

10 -- Reserved

11 -- Reserved

12 miINT64 64-bit, signed

13 miUINT64 64-bit, unsigned

14 miMATRIX MATLAB array

15 miCOMPRESSED Compressed Data

16 miUTF8 Unicode UTF-8 Encoded Character Data

17 miUTF16 Unicode UTF-16 Encoded Character Data

18 miUTF32 Unicode UTF-32 Encoded Character Data
1-9

1 MAT-File Format

1-1
For character data that is not Unicode encoded, the Data Type part of the Tag
field should be set to miUINT16.

For more information about the miMATRIX data type, see “Level 5 MATLAB
Array Data Element Formats” on page 1-14.

Number of Bytes. The Number of Bytes field is a 32-bit value that specifies the
number of bytes of data in the element. This value does not include the eight
bytes of the data element’s tag.

If Data Type is miCOMPRESSED, then the Number of Bytes field contains the
compressed MATLAB array size in bytes. (See “Data Compression” on
page 1-12.)

The Data Field
The data immediately follows the tag. All data that is uncompressed must be
aligned on 64-bit boundaries. When writing a MAT-file, if the amount of data
in a data element falls short of a 64-bit boundary, you must add bytes of
padding to make sure the tag of the next data element falls on a 64-bit
boundary. Likewise, when reading data from a MAT-file, be sure to account for
these padding bytes.

Note For data elements representing MATLAB arrays, (type miMATRIX), the
value of the Number of Bytes field includes padding bytes in the total. For all
other MAT-file data types, the value of the Number of Bytes field does not
include padding bytes.

Small Data Element Format
If a data element takes up only one to four bytes, MATLAB saves storage space
by storing the data in an 8-byte format. In this format, the Data Type and
Number of Bytes fields are stored as 16-bit values, freeing four bytes in the tag
in which to store the data. Figure 4 illustrates this format.
0

Level 5 MAT-File Format
Figure 1-3: Small Data Element Format

Note When reading a MAT-file, you can tell if you are processing a small
data element by comparing the value of the first two bytes of the tag with the
value zero (0). If these two bytes are not zero, the tag uses the small data
element format. When writing to a MAT-file, use of the small data element
format is optional.

Example Data Element
Figure 1-4 illustrates a data element representing an array of six 32-bit,
unsigned integers: 1, 2, 3, 4, 5, 6. In the figure, the Data Type field contains the
value from Table 1-1 that specifies unsigned, 32-bit integers (miUINT32). The
Number of Bytes field in the data element tag contains the number of data
values multiplied by the number of bytes used to represent each value. Note
that this value does not include the eight bytes in the data element tag.

Figure 1-4: Example MAT-File Data Element

Data Type D A T A

Bytes 1 2 7 86543

Number of Bytes

miUINT32 24
Bytes 1 2 7 86543

Tag

Data

Data Type Number of Bytes

1 2

3 4

5 6
1-11

1 MAT-File Format

1-1
Data Compression
MATLAB compresses the data it saves to a MAT-file using buffered in-memory
gzip compression. It compresses MATLAB variables transparently as they are
written out to disk. This technique uses less memory than systems that
compress an entire variable at once before writing it out to disk. Also, no
temporary files are required in order to read or write compressed data.

Because it compresses each variable individually, MATLAB can read a
compressed MAT-file like any other MAT-file. No code changes are required at
either the C or M level to read a compressed MAT-file.

MATLAB compresses data for MAT-files (file I/O) only, not for sequential
streams. The reason for this is that the size of the compressed variable is
known only after it is compressed, but it must be written in the tag at the
beginning of the variable. In a file it is possible to seek back and write the size,
while in a stream this cannot be done.

MAT-files containing compressed variables are non-platform specific like any
MAT-file, and such a file saved on any MATLAB supported platform can be
loaded on any other supported platform.

To decompress the contents of a compressed variable in a MAT-file, you can use
the uncompress function from the freeware zlib-1.1.4 library available at the
gzip web site, http://www.gzip.org/zlib/. Once a MATLAB array has been
decompressed, you can ignore the miCOMPRESSED tag and process the data
normally, as if it had not been compressed.

Note To disable data compression when writing to MAT-files, see “Saving
and Loading MAT-files” in the “Data Import and Export” chapter of the
MATLAB Programming documentation.

Storing Compressed Data
MATLAB stores compressed data in gzip-compressed MATLAB arrays. Each
compressed variable is stored complete with its tags and data field in the same
format as uncompressed variables, as described in “Data Element Format” on
page 1-8. The difference is that the entire variable is compressed into a data
buffer, and this buffer is preceded by an 8-byte tag named miCOMPRESSED. The
tag contains the length of the compressed buffer.
2

Level 5 MAT-File Format
Each variable in a MAT-file has a 56-byte header. Even if the data is stored in
the header itself, as can be the case for variables containing 1 to 4 bytes of data,
no variable in a MAT-file can be less than 56 bytes. Thus, regardless of how
random the data in a variable may be, it is unlikely (but not impossible) that a
compressed variable will take more space than its uncompressed counterpart.
This is because the 56-byte header always compresses to a smaller size. Note
that compression works best on nonrandom data. The more random the data,
the less it will compress.
1-13

1 MAT-File Format

1-1
Level 5 MATLAB Array Data Element Formats
The MAT-file data type miMATRIX (14) is used to represent all types of MATLAB
arrays, including:

• Numeric arrays

• Character arrays

• Sparse arrays

• Cell arrays

• Structures

• Objects

The miMATRIX data type is a compound data type. MAT-file data elements of
this type are composed of multiple subelements. The subelements can be of any
other MAT-file data type, including other miMATRIX data types.

Figure 1-5 shows a miMATRIX data element composed of three subelements.
Note how each subelement is a data element with its own tag. The value of the
Number of Bytes field (96 in the figure) in the data element tag includes all the
subelements.

Figure 1-5: MATLAB Array Data Element with Subelements

Bytes 1 2 7 86543
miMATRIX

Data

Data

D
a
t
a

E
l
e
m
e
n
t

S
u
b
-

S
u
b
e
l
e
m
e
n
t

96 Tag

Tag

S
u
b
-

E
l
e
m
e
n
t

Tag

Data

Tag

E
l
e
m
e
n
t

9
6

b
y
t
e
s

4

Level 5 MATLAB Array Data Element Formats
Each miMATRIX data element representing the different types of MATLAB
arrays each has a specific set of subelements. Some of these subelements are
common to all MATLAB arrays. Others subelements are unique to a particular
type of array. The following sections detail the subelements for each MATLAB
array type.

Numeric Array and Character Array Data Element
Formats
A MAT-file data element representing a MATLAB numeric array or character
array is composed of four subelements and one optional subelement. Table 1-2
lists the subelements in the order in which they appear in the data element.
The table also includes the values of the Data Type and Number of Bytes fields
you would use in the tag of each subelement. For an example, see “Examples of
Numeric Array Data Elements” on page 1-19.

Array Flags Subelement
This subelement identifies the MATLAB array type (class) represented by the
data element and provides other information about the array. The Array Flags
subelement is common to all array types.

Table 1-2: Numeric and Character Array Subelements with Tag Data

Subelement Data Type Number of Bytes

Array Flags miUINT32 2*size-of-Data-Type (8 bytes)

Dimensions Array miINT32 number-of-dimensions*size-of-Data-Type
(To learn how to determine the number of
dimensions, see “Dimensions Array Subelement”
on page 1-17.)

Array Name miINT8 number-of-characters*size-of-Data-Type

Real part (pr) Any of the numeric
data types.

number-of-values*size-of-Data-Type

Imaginary part (pi)
(Optional)

Any of the numeric
data types.

number-of-values*size-of-Data-Type
1-15

1 MAT-File Format

1-1
Figure 1-6 illustrates the format of the Array Flags subelement. (For sparse
matrices, bytes 5 through 8 are used to store the maximum number of nonzero
elements in the matrix. See “Sparse Array Data Element Format” on page 1-22
for more information.)

Figure 1-6: Array Flags Format

Flags. This field contains three, single-bit flags that indicate whether the
numeric data is complex, global, or logical. If the complex bit is set, the data
element includes an imaginary part (pi). If the global bit is set, MATLAB loads
the data element as a global variable in the base workspace. If the logical bit is
set, it indicates the array is used for logical indexing.

Class. This field contains a value that identifies the MATLAB array type (class)
represented by the data element. Table 1-3 lists the MATLAB array types with
the values you use to specify them. The table also includes symbols that are
used to represent the MATLAB array type in the examples in this document.

Note The value of the Class field identifies the MATLAB data type. The
value of the Data Type field in the data element tag identifies the data type
used to store the data in the MAT-file. The MAT-file data types are listed in
Table 1-1. The value of the Class and the Data Type fields do not need to be
the same; for more information, see “Automatic Compression of Numeric
Data” on page 1-19.

Undefined
Bytes 1 2 7 86543

U n d e f i n e dClassFlags

Undefined

Complex
Global

Logical
6

Level 5 MATLAB Array Data Element Formats
For numeric arrays, Class can contain any of the numeric array types:
mxDOUBLE_CLASS, mxSINGLE_CLASS, mxINT8_CLASS, mxUINT8_CLASS,
mxINT16_CLASS, mxUINT16_CLASS, mxINT32_CLASS, or mxUINT32_CLASS.

For character arrays, Class contains mxCHAR_CLASS.

Dimensions Array Subelement
This subelement specifies the size of each dimension of an n-dimensional array
in an n-sized array of 32-bit values (miINT32). All numeric arrays have at least
two dimensions. The Dimensions Array subelement is common to all MATLAB
array types.

Table 1-3: MATLAB Array Types (Classes)

MATLAB Array Type
(Class)

Value Symbol

Cell array 1 mxCELL_CLASS

Structure 2 mxSTRUCT_CLASS

Object 3 mxOBJECT_CLASS

Character array 4 mxCHAR_CLASS

Sparse array 5 mxSPARSE_CLASS

Double precision array 6 mxDOUBLE_CLASS

Single precision array 7 mxSINGLE_CLASS

8-bit, signed integer 8 mxINT8_CLASS

8-bit, unsigned integer 9 mxUINT8_CLASS

16-bit, signed integer 10 mxINT16_CLASS

16-bit, unsigned integer 11 mxUINT16_CLASS

32-bit, signed integer 12 mxINT32_CLASS

32-bit unsigned, integer 13 mxUINT32_CLASS
1-17

1 MAT-File Format

1-1
For example, if a data element represents a 2-by-3-by-2 MATLAB array, the
Dimensions Array subelement would contain three values: 2, 3, and 2.

Note To calculate the number of dimensions in an array, divide the value
stored in the Number of Bytes field in the Dimensions Array subelement tag
by 4, the number of bytes in the data type (miINT32) used in the subelement.

Array Name Subelement
This subelement specifies the name assigned to the array, as an array of
signed, 8-bit values (miINT8). This subelement is common to all array types.

Real Part (pr) Subelement
This subelement contains the numeric data in the MATLAB array. If the array
contains complex numbers (the complex bit in the Array Flags is set), this is
the real part of the number.

The data type of the values can be any of the numeric data types listed in
Table 1-1, MAT-File Data Types, on page 1-9.

For character data that is not Unicode encoded, the Data Type part of the Tag
field should be set to miUINT16.

Imaginary Part (pi) Subelement
This subelement contains the imaginary part of the numeric data in the
MATLAB array. This subelement is only present if one or more of the numeric
values in the MATLAB array is a complex number (if the complex bit is set in
Array Flags). The data type of the values can be any of the numeric data types
listed in Table 1-1, MAT-File Data Types, on page 1-9.

Note When reading a MAT-file, check the value of the Data Type field in the
tag of Real Part and Imaginary Part subelements to identify the data type
used to store data. Also note that MATLAB reads and writes these values in
column-major order.
8

Level 5 MATLAB Array Data Element Formats
Automatic Compression of Numeric Data
MATLAB stores the numeric data in an array in double precision format. When
MATLAB writes a numeric (or sparse) array to a MAT-file, it uses the smallest
possible data type to store the data, both the real and imaginary parts.

For example, if MATLAB determines that the data stored in double precision
format can actually be stored in an 8-bit format, it will use an 8-bit data type
to store it in a MAT-file. Note, however, that if any of the numeric values in the
array requires a 64-bit representation, MATLAB stores all of the data in a
64-bit data type. See “Compressed Data Element” on page 1-21 for an example.

When you create a MAT-file, compressing data is optional.

Note When MATLAB uses a smaller data type to store data in a MAT-file,
the value of the Class field in the Array Flags subelement identifies the
original MATLAB data type.

Examples of Numeric Array Data Elements
This section uses examples to illustrate both the compressed and
uncompressed numeric array data element formats.

Uncompressed Data Element. Figure 1-7 shows how this 2-by-2 numeric array,
my_array, is represented in a MAT-file.

my_array = [1.1+1.1i 2 ; 3 4]

my_array =

 1.1000 + 1.1000i 2.0000
 3.0000 4.0000
1-19

1 MAT-File Format

1-2
In the figure, note:

• The data element includes five subelements. Because one of the numeric
values in the array is a complex number, the complex bit flag in the Array
Flags subelement is set and the Imaginary Part (pi) subelement is included.

• The value of the Number of Bytes field in the data element tag includes all
the subelements, but not the eight bytes of the tag itself.

Figure 1-7: Example Numeric Array MAT-File Data Element

Bytes 1 2 7 86543

pr

pi

128

8

mxDOUBLE

8

2 2

miINT8 8

m y _ a r r a y

miDOUBLE 32

1.1000

3.0000

2.0000

4.0000

1.1000

0.0000

0.0000

0.0000

miDOUBLE 32

miINT32

miUINT32

miMATRIX

Undefined U n d e f i n e d_CLASS

Array
Name

Dimensions
Array

Array
Flags

1
2
8

b
y
t
e
s

Tag
0

Level 5 MATLAB Array Data Element Formats
Compressed Data Element. Figure 1-8 shows how the three-dimensional numeric
array in this example, arr, is represented in a MAT-file when compression is
used to conserve storage space.

A = [1 2 3 ; 4 5 6];
B = [7 8 9 ; 10 11 12];
arr = cat(3,A,B)
arr(:,:,1) =
 1 2 3
 4 5 6

arr(:,:,2) =
 7 8 9
 10 11 12

In the figure, note:

• The Array Name subelement uses the compressed data element format.

• The numeric data in the array, stored in double precision format in
MATLAB, is stored as 8-bit, unsigned values in the pr subelement. The Class
field in the Array Flags subelement identifies the original MATLAB data
type.

Figure 1-8: Example Numeric Array MAT-file Data Element (Compressed)

miMATRIX

Bytes 1 2 7 86543

miUINT32

U n d e f i n e d

miINT32

a r r

Padding

2

2

miUINT8

miINT83

1 4 2 5 3 6 7 10

8 11 9 12 Padding

72

Array

Array

Dimensions

0Undefined
mxDOUBLE
_CLASS

pr

Array

Flags

Name

7
2

b
y
t
e
s

12

Padding

3

12

8

Tag
1-21

1 MAT-File Format

1-2
Sparse Array Data Element Format
A MAT-file data element representing a MATLAB sparse array is composed of
six subelements and one optional subelement. Table 1-4 lists the subelements
in the order in which they appear in the data element. The table lists the values
of the Data Type and Number of Bytes fields of the tag for each subelement.

Array Flags Subelement
This subelement identifies the MATLAB array type (class) represented by the
data element and provides other information about the array. The Array Flags
subelement is common to all array types.

Table 1-4: Sparse Array Subelements with Tag Data

Subelement Data Type Number of Bytes

Array Flags miUINT32 2*size-of-Data-Type (8 bytes)

Dimensions Array miINT32 number-of-dimensions*size-of-Data-Type
where number-of-dimensions can be 0, 1 or 2.

Array Name miINT8 number-of-characters*size-of-Data-Type

Row Index (ir) miINT32 nzmax*size-of-Data-Type
(The nzmax value is stored in Array Flags.)

Column Index (jc) miINT32 (N+1)*sizeof(int32)
where N is the second element of the Dimensions
array subelement.

Real part (pr) Any numeric
data type

number-of-nonzero-values*size-of-Data-Type

Imaginary part (pi)
(Optional)

Any numeric
data type

number-of-nonzero-values*size-of-Data-Type
2

Level 5 MATLAB Array Data Element Formats
Figure 1-9 shows the Array Flags format. For sparse arrays, this value also
contains the maximum number of non-zero elements in the array (nzmax).

Figure 1-9: Array Flags Format for Sparse Arrays

Flag. For more information, see “Flags” on page 1-16.

Class. This field contains a value that identifies the MATLAB data type
represented by the data element. For sparse arrays, Class contains the value 5
(mxSPARSE_CLASS). See “Class” on page 1-16 for more information.

Dimensions Array Subelement
This subelement specifies the size of each dimension of the array. This
subelement is common to all array types. For more information, see
“Dimensions Array Subelement” on page 1-17.

Note that MATLAB only supports two-dimensional sparse arrays.

Array Name Subelement
This subelement specifies the name assigned to the array. This subelement is
common to all array types. For more information, see “Array Name
Subelement” on page 1-18.

Row Index for Non-zero Values (ir) Subelement
This subelement specifies the row indices of the non-zero elements in the real
part (pr) of the matrix data and the imaginary part (pi) of the matrix data, if
present. This subelement is a series of 32-bit (miINT32) values.

Column Index for Non-Zero Values (jc) Subelement
This subelement contains column index information as a series of 32-bit
(miINT32) values. For more information about what this subelement contains,
see the MATLAB Application Program Interface Guide.

Reserved

Bytes 1 2 7 86543

nzmaxClassFlags

Maximum number of non-zero array elements.
1-23

1 MAT-File Format

1-2
Real Part (pr) Subelement
This subelement contains the numeric data in the MATLAB array. If the array
contains complex numbers (the complex bit in the Array Flags is set), this is
the real part of the number.

Because MATLAB uses data compression to save storage space, the data type
of the values can be any of the numeric data types listed in Table 1-1, MAT-File
Data Types, on page 1-9. For more information, see “Automatic Compression of
Numeric Data” on page 1-19.

Imaginary Part (pi) Subelement
This subelement contains the imaginary data in the array, if one or more of the
numeric values in the MATLAB array is a complex number (if the complex bit
is set in Array Flags).

Because MATLAB uses data compression to save storage space, the data type
of the values can be any of the numeric data types listed in Table 1-1, MAT-File
Data Types, on page 1-9. For more information, see “Automatic Compression of
Numeric Data” on page 1-19.

Note You must check the value of the Data Type field in the tag of Real Part
and Imaginary Part subelements to identify the type of the data. Also note
that MATLAB reads and writes these values in column-major order.

Example Sparse Array
Figure 1-10 illustrates the MAT-file data element format of this 3-by-3 sparse
matrix:

a = [1 2 3];
S = sparse(a,a,a+.5)

S =

 (1,1) 1.5000
 (2,2) 2.5000
 (3,3) 3.5000
4

Level 5 MATLAB Array Data Element Formats
In the figure, note:

• The data element contains six subelements.

• The value of the Number of Bytes field in the data element tag includes all
the subelements, but not the eight bytes of the tag itself.

• Bytes 5 through 8 of the Array Flags subelement contain the maximum
number of non-zero elements (nzmax) in the sparse array.

• The Array Name subelement uses the compressed data element format.

Figure 1-10: Example Sparse Array MAT-file Data Element

Bytes 1 2 7 86543

miMATRIX 120

miUINT32 8

miINT32

3

1

miINT32

0

2

miINT32

0

2

mxSPARSE
_CLASS0 3 (nzmax)

8

3

PaddingmiINT8

12

1

Padding

16

1

3

miDOUBLE 24

pr

Dimensions

1.5000

2.5000

3.5000

S

1
2
0

b
y
t
e
s

jc

ir

Array
Name

Array

Array
Flags

Tag

Undefined
1-25

1 MAT-File Format

1-2
Cell Array Data Element Format
A MAT-file data element representing a MATLAB cell array is composed of
four subelements. Table 1-5 lists the subelements in the order in which they
appear in the data element. The table lists the values of the Data Type and
Number of Bytes fields of the tag for each subelement.

Array Flags Subelement
This subelement identifies the MATLAB array type (class) represented by the
data element and provides other information about the array. Figure 1-11
shows the Array Flags format. The Array Flags subelement is common to all
array types.

Figure 1-11: Array Flags Format

Flags. See “Flags” on page 1-16 for more information.

Class. This field contains a value that identifies the MATLAB data type
represented by the data element. For cell arrays, Class contains the value 1
(mxCELL_CLASS). For more information, see “Class” on page 1-16.

Dimensions Array Subelement
This subelement specifies the size of each dimension of the array. This
subelement is common to all array types. For more information, see
“Dimensions Array Subelement” on page 1-17.

Table 1-5: Cell Array Subelements with Tag Data

Subelement Data Type Number of Bytes

Array Flags miUINT32 2*size-of-Data-Type (8 bytes)

Dimensions Array miINT32 number-of-dimensions*size-of-Data-Type

Array Name miINT8 number-of-characters*size-of-Data-Type

Cells Each cell is written in place as an miMATRIX element.

Undefined

Bytes 1 2 7 86543
U n d e f i n e dClassFlags
6

Level 5 MATLAB Array Data Element Formats
Array Name Subelement
This subelement specifies the name assigned to the array. This subelement is
common to all array types. For more information, see “Array Name
Subelement” on page 1-18.

Cells Subelement
This subelement contains the value stored in a cell. These values are MATLAB
arrays, represented using the miMATRIX format specific to the array type:
numeric array, sparse array, structure, object or other cell array. See the
appropriate section in this document for details about the MAT-file
representation of a each of these array types. Cells are written in column-major
order.

Example Cell Array
Figure 1-12 illustrates the MAT-file data element format of this cell array:

A = [1 2 3 ; 4 5 6]
A =
 1 2 3
 4 5 6

B = [7 8 9 ; 10 11 12]
B =
 7 8 9
 10 11 12

C = { A, B }
C =
 [2x3 double] [2x3 double]

In the figure, note:

• The data element contains five subelements, the three common subelements;
Array Flags, Dimensions and Array Name; and two cell subelements.

• The value of the Number of Bytes field in the data element tag includes all
the subelements, but not the eight bytes of the tag itself.

• Each cell subelement is an miMATRIX type. In the example, each cell contains
a numeric array. For more information about the format of these elements,
1-27

1 MAT-File Format

1-2
see “Numeric Array and Character Array Data Element Formats” on
page 1-15.

Figure 1-12: Example Cell Array Data Element

Bytes 1 2 7 86543

Array

Dimensions

Array Name

N
u
m
e
r
i
c

a
r
r
a
y

Array

 Flags

7 10 8 11 9 12 Padding

miUINT8 6

miINT32

B

8

Padding

2 3

miINT81

0Undefined mxDOUBLE
_CLASS U n d e f i n e d

miMATRIX

miUINT32 8

56

1 4 2 5 3 6 Padding

miUINT8 6

miINT32

A

8

Padding

2 3

miINT81

0Undefined mxDOUBLE
_CLASS U n d e f i n e d

miMATRIX

miUINT32 8

56

miMATRIX

miUINT32 8

miINT32

C

8

1 2

miINT81

168

0Undefined mxCELL
_CLASS

Padding

U n d e f i n e d

1
6
8

b
y
t
e
s

Tag

N
u
m
e
r
i
c

a
r
r
a
y

C
e
l
l
s

8

Level 5 MATLAB Array Data Element Formats
Structure MAT-File Data Element Format
A MAT-file data element representing a MATLAB structure is composed of six
subelements. Table 1-6 lists the subelements in the order in which they appear
in the data element. The table lists the values of the Data Type and Number of
Bytes fields of the tag for each subelement.

Array Flags Subelement
This subelement identifies the MATLAB array type (class) represented by the
data element and provides other information about the array. Figure 1-13
shows the Array Flags format. The Array Flags subelement is common to all
array types.

Figure 1-13: Array Flags Format

Flags. See “Flags” on page 1-16 for more information.

Class. This field contains a value that identifies the MATLAB data type
represented by the data element. For structures, Class contains the value 2
(mxSTRUCT_CLASS). For more information, see “Class” on page 1-16.

Table 1-6: Structure Subelements with Tag Data

Subelements Data Type Number of Bytes

Array Flags miUINT32 2*size-of-Data-Type (8 bytes)

Dimensions Array miINT32 number-of-dimensions*size-of-Data-Type

Array Name miINT8 number-of-characters*size-of-Data-Type

Field Name Length miINT32 size-of-Data-Type (4 bytes)

Field Names miINT8 number-of-fields*Field-Name-Length

Fields Each field is written in place as an array. Fields are written in
column order.

Undefined

Bytes 1 2 7 86543
U n d e f i n e dClassFlags
1-29

1 MAT-File Format

1-3
Dimensions Array Subelement
This subelements Specifies the size of each dimension of the array. This
subelement is common to all array types. For more information, see
“Dimensions Array Subelement” on page 1-17.

Array Name Subelement
This subelement specifies the name assigned to the structure. This subelement
is common to all array types. For more information, see “Array Name
Subelement” on page 1-18.

Field Name Length Subelement
This subelement specifies the maximum length of a Field Name. MATLAB sets
this limit to 32 (31 characters and a NULL terminator). In a MAT-file created by
MATLAB, this subelement always uses the compressed data element format.

Field Names Subelement
This subelement specifies the name of each field in the structure as a series of
8-bit (miINT8) character arrays. The value of the Field Name Length
subelement determines the length of each field name array (32 bytes). Field
names must be NULL-terminated.

Fields Subelement
This subelement contains the value stored in a field. These values are
MATLAB arrays, represented using the miMATRIX format specific to the array
type: numeric array, sparse array, cell, object or other structure. See the
appropriate section of this document for details about the MAT-file format of
each of these array type. MATLAB reads and writes these fields in
column-major order.
0

Level 5 MATLAB Array Data Element Formats
Example
Figure 1-14 illustrates the MAT-file data element format for this MATLAB
structure:

X.w = [1];
X.y = [2];
X.z = [3];
X
 X =
 w: 1
 y: 2
 z: 3

In the figure, note:

• The data element contains eight subelements: the three common
subelements (Array Flags, Dimensions and Array Name) and five
structure-specific subelements (Field Name Length, Field Names, and three
Field subelements).

• The value of the Number of Bytes field in the data element tag includes all
the subelements, but not the eight bytes of the tag itself.

• The Field Names subelement allocates 32 bytes of storage for each field
name. A NULL terminator indicates the end of each field name.

• Each Field subelement is an miMATRIX data type. In the example, each field
contains a numeric array. For more information about the format of these
elements, see “Numeric Array and Character Array Data Element Formats”
on page 1-15.

• Each of the numeric arrays contain zero-length Array Name subelements.
The Field Names subelement contains the names of the numeric arrays.
1-31

1 MAT-File Format

1-3
Figure 1-14: Example Structure MAT-File Data Element

Bytes 1 2 7 86543

z 0

y 0

w 0

miINT8 96

miINT32 324
XmiINT8 Padding1

2 1

miINT32 8
0Undefined mxSTRUCT

_CLASS U n d e f i n e d
miUINT32 8
miMATRIX 320

N
u
m
e
r
i
c

A
r
r
a
y

miMATRIX

miUINT32

miINT32

0Undefined _CLASS
mxDOUBLE U n d e f i n e d

8
48

8
1 1

11 Padding
miINT8 0

F
i
e
l
d
s

miUINT8

miMATRIX

miUINT32

miINT32
0Undefined _CLASS

mxDOUBLE U n d e f i n e d
8

48

8
1 1

21 Padding
miINT8 0

miUINT8

miMATRIX
miUINT32

miINT32

0Undefined _CLASS
mxDOUBLE U n d e f i n e d

8

48

8
1 1

31
miINT8 0

miUINT8

P A D D I N G

Field Name
Length

Array
Flags

Dimensions
Array

Array Name

Field
Names

3
2
0

b
y
t
e
s

Padding

N
u
m
e
r
i
c

A
r
r
a
y

N
u
m
e
r
i
c

A
r
r
a
y

Tag
2

Level 5 MATLAB Array Data Element Formats
MATLAB Object MAT-File Data Element Format
A MAT-file data element representing a MATLAB object is composed of seven
subelements. Table 1-7 lists the subelements in the order in which they appear
in the data element. An object data element has the same subelements as a
structure with the addition of the Class Name subelement.The table lists the
values of the Data Type and Number of Bytes fields of the tag for each
subelement.

Array Flags Subelement
This subelement identifies the MATLAB array type (class) represented by the
data element and provides other information about the array. Figure 1-15
shows the Array Flags format. The Array Flags subelement is common to all
array types.

Figure 1-15: Array Flags Format

Flags. See “Flags” on page 1-16 for more information.

Table 1-7: MATLAB Object Subelements with Tag Data

Subelement Data Type Number of Bytes

Array Flags miUINT32 2*size-of-Data-Type (8 bytes)

Dimensions Array miINT32 number-of-dimensions*size-of-Data-Type

Array Name miINT8 number-of-characters*size-of-Data-Type

Class Name miINT8 number-of-characters*size-of-Data-Type

Field Name Length miINT32 size-of-Data-Type (4 bytes)

Field Names miINT8 number-of-fields*Field-Name-Length

Fields Each field is written in place as an array.

Reserved

Bytes 1 2 7 86543

R e s e r v e dClassFlags
1-33

1 MAT-File Format

1-3
Class. This field contains a value that identifies the MATLAB data type
represented by the data element. For objects, the Class byte has the value 3
(mxOBJECT_CLASS). For more information, see “Class” on page 1-16.

Dimensions Array Subelement
This subelement specifies the size of each dimension of the array. This
subelement is common to all array types. For more information, see
“Dimensions Array Subelement” on page 1-17.

Array Name Subelement
This subelement specifies the name assigned to the array. This subelement is
common to all array types. For more information, see “Array Name
Subelement” on page 1-18.

Class Name Subelement
This subelement specifies the name assigned to the object class. This
subelement is an array of 8-bit characters (miINT8).

Field Name Length Subelement
This subelement specifies the maximum length of a Field Name. See “Field
Name Length Subelement” on page 1-30 for more information.

Field Names Subelement
This subelement specifies the name of each field in the structure. See “Field
Names Subelement” on page 1-30 for more information.

Fields Subelement
This subelement contains the value stored in a field. See “Fields Subelement”
on page 1-30 for more information.

Example
Figure 1-16 illustrates how the MATLAB object in this example is represented
in a MAT-file.

X = inline(`t^2');

The figure only shows the first four subelements of the object. For an example
that shows the remaining subelements, see “Example” on page 1-31.
4

Level 5 MATLAB Array Data Element Formats
In the figure, note:

• The Array Flag Class byte is set to mxOBJECT_CLASS.

• The data element includes the Class Name subelement.

Figure 1-16: Example Object MAT-file Data Element

miMATRIX

Bytes 1 2 7 86543

miUINT32 8

miINT32

X

8

1 1

miINT81

656

Array

Dimensions

Array

0Undefined mxOBJECT
_CLASS

Padding

ln
Class

i

U n d e f i n e d

The remaining elements are the same
 as for a structure.

miINT8 6

i n e Name

Name

Array

Flags

Padding
1-35

1 MAT-File Format

1-3
Level 4 MAT-File Format

Note This section is taken from the MATLAB V4.2 External Interface
Guide, which is no longer available in printed form.

This section presents the internal structure of Level 4 MAT-files. This
information is provided to enable users to read and write MAT-files on
machines for which the MAT-file access routine library is not available. It is not
needed when using the MAT-file subroutine library to read and write
MAT-files, and we strongly advise that you do use the External Interface
Library if it is available for all of the machines that you are working with.

A MAT-file may contain one or more matrices. The matrices are written
sequentially on disk, with the bytes forming a continuous stream. Each matrix
starts with a fixed-length 20-byte header that contains information describing
certain attributes of the Matrix. The 20-byte header consists of five long
(4-byte) integers:

Table 1-8: Level 4 MAT-File Matrix Header Format

Field Description

type The type flag contains an integer whose decimal digits encode storage information. If
the integer is represented as MOPT where M is the thousands digit, O is the hundreds
digit, P is the tens digit, and T is the ones digit, then:

M indicates the numeric format of binary numbers on the machine that wrote the file.
Use this table to determine the number to use for your machine:

0 IEEE Little Endian (PC, 386, 486, DEC Risc)

1 IEEE Big Endian (Macintosh, SPARC, Apollo,SGI, HP 9000/300,
other Motorola)

2 VAX D-float

3 VAX G-float

4 Cray
6

Level 4 MAT-File Format
O is always 0 (zero) and is reserved for future use.

P indicates which format the data is stored in according to the following table:

0 double-precision (64-bit) floating point numbers

1 single-precision (32-bit) floating point numbers

2 32-bit signed integers

3 16-bit signed integers

4 16-bit unsigned integers

5 8-bit unsigned integers

The precision used by the save command depends on the size and type of each matrix.
Matrices with any noninteger entries and matrices with 10,000 or fewer elements are
saved in floating point formats requiring 8 bytes per real element. Matrices with all
integer entries and more than 10,000 elements are saved in the following formats,
requiring fewer bytes per element.

Element range Bytes per element

[0:255] 1

[0:65535] 2

[-32767:32767] 2

[-2^31+1:2^31-1] 4

other 8

T indicates the matrix type according to the following table:

0 Numeric (Full) matrix

1 Text matrix

2 Sparse matrix

Note that the elements of a text matrix are stored as floating point numbers between
0 and 255 representing ASCII-encoded characters.

Table 1-8: Level 4 MAT-File Matrix Header Format (Continued)
1-37

1 MAT-File Format

1-3
Immediately following the fixed length header is the data whose length is
dependent on the variables in the fixed length header:

This structure is repeated for each matrix stored in the file.

The following C language code demonstrates how to write a single matrix to
disk in Level 1.0 MAT-file format.

#include <stdio.h>

main() {
typedef struct {
 long type;
 long mrows;
 long ncols;
 long imagf;

mrows The row dimension contains an integer with the number of rows in the matrix.

ncols The column dimension contains an integer with the number of columns in the matrix.

imagf The imaginary flag is an integer whose value is either 0 or 1. If 1, then the matrix has
an imaginary part. If 0, there is only real data.

namlen The name length contains an integer with 1 plus the length of the matrix name.

Table 1-8: Level 4 MAT-File Matrix Header Format (Continued)

Table 1-9: Level 4 MAT-File Matrix Data Format

Field Description

name The matrix name consists of namlen ASCII bytes, the last one
of which must be a null character ('\0').

real Real part of the matrix consists of mrows ∗ ncols numbers in
the format specified by the P element of the type flag. The
data is stored column-wise such that the second column
follows the first column, etc.

imag Imaginary part of the matrix, if any. If the imaginary flag
imagf is nonzero, the imaginary part of a matrix is placed
here. It is stored in the same manner as the real data.
8

Level 4 MAT-File Format
 long namelen;
 } Fmatrix;

char *pname;
double *pr;
double *pi;
Fmatrix x;
int mn;
FILE *fp;

double real_data = 1.0;
double imag_data = 2.0;

fp = fopen("mymatfile.mat", "wb");
if (fp != NULL) {
 pname = "x";
 x.type = 1000;
 x.mrows = 1;
 x.ncols = 1;
 x.imagf = 1;
 x.namelen = 2;

 pr = &real_data;
 pi = &imag_data;

 fwrite(&x, sizeof(Fmatrix), 1, fp);
 fwrite(pname, sizeof(char), x.namelen, fp);

 mn = x.mrows *x.ncols;
 fwrite(pr, sizeof(double), mn, fp);

 if(x.imagf)
 fwrite(pi, sizeof(double), mn, fp);
 }

else
 printf("File could not be opened.\n");

fclose(fp);
}

1-39

1 MAT-File Format

1-4
Again, we strongly advise against using this approach, and recommend that
you instead use the MAT-file access routines provided in the External Interface
Library. You will need to write your own C code as shown above only if you do
not have the MAT-file access routines for the particular platform on which you
need to read and write MAT-files.
0

Index
A
array flags subelement 1-15

in sparse arrays 1-22
array name subelement 1-18

B
byte swapping 1-7

C
cell arrays

example 1-27
MAT-file format 1-26

character arrays
MAT-file format 1-15

classes
MATLAB arrays 1-17

complex numbers
in MAT-files 1-16

compressing data when saving
data storage 1-12
decompressing variables 1-12
description 1-12
miCOMPRESSED data type 1-9
number of bytes 1-10

compression, data element
description 1-10

compression, numeric
description 1-19
example 1-21

D
data elements

alignment 1-10
cell arrays 1-26
character array format 1-15
compressed format 1-10
defined 1-4
format 1-8
MATLAB arrays 1-14
numeric array format 1-15
objects 1-33
padding bytes 1-10
sparse array format 1-22
structures 1-29
subelements 1-14

data types
changed by compression 1-19
MAT-file vs. MATLAB 1-16
used in MAT-files 1-8

dimensions
determining number of 1-18

dimensions array subelement 1-17

E
Endian indicator 1-7

F
field name length

in structure data elements 1-30
field names

in structure data elements 1-30
flags

format 1-16

G
global variables

in MAT-files 1-16
Index-1

Index

Ind
H
header

defined 1-4
flag fields 1-7
format 1-6
text field 1-6

I
IEEE 754 double format 1-9
imaginary data

in data element 1-18

L
logical arrays

in MAT-files 1-16

M
MAT-files (V4)

distinguishing from V5 format 1-6
format 1-36

MAT-files (V5)
data types 1-8
distinguishing from V4 format 1-6
header format 1-6
header text field 1-6
numeric array data elements 1-15
overall format 1-4
version field 1-7

MATLAB array types 1-16, 1-17
data element formats 1-14

miMATRIX 1-14
miMATRIX format 1-14
ex-2
N
Number of Bytes field

tag 1-10
numeric array

compressed example 1-21
example 1-20

numeric arrays
MAT-file format 1-15

O
objects

MAT-file format 1-33

P
padding bytes

data elements 1-10
including in Number of Bytes total 1-10

pi 1-18
pr 1-18

R
real data

in data element 1-18

S
sparse arrays

example 1-24
in MAT-file 1-22

structures
example 1-31
MAT-file format 1-29

subelements
defined 1-14

Index
T
tags

defined 1-4
format 1-8
number of bytes field 1-10

U
Unicode character encoding 1-8

V
version field

MAT-file V5 format 1-7
Index-3

MATLAB® 7
Mathematics

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

MATLAB Mathematics

© COPYRIGHT 1984–2007 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined
in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of
this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government’s
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, SimBiology,
SimHydraulics, SimEvents, and xPC TargetBox are registered trademarks and The
MathWorks, the L-shaped membrane logo, Embedded MATLAB, and PolySpace are
trademarks of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective
holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
June 2004 First printing New for MATLAB 7.0 (Release 14), formerly part of Using

MATLAB
October 2004 Online only Revised for MATLAB 7.0.1 (Release 14SP1)
March 2005 Online only Revised for MATLAB 7.0.4 (Release 14SP2)
June 2005 Second printing Minor revision for MATLAB 7.0.4
September 2005 Second printing Revised for MATLAB 7.1 (Release 14SP3)
March 2006 Second printing Revised for MATLAB 7.2 (Release 2006a)
September 2006 Second printing Revised for MATLAB 7.3 (Release 2006b)
September 2007 Online only Revised for MATLAB 7.5 (Release 2007b)

Contents

Matrices and Linear Algebra

1
Function Summary . 1-3

Matrices in MATLAB . 1-6
Creating Matrices . 1-6
Adding and Subtracting Matrices . 1-8
Vector Products and Transpose . 1-8
Multiplying Matrices . 1-11
The Identity Matrix . 1-12
The Kronecker Tensor Product . 1-13
Vector and Matrix Norms . 1-14

Solving Linear Systems of Equations 1-16
Computational Considerations . 1-16
General Solution . 1-18
Square Systems . 1-18
Overdetermined Systems . 1-21
Underdetermined Systems . 1-24

Inverses and Determinants . 1-26
Overview . 1-26
Pseudoinverses . 1-27

Cholesky, LU, and QR Factorizations 1-31
About Matrix Factorizations . 1-31
Cholesky Factorization . 1-31
LU Factorization . 1-33
QR Factorization . 1-34

Matrix Powers and Exponentials . 1-39
Positive Integer Powers . 1-39
Inverse and Fractional Powers . 1-39
Element-by-Element Powers . 1-40
Exponentials . 1-40

v

Eigenvalues . 1-43
Eigenvalue Decomposition . 1-43
Defective Matrices . 1-44
Schur Decomposition in MATLAB Matrix Computations . . 1-46

Singular Value Decomposition . 1-47

Polynomials and Interpolation

2
Polynomials . 2-2

Polynomial Function Summary . 2-2
Representing Polynomials . 2-3
Polynomial Roots . 2-3
Characteristic Polynomials . 2-4
Polynomial Evaluation . 2-4
Convolution and Deconvolution . 2-5
Polynomial Derivatives . 2-5
Polynomial Curve Fitting . 2-6
Partial Fraction Expansion . 2-7

Interpolation . 2-9
Interpolation Function Summary . 2-9
One-Dimensional Interpolation . 2-10
Two-Dimensional Interpolation . 2-12
Comparing Interpolation Methods . 2-13
Interpolation and Multidimensional Arrays 2-15
Triangulation and Interpolation of Scattered Data 2-19
Tessellation and Interpolation of Scattered Data in Higher

Dimensions . 2-27

Selected Bibliography . 2-38

vi Contents

Fast Fourier Transform (FFT)

3
Introduction . 3-2

Finding an FFT . 3-2
Example: Using FFT to Calculate Sunspot Periodicity . . . 3-3

Magnitude and Phase of Transformed Data 3-7

FFT Length Versus Speed . 3-9

Function Summary . 3-10

Function Functions

4
Function Summary . 4-2

Representing Functions in MATLAB 4-4
MATLAB Functions . 4-4
Anonymous Functions . 4-4

Plotting Mathematical Functions 4-6

Minimizing Functions and Finding Zeros 4-9
MATLAB Optimization Functions . 4-9
Minimizing Functions of One Variable 4-10
Minimizing Functions of Several Variables 4-11
Fitting a Curve to Data . 4-11
Setting Minimization Options . 4-14
Output Functions . 4-15
Finding Zeros of Functions . 4-23
Tips . 4-27
Troubleshooting . 4-27

Numerical Integration (Quadrature) 4-29
Example: Computing the Length of a Curve 4-30

vii

Example: Double Integration . 4-30

Parameterizing Functions Called by Function
Functions . 4-33
Providing Parameter Values Using Nested Functions 4-33
Providing Parameter Values to Anonymous Functions . . . 4-34

Differential Equations

5
Initial Value Problems for ODEs and DAEs 5-3

ODE Function Summary . 5-3
Introduction to Initial Value ODE Problems 5-5
Solvers for Explicit and Linearly Implicit ODEs 5-7
Examples: Solving Explicit ODE Problems 5-11
Solver for Fully Implicit ODEs . 5-17
Example: Solving a Fully Implicit ODE Problem 5-18
Changing ODE Integration Properties 5-19
Examples: Applying the ODE Initial Value Problem

Solvers . 5-20
Questions and Answers, and Troubleshooting 5-44

Initial Value Problems for DDEs . 5-53
DDE Function Summary . 5-53
Introduction to Initial Value DDE Problems 5-54
DDE Solvers . 5-55
Solving DDE Problems . 5-56
Discontinuities . 5-59
Changing DDE Integration Properties 5-63
Example of a State-Dependent Delay 5-63

Boundary Value Problems for ODEs 5-65
BVP Function Summary . 5-65
Introduction to Boundary Value ODE Problems 5-67
Boundary Value Problem Solver . 5-68
Changing BVP Integration Properties 5-71
Solving BVP Problems . 5-72
Using Continuation to Make a Good Initial Guess 5-76
Solving Singular BVPs . 5-84

viii Contents

Solving Multipoint BVPs . 5-88

Partial Differential Equations . 5-93
PDE Function Summary . 5-93
Introduction to PDE Problems . 5-94
MATLAB Partial Differential Equation Solver 5-95
Solving PDE Problems . 5-99
Evaluating the Solution at Specific Points 5-104
Changing PDE Integration Properties 5-104
Example: Electrodynamics Problem 5-105

Selected Bibliography . 5-110

Sparse Matrices

6
Function Summary . 6-2

Categories of Functions That Support Sparse Matrices . . . 6-2
Categories of Functions That Do Not Support Sparse

Matrices . 6-5
Sparse-Supported Replacement Functions 6-9

Reducing Memory and Efficiency with Sparse
Matrices . 6-10
Storing Sparse Matrices . 6-10
Comparing Storage for Sparse and Full Matrices 6-11

Creating and Importing Sparse Matrices 6-12
Creating Sparse Matrices . 6-12
Importing Sparse Matrices from Outside MATLAB 6-17

Viewing Sparse Matrices . 6-18
Obtaining Information About Nonzero Elements 6-18
Viewing Sparse Matrices Graphically 6-20
Finding Indices and Values of Sparse Matrices 6-21

Operating on Sparse Matrices . 6-22

ix

Considering Computational Complexity and Standard
Mathematical Operations . 6-22

Performing Permutations and Reordering 6-23
Factorizing . 6-27
Solving Simultaneous Linear Equations 6-34
Solving Eigenvalues and Singular Values 6-37
Identifying Performance Limitations 6-39

Selected Bibliography . 6-42

Index

x Contents

1

Matrices and Linear
Algebra

Function Summary (p. 1-3) Summarizes theMATLAB® linear
algebra functions

Matrices in MATLAB (p. 1-6) Explains the use of matrices and
basic matrix operations in MATLAB

Solving Linear Systems of Equations
(p. 1-16)

Discusses the solution of
simultaneous linear equations
in MATLAB, including square
systems, overdetermined systems,
and underdetermined systems

Inverses and Determinants (p. 1-26) Explains the use in MATLAB
of inverses, determinants, and
pseudoinverses in the solution of
systems of linear equations

Cholesky, LU, and QR Factorizations
(p. 1-31)

Discusses the solution in MATLAB
of systems of linear equations that
involve triangular matrices, using
Cholesky factorization, Gaussian
elimination, and orthogonalization

Matrix Powers and Exponentials
(p. 1-39)

Explains the use of MATLAB
notation to obtain various matrix
powers and exponentials

1 Matrices and Linear Algebra

Eigenvalues (p. 1-43) Explains eigenvalues and describes
eigenvalue decomposition in
MATLAB

Singular Value Decomposition
(p. 1-47)

Describes singular value
decomposition of a rectangular
matrix in MATLAB

1-2

Function Summary

Function Summary
The linear algebra functions are located in the MATLAB matfun directory.

There are three columns in this table, but only four entries in the first column.
The entries in the first column divide the functions into the categories of
matrix analysis, linear equations, eigenvalues and singular values, and
matrix functions.

Function Summary

Category Function Description

norm Matrix or vector norm

normest Estimate the matrix
2-norm

rank Matrix rank

det Determinant

trace Sum of diagonal
elements

null Null space

orth Orthogonalization

rref Reduced row echelon
form

Matrix analysis

subspace Angle between two
subspaces

1-3

1 Matrices and Linear Algebra

Function Summary (Continued)

Category Function Description

\ and / Linear equation
solution

inv Matrix inverse

cond Condition number for
inversion.

condest 1-norm condition
number estimate

chol Cholesky factorization

cholinc Incomplete Cholesky
factorization

linsolve Solve a system of linear
equations

lu LU factorization

ilu Incomplete LU
factorization

luinc Incomplete LU
factorization

qr Orthogonal-triangular
decomposition

lsqnonneg Nonnegative
least-squares

pinv Pseudoinverse

Linear equations

lscov Least squares with
known covariance

1-4

Function Summary

Function Summary (Continued)

Category Function Description

eig Eigenvalues and
eigenvectors

svd Singular value
decomposition

eigs A few eigenvalues

svds A few singular values

poly Characteristic
polynomial

polyeig Polynomial eigenvalue
problem

condeig Condition number for
eigenvalues

hess Hessenberg form

qz QZ factorization

Eigenvalues and
singular values

schur Schur decomposition

expm Matrix exponential

logm Matrix logarithm

sqrtm Matrix square root

Matrix functions

funm Evaluate general
matrix function

1-5

1 Matrices and Linear Algebra

Matrices in MATLAB

In this section...

“Creating Matrices” on page 1-6

“Adding and Subtracting Matrices” on page 1-8

“Vector Products and Transpose” on page 1-8

“Multiplying Matrices” on page 1-11

“The Identity Matrix” on page 1-12

“The Kronecker Tensor Product” on page 1-13

“Vector and Matrix Norms” on page 1-14

Creating Matrices
Informally, the terms matrix and array are often used interchangeably. More
precisely, a matrix is a two-dimensional rectangular array of real or complex
numbers that represents a linear transformation. The linear algebraic
operations defined on matrices have found applications in a wide variety of
technical fields. (The optional Symbolic Math Toolbox extends the capabilities
of MATLAB to operations on various types of nonnumeric matrices.)

MATLAB has dozens of functions that create different kinds of matrices.
Two of them can be used to create a pair of 3-by-3 example matrices for use
throughout this chapter. The first example is symmetric:

A = pascal(3)

A =
1 1 1
1 2 3
1 3 6

The second example is not symmetric:

B = magic(3)

B =

1-6

Matrices in MATLAB

8 1 6
3 5 7
4 9 2

Another example is a 3-by-2 rectangular matrix of random integers:

C = fix(10*rand(3,2))

C =
9 4
2 8
6 7

A column vector is an m-by-1 matrix, a row vector is a 1-by-n matrix and a
scalar is a 1-by-1 matrix. The statements

u = [3; 1; 4]

v = [2 0 -1]

s = 7

produce a column vector, a row vector, and a scalar:

u =
3
1
4

v =
2 0 -1

s =
7

For more information about creating and working with matrices, see “Data
Structures” in the MATLAB Programming documentation.

1-7

1 Matrices and Linear Algebra

Adding and Subtracting Matrices
Addition and subtraction of matrices is defined just as it is for arrays,
element-by-element. Adding A to B and then subtracting A from the result
recovers B:

A = pascal(3);
B = magic(3);
X = A + B

X =
9 2 7
4 7 10
5 12 8

Y = X - A

Y =
8 1 6
3 5 7
4 9 2

Addition and subtraction require both matrices to have the same dimension,
or one of them be a scalar. If the dimensions are incompatible, an error results:

C = fix(10*rand(3,2))
X = A + C
Error using ==> +
Matrix dimensions must agree.

w = v + s

w =
9 7 6

Vector Products and Transpose
A row vector and a column vector of the same length can be multiplied in
either order. The result is either a scalar, the inner product, or a matrix,
the outer product:

u = [3; 1; 4];

1-8

Matrices in MATLAB

v = [2 0 -1];
x = v*u

x =
2

X = u*v

X =
6 0 -3
2 0 -1
8 0 -4

For real matrices, the transpose operation interchanges and . MATLAB
uses the apostrophe operator (') to perform a complex conjugate transpose,
and the dot-apostrophe operator (.') to transpose without conjugation. For
matrices containing all real elements, the two operators return the same
result.

The example matrix A is symmetric, so A' is equal to A. But B is not symmetric:

B = magic(3);
X = B'

X =
8 3 4
1 5 9
6 7 2

Transposition turns a row vector into a column vector:

x = v'

x =
2
0

-1

If x and y are both real column vectors, the product x*y is not defined, but
the two products

1-9

1 Matrices and Linear Algebra

x'*y

and

y'*x

are the same scalar. This quantity is used so frequently, it has three different
names: inner product, scalar product, or dot product.

For a complex vector or matrix, z, the quantity z' not only transposes the
vector or matrix, but also converts each complex element to its complex
conjugate. That is, the sign of the imaginary part of each complex element
is changed. So if

z = [1+2i 7-3i 3+4i; 6-2i 9i 4+7i]
z =

1.0000 + 2.0000i 7.0000 - 3.0000i 3.0000 + 4.0000i
6.0000 - 2.0000i 0 + 9.0000i 4.0000 + 7.0000i

then

z'
ans =

1.0000 - 2.0000i 6.0000 + 2.0000i
7.0000 + 3.0000i 0 - 9.0000i
3.0000 - 4.0000i 4.0000 - 7.0000i

The unconjugated complex transpose, where the complex part of each element
retains its sign, is denoted by z.':

z.'
ans =

1.0000 + 2.0000i 6.0000 - 2.0000i
7.0000 - 3.0000i 0 + 9.0000i
3.0000 + 4.0000i 4.0000 + 7.0000i

For complex vectors, the two scalar products x'*y and y'*x are complex
conjugates of each other and the scalar product x'*x of a complex vector
with itself is real.

1-10

Matrices in MATLAB

Multiplying Matrices
Multiplication of matrices is defined in a way that reflects composition of
the underlying linear transformations and allows compact representation of
systems of simultaneous linear equations. The matrix product C = AB is
defined when the column dimension of A is equal to the row dimension of B,
or when one of them is a scalar. If A is m-by-p and B is p-by-n, their product
C is m-by-n. The product can actually be defined using MATLAB for loops,
colon notation, and vector dot products:

A = pascal(3);
B = magic(3);
m = 3; n = 3;
for i = 1:m

for j = 1:n
C(i,j) = A(i,:)*B(:,j);

end
end

MATLAB uses a single asterisk to denote matrix multiplication. The next two
examples illustrate the fact that matrix multiplication is not commutative;
AB is usually not equal to BA:

X = A*B

X =
15 15 15
26 38 26
41 70 39

Y = B*A

Y =
15 28 47
15 34 60
15 28 43

A matrix can be multiplied on the right by a column vector and on the left
by a row vector:

u = [3; 1; 4];

1-11

1 Matrices and Linear Algebra

x = A*u

x =
8

17
30

v = [2 0 -1];
y = v*B

y =
12 -7 10

Rectangular matrix multiplications must satisfy the dimension compatibility
conditions:

C = fix(10*rand(3,2));
X = A*C

X =
17 19
31 41
51 70

Y = C*A

Error using ==> *
Inner matrix dimensions must agree.

Anything can be multiplied by a scalar:

s = 7;
w = s*v

w =
14 0 -7

The Identity Matrix
Generally accepted mathematical notation uses the capital letter to denote
identity matrices, matrices of various sizes with ones on the main diagonal

1-12

Matrices in MATLAB

and zeros elsewhere. These matrices have the property that and
whenever the dimensions are compatible. The original version of

MATLAB could not use for this purpose because it did not distinguish
between uppercase and lowercase letters and already served double duty
as a subscript and as the complex unit. So an English language pun was
introduced. The function

eye(m,n)

returns an m-by-n rectangular identity matrix and eye(n) returns an n-by-n
square identity matrix.

The Kronecker Tensor Product
The Kronecker product, kron(X,Y), of two matrices is the larger matrix
formed from all possible products of the elements of X with those of Y. If X
is m-by-n and Y is p-by-q, then kron(X,Y) is mp-by-nq. The elements are
arranged in the following order:

[X(1,1)*Y X(1,2)*Y . . . X(1,n)*Y
. . .

X(m,1)*Y X(m,2)*Y . . . X(m,n)*Y]

The Kronecker product is often used with matrices of zeros and ones to build
up repeated copies of small matrices. For example, if X is the 2-by-2 matrix

X =
1 2
3 4

and I = eye(2,2) is the 2-by-2 identity matrix, then the two matrices

kron(X,I)

and

kron(I,X)

are

1 0 2 0
0 1 0 2

1-13

1 Matrices and Linear Algebra

3 0 4 0
0 3 0 4

and

1 2 0 0
3 4 0 0
0 0 1 2
0 0 3 4

Vector and Matrix Norms
The p-norm of a vector x

is computed by norm(x,p). This is defined by any value of p > 1, but the
most common values of p are 1, 2, and . The default value is p = 2, which
corresponds to Euclidean length:

v = [2 0 -1];
[norm(v,1) norm(v) norm(v,inf)]

ans =
3.0000 2.2361 2.0000

The p-norm of a matrix A,

can be computed for p = 1, 2, and by norm(A,p). Again, the default value
is p = 2:

C = fix(10*rand(3,2));
[norm(C,1) norm(C) norm(C,inf)]

ans =
19.0000 14.8015 13.0000

1-14

1 Matrices and Linear Algebra

1-15

1 Matrices and Linear Algebra

Solving Linear Systems of Equations

In this section...

“Computational Considerations” on page 1-16

“General Solution” on page 1-18

“Square Systems” on page 1-18

“Overdetermined Systems” on page 1-21

“Underdetermined Systems” on page 1-24

Computational Considerations
One of the most important problems in technical computing is the solution
of simultaneous linear equations. In matrix notation, this problem can be
stated as follows.

Given two matrices A and B, does there exist a unique matrix X so that
AX = B or XA = B?

It is instructive to consider a 1-by-1 example.

Does the equation

have a unique solution?

The answer, of course, is yes. The equation has the unique solution x = 3. The
solution is easily obtained by division:

The solution is not ordinarily obtained by computing the inverse of 7, that is
7-1 = 0.142857..., and then multiplying 7-1 by 21. This would be more work
and, if 7-1 is represented to a finite number of digits, less accurate. Similar
considerations apply to sets of linear equations with more than one unknown;
MATLAB solves such equations without computing the inverse of the matrix.

1-16

Solving Linear Systems of Equations

Although it is not standard mathematical notation, MATLAB uses the
division terminology familiar in the scalar case to describe the solution of a
general system of simultaneous equations. The two division symbols, slash, /,
and backslash, \, are used for the two situations where the unknown matrix
appears on the left or right of the coefficient matrix:

X = A\B Denotes the solution to the matrix equation AX
= B.

X = B/A Denotes the solution to the matrix equation XA
= B.

You can think of “dividing” both sides of the equation AX = B or XA = B by A.
The coefficient matrix A is always in the “denominator.”

The dimension compatibility conditions for X = A\B require the two matrices
A and B to have the same number of rows. The solution X then has the
same number of columns as B and its row dimension is equal to the column
dimension of A. For X = B/A, the roles of rows and columns are interchanged.

In practice, linear equations of the form AX = B occur more frequently than
those of the form XA = B. Consequently, backslash is used far more frequently
than slash. The remainder of this section concentrates on the backslash
operator; the corresponding properties of the slash operator can be inferred
from the identity

(B/A)' = (A'\B')

The coefficient matrix A need not be square. If A is m-by-n, there are three
cases:

m = n Square system. Seek an exact solution.

m > n Overdetermined system. Find a least squares
solution.

m < n Underdetermined system. Find a basic solution
with at most m nonzero components.

1-17

1 Matrices and Linear Algebra

The backslash operator employs different algorithms to handle different kinds
of coefficient matrices. The various cases, which are diagnosed automatically
by examining the coefficient matrix, include

• Permutations of triangular matrices

• Symmetric, positive definite matrices

• Square, nonsingular matrices

• Rectangular, overdetermined systems

• Rectangular, underdetermined systems

General Solution
The general solution to a system of linear equations AX = b describes all
possible solutions. You can find the general solution by

1 Solving the corresponding homogeneous system AX = 0. Do this using the
null command, by typing null(A). This returns a basis for the solution
space to AX = 0. Any solution is a linear combination of basis vectors.

2 Finding a particular solution to the non-homogeneous system AX = b.

You can then write any solution to AX = b as the sum of the particular
solution to AX = b, from step 2, plus a linear combination of the basis vectors
from step 1.

The rest of this section describes how to use MATLAB to find a particular
solution to AX = b, as in step 2.

Square Systems
The most common situation involves a square coefficient matrix A and a single
right-hand side column vector b.

Nonsingular Coefficient Matrix
If the matrix A is nonsingular, the solution, x = A\b, is then the same size as
b. For example,

A = pascal(3);

1-18

Solving Linear Systems of Equations

u = [3; 1; 4];
x = A\u

x =
10

-12
5

It can be confirmed that A*x is exactly equal to u.

If A and B are square and the same size, then X = A\B is also that size:

B = magic(3);
X = A\B

X =
19 -3 -1

-17 4 13
6 0 -6

It can be confirmed that A*X is exactly equal to B.

Both of these examples have exact, integer solutions. This is because the
coefficient matrix was chosen to be pascal(3), which has a determinant
equal to one. A later section considers the effects of roundoff error inherent in
more realistic computations.

Singular Coefficient Matrix
A square matrix A is singular if it does not have linearly independent
columns. If A is singular, the solution to AX = B either does not exist, or is not
unique. The backslash operator, A\B, issues a warning if A is nearly singular
and raises an error condition if it detects exact singularity.

If A is singular and AX = b has a solution, you can find a particular solution
that is not unique, by typing

P = pinv(A)*b

1-19

1 Matrices and Linear Algebra

P is a pseudoinverse of A. If AX = b does not have an exact solution, pinv(A)
returns a least-squares solution.

For example,

A = [1 3 7
-1 4 4
1 10 18]

is singular, as you can verify by typing

det(A)

ans =
0

Note For information about using pinv to solve systems with rectangular
coefficient matrices, see “Pseudoinverses” on page 1-27.

Exact Solutions. For b =[5;2;12], the equation AX = b has an exact
solution, given by

pinv(A)*b

ans =
0.3850

-0.1103
0.7066

You can verify that pinv(A)*b is an exact solution by typing

A*pinv(A)*b

ans =
5.0000
2.0000

12.0000

1-20

Solving Linear Systems of Equations

Least Squares Solutions. On the other hand, if b = [3;6;0], then AX =
b does not have an exact solution. In this case, pinv(A)*b returns a least
squares solution. If you type

A*pinv(A)*b

ans =
-1.0000
4.0000
2.0000

you do not get back the original vector b.

You can determine whether AX = b has an exact solution by finding the
row reduced echelon form of the augmented matrix [A b]. To do so for this
example, enter

rref([A b])
ans =

1.0000 0 2.2857 0
0 1.0000 1.5714 0
0 0 0 1.0000

Since the bottom row contains all zeros except for the last entry, the equation
does not have a solution. In this case, pinv(A) returns a least-squares
solution.

Overdetermined Systems
Overdetermined systems of simultaneous linear equations are often
encountered in various kinds of curve fitting to experimental data. Here is a
hypothetical example. A quantity y is measured at several different values
of time, t, to produce the following observations:

t y

0.0 0.82

0.3 0.72

0.8 0.63

1-21

1 Matrices and Linear Algebra

t y

1.1 0.60

1.6 0.55

2.3 0.50

Enter the data into MATLAB with the statements

t = [0 .3 .8 1.1 1.6 2.3]';
y = [.82 .72 .63 .60 .55 .50]';

Try modeling the data with a decaying exponential function:

The preceding equation says that the vector y should be approximated by a
linear combination of two other vectors, one the constant vector containing all
ones and the other the vector with components e-t. The unknown coefficients,
c1 and c2, can be computed by doing a least squares fit, which minimizes the
sum of the squares of the deviations of the data from the model. There are six
equations in two unknowns, represented by the 6-by-2 matrix:

E = [ones(size(t)) exp(-t)]

E =
1.0000 1.0000
1.0000 0.7408
1.0000 0.4493
1.0000 0.3329
1.0000 0.2019
1.0000 0.1003

Use the backslash operator to get the least squares solution:

c = E\y

c =
0.4760

1-22

Solving Linear Systems of Equations

0.3413

In other words, the least squares fit to the data is

The following statements evaluate the model at regularly spaced increments
in t, and then plot the result, together with the original data:

T = (0:0.1:2.5)';
Y = [ones(size(T)) exp(-T)]*c;
plot(T,Y,'-',t,y,'o')

You can see that E*c is not exactly equal to y, but that the difference might
well be less than measurement errors in the original data.

A rectangular matrix A is rank deficient if it does not have linearly
independent columns. If A is rank deficient, the least squares solution to AX =
B is not unique. The backslash operator, A\B, issues a warning if A is rank
deficient and produces a least squares solution that has at most rank(A)
nonzeros.

1-23

1 Matrices and Linear Algebra

Underdetermined Systems
Underdetermined linear systems involve more unknowns than equations.
The solution to such underdetermined systems is not unique. The matrix left
division operation in MATLAB finds a basic solution, which has at most m
nonzero components.

Here is a small, random example:

R = [6 8 7 3; 3 5 4 1]
R =

6 8 7 3
3 5 4 1

rand('state', 0);
b = fix(10*rand(2,1))
b =

9
2

The linear system Rx = b involves two equations in four unknowns. Since the
coefficient matrix contains small integers, it is appropriate to use the format
command to display the solution in rational format. The particular solution
is obtained with

format rat
p = R\b
p =

0
-3/7
0

29/7

One of the nonzero components is p(2) because R(:,2) is the column of R
with largest norm. The other nonzero component is p(4) because R(:,4)
dominates after R(:,2) is eliminated.

The complete solution to the underdetermined system can be characterized by
adding an arbitrary vector from the null space, which can be found using the
null function with an option requesting a “rational” basis:

1-24

Solving Linear Systems of Equations

Z = null(R,'r')
Z =

-1/2 -7/6
-1/2 1/2
1 0
0 1

It can be confirmed that R*Z is zero and that any vector x where

x = p + Z*q

for an arbitrary vector q satisfies R*x = b.

1-25

1 Matrices and Linear Algebra

Inverses and Determinants

In this section...

“Overview” on page 1-26

“Pseudoinverses” on page 1-27

Overview
If A is square and nonsingular, the equations AX = I and XA = I have the
same solution, X. This solution is called the inverse of A, is denoted by A-1,
and is computed by the function inv. The determinant of a matrix is useful in
theoretical considerations and some types of symbolic computation, but its
scaling and roundoff error properties make it far less satisfactory for numeric
computation. Nevertheless, the function det computes the determinant of
a square matrix:

A = pascal(3)

A =
1 1 1
1 2 3
1 3 6

d = det(A)
X = inv(A)

d =
1

X =
3 -3 1

-3 5 -2
1 -2 1

Again, because A is symmetric, has integer elements, and has determinant
equal to one, so does its inverse. On the other hand,

B = magic(3)

B =

1-26

Inverses and Determinants

8 1 6
3 5 7
4 9 2

d = det(B)
X = inv(B)

d =
-360

X =
0.1472 -0.1444 0.0639

-0.0611 0.0222 0.1056
-0.0194 0.1889 -0.1028

Closer examination of the elements of X, or use of format rat, would reveal
that they are integers divided by 360.

If A is square and nonsingular, then without roundoff error, X = inv(A)*B
would theoretically be the same as X = A\B and Y = B*inv(A) would
theoretically be the same as Y = B/A. But the computations involving the
backslash and slash operators are preferable because they require less
computer time, less memory, and have better error detection properties.

Pseudoinverses
Rectangular matrices do not have inverses or determinants. At least one
of the equations AX = I and XA = I does not have a solution. A partial
replacement for the inverse is provided by the Moore-Penrose pseudoinverse,
which is computed by the pinv function:

format short
rand('state', 0);
C = fix(10*rand(3,2));
X = pinv(C)

X =
0.1159 -0.0729 0.0171

-0.0534 0.1152 0.0418

The matrix

1-27

1 Matrices and Linear Algebra

Q = X*C

Q =
1.0000 0.0000
0.0000 1.0000

is the 2-by-2 identity, but the matrix

P = C*X

P =
0.8293 -0.1958 0.3213

-0.1958 0.7754 0.3685
0.3213 0.3685 0.3952

is not the 3-by-3 identity. However, P acts like an identity on a portion of the
space in the sense that P is symmetric, P*C is equal to C and X*P is equal to X.

Solving a Rank-Deficient System
If A is m-by-n with m > n and full rank n, then each of the three statements

x = A\b
x = pinv(A)*b
x = inv(A'*A)*A'*b

theoretically computes the same least squares solution x, although the
backslash operator does it faster.

However, if A does not have full rank, the solution to the least squares problem
is not unique. There are many vectors x that minimize

norm(A*x -b)

The solution computed by x = A\b is a basic solution; it has at most r
nonzero components, where r is the rank of A. The solution computed by x
= pinv(A)*b is the minimal norm solution because it minimizes norm(x).
An attempt to compute a solution with x = inv(A'*A)*A'*b fails because
A'*A is singular.

Here is an example that illustrates the various solutions:

1-28

Inverses and Determinants

A = [1 2 3
4 5 6
7 8 9

10 11 12]

does not have full rank. Its second column is the average of the first and
third columns. If

b = A(:,2)

is the second column, then an obvious solution to A*x = b is x = [0 1 0]'.
But none of the approaches computes that x. The backslash operator gives

x = A\b

Warning: Rank deficient, rank = 2.

x =
0.5000
0
0.5000

This solution has two nonzero components. The pseudoinverse approach gives

y = pinv(A)*b

y =
0.3333
0.3333
0.3333

There is no warning about rank deficiency. But norm(y) = 0.5774 is less
than norm(x) = 0.7071. Finally

z = inv(A'*A)*A'*b

fails completely:

Warning: Matrix is singular to working precision.

z =

1-29

1 Matrices and Linear Algebra

Inf
Inf
Inf

1-30

Cholesky, LU, and QR Factorizations

Cholesky, LU, and QR Factorizations

In this section...

“About Matrix Factorizations” on page 1-31

“Cholesky Factorization” on page 1-31

“LU Factorization” on page 1-33

“QR Factorization” on page 1-34

About Matrix Factorizations
All three of these factorizations make use of triangular matrices where all
the elements either above or below the diagonal are zero. Systems of linear
equations involving triangular matrices are easily and quickly solved using
either forward or back substitution.

Cholesky Factorization
The Cholesky factorization expresses a symmetric matrix as the product of a
triangular matrix and its transpose

where R is an upper triangular matrix.

Not all symmetric matrices can be factored in this way; the matrices that have
such a factorization are said to be positive definite. This implies that all the
diagonal elements of A are positive and that the offdiagonal elements are “not
too big.” The Pascal matrices provide an interesting example. Throughout this
chapter, the example matrix A has been the 3-by-3 Pascal matrix. Temporarily
switch to the 6-by-6:

A = pascal(6)

A =
1 1 1 1 1 1
1 2 3 4 5 6
1 3 6 10 15 21
1 4 10 20 35 56

1-31

1 Matrices and Linear Algebra

1 5 15 35 70 126
1 6 21 56 126 252

The elements of A are binomial coefficients. Each element is the sum of its
north and west neighbors. The Cholesky factorization is

R = chol(A)

R =
1 1 1 1 1 1
0 1 2 3 4 5
0 0 1 3 6 10
0 0 0 1 4 10
0 0 0 0 1 5
0 0 0 0 0 1

The elements are again binomial coefficients. The fact that R'*R is equal to A
demonstrates an identity involving sums of products of binomial coefficients.

Note The Cholesky factorization also applies to complex matrices. Any
complex matrix which has a Cholesky factorization satisfies A’ = A and is
said to be Hermitian positive definite.

The Cholesky factorization allows the linear system

to be replaced by

Because the backslash operator recognizes triangular systems, this can be
solved in MATLAB quickly with

x = R\(R'\b)

If A is n-by-n, the computational complexity of chol(A) is O(n3), but the
complexity of the subsequent backslash solutions is only O(n2).

1-32

Cholesky, LU, and QR Factorizations

LU Factorization
LU factorization, or Gaussian elimination, expresses any square matrix A
as the product of a permutation of a lower triangular matrix and an upper
triangular matrix

where L is a permutation of a lower triangular matrix with ones on its
diagonal and U is an upper triangular matrix.

The permutations are necessary for both theoretical and computational
reasons. The matrix

cannot be expressed as the product of triangular matrices without
interchanging its two rows. Although the matrix

can be expressed as the product of triangular matrices, when is small the
elements in the factors are large and magnify errors, so even though the
permutations are not strictly necessary, they are desirable. Partial pivoting
ensures that the elements of L are bounded by one in magnitude and that the
elements of U are not much larger than those of A.

For example

[L,U] = lu(B)

L =
1.0000 0 0
0.3750 0.5441 1.0000
0.5000 1.0000 0

U =
8.0000 1.0000 6.0000

1-33

1 Matrices and Linear Algebra

0 8.5000 -1.0000
0 0 5.2941

The LU factorization of A allows the linear system

A*x = b

to be solved quickly with

x = U\(L\b)

Determinants and inverses are computed from the LU factorization using

det(A) = det(L)*det(U)

and

inv(A) = inv(U)*inv(L)

You can also compute the determinants using det(A) = prod(diag(U)),
though the signs of the determinants may be reversed.

QR Factorization
An orthogonal matrix, or a matrix with orthonormal columns, is a real matrix
whose columns all have unit length and are perpendicular to each other. If
Q is orthogonal, then

The simplest orthogonal matrices are two-dimensional coordinate rotations:

For complex matrices, the corresponding term is unitary. Orthogonal and
unitary matrices are desirable for numerical computation because they
preserve length, preserve angles, and do not magnify errors.

1-34

Cholesky, LU, and QR Factorizations

The orthogonal, or QR, factorization expresses any rectangular matrix as the
product of an orthogonal or unitary matrix and an upper triangular matrix. A
column permutation may also be involved:

or

where Q is orthogonal or unitary, R is upper triangular, and P is a
permutation.

There are four variants of the QR factorization—full or economy size, and
with or without column permutation.

Overdetermined linear systems involve a rectangular matrix with more rows
than columns, that is m-by-n with m > n. The full size QR factorization
produces a square, m-by-m orthogonal Q and a rectangular m-by-n upper
triangular R:

[Q,R] = qr(C)

Q =
-0.8182 0.3999 -0.4131
-0.1818 -0.8616 -0.4739
-0.5455 -0.3126 0.7777

R =
-11.0000 -8.5455

0 -7.4817
0 0

In many cases, the last m - n columns of Q are not needed because they are
multiplied by the zeros in the bottom portion of R. So the economy size QR
factorization produces a rectangular, m-by-nQ with orthonormal columns and
a square n-by-n upper triangular R. For the 3-by-2 example, this is not much
of a saving, but for larger, highly rectangular matrices, the savings in both
time and memory can be quite important:

1-35

1 Matrices and Linear Algebra

[Q,R] = qr(C,0)

Q =
-0.8182 0.3999
-0.1818 -0.8616
-0.5455 -0.3126

R =
-11.0000 -8.5455

0 -7.4817

In contrast to the LU factorization, the QR factorization does not require any
pivoting or permutations. But an optional column permutation, triggered by
the presence of a third output argument, is useful for detecting singularity
or rank deficiency. At each step of the factorization, the column of the
remaining unfactored matrix with largest norm is used as the basis for that
step. This ensures that the diagonal elements of R occur in decreasing order
and that any linear dependence among the columns is almost certainly be
revealed by examining these elements. For the small example given here,
the second column of C has a larger norm than the first, so the two columns
are exchanged:

[Q,R,P] = qr(C)

Q =
-0.3522 0.8398 -0.4131
-0.7044 -0.5285 -0.4739
-0.6163 0.1241 0.7777

R =
-11.3578 -8.2762

0 7.2460
0 0

P =
0 1
1 0

When the economy size and column permutations are combined, the third
output argument is a permutation vector, rather than a permutation matrix:

1-36

Cholesky, LU, and QR Factorizations

[Q,R,p] = qr(C,0)

Q =
-0.3522 0.8398
-0.7044 -0.5285
-0.6163 0.1241

R =
-11.3578 -8.2762

0 7.2460

p =
2 1

The QR factorization transforms an overdetermined linear system into an
equivalent triangular system. The expression

norm(A*x - b)

is equal to

norm(Q*R*x - b)

Multiplication by orthogonal matrices preserves the Euclidean norm, so this
expression is also equal to

norm(R*x - y)

where y = Q'*b. Since the last m-n rows of R are zero, this expression breaks
into two pieces:

norm(R(1:n,1:n)*x - y(1:n))

and

norm(y(n+1:m))

When A has full rank, it is possible to solve for x so that the first of these
expressions is zero. Then the second expression gives the norm of the residual.

1-37

1 Matrices and Linear Algebra

When A does not have full rank, the triangular structure of R makes it possible
to find a basic solution to the least squares problem.

1-38

Matrix Powers and Exponentials

Matrix Powers and Exponentials

In this section...

“Positive Integer Powers” on page 1-39

“Inverse and Fractional Powers” on page 1-39

“Element-by-Element Powers” on page 1-40

“Exponentials” on page 1-40

Positive Integer Powers
If A is a square matrix and p is a positive integer, then A^p effectively
multiplies A by itself p-1 times. For example,

A = [1 1 1;1 2 3;1 3 6]

A =

1 1 1
1 2 3
1 3 6

X = A^2

X =
3 6 10
6 14 25

10 25 46

Inverse and Fractional Powers
If A is square and nonsingular, then A^(-p) effectively multiplies inv(A) by
itself p-1 times:

Y = A^(-3)

Y =

145.0000 -207.0000 81.0000

1-39

1 Matrices and Linear Algebra

-207.0000 298.0000 -117.0000
81.0000 -117.0000 46.0000

Fractional powers, like A^(2/3), are also permitted; the results depend upon
the distribution of the eigenvalues of the matrix.

Element-by-Element Powers
The .^ operator produces element-by-element powers. For example,

X = A.^2

A =
1 1 1
1 4 9
1 9 36

Exponentials
The function

sqrtm(A)

computes A^(1/2) by a more accurate algorithm. The m in sqrtm
distinguishes this function from sqrt(A) which, like A.^(1/2), does its job
element-by-element.

A system of linear, constant coefficient, ordinary differential equations can be
written

where x = x(t) is a vector of functions of t and A is a matrix independent of t.
The solution can be expressed in terms of the matrix exponential,

The function

expm(A)

1-40

Matrix Powers and Exponentials

computes the matrix exponential. An example is provided by the 3-by-3
coefficient matrix

A =
0 -6 -1
6 2 -16

-5 20 -10

and the initial condition, x(0)

x0 =
1
1
1

The matrix exponential is used to compute the solution, x(t), to the differential
equation at 101 points on the interval 0 ≤ t ≤ 1 with

X = [];
for t = 0:.01:1

X = [X expm(t*A)*x0];
end

A three-dimensional phase plane plot obtained with

plot3(X(1,:),X(2,:),X(3,:),'-o')

shows the solution spiraling in towards the origin. This behavior is related
to the eigenvalues of the coefficient matrix, which are discussed in the next
section.

1-41

1 Matrices and Linear Algebra

1-42

Eigenvalues

Eigenvalues

In this section...

“Eigenvalue Decomposition” on page 1-43

“Defective Matrices” on page 1-44

“Schur Decomposition in MATLAB Matrix Computations” on page 1-46

Eigenvalue Decomposition
An eigenvalue and eigenvector of a square matrix A are a scalar and a
nonzero vector v that satisfy

With the eigenvalues on the diagonal of a diagonal matrix and the
corresponding eigenvectors forming the columns of a matrix V, you have

If V is nonsingular, this becomes the eigenvalue decomposition

A good example is provided by the coefficient matrix of the ordinary
differential equation in the previous section:

A =
0 -6 -1
6 2 -16

-5 20 -10

The statement

lambda = eig(A)

produces a column vector containing the eigenvalues. For this matrix, the
eigenvalues are complex:

1-43

1 Matrices and Linear Algebra

lambda =
-3.0710
-2.4645+17.6008i
-2.4645-17.6008i

The real part of each of the eigenvalues is negative, so approaches
zero as t increases. The nonzero imaginary part of two of the eigenvalues,

, contributes the oscillatory component, , to the solution of the
differential equation.

With two output arguments, eig computes the eigenvectors and stores the
eigenvalues in a diagonal matrix:

[V,D] = eig(A)

V =
-0.8326 0.2003 - 0.1394i 0.2003 + 0.1394i
-0.3553 -0.2110 - 0.6447i -0.2110 + 0.6447i
-0.4248 -0.6930 -0.6930

D =
-3.0710 0 0

0 -2.4645+17.6008i 0
0 0 -2.4645-17.6008i

The first eigenvector is real and the other two vectors are complex conjugates
of each other. All three vectors are normalized to have Euclidean length,
norm(v,2), equal to one.

The matrix V*D*inv(V), which can be written more succinctly as V*D/V, is
within roundoff error of A. And, inv(V)*A*V, or V\A*V, is within roundoff
error of D.

Defective Matrices
Some matrices do not have an eigenvector decomposition. These matrices are
defective, or not diagonalizable. For example,

A = [6 12 19
-9 -20 -33

1-44

Eigenvalues

4 9 15]

For this matrix

[V,D] = eig(A)

produces

V =

-0.4741 -0.4082 -0.4082
0.8127 0.8165 0.8165

-0.3386 -0.4082 -0.4082

D =

-1.0000 0 0
0 1.0000 0
0 0 1.0000

There is a double eigenvalue at . The second and third columns of V are
the same. For this matrix, a full set of linearly independent eigenvectors
does not exist.

The optional Symbolic Math Toolbox extends the capabilities of MATLAB
by connecting to Maple, a powerful computer algebra system. One of the
functions provided by the toolbox computes the Jordan Canonical Form. This
is appropriate for matrices like the example given here, which is 3-by-3 and
has exactly known, integer elements:

[X,J] = jordan(A)

X =
-1.7500 1.5000 2.7500
3.0000 -3.0000 -3.0000

-1.2500 1.5000 1.2500

J =
-1 0 0
0 1 1

1-45

1 Matrices and Linear Algebra

0 0 1

The Jordan Canonical Form is an important theoretical concept, but it is not a
reliable computational tool for larger matrices, or for matrices whose elements
are subject to roundoff errors and other uncertainties.

Schur Decomposition in MATLAB Matrix Computations
The MATLAB advanced matrix computations do not require eigenvalue
decompositions. They are based, instead, on the Schur decomposition

where U is an orthogonal matrix and S is a block upper triangular matrix
with 1-by-1 and 2-by-2 blocks on the diagonal. The eigenvalues are revealed
by the diagonal elements and blocks of S, while the columns of U provide a
basis with much better numerical properties than a set of eigenvectors. The
Schur decomposition of this defective example is

[U,S] = schur(A)

U =
-0.4741 0.6648 0.5774
0.8127 0.0782 0.5774

-0.3386 -0.7430 0.5774

S =
-1.0000 20.7846 -44.6948

0 1.0000 -0.6096
0 0 1.0000

The double eigenvalue is contained in the lower 2-by-2 block of S.

Note If A is complex, schur returns the complex Schur form, which is upper
triangular with the eigenvalues of A on the diagonal.

1-46

Singular Value Decomposition

Singular Value Decomposition
A singular value and corresponding singular vectors of a rectangular matrix A
are a scalar and a pair of vectors u and v that satisfy

With the singular values on the diagonal of a diagonal matrix and the
corresponding singular vectors forming the columns of two orthogonal
matrices U and V, you have

Since U and V are orthogonal, this becomes the singular value decomposition

The full singular value decomposition of an m-by-n matrix involves an m-by-m
U, an m-by-n , and an n-by-n V. In other words, U and V are both square and

is the same size as A. If A has many more rows than columns, the resulting
U can be quite large, but most of its columns are multiplied by zeros in . In
this situation, the economy sized decomposition saves both time and storage
by producing an m-by-n U, an n-by-n and the same V.

The eigenvalue decomposition is the appropriate tool for analyzing a matrix
when it represents a mapping from a vector space into itself, as it does for
an ordinary differential equation. On the other hand, the singular value
decomposition is the appropriate tool for analyzing a mapping from one vector
space into another vector space, possibly with a different dimension. Most
systems of simultaneous linear equations fall into this second category.

If A is square, symmetric, and positive definite, then its eigenvalue and
singular value decompositions are the same. But, as A departs from symmetry
and positive definiteness, the difference between the two decompositions
increases. In particular, the singular value decomposition of a real matrix is
always real, but the eigenvalue decomposition of a real, nonsymmetric matrix
might be complex.

1-47

1 Matrices and Linear Algebra

For the example matrix

A =
9 4
6 8
2 7

the full singular value decomposition is

[U,S,V] = svd(A)
U =

-0.6105 0.7174 0.3355
-0.6646 -0.2336 -0.7098
-0.4308 -0.6563 0.6194

S =
14.9359 0

0 5.1883
0 0

V =
-0.6925 0.7214
-0.7214 -0.6925

You can verify that U*S*V' is equal to A to within roundoff error. For this
small problem, the economy size decomposition is only slightly smaller:

[U,S,V] = svd(A,0)
U =

-0.6105 0.7174
-0.6646 -0.2336
-0.4308 -0.6563

S =
14.9359 0

0 5.1883
V =

-0.6925 0.7214
-0.7214 -0.6925

Again, U*S*V' is equal to A to within roundoff error.

1-48

2

Polynomials and
Interpolation

Polynomials (p. 2-2) Functions for standard polynomial
operations. Additional topics include
curve fitting and partial fraction
expansion.

Interpolation (p. 2-9) Two- and multi-dimensional
interpolation techniques, taking
into account speed, memory, and
smoothness considerations.

Selected Bibliography (p. 2-38) Published materials that
support concepts implemented
in “Polynomials and Interpolation”

2 Polynomials and Interpolation

Polynomials

In this section...

“Polynomial Function Summary” on page 2-2

“Representing Polynomials” on page 2-3

“Polynomial Roots” on page 2-3

“Characteristic Polynomials” on page 2-4

“Polynomial Evaluation” on page 2-4

“Convolution and Deconvolution” on page 2-5

“Polynomial Derivatives” on page 2-5

“Polynomial Curve Fitting” on page 2-6

“Partial Fraction Expansion” on page 2-7

Polynomial Function Summary
MATLAB provides functions for standard polynomial operations, such as
polynomial roots, evaluation, and differentiation. In addition, there are
functions for more advanced applications, such as curve fitting and partial
fraction expansion.

The polynomial functions reside in the MATLAB polyfun directory.

Polynomial Function Summary

Function Description

conv Multiply polynomials

deconv Divide polynomials

poly Polynomial with specified roots

polyder Polynomial derivative

polyfit Polynomial curve fitting

polyval Polynomial evaluation

2-2

Polynomials

Polynomial Function Summary (Continued)

Function Description

polyvalm Matrix polynomial evaluation

residue Partial-fraction expansion (residues)

roots Find polynomial roots

Symbolic Math Toolbox contains additional specialized support for polynomial
operations.

Representing Polynomials
MATLAB represents polynomials as row vectors containing coefficients
ordered by descending powers. For example, consider the equation

This is the celebrated example Wallis used when he first represented Newton’s
method to the French Academy. To enter this polynomial into MATLAB, use

p = [1 0 -2 -5];

Polynomial Roots
The roots function calculates the roots of a polynomial:

r = roots(p)

r =
2.0946

-1.0473 + 1.1359i
-1.0473 - 1.1359i

By convention, MATLAB stores roots in column vectors. The function poly
returns to the polynomial coefficients:

p2 = poly(r)

p2 =

2-3

2 Polynomials and Interpolation

1 8.8818e-16 -2 -5

poly and roots are inverse functions, up to ordering, scaling, and roundoff
error.

Characteristic Polynomials
The poly function also computes the coefficients of the characteristic
polynomial of a matrix:

A = [1.2 3 -0.9; 5 1.75 6; 9 0 1];
poly(A)

ans =
1.0000 -3.9500 -1.8500 -163.2750

The roots of this polynomial, computed with roots, are the characteristic
roots, or eigenvalues, of the matrix A. (Use eig to compute the eigenvalues
of a matrix directly.)

Polynomial Evaluation
The polyval function evaluates a polynomial at a specified value. To evaluate
p at s = 5, use

polyval(p,5)

ans =
110

It is also possible to evaluate a polynomial in a matrix sense. In this case

becomes , where X is a square matrix
and I is the identity matrix. For example, create a square matrix X and
evaluate the polynomial p at X:

X = [2 4 5; -1 0 3; 7 1 5];
Y = polyvalm(p,X)

Y =
377 179 439

2-4

Polynomials

111 81 136
490 253 639

Convolution and Deconvolution
Polynomial multiplication and division correspond to the operations
convolution and deconvolution. The functions conv and deconv implement
these operations.

Consider the polynomials and . To
compute their product,

a = [1 2 3]; b = [4 5 6];
c = conv(a,b)

c =
4 13 28 27 18

Use deconvolution to divide back out of the product:

[q,r] = deconv(c,a)

q =
4 5 6

r =
0 0 0 0 0

Polynomial Derivatives
The polyder function computes the derivative of any polynomial. To obtain
the derivative of the polynomial p = [1 0 -2 -5],

q = polyder(p)

q =
3 0 -2

polyder also computes the derivative of the product or quotient of two
polynomials. For example, create two polynomials a and b:

2-5

2 Polynomials and Interpolation

a = [1 3 5];
b = [2 4 6];

Calculate the derivative of the product a*b by calling polyder with a single
output argument:

c = polyder(a,b)

c =
8 30 56 38

Calculate the derivative of the quotient a/b by calling polyder with two
output arguments:

[q,d] = polyder(a,b)

q =
-2 -8 -2

d =
4 16 40 48 36

q/d is the result of the operation.

Polynomial Curve Fitting
polyfit finds the coefficients of a polynomial that fits a set of data in a
least-squares sense:

p = polyfit(x,y,n)

x and y are vectors containing the x and y data to be fitted, and n is the degree
of the polynomial to return. For example, consider the x-y test data

x = [1 2 3 4 5]; y = [5.5 43.1 128 290.7 498.4];

A third degree polynomial that approximately fits the data is

p = polyfit(x,y,3)

p =

2-6

Polynomials

-0.1917 31.5821 -60.3262 35.3400

Compute the values of the polyfit estimate over a finer range, and plot the
estimate over the real data values for comparison:

x2 = 1:.1:5;
y2 = polyval(p,x2);
plot(x,y,'o',x2,y2)
grid on

To use these functions in an application example, see “Linear Regression
Analysis” in MATLAB Data Analysis.

Partial Fraction Expansion
residue finds the partial fraction expansion of the ratio of two polynomials.
This is particularly useful for applications that represent systems in transfer
function form. For polynomials b and a, if there are no multiple roots,

2-7

2 Polynomials and Interpolation

where r is a column vector of residues, p is a column vector of pole locations,
and k is a row vector of direct terms. Consider the transfer function

b = [-4 8];
a = [1 6 8];
[r,p,k] = residue(b,a)

r =
-12

8

p =
-4
-2

k =
[]

Given three input arguments (r, p, and k), residue converts back to
polynomial form:

[b2,a2] = residue(r,p,k)

b2 =
-4 8

a2 =
1 6 8

2-8

Interpolation

Interpolation

In this section...

“Interpolation Function Summary” on page 2-9

“One-Dimensional Interpolation” on page 2-10

“Two-Dimensional Interpolation” on page 2-12

“Comparing Interpolation Methods” on page 2-13

“Interpolation and Multidimensional Arrays” on page 2-15

“Triangulation and Interpolation of Scattered Data” on page 2-19

“Tessellation and Interpolation of Scattered Data in Higher Dimensions”
on page 2-27

Interpolation Function Summary
MATLAB provides a number of interpolation techniques that let you balance
the smoothness of the data fit with speed of execution and memory usage.

The interpolation functions reside in the MATLAB polyfun directory.

Interpolation Function Summary

Function Description

griddata Data gridding and surface fitting

griddata3 Data gridding and hypersurface fitting for
three-dimensional data

griddatan Data gridding and hypersurface fitting
(dimension >= 3)

interp1 One-dimensional interpolation (table lookup)

interp2 Two-dimensional interpolation (table lookup)

interp3 Three-dimensional interpolation (table
lookup)

2-9

2 Polynomials and Interpolation

Interpolation Function Summary (Continued)

Function Description

interpft One-dimensional interpolation using FFT
method

interpn N-dimensional interpolation (table lookup)

mkpp Make a piecewise polynomial

pchip Piecewise Cubic Hermite Interpolating
Polynomial (PCHIP)

ppval Piecewise polynomial evaluation

spline Cubic spline data interpolation

unmkpp Piecewise polynomial details

One-Dimensional Interpolation
There are two kinds of one-dimensional interpolation in MATLAB:

• “Polynomial Interpolation” on page 2-10

• “FFT-Based Interpolation” on page 2-12

Polynomial Interpolation
The function interp1 performs one-dimensional interpolation, an important
operation for data analysis and curve fitting. This function uses polynomial
techniques, fitting the supplied data with polynomial functions between data
points and evaluating the appropriate function at the desired interpolation
points. Its most general form is

yi = interp1(x,y,xi,method)

y is a vector containing the values of a function, and x is a vector of the same
length containing the points for which the values in y are given. xi is a vector
containing the points at which to interpolate. method is an optional string
specifying an interpolation method:

2-10

Interpolation

• Nearest neighbor interpolation (method = 'nearest'). This method sets
the value of an interpolated point to the value of the nearest existing
data point.

• Linear interpolation (method = 'linear'). This method fits a different
linear function between each pair of existing data points, and returns the
value of the relevant function at the points specified by xi. This is the
default method for the interp1 function.

• Cubic spline interpolation (method = 'spline'). This method fits a
different cubic function between each pair of existing data points, and uses
the spline function to perform cubic spline interpolation at the data points.

• Cubic interpolation (method = 'pchip' or 'cubic'). These methods
are identical. They use the pchip function to perform piecewise cubic
Hermite interpolation within the vectors x and y. These methods preserve
monotonicity and the shape of the data.

If any element of xi is outside the interval spanned by x, the
specified interpolation method is used for extrapolation. Alternatively,
yi = interp1(x,Y,xi,method,extrapval) replaces extrapolated values
with extrapval. NaN is often used for extrapval.

All methods work with nonuniformly spaced data.

Speed, Memory, and Smoothness Considerations. When choosing an
interpolation method, keep in mind that some require more memory or longer
computation time than others. However, you may need to trade off these
resources to achieve the desired smoothness in the result:

• Nearest neighbor interpolation is the fastest method. However, it provides
the worst results in terms of smoothness.

• Linear interpolation uses more memory than the nearest neighbor method,
and requires slightly more execution time. Unlike nearest neighbor
interpolation its results are continuous, but the slope changes at the vertex
points.

• Cubic spline interpolation has the longest relative execution time, although
it requires less memory than cubic interpolation. It produces the smoothest
results of all the interpolation methods. You may obtain unexpected results,

2-11

2 Polynomials and Interpolation

however, if your input data is nonuniform and some points are much closer
together than others.

• Cubic interpolation requires more memory and execution time than either
the nearest neighbor or linear methods. However, both the interpolated
data and its derivative are continuous.

The relative performance of each method holds true even for interpolation of
two-dimensional or multidimensional data. For a graphical comparison of
interpolation methods, see the section “Comparing Interpolation Methods”
on page 2-13.

FFT-Based Interpolation
The function interpft performs one-dimensional interpolation using an
FFT-based method. This method calculates the Fourier transform of a vector
that contains the values of a periodic function. It then calculates the inverse
Fourier transform using more points. Its form is

y = interpft(x,n)

x is a vector containing the values of a periodic function, sampled at equally
spaced points. n is the number of equally spaced points to return.

Two-Dimensional Interpolation
The function interp2 performs two-dimensional interpolation, an important
operation for image processing and data visualization. Its most general form is

ZI = interp2(X,Y,Z,XI,YI,method)

Z is a rectangular array containing the values of a two-dimensional function,
and X and Y are arrays of the same size containing the points for which the
values in Z are given. XI and YI are matrices containing the points at which to
interpolate the data. method is an optional string specifying an interpolation
method.

There are three different interpolation methods for two-dimensional data:

2-12

Interpolation

• Nearest neighbor interpolation (method = 'nearest'). This method fits
a piecewise constant surface through the data values. The value of an
interpolated point is the value of the nearest point.

• Bilinear interpolation (method = 'linear'). This method fits a bilinear
surface through existing data points. The value of an interpolated point
is a combination of the values of the four closest points. This method is
piecewise bilinear, and is faster and less memory-intensive than bicubic
interpolation.

• Bicubic interpolation (method = 'cubic'). This method fits a bicubic
surface through existing data points. The value of an interpolated point
is a combination of the values of the sixteen closest points. This method
is piecewise bicubic, and produces a much smoother surface than bilinear
interpolation. This can be a key advantage for applications like image
processing. Use bicubic interpolation when the interpolated data and its
derivative must be continuous.

All of these methods require that X and Y be monotonic, that is, either
always increasing or always decreasing from point to point. You should
prepare these matrices using the meshgrid function, or else be sure that the
“pattern” of the points emulates the output of meshgrid. In addition, each
method automatically maps the input to an equally spaced domain before
interpolating. If X and Y are already equally spaced, you can speed execution
time by prepending an asterisk to the method string, for example, '*cubic'.

Comparing Interpolation Methods
This example compares two-dimensional interpolation methods on a 7-by-7
matrix of data:

1 Generate the peaks function at low resolution:

[x,y] = meshgrid(-3:1:3);
z = peaks(x,y);
surf(x,y,z)

2-13

2 Polynomials and Interpolation

2 Generate a finer mesh for interpolation:

[xi,yi] = meshgrid(-3:0.25:3);

3 Interpolate using nearest neighbor interpolation:

zi1 = interp2(x,y,z,xi,yi,'nearest');

4 Interpolate using bilinear interpolation:

zi2 = interp2(x,y,z,xi,yi,'bilinear');

5 Interpolate using bicubic interpolation:

zi3 = interp2(x,y,z,xi,yi,'bicubic');

2-14

Interpolation

6 Compare the surface plots for the different interpolation methods.

7 Compare the contour plots for the different interpolation methods.

Notice that the bicubic method, in particular, produces smoother contours.
This is not always the primary concern, however. For some applications, such
as medical image processing, a method like nearest neighbor may be preferred
because it doesn’t generate any “new” data values.

Interpolation and Multidimensional Arrays
Several interpolation functions operate specifically on multidimensional data.

2-15

2 Polynomials and Interpolation

Interpolation Functions for Multidimensional Data

Function Description

interp3 Three-dimensional data interpolation

interpn Multidimensional data interpolation

ndgrid Multidimensional data gridding (elmat directory)

This section discusses

• “Interpolation of Three-Dimensional Data” on page 2-16

• “Interpolation of Higher Dimensional Data” on page 2-17

• “Multidimensional Data Gridding” on page 2-18

Interpolation of Three-Dimensional Data
The function interp3 performs three-dimensional interpolation, finding
interpolated values between points of a three-dimensional set of samples V.
You must specify a set of known data points:

• X, Y, and Z matrices specify the points for which values of V are given.

• A matrix V contains values corresponding to the points in X, Y, and Z.

The most general form for interp3 is

VI = interp3(X,Y,Z,V,XI,YI,ZI,method)

XI, YI, and ZI are the points at which interp3 interpolates values of V. For
out-of-range values, interp3 returns NaN.

There are three different interpolation methods for three-dimensional data:

• Nearest neighbor interpolation (method = 'nearest'). This method
chooses the value of the nearest point.

• Trilinear interpolation (method = 'linear'). This method uses piecewise
linear interpolation based on the values of the nearest eight points.

2-16

Interpolation

• Tricubic interpolation (method = 'cubic'). This method uses piecewise
cubic interpolation based on the values of the nearest sixty-four points.

All of these methods require that X, Y, and Z be monotonic, that is, either
always increasing or always decreasing in a particular direction. In addition,
you should prepare these matrices using the meshgrid function, or else be
sure that the “pattern” of the points emulates the output of meshgrid.

Each method automatically maps the input to an equally spaced domain
before interpolating. If x is already equally spaced, you can speed execution
time by prepending an asterisk to the method string, for example, '*cubic'.

Interpolation of Higher Dimensional Data
The function interpn performs multidimensional interpolation, finding
interpolated values between points of a multidimensional set of samples V.
The most general form for interpn is

VI = interpn(X1,X2,X3...,V,Y1,Y2,Y3,...,method)

1, 2, 3, ... are matrices that specify the points for which values of V are
given. V is a matrix that contains the values corresponding to these points.
1, 2, 3, ... are the points for which interpn returns interpolated values of
V. For out-of-range values, interpn returns NaN.

Y1, Y2, Y3, ... must be either arrays of the same size, or vectors. If they
are vectors of different sizes, interpn passes them to ndgrid and then uses
the resulting arrays.

There are three different interpolation methods for multidimensional data:

• Nearest neighbor interpolation (method = 'nearest'). This method
chooses the value of the nearest point.

• Linear interpolation (method = 'linear'). This method uses piecewise
linear interpolation based on the values of the nearest two points in each
dimension.

• Cubic interpolation (method = 'cubic'). This method uses piecewise
cubic interpolation based on the values of the nearest four points in each
dimension.

2-17

2 Polynomials and Interpolation

All of these methods require that X1, X2,X3 be monotonic. In addition, you
should prepare these matrices using the ndgrid function, or else be sure that
the “pattern” of the points emulates the output of ndgrid.

Each method automatically maps the input to an equally spaced domain
before interpolating. If X is already equally spaced, you can speed execution
time by prepending an asterisk to the method string; for example, '*cubic'.

Multidimensional Data Gridding
The ndgrid function generates arrays of data for multidimensional function
evaluation and interpolation. ndgrid transforms the domain specified by a
series of input vectors into a series of output arrays. The ith dimension of
these output arrays are copies of the elements of input vector xi.

The syntax for ndgrid is

[X1,X2,X3,...] = ndgrid(x1,x2,x3,...)

For example, assume that you want to evaluate a function of three variables
over a given range. Consider the function

for , , and . To evaluate and plot this
function,

x1 = -2:0.2:2;
x2 = -2:0.25:2;
x3 = -2:0.16:2;
[X1,X2,X3] = ndgrid(x1,x2,x3);
z = X2.*exp(-X1.^2 -X2.^2 -X3.^2);
slice(X2,X1,X3,z,[-1.2 0.8 2],2,[-2 0.2])

2-18

Interpolation

Triangulation and Interpolation of Scattered Data
MATLAB provides routines that aid in the analysis of closest-point problems
and geometric analysis.

Functions for Analysis of Closest-Point Problems and Geometric
Analysis

Function Description

convhull Convex hull

delaunay Delaunay triangulation

delaunay3 3-D Delaunay tessellation

dsearch Nearest point search of Delaunay triangulation

inpolygon True for points inside polygonal region

polyarea Area of polygon

rectint Area of intersection for two or more rectangles

2-19

2 Polynomials and Interpolation

Functions for Analysis of Closest-Point Problems and Geometric
Analysis (Continued)

Function Description

tsearch Closest triangle search

voronoi Voronoi diagram

This section applies the following techniques to the seamount data set
supplied with MATLAB:

• “Convex Hulls” on page 2-20

• “Delaunay Triangulation” on page 2-21

• “Voronoi Diagrams” on page 2-26

See also “Tessellation and Interpolation of Scattered Data in Higher
Dimensions” on page 2-27.

Note Examples in this section use the MATLAB seamount data set.
Seamounts are underwater mountains. They are valuable sources of
information about marine geology. The seamount data set represents the
surface, in 1984, of the seamount designated LR148.8W located at 48.2°S,
148.8°W on the Louisville Ridge in the South Pacific. For more information
about the data and its use, see Parker [2]. The seamount data set provides
longitude (x), latitude (y) and depth-in-feet (z) data for 294 points on the
seamount LR148.8W.

Convex Hulls
The convhull function returns the indices of the points in a data set that
comprise the convex hull for the set. Use the plot function to plot the output
of convhull.

This example loads the seamount data and plots the longitudinal (x) and
latitudinal (y) data as a scatter plot. It then generates the convex hull and
uses plot to plot the convex hull:

2-20

Interpolation

load seamount
plot(x,y,'.','markersize',10)
k = convhull(x,y);
hold on, plot(x(k),y(k),'-r'), hold off
grid on

Delaunay Triangulation
Given a set of coplanar data points, Delaunay triangulation is a set of lines
connecting each point to its natural neighbors. The delaunay function returns
a Delaunay triangulation as a set of triangles having the property that, for
each triangle, the unique circle circumscribed about the triangle contains no
data points.

You can use triplot to print the resulting triangles in two-dimensional space.
You can also add data for a third dimension to the output of delaunay and
plot the result as a surface with trisurf, or as a mesh with trimesh.

Plotting a Delaunay Triangulation. To try delaunay, load the seamount
data set and view the longitude (x) and latitude (y) data as a scatter plot:

load seamount

2-21

2 Polynomials and Interpolation

plot(x,y,'.','markersize',12)
xlabel('Longitude'), ylabel('Latitude')
grid on

Apply Delaunay triangulation and use triplot to overplot the resulting
triangles on the scatter plot:

tri = delaunay(x,y);
hold on, triplot(tri,x,y), hold off

2-22

Interpolation

Mesh and Surface Plots. Add the depth data (z) from seamount,
to the Delaunay triangulation, and use trimesh to produce a mesh in
three-dimensional space. Similarly, you can use trisurf to produce a surface:

figure
hidden on
trimesh(tri,x,y,z)
grid on
xlabel('Longitude'); ylabel('Latitude'); zlabel('Depth in Feet')

2-23

2 Polynomials and Interpolation

Contour Plots. This code uses meshgrid, griddata, and contour to produce
a contour plot of the seamount data:

figure
[xi,yi] = meshgrid(210.8:.01:211.8,-48.5:.01:-47.9);
zi = griddata(x,y,z,xi,yi,'cubic');
[c,h] = contour(xi,yi,zi,'b-');
clabel(c,h)
xlabel('Longitude'), ylabel('Latitude')

2-24

Interpolation

The arguments for meshgrid encompass the largest and smallest x and y
values in the original seamount data. To obtain these values, use min(x),
max(x), min(y), and max(y).

Closest-Point Searches. You can search through the Delaunay triangulation
data with two functions:

• dsearch finds the indices of the (x,y) points in a Delaunay triangulation
closest to the points you specify. This code searches for the point closest to
(211.32, -48.35) in the triangulation of the seamount data.

xi = 211.32; yi = -48.35;
p = dsearch(x,y,tri,xi,yi);
[x(p), y(p)]

ans =
211.3400 -48.3700

• tsearch finds the indices into the delaunay output that specify the
enclosing triangles of the points you specify. This example uses the index of
the enclosing triangle for the point (211.32, -48.35) to obtain the coordinates
of the vertices of the triangle:

2-25

2 Polynomials and Interpolation

xi = 211.32; yi = -48.35;
t = tsearch(x,y,tri,xi,yi);
r = tri(t,:);
A = [x(r) y(r)]

A =
211.2800 -48.3200
211.3400 -48.3700
211.3000 -48.3000

Voronoi Diagrams
Voronoi diagrams are a closest-point plotting technique related to Delaunay
triangulation.

For each point in a set of coplanar points, you can draw a polygon that
encloses all the intermediate points that are closer to that point than to any
other point in the set. Such a polygon is called a Voronoi polygon, and the set
of all Voronoi polygons for a given point set is called a Voronoi diagram.

The voronoi function can plot the cells of the Voronoi diagram, or return
the vertices of the edges of the diagram. This example loads the seamount
data, then uses the voronoi function to produce the Voronoi diagram for the
longitudinal (x) and latitudinal (y) dimensions. Note that voronoi plots only
the bounded cells of the Voronoi diagram:

load seamount
voronoi(x,y)
grid on
xlabel('Longitude'), ylabel('Latitude')

2-26

Interpolation

Note See the voronoi function for an example that uses the vertices of the
edges to plot a Voronoi diagram.

Tessellation and Interpolation of Scattered Data in
Higher Dimensions
Many applications in science, engineering, statistics, and mathematics require
structures like convex hulls, Voronoi diagrams, and Delaunay tessellations.
Using Qhull [1], MATLAB functions enable you to geometrically analyze
data sets in any dimension.

Functions for Multidimensional Geometrical Analysis

Function Description

convhulln N-dimensional convex hull

delaunayn N-dimensional Delaunay tessellation

dsearchn N-dimensional nearest point search

2-27

2 Polynomials and Interpolation

Functions for Multidimensional Geometrical Analysis (Continued)

Function Description

griddatan N-dimensional data gridding and hypersurface fitting

tsearchn N-dimensional closest simplex search

voronoin N-dimensional Voronoi diagrams

This section demonstrates these geometric analysis techniques:

• “Convex Hulls” on page 2-28

• “Delaunay Tessellations” on page 2-30

• “Voronoi Diagrams” on page 2-32

• “Interpolating N-Dimensional Data” on page 2-35

Convex Hulls
The convex hull of a data set in n-dimensional space is defined as the smallest
convex region that contains the data set.

Computing a Convex Hull. The convhulln function returns the indices of
the points in a data set that comprise the facets of the convex hull for the set.
For example, suppose X is an 8-by-3 matrix that consists of the 8 vertices of a
cube. The convex hull of X then consists of 12 facets:

d = [-1 1];
[x,y,z] = meshgrid(d,d,d);
X = [x(:),y(:),z(:)]; % 8 corner points of a cube
C = convhulln(X)

C =
4 2 1
3 4 1
7 3 1
5 7 1
7 4 3
4 7 8
2 6 1

2-28

Interpolation

6 5 1
4 6 2
6 4 8
6 7 5
7 6 8

Because the data is three-dimensional, the facets that make up the convex
hull are triangles. The 12 rows of C represent 12 triangles. The elements of C
are indices of points in X. For example, the first row, 3 1 5, means that the first
triangle has X(3,:), X(1,:), and X(5,:) as its vertices.

For three-dimensional convex hulls, you can use trisurf to plot the output.
However, using patch to plot the output gives you more control over the color
of the facets. Note that you cannot plot convhulln output for n > 3.

This code plots the convex hull by drawing the triangles as three-dimensional
patches:

figure, hold on
d = [1 2 3 1]; % Index into C column.
for i = 1:size(C,1) % Draw each triangle.

j= C(i,d); % Get the ith C to make a patch.
h(i)=patch(X(j,1),X(j,2),X(j,3),i,'FaceAlpha',0.9);

end % 'FaceAlpha' is used to make it transparent.
hold off
view(3), axis equal, axis off
camorbit(90,-5); % To view it from another angle
title('Convex hull of a cube')

2-29

2 Polynomials and Interpolation

Delaunay Tessellations
A Delaunay tessellation is a set of simplices with the property that, for
each simplex, the unique sphere circumscribed about the simplex contains
no data points. In two-dimensional space, a simplex is a triangle. In
three-dimensional space, a simplex is a tetrahedron.

Computing a Delaunay Tessellation. The delaunayn function returns
the indices of the points in a data set that comprise the simplices of an
n-dimensional Delaunay tessellation of the data set.

This example uses the same X as in the convex hull example, i.e., the 8 corner
points of a cube, with the addition of a center point:

d = [-1 1];
[x,y,z] = meshgrid(d,d,d);
X = [x(:),y(:),z(:)]; % 8 corner points of a cube
X(9,:) = [0 0 0]; % Add center to the vertex list.
T = delaunayn(X) % Generate Delaunay tessellation.

T =
4 3 9 1

2-30

Interpolation

4 9 2 1
7 9 3 1
7 5 9 1
7 9 4 3
7 8 4 9
6 2 9 1
6 9 5 1
6 4 9 2
6 4 8 9
6 9 7 5
6 8 7 9

The 12 rows of T represent the 12 simplices, in this case irregular
tetrahedrons, that partition the cube. Each row represents one tetrahedron,
and the row elements are indices of points in X.

For three-dimensional tessellations, you can use tetramesh to plot the output.
However, using patch to plot the output gives you more control over the color
of the facets. Note that you cannot plot delaunayn output for n > 3.

This code plots the tessellation T by drawing the tetrahedrons using
three-dimensional patches:

figure, hold on
d = [1 1 1 2; 2 2 3 3; 3 4 4 4]; % Index into T
for i = 1:size(T,1) % Draw each tetrahedron.

y = T(i,d); % Get the ith T to make a patch.
x1 = reshape(X(y,1),3,4);
x2 = reshape(X(y,2),3,4);
x3 = reshape(X(y,3),3,4);
h(i)=patch(x1,x2,x3,(1:4)*i,'FaceAlpha',0.9);

end
hold off
view(3), axis equal
axis off
camorbit(65,120) % To view it from another angle
title('Delaunay tessellation of a cube with a center point')

You can use cameramenu to rotate the figure in any direction.

2-31

2 Polynomials and Interpolation

Voronoi Diagrams
Given m data points in n-dimensional space, a Voronoi diagram is the
partition of n-dimensional space into m polyhedral regions, one region for
each data point. Such a region is called a Voronoi cell. A Voronoi cell satisfies
the condition that it contains all points that are closer to its data point than
any other data point in the set.

Computing a Voronoi Diagram. The voronoin function returns two
outputs:

• V is an m-by-n matrix of m points in n-space. Each row of V represents a
Voronoi vertex.

• C is a cell array of vectors. Each vector in the cell array C represents a
Voronoi cell. The vector contains indices of the points in V that are the
vertices of the Voronoi cell. Each Voronoi cell may have a different number
of points.

Because a Voronoi cell can be unbounded, the first row of V is a point at
infinity. Then any unbounded Voronoi cell in C includes the point at infinity,
i.e., the first point in V.

2-32

Interpolation

This example uses the same X as in the Delaunay example, i.e., the 8 corner
points of a cube and its center. Random noise is added to make the cube less
regular. The resulting Voronoi diagram has 9 Voronoi cells:

d = [-1 1];
[x,y,z] = meshgrid(d,d,d);
X = [x(:),y(:),z(:)]; % 8 corner points of a cube
X(9,:) = [0 0 0]; % Add center to the vertex list.

rand('twister', 5489); % Initialize the random number generator.
X = X+0.01*rand(size(X)); % Make the cube less regular.

[V,C] = voronoin(X)

V =
Inf Inf Inf

0.0029 -1.4858 0.0079
0.1702 -0.0719 193.1848
0.0018 0.0089 1.5064
0.0067 0.0040 1.5064
0.0060 2.9397 0.0073
0.0033 1.5095 0.0119
0.0117 1.5095 0.0035

-1.4873 0.0055 0.0107
-1.6607 0.0051 0.0100
-1.4873 0.0050 0.0101
0.0054 -1.4858 0.0054
4.6864 -0.0017 0.0080
1.5105 0.0107 0.0022
1.5105 0.0025 0.0104
0.0108 0.0120 -1.4850
0.0032 0.0070 -3.1326
0.0043 0.0056 -1.4849

C =
[1x7 double]
[1x10 double]
[1x8 double]
[1x7 double]
[1x8 double]

2-33

2 Polynomials and Interpolation

[1x7 double]
[1x7 double]
[1x10 double]
[1x12 double]

In this example, V is a 13-by-3 matrix, the 13 rows are the coordinates of the 13
Voronoi vertices. The first row of V is a point at infinity. C is a 9-by-1 cell array,
where each cell in the array contains an index vector into V corresponding to
one of the 9 Voronoi cells. For example, the 9th cell of the Voronoi diagram is

C{9} = 2 4 5 7 8 9 11 12 14 15 16 18

If any index in a cell of the cell array is 1, then the corresponding Voronoi
cell contains the first point in V, a point at infinity. This means the Voronoi
cell is unbounded.

To view a bounded Voronoi cell, i.e., one that does not contain a point at
infinity, use the convhulln function to compute the vertices of the facets
that make up the Voronoi cell. Then use patch and other plot functions to
generate the figure. For example, this code plots the Voronoi cell defined by
the 9th cell in C:

X = V(C{9},:); % View 9th Voronoi cell.
K = convhulln(X);
figure
hold on
d = [1 2 3 1]; % Index into K
for i = 1:size(K,1)

j = K(i,d);
h(i)=patch(X(j,1),X(j,2),X(j,3),i,'FaceAlpha',0.9);

end
hold off
view(3)
axis equal
title('One cell of a Voronoi diagram')

2-34

Interpolation

Interpolating N-Dimensional Data
Use the griddatan function to interpolate multidimensional data, particularly
scattered data. griddatan uses the delaunayn function to tessellate the data,
and then interpolates based on the tessellation.

Suppose you want to visualize a function that you have evaluated at a set of n
scattered points. In this example, X is an n-by-3 matrix of points, each row
containing the (x,y,z) coordinates for one of the points. The vector v contains
the n function values at these points. The function for this example is the
squared distance from the origin, v = x.^2 + y.^2 + z.^2.

Start by generating n = 5000 points at random in three-dimensional space,
and computing the value of a function on those points:

n = 5000;
X = 2*rand(n,3)-1;
v = sum(X.^2,2);

The next step is to use interpolation to compute function values over a grid.
Use meshgrid to create the grid, and griddatan to do the interpolation:

delta = 0.05;

2-35

2 Polynomials and Interpolation

d = -1:delta:1;
[x0,y0,z0] = meshgrid(d,d,d);
X0 = [x0(:), y0(:), z0(:)];
v0 = griddatan(X,v,X0);
v0 = reshape(v0, size(x0));

Then use isosurface and related functions to visualize the surface that
consists of the (x,y,z) values for which the function takes a constant value.
You could pick any value, but the example uses the value 0.6. Since the
function is the squared distance from the origin, the surface at a constant
value is a sphere:

p = patch(isosurface(x0,y0,z0,v0,0.6));
isonormals(x0,y0,z0,v0,p);
set(p,'FaceColor','red','EdgeColor','none');
view(3);
camlight;
lighting phong
axis equal
title('Interpolated sphere from scattered data')

Note A smaller delta produces a smoother sphere, but increases the compute
time.

2-36

Interpolation

2-37

2 Polynomials and Interpolation

Selected Bibliography
[1] National Science and Technology Research Center for Computation and
Visualization of Geometric Structures (The Geometry Center), University of
Minnesota. 1993. For information about qhull, see http://www.qhull.org.

[2] Parker, Robert. L., Loren Shure, & John A. Hildebrand, “The Application
of Inverse Theory to Seamount Magnetism.” Reviews of Geophysics. Vol. 25,
No. 1, 1987.

2-38

http://www.qhull.org

3

Fast Fourier Transform
(FFT)

Introduction (p. 3-2) Introduces Fourier transform
analysis with an example about
sunspot activity

Magnitude and Phase of
Transformed Data (p. 3-7)

Calculates magnitude and phase of
transformed data

FFT Length Versus Speed (p. 3-9) Discusses the dependence of
execution time on length of the
transform

Function Summary (p. 3-10) Summarizes the Fourier transform
functions

The fast Fourier transform (FFT) is an efficient algorithm for computing the
discrete Fourier transform (DFT) of a sequence; it is not a separate transform.
It is particularly useful in areas such as signal and image processing, where
its uses range from filtering, convolution, and frequency analysis to power
spectrum estimation.

3 Fast Fourier Transform (FFT)

Introduction

In this section...

“Finding an FFT” on page 3-2

“Example: Using FFT to Calculate Sunspot Periodicity” on page 3-3

Finding an FFT
For length N input sequence x, the DFT is a length N vector, X. fft and ifft
implement the relationships

Note Since the first element of a MATLAB vector has an index 1, the
summations in the equations above are from 1 to N. These produce identical
results as traditional Fourier equations with summations from 0 to N-1.

If x(n) is real, you can rewrite the above equation in terms of a summation
of sine and cosine functions with real coefficients:

where

The FFT of a column vector x

3-2

Introduction

x = [4 3 7 -9 1 0 0 0]' ;

is found with

y = fft(x)

which results in

y =
6.0000
11.4853 - 2.7574i
-2.0000 -12.0000i
-5.4853 +11.2426i
18.0000
-5.4853 -11.2426i
-2.0000 +12.0000i
11.4853 + 2.7574i

Notice that although the sequence x is real, y is complex. The first component
of the transformed data is the constant contribution and the fifth element
corresponds to the Nyquist frequency. The last three values of y correspond to
negative frequencies and, for the real sequence x, they are complex conjugates
of three components in the first half of y.

Example: Using FFT to Calculate Sunspot Periodicity
Suppose, you want to analyze the variations in sunspot activity over the last
300 years. You are probably aware that sunspot activity is cyclical, reaching a
maximum about every 11 years. This example confirms that.

Astronomers have tabulated a quantity called the Wolfer number for almost
300 years. This quantity measures both number and size of sunspots.

Load and plot the sunspot data:

load sunspot.dat
year = sunspot(:,1);
wolfer = sunspot(:,2);
plot(year,wolfer)
title('Sunspot Data')

3-3

3 Fast Fourier Transform (FFT)

Now take the FFT of the sunspot data:

Y = fft(wolfer);

The result of this transform is the complex vector, Y. The magnitude of
Y squared is called the power and a plot of power versus frequency is a
periodogram. Remove the first component of Y, which is simply the sum of
the data, and plot the results:

N = length(Y);
Y(1) = [];
power = abs(Y(1:N/2)).^2;
nyquist = 1/2;
freq = (1:N/2)/(N/2)*nyquist;
plot(freq,power), grid on
xlabel('cycles/year')
title('Periodogram')

3-4

Introduction

The scale in cycles/year is somewhat inconvenient. You can plot in years/cycle
and estimate what one cycle is. For convenience, plot the power versus period
(where period = 1./freq) from 0 to 40 years/cycle:

period = 1./freq;
plot(period,power), axis([0 40 0 2e7]), grid on
ylabel('Power')
xlabel('Period(Years/Cycle)')

3-5

3 Fast Fourier Transform (FFT)

In order to determine the cycle more precisely,

[mp,index] = max(power);
period(index)

ans =
11.0769

3-6

Magnitude and Phase of Transformed Data

Magnitude and Phase of Transformed Data
Important information about a transformed sequence includes its magnitude
and phase. The MATLAB functions abs and angle calculate this information.

To try this, create a time vector t, and use this vector to create a sequence x
consisting of two sinusoids at different frequencies:

t = 0:1/100:10-1/100;
x = sin(2*pi*15*t) + sin(2*pi*40*t);

Now use the fft function to compute the DFT of the sequence. The code
below calculates the magnitude and phase of the transformed sequence. It
uses the abs function to obtain the magnitude of the data, the angle function
to obtain the phase information, and unwrap to remove phase jumps greater
than pi to their 2*pi complement:

y = fft(x);
m = abs(y);
p = unwrap(angle(y));

Now create a frequency vector for the x-axis and plot the magnitude and
phase:

f = (0:length(y)-1)'*100/length(y);
subplot(2,1,1), plot(f,m),
ylabel('Abs. Magnitude'), grid on
subplot(2,1,2), plot(f,p*180/pi)
ylabel('Phase [Degrees]'), grid on
xlabel('Frequency [Hertz]')

The magnitude plot is perfectly symmetrical about the Nyquist frequency of 50
hertz. The useful information in the signal is found in the range 0 to 50 hertz.

3-7

3 Fast Fourier Transform (FFT)

3-8

FFT Length Versus Speed

FFT Length Versus Speed
You can add a second argument to fft to specify a number of points n for
the transform:

y = fft(x,n)

With this syntax, fft pads x with zeros if it is shorter than n, or truncates
it if it is longer than n. If you do not specify n, fft defaults to the length
of the input sequence.

The execution time for fft depends on the length of the transform. It is
fastest for powers of two. It is almost as fast for lengths that have only small
prime factors. It is typically several times slower for lengths that are prime
or which have large prime factors.

The inverse FFT function ifft also accepts a transform length argument.

For practical application of the FFT, “Signal Processing Toolbox” includes
numerous functions for spectral analysis.

3-9

3 Fast Fourier Transform (FFT)

Function Summary
MATLAB provides a collection of functions for computing and working with
Fourier transforms.

FFT Function Summary

Function Description

fft Discrete Fourier transform

fft2 Two-dimensional discrete Fourier transform

fftn N-dimensional discrete Fourier transform

ifft Inverse discrete Fourier transform

ifft2 Two-dimensional inverse discrete Fourier
transform

ifftn N-dimensional inverse discrete Fourier
transform

abs Magnitude

angle Phase angle

unwrap Unwrap phase angle in radians

fftshift Move zeroth lag to center of spectrum

cplxpair Sort numbers into complex conjugate pairs

nextpow2 Next higher power of two

3-10

4

Function Functions

Function Summary (p. 4-2) A summary of some function
functions

Representing Functions in MATLAB
(p. 4-4)

Some guidelines for representing
functions in MATLAB

Plotting Mathematical Functions
(p. 4-6)

A discussion about using fplot to plot
mathematical functions

Minimizing Functions and Finding
Zeros (p. 4-9)

A discussion of high-level
function functions that perform
optimization-related tasks

Numerical Integration (Quadrature)
(p. 4-29)

A discussion of the MATLAB
quadrature functions

Parameterizing Functions Called by
Function Functions (p. 4-33)

Explains how to pass additional
arguments to user-defined functions
that are called by a function function.

See the Chapter 5, “Differential Equations” and Chapter 6, “Sparse Matrices”
chapters for information about the use of other function functions.

For information about function handles, see the function_handle (@),
func2str, and str2func reference pages, and the “Function Handles” section
of .

4 Function Functions

Function Summary
Function functions are functions that call other functions as input arguments.
An example of a function function is fplot, which plots the graphs of
functions. You can call the function fplot with the syntax

fplot(@fun, [-pi pi])

where the input argument @fun is a handle to the function you want to plot.
The function fun is referred to as the called function.

The function functions are located in the MATLAB funfun directory.

This table provides a brief description of the functions discussed in this
chapter. Related functions are grouped by category.

This is a three column by eight row table. The entries in the first column span
several rows. The first entry, Plotting, has only one function, fplot. The
second entry, Optimization and zero finding, covers the functions fminbnd,
fminsearch, and fzero. The third entry, numerical integration, covers the
functions quad, quad1, dblquad, and triplequad.

Function Summary

Category Function Description

Plotting fplot Plot function

fminbnd Minimize function of
one variable with bound
constraints

fminsearch Minimize function of
several variables

Optimization and zero
finding

fzero Find zero of function of
one variable

4-2

Function Summary

Function Summary (Continued)

Category Function Description

quad Numerically evaluate
integral, adaptive
Simpson quadrature

quadl Numerically evaluate
integral, adaptive
Lobatto quadrature

quadv Vectorized quadrature

dblquad Numerically evaluate
double integral

Numerical integration

triplequad Numerically evaluate
triple integral

4-3

4 Function Functions

Representing Functions in MATLAB

In this section...

“MATLAB Functions” on page 4-4

“Anonymous Functions” on page 4-4

MATLAB Functions
MATLAB can represent mathematical functions by expressing them as
MATLAB functions in M-files or as “Anonymous Functions” in . For example,
consider the function

This function can be used as input to any of the function functions.

You can find the function above in the M-file named humps.m.

function y = humps(x)
y = 1./((x - 0.3).^2 + 0.01) + 1./((x - 0.9).^2 + 0.04) - 6;

To evaluate the function humps at 2.0, use @ to obtain a function handle for
humps, and then use the function handle in the same way you would use a
function name to call the function:

fh = @humps;
fh(2.0)

ans =
-4.8552

Anonymous Functions
A second way to represent a mathematical function at the command line is
by creating an anonymous function from a string expression. For example,
you can create an anonymous function of the humps function. The value
returned, fh, is a function handle:

4-4

Representing Functions in MATLAB

fh = @(x)1./((x-0.3).^2 + 0.01) + 1./((x-0.9).^2 + 0.04)-6;

You can then evaluate fh at 2.0 in the same way that you can with a function
handle for a MATLAB function:

fh(2.0)
ans =

-4.8552

You can also create anonymous functions of more than one argument. The
following function has two input arguments x and y.

fh = @(x,y)y*sin(x)+x*cos(y);
fh(pi,2*pi)
ans =

3.1416

4-5

4 Function Functions

Plotting Mathematical Functions
The fplot function plots a mathematical function between a given set of axes
limits. You can control the x-axis limits only, or both the x- and y-axis limits.
For example, to plot the humps function over the x-axis range [-5 5], use

fplot(@humps,[-5 5])
grid on

You can zoom in on the function by selecting y-axis limits of -10 and 25, using

fplot(@humps,[-5 5 -10 25])
grid on

4-6

Plotting Mathematical Functions

You can also pass the function handle for an anonymous function for fplot to
graph, as in

fplot(@(x)2*sin(x+3),[-1 1]);

You can plot more than one function on the same graph with one call to fplot.
If you use this with a function, then the function must take a column vector
x and return a matrix where each column corresponds to each function,
evaluated at each value of x.

If you pass an anonymous function consisting of several functions to fplot,
the anonymous function also must return a matrix where each column
corresponds to each function evaluated at each value of x, as in

fplot(@(x)[2*sin(x+3), humps(x)],[-5 5])

which plots the first and second functions on the same graph.

4-7

4 Function Functions

Note that the anonymous function

fh = @(x)[2*sin(x+3), humps(x)];

evaluates to a matrix of two columns, one for each function, when x is a
column vector.

fh([1;2;3])

returns

-1.5136 16.0000
-1.9178 -4.8552
-0.5588 -5.6383

4-8

Minimizing Functions and Finding Zeros

Minimizing Functions and Finding Zeros

In this section...

“MATLAB Optimization Functions” on page 4-9

“Minimizing Functions of One Variable” on page 4-10

“Minimizing Functions of Several Variables” on page 4-11

“Fitting a Curve to Data” on page 4-11

“Setting Minimization Options” on page 4-14

“Output Functions” on page 4-15

“Finding Zeros of Functions” on page 4-23

“Tips” on page 4-27

“Troubleshooting” on page 4-27

MATLAB Optimization Functions
The MATLAB optimization functions are:

fminbnd Minimize a function of one variable on a fixed
interval

fminsearch Minimize a function of several variables

fzero Find zero of a function of one variable

lsqnonneg Linear least squares with nonnegativity
constraints

optimget Get optimization options structure parameter
values

optimset Create or edit optimization options parameter
structure

For more optimization capabilities, see the Optimization Toolbox User’s Guide.

4-9

4 Function Functions

Minimizing Functions of One Variable
Given a mathematical function of a single variable coded in an M-file, you can
use the fminbnd function to find a local minimizer of the function in a given
interval. For example, to find a minimum of the humps function in the range
(0.3, 1), use

x = fminbnd(@humps,0.3,1)

which returns

x =
0.6370

You can ask for a tabular display of output by passing a fourth argument
created by the optimset command to fminbnd

x = fminbnd(@humps,0.3,1,optimset('Display','iter'))

which gives the output

Func-count x f(x) Procedure
3 0.567376 12.9098 initial
4 0.732624 13.7746 golden
5 0.465248 25.1714 golden
6 0.644416 11.2693 parabolic
7 0.6413 11.2583 parabolic
8 0.637618 11.2529 parabolic
9 0.636985 11.2528 parabolic

10 0.637019 11.2528 parabolic
11 0.637052 11.2528 parabolic

Optimization terminated:
the current x satisfies the termination criteria using

OPTIONS.TolX of 1.000000e-004

x =

0.6370

4-10

Minimizing Functions and Finding Zeros

This shows the current value of x and the function value at f(x) each time a
function evaluation occurs. For fminbnd, one function evaluation corresponds
to one iteration of the algorithm. The last column shows what procedure is
being used at each iteration, either a golden section search or a parabolic
interpolation.

Minimizing Functions of Several Variables
The fminsearch function is similar to fminbnd except that it handles
functions of many variables, and you specify a starting vector x0 rather than
a starting interval. fminsearch attempts to return a vector x that is a local
minimizer of the mathematical function near this starting vector.

To try fminsearch, create a function three_var of three variables, x, y, and z.

function b = three_var(v)
x = v(1);
y = v(2);
z = v(3);
b = x.^2 + 2.5*sin(y) - z^2*x^2*y^2;

Now find a minimum for this function using x = -0.6, y = -1.2, and
z = 0.135 as the starting values.

v = [-0.6 -1.2 0.135];
a = fminsearch(@three_var,v)

a =
0.0000 -1.5708 0.1803

Fitting a Curve to Data
This section gives an example that shows how to fit an exponential function of
the form to some data. The example uses the function fminsearch to
minimize the sum of squares of errors between the data and an exponential
function for varying parameters A and λ. This section covers the
following topics.

• “Creating an M-file for the Example” on page 4-12

• “Running the Example” on page 4-12

4-11

4 Function Functions

• “Plotting the Results” on page 4-13

Creating an M-file for the Example
To run the example, first create an M-file that

• Accepts vectors corresponding to the x- and y-coordinates of the data

• Returns the parameters of the exponential function that best fits the data

To do so, copy and paste the following code into an M-file and save it as
fitcurvedemo in a directory on the MATLAB path.

function [estimates, model] = fitcurvedemo(xdata, ydata)
% Call fminsearch with a random starting point.
start_point = rand(1, 2);
model = @expfun;
estimates = fminsearch(model, start_point);
% expfun accepts curve parameters as inputs, and outputs sse,
% the sum of squares error for A * exp(-lambda * xdata) - ydata,
% and the FittedCurve. FMINSEARCH only needs sse, but we want to
% plot the FittedCurve at the end.

function [sse, FittedCurve] = expfun(params)
A = params(1);
lambda = params(2);
FittedCurve = A .* exp(-lambda * xdata);
ErrorVector = FittedCurve - ydata;
sse = sum(ErrorVector .^ 2);

end
end

The M-file calls the function fminsearch, which find parameters A and
lambda that minimize the sum of squares of the differences between the data
and the exponential function A*exp(-lambda*t). The nested function expfun
computes the sum of squares.

Running the Example
To run the example, first create some random data to fit. The following
commands create random data that is approximately exponential with
parameters A = 40 and lambda = .5.

4-12

Minimizing Functions and Finding Zeros

xdata = (0:.1:10)';
ydata = 40 * exp(-.5 * xdata) + randn(size(xdata));

To fit an exponential function to the data, enter

[estimates, model] = fitcurvedemo(xdata,ydata)

This returns estimates for the parameters A and lambda,

estimates =

40.1334 0.5025

and a function handle, model, to the function that computes the exponential
function A*exp(-lambda*t).

Plotting the Results
To plot the fit and the data, enter the following commands.

plot(xdata, ydata, '*')
hold on
[sse, FittedCurve] = model(estimates);
plot(xdata, FittedCurve, 'r')

xlabel('xdata')
ylabel('f(estimates,xdata)')
title(['Fitting to function ', func2str(model)]);
legend('data', ['fit using ', func2str(model)])
hold off

The resulting plot displays the data points and the exponential fit.

4-13

4 Function Functions

Setting Minimization Options
You can specify control options that set some minimization parameters using
an options structure that you create using the function optimset. You then
pass options as an input to the optimization function, for example, by calling
fminbnd with the syntax

x = fminbnd(fun,x1,x2,options)

or fminsearch with the syntax

x = fminsearch(fun,x0,options)

Use optimset to set the values of the options structure. For example, to set
the 'Display' option to 'iter', in order to display output from the algorithm
at each iteration, enter

options = optimset('Display','iter');

4-14

Minimizing Functions and Finding Zeros

fminbnd and fminsearch use only the options parameters shown in the
following table.

options.Display A flag that determines if intermediate steps in
the minimization appear on the screen. If set to
'iter', intermediate steps are displayed; if set to
'off', no intermediate solutions are displayed, if
set to final, displays just the final output.

options.TolX The termination tolerance for x. Its default value
is 1.e-4.

options.TolFun The termination tolerance for the function value.
The default value is 1.e-4. This parameter is used
by fminsearch, but not fminbnd.

options.MaxIter Maximum number of iterations allowed.

options.MaxFunEvals The maximum number of function evaluations
allowed. The default value is 500 for fminbnd and
200*length(x0) for fminsearch.

The number of function evaluations, the number of iterations, and the
algorithm are returned in the structure output when you provide fminbnd or
fminsearch with a fourth output argument, as in

[x,fval,exitflag,output] = fminbnd(@humps,0.3,1);

or

[x,fval,exitflag,output] = fminsearch(@three_var,v);

Output Functions
An output function is a function that an optimization function calls at each
iteration of its algorithm. Typically, you might use an output function to
generate graphical output, record the history of the data the algorithm
generates, or halt the algorithm based on the data at the current iteration.
You can create an output function as an M-file function, a subfunction, or a
nested function.

You can use the OutputFcn option with the following MATLAB optimization
functions:

4-15

4 Function Functions

• fminbnd

• fminsearch

• fzero

This section covers the following topics:

• “Creating and Using an Output Function” on page 4-16

• “Structure of the Output Function” on page 4-17

• “Example of a Nested Output Function” on page 4-18

• “Fields in optimValues” on page 4-20

• “States of the Algorithm” on page 4-21

• “Stop Flag” on page 4-22

Creating and Using an Output Function
The following is a simple example of an output function that plots the points
generated by an optimization function.

function stop = outfun(x, optimValues, state)
stop = false;
hold on;
plot(x(1),x(2),'.');
drawnow

You can use this output function to plot the points generated by fminsearch
in solving the optimization problem

To do so,

1 Create an M-file containing the preceding code and save it as outfun.m in
a directory on the MATLAB path.

2 Enter the command

options = optimset('OutputFcn', @outfun);

4-16

Minimizing Functions and Finding Zeros

to set the value of the Outputfcn field of the options structure to a
function handle to outfun.

3 Enter the following commands:

hold on
objfun=@(x) exp(x(1))*(4*x(1)^2+2*x(2)^2+x(1)*x(2)+2*x(2));
[x fval] = fminsearch(objfun, [-1 1], options)
hold off

This returns the solution

x =
0.1290 -0.5323

fval =
-0.5689

and displays the following plot of the points generated by fminsearch:

Structure of the Output Function
The function definition line of the output function has the following form:

4-17

4 Function Functions

stop = outfun(x, optimValues, state)

where

• stop is a flag that is true or false depending on whether the optimization
routine should quit or continue. See “Stop Flag” on page 4-22.

• x is the point computed by the algorithm at the current iteration.

• optimValues is a structure containing data from the current iteration.
“Fields in optimValues” on page 4-20 describes the structure in detail.

• state is the current state of the algorithm. “States of the Algorithm” on
page 4-21 lists the possible values.

The optimization function passes the values of the input arguments to outfun
at each iteration.

Example of a Nested Output Function
The example in “Creating and Using an Output Function” on page 4-16 does
not require the output function to preserve data from one iteration to the next.
When this is the case, you can write the output function as an M-file and call
the optimization function directly from the command line. However, if you
want your output function to record data from one iteration to the next, you
should write a single M-file that does the following:

• Contains the output function as a nested function—see “Nested Functions”
in the MATLAB Programming documentation for more information.

• Calls the optimization function.

In the following example, the M-file also contains the objective function as a
subfunction, although you could also write the objective function as a separate
M-file or as an anonymous function.

Since the nested function has access to variables in the M-file function that
contains it, this method enables the output function to preserve variables
from one iteration to the next.

The following example uses an output function to record the points generated
by fminsearch in solving the optimization problem

4-18

Minimizing Functions and Finding Zeros

and returns the sequence of points as a matrix called history.

To run the example, do the following steps:

1 Open a new M-file in the MATLAB editor.

2 Copy and paste the following code into the M-file.

function [x fval history] = myproblem(x0)
history = [];
options = optimset('OutputFcn', @myoutput);
[x fval] = fminsearch(@objfun, x0,options);

function stop = myoutput(x,optimvalues,state);
stop = false;
if state == 'iter'

history = [history; x];
end

end

function z = objfun(x)
z = exp(x(1))*(4*x(1)^2+2*x(2)^2+x(1)*x(2)+2*x(2));

end
end

3 Save the file as myproblem.m in a directory on the MATLAB path.

4 At the MATLAB prompt, enter

[x fval history] = myproblem([-1 1])

The function fminsearch returns x, the optimal point, and fval, the value of
the objective function at x.

x =

0.1290 -0.5323

4-19

4 Function Functions

fval =

-0.5689

In addition, the output function myoutput returns the matrix history, which
contains the points generated by the algorithm at each iteration, to the
MATLAB workspace. The first four rows of history are

history(1:4,:) =

-1.0000 1.0000
-1.0000 1.0000
-1.0750 0.9000
-1.0125 0.8500

The final row of points is the same as the optimal point, x.

history(end,:)

ans =

0.1290 -0.5323

objfun(history(end,:))

ans =

-0.5689

Fields in optimValues
The following table lists the fields of the optimValues structure that are
provided by all three optimization functions, fminbnd, fminsearch, and
fzero. The function fzero also provides additional fields that are described
in its reference page.

The “Command-Line Display Headings” column of the table lists the headings,
corresponding to the optimValues fields that are displayed at the command
line when you set the Display parameter of options to 'iter'.

4-20

Minimizing Functions and Finding Zeros

optimValues Field
(optimValues.field) Description

Command-Line
Display Heading

funcount Cumulative number of
function evaluations

Func-count

fval Function value at
current point

min f(x)

iteration Iteration number —
starts at 0

Iteration

procedure Procedure messages Procedure

States of the Algorithm
The following table lists the possible values for state:

State Description

'init' The algorithm is in the initial state before the
first iteration.

'interrupt' The algorithm is performing an iteration. In
this state, the output function can interrupt
the current iteration of the optimization. You
might want the output function to do this to
improve the efficiency of the computations.
When state is set to 'interrupt', the values
of x and optimValues are the same as at the
last call to the output function, in which state
is set to 'iter'.

'iter' The algorithm is at the end of an iteration.

'done' The algorithm is in the final state after the
last iteration.

The following code illustrates how the output function might use the value of
state to decide which tasks to perform at the current iteration.

switch state
case 'init'

% Setup for plots or guis

4-21

4 Function Functions

case 'iter'
% Make updates to plot or guis as needed.

case 'interrupt'
% Check conditions to see whether optimization
% should quit.

case 'done'
% Cleanup of plots, guis, or final plot

otherwise
end

Stop Flag
The output argument stop is a flag that is true or false. The flag tells the
optimization function whether the optimization should quit or continue. The
following examples show typical ways to use the stop flag.

Stopping an Optimization Based on Data in optimValues. The output
function can stop an optimization at any iteration based on the current data
in optimValues. For example, the following code sets stop to true if the
objective function value is less than 5:

function stop = myoutput(x, optimValues, state)
stop = false;
% Check if objective function is less than 5.
if optimValues.fval < 5

stop = true;
end

Stopping an Optimization Based on GUI Input. If you design a GUI to
perform optimizations, you can make the output function stop an optimization
when a user clicks a Stop button on the GUI. The following code shows how
to do this, assuming that the Stop button callback stores the value true in
the optimstop field of a handles structure called hObject stored in appdata.

function stop = myoutput(x, optimValues, state)
stop = false;
% Check if user has requested to stop the optimization.
stop = getappdata(hObject,'optimstop');

4-22

Minimizing Functions and Finding Zeros

Finding Zeros of Functions
The fzero function attempts to find a zero of one equation with one variable.
You can call this function with either a one-element starting point or a
two-element vector that designates a starting interval. If you give fzero a
starting point x0, fzero first searches for an interval around this point where
the function changes sign. If the interval is found, fzero returns a value near
where the function changes sign. If no such interval is found, fzero returns
NaN. Alternatively, if you know two points where the function value differs
in sign, you can specify this starting interval using a two-element vector;
fzero is guaranteed to narrow down the interval and return a value near a
sign change.

The following sections contain two examples that illustrate how to find a zero
of a function using a starting interval and a starting point. The examples use
the function humps, which is provided with MATLAB. The following figure
shows the graph of humps.

4-23

4 Function Functions

Using a Starting Interval
The graph of humps indicates that the function is negative at x = -1 and
positive at x = 1. You can confirm this by calculating humps at these two
points.

humps(1)

ans =
16

humps(-1)

ans =
-5.1378

Consequently, you can use [-1 1] as a starting interval for fzero.

The iterative algorithm for fzero finds smaller and smaller subintervals of
[-1 1]. For each subinterval, the sign of humps differs at the two endpoints.
As the endpoints of the subintervals get closer and closer, they converge to
zero for humps.

To show the progress of fzero at each iteration, set the Display option to
iter using the function optimset.

options = optimset('Display','iter');

Then call fzero as follows:

a = fzero(@humps,[-1 1],options)

This returns the following iterative output:

a = fzero(@humps,[-1 1],options)

Func-count x f(x) Procedure
2 -1 -5.13779 initial
3 -0.513876 -4.02235 interpolation
4 -0.513876 -4.02235 bisection
5 -0.473635 -3.83767 interpolation
6 -0.115287 0.414441 bisection

4-24

Minimizing Functions and Finding Zeros

7 -0.115287 0.414441 interpolation
8 -0.132562 -0.0226907 interpolation
9 -0.131666 -0.0011492 interpolation

10 -0.131618 1.88371e-007 interpolation
11 -0.131618 -2.7935e-011 interpolation
12 -0.131618 8.88178e-016 interpolation
13 -0.131618 8.88178e-016 interpolation

Zero found in the interval [-1, 1]

a =

-0.1316

Each value x represents the best endpoint so far. The Procedure column tells
you whether each step of the algorithm uses bisection or interpolation.

You can verify that the function value at a is close to zero by entering

humps(a)

ans =

8.8818e-016

Using a Starting Point
Suppose you do not know two points at which the function values of humps
differ in sign. In that case, you can choose a scalar x0 as the starting point
for fzero. fzero first searches for an interval around this point on which
the function changes sign. If fzero finds such an interval, it proceeds with
the algorithm described in the previous section. If no such interval is found,
fzero returns NaN.

For example, if you set the starting point to -0.2, the Display option to Iter,
and call fzero by

a = fzero(@humps,-0.2,options)

fzero returns the following output:

4-25

4 Function Functions

Search for an interval around -0.2 containing a sign change:

Func-count a f(a) b f(b) Procedure

1 -0.2 -1.35385 -0.2 -1.35385 initial interval

3 -0.194343 -1.26077 -0.205657 -1.44411 search

5 -0.192 -1.22137 -0.208 -1.4807 search

7 -0.188686 -1.16477 -0.211314 -1.53167 search

9 -0.184 -1.08293 -0.216 -1.60224 search

11 -0.177373 -0.963455 -0.222627 -1.69911 search

13 -0.168 -0.786636 -0.232 -1.83055 search

15 -0.154745 -0.51962 -0.245255 -2.00602 search

17 -0.136 -0.104165 -0.264 -2.23521 search

18 -0.10949 0.572246 -0.264 -2.23521 search

Search for a zero in the interval [-0.10949, -0.264]:

Func-count x f(x) Procedure

18 -0.10949 0.572246 initial

19 -0.140984 -0.219277 interpolation

20 -0.132259 -0.0154224 interpolation

21 -0.131617 3.40729e-005 interpolation

22 -0.131618 -6.79505e-008 interpolation

23 -0.131618 -2.98428e-013 interpolation

24 -0.131618 8.88178e-016 interpolation

25 -0.131618 8.88178e-016 interpolation

Zero found in the interval [-0.10949, -0.264]

a =

-0.1316

The endpoints of the current subinterval at each iteration are listed under the
headings a and b, while the corresponding values of humps at the endpoints
are listed under f(a) and f(b), respectively.

Note The endpoints a and b are not listed in any specific order: a can be
greater than b or less than b.

4-26

Minimizing Functions and Finding Zeros

For the first nine steps, the sign of humps is negative at both endpoints of
the current subinterval, which is shown in the output. At the tenth step,
the sign of humps is positive at the endpoint, -0.10949, but negative at the
endpoint, -0.264. From this point on, the algorithm continues to narrow
down the interval [-0.10949 -0.264], as described in the previous section,
until it reaches the value -0.1316.

Tips
Optimization problems may take many iterations to converge. Most
optimization problems benefit from good starting guesses. Providing good
starting guesses improves the execution efficiency and may help locate the
global minimum instead of a local minimum.

Sophisticated problems are best solved by an evolutionary approach, whereby
a problem with a smaller number of independent variables is solved first.
Solutions from lower order problems can generally be used as starting points
for higher order problems by using an appropriate mapping.

The use of simpler cost functions and less stringent termination criteria in the
early stages of an optimization problem can also reduce computation time.
Such an approach often produces superior results by avoiding local minima.

Troubleshooting
Here is a list of typical problems and recommendations for dealing with them.

Problem Recommendation

The solution found by fminbnd or
fminsearch does not appear to be a
global minimum.

There is no guarantee that you have a global minimum
unless your problem is continuous and has only one
minimum. Starting the optimization from a number
of different starting points (or intervals in the case of
fminbnd) may help to locate the global minimum or
verify that there is only one minimum. Use different
methods, where possible, to verify results.

4-27

4 Function Functions

Problem Recommendation

Sometimes an optimization problem
has values of x for which it is impossible
to evaluate f.

Modify your function to include a penalty function to
give a large positive value to f when infeasibility is
encountered.

The minimization routine appears
to enter an infinite loop or returns a
solution that is not a minimum (or not
a zero in the case of fzero).

Your objective function (fun) may be returning NaN
or complex values. The optimization routines expect
only real numbers to be returned. Any other values
may cause unexpected results. To determine whether
this is the case, set

options = optimset('FunValCheck', 'on')

and call the optimization function with options as
an input argument. This displays an error when the
objective function returns NaN or complex values.

4-28

Numerical Integration (Quadrature)

Numerical Integration (Quadrature)

In this section...

“” on page 4-29

“Example: Computing the Length of a Curve” on page 4-30

“Example: Double Integration” on page 4-30

The area beneath a section of a function F(x) can be determined by
numerically integrating F(x), a process referred to as quadrature. The
MATLAB quadrature functions are:

quad Use adaptive Simpson quadrature

quadl Use adaptive Lobatto quadrature

quadgk Use adaptive Gauss-Kronrod quadrature

quadv Vectorized quadrature

dblquad Numerically evaluate double integral

triplequad Numerically evaluate triple integral

To integrate the function defined by humps.m from 0 to 1, use

q = quad(@humps,0,1)

q =
29.8583

Both quad and quadl operate recursively. If either method detects a possible
singularity, it prints a warning.

You can include a fourth argument for quad or quadl that specifies an absolute
error tolerance for the integration. If a nonzero fifth argument is passed to
quad or quadl, the function evaluations are traced.

Two examples illustrate use of these functions:

• Computing the length of a curve

• Double integration

4-29

4 Function Functions

Example: Computing the Length of a Curve
You can use quad or quadl to compute the length of a curve. Consider the
curve parameterized by the equations

where .

A three-dimensional plot of this curve is

t = 0:0.1:3*pi;
plot3(sin(2*t),cos(t),t)

The arc length formula says the length of the curve is the integral of the norm
of the derivatives of the parameterized equations

The function hcurve computes the integrand

function f = hcurve(t)
f = sqrt(4*cos(2*t).^2 + sin(t).^2 + 1);

Integrate this function with a call to quad

len = quad(@hcurve,0,3*pi)

len =
1.7222e+01

The length of this curve is about 17.2.

Example: Double Integration
Consider the numerical solution of

4-30

Numerical Integration (Quadrature)

For this example . The first step is to build the
function to be evaluated. The function must be capable of returning a vector
output when given a vector input. You must also consider which variable is
in the inner integral, and which goes in the outer integral. In this example,
the inner variable is x and the outer variable is y (the order in the integral
is dxdy). In this case, the integrand function is

function out = integrnd(x,y)
out = y*sin(x) + x*cos(y);

To perform the integration, two functions are available in the funfun
directory. The first, dblquad, is called directly from the command line. This
M-file evaluates the outer loop using quad. At each iteration, quad calls the
second helper function that evaluates the inner loop.

To evaluate the double integral, use

result = dblquad(@integrnd,xmin,xmax,ymin,ymax);

The first argument is a string with the name of the integrand function. The
second to fifth arguments are

xmin Lower limit of inner integral

xmax Upper limit of the inner integral

ymin Lower limit of outer integral

ymax Upper limit of the outer integral

Here is a numeric example that illustrates the use of dblquad.

xmin = pi;
xmax = 2*pi;
ymin = 0;
ymax = pi;
result = dblquad(@integrnd,xmin,xmax,ymin,ymax)

4-31

4 Function Functions

The result is -9.8698.

By default, dblquad calls quad. To integrate the previous example using
quadl (with the default values for the tolerance argument), use

result = dblquad(@integrnd,xmin,xmax,ymin,ymax,[],@quadl);

Alternatively, you can pass any user-defined quadrature function name to
dblquad as long as the quadrature function has the same calling and return
arguments as quad.

4-32

Parameterizing Functions Called by Function Functions

Parameterizing Functions Called by Function Functions

In this section...

“Providing Parameter Values Using Nested Functions” on page 4-33

“Providing Parameter Values to Anonymous Functions” on page 4-34

Providing Parameter Values Using Nested Functions
One way to provide parameters to the polynomial is to write a single M-file
that

• Accepts the additional parameters as inputs

• Invokes the function function

• Contains the function called by the function function as a nested function

The following example illustrates how to find a zero of the cubic polynomial
x3 + bx + c, for different values of the coefficients b and c, using this method.
To do so, write an M-file with the following code.

function y = findzero(b, c, x0)

options = optimset('Display', 'off'); % Turn off Display
y = fzero(@poly, x0, options);

function y = poly(x) % Compute the polynomial.
y = x^3 + b*x + c;
end

end

The main function, findzero, does two things:

• Invokes the function fzero to find a zero of the polynomial

• Computes the polynomial in a nested function, poly, which is called by
fzero

You can call findzero with any values of the coefficients b and c, which are
seen by poly because it is a nested function.

4-33

4 Function Functions

As an example, to find a zero of the polynomial with b = 2 and c = 3.5,
using the starting point x0 = 0, call findzero as follows.

x = findzero(2, 3.5, 0)

This returns the zero

x =

-1.0945

Providing Parameter Values to Anonymous Functions
Suppose you have already written a standalone M-file for the function
poly containing the following code, which computes the polynomial for any
coefficients b and c,

function y = poly(x, b, c) % Compute the polynomial.
y = x^3 + b*x + c;

You then want to find a zero for the coefficient values b = 2 and c = 3.5.
You cannot simply apply fzero to poly, which has three input arguments,
because fzero only accepts functions with a single input argument. As an
alternative to rewriting poly as a nested function, as described in “Providing
Parameter Values Using Nested Functions” on page 4-33, you can pass poly
to fzero as a function handle to an anonymous function that has the form
@(x) poly(x, b, c). The function handle has just one input argument x, so
fzero accepts it.

b = 2;
c = 3.5;
x = fzero(@(x) poly(x, b, c), 0)

This returns the zero

x =

-1.0945

“Anonymous Functions” on page 4-4 explains how to create anonymous
functions.

4-34

Parameterizing Functions Called by Function Functions

If you later decide to find a zero for different values of b and c, you must
redefine the anonymous function using the new values. For example,

b = 4;
c = -1;
fzero(@(x) poly(x, b, c), 0)

ans =

0.2463

For more complicated objective functions, it is usually preferable to write the
function as a nested function, as described in “Providing Parameter Values
Using Nested Functions” on page 4-33.

4-35

4 Function Functions

4-36

5

Differential Equations

Initial Value Problems for ODEs and
DAEs (p. 5-3)

Describes the solution of ordinary
differential equations (ODEs) and
differential-algebraic equations
(DAEs), where the solution of
interest satisfies initial conditions
at a given initial value of the
independent variable.

Initial Value Problems for DDEs
(p. 5-53)

Describes the solution of delay
differential equations (DDEs) where
the solution of interest is determined
by a history function.

Boundary Value Problems for ODEs
(p. 5-65)

Describes the solution of ODEs,
where the solution of interest
satisfies certain boundary conditions.
The boundary conditions specify a
relationship between the values of
the solution at the initial and final
values of the independent variable

Partial Differential Equations
(p. 5-93)

Describes the solution of
initial-boundary value problems for
systems of parabolic and elliptic
partial differential equations (PDEs)
in one spatial variable and time.

Selected Bibliography (p. 5-110) Lists published materials that
support concepts described in this
chapter.

5 Differential Equations

Note In function tables, commonly used functions are listed first, followed by
more advanced functions. The same is true of property tables.

5-2

Initial Value Problems for ODEs and DAEs

Initial Value Problems for ODEs and DAEs

In this section...

“ODE Function Summary” on page 5-3

“Introduction to Initial Value ODE Problems” on page 5-5

“Solvers for Explicit and Linearly Implicit ODEs” on page 5-7

“Examples: Solving Explicit ODE Problems” on page 5-11

“Solver for Fully Implicit ODEs” on page 5-17

“Example: Solving a Fully Implicit ODE Problem” on page 5-18

“Changing ODE Integration Properties” on page 5-19

“Examples: Applying the ODE Initial Value Problem Solvers” on page 5-20

“Questions and Answers, and Troubleshooting” on page 5-44

ODE Function Summary

ODE Initial Value Problem Solvers
The following table lists the initial value problem solvers, the kind of problem
you can solve with each solver, and the method each solver uses.

Solver Solves These Kinds of
Problems

Method

ode45 Nonstiff differential
equations

Runge-Kutta

ode23 Nonstiff differential
equations

Runge-Kutta

ode113 Nonstiff differential
equations

Adams

ode15s Stiff differential equations
and DAEs

NDFs (BDFs)

ode23s Stiff differential equations Rosenbrock

5-3

5 Differential Equations

Solver Solves These Kinds of
Problems

Method

ode23t Moderately stiff
differential equations
and DAEs

Trapezoidal rule

ode23tb Stiff differential equations TR-BDF2

ode15i Fully implicit differential
equations

BDFs

ODE Solution Evaluation and Extension
You can use the following functions to evaluate and extend solutions to ODEs.

Function Description

deval Evaluate the numerical solution using the output
of ODE solvers.

odextend Extend the solution of an initial value problem for
an ODE

ODE Solvers Properties Handling
An options structure contains named properties whose values are passed to
ODE solvers, and which affect problem solution. Use these functions to create,
alter, or access an options structure.

Function Description

odeset Create or alter options structure for input to
ODE solver.

odeget Extract properties from options structure
created with odeset.

ODE Solver Output Functions
If an output function is specified, the solver calls the specified function after
every successful integration step. You can use odeset to specify one of these

5-4

Initial Value Problems for ODEs and DAEs

sample functions as the OutputFcn property, or you can modify them to
create your own functions.

Function Description

odeplot Time-series plot

odephas2 Two-dimensional phase plane plot

odephas3 Three-dimensional phase plane plot

odeprint Print to command window

Introduction to Initial Value ODE Problems

What Is an Ordinary Differential
Equation? (p. 5-5)

Types of Problems Handled by the
ODE Solvers (p. 5-5)

Using Initial Conditions to Specify
the Solution of Interest (p. 5-6)

Working with Higher Order ODEs
(p. 5-6)

What Is an Ordinary Differential Equation?
The ODE solvers are designed to handle ordinary differential equations.
An ordinary differential equation contains one or more derivatives of a
dependent variable with respect to a single independent variable , usually
referred to as time. The derivative of with respect to is denoted as , the
second derivative as , and so on. Often is a vector, having elements

.

Types of Problems Handled by the ODE Solvers
The ODE solvers handle the following types of first-order ODEs:

• Explicit ODEs of the form ′ =y f t y(,)

5-5

5 Differential Equations

• Linearly implicit ODEs of the form M t y y f t y(,) (,)⋅ ′ = , where M t y(,) is
a matrix

• Fully implicit ODEs of the form f t y y(, ,)′ = 0 (ode15i only)

Using Initial Conditions to Specify the Solution of Interest
Generally there are many functions that satisfy a given ODE, and
additional information is necessary to specify the solution of interest. In
an initial value problem, the solution of interest satisfies a specific initial
condition, that is, is equal to at a given initial time . An initial value
problem for an ODE is then

(5-1)

If the function is sufficiently smooth, this problem has one and only one
solution. Generally there is no analytic expression for the solution, so it is
necessary to approximate by numerical means, such as using one of the
ODE solvers.

Working with Higher Order ODEs
The ODE solvers accept only first-order differential equations. However,
ODEs often involve a number of dependent variables, as well as derivatives
of order higher than one. To use the ODE solvers, you must rewrite such
equations as an equivalent system of first-order differential equations of the
form

You can write any ordinary differential equation

as a system of first-order equations by making the substitutions

5-6

Initial Value Problems for ODEs and DAEs

The result is an equivalent system of first-order ODEs.

“Example: Solving an IVP ODE (van der Pol Equation, Nonstiff)” on page 5-11
rewrites the second-order van der Pol equation

as a system of first-order ODEs.

Solvers for Explicit and Linearly Implicit ODEs

Solvers for Nonstiff Problems (p. 5-8)

Solvers for Stiff Problems (p. 5-8)

Basic ODE Solver Syntax (p. 5-9)

This section describes the ODE solver functions for explicit or linearly implicit
ODEs, as described in “Types of Problems Handled by the ODE Solvers” on
page 5-5. The solver functions implement numerical integration methods for
solving initial value problems for ODEs. Beginning at the initial time with
initial conditions, they step through the time interval, computing a solution
at each time step. If the solution for a time step satisfies the solver’s error
tolerance criteria, it is a successful step. Otherwise, it is a failed attempt; the
solver shrinks the step size and tries again.

Mass Matrix and DAE Properties, in the reference page for odeset, explains
how to set options to solve more general linearly implicit problems.

The function ode15i, which solves implicit ODEs, is described in “Solver for
Fully Implicit ODEs” on page 5-17.

5-7

5 Differential Equations

Solvers for Nonstiff Problems
There are three solvers designed for nonstiff problems:

ode45 Based on an explicit Runge-Kutta (4,5) formula,
the Dormand-Prince pair. It is a one-step solver –
in computing , it needs only the solution at the
immediately preceding time point, . In general,
ode45 is the best function to apply as a “first try” for
most problems.

ode23 Based on an explicit Runge-Kutta (2,3) pair of Bogacki
and Shampine. It may be more efficient than ode45 at
crude tolerances and in the presence of mild stiffness.
Like ode45, ode23 is a one-step solver.

ode113 Variable order Adams-Bashforth-Moulton PECE
solver. It may be more efficient than ode45 at stringent
tolerances and when the ODE function is particularly
expensive to evaluate. ode113 is a multistep solver—it
normally needs the solutions at several preceding time
points to compute the current solution.

Solvers for Stiff Problems
Not all difficult problems are stiff, but all stiff problems are difficult for
solvers not specifically designed for them. Solvers for stiff problems can be
used exactly like the other solvers. However, you can often significantly
improve the efficiency of these solvers by providing them with additional
information about the problem. (See “Changing ODE Integration Properties”
on page 5-19.)

There are four solvers designed for stiff problems:

5-8

Initial Value Problems for ODEs and DAEs

ode15s Variable-order solver based on the numerical
differentiation formulas (NDFs). Optionally it uses the
backward differentiation formulas, BDFs (also known
as Gear’s method). Like ode113, ode15s is a multistep
solver. If you suspect that a problem is stiff or if ode45
failed or was very inefficient, try ode15s.

ode23s Based on a modified Rosenbrock formula of order 2.
Because it is a one-step solver, it may be more efficient
than ode15s at crude tolerances. It can solve some
kinds of stiff problems for which ode15s is not effective.

ode23t An implementation of the trapezoidal rule using a
“free” interpolant. Use this solver if the problem is
only moderately stiff and you need a solution without
numerical damping.

ode23tb An implementation of TR-BDF2, an implicit
Runge-Kutta formula with a first stage that is a
trapezoidal rule step and a second stage that is a
backward differentiation formula of order 2. Like
ode23s, this solver may be more efficient than ode15s
at crude tolerances.

Basic ODE Solver Syntax
All of the ODE solver functions, except for ode15i, share a syntax that makes
it easy to try any of the different numerical methods, if it is not apparent
which is the most appropriate. To apply a different method to the same
problem, simply change the ODE solver function name. The simplest syntax,
common to all the solver functions, is

[t,y] = solver(odefun,tspan,y0,options)

where solver is one of the ODE solver functions listed previously.

The basic input arguments are

5-9

5 Differential Equations

odefun Handle to a function that evaluates the system of
ODEs. The function has the form

dydt = odefun(t,y)

where t is a scalar, and dydt and y are column
vectors. See “Function Handles” in the MATLAB
Programming documentation for more information.

tspan Vector specifying the interval of integration. The
solver imposes the initial conditions at tspan(1), and
integrates from tspan(1) to tspan(end).

y0 Vector of initial conditions for the problem

See also “Introduction to Initial Value ODE Problems”
on page 5-5.

options Structure of optional parameters that change the
default integration properties.

“Changing ODE Integration Properties” on page 5-19
tells you how to create the structure and describes the
properties you can specify.

The output arguments contain the solution approximated at discrete points:

t Column vector of time points

y Solution array. Each row in y corresponds to the
solution at a time returned in the corresponding row
of t.

See the reference page for the ODE solvers for more information about these
arguments.

Note See “Evaluating the Solution at Specific Points” on page 5-76 for more
information about solver syntax where a continuous solution is returned.

5-10

Initial Value Problems for ODEs and DAEs

Examples: Solving Explicit ODE Problems
This section uses the van der Pol equation

to describe the process for solving initial value ODE problems using the ODE
solvers.

• “Example: Solving an IVP ODE (van der Pol Equation, Nonstiff)” on page
5-11 describes each step of the process. Because the van der Pol equation is
a second-order equation, the example must first rewrite it as a system of
first order equations.

• “Example: The van der Pol Equation, µ = 1000 (Stiff)” on page 5-14
demonstrates the solution of a stiff problem.

• “Evaluating the Solution at Specific Points” on page 5-16 tells you how to
evaluate the solution at specific points.

Note See “Basic ODE Solver Syntax” on page 5-9 for more information.

Example: Solving an IVP ODE (van der Pol Equation, Nonstiff)
This example explains and illustrates the steps you need to solve an initial
value ODE problem:

1 Rewrite the problem as a system of first-order ODEs. Rewrite the
van der Pol equation (second-order)

where is a scalar parameter, by making the substitution .
The resulting system of first-order ODEs is

5-11

5 Differential Equations

See “Working with Higher Order ODEs” on page 5-6 for more information.

2 Code the system of first-order ODEs. Once you represent the equation
as a system of first-order ODEs, you can code it as a function that an ODE
solver can use. The function must be of the form

dydt = odefun(t,y)

Although t and y must be the function’s two arguments, the function does
not need to use them. The output dydt, a column vector, is the derivative
of y.

The code below represents the van der Pol system in the function, vdp1.
The vdp1 function assumes that . The variables and are the
entries y(1) and y(2) of a two-element vector.

function dydt = vdp1(t,y)
dydt = [y(2); (1-y(1)^2)*y(2)-y(1)];

Note that, although vdp1 must accept the arguments t and y, it does not
use t in its computations.

3 Apply a solver to the problem.

Decide which solver you want to use to solve the problem. Then call the
solver and pass it the function you created to describe the first-order system
of ODEs, the time interval on which you want to solve the problem, and an
initial condition vector. See “Examples: Solving Explicit ODE Problems” on
page 5-11 and the @ for descriptions of the ODE solvers.

For the van der Pol system, you can use ode45 on time interval [0 20] with
initial values y(1) = 2 and y(2) = 0.

[t,y] = ode45(@vdp1,[0 20],[2; 0]);

This example uses @ to pass vdp1 as a function handle to ode45. The
resulting output is a column vector of time points t and a solution array y.
Each row in y corresponds to a time returned in the corresponding row of t.
The first column of y corresponds to , and the second column to .

5-12

Initial Value Problems for ODEs and DAEs

Note For information on function handles, see the function_handle (@),
func2str, and str2func reference pages, and the “Function Handles”
section of in the MATLAB documentation.

4 View the solver output. You can simply use the plot command to view
the solver output.

plot(t,y(:,1),'-',t,y(:,2),'--')
title('Solution of van der Pol Equation, \mu = 1');
xlabel('time t');
ylabel('solution y');
legend('y_1','y_2')

As an alternative, you can use a solver output function to process the output.
The solver calls the function specified in the integration property OutputFcn
after each successful time step. Use odeset to set OutputFcn to the desired
function. See Solver Output Properties, in the reference page for odeset, for
more information about OutputFcn.

5-13

5 Differential Equations

Example: The van der Pol Equation, µ = 1000 (Stiff)
This example presents a stiff problem. For a stiff problem, solutions can
change on a time scale that is very short compared to the interval of
integration, but the solution of interest changes on a much longer time scale.
Methods not designed for stiff problems are ineffective on intervals where the
solution changes slowly because they use time steps small enough to resolve
the fastest possible change.

When is increased to 1000, the solution to the van der Pol equation
changes dramatically and exhibits oscillation on a much longer time scale.
Approximating the solution of the initial value problem becomes a more
difficult task. Because this particular problem is stiff, a solver intended for
nonstiff problems, such as ode45, is too inefficient to be practical. A solver
such as ode15s is intended for such stiff problems.

The vdp1000 function evaluates the van der Pol system from the previous
example, but with = 1000.

function dydt = vdp1000(t,y)
dydt = [y(2); 1000*(1-y(1)^2)*y(2)-y(1)];

Note This example hardcodes in the ODE function. The vdpode example
solves the same problem, but passes a user-specified as a parameter to
the ODE function.

Now use the ode15s function to solve the problem with the initial condition
vector of [2; 0], but a time interval of [0 3000]. For scaling reasons, plot
just the first component of y(t).

[t,y] = ode15s(@vdp1000,[0 3000],[2; 0]);
plot(t,y(:,1),'-');
title('Solution of van der Pol Equation, \mu = 1000');
xlabel('time t');
ylabel('solution y_1');

5-14

Initial Value Problems for ODEs and DAEs

Note For detailed instructions for solving an initial value ODE problem, see
“Example: Solving an IVP ODE (van der Pol Equation, Nonstiff)” on page 5-11.

Parameterizing an ODE Function
The preceding sections showed how to solve the van der Pol equation for two
different values of the parameter µ. In those examples, the values µ = 1 and
µ=1000 are hard-coded in the ODE functions. If you are solving an ODE for
several different parameter values, it might be more convenient to include
the parameter in the ODE function and assign a value to the parameter each
time you run the ODE solver. This section explains how to do this for the
van der Pol equation.

One way to provide parameter values to the ODE function is to write an
M-file that

• Accepts the parameters as inputs.

5-15

5 Differential Equations

• Contains ODE function as a nested function, internally using the input
parameters.

• Calls the ODE solver.

The following code illustrates this:

function [t,y] = solve_vdp(mu)
tspan = [0 max(20, 3*mu)];
y0 = [2; 0];

% Call the ODE solver ode15s.
[t,y] = ode15s(@vdp,tspan,y0);

% Define the ODE function as nested function,
% using the parameter mu.
function dydt = vdp(t,y)
dydt = [y(2); mu*(1-y(1)^2)*y(2)-y(1)];
end

end

Because the ODE function vdp is a nested function, the value of the parameter
mu is available to it.

To run the M-file for mu = 1, as in “Example: Solving an IVP ODE (van der
Pol Equation, Nonstiff)” on page 5-11, enter

[t,y] = solve_vdp(1);

To run the code for µ = 1000, as in “Example: The van der Pol Equation,
µ = 1000 (Stiff)” on page 5-14, enter

[t,y] = solve_vdp(1000);

See the vdpode code for a complete example based on these functions.

Evaluating the Solution at Specific Points
The numerical methods implemented in the ODE solvers produce a
continuous solution over the interval of integration . You can evaluate
the approximate solution, , at any point in using the function deval

5-16

Initial Value Problems for ODEs and DAEs

and the structure sol returned by the solver. For example, if you solve the
problem described in “Example: Solving an IVP ODE (van der Pol Equation,
Nonstiff)” on page 5-11 by calling ode45 with a single output argument sol,

sol = ode45(@vdp1,[0 20],[2; 0]);

ode45 returns the solution as a structure. You can then evaluate the
approximate solution at points in the vector xint = 1:5 as follows:

xint = 1:5;
Sxint = deval(sol,xint)

Sxint =

1.5081 0.3235 -1.8686 -1.7407 -0.8344
-0.7803 -1.8320 -1.0220 0.6260 1.3095

The deval function is vectorized. For a vector xint, the ith column of Sxint
approximates the solution .

Solver for Fully Implicit ODEs
The solver ode15i solves fully implicit differential equations of the form

using the variable order BDF method. The basic syntax for ode15i is

[t,y] = ode15i(odefun,tspan,y0,yp0,options)

The input arguments are

odefun A function that evaluates the left side of the differential
equation of the form .

tspan A vector specifying the interval of integration, [t0,tf].
To obtain solutions at specific times (all increasing or all
decreasing), use tspan = [t0,t1,...,tf].

5-17

5 Differential Equations

y0, yp0 Vectors of initial conditions for and , respectively.
The specified values must be consistent; that is, they must
satisfy f(t0,y0,yp0) = 0. “Example: Solving a Fully
Implicit ODE Problem” on page 5-18 shows how to use the
function decic to compute consistent initial conditions.

options Optional integration argument created using the odeset
function. See the odeset reference page for details.

The output arguments contain the solution approximated at discrete points:

t Column vector of time points

y Solution array. Each row in y corresponds to the solution at
a time returned in the corresponding row of t.

See the ode15i reference page for more information about these arguments.

Note See “Evaluating the Solution at Specific Points” on page 5-76 for more
information about solver syntax where a continuous solution is returned.

Example: Solving a Fully Implicit ODE Problem
The following example shows how to use the function ode15i to solve the
implicit ODE problem defined by Weissinger’s equation

with the initial value . The exact solution of the ODE is

The example uses the function weissinger, which is provided with MATLAB,
to compute the left-hand side of the equation.

Before calling ode15i, the example uses a helper function decic to compute
a consistent initial value for . In the following call, the given initial

5-18

Initial Value Problems for ODEs and DAEs

value is held fixed and a guess of 0 is specified for . See the
reference page for decic for more information.

t0 = 1;
y0 = sqrt(3/2);
yp0 = 0;
[y0,yp0] = decic(@weissinger,t0,y0,1,yp0,0);

You can now call ode15i to solve the ODE and then plot the numerical
solution against the analytical solution with the following commands.

[t,y] = ode15i(@weissinger,[1 10],y0,yp0);
ytrue = sqrt(t.^2 + 0.5);
plot(t,y,t,ytrue,'o');

Changing ODE Integration Properties
The default integration properties in the ODE solvers are selected to handle
common problems. In some cases, you can improve ODE solver performance
by overriding these defaults. You do this by supplying the solvers with an
options structure that specifies one or more property values.

For example, to change the value of the relative error tolerance of the solver
from the default value of 1e-3 to 1e-4,

5-19

5 Differential Equations

1 Create an options structure using the function odeset by entering

options = odeset('RelTol', 1e-4);

2 Pass the options structure to the solver as follows:

• For all solvers except ode15i, use the syntax

[t,y] = solver(odefun,tspan,y0,options)

• For ode15i, use the syntax

[t,y] = ode15i(odefun,tspan,y0,yp0,options)

For an example that uses the options structure, see “Example: Stiff Problem
(van der Pol Equation)” on page 5-22. For a complete description of the
available options, see the reference page for odeset.

Examples: Applying the ODE Initial Value Problem
Solvers

Running the Examples (p. 5-21)

Example: Simple Nonstiff Problem
(p. 5-21)

Example: Stiff Problem (van der Pol
Equation) (p. 5-22)

Example: Finite Element
Discretization (p. 5-24)

Example: Large, Stiff, Sparse
Problem (p. 5-27)

Example: Simple Event Location
(p. 5-30)

Example: Advanced Event Location
(p. 5-33)

Example: Differential-Algebraic
Problem (p. 5-36)

5-20

Initial Value Problems for ODEs and DAEs

Example: Computing Nonnegative
Solutions (p. 5-39)

Summary of Code Examples (p. 5-43)

Running the Examples
This section contains several examples that illustrate the kinds of problems
you can solve. For each example, there is a corresponding M-file, included
in MATLAB. You can

• View the M-file code in an editor by entering edit followed by the name of
the M-file at the MATLAB prompt. For example, to view the code for the
simple nonstiff problem example, enter

edit rigidode

Alternatively, if you are reading this in the MATLAB Help Browser, you
can click the name of the M-file in the list below.

• Run the example by entering the name of the M-file at the MATLAB
prompt.

Example: Simple Nonstiff Problem
rigidode illustrates the solution of a standard test problem proposed by
Krogh for solvers intended for nonstiff problems [8].

The ODEs are the Euler equations of a rigid body without external forces.

For your convenience, the entire problem is defined and solved in a single
M-file. The differential equations are coded as a subfunction f. Because the
example calls the ode45 solver without output arguments, the solver uses the
default output function odeplot to plot the solution components.

5-21

5 Differential Equations

To run this example, click on the example name, or type rigidode at the
command line.

function rigidode
%RIGIDODE Euler equations of a rigid body without external forces
tspan = [0 12];
y0 = [0; 1; 1];

% Solve the problem using ode45
ode45(@f,tspan,y0);
% --
function dydt = f(t,y)
dydt = [y(2)*y(3)

-y(1)*y(3)
-0.51*y(1)*y(2)];

Example: Stiff Problem (van der Pol Equation)
vdpode illustrates the solution of the van der Pol problem described in
“Example: The van der Pol Equation, µ = 1000 (Stiff)” on page 5-14. The
differential equations

5-22

Initial Value Problems for ODEs and DAEs

involve a constant parameter .

As increases, the problem becomes more stiff, and the period of oscillation
becomes larger. When is 1000 the equation is in relaxation oscillation and
the problem is very stiff. The limit cycle has portions where the solution
components change slowly and the problem is quite stiff, alternating with
regions of very sharp change where it is not stiff (quasi-discontinuities).

By default, the solvers in the ODE suite that are intended for stiff problems
approximate Jacobian matrices numerically. However, this example provides
a nested function J(t,y) to evaluate the Jacobian matrix analytically
at (t,y) for = MU. The use of an analytic Jacobian can improve the reliability
and efficiency of integration.

To run this example, click on the example name, or type vdpode at the
command line. From the command line, you can specify a value of as an
argument to vdpode. The default is mu = 1000.

function vdpode(MU)
%VDPODE Parameterizable van der Pol equation (stiff for large MU)
if nargin < 1

MU = 1000; % default
end

tspan = [0; max(20,3*MU)]; % Several periods
y0 = [2; 0];
options = odeset('Jacobian',@J);

[t,y] = ode15s(@f,tspan,y0,options);

plot(t,y(:,1));
title(['Solution of van der Pol Equation, \mu = ' num2str(MU)]);
xlabel('time t');
ylabel('solution y_1');

axis([tspan(1) tspan(end) -2.5 2.5]);

function dydt = f(t,y)
dydt = [y(2)

MU*(1-y(1)^2)*y(2)-y(1)];

5-23

5 Differential Equations

end % End nested function f

function dfdy = J(t,y)
dfdy = [0 1

-2*MU*y(1)*y(2)-1 MU*(1-y(1)^2)];
end % End nested function J
end

Example: Finite Element Discretization
fem1ode illustrates the solution of ODEs that result from a finite element
discretization of a partial differential equation. The value of N in the call
fem1ode(N) controls the discretization, and the resulting system consists
of N equations. By default, N is 19.

This example involves a mass matrix. The system of ODEs comes from a
method of lines solution of the partial differential equation

5-24

Initial Value Problems for ODEs and DAEs

with initial condition and boundary conditions
. An integer is chosen, is defined as , and

the solution of the partial differential equation is approximated at
for k = 0, 1, ..., N+1 by

Here is a piecewise linear function that is 1 at and 0 at all the other .
A Galerkin discretization leads to the system of ODEs

and the tridiagonal matrices and are given by

and

The initial values are taken from the initial condition for the partial
differential equation. The problem is solved on the time interval .

In the fem1ode example, the properties

options = odeset('Mass',@mass,'MStateDep','none','Jacobian',J)

indicate that the problem is of the form . The nested function
mass(t) evaluates the time-dependent mass matrix and J is the constant
Jacobian.

5-25

5 Differential Equations

To run this example, click on the example name, or type fem1ode at the
command line. From the command line, you can specify a value of as an
argument to fem1ode. The default is = 19.

function fem1ode(N)
%FEM1ODE Stiff problem with a time-dependent mass matrix

if nargin < 1
N = 19;

end
h = pi/(N+1);
y0 = sin(h*(1:N)');
tspan = [0; pi];

% The Jacobian is constant.
e = repmat(1/h,N,1); % e=[(1/h) ... (1/h)];
d = repmat(-2/h,N,1); % d=[(-2/h) ... (-2/h)];
% J is shared with the derivative function.
J = spdiags([e d e], -1:1, N, N);

d = repmat(h/6,N,1);
% M is shared with the mass matrix function.
M = spdiags([d 4*d d], -1:1, N, N);

options = odeset('Mass',@mass,'MStateDep','none', ...
'Jacobian',J);

[t,y] = ode15s(@f,tspan,y0,options);

figure;
surf((1:N)/(N+1),t,y);
set(gca,'ZLim',[0 1]);
view(142.5,30);
title(['Finite element problem with time-dependent mass ' ...

'matrix, solved by ODE15S']);
xlabel('space (x/\pi)');
ylabel('time');
zlabel('solution');
%--
-

5-26

Initial Value Problems for ODEs and DAEs

function yp = f(t,y)
% Derivative function.

yp = J*y; % Constant Jacobian is provided by outer function
end % End nested function f
%--
-
function Mt = mass(t)
% Mass matrix function.

Mt = exp(-t)*M; % M is provided by outer function
end % End nested function mass
%--
-
end

Example: Large, Stiff, Sparse Problem
brussode illustrates the solution of a (potentially) large stiff sparse problem.
The problem is the classic “Brusselator“ system [3] that models diffusion
in a chemical reaction

5-27

5 Differential Equations

and is solved on the time interval [0,10] with = 1/50 and

There are equations in the system, but the Jacobian is banded with a
constant width 5 if the equations are ordered as

In the call brussode(N), where N corresponds to , the parameter N ≥ 2
specifies the number of grid points. The resulting system consists of 2N
equations. By default, N is 20. The problem becomes increasingly stiff and
the Jacobian increasingly sparse as N increases.

The nested function f(t,y) returns the derivatives vector for the Brusselator
problem. The subfunction jpattern(N) returns a sparse matrix of 1s and 0s
showing the locations of nonzeros in the Jacobian . The example assigns
this matrix to the property JPattern, and the solver uses the sparsity pattern
to generate the Jacobian numerically as a sparse matrix. Providing a sparsity
pattern can significantly reduce the number of function evaluations required
to generate the Jacobian and can accelerate integration.

For the Brusselator problem, if the sparsity pattern is not supplied, 2N
evaluations of the function are needed to compute the 2N-by-2N Jacobian
matrix. If the sparsity pattern is supplied, only four evaluations are needed,
regardless of the value of N.

To run this example, click on the example name, or type brussode at the
command line. From the command line, you can specify a value of as an
argument to brussode. The default is = 20.

function brussode(N)
%BRUSSODE Stiff problem modeling a chemical reaction

if nargin < 1
N = 20;

5-28

Initial Value Problems for ODEs and DAEs

end

tspan = [0; 10];
y0 = [1+sin((2*pi/(N+1))*(1:N));
repmat(3,1,N)];

options = odeset('Vectorized','on','JPattern',jpattern(N));

[t,y] = ode15s(@f,tspan,y0,options);

u = y(:,1:2:end);
x = (1:N)/(N+1);
surf(x,t,u);
view(-40,30);
xlabel('space');
ylabel('time');
zlabel('solution u');
title(['The Brusselator for N = ' num2str(N)]);
% --
function dydt = f(t,y)
c = 0.02 * (N+1)^2;
dydt = zeros(2*N,size(y,2)); % preallocate dy/dt
% Evaluate the two components of the function at one edge of
% the grid (with edge conditions).
i = 1;
dydt(i,:) = 1 + y(i+1,:).*y(i,:).^2 - 4*y(i,:) + ...

c*(1-2*y(i,:)+y(i+2,:));
dydt(i+1,:) = 3*y(i,:) - y(i+1,:).*y(i,:).^2 + ...

c*(3-2*y(i+1,:)+y(i+3,:));
% Evaluate the two components of the function at all interior
% grid points.
i = 3:2:2*N-3;
dydt(i,:) = 1 + y(i+1,:).*y(i,:).^2 - 4*y(i,:) + ...

c*(y(i-2,:)-2*y(i,:)+y(i+2,:));
dydt(i+1,:) = 3*y(i,:) - y(i+1,:).*y(i,:).^2 + ...

c*(y(i-1,:)-2*y(i+1,:)+y(i+3,:));
% Evaluate the two components of the function at the other edge
% of the grid (with edge conditions).
i = 2*N-1;
dydt(i,:) = 1 + y(i+1,:).*y(i,:).^2 - 4*y(i,:) + ...

5-29

5 Differential Equations

c*(y(i-2,:)-2*y(i,:)+1);
dydt(i+1,:) = 3*y(i,:) - y(i+1,:).*y(i,:).^2 + ...

c*(y(i-1,:)-2*y(i+1,:)+3);
end % End nested function f
end % End function brussode
% --
function S = jpattern(N)
B = ones(2*N,5);
B(2:2:2*N,2) = zeros(N,1);
B(1:2:2*N-1,4) = zeros(N,1);
S = spdiags(B,-2:2,2*N,2*N);
end;

Example: Simple Event Location
ballode models the motion of a bouncing ball. This example illustrates the
event location capabilities of the ODE solvers.

The equations for the bouncing ball are

5-30

Initial Value Problems for ODEs and DAEs

In this example, the event function is coded in a subfunction events

[value,isterminal,direction] = events(t,y)

which returns

• A value of the event function

• The information whether or not the integration should stop when
value = 0 (isterminal = 1 or 0, respectively)

• The desired directionality of the zero crossings:

-1 Detect zero crossings in the negative direction only

0 Detect all zero crossings

1 Detect zero crossings in the positive direction only

The length of value, isterminal, and direction is the same as the number
of event functions. The ith element of each vector, corresponds to the ith
event function. For an example of more advanced event location, see orbitode
(“Example: Advanced Event Location” on page 5-33).

In ballode, setting the Events property to @events causes the solver to stop
the integration (isterminal = 1) when the ball hits the ground (the height
y(1) is 0) during its fall (direction = -1). The example then restarts the
integration with initial conditions corresponding to a ball that bounced.

To run this example, click on the example name, or type ballode at the
command line.

function ballode
%BALLODE Run a demo of a bouncing ball.

tstart = 0;
tfinal = 30;
y0 = [0; 20];
refine = 4;
options = odeset('Events',@events,'OutputFcn', @odeplot,...

'OutputSel',1,'Refine',refine);

5-31

5 Differential Equations

set(gca,'xlim',[0 30],'ylim',[0 25]);
box on
hold on;

tout = tstart;
yout = y0.';
teout = [];
yeout = [];
ieout = [];
for i = 1:10

% Solve until the first terminal event.
[t,y,te,ye,ie] = ode23(@f,[tstart tfinal],y0,options);
if ~ishold

hold on
end
% Accumulate output.
nt = length(t);
tout = [tout; t(2:nt)];
yout = [yout; y(2:nt,:)];
teout = [teout; te]; % Events at tstart are never reported.
yeout = [yeout; ye];
ieout = [ieout; ie];

ud = get(gcf,'UserData');
if ud.stop

break;
end

% Set the new initial conditions, with .9 attenuation.
y0(1) = 0;
y0(2) = -.9*y(nt,2);

% A good guess of a valid first time step is the length of
% the last valid time step, so use it for faster computation.
options = odeset(options,'InitialStep',t(nt)-t(nt-refine),...

'MaxStep',t(nt)-t(1));
tstart = t(nt);

end

plot(teout,yeout(:,1),'ro')

5-32

Initial Value Problems for ODEs and DAEs

xlabel('time');
ylabel('height');
title('Ball trajectory and the events');
hold off
odeplot([],[],'done');
% --
function dydt = f(t,y)
dydt = [y(2); -9.8];
% --
function [value,isterminal,direction] = events(t,y)
% Locate the time when height passes through zero in a
% decreasing direction and stop integration.
value = y(1); % Detect height = 0
isterminal = 1; % Stop the integration
direction = -1; % Negative direction only

Example: Advanced Event Location
orbitode illustrates the solution of a standard test problem for those solvers
that are intended for nonstiff problems. It traces the path of a spaceship
traveling around the moon and returning to the earth (Shampine and
Gordon [8], p. 246).

The orbitode problem is a system of the following four equations shown:

5-33

5 Differential Equations

where

The first two solution components are coordinates of the body of infinitesimal
mass, so plotting one against the other gives the orbit of the body. The
initial conditions have been chosen to make the orbit periodic. The value
of corresponds to a spaceship traveling around the moon and the earth.
Moderately stringent tolerances are necessary to reproduce the qualitative
behavior of the orbit. Suitable values are 1e-5 for RelTol and 1e-4 for AbsTol.

The nested events function includes event functions that locate the point of
maximum distance from the starting point and the time the spaceship returns
to the starting point. Note that the events are located accurately, even though
the step sizes used by the integrator are not determined by the location of
the events. In this example, the ability to specify the direction of the zero
crossing is critical. Both the point of return to the initial point and the point
of maximum distance have the same event function value, and the direction of
the crossing is used to distinguish them.

To run this example, click on the example name, or type orbitode at the
command line. The example uses the output function odephas2 to produce

5-34

Initial Value Problems for ODEs and DAEs

the two-dimensional phase plane plot and let you to see the progress of the
integration.

function orbitode
%ORBITODE Restricted three-body problem

mu = 1 / 82.45;
mustar = 1 - mu;
y0 = [1.2; 0; 0; -1.04935750983031990726];
tspan = [0 7];

options = odeset('RelTol',1e-5,'AbsTol',1e-4,...
'OutputFcn',@odephas2,'Events',@events);

[t,y,te,ye,ie] = ode45(@f,tspan,y0,options);

plot(y(:,1),y(:,2),ye(:,1),ye(:,2),'o');
title ('Restricted three body problem')
ylabel ('y(t)')
xlabel ('x(t)')
% --
function dydt = f(t,y)
r13 = ((y(1) + mu)^2 + y(2)^2) ^ 1.5;
r23 = ((y(1) - mustar)^2 + y(2)^2) ^ 1.5;
dydt = [y(3)

y(4)
2*y(4) + y(1) - mustar*((y(1)+mu)/r13) - ...

mu*((y(1)-mustar)/r23)
-2*y(3) + y(2) - mustar*(y(2)/r13) - mu*(y(2)/r23)];

end % End nested function f
% --
function [value,isterminal,direction] = events(t,y)
% Locate the time when the object returns closest to the
% initial point y0 and starts to move away, and stop integration.
% Also locate the time when the object is farthest from the
% initial point y0 and starts to move closer.
%
% The current distance of the body is
%
% DSQ = (y(1)-y0(1))^2 + (y(2)-y0(2))^2

5-35

5 Differential Equations

% = <y(1:2)-y0(1:2),y(1:2)-y0(1:2)>
%
% A local minimum of DSQ occurs when d/dt DSQ crosses zero
% heading in the positive direction. We can compute d(DSQ)/dt as
%
% d(DSQ)/dt = 2*(y(1:2)-y0(1:2))'*dy(1:2)/dt = ...
% 2*(y(1:2)-y0(1:2))'*y(3:4)
%
dDSQdt = 2 * ((y(1:2)-y0(1:2))' * y(3:4));
value = [dDSQdt; dDSQdt];
isterminal = [1; 0]; % Stop at local minimum
direction = [1; -1]; % [local minimum, local maximum]
end % End nested function events
end

Example: Differential-Algebraic Problem
hb1dae reformulates the hb1ode example as a differential-algebraic equation
(DAE) problem. The Robertson problem coded in hb1ode is a classic test
problem for codes that solve stiff ODEs.

5-36

Initial Value Problems for ODEs and DAEs

Note The Robertson problem appears as an example in the prolog to
LSODI [4].

In hb1ode, the problem is solved with initial conditions , ,
to steady state. These differential equations satisfy a linear

conservation law that is used to reformulate the problem as the DAE

These equations do not have a solution for with components that do not
sum to 1. The problem has the form of with

is singular, but hb1dae does not inform the solver of this. The solver
must recognize that the problem is a DAE, not an ODE. Similarly, although
consistent initial conditions are obvious, the example uses an inconsistent

value to illustrate computation of consistent initial conditions.

To run this example, click on the example name, or type hb1dae at the
command line. Note that hb1dae

5-37

5 Differential Equations

• Imposes a much smaller absolute error tolerance on than on the other
components. This is because is much smaller than the other components
and its major change takes place in a relatively short time.

• Specifies additional points at which the solution is computed to more
clearly show the behavior of .

• Multiplies by 104 to make visible when plotting it with the rest of
the solution.

• Uses a logarithmic scale to plot the solution on the long time interval.

function hb1dae
%HB1DAE Stiff differential-algebraic equation (DAE)

% A constant, singular mass matrix
M = [1 0 0

0 1 0
0 0 0];

% Use an inconsistent initial condition to test initialization.
y0 = [1; 0; 1e-3];
tspan = [0 4*logspace(-6,6)];

% Use the LSODI example tolerances. The 'MassSingular' property
% is left at its default 'maybe' to test the automatic detection
% of a DAE.
options = odeset('Mass',M,'RelTol',1e-4,...

'AbsTol',[1e-6 1e-10 1e-6],'Vectorized','on');

[t,y] = ode15s(@f,tspan,y0,options);

y(:,2) = 1e4*y(:,2);

semilogx(t,y);
ylabel('1e4 * y(:,2)');
title(['Robertson DAE problem with a Conservation Law, '...

'solved by ODE15S']);
xlabel('This is equivalent to the stiff ODEs coded in HB1ODE.');
% --
function out = f(t,y)
out = [-0.04*y(1,:) + 1e4*y(2,:).*y(3,:)

5-38

Initial Value Problems for ODEs and DAEs

0.04*y(1,:) - 1e4*y(2,:).*y(3,:) - 3e7*y(2,:).^2
y(1,:) + y(2,:) + y(3,:) - 1];

Example: Computing Nonnegative Solutions
If certain components of the solution must be nonnegative, use odeset to set
the NonNegative property for the indices of these components.

Note This option is not available for ode23s, ode15i, or for implicit solvers
(ode15s, ode23t, ode23tb) applied to problems where there is a mass matrix.

Imposing nonnegativity is not always a trivial task. We suggest that you
use this option only when necessary, for example in instances in which the
application of a solution or integration will fail otherwise.

Consider the following initial value problem solved on the interval [0, 40]:

y' = - |y|, y(0) = 1

The solution of this problem decays to zero. If a solver produces a negative
approximate solution, it begins to track the solution of the ODE through this

5-39

5 Differential Equations

value, the solution goes off to minus infinity, and the computation fails. Using
the NonNegative property prevents this from happening.

In this example, the first call to ode45 uses the defaults for the solver
parameters:

ode = @(t,y) -abs(y);
[t0,y0] = ode45(ode,[0, 40], 1);

The second uses options to impose nonnegativity conditions:

options = odeset('NonNegative',1);
[t1,y1] = ode45(ode,[0, 40], 1, options);

This plot compares the numerical solution to the exact solution.

Here is a more complete view of the code used to obtain this plot:

ode = @(t,y) -abs(y);
options = odeset('Refine',1);
[t0,y0] = ode45(ode,[0, 40], 1,options);
options = odeset(options,'NonNegative',1);

5-40

Initial Value Problems for ODEs and DAEs

[t1,y1] = ode45(ode,[0, 40], 1, options);
t = linspace(0,40,1000);
y = exp(-t);
plot(t,y,'b-',t0,y0,'ro',t1,y1,'b*');
legend('Exact solution','No constraints','Nonnegativity', ...

'Location','SouthWest')

The MATLAB kneeode Demo. The MATLAB kneeode demo solves the
“knee problem” by imposing a nonnegativity constraint on the numerical
solution. The initial value problem is

*y' = (1-x)*y - y^2, y(0) = 1

For 0 < < 1, the solution of this problem approaches null isoclines y = 1
- x and y = 0 for x < 1 and x > 1, respectively. The numerical solution,
when computed with default tolerances, follows the y = 1 - x isocline for the
whole interval of integration. Imposing nonnegativity constraints results in
the correct solution.

Here is the code that makes up the kneeode demo:

function kneeode
%KNEEODE The "knee problem" with Nonnegativity constraints.

% Problem parameter
epsilon = 1e-6;

y0 = 1;
xspan = [0, 2];

% Solve without imposing constraints
options = [];
[x1,y1] = ode15s(@odefcn,xspan,y0,options);

% Impose nonnegativity constraint
options = odeset('NonNegative',1);
[x2,y2] = ode15s(@odefcn,xspan,y0,options);

figure
plot(x1,y1,'b.-',x2,y2,'g-')

5-41

5 Differential Equations

axis([0,2,-1,1]);
title('The "knee problem"');
legend('No constraints','nonnegativity')
xlabel('x');
ylabel('solution y')

function yp = odefcn(x,y)
yp = ((1 - x)*y - y^2)/epsilon;

end
end % kneeode

The derivative function is defined within nested function odefcn. The value
of epsilon used in odefcn is obtained from the outer function:

function yp = odefcn(x,y)
yp = ((1 - x)*y - y^2)/epsilon;
end

The demo solves the problem using the ode15s function, first with the default
options, and then by imposing a nonnegativity constraint. To run the demo,
type kneeode at the MATLAB command prompt.

Here is the output plot. The plot confirms correct solution behavior after
imposing constraints.

5-42

Initial Value Problems for ODEs and DAEs

Summary of Code Examples
The following table lists the M-files for all the ODE initial value problem
examples. Click the example name to see the code in an editor. Type the
example name at the command line to run it.

Note The Differential Equations Examples browser enables you to view
the code for the ODE examples and DAE examples. You can also run the
examples from the browser. Click these links to invoke the browser, or type
odeexamples('ode') or odeexamples('dae') at the command line.

Example Description

amp1dae Stiff DAE — electrical circuit

ballode Simple event location — bouncing ball

batonode ODE with time- and state-dependent mass
matrix — motion of a baton

brussode Stiff large problem — diffusion in a chemical
reaction (the Brusselator)

5-43

5 Differential Equations

Example Description

burgersode ODE with strongly state-dependent mass
matrix — Burgers’ equation solved using a
moving mesh technique

fem1ode Stiff problem with a time-dependent mass
matrix — finite element method

fem2ode Stiff problem with a constant mass matrix —
finite element method

hb1ode Stiff ODE problem solved on a very long
interval — Robertson chemical reaction

hb1dae Robertson problem — stiff, linearly implicit
DAE from a conservation law

ihb1dae Robertson problem — stiff, fully implicit DAE

iburgersode Burgers’ equation solved as implicit ODE
system

kneeode The “knee problem” with nonnegativity
constraints

orbitode Advanced event location — restricted three
body problem

rigidode Nonstiff problem — Euler equations of a rigid
body without external forces

vdpode Parameterizable van der Pol equation (stiff for
large)

Questions and Answers, and Troubleshooting
This section contains a number of tables that answer questions about the
use and operation of the ODE solvers:

• General ODE Solver Questions on page 5-45

• Problem Size, Memory Use, and Computation Speed on page 5-45

• Time Steps for Integration on page 5-47

• Error Tolerance and Other Options on page 5-47

5-44

Initial Value Problems for ODEs and DAEs

• Solving Different Kinds of Problems on page 5-49

• Troubleshooting on page 5-51

General ODE Solver Questions

Question Answer

How do the ODE solvers differ from quad or
quadl?

quad and quadl solve problems of the form
. The ODE solvers handle more

general problems , linearly
implicit problems that involve a mass matrix

, and fully implicit problems
.

Can I solve ODE systems in which there are
more equations than unknowns, or vice versa?

No.

Problem Size, Memory Use, and Computation Speed

Question Answer

How large a problem can I solve with the ODE
suite?

The primary constraints are memory and time.
At each time step, the solvers for nonstiff
problems allocate vectors of length n, where n
is the number of equations in the system. The
solvers for stiff problems but also allocate an
n-by-n Jacobian matrix. For these solvers it
may be advantageous to use the sparse option.

If the problem is nonstiff, or if you are using
the sparse option, it may be possible to solve
a problem with thousands of unknowns. In
this case, however, storage of the result can be
problematic. Try asking the solver to evaluate
the solution at specific points only, or call the
solver with no output arguments and use an
output function to monitor the solution.

5-45

5 Differential Equations

Problem Size, Memory Use, and Computation Speed (Continued)

Question Answer

I’m solving a very large system, but only care
about a couple of the components of y. Is there
any way to avoid storing all of the elements?

Yes. The user-installable output function
capability is designed specifically for this
purpose. When you call the solver with no
output arguments, the solver does not allocate
storage to hold the entire solution history.
Instead, the solver calls OutputFcn(t,y,flag)
at each time step. To keep the history of specific
elements, write an output function that stores
or plots only the elements you care about.

What is the startup cost of the integration and
how can I reduce it?

The biggest startup cost occurs as the solver
attempts to find a step size appropriate to the
scale of the problem. If you happen to know
an appropriate step size, use the InitialStep
property. For example, if you repeatedly call
the integrator in an event location loop, the
last step that was taken before the event is
probably on scale for the next integration. See
ballode for an example.

5-46

Initial Value Problems for ODEs and DAEs

Time Steps for Integration

Question Answer

The first step size that the integrator takes is
too large, and it misses important behavior.

You can specify the first step size with the
InitialStep property. The integrator tries
this value, then reduces it if necessary.

Can I integrate with fixed step sizes? No.

Error Tolerance and Other Options

Question Answer

How do I choose RelTol and AbsTol? RelTol, the relative accuracy tolerance,
controls the number of correct digits in the
answer. AbsTol, the absolute error tolerance,
controls the difference between the answer
and the solution. At each step, the error e in
component i of the solution satisfies

|e(i)| ≤max(RelTol*abs(y(i)),AbsTol(i))

Roughly speaking, this means that you want
RelTol correct digits in all solution components
except those smaller than thresholds
AbsTol(i). Even if you are not interested in a
component y(i) when it is small, you may have
to specify AbsTol(i) small enough to get some
correct digits in y(i) so that you can accurately
compute more interesting components.

5-47

5 Differential Equations

Error Tolerance and Other Options (Continued)

Question Answer

I want answers that are correct to the precision
of the computer. Why can’t I simply set RelTol
to eps?

You can get close to machine precision, but not
that close. The solvers do not allow RelTol
near eps because they try to approximate a
continuous function. At tolerances comparable
to eps, the machine arithmetic causes all
functions to look discontinuous.

How do I tell the solver that I don’t care about
getting an accurate answer for one of the
solution components?

You can increase the absolute error tolerance
corresponding to this solution component. If
the tolerance is bigger than the component, this
specifies no correct digits for the component.
The solver may have to get some correct
digits in this component to compute other
components accurately, but it generally handles
this automatically.

5-48

Initial Value Problems for ODEs and DAEs

Solving Different Kinds of Problems

Question Answer

Can the solvers handle partial differential
equations (PDEs) that have been discretized
by the method of lines?

Yes, because the discretization produces
a system of ODEs. Depending on the
discretization, you might have a form involving
mass matrices – the ODE solvers provide
for this. Often the system is stiff. This is to
be expected when the PDE is parabolic and
when there are phenomena that happen on
very different time scales such as a chemical
reaction in a fluid flow. In such cases, use one
of the four solvers: ode15s, ode23s, ode23t,
ode23tb.

If there are many equations, set the JPattern
property. This might make the difference
between success and failure due to the
computation being too expensive. For an
example that uses JPattern, see “Example:
Large, Stiff, Sparse Problem” on page 5-27.
When the system is not stiff, or not very stiff,
ode23 or ode45 is more efficient than ode15s,
ode23s, ode23t, or ode23tb.

Parabolic-elliptic partial differential equations
in 1-D can be solved directly with the MATLAB
PDE solver, pdepe. For more information, see
“Partial Differential Equations” on page 5-93.

Can I solve differential-algebraic equation
(DAE) systems?

Yes. The solvers ode15s and ode23t can solve
some DAEs of the form
where is singular. The DAEs must be of
index 1. ode15i can solve fully implicit DAEs
of index 1, . For examples, see
amp1dae, hb1dae, or ihb1dae.

5-49

5 Differential Equations

Solving Different Kinds of Problems (Continued)

Question Answer

Can I integrate a set of sampled data? Not directly. You have to represent the data
as a function by interpolation or some other
scheme for fitting data. The smoothness of this
function is critical. A piecewise polynomial fit
like a spline can look smooth to the eye, but
rough to a solver; the solver takes small steps
where the derivatives of the fit have jumps.
Either use a smooth function to represent
the data or use one of the lower order solvers
(ode23, ode23s, ode23t, ode23tb) that is less
sensitive to this.

What do I do when I have the final and not the
initial value?

All the solvers of the ODE suite allow you
to solve backwards or forwards in time.
The syntax for the solvers is [t,y] =
ode45(odefun,[t0 tf],y0);and the syntax
accepts t0 > tf.

5-50

Initial Value Problems for ODEs and DAEs

Troubleshooting

Question Answer

The solution doesn’t look like what I expected. If you’re right about its appearance, you need to
reduce the error tolerances from their default
values. A smaller relative error tolerance is
needed to compute accurately the solution
of problems integrated over “long” intervals,
as well as solutions of problems that are
moderately unstable.

You should check whether there are solution
components that stay smaller than their
absolute error tolerance for some time. If so,
you are not asking for any correct digits in
these components. This may be acceptable for
these components, but failing to compute them
accurately may degrade the accuracy of other
components that depend on them.

My plots aren’t smooth enough. Increase the value of Refine from its default
of 4 in ode45 and 1 in the other solvers. The
bigger the value of Refine, the more output
points. Execution speed is not affected much
by the value of Refine.

I’m plotting the solution as it is computed and
it looks fine, but the code gets stuck at some
point.

First verify that the ODE function is smooth
near the point where the code gets stuck. If
it isn’t, the solver must take small steps to
deal with this. It may help to break tspan into
pieces on which the ODE function is smooth.

If the function is smooth and the code is
taking extremely small steps, you are probably
trying to solve a stiff problem with a solver not
intended for this purpose. Switch to ode15s,
ode23s, ode23t, or ode23tb.

5-51

5 Differential Equations

Troubleshooting (Continued)

Question Answer

My integration proceeds very slowly, using too
many time steps.

First, check that your tspan is not too long.
Remember that the solver uses as many
time points as necessary to produce a smooth
solution. If the ODE function changes on a time
scale that is very short compared to the tspan,
the solver uses a lot of time steps. Long-time
integration is a hard problem. Break tspan
into smaller pieces.

If the ODE function does not change noticeably
on the tspan interval, it could be that your
problem is stiff. Try using ode15s, ode23s,
ode23t, or ode23tb.

Finally, make sure that the ODE function
is written in an efficient way. The solvers
evaluate the derivatives in the ODE function
many times. The cost of numerical integration
depends critically on the expense of evaluating
the ODE function. Rather than recompute
complicated constant parameters at each
evaluation, store them in globals or calculate
them once and pass them to nested functions.

I know that the solution undergoes a radical
change at time t where

t0 ≤ t ≤ tf

but the integrator steps past without “seeing”
it.

If you know there is a sharp change at time t,
it might help to break the tspan interval into
two pieces, [t0 t] and [t tf], and call the
integrator twice.

If the differential equation has periodic
coefficients or solution, you might restrict the
maximum step size to the length of the period
so the integrator won’t step over periods.

5-52

Initial Value Problems for DDEs

Initial Value Problems for DDEs

In this section...

“DDE Function Summary” on page 5-53

“Introduction to Initial Value DDE Problems” on page 5-54

“DDE Solvers” on page 5-55

“Solving DDE Problems” on page 5-56

“Discontinuities” on page 5-59

“Changing DDE Integration Properties” on page 5-63

“Example of a State-Dependent Delay” on page 5-63

DDE Function Summary

DDE Initial Value Problem Solvers

Solver Description

dde23 Solve initial value problems for delay
differential equations with constant delays.

ddesd Solve initial value problems for delay
differential equations with general delays.

DDE Helper Functions

Function Description

deval Evaluate the numerical solution using the
output of dde23 or ddesd.

DDE Solver Properties Handling
Use these functions to create, alter, or access an options structure. An options
structure contains named properties, the values of which are passed to dde23
or ddesd, thus affecting the solution of the problem.

5-53

5 Differential Equations

Function Description

ddeset Create/alter the DDE options structure.

ddeget Extract properties from options structure
created with ddeset.

DDE Initial Value Problem Examples
These examples illustrate the kind of problems you can solve using dde23 or
ddesd. Click the example name to see the code in an editor. Type the example
name at the command line to run it.

Note The Differential Equations Examples browser enables you to view the
code for the DDE examples, and also run them. Click the link to invoke the
browser, or type odeexamples('dde') at the command line.

The first two of these examples demonstrate ways that you can use the dde23
solver. The last example demonstrates the ddesd solver.

Example Description

ddex1 Straightforward example

ddex2 Cardiovascular model with discontinuities

ddex3 Problem involving state-dependent delays

Additional examples are provided by “Tutorial on Solving DDEs with DDE23,”
available at http://www.mathworks.com/dde_tutorial.

Introduction to Initial Value DDE Problems
The DDE dde23 solver can solve systems of ordinary differential equations,
such as

5-54

http://www.mathworks.com/dde_tutorial

Initial Value Problems for DDEs

where is the independent variable, is the dependent variable, and
represents (derivative of y with respect to t) . The delays (lags)
are positive constants. The solver ddesd allows delays that depend on and .

Using a History to Specify the Solution of Interest
In an initial value problem, you seek the solution on an interval with

. The DDE shows that depends on values of the solution at times
prior to . In particular, depends on . Because of
this, a solution on depends on its values for , i.e., its history .

Propagation of Discontinuities with DDE Solvers
Generally, the solution of an IVP for a system of DDEs has a jump
in its first derivative at the initial point because the first derivative of
the history function does not satisfy the DDE there. A discontinuity in any
derivative propagates into the future at spacings of when the
delays are constant, and in a more complicated way when they are not. For
the DDEs solved by dde23 and ddesd, the solution becomes smoother as the
integration proceeds.

DDE Solvers
This section describes:

DDE Solver dde23 (p. 5-55)

DDE Solver ddesd (p. 5-56)

The basic syntax for the two solvers is shown in the function reference pages
for dde23 and ddesd.

DDE Solver dde23
The function dde23 solves initial value problems for DDEs with constant
delays. It integrates a system of first-order differential equations

on the interval , with and given history for .

5-55

5 Differential Equations

dde23 produces a solution that is continuous on . You can use the
function deval and the output of dde23 to evaluate the solution at specific
points on the interval of integration.

dde23 tracks low-order discontinuities and integrates the differential
equations with the explicit Runge-Kutta (2,3) pair and interpolant used by
ode23. The Runge-Kutta formulas are implicit for step sizes longer than the
delays. When the solution is smooth enough that steps this big are justified,
the implicit formulas are evaluated by a predictor-corrector iteration.

DDE Solver ddesd
The function ddesd solves initial value problems for DDEs with general
delays. It integrates a system of first-order differential equations

on the interval , with , where delays can depend on both
and . Use the function deval and the output of ddesd to evaluate the
solution at specific points on the interval of integration.

ddesd integrates with the classic four-stage, fourth-order explicit Runge-Kutta
method, and controls the size of the residual of a natural interpolant. It uses
iteration to take steps that are longer than the delays. For further details,
see “Solving ODEs and DDEs with Residual Control,” L.F. Shampine, Applied
Numerical Mathematics, 52 (2005), pp 113-127.

Solving DDE Problems
This section uses examples to describe

• Using dde23 and ddesd to solve initial value problems for DDEs

• Evaluating the solution at specific points

Example: A Straightforward Problem
This example illustrates the straightforward formulation, computation, and
display of the solution of a system of DDEs with constant delays. The history
is constant, which is often the case. The differential equations are

5-56

Initial Value Problems for DDEs

The example solves the equations on [0,5] with history

for .

Note The demo ddex1 contains the complete code for this example. To see
the code in an editor, click the example name, or type edit ddex1 at the
command line. To run the example type ddex1 at the command line.

1 Rewrite the problem as a first-order system. To use dde23, you must
rewrite the equations as an equivalent system of first-order differential
equations. Do this just as you would when solving IVPs and BVPs for ODEs
(see “Examples: Solving Explicit ODE Problems” on page 5-11). However,
this example needs no such preparation because it already has the form of
a first-order system of equations.

2 Identify the lags. The delays (lags) are supplied to dde23 as a
vector. For the example we could use

lags = [1,0.2];

In coding the differential equations, = lags(j).

3 Code the system of first-order DDEs. Once you represent the equations
as a first-order system, and specify lags, you can code the equations as a
function that dde23 can use.

This code represents the system in the function, ddex1de.

5-57

5 Differential Equations

function dydt = ddex1de(t,y,Z)
ylag1 = Z(:,1);
ylag2 = Z(:,2);
dydt = [ylag1(1)

ylag1(1) + ylag2(2)
y(2)];

4 Code the history function. The history function for this example is

function S = ddex1hist(t)
S = ones(3,1);

5 Apply the DDE solver. The example now calls dde23 with the functions
ddex1de and ddex1hist.

sol = dde23(@ddex1de,lags,@ddex1hist,[0,5]);

Here the example supplies the interval of integration [0,5] directly. Because
the history is constant, we could also call dde23 by

sol = dde23(@ddex1de,lags,ones(3,1),[0,5]);

6 View the results. Complete the example by displaying the results. dde23
returns the mesh it selects and the solution there as fields in the solution
structure sol. Often, these provide a smooth graph.

plot(sol.x,sol.y);
title('An example of Wille'' and Baker');
xlabel('time t');
ylabel('solution y');
legend('y_1','y_2','y_3',2)

5-58

Initial Value Problems for DDEs

Evaluating the Solution at Specific Points
The method implemented in dde23 produces a continuous solution over the
whole interval of integration . You can evaluate the approximate
solution, , at any point in using the helper function deval and
the structure sol returned by dde23.

Sint = deval(sol,tint)

The deval function is vectorized. For a vector tint, the ith column of Sint
approximates the solution .

Using the output sol from the previous example, this code evaluates the
numerical solution at 100 equally spaced points in the interval [0,5] and
plots the result.

tint = linspace(0,5);
Sint = deval(sol,tint);
plot(tint,Sint);

Discontinuities
dde23 performs better if it is informed of discontinuities in the history and at
known locations. Discontinuities may be specified by event functions. There

5-59

5 Differential Equations

is a property with which you can specify a solution that is different from the
value given by the history function.

Discontinuity Property Comments

At the initial value InitialY Generally the initial value
is the value returned
by the history function, which
is to say that the solution is
continuous at the initial point.
However, if this is not the case,
supply a different initial value
using the InitialY property.

In the history, i.e.,
the solution at ,
or in the equation
coefficients for

Jumps Provide the known locations of
the discontinuities in a vector as
the value of the Jumps property.
Applies only to dde23.

State-dependent Events dde23 and ddesd use the events
function you supply to locate
these discontinuities. When the
solver finds such a discontinuity,
restart the integration to
continue. Specify the solution
structure for the current
integration as the history for
the new integration. The solver
extends each element of the
solution structure after each
restart so that the final structure
provides the solution for the
whole interval of integration.
If the new problem involves a
change in the solution, use the
InitialY property to specify
the initial value for the new
integration.

5-60

Initial Value Problems for DDEs

Example: Cardiovascular Model
This example solves a cardiovascular model due to J. T. Ottesen [6]. The
equations are integrated over the interval [0,1000]. The situation of interest
is when the peripheral pressure is reduced exponentially from its value
of 1.05 to 0.84 beginning at = 600.

This is a problem with one delay, a constant history, and three differential
equations with fourteen physical parameters. It has a discontinuity in a low
order derivative at t = 600.

Note The demo ddex2 contains the complete code for this example. To see
the code in an editor, click the example name, or type edit ddex2 at the
command line. To run the example type ddex2 at the command line.

In ddex2, the fourteen physical parameters are set as fields in a structure p
that is shared with nested functions. The function ddex2de for evaluating the
equations begins with

function dydt = ddex2de(t,y,Z)
if t <= 600

p.R = 1.05;
else

p.R = 0.21 * exp(600-t) + 0.84;
end
.
.
.

Solve Using the Jumps Property. The peripheral pressure is a
continuous function of , but it does not have a continuous derivative at t =
600. The example uses the Jumps property to inform dde23 about the location
of this discontinuity.

opts = ddeset('Jumps',600);

After defining the delay tau and the constant history, the call is

sol = dde23(@ddex2de,tau,history,[0, 1000],opts);

5-61

5 Differential Equations

The demo ddex2 plots only the third component, the heart rate, which shows
a sharp change at t = 600.

Solve by Restarting. The example could have solved this problem by
breaking it into two pieces

sol = dde23(@ddex2de,tau,history,[0, 600]);
sol = dde23(@ddex2de,tau,sol,[600, 1000]);

The solution structure sol on the interval [0,600] serves as history for
restarting the integration at t = 600. In the second call, dde23 extends sol
so that on return the solution is available on the whole interval [0,1000].
That is, after this second return,

Sint = deval(sol,[300,900]);

evaluates the solution obtained in the first integration at t = 300, and the
solution obtained in the second integration at t = 900.

When discontinuities occur in low order derivatives at points known in
advance, it is better to use the Jumps property. This is not an option with
ddesd, which handles discontinuities in a different way. When you use event
functions to locate such discontinuities, you must restart the integration at
discontinuities.

5-62

Initial Value Problems for DDEs

Changing DDE Integration Properties
The default integration properties in the DDE solver dde23 are selected to
handle common problems. In some cases, you can improve solver performance
by overriding these defaults. You do this by supplying dde23 with an options
structure that specifies one or more property values.

For example, to change the relative error tolerance of dde23 from the default
value of 1e-3 to 1e-4,

1 Create an options structure using the function ddeset by entering

options = ddeset('RelTol', 1e-4);

2 Pass the options structure to dde23 as follows:

sol = dde23(ddefun,lags,history,tspan,options)

For a complete description of the available options, see the reference page
for ddeset.

Example of a State-Dependent Delay
This example solves a system of two DDEs with state-dependent delay that
was used as a test problem by W.H. Enright and H. Hayashi [10] because it
has an analytical solution. The differential equations are

The analytical solution

is used as the history for and the equations are solved on [0.1, 5].
The only thing different about solving this example is that it must be solved
with ddesd rather than dde23. This is because the first factor in the second
equation has the form with a delay that depends on the second
component of the solution. The delay is provided to ddesd with a function like

5-63

5 Differential Equations

function d = ddex3delay(t,y)
% State dependent delay function for DDEX3
d = exp(1 - y(2));

Note The demo ddex3 contains the complete code for this example. To see
the code in an editor, click the example name, or type edit ddex3 at the
command line. To run the example type ddex3 at the command line.

5-64

Boundary Value Problems for ODEs

Boundary Value Problems for ODEs

In this section...

“BVP Function Summary” on page 5-65

“Introduction to Boundary Value ODE Problems” on page 5-67

“Boundary Value Problem Solver” on page 5-68

“Changing BVP Integration Properties” on page 5-71

“Solving BVP Problems” on page 5-72

“Using Continuation to Make a Good Initial Guess” on page 5-76

“Solving Singular BVPs” on page 5-84

“Solving Multipoint BVPs” on page 5-88

BVP Function Summary

ODE Boundary Value Problem Solver

Solver Description

bvp4c Solve boundary value problems for ordinary
differential equations.

BVP Helper Functions

Function Description

bvpinit Form the initial guess for bvp4c.

deval Evaluate the numerical solution using the output
of bvp4c.

5-65

5 Differential Equations

BVP Solver Properties Handling
An options structure contains named properties whose values are passed
to bvp4c, and which affect problem solution. Use these functions to create,
alter, or access an options structure.

Function Description

bvpset Create/alter the BVP options structure.

bvpget Extract properties from options structure created
with bvpset.

ODE Boundary Value Problem Examples
These examples illustrate the kind of problems you can solve using the BVP
solver. Click the example name to see the code in an editor. Type the example
name at the command line to run it.

Note The Differential Equations Examples browser enables you to view the
code for the BVP examples, and also run them. Click on the link to invoke the
browser, or type odeexamples('bvp')at the command line.

Example Description

emdenbvp Emden’s equation, a singular BVP

fsbvp Falkner-Skan BVP on an infinite interval

mat4bvp Fourth eigenfunction of Mathieu’s equation

shockbvp Solution with a shock layer near x = 0

twobvp BVP with exactly two solutions

threebvp Three-point boundary value problem

Additional examples are provided by “Tutorial on Solving BVPs with BVP4C,”
available at http://www.mathworks.com/bvp_tutorial.

5-66

http://www.mathworks.com/bvp_tutorial

Boundary Value Problems for ODEs

Introduction to Boundary Value ODE Problems
The BVP solver is designed to handle systems of ordinary differential
equations

where is the independent variable, is the dependent variable, and
represents the derivative of y with respect to x .

See “What Is an Ordinary Differential Equation?” on page 5-5 for general
information about ODEs.

Using Boundary Conditions to Specify the Solution of Interest
In a boundary value problem, the solution of interest satisfies certain
boundary conditions. These conditions specify a relationship between the
values of the solution at more than one . In its basic syntax, bvp4c is
designed to solve two-point BVPs, i.e., problems where the solution sought on
an interval must satisfy the boundary conditions

Unlike initial value problems, a boundary value problem may not have a
solution, may have a finite number of solutions, or may have infinitely many
solutions. As an integral part of the process of solving a BVP, you need to
provide a guess for the required solution. The quality of this guess can be
critical for the solver performance and even for a successful computation.

There may be other difficulties when solving BVPs, such as problems imposed
on infinite intervals or problems that involve singular coefficients. Often
BVPs involve unknown parameters that have to be determined as part
of solving the problem

In this case, the boundary conditions must suffice to determine the value of .

5-67

5 Differential Equations

Boundary Value Problem Solver

The BVP Solver (p. 5-68)

BVP Solver Basic Syntax (p. 5-69)

BVP Solver Options (p. 5-70)

The BVP Solver
The function bvp4c solves two-point boundary value problems for ordinary
differential equations (ODEs). It integrates a system of first-order ordinary
differential equations

on the interval , subject to general two-point boundary conditions

It can also accommodate other types of BVP problems, such as those that have
any of the following:

• Unknown parameters

• Singularities in the solutions

• Multipoint conditions

In this case, the number of boundary conditions must be sufficient to
determine the solution and the unknown parameters. For more information,
see “Finding Unknown Parameters” on page 5-75.

bvp4c produces a solution that is continuous on and has a continuous
first derivative there. You can use the function deval and the output of bvp4c
to evaluate the solution at specific points on the interval of integration.

bvp4c is a finite difference code that implements the 3-stage Lobatto IIIa
formula. This is a collocation formula and the collocation polynomial provides
a C1-continuous solution that is fourth-order accurate uniformly in the
interval of integration. Mesh selection and error control are based on the
residual of the continuous solution.

5-68

Boundary Value Problems for ODEs

The collocation technique uses a mesh of points to divide the interval of
integration into subintervals. The solver determines a numerical solution by
solving a global system of algebraic equations resulting from the boundary
conditions, and the collocation conditions imposed on all the subintervals. The
solver then estimates the error of the numerical solution on each subinterval.
If the solution does not satisfy the tolerance criteria, the solver adapts the
mesh and repeats the process. The user must provide the points of the initial
mesh as well as an initial approximation of the solution at the mesh points.

BVP Solver Basic Syntax
The basic syntax of the BVP solver is

sol = bvp4c(odefun,bcfun,solinit)

The input arguments are

odefun Handle to a function that evaluates the differential
equations. It has the basic form

dydx = odefun(x,y)

where x is a scalar, and dydx and y are column vectors.
See “Function Handles” in the MATLAB Programming
documentation for more information. odefun can also
accept a vector of unknown parameters and a variable
number of known parameters, (see “BVP Solver Options”
on page 5-70).

bcfun Handle to a function that evaluates the residual in the
boundary conditions. It has the basic form

res = bcfun(ya,yb)

where ya and yb are column vectors representing y(a) and
y(b), and res is a column vector of the residual in satisfying
the boundary conditions. bcfun can also accept a vector
of unknown parameters and a variable number of known
parameters, (see “BVP Solver Options” on page 5-70).

solinit Structure with fields x and y:

5-69

5 Differential Equations

x Ordered nodes of the initial mesh. Boundary
conditions are imposed at a = solinit.x(1)
and b = solinit.x(end).

y Initial guess for the solution with
solinit.y(:,i) a guess for the solution at
the node solinit.x(i).

The structure can have any name, but the fields must be
named x and y. It can also contain a vector that provides
an initial guess for unknown parameters. You can form
solinit with the helper function bvpinit. See the bvpinit
reference page for details.

The output argument sol is a structure created by the solver. In the basic
case the structure has fields x, y, yp, and solver.

sol.x Nodes of the mesh selected by bvp4c

sol.y Approximation to at the mesh points of sol.x

sol.yp Approximation to at the mesh points of sol.x

sol.solver 'bvp4c'

The structure sol returned by bvp4c contains an additional field if the
problem involves unknown parameters:

sol.parameters Value of unknown parameters, if present, found by the
solver.

The function deval uses the output structure sol to evaluate the numerical
solution at any point from [a,b]. For information about using deval, see
“Evaluating the Solution at Specific Points” on page 5-59.

BVP Solver Options
For more advanced applications, you can specify solver options by passing
an input argument options.

5-70

Boundary Value Problems for ODEs

options Structure of optional parameters that change the default
integration properties. This is the fourth input argument.

sol = bvp4c(odefun,bcfun,solinit,options)

You can create the structure options using the function
bvpset. The bvpset reference page describes the
properties you can specify.

Changing BVP Integration Properties
The default integration properties in the BVP solver bvp4c are selected to
handle common problems. In some cases, you can improve solver performance
by overriding these defaults. You do this by supplying bvp4c with an options
structure that specifies one or more property values.

For example, to change the value of the relative error tolerance of bvp4c from
the default value of 1e-3 to 1e-4,

1 Create an options structure using the function bvpset by entering

options = bvpset('RelTol', 1e-4);

2 Pass the options structure to bvp4c as follows:

sol = bvp4c(odefun,bcfun,solinit,options)

For a complete description of the available options, see the reference page
for bvpset.

Note For other ways to improve solver efficiency, check “Using Continuation
to Make a Good Initial Guess” on page 5-76 and the tutorial, “Solving
Boundary Value Problems for Ordinary Differential Equations in MATLAB
with bvp4c,” available at http://www.mathworks.com/bvp_tutorial.

5-71

http://www.mathworks.com/bvp_tutorial

5 Differential Equations

Solving BVP Problems

Example: Mathieu’s Equation
(p. 5-72)

Finding Unknown Parameters
(p. 5-75)

Evaluating the Solution at Specific
Points (p. 5-76)

Example: Mathieu’s Equation
This example determines the fourth eigenvalue of Mathieu’s Equation. It
illustrates how to write second-order differential equations as a system of two
first-order ODEs and how to use bvp4c to determine an unknown parameter .

The task is to compute the fourth () eigenvalue lambda of Mathieu’s
equation

Because the unknown parameter is present, this second-order differential
equation is subject to three boundary conditions

Note The demo mat4bvp contains the complete code for this example. The
demo uses nested functions to place all functions required by bvp4c in a single
M-file. To run this example type mat4bvp at the command line. See “BVP
Solver Basic Syntax” on page 5-69 for more information.

1 Rewrite the problem as a first-order system. To use bvp4c, you must
rewrite the equations as an equivalent system of first-order differential
equations. Using a substitution and , the differential
equation is written as a system of two first-order equations

5-72

Boundary Value Problems for ODEs

Note that the differential equations depend on the unknown parameter
. The boundary conditions become

2 Code the system of first-order ODEs. Once you represent the equation
as a first-order system, you can code it as a function that bvp4c can use.
Because there is an unknown parameter, the function must be of the form

dydx = odefun(x,y,parameters)

The following code represents the system in the function, mat4ode. Variable
q is shared with the outer function:

function dydx = mat4ode(x,y,lambda)
dydx = [y(2)

-(lambda - 2*q*cos(2*x))*y(1)];
end % End nested function mat4ode

See “Finding Unknown Parameters” on page 5-75 for more information
about using unknown parameters with bvp4c.

3 Code the boundary conditions function. You must also code the
boundary conditions in a function. Because there is an unknown parameter,
the function must be of the form

res = bcfun(ya,yb,parameters)

The code below represents the boundary conditions in the function, mat4bc.

function res = mat4bc(ya,yb,lambda)
res = [ya(2)

yb(2)
ya(1)-1];

5-73

5 Differential Equations

4 Create an initial guess. To form the guess structure solinit with
bvpinit, you need to provide initial guesses for both the solution and the
unknown parameter.

The function mat4init provides an initial guess for the solution. mat4init
uses because this function satisfies the boundary conditions and
has the correct qualitative behavior (the correct number of sign changes).

function yinit = mat4init(x)
yinit = [cos(4*x)

-4*sin(4*x)];

In the call to bvpinit, the third argument, lambda, provides an initial
guess for the unknown parameter .

lambda = 15;
solinit = bvpinit(linspace(0,pi,10),@mat4init,lambda);

This example uses @ to pass mat4init as a function handle to bvpinit.

Note See the function_handle (@), func2str, and str2func reference
pages, and the “Function Handles” section of MATLAB Programming in
the MATLAB documentation for information about function handles.

5 Apply the BVP solver. The mat4bvp example calls bvp4c with the
functions mat4ode and mat4bc and the structure solinit created with
bvpinit.

sol = bvp4c(@mat4ode,@mat4bc,solinit);

6 View the results. Complete the example by displaying the results:

a Print the value of the unknown parameter found by bvp4c.

fprintf('The fourth eigenvalue is approximately %7.3f.\n',...
sol.parameters)

5-74

Boundary Value Problems for ODEs

b Use deval to evaluate the numerical solution at 100 equally spaced
points in the interval , and plot its first component. This component
approximates .

xint = linspace(0,pi);
Sxint = deval(sol,xint);
plot(xint,Sxint(1,:))
axis([0 pi -1 1.1])
title('Eigenfunction of Mathieu''s equation.')
xlabel('x')
ylabel('solution y')

See “Evaluating the Solution at Specific Points” on page 5-76 for
information about using deval.

The following plot shows the eigenfunction associated with the final
eigenvalue = 17.097.

Finding Unknown Parameters
The bvp4c solver can find unknown parameters for problems of the form

5-75

5 Differential Equations

You must provide bvp4c an initial guess for any unknown parameters in the
vector solinit.parameters. When you call bvpinit to create the structure
solinit, specify the initial guess as a vector in the additional argument
parameters.

solinit = bvpinit(x,v,parameters)

The bvp4c function arguments odefun and bcfun must each have a third
argument.

dydx = odefun(x,y,parameters)
res = bcfun(ya,yb,parameters)

While solving the differential equations, bvp4c adjusts the value of unknown
parameters to satisfy the boundary conditions. The solver returns the final
values of these unknown parameters in sol.parameters. See “Example:
Mathieu’s Equation” on page 5-72.

Evaluating the Solution at Specific Points
The collocation method implemented in bvp4c produces a C1-continuous
solution over the whole interval of integration . You can evaluate the
approximate solution, , at any point in using the helper function
deval and the structure sol returned by bvp4c.

Sxint = deval(sol,xint)

The deval function is vectorized. For a vector xint, the ith column of Sxint
approximates the solution .

Using Continuation to Make a Good Initial Guess
To solve a boundary value problem, you need to provide an initial guess for
the solution. The quality of your initial guess can be critical to the solver
performance, and to being able to solve the problem at all. However, coming
up with a sufficiently good guess can be the most challenging part of solving
a boundary value problem. Certainly, you should apply the knowledge of
the problem’s physical origin. Often a problem can be solved as a sequence

5-76

Boundary Value Problems for ODEs

of relatively simpler problems, i.e., a continuation. This section provides
examples that illustrate how to use continuation to:

• Solve a difficult BVP

• Verify a solution’s consistent behavior

Example: Using Continuation to Solve a Difficult BVP
This example solves the differential equation

for , on the interval [-1 1], with boundary conditions and
. For , the solution has a transition layer at . Because of

this rapid change in the solution for small values of , the problem becomes
difficult to solve numerically.

The example solves the problem as a sequence of relatively simpler problems,
i.e., a continuation. The solution of one problem is used as the initial guess
for solving the next problem.

Note The demo shockbvp contains the complete code for this example. The
demo uses nested functions to place all required functions in a single M-file.
To run this example type shockbvp at the command line. See “BVP Solver
Basic Syntax” on page 5-69 and “Solving BVP Problems” on page 5-72 for
more information.

Note This problem appears in [1] to illustrate the mesh selection capability of
a well established BVP code COLSYS.

1 Code the ODE and boundary condition functions. Code the
differential equation and the boundary conditions as functions that bvp4c
can use:

5-77

5 Differential Equations

The code below represents the differential equation and the boundary
conditions in the functions shockODE and shockBC. Note that shockODE is
vectorized to improve solver performance. The additional parameter is
represented by e and is shared with the outer function.

function dydx = shockODE(x,y)
pix = pi*x;
dydx = [y(2,:)

-x/e.*y(2,:) - pi^2*cos(pix) - pix/e.*sin(pix)];
end % End nested function shockODE

function res = shockBC(ya,yb)
res = [ya(1)+2

yb(1)];
end % End nested function shockBC

2 Provide analytical partial derivatives. For this problem, the solver
benefits from using analytical partial derivatives. The code below
represents the derivatives in functions shockJac and shockBCJac.

function jac = shockJac(x,y)
jac = [0 1

0 -x/e];
end % End nested function shockJac

function [dBCdya,dBCdyb] = shockBCJac(ya,yb)
dBCdya = [1 0

0 0];
dBCdyb = [0 0

1 0];
end % End nested function shockBCJac

shockJac shares e with the outer function.

Tell bvp4c to use these functions to evaluate the partial derivatives by
setting the options FJacobian and BCJacobian. Also set 'Vectorized'
to 'on' to indicate that the differential equation function shockODE is
vectorized.

options = bvpset('FJacobian',@shockJac,...
'BCJacobian',@shockBCJac,...

5-78

Boundary Value Problems for ODEs

'Vectorized','on');

3 Create an initial guess. You must provide bvp4c with a guess structure
that contains an initial mesh and a guess for values of the solution at the
mesh points. A constant guess of and , and a mesh of five
equally spaced points on [-1 1] suffice to solve the problem for .
Use bvpinit to form the guess structure.

sol = bvpinit([-1 -0.5 0 0.5 1],[1 0]);

4 Use continuation to solve the problem. To obtain the solution for the
parameter , the example uses continuation by solving a sequence

of problems for . The solver bvp4c does not perform
continuation automatically, but the code’s user interface has been designed
to make continuation easy. The code uses the output sol that bvp4c
produces for one value of e as the guess in the next iteration.

e = 0.1;
for i=2:4

e = e/10;
sol = bvp4c(@shockODE,@shockBC,sol,options);

end

5 View the results. Complete the example by displaying the final solution

plot(sol.x,sol.y(1,:))
axis([-1 1 -2.2 2.2])
title(['There is a shock at x = 0 when \epsilon = '...

sprintf('%.e',e) '.'])
xlabel('x')
ylabel('solution y')

5-79

5 Differential Equations

Example: Using Continuation to Verify a Solution’s Consistent
Behavior
Falkner-Skan BVPs arise from similarity solutions of viscous, incompressible,
laminar flow over a flat plate. An example is

for on the interval with boundary conditions , ,
and .

The BVP cannot be solved on an infinite interval, and it would be impractical
to solve it for even a very large finite interval. So, the example tries to solve
a sequence of problems posed on increasingly larger intervals to verify the
solution’s consistent behavior as the boundary approaches .

The example imposes the infinite boundary condition at a finite point called
infinity. The example then uses continuation in this end point to get
convergence for increasingly larger values of infinity. It uses bvpinit to
extrapolate the solution sol for one value of infinity as an initial guess

5-80

Boundary Value Problems for ODEs

for the new value of infinity. The plot of each successive solution is
superimposed over those of previous solutions so they can easily be compared
for consistency.

Note The demo fsbvp contains the complete code for this example. The demo
uses nested functions to place all required functions in a single M-file. To run
this example type fsbvp at the command line. See “BVP Solver Basic Syntax”
on page 5-69 and “Solving BVP Problems” on page 5-72 for more information.

1 Code the ODE and boundary condition functions. Code the
differential equation and the boundary conditions as functions that bvp4c
can use. The problem parameter beta is shared with the outer function.

function dfdeta = fsode(eta,f)
dfdeta = [f(2)

f(3)
-f(1)*f(3) - beta*(1 - f(2)^2)];

end % End nested function fsode

function res = fsbc(f0,finf)
res = [f0(1)

f0(2)
finf(2) - 1];

end % End nested function fsbc

2 Create an initial guess. You must provide bvp4c with a guess structure
that contains an initial mesh and a guess for values of the solution at
the mesh points. A crude mesh of five points and a constant guess that
satisfies the boundary conditions are good enough to get convergence when
infinity = 3.

infinity = 3;
maxinfinity = 6;

solinit = bvpinit(linspace(0,infinity,5),[0 0 1]);

5-81

5 Differential Equations

3 Solve on the initial interval. The example obtains the solution for
infinity = 3. It then prints the computed value of for comparison
with the value reported by Cebeci and Keller [2]:

sol = bvp4c(@fsode,@fsbc,solinit);
eta = sol.x;
f = sol.y;

fprintf('\n');
fprintf('Cebeci & Keller report that f''''(0) = 0.92768.\n')
fprintf('Value computed using infinity = %g is %7.5f.\n', ...

infinity,f(3,1))

The example prints

Cebeci & Keller report that f''(0) = 0.92768.
Value computed using infinity = 3 is 0.92915.

4 Setup the figure and plot the initial solution.

figure
plot(eta,f(2,:),eta(end),f(2,end),'o');
axis([0 maxinfinity 0 1.4]);
title('Falkner-Skan equation, positive wall shear, \beta = 0.5.')
xlabel('\eta')
ylabel('df/d\eta')
hold on
drawnow
shg

5-82

Boundary Value Problems for ODEs

5 Use continuation to solve the problem and plot subsequent
solutions. The example then solves the problem for infinity = 4, 5, 6.
It uses bvpinit to extrapolate the solution sol for one value of infinity
as an initial guess for the next value of infinity. For each iteration, the
example prints the computed value of and superimposes a plot of
the solution in the existing figure.

for Bnew = infinity+1:maxinfinity

solinit = bvpinit(sol,[0 Bnew]); % Extend solution to Bnew.
sol = bvp4c(@fsode,@fsbc,solinit);
eta = sol.x;
f = sol.y;

fprintf('Value computed using infinity = %g is %7.5f.\n', ...
Bnew,f(3,1))

plot(eta,f(2,:),eta(end),f(2,end),'o');
drawnow

end
hold off

The example prints

5-83

5 Differential Equations

Value computed using infinity = 4 is 0.92774.
Value computed using infinity = 5 is 0.92770.
Value computed using infinity = 6 is 0.92770.

Note that the values approach 0.92768 as reported by Cebeci and Keller.
The superimposed plots confirm the consistency of the solution’s behavior.

Solving Singular BVPs
The function bvp4c solves a class of singular BVPs of the form

(5-2)

It can also accommodate unknown parameters for problems of the form

5-84

Boundary Value Problems for ODEs

Singular problems must be posed on an interval with . Use bvpset
to pass the constant matrix to bvp4c as the value of the 'SingularTerm'
integration property. Boundary conditions at must be consistent with
the necessary condition for a smooth solution, . An initial guess
should also satisfy this necessary condition.

When you solve a singular BVP using

sol = bvp4c(@odefun,@bcfun,solinit,options)

bvp4c requires that your function odefun(x,y) return only the value of the
term in Equation 5-2.

Example: Solving a BVP That Has a Singular Term
Emden’s equation arises in modeling a spherical body of gas. The PDE of the
model is reduced by symmetry to the ODE

on an interval . The coefficient is singular at , but symmetry
implies the boundary condition . With this boundary condition,
the term

is well-defined as approaches 0. For the boundary condition ,
this BVP has the analytical solution

Note The demo emdenbvp contains the complete code for this example. The
demo uses subfunctions to place all required functions in a single M-file. To
run this example type emdenbvp at the command line. See “BVP Solver Basic
Syntax” on page 5-69 and “Solving BVP Problems” on page 5-72 for more
information.

5-85

5 Differential Equations

1 Rewrite the problem as a first-order system and identify the
singular term. Using a substitution and , write the
differential equation as a system of two first-order equations

The boundary conditions become

Writing the ODE system in a vector-matrix form

the terms of Equation 5-2 are identified as

and

2 Code the ODE and boundary condition functions. Code the
differential equation and the boundary conditions as functions that bvp4c
can use.

function dydx = emdenode(x,y)
dydx = [y(2)

-y(1)^5];
function res = emdenbc(ya,yb)

5-86

Boundary Value Problems for ODEs

res = [ya(2)
yb(1) - sqrt(3)/2];

3 Setup integration properties. Use the matrix as the value of the
'SingularTerm' integration property.

S = [0,0;0,-2];
options = bvpset('SingularTerm',S);

4 Create an initial guess. This example starts with a mesh of five points
and a constant guess for the solution.

Use bvpinit to form the guess structure

guess = [sqrt(3)/2;0];
solinit = bvpinit(linspace(0,1,5),guess);

5 Solve the problem. Use the standard bvp4c syntax to solve the problem.

sol = bvp4c(@emdenode,@emdenbc,solinit,options);

6 View the results. This problem has an analytical solution

The example evaluates the analytical solution at 100 equally spaced points
and plots it along with the numerical solution computed using bvp4c.

x = linspace(0,1);
truy = 1 ./ sqrt(1 + (x.^2)/3);
plot(x,truy,sol.x,sol.y(1,:),'ro');
title('Emden problem -- BVP with singular term.')
legend('Analytical','Computed');
xlabel('x');
ylabel('solution y');

5-87

5 Differential Equations

Solving Multipoint BVPs
In multipoint boundary value problems, the solution of interest satisfies
conditions at points inside the interval of integration. The bvp4c function
is useful in solving such problems.

The following example shows how the multipoint capability in bvp4c can
improve efficiency when you are solving a nonsmooth problem. The following
equations are solved on for constant parameters n, , , and

. These are subject to boundary conditions v(0) = 0 and
:

v' = (C - 1)/n
C' = (v * C - min(x,1))/

The term min(x,1) is not smooth at xc = 1, and this can affect the solver’s
efficiency. By introducing an interface point at xc = 1, smooth solutions can
be obtained on [0,1] and [1,]. To get a continuous solution over the entire
interval [0,], the example imposes matching conditions at the interface.

5-88

Boundary Value Problems for ODEs

Note The demo threebvp contains the complete code for this example and
solves the problem for = 2, n = 0.05, and several values of . The demo
uses nested functions to place all functions required by bvp4c in a single
M-file and to communicate problem parameters efficiently. To run this
example, type threebvp at the MATLAB command prompt.

The demo takes you through the following steps:

1 Determine the interfaces and divide the interval of integration into
regions. Introducing an interface point at xc = 1 divides the problem
into two regions in which the solutions remain smooth. The differential
equations for the two regions are

Region 1:

v' = (C - 1)/n
C' = (v * C - x)/

Region 2:

v' = (C - 1)/n
C' = (v * C - 1)/

Note that the interface xc = 1 is included in both regions. At xc = 1,
bvp4c produces a left and right solution. These solutions are denoted as
v(1-), C(1-) and v(1+), C(1+) respectively.

2 Determine the boundary conditions. Solving two first-order differential
equations in two regions requires imposing four boundary conditions. Two
of these conditions come from the original formulation; the others enforce
the continuity of the solution across the interface xc = 1:

v(0) = 0
C() - 1 = 0
v(1-) - v(1+) = 0
C(1-) - C(1+) = 0

Here, v(1-), C(1-) and v(1+), C(1+) denote the left and right solution
at the interface.

5-89

5 Differential Equations

3 Code the derivative function. In the derivative function, y(1)
corresponds to v(x), and y(2) corresponds to C(x). The additional input
argument region identifies the region in which the derivative is evaluated.
bvp4c enumerates regions from left to right, starting with 1. Note that the
problem parameters n and are shared with the outer function:

function dydx = f(x,y,region)
dydx = zeros(2,1);
dydx(1) = (y(2) - 1)/n;

% The definition of C'(x) depends on the region.
switch region

case 1 % x in [0 1]
dydx(2) = (y(1)*y(2) - x)/ ;

case 2 % x in [1]
dydx(2) = (y(1)*y(2) - 1)/ ;

end
end % End nested function f

4 Code the boundary conditions function. For multipoint BVPs,
the arguments of the boundary conditions function, YL and YR, become
matrices. In particular, the kth column YL(:,k) represents the solution
at the left boundary of the kth region. Similarly, YR(:,k) represents the
solution at the right boundary of the kth region.

In the example, y(0) is approximated by YL(:,1), while y() is
approximated by YR(:,end). Continuity of the solution at the internal
interface requires that YR(:,1) = YL(:,2). Nested function bc computes
the residual in the boundary conditions:

function res = bc(YL,YR)
res = [YL(1,1) % v(0) = 0

YR(1,1) - YL(1,2) % Continuity of v(x) at x=1
YR(2,1) - YL(2,2) % Continuity of C(x) at x=1
YR(2,end) - 1]; % C() = 1

end % End nested function bc

5 Create an initial guess. For multipoint BVPs, when creating an initial
guess using bvpinit, use double entries in xinit for the interface point xc.
This example uses a constant guess yinit = [1;1]:

5-90

Boundary Value Problems for ODEs

xc = 1;
xinit = [0, 0.25, 0.5, 0.75, xc, xc, 1.25, 1.5, 1.75, 2];
solinit = bvpinit(xinit,yinit)

For multipoint BVPs, you can use different guesses in different regions. To
do that, you specify the initial guess for y as a function using the following
syntax:

solinit = bvpinit(xinit,@yinitfcn)

The initial guess function must have the following general form:

function y = yinitfcn(x,region)
switch region
case 1 % x in [0, 1]

y = [1;1]; % initial guess for y(x)
case 2 % x in [1,]

y = [1;1]; % initial guess for y(x),
end

6 Apply the solver. The bvp4c function uses the same syntax for multipoint
BVPs as it does for two-point BVPs:

sol = bvp4c(@f,@bc,solinit);

The mesh points returned in sol.x are adapted to the solution behavior,
but the mesh still includes a double entry for the interface point xc = 1.
Corresponding columns of sol.y represent the left and right solution at xc.

7 View the results. Using deval, the solution can be evaluated at any point
in the interval of integration.

Note that, with the left and right values computed at the interface, the
solution is not uniquely defined at xc = 1. When evaluating the solution
exactly at the interface, deval issues a warning and returns the average
of the left and right solution values. Call deval at xc-eps(xc) and
xc+eps(xc) to get the limit values at xc.

The example plots the solution approximated at the mesh points selected
by the solver:

5-91

5 Differential Equations

plot(sol.x,sol.y(1,:),sol.x,sol.y(2,:),'--')
legend('v(x)','C(x)')
title('A three-point BVP solved with BVP4C')
xlabel(['\ = ',num2str(), ...

', \ = ',num2str(),'.'])
ylabel('v and C')

5-92

Partial Differential Equations

Partial Differential Equations

In this section...

“PDE Function Summary” on page 5-93

“Introduction to PDE Problems” on page 5-94

“MATLAB Partial Differential Equation Solver” on page 5-95

“Solving PDE Problems” on page 5-99

“Evaluating the Solution at Specific Points” on page 5-104

“Changing PDE Integration Properties” on page 5-104

“Example: Electrodynamics Problem” on page 5-105

PDE Function Summary

MATLAB PDE Solver
This is the MATLAB PDE solver.

PDE
Initial-Boundary
Value Problem
Solver

Description

pdepe Solve initial-boundary value problems for systems
of parabolic and elliptic PDEs in one space variable
and time.

PDE Helper Function

PDE Helper Function Description

pdeval Evaluate the numerical solution of a PDE using
the output of pdepe.

5-93

5 Differential Equations

PDE Examples
These examples illustrate some problems you can solve using the MATLAB
PDE solver. Click the example name to see the code in an editor. Type the
example name at the command line to run it.

Note The Differential Equations Examples browser enables you to view the
code for the PDE examples, and also run them. Click the link to invoke the
browser, or type odeexamples('pde') at the command line.

Example Description

pdex1 Simple PDE that illustrates the straightforward
formulation, computation, and plotting of the solution

pdex2 Problem that involves discontinuities

pdex3 Problem that requires computing values of the partial
derivative

pdex4 System of two PDEs whose solution has boundary
layers at both ends of the interval and changes rapidly
for small

pdex5 System of PDEs with step functions as initial
conditions

Introduction to PDE Problems
pdepe solves systems of parabolic and elliptic PDEs in one spatial variable
and time , of the form

(5-3)

The PDEs hold for and . The interval [a,b] must be
finite. can be 0, 1, or 2, corresponding to slab, cylindrical, or spherical
symmetry, respectively. If , then must also hold.

In Equation 5-3, is a flux term and is a source
term. The flux term must depend on . The coupling of the partial

5-94

Partial Differential Equations

derivatives with respect to time is restricted to multiplication by a diagonal
matrix . The diagonal elements of this matrix are either
identically zero or positive. An element that is identically zero corresponds
to an elliptic equation and otherwise to a parabolic equation. There must
be at least one parabolic equation. An element of that corresponds to a
parabolic equation can vanish at isolated values of if they are mesh points.
Discontinuities in and/or due to material interfaces are permitted provided
that a mesh point is placed at each interface.

At the initial time , for all x the solution components satisfy initial
conditions of the form

(5-4)

At the boundary or , for all the solution components satisfy a
boundary condition of the form

(5-5)

is a diagonal matrix with elements that are either identically zero or
never zero. Note that the boundary conditions are expressed in terms of the
rather than partial derivative of u with respect to x . Also, of the two
coefficients, only can depend on .

MATLAB Partial Differential Equation Solver

The PDE Solver (p. 5-95)

PDE Solver Basic Syntax (p. 5-96)

Additional PDE Solver Arguments
(p. 5-99)

The PDE Solver
The MATLAB PDE solver, pdepe, solves initial-boundary value problems for
systems of parabolic and elliptic PDEs in the one space variable and time .
There must be at least one parabolic equation in the system.

5-95

5 Differential Equations

The pdepe solver converts the PDEs to ODEs using a second-order accurate
spatial discretization based on a fixed set of nodes specified by the user. The
discretization method is described in [9]. The time integration is done with
ode15s. The pdepe solver exploits the capabilities of ode15s for solving the
differential-algebraic equations that arise when Equation 5-3 contains elliptic
equations, and for handling Jacobians with a specified sparsity pattern.
ode15s changes both the time step and the formula dynamically.

After discretization, elliptic equations give rise to algebraic equations. If the
elements of the initial conditions vector that correspond to elliptic equations
are not “consistent” with the discretization, pdepe tries to adjust them before
beginning the time integration. For this reason, the solution returned for
the initial time may have a discretization error comparable to that at any
other time. If the mesh is sufficiently fine, pdepe can find consistent initial
conditions close to the given ones. If pdepe displays a message that it has
difficulty finding consistent initial conditions, try refining the mesh. No
adjustment is necessary for elements of the initial conditions vector that
correspond to parabolic equations.

PDE Solver Basic Syntax
The basic syntax of the solver is

sol = pdepe(m,pdefun,icfun,bcfun,xmesh,tspan)

Note Correspondences given are to terms used in “Introduction to PDE
Problems” on page 5-94.

The input arguments are

5-96

Partial Differential Equations

m Specifies the symmetry of the problem. m can be 0 =
slab, 1 = cylindrical, or 2 = spherical. It corresponds to
m in Equation 5-3.

pdefun Function that defines the components of the PDE. It
computes the terms , , and in Equation 5-3, and
has the form

[c,f,s] = pdefun(x,t,u,dudx)

where x and t are scalars, and u and dudx are vectors
that approximate the solution and its partial
derivative with respect to . c, f, and s are column
vectors. c stores the diagonal elements of the matrix .

icfun Function that evaluates the initial conditions. It has
the form

u = icfun(x)

When called with an argument x, icfun evaluates and
returns the initial values of the solution components at
x in the column vector u.

bcfun Function that evaluates the terms and of the
boundary conditions. It has the form

[pl,ql,pr,qr] = bcfun(xl,ul,xr,ur,t)

where ul is the approximate solution at the left
boundary and ur is the approximate solution at
the right boundary . pl and ql are column vectors
corresponding to and the diagonal of evaluated at
xl. Similarly, pr and qr correspond to xr. When
and , boundedness of the solution near
requires that the vanish at . pdepe imposes
this boundary condition automatically and it ignores
values returned in pl and ql.

5-97

5 Differential Equations

xmesh Vector [x0, x1, ..., xn] specifying the points at which
a numerical solution is requested for every value in
tspan. x0 and xn correspond to and , respectively.

Second-order approximation to the solution is made
on the mesh specified in xmesh. Generally, it is best
to use closely spaced mesh points where the solution
changes rapidly. pdepe does not select the mesh in
automatically. You must provide an appropriate fixed
mesh in xmesh. The cost depends strongly on the
length of xmesh. When , it is not necessary to use
a fine mesh near to account for the coordinate
singularity.

The elements of xmesh must satisfy x0 < x1 < ... < xn.
The length of xmesh must be ≥ 3.

tspan Vector [t0, t1, ..., tf] specifying the points at which a
solution is requested for every value in xmesh. t0 and
tf correspond to and , respectively.

pdepe performs the time integration with an ODE
solver that selects both the time step and formula
dynamically. The solutions at the points specified
in tspan are obtained using the natural continuous
extension of the integration formulas. The elements of
tspan merely specify where you want answers and the
cost depends weakly on the length of tspan.

The elements of tspan must satisfy t0 < t1 < ... < tf.
The length of tspan must be ≥ 3.

The output argument sol is a three-dimensional array, such that

• sol(:,:,k) approximates component k of the solution .

• sol(i,:,k) approximates component k of the solution at time tspan(i) and
mesh points xmesh(:).

• sol(i,j,k) approximates component k of the solution at time tspan(i) and
the mesh point xmesh(j).

5-98

Partial Differential Equations

Additional PDE Solver Arguments
For more advanced applications, you can also specify as input arguments
solver options and additional parameters that are passed to the PDE
functions.

options Structure of optional parameters that change the
default integration properties. This is the seventh input
argument.

sol = pdepe(m,pdefun,icfun,bcfun,...
xmesh,tspan,options)

See “Changing PDE Integration Properties” on page 5-104
for more information.

Solving PDE Problems

Example: A Single PDE
This example illustrates the straightforward formulation, solution, and
plotting of the solution of a single PDE

This equation holds on an interval for times t ≥ 0. At , the
solution satisfies the initial condition

At and , the solution satisfies the boundary conditions

5-99

5 Differential Equations

Note The demo pdex1 contains the complete code for this example. The demo
uses subfunctions to place all functions it requires in a single M-file. To run
the demo type pdex1 at the command line. See “PDE Solver Basic Syntax”
on page 5-96 for more information.

1 Rewrite the PDE. Write the PDE in the form

This is the form shown in Equation 5-3 and expected by pdepe. See
“Introduction to PDE Problems” on page 5-94 for more information. For
this example, the resulting equation is

with parameter and the terms

2 Code the PDE. Once you rewrite the PDE in the form shown above
(Equation 5-3) and identify the terms, you can code the PDE in a function
that pdepe can use. The function must be of the form

[c,f,s] = pdefun(x,t,u,dudx)

where c, f, and s correspond to the , , and terms. The code below
computes c, f, and s for the example problem.

function [c,f,s] = pdex1pde(x,t,u,DuDx)
c = pi^2;

5-100

Partial Differential Equations

f = DuDx;
s = 0;

3 Code the initial conditions function. You must code the initial
conditions in a function of the form

u = icfun(x)

The code below represents the initial conditions in the function pdex1ic.

function u0 = pdex1ic(x)
u0 = sin(pi*x);

4 Code the boundary conditions function. You must also code the
boundary conditions in a function of the form

[pl,ql,pr,qr] = bcfun(xl,ul,xr,ur,t)

The boundary conditions, written in the same form as Equation 5-5, are

and

The code below evaluates the components and of the
boundary conditions in the function pdex1bc.

function [pl,ql,pr,qr] = pdex1bc(xl,ul,xr,ur,t)
pl = ul;
ql = 0;
pr = pi * exp(-t);
qr = 1;

In the function pdex1bc, pl and ql correspond to the left boundary
conditions (), and pr and qr correspond to the right boundary
condition .

5-101

5 Differential Equations

5 Select mesh points for the solution. Before you use the MATLAB PDE
solver, you need to specify the mesh points at which you want pdepe to
evaluate the solution. Specify the points as vectors t and x.

The vectors t and x play different roles in the solver (see “MATLAB Partial
Differential Equation Solver” on page 5-95). In particular, the cost and
the accuracy of the solution depend strongly on the length of the vector
x. However, the computation is much less sensitive to the values in the
vector t.

This example requests the solution on the mesh produced by 20 equally
spaced points from the spatial interval [0,1] and five values of t from the
time interval [0,2].

x = linspace(0,1,20);
t = linspace(0,2,5);

6 Apply the PDE solver. The example calls pdepe with m = 0, the functions
pdex1pde, pdex1ic, and pdex1bc, and the mesh defined by x and t at which
pdepe is to evaluate the solution. The pdepe function returns the numerical
solution in a three-dimensional array sol, where sol(i,j,k) approximates
the kth component of the solution, , evaluated at t(i) and x(j).

m = 0;
sol = pdepe(m,@pdex1pde,@pdex1ic,@pdex1bc,x,t);

This example uses @ to pass pdex1pde, pdex1ic, and pdex1bc as function
handles to pdepe.

Note See the function_handle (@), func2str, and str2func reference
pages, and the @ section of MATLAB Programming for information about
function handles.

7 View the results. Complete the example by displaying the results:

a Extract and display the first solution component. In this example, the
solution has only one component, but for illustrative purposes, the

5-102

Partial Differential Equations

example “extracts” it from the three-dimensional array. The surface plot
shows the behavior of the solution.

u = sol(:,:,1);

surf(x,t,u)
title('Numerical solution computed with 20 mesh points')
xlabel('Distance x')
ylabel('Time t')

b Display a solution profile at , the final value of . In this example, =
= 2. See “Evaluating the Solution at Specific Points” on page 5-104

for more information.

figure
plot(x,u(end,:))
title('Solution at t = 2')
xlabel('Distance x')
ylabel('u(x,2)')

5-103

5 Differential Equations

Evaluating the Solution at Specific Points
After obtaining and plotting the solution above, you might be interested in a
solution profile for a particular value of t, or the time changes of the solution
at a particular point x. The kth column u(:,k) (of the solution extracted in
step 7) contains the time history of the solution at x(k). The jth row u(j,:)
contains the solution profile at t(j).

Using the vectors x and u(j,:), and the helper function pdeval, you can
evaluate the solution u and its derivative at any set of points xout

[uout,DuoutDx] = pdeval(m,x,u(j,:),xout)

The example pdex3 uses pdeval to evaluate the derivative of the solution
at xout = 0. See pdeval for details.

Changing PDE Integration Properties
The default integration properties in the MATLAB PDE solver are selected to
handle common problems. In some cases, you can improve solver performance
by overriding these defaults. You do this by supplying pdepe with one or more
property values in an options structure.

sol = pdepe(m,pdefun,icfun,bcfun,xmesh,tspan,options)

5-104

Partial Differential Equations

Use odeset to create the options structure. Only those options of the
underlying ODE solver shown in the following table are available for pdepe.
The defaults obtained by leaving off the input argument options are
generally satisfactory. “Changing ODE Integration Properties” on page 5-19
tells you how to create the structure and describes the properties.

PDE Property Categories

Properties Category Property Name

Error control RelTol, AbsTol, NormControl

Step-size InitialStep, MaxStep

Example: Electrodynamics Problem
This example illustrates the solution of a system of partial differential
equations. The problem is taken from electrodynamics. It has boundary layers
at both ends of the interval, and the solution changes rapidly for small .

The PDEs are

where . The equations hold on an interval
0 less than or equal to x less than or equal to 1 for times .

The solution satisfies the initial conditions

and boundary conditions

5-105

5 Differential Equations

Note The demo pdex4 contains the complete code for this example. The demo
uses subfunctions to place all required functions in a single M-file. To run this
example type pdex4 at the command line. See “PDE Solver Basic Syntax” on
page 5-96 and “Solving PDE Problems” on page 5-99 for more information.

1 Rewrite the PDE. In the form expected by pdepe, the equations are

The boundary conditions on the partial derivatives of have to be written
in terms of the flux. In the form expected by pdepe, the left boundary
condition is

and the right boundary condition is

2 Code the PDE. After you rewrite the PDE in the form shown above, you
can code it as a function that pdepe can use. The function must be of the
form

5-106

Partial Differential Equations

[c,f,s] = pdefun(x,t,u,dudx)

where c, f, and s correspond to the , , and terms in Equation 5-3.

function [c,f,s] = pdex4pde(x,t,u,DuDx)
c = [1; 1];
f = [0.024; 0.17] .* DuDx;
y = u(1) - u(2);
F = exp(5.73*y)-exp(-11.47*y);
s = [-F; F];

3 Code the initial conditions function. The initial conditions function
must be of the form

u = icfun(x)

The code below represents the initial conditions in the function pdex4ic.

function u0 = pdex4ic(x);
u0 = [1; 0];

4 Code the boundary conditions function. The boundary conditions
functions must be of the form

[pl,ql,pr,qr] = bcfun(xl,ul,xr,ur,t)

The code below evaluates the components and (Equation
5-5) of the boundary conditions in the function pdex4bc.

function [pl,ql,pr,qr] = pdex4bc(xl,ul,xr,ur,t)
pl = [0; ul(2)];
ql = [1; 0];
pr = [ur(1)-1; 0];
qr = [0; 1];

5 Select mesh points for the solution. The solution changes rapidly for
small . The program selects the step size in time to resolve this sharp
change, but to see this behavior in the plots, output times must be selected
accordingly. There are boundary layers in the solution at both ends of
[0,1], so mesh points must be placed there to resolve these sharp changes.

5-107

5 Differential Equations

Often some experimentation is needed to select the mesh that reveals the
behavior of the solution.

x = [0 0.005 0.01 0.05 0.1 0.2 0.5 0.7 0.9 0.95 0.99 0.995 1];
t = [0 0.005 0.01 0.05 0.1 0.5 1 1.5 2];

6 Apply the PDE solver. The example calls pdepe with m = 0, the functions
pdex4pde, pdex4ic, and pdex4bc, and the mesh defined by x and t at which
pdepe is to evaluate the solution. The pdepe function returns the numerical
solution in a three-dimensional array sol, where sol(i,j,k) approximates
the kth component of the solution, , evaluated at t(i) and x(j).

m = 0;
sol = pdepe(m,@pdex4pde,@pdex4ic,@pdex4bc,x,t);

7 View the results. The surface plots show the behavior of the solution
components.

u1 = sol(:,:,1);
u2 = sol(:,:,2);

figure
surf(x,t,u1)
title('u1(x,t)')
xlabel('Distance x')
ylabel('Time t')

5-108

Partial Differential Equations

figure
surf(x,t,u2)
title('u2(x,t)')
xlabel('Distance x')
ylabel('Time t')

5-109

5 Differential Equations

Selected Bibliography
[1] Ascher, U., R. Mattheij, and R. Russell, Numerical Solution of Boundary
Value Problems for Ordinary Differential Equations, SIAM, Philadelphia,
PA, 1995, p. 372.

[2] Cebeci, T. and H. B. Keller, “Shooting and Parallel Shooting Methods for
Solving the Falkner-Skan Boundary-layer Equation,” J. Comp. Phys., Vol.
7, 1971, pp. 289-300.

[3] Hairer, E., and G. Wanner, Solving Ordinary Differential Equations II, Stiff
and Differential-Algebraic Problems, Springer-Verlag, Berlin, 1991, pp. 5-8.

[4] Hindmarsh, A. C., “LSODE and LSODI, Two New Initial Value Ordinary
Differential Equation Solvers,” SIGNUM Newsletter, Vol. 15, 1980, pp. 10-11.

[5] Hindmarsh, A. C., and G. D. Byrne, “Applications of EPISODE: An
Experimental Package for the Integration of Ordinary Differential Equations,”
Numerical Methods for Differential Systems, L. Lapidus and W. E. Schiesser
eds., Academic Press, Orlando, FL, 1976, pp 147-166.

[6] Ottesen, J. T., “Modelling of the Baroflex-Feedback Mechanism with
Time-Delay,” J. Math. Biol., Vol. 36, 1997.

[7] Shampine, L. F., Numerical Solution of Ordinary Differential Equations,
Chapman & Hall Mathematics, 1994.

[8] Shampine, L. F., and M. K. Gordon, Computer Solution of Ordinary
Differential Equations, W.H. Freeman & Co., 1975.

[9] Skeel, R. D. and M. Berzins, “A Method for the Spatial Discretization of
Parabolic Equations in One Space Variable,” SIAM Journal on Scientific and
Statistical Computing, Vol. 11, 1990, pp. 1-32.

[10] W.H. Enright and H. Hayashi, “The Evaluation of Numerical Software
for Delay Differential Equations,” R. Boisvert (Ed.), The Quality of Numerical
Software: Assessment and Enhancement, Chapman & Hall, London, 1997,
pp. 179-192.

5-110

6

Sparse Matrices

Function Summary (p. 6-2) A summary of the sparse matrix
functions

Reducing Memory and Efficiency
with Sparse Matrices (p. 6-10)

Storage advantages of using sparse
matrices

Creating and Importing Sparse
Matrices (p. 6-12)

Creating and importing sparse
matrices in MATLAB

Viewing Sparse Matrices (p. 6-18) Obtaining quantitative and
graphical information about sparse
matrices

Operating on Sparse Matrices
(p. 6-22)

Performing operations with functions
specific to sparse matrices

Selected Bibliography (p. 6-42) Published materials that support
concepts described in this chapter

6 Sparse Matrices

Function Summary

In this section...

“Categories of Functions That Support Sparse Matrices” on page 6-2

“Categories of Functions That Do Not Support Sparse Matrices” on page 6-5

“Sparse-Supported Replacement Functions” on page 6-9

Categories of Functions That Support Sparse Matrices
Sparse matrix functions are located in the MATLAB sparfun directory. These
functions fall into the following categories:

• “Elementary Sparse Matrices” on page 6-2

• “Full to Sparse Conversion” on page 6-3

• “Working with Sparse Matrices” on page 6-3

• “Graph Theory” on page 6-3

• “Reordering Algorithms” on page 6-4

• “Linear Algebra” on page 6-4

• “Linear Equations (Iterative Methods)” on page 6-4

• “Other Miscellaneous Functions” on page 6-5

Elementary Sparse Matrices

Function Description

speye Sparse identity matrix

sprand Sparse uniformly distributed random matrix

sprandn Sparse normally distributed random matrix

sprandsym Sparse random symmetric matrix

spdiags Sparse matrix formed from diagonals

6-2

Function Summary

Full to Sparse Conversion

Function Description

sparse Create sparse matrix

full Convert sparse matrix to full matrix

find Find indices of nonzero elements

spconvert Import from sparse matrix external format

Working with Sparse Matrices

Function Description

nnz Number of nonzero matrix elements

nonzeros Nonzero matrix elements

nzmax Amount of storage allocated for nonzero matrix
elements

spones Replace nonzero sparse matrix elements with ones

spalloc Allocate space for sparse matrix

issparse True for sparse matrix

spfun Apply function to nonzero matrix elements

spy Visualize sparsity pattern

Graph Theory

Function Description

gplot Plot graph, as in “graph theory”

etree Elimination tree

etreeplot Plot elimination tree

treelayout Lay out tree or forest

treeplot Plot picture of tree

6-3

6 Sparse Matrices

Reordering Algorithms

Function Description

colamd Column approximate minimum degree permutation

symamd Symmetric approximate minimum degree
permutation

symrcm Symmetric reverse Cuthill-McKee permutation

colperm Column permutation

randperm Random permutation

dmperm Dulmage-Mendelsohn permutation

Linear Algebra

Function Description

eigs A few eigenvalues

svds A few singular values

luinc Incomplete LU factorization

ilu Incomplete LU factorization

cholinc Incomplete Cholesky factorization

normest Estimate the matrix 2-norm

condest 1-norm condition number estimate

sprank Structural rank

Linear Equations (Iterative Methods)

Function Description

bicg Biconjugate gradients method

bicgstab Biconjugate gradients stabilized method

cgs Conjugate gradients squared method

6-4

Function Summary

Function Description

gmres Generalized minimum residual method

lsqr LSQR method

minres Minimum residual method

pcg Preconditioned conjugate gradients method

qmr Quasi-minimal residual method

symmlq Symmetric LQ method

Other Miscellaneous Functions

Function Description

spaugment Form least squares augmented system

spparms Set parameters for sparse matrix routines

symbfact Symbolic factorization analysis

Categories of Functions That Do Not Support Sparse
Matrices

• “Elementary Matrices and Arrays” on page 6-6

• “Elementary Math Functions” on page 6-6

• “Bit-wise Functions” on page 6-6

• “Eigenvalue and Singular Value Functions” on page 6-7

• “Matrix Analysis Functions” on page 6-7

• “Factorization Functions” on page 6-8

• “Linear Equation Functions” on page 6-8

• “Specialized Math Functions” on page 6-8

• “Filtering and Convolution Functions” on page 6-9

• “Fourier Transform Functions” on page 6-9

6-5

6 Sparse Matrices

• “Histogram Plotting Functions” on page 6-9
These built-in functions do not accept sparse matrices as input. M-file
functions that depend on these built-ins will also not work with sparse
matrices.

Elementary Matrices and Arrays

Function Description

rand Uniformly distributed pseudorandom numbers

Elementary Math Functions

Complex Functions.

Function Description

complex Construct complex data from real and imaginary
components

Real Array Exponential Functions.

Function Description

reallog Natural logarithm for nonnegative real arrays

realpow Array power for real-only output

realsqrt Square root for nonnegative real arrays

Bit-wise Functions

Function Description

bitand Bitwise AND

bitcmp Bitwise complement

bitget Bit at specified position

bitmax Maximum double-precision floating-point integer

6-6

Function Summary

Function Description

bitor Bitwise OR

bitset Set bit at specified position

bitshift Shift bits specified number of places

bitxor Bitwise XOR

Eigenvalue and Singular Value Functions

Function Description

hess Hessenberg form of matrix

ordeig Eigenvalues of quasitriangular matrices

ordqz Reorder eigenvalues in QZ factorization

ordschur Reorder eigenvalues in Schur factorization

schur Schur decomposition

svd Singular value decomposition

Matrix Analysis Functions

Function Description

cond Condition number with respect to inversion

null Null space

orth Range space of matrix

rcond Matrix reciprocal condition number estimate

6-7

6 Sparse Matrices

Factorization Functions

Function Description

cholupdate Rank 1 update to Cholesky factorization

gsvd Generalized singular value decomposition

qz QZ factorization for generalized eigenvalues

Linear Equation Functions

Function Description

linsolve Solve linear system of equations

lsqnonneg Solve nonnegative least-squares constraints
problem

pinv Moore-Penrose pseudoinverse of matrix

Specialized Math Functions

Function Description

airy Airy functions

besselh Bessel function of third kind (Hankel function)

besseli Modified Bessel function of first kind

besselj Bessel function of first kind

besselk Modified Bessel function of second kind

bessely Bessel function of second kind

erfc Error function

erf Error function

erfcx Error function

gamma Gamma function

6-8

Function Summary

Function Description

gammaln Gamma function

psi Psi (polygamma) function

Filtering and Convolution Functions

Function Description

conv2 2-D convolution

convn N-D convolution

filter 1-D digital filter

filter2 2-D digital filter

Fourier Transform Functions

Function Description

fft Discrete Fourier transform

fftn N-D discrete Fourier transform

ifft Inverse discrete Fourier transform

ifftn N-D inverse discrete Fourier transform

Histogram Plotting Functions

Function Description

histc Histogram count

Sparse-Supported Replacement Functions
These functions do not accept sparse inputs, but you can use other functions
in their place.

6-9

6 Sparse Matrices

Function Replacement Function Supporting Sparse Inputs

cond Use condest instead.

eig Syntax d = eig(S) accepts a sparse symmetric matrix
S. Otherwise, use eigs in place of eig.

norm(S,2) Use normest for the 2-norm of a sparse matrix S.

svd Use svds instead.

Reducing Memory and Efficiency with Sparse Matrices

In this section...

“Storing Sparse Matrices” on page 6-10

“Comparing Storage for Sparse and Full Matrices ” on page 6-11

Storing Sparse Matrices
Using sparse matrices to store data that contains a large number of
zero-valued elements can both save a significant amount of memory and also
speed up the processing of that data. sparse is an attribute that you can
assign to any two-dimensional MATLAB matrix that is composed of double
or logical elements.

The sparse attribute allows MATLAB to:

• Store only the nonzero elements of the matrix, together with their indices.

• Reduce computation time by eliminating operations on zero elements.

For full matrices, MATLAB stores internally every matrix element.
Zero-valued elements require the same amount of storage space as any other
matrix element. For sparse matrices, however, MATLAB stores only the
nonzero elements and their indices. For large matrices with a high percentage
of zero-valued elements, this scheme significantly reduces the amount of
memory required for data storage.

6-10

Reducing Memory and Efficiency with Sparse Matrices

Comparing Storage for Sparse and Full Matrices
The whos command provides high-level information about matrix storage,
including size and storage class. For example, this whos listing shows
information about sparse and full versions of the same matrix.

M_full = magic(1100); % Create 1100-by-1100 matrix.
M_full(M_full > 50) = 0; % Set elements >50 to zero.
M_sparse = sparse(M_full); % Create sparse matrix of same.

whos
Name Size Bytes Class

M_full 1100x1100 9680000 double array
M_sparse 1100x1100 5004 double array (sparse)

Grand total is 1210050 elements using 9685004 bytes

Notice that the number of bytes used is fewer in the sparse case, because
zero-valued elements are not stored.

6-11

6 Sparse Matrices

Creating and Importing Sparse Matrices

In this section...

“Creating Sparse Matrices” on page 6-12

“Importing Sparse Matrices from Outside MATLAB” on page 6-17

Creating Sparse Matrices

• “Converting Full to Sparse” on page 6-12

• “Creating Sparse Matrices Directly” on page 6-13

• “Example: Generating a Second Difference Operator” on page 6-14

• “Creating Sparse Matrices from Their Diagonal Elements” on page 6-15
MATLAB never creates sparse matrices automatically. Instead, you must
determine if a matrix contains a large enough percentage of zeros to benefit
from sparse techniques.

The density of a matrix is the number of nonzero elements divided by the total
number of matrix elements. For matrix M, this would be

nnz(M) / prod(size(M));

Matrices with very low density are often good candidates for use of the sparse
format.

Converting Full to Sparse
You can convert a full matrix to sparse storage using the sparse function
with a single argument.

S = sparse(A)

For example:

A = [0 0 0 5
0 2 0 0
1 3 0 0
0 0 4 0];

6-12

Creating and Importing Sparse Matrices

S = sparse(A)

produces

S =

(3,1) 1
(2,2) 2
(3,2) 3
(4,3) 4
(1,4) 5

The printed output lists the nonzero elements of S, together with their row
and column indices. The elements are sorted by columns, reflecting the
internal data structure.

You can convert a sparse matrix to full storage using the full function,
provided the matrix order is not too large. For example A = full(S) reverses
the example conversion.

Converting a full matrix to sparse storage is not the most frequent way of
generating sparse matrices. If the order of a matrix is small enough that full
storage is possible, then conversion to sparse storage rarely offers significant
savings.

Creating Sparse Matrices Directly
You can create a sparse matrix from a list of nonzero elements using the
sparse function with five arguments.

S = sparse(i,j,s,m,n)

i and j are vectors of row and column indices, respectively, for the nonzero
elements of the matrix. s is a vector of nonzero values whose indices are
specified by the corresponding (i,j) pairs. m is the row dimension for the
resulting matrix, and n is the column dimension.

The matrix S of the previous example can be generated directly with

S = sparse([3 2 3 4 1],[1 2 2 3 4],[1 2 3 4 5],4,4)

6-13

6 Sparse Matrices

S =

(3,1) 1
(2,2) 2
(3,2) 3
(4,3) 4
(1,4) 5

The sparse command has a number of alternate forms. The example above
uses a form that sets the maximum number of nonzero elements in the matrix
to length(s). If desired, you can append a sixth argument that specifies
a larger maximum, allowing you to add nonzero elements later without
reallocating the sparse matrix.

Example: Generating a Second Difference Operator
The matrix representation of the second difference operator is a good example
of a sparse matrix. It is a tridiagonal matrix with -2s on the diagonal and 1s
on the super- and subdiagonal. There are many ways to generate it—here’s
one possibility.

D = sparse(1:n,1:n,-2*ones(1,n),n,n);
E = sparse(2:n,1:n-1,ones(1,n-1),n,n);
S = E+D+E'

For n = 5, MATLAB responds with

S =

(1,1) -2
(2,1) 1
(1,2) 1
(2,2) -2
(3,2) 1
(2,3) 1
(3,3) -2
(4,3) 1
(3,4) 1
(4,4) -2
(5,4) 1
(4,5) 1

6-14

Creating and Importing Sparse Matrices

(5,5) -2

Now F = full(S) displays the corresponding full matrix.

F = full(S)

F =

-2 1 0 0 0
1 -2 1 0 0
0 1 -2 1 0
0 0 1 -2 1
0 0 0 1 -2

Creating Sparse Matrices from Their Diagonal Elements
Creating sparse matrices based on their diagonal elements is a common
operation, so the function spdiags handles this task. Its syntax is

S = spdiags(B,d,m,n)

To create an output matrix S of size m-by-n with elements on p diagonals:

• B is a matrix of size min(m,n)-by-p. The columns of B are the values to
populate the diagonals of S.

• d is a vector of length p whose integer elements specify which diagonals
of S to populate.

That is, the elements in column j of B fill the diagonal specified by element j
of d.

Note If a column of B is longer than the diagonal it’s replacing, super-diagonals
are taken from the lower part of the column of B, and sub-diagonals are taken
from the upper part of the column of B.

As an example, consider the matrix B and the vector d.

6-15

6 Sparse Matrices

B = [41 11 0
52 22 0
63 33 13
74 44 24];

d = [-3
0
2];

Use these matrices to create a 7-by-4 sparse matrix A:

A = spdiags(B,d,7,4)

A =

(1,1) 11
(4,1) 41
(2,2) 22
(5,2) 52
(1,3) 13
(3,3) 33
(6,3) 63
(2,4) 24
(4,4) 44
(7,4) 74

In its full form, A looks like this:

full(A)

ans =

11 0 13 0
0 22 0 24
0 0 33 0

41 0 0 44
0 52 0 0
0 0 63 0
0 0 0 74

6-16

Creating and Importing Sparse Matrices

spdiags can also extract diagonal elements from a sparse matrix, or replace
matrix diagonal elements with new values. Type help spdiags for details.

Importing Sparse Matrices from Outside MATLAB
You can import sparse matrices from computations outside MATLAB. Use the
spconvert function in conjunction with the load command to import text
files containing lists of indices and nonzero elements. For example, consider
a three-column text file T.dat whose first column is a list of row indices,
second column is a list of column indices, and third column is a list of nonzero
values. These statements load T.dat into MATLAB and convert it into a
sparse matrix S:

load T.dat
S = spconvert(T)

The save and load commands can also process sparse matrices stored as
binary data in MAT-files.

6-17

6 Sparse Matrices

Viewing Sparse Matrices

In this section...

“Obtaining Information About Nonzero Elements” on page 6-18

“Viewing Sparse Matrices Graphically” on page 6-20

“Finding Indices and Values of Sparse Matrices” on page 6-21

Obtaining Information About Nonzero Elements
There are several commands that provide high-level information about the
nonzero elements of a sparse matrix:

• nnz returns the number of nonzero elements in a sparse matrix.

• nonzeros returns a column vector containing all the nonzero elements of
a sparse matrix.

• nzmax returns the amount of storage space allocated for the nonzero entries
of a sparse matrix.

To try some of these, load the supplied sparse matrix west0479, one of the
Harwell-Boeing collection.

load west0479
whos

Name Size Bytes Class

west0479 479x479 24576 sparse array

This matrix models an eight-stage chemical distillation column.

Try these commands.

nnz(west0479)

ans =
1887

format short e

6-18

Viewing Sparse Matrices

west0479

west0479 =

(25,1) 1.0000e+00
(31,1) -3.7648e-02
(87,1) -3.4424e-01
(26,2) 1.0000e+00
(31,2) -2.4523e-02
(88,2) -3.7371e-01
(27,3) 1.0000e+00
(31,3) -3.6613e-02
(89,3) -8.3694e-01
(28,4) 1.3000e+02

.

.

.

nonzeros(west0479);
ans =

1.0000e+00
-3.7648e-02
-3.4424e-01
1.0000e+00

-2.4523e-02
-3.7371e-01
1.0000e+00

-3.6613e-02
-8.3694e-01
1.3000e+02
.
.
.

Note Use Ctrl+C to stop the nonzeros listing at any time.

6-19

6 Sparse Matrices

Note that initially nnz has the same value as nzmax by default. That is, the
number of nonzero elements is equivalent to the number of storage locations
allocated for nonzeros. However, MATLAB does not dynamically release
memory if you zero out additional array elements. Changing the value of
some matrix elements to zero changes the value of nnz, but not that of nzmax.

However, you can add as many nonzero elements to the matrix as desired.
You are not constrained by the original value of nzmax.

Viewing Sparse Matrices Graphically
It is often useful to use a graphical format to view the distribution of the
nonzero elements within a sparse matrix. The MATLAB spy function
produces a template view of the sparsity structure, where each point on the
graph represents the location of a nonzero array element.

For example:

spy(west0479)

6-20

Viewing Sparse Matrices

Finding Indices and Values of Sparse Matrices
For any matrix, full or sparse, the find function returns the indices and
values of nonzero elements. Its syntax is

[i,j,s] = find(S)

find returns the row indices of nonzero values in vector i, the column indices
in vector j, and the nonzero values themselves in the vector s. The example
below uses find to locate the indices and values of the nonzeros in a sparse
matrix. The sparse function uses the find output, together with the size of
the matrix, to recreate the matrix.

[i,j,s] = find(S)
[m,n] = size(S)
S = sparse(i,j,s,m,n)

6-21

6 Sparse Matrices

Operating on Sparse Matrices

In this section...

“Considering Computational Complexity and Standard Mathematical
Operations” on page 6-22

“Performing Permutations and Reordering” on page 6-23

“Factorizing” on page 6-27

“Solving Simultaneous Linear Equations” on page 6-34

“Solving Eigenvalues and Singular Values” on page 6-37

“Identifying Performance Limitations” on page 6-39

Considering Computational Complexity and
Standard Mathematical Operations

Computational Complexity
The computational complexity of sparse operations is proportional to nnz,
the number of nonzero elements in the matrix. Computational complexity
also depends linearly on the row size m and column size n of the matrix, but
is independent of the product m*n, the total number of zero and nonzero
elements.

The complexity of fairly complicated operations, such as the solution of sparse
linear equations, involves factors like ordering and fill-in, which are discussed
in the previous section. In general, however, the computer time required
for a sparse matrix operation is proportional to the number of arithmetic
operations on nonzero quantities.

Operating Principals for Sparse Matrices
Sparse matrices propagate through computations according to these rules:

• Functions that accept a matrix and return a scalar or constant-size vector
always produce output in full storage format. For example, the size
function always returns a full vector, whether its input is full or sparse.

6-22

Operating on Sparse Matrices

• Functions that accept scalars or vectors and return matrices, such as
zeros, ones, rand, and eye, always return full results. This is necessary to
avoid introducing sparsity unexpectedly. The sparse analog of zeros(m,n)
is simply sparse(m,n). The sparse analogs of rand and eye are sprand and
speye, respectively. There is no sparse analog for the function ones.

• Unary functions that accept a matrix and return a matrix or vector preserve
the storage class of the operand. If S is a sparse matrix, then chol(S) is
also a sparse matrix, and diag(S) is a sparse vector. Columnwise functions
such as max and sum also return sparse vectors, even though these vectors
can be entirely nonzero. Important exceptions to this rule are the sparse
and full functions.

• Binary operators yield sparse results if both operands are sparse, and full
results if both are full. For mixed operands, the result is full unless the
operation preserves sparsity. If S is sparse and F is full, then S+F, S*F, and
F\S are full, while S.*F and S&F are sparse. In some cases, the result might
be sparse even though the matrix has few zero elements.

• Matrix concatenation using either the cat function or square brackets
produces sparse results for mixed operands.

• Submatrix indexing on the right side of an assignment preserves the
storage format of the operand unless the result is a scalar. T = S(i,j)
produces a sparse result if S is sparse and either i or j is a vector. It
produces a full scalar if both i and j are scalars. Submatrix indexing on
the left, as in T(i,j) = S, does not change the storage format of the matrix
on the left.

Performing Permutations and Reordering

• “Reordering for Sparsity” on page 6-26

• “Reordering to Reduce Bandwidth” on page 6-26

• “Approximate Minimum Degree Ordering” on page 6-26
A permutation of the rows and columns of a sparse matrix S can be
represented in two ways:

• A permutation matrix P acts on the rows of S as P*S or on the columns
as S*P'.

6-23

6 Sparse Matrices

• A permutation vector p, which is a full vector containing a permutation of
1:n, acts on the rows of S as S(p,:), or on the columns as S(:,p).

For example, the statements

p = [1 3 4 2 5]
I = eye(5,5);
P = I(p,:);
e = ones(4,1);
S = diag(11:11:55) + diag(e,1) + diag(e,-1)

produce:

p =

1 3 4 2 5

P =

1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 1 0 0 0
0 0 0 0 1

S =

11 1 0 0 0
1 22 1 0 0
0 1 33 1 0
0 0 1 44 1
0 0 0 1 55

You can now try some permutations using the permutation vector p and the
permutation matrix P. For example, the statements S(p,:) and P*S produce

ans =

11 1 0 0 0
0 1 33 1 0
0 0 1 44 1

6-24

Operating on Sparse Matrices

1 22 1 0 0
0 0 0 1 55

Similarly, S(:,p) and S*P' produce

ans =

11 0 0 1 0
1 1 0 22 0
0 33 1 1 0
0 1 44 0 1
0 0 1 0 55

If P is a sparse matrix, then both representations use storage proportional
to n and you can apply either to S in time proportional to nnz(S). The vector
representation is slightly more compact and efficient, so the various sparse
matrix permutation routines all return full row vectors with the exception of
the pivoting permutation in LU (triangular) factorization, which returns a
matrix compatible with the full LU factorization.

To convert between the two representations, let I = speye(n) be an identity
matrix of the appropriate size. Then,

P = I(p,:)
P' = I(:,p)
p = (1:n)*P'
p = (P*(1:n)')'

The inverse of P is simply R = P'. You can compute the inverse of p with
r(p) = 1:n.

r(p) = 1:5

r =

1 4 2 3 5

6-25

6 Sparse Matrices

Reordering for Sparsity
Reordering the columns of a matrix can often make its LU or QR factors
sparser. Reordering the rows and columns can often make its Cholesky factors
sparser. The simplest such reordering is to sort the columns by nonzero
count. This is sometimes a good reordering for matrices with very irregular
structures, especially if there is great variation in the nonzero counts of rows
or columns.

The function p = colperm(S) computes this column-count permutation. The
colperm M-file has only a single line.

[ignore,p] = sort(sum(spones(S)));

This line performs these steps:

1 The inner call to spones creates a sparse matrix with ones at the location
of every nonzero element in S.

2 The sum function sums down the columns of the matrix, producing a vector
that contains the count of nonzeros in each column.

3 full converts this vector to full storage format.

4 sort sorts the values in ascending order. The second output argument from
sort is the permutation that sorts this vector.

Reordering to Reduce Bandwidth
The reverse Cuthill-McKee ordering is intended to reduce the profile or
bandwidth of the matrix. It is not guaranteed to find the smallest possible
bandwidth, but it usually does. The function symrcm(A) actually operates on
the nonzero structure of the symmetric matrix A + A', but the result is also
useful for asymmetric matrices. This ordering is useful for matrices that
come from one-dimensional problems or problems that are in some sense
“long and thin.”

Approximate Minimum Degree Ordering
The degree of a node in a graph is the number of connections to that node.
This is the same as the number of off-diagonal nonzero elements in the
corresponding row of the adjacency matrix. The approximate minimum

6-26

Operating on Sparse Matrices

degree algorithm generates an ordering based on how these degrees are
altered during Gaussian elimination or Cholesky factorization. It is a
complicated and powerful algorithm that usually leads to sparser factors than
most other orderings, including column count and reverse Cuthill-McKee.
Because the keeping track of the degree of each node is very time-consuming,
the approximate minimum degree algorithm uses an approximation to the
degree, rather than the exact degree.

The following MATLAB functions implement the approximate minimum
degree algorithm:

• symamd — Use with symmetric matrices.

• colamd — Use with nonsymmetric matrices and symmetric matrices of
the form A*A' or A'*A.

See “Reordering and Factorization” on page 6-29 for an example using symamd.

You can change various parameters associated with details of the algorithms
using the spparms function.

For details on the algorithms used by colamd and symamd, see [5]. The
approximate degree the algorithms use is based on [1].

Factorizing
This section discusses four important factorization techniques for sparse
matrices:

• “LU Factorization” on page 6-27

• “Cholesky Factorization” on page 6-30

• “QR Factorization” on page 6-31

• “Incomplete Factorizations” on page 6-33

LU Factorization
If S is a sparse matrix, the following command returns three sparse matrices
L, U, and P such that P*S = L*U.

6-27

6 Sparse Matrices

[L,U,P] = lu(S)

lu obtains the factors by Gaussian elimination with partial pivoting. The
permutation matrix P has only n nonzero elements. As with dense matrices,
the statement [L,U] = lu(S) returns a permuted unit lower triangular
matrix and an upper triangular matrix whose product is S. By itself, lu(S)
returns L and U in a single matrix without the pivot information.

The three-output syntax

[L,U,P] = lu(S)

selects P via numerical partial pivoting, but does not pivot to improve sparsity
in the LU factors. On the other hand, the four-output syntax

[L,U,P,Q]=lu(S)

selects P via threshold partial pivoting, and selects P and Q to improve sparsity
in the LU factors.

You can control pivoting in sparse matrices using

lu(S,thresh)

where thresh is a pivot threshold in [0,1]. Pivoting occurs when the diagonal
entry in a column has magnitude less than thresh times the magnitude of
any sub-diagonal entry in that column. thresh = 0 forces diagonal pivoting.
thresh = 1 is the default. (The default for thresh is 0.1 for the four-output
syntax).

When you call lu with three or less outputs, MATLAB automatically
allocates the memory necessary to hold the sparse L and U factors during the
factorization. Except for the four-output syntax, MATLAB does not use any
symbolic LU prefactorization to determine the memory requirements and set
up the data structures in advance.

6-28

Operating on Sparse Matrices

Reordering and Factorization. If you obtain a good column permutation
p that reduces fill-in, perhaps from symrcm or colamd, then computing
lu(S(:,p)) takes less time and storage than computing lu(S). Two
permutations are the symmetric reverse Cuthill-McKee ordering and the
symmetric approximate minimum degree ordering.

r = symrcm(B);
m = symamd(B);

The three spy plots produced by the lines below show the three adjacency
matrices of the Bucky Ball graph with these three different numberings. The
local, pentagon-based structure of the original numbering is not evident in
the other three.

spy(B)
spy(B(r,r))
spy(B(m,m))

The reverse Cuthill-McKee ordering, r, reduces the bandwidth and
concentrates all the nonzero elements near the diagonal. The approximate
minimum degree ordering, m, produces a fractal-like structure with large
blocks of zeros.

To see the fill-in generated in the LU factorization of the Bucky ball, use
speye(n,n), the sparse identity matrix, to insert -3s on the diagonal of B.

B = B - 3*speye(n,n);

6-29

6 Sparse Matrices

Since each row sum is now zero, this new B is actually singular, but it is still
instructive to compute its LU factorization. When called with only one output
argument, lu returns the two triangular factors, L and U, in a single sparse
matrix. The number of nonzeros in that matrix is a measure of the time and
storage required to solve linear systems involving B. Here are the nonzero
counts for the three permutations being considered.

Original lu(B) 1022

Reverse Cuthill-McKee lu(B(r,r)) 968

Approximate minimum
degree

lu(B(m,m)) 636

Even though this is a small example, the results are typical. The original
numbering scheme leads to the most fill-in. The fill-in for the reverse
Cuthill-McKee ordering is concentrated within the band, but it is almost
as extensive as the first two orderings. For the approximate minimum
degree ordering, the relatively large blocks of zeros are preserved during the
elimination and the amount of fill-in is significantly less than that generated
by the other orderings. The spy plots below reflect the characteristics of
each reordering.

Cholesky Factorization
If S is a symmetric (or Hermitian), positive definite, sparse matrix, the
statement below returns a sparse, upper triangular matrix R so that R'*R = S.

6-30

Operating on Sparse Matrices

R = chol(S)

chol does not automatically pivot for sparsity, but you can compute
approximate minimum degree and profile limiting permutations for use
with chol(S(p,p)).

Since the Cholesky algorithm does not use pivoting for sparsity and does not
require pivoting for numerical stability, chol does a quick calculation of the
amount of memory required and allocates all the memory at the start of the
factorization. You can use symbfact, which uses the same algorithm as chol,
to calculate how much memory is allocated.

QR Factorization
MATLAB computes the complete QR factorization of a sparse matrix S with

[Q,R] = qr(S)

but this is usually impractical. The orthogonal matrix Q often fails to have
a high proportion of zero elements. A more practical alternative, sometimes
known as “the Q-less QR factorization,” is available.

With one sparse input argument and one output argument

R = qr(S)

returns just the upper triangular portion of the QR factorization. The matrix
R provides a Cholesky factorization for the matrix associated with the normal
equations:

R'*R = S'*S

However, the loss of numerical information inherent in the computation of
S'*S is avoided.

With two input arguments having the same number of rows, and two output
arguments, the statement

[C,R] = qr(S,B)

6-31

6 Sparse Matrices

applies the orthogonal transformations to B, producing C = Q'*B without
computing Q.

The Q-less QR factorization allows the solution of sparse least squares
problems

with two steps

[c,R] = qr(A,b)
x = R\c

If A is sparse, but not square, MATLAB uses these steps for the linear
equation solving backslash operator:

x = A\b

Or, you can do the factorization yourself and examine R for rank deficiency.

It is also possible to solve a sequence of least squares linear systems with
different right-hand sides, b, that are not necessarily known when R = qr(A)
is computed. The approach solves the “semi-normal equations”

R'*R*x = A'*b

with

x = R\(R'\(A'*b))

and then employs one step of iterative refinement to reduce roundoff error:

r = b - A*x
e = R\(R'\(A'*r))
x = x + e

6-32

Operating on Sparse Matrices

Incomplete Factorizations
The luinc, ilu, and cholinc functions provide approximate, incomplete
factorizations, which are useful as preconditioners for sparse iterative
methods.

The luinc function produces two different kinds of incomplete LU (ILU)
factorizations, one involving a drop tolerance and one involving fill-in level.
The ilu function produces three incomplete LU factorizations, the ILU with
level 0 fill-in (ILU(0)), the Crout version of ILU (ILUC), and the ILU with
threshold and pivoting (ILUTP).

For example:

A = gallery('neumann', 1600) + speye(1600);
nnz(A)
ans =

7840

nnz(lu(A))
ans =

126478

shows that A has 7840 zeros, and its complete LU factorization has 126478
nonzeros:

nnz(luinc(A,'0'))
ans =

7840

setup.type = 'nofill';
nnz(ilu(A,setup))
ans =

7840

nnz(luinc(A,1e-6))
ans =

51541

setup.type = 'ilutp';
setup.droptol = 1e-6;

6-33

6 Sparse Matrices

nnz(luinc(A,setup))
ans =

51541

These calculations, with both the luinc and ilu functions, show that with
level 0 fill-in it has 7840 zeros, and with a drop tolerance of 1e-6 it has 51541
nonzeros. See the luinc and ilu reference pages for more options and details.

The cholinc function provides drop tolerance and level 0 fill-in Cholesky
factorizations of symmetric, positive definite sparse matrices. See the cholinc
reference page for more information.

Solving Simultaneous Linear Equations

• “Direct Methods” on page 6-34

• “Iterative Methods” on page 6-35
There are two different classes of methods for solving systems of simultaneous
linear equations:

• Direct methods are usually variants of Gaussian elimination. These
methods involve the individual matrix elements directly, through matrix
factorizations such as LU or Cholesky factorization. MATLAB implements
direct methods through the matrix division operators / and \, which you
can use to solve linear systems.

• Iterative methods produce only an approximate solution after a finite
number of steps. These methods involve the coefficient matrix only
indirectly, through a matrix-vector product or an abstract linear operator.
Iterative methods are usually applied only to sparse matrices.

Direct Methods
Direct methods are usually faster and more generally applicable than indirect
methods, if there is enough storage available to carry them out. Iterative
methods are usually applicable to restricted cases of equations and depend
upon properties like diagonal dominance or the existence of an underlying
differential operator. Direct methods are implemented in the core of MATLAB
and are made as efficient as possible for general classes of matrices. Iterative

6-34

Operating on Sparse Matrices

methods are usually implemented in MATLAB M-files and can make use of
the direct solution of subproblems or preconditioners.

Using a Different Preordering. If A is not diagonal, banded, triangular,
or a permutation of a triangular matrix, backslash (\) reorders the indices
of A to reduce the amount of fill-in—that is, the number of nonzero entries
that are added to the sparse factorization matrices. The new ordering, called
a preordering, is performed before the factorization of A. In some cases, you
might be able to provide a better preordering than the one used by the
backslash algorithm.

To use a different preordering, first turn off both of the automatic preorderings
that backslash might perform by default, using the function spparms as
follows:

spparms('autoamd',0);
spparms('autommd',0);

Now, assuming you have created a permutation vector p that specifies a
preordering of the indices of A, apply backslash to the matrix A(:,p), whose
columns are the columns of A, permuted according to the vector p.

x = A (:,p) \ b;
x(p) = x;
spparms('autoamd',1);
spparms('autommd',1);

The commands spparms('autoamd',1) and spparms('autommd',1) turns
the automatic preordering back on, in case you use A\b later without
specifying an appropriate preordering.

Iterative Methods
Nine functions are available that implement iterative methods for sparse
systems of simultaneous linear systems.

6-35

6 Sparse Matrices

Functions for Iterative Methods for Sparse Systems

Function Method

bicg Biconjugate gradient

bicgstab Biconjugate gradient stabilized

cgs Conjugate gradient squared

gmres Generalized minimum residual

lsqr Least squares

minres Minimum residual

pcg Preconditioned conjugate gradient

qmr Quasiminimal residual

symmlq Symmetric LQ

These methods are designed to solve or . For the
Preconditioned Conjugate Gradient method, pcg, A must be a symmetric,
positive definite matrix. minres and symmlq can be used on symmetric
indefinite matrices. For lsqr, the matrix need not be square. The other five
can handle nonsymmetric, square matrices.

All nine methods can make use of preconditioners. The linear system

is replaced by the equivalent system

The preconditioner M is chosen to accelerate convergence of the iterative
method. In many cases, the preconditioners occur naturally in the
mathematical model. A partial differential equation with variable coefficients
can be approximated by one with constant coefficients, for example.
Incomplete matrix factorizations can be used in the absence of natural
preconditioners.

6-36

Operating on Sparse Matrices

The five-point finite difference approximation to Laplace’s equation on
a square, two-dimensional domain provides an example. The following
statements use the preconditioned conjugate gradient method preconditioner
M = R’*R, where R is the incomplete Cholesky factor of A.

A = delsq(numgrid('S',50));
b = ones(size(A,1),1);
tol = 1.e-3;
maxit = 10;
R = cholinc(A,tol);
[x,flag,err,iter,res] = pcg(A,b,tol,maxit,R',R);

Only four iterations are required to achieve the prescribed accuracy.

Background information on these iterative methods and incomplete
factorizations is available in [2] and [7].

Solving Eigenvalues and Singular Values
Two functions are available that compute a few specified eigenvalues or
singular values. svds is based on eigs that uses ARPACK [6].

Functions to Compute a Few Eigenvalues or Singular Values

Function Description

eigs Few eigenvalues

svds Few singular values

These functions are most frequently used with sparse matrices, but they can
be used with full matrices or even with linear operators defined by M-files.

The statement

[V,lambda] = eigs(A,k,sigma)

finds the k eigenvalues and corresponding eigenvectors of the matrix A that
are nearest the “shift” sigma. If sigma is omitted, the eigenvalues largest in
magnitude are found. If sigma is zero, the eigenvalues smallest in magnitude

6-37

6 Sparse Matrices

are found. A second matrix, B, can be included for the generalized eigenvalue
problem:

The statement

[U,S,V] = svds(A,k)

finds the k largest singular values of A and

[U,S,V] = svds(A,k,0)

finds the k smallest singular values.

For example, the statements

L = numgrid('L',65);
A = delsq(L);

set up the five-point Laplacian difference operator on a 65-by-65 grid in an
L-shaped, two-dimensional domain. The statements

size(A)
nnz(A)

show that A is a matrix of order 2945 with 14,473 nonzero elements.

The statement

[v,d] = eigs(A,1,0);

computes the smallest eigenvalue and eigenvector. Finally,

L(L>0) = full(v(L(L>0)));
x = -1:1/32:1;
contour(x,x,L,15)
axis square

distributes the components of the eigenvector over the appropriate grid points
and produces a contour plot of the result.

6-38

Operating on Sparse Matrices

The numerical techniques used in eigs and svds are described in [6].

Identifying Performance Limitations

• “Creating Sparse Matrices” on page 6-39

• “Manipulating Sparse Matrices” on page 6-40
This section describes some limitations of the sparse matrix storage format
and their impact on matrix creation, manipulation, and operations.

Creating Sparse Matrices
The best way to create a sparse matrix is to use the sparse function. If you do
not have prior knowledge of the nonzero indices or their values, it is much
more efficient to create the vectors containing these values, and then create
the sparse matrix.

Preallocating the memory for a sparse matrix and filling it in an elementwise
manner causes a significant amount of overhead in indexing into the sparse
array:

6-39

6 Sparse Matrices

S1 = spalloc(1000,1000,100000);
tic;
for n = 1:100000

i = ceil(1000*rand(1,1));
j = ceil(1000*rand(1,1));
S1(i,j) = rand(1,1);

end
toc

Elapsed time is 26.281000 seconds.

Whereas constructing the vectors of indices and values eliminates the need to
index into the sparse array, and thus is significantly faster:

i = ceil(1000*rand(100000,1));
j = ceil(1000*rand(100000,1));
v = zeros(size(i));
for n = 1:100000

v(n) = rand(1,1);
end

tic;
S2 = sparse(i,j,v,1000,1000);
toc

Elapsed time is 0.078000 seconds.

Manipulating Sparse Matrices
Because sparse matrices are stored in a column-major format, accessing the
matrix by columns is more efficient than by rows. Compare the time required
for adding rows of a matrix 1000 times

S = sparse(10000,10000,1);
tic;
for n = 1:1000

A = S(100,:) + S(200,:);
end;
toc

6-40

Operating on Sparse Matrices

Elapsed time is 1.208162 seconds.

versus the time required for adding columns

S = sparse(10000,10000,1);
tic;
for n = 1:1000

B = S(:,100) + S(:,200);
end;
toc

Elapsed time is 0.088747 seconds.

When possible, you can transpose the matrix, perform operations on the
columns, and then retranspose the result:

S = sparse(10000,10000,1);
tic;
for n = 1:1000

A = S(100,:)' + S(200,:)';
A = A';

end;
toc

Elapsed time is 0.597142 seconds.

The time required to transpose the matrix is negligible. Note that the sparse
matrix memory requirements could prevent you from transposing a sparse
matrix having a large number of rows. This might occur even when the
number of nonzero values is small.

Using linear indexing to access or assign an element in a large sparse matrix
will fail if the linear index exceeds intmax. To access an element whose linear
index is greater than intmax, use array indexing:

S = spalloc(216^2, 216^2, 2)
S(1) = 1
S(end) = 1
S(216^2,216^2) = 1

6-41

6 Sparse Matrices

Selected Bibliography
[1] Amestoy, P. R., T. A. Davis, and I. S. Duff, “An Approximate Minimum
Degree Ordering Algorithm,” SIAM Journal on Matrix Analysis and
Applications, Vol. 17, No. 4, Oct. 1996, pp. 886-905.

[2] Barrett, R., M. Berry, T. F. Chan, et al., Templates for the Solution of Linear
Systems: Building Blocks for Iterative Methods, SIAM, Philadelphia, 1994.

[3] Davis, T.A., Gilbert, J. R., Larimore, S.I., Ng, E., Peyton, B., “A Column
Approximate Minimum Degree Ordering Algorithm,” Proc. SIAM Conference
on Applied Linear Algebra, Oct. 1997, p. 29.

[4] Gilbert, John R., Cleve Moler, and Robert Schreiber, “Sparse Matrices in
MATLAB: Design and Implementation,” SIAM J. Matrix Anal. Appl., Vol. 13,
No. 1, January 1992, pp. 333-356.

[5] Larimore, S. I., An Approximate Minimum Degree Column Ordering
Algorithm, MS Thesis, Dept. of Computer and Information Science and
Engineering, University of Florida, Gainesville, FL, 1998, available at
http://www.cise.ufl.edu/submit/files/file_281.ps .

[6] Lehoucq, R. B., D. C. Sorensen, C. Yang, ARPACK Users’ Guide, SIAM,
Philadelphia, 1998.

[7] Saad, Yousef, Iterative Methods for Sparse Linear Equations. PWS
Publishing Company, 1996.

6-42

http://www.cise.ufl.edu/submit/files/file_281.ps
http://www.cise.ufl.edu/submit/files/file_281.ps

Index

IndexA
additional parameters

BVP example 5-77 5-80
amp1dae demo 5-43
anonymous functions

representing mathematical functions 4-4
arguments, additional 4-33

B
ballode demo 5-30
bandwidth of sparse matrix, reducing 6-26
batonode demo 5-43
bicubic interpolation 2-13
bilinear interpolation 2-13
boundary conditions

BVP 5-67
BVP example 5-73
PDE 5-95
PDE example 5-101

boundary value problems. See BVP
Brusselator system (ODE example) 5-27
brussode demo 5-27
burgersode demo 5-44
BVP 5-65

defined 5-67
rewriting as first-order system 5-72

BVP solver 5-68
basic syntax 5-69
evaluate solution at specific points 5-76
examples

boundary condition at infinity
(shockbvp) 5-80

Mathieu’s Equation (mat4bvp) 5-72
multipoint terms 5-88
rapid solution changes (shockbvp) 5-77
singular terms 5-84

initial guess 5-76
multipoint terms 5-88
performance 5-71

representing problems 5-72
singular terms 5-84
unknown parameters 5-75

BVP solver properties
querying property structure 5-93

C
cat

sparse operands 6-23
characteristic polynomial of matrix 2-4
characteristic roots of matrix 2-4
chol

sparse matrices 6-23
Cholesky factorization 1-31

sparse matrices 6-30
closest point searches

Delaunay triangulation 2-25
colamd

minimum degree ordering 6-27
colmmd

column permutation 6-29
colperm 6-26
comparing

sparse and full matrix storage 6-11
computational functions

applying to sparse matrices 6-22
computational geometry

multidimensional 2-27
two-dimensional 2-19

contents of sparse matrix 6-18
convex hulls

multidimensional 2-28
two-dimensional 2-20

convolution 2-5
creating

sparse matrix 6-13
cubic interpolation

multidimensional 2-17
one-dimensional 2-11

Index-1

Index

spline 2-11
curve fitting

polynomial 2-6
curves

computing length 4-30
Cuthill-McKee

reverse ordering 6-26

D
DAE

solution of 5-3
data gridding

multidimensional 2-18
DDE 5-53

rewriting as first-order system 5-57
DDE solver 5-55 to 5-56

discontinuities 5-59
evaluating solution at specific points 5-59
examples

cardiovascular model (ddex2) 5-61
straightforward example (ddex1) 5-56

performance 5-63
representing problems 5-56

ddex1 demo 5-56
ddex2 demo 5-61
decomposition

eigenvalue 1-43
Schur 1-46
singular value 1-47

deconvolution 2-5
Delaunay tessellations 2-30
Delaunay triangulation 2-21

closest point searches 2-25
delay differential equations. See DDE
density

sparse matrix 6-12
derivatives

polynomial 2-5
determinant of matrix 1-26

diag 6-23
diagonal

creating sparse matrix from 6-15
differential equations 5-1

boundary value problems for ODEs 5-65
initial value problems for DAEs 5-3
initial value problems for DDEs 5-53
initial value problems for ODEs 5-3
partial differential equations 5-93

differential-algebraic equations. See DAE
direct methods

systems of sparse equations 6-34
discontinuities

DDE solver 5-59
displaying

sparse matrices 6-20
dot product 1-10

E
eigenvalues 1-43

of sparse matrix 6-37
eigenvectors 1-43
electrical circuits

DAE example 5-43
Emden’s equation

example 5-85
error tolerance

effects of too large (ODE) 5-51
machine precision 5-48

event location (ODE)
advanced example 5-33
simple example 5-30

eye
derivation of the name 1-12
sparse matrices 6-23

F
factorization 6-27

Index-2

Index

Cholesky 1-31
Hermitian positive definite 1-32
incomplete 6-33
LU 1-33
partial pivoting 1-33
positive definite 1-31
QR 1-34
sparse matrices 6-27

Cholesky 6-30
LU 6-27
triangular 6-27

fem1ode demo 5-24
fem2ode demo 5-44
find function

sparse matrices 6-21
finite element discretization (ODE example) 5-24
first-order differential equations

representation for BVP solver 5-72
representation for DDE solver 5-57

Fourier analysis
concepts 3-2

Fourier transforms
calculating sunspot periodicity 3-3
FFT-based interpolation 2-12
length vs. speed 3-9
phase and magnitude of transformed

data 3-7
fsbvp demo 5-80
full 6-23 6-26
function functions 4-1
functions

mathematical. See mathematical functions
optimizing 4-9

G
Gaussian elimination 1-33
geometric analysis

multidimensional 2-27
two-dimensional 2-19

global minimum 4-27
global variables 4-33

H
hb1dae demo 5-36
hb1ode demo 5-44
Hermitian positive definite matrix 1-32
higher-order ODEs

rewriting as first-order ODEs 5-6

I
iburgersode demo 5-44
identity matrix 1-12
ihb1dae demo 5-44
importing

sparse matrix 6-17
incomplete factorization 6-33
infeasible optimization problems 4-28
initial conditions

ODE 5-6
ODE example 5-12
PDE 5-95
PDE example 5-101

initial guess (BVP)
example 5-74
quality of 5-76

initial value problems
DDE 5-53
defined 5-6
ODE and DAE 5-3

initial-boundary value PDE problems 5-93
inner product 1-8
integration 4-29

double 4-30
numerical 4-29
triple 4-29
See also differential equations

integration interval

Index-3

Index

PDE (MATLAB) 5-98
interpolation 2-9

comparing methods graphically 2-13
FFT-based 2-12
multidimensional 2-17

scattered data 2-35
one-dimensional 2-10
speed, memory, smoothness 2-11
three-dimensional 2-16
two-dimensional 2-12

inverse of matrix 1-26
iterative methods

sparse matrices 6-35
sparse systems of equations 6-34

K
Kronecker tensor matrix product 1-13

L
least squares 6-32
length of curve, computing 4-30
linear algebra 1-6
linear equations

minimal norm solution 1-28
overdetermined systems 1-21
rectangular systems 1-27
underdetermined systems 1-24

linear interpolation
multidimensional 2-17
one-dimensional 2-11

linear systems of equations
direct methods (sparse) 6-34
full 1-16
iterative methods (sparse) 6-34
sparse 6-34

linear transformation 1-6
load

sparse matrices 6-17

Lobatto IIIa BVP solver 5-68
LU factorization 1-33

sparse matrices and reordering 6-27

M
M-files

representing mathematical functions 4-4
mat4bvp demo 5-66 5-72
mathematical functions

as function input arguments 4-1
finding zeros 4-23
minimizing 4-10
numerical integration 4-29
plotting 4-6
representing in MATLAB 4-4

mathematical operations
sparse matrices 6-22

Mathieu’s equation (BVP example) 5-72
matrices 1-6

as linear transformation 1-6
characteristic polynomial 2-4
characteristic roots 2-4
creation 1-6
determinant 1-26
full to sparse conversion 6-12
identity 1-12
inverse 1-26
iterative methods (sparse) 6-35
orthogonal 1-34
pseudoinverse 1-27
rank deficiency 1-23
symmetric 1-9
triangular 1-31

matrix operations
addition and subtraction 1-8
division 1-17
exponentials 1-40
multiplication 1-11
powers 1-39

Index-4

Index

transpose 1-9
matrix products

Kronecker tensor 1-13
max 6-23
minimizing mathematical functions

of one variable 4-10
of several variables 4-11
options 4-14

minimum degree ordering 6-26
Moore-Penrose pseudoinverse 1-27
multidimensional

data gridding 2-18
interpolation 2-17

multidimensional interpolation
scattered data 2-27

multistep solver (ODE) 5-8

N
nearest neighbor interpolation

multidimensional 2-17
one-dimensional 2-11
three-dimensional 2-16
two-dimensional 2-13

nnz 6-18
nonstiff ODE examples

rigid body (rigidode) 5-21
nonzero elements

maximum number in sparse matrix 6-14
number in sparse matrix 6-18
sparse matrix 6-18
values for sparse matrices 6-18

nonzeros 6-18
norms

vector and matrix 1-14
numerical integration 4-29

computing length of curve 4-30
double 4-30
triple 4-29

nzmax 6-18 6-20

O
objective function 4-1

return values 4-28
ODE

coding in MATLAB 5-12
defined 5-5
overspecified systems 5-45
solution of 5-3

ODE solver properties
fixed step sizes 5-47

ODE solvers 5-7
algorithms

Adams-Bashworth-Moulton PECE 5-8
Bogacki-Shampine 5-8
Dormand-Prince 5-8
modified Rosenbrock formula 5-9
numerical differentiation formulas 5-9

backwards in time 5-50
basic example

stiff problem 5-14
basic syntax 5-9
calling 5-12
evaluate solution at specific points 5-16
examples 5-20
minimizing output storage 5-46
minimizing startup cost 5-46
multistep solver 5-8
nonstiff problem example 5-11
nonstiff problems 5-8
one-step solver 5-8
overview 5-7
performance 5-19
problem size 5-45
representing problems 5-11
sampled data 5-50
stiff problems 5-8 5-14
troubleshooting 5-44

one-dimensional interpolation 2-10
one-step solver (ODE) 5-8
ones

Index-5

Index

sparse matrices 6-23
optimization 4-9

helpful hints 4-27
options parameters 4-14
troubleshooting 4-27
See also minimizing mathematical functions

orbitode demo 5-33
ordinary differential equations. See ODE
orthogonal matrix 1-34
outer product 1-8
output functions 4-15
overdetermined

rectangular matrices 1-21
overspecified ODE systems 5-45

P
partial differential equations. See PDE
partial fraction expansion 2-7
PDE 5-93

defined 5-94
discretized 5-49

PDE examples (MATLAB) 5-94
PDE solver (MATLAB) 5-95

basic syntax 5-96
evaluate solution at specific points 5-104
examples

electrodynamics problem 5-105
simple PDE 5-99

performance 5-104
properties 5-105
representing problems 5-99

pdex1 demo 5-99
pdex2 demo 5-94
pdex3 demo 5-94
pdex4 demo 5-105
pdex5 demo 5-94
performance

de-emphasizing an ODE solution
component 5-48

improving for BVP solver 5-71
improving for DDE solver 5-63
improving for ODE solvers 5-19
improving for PDE solver 5-104

permutations 6-23
plotting

mathematical functions 4-6
polynomial interpolation 2-10
polynomials

basic operations 2-2
calculating coefficients from roots 2-3
calculating roots 2-3
curve fitting 2-6
derivatives 2-5
evaluating 2-4
multiplying and dividing 2-5
partial fraction expansion 2-7
representing as vectors 2-3

preconditioner
sparse matrices 6-33

property structure (BVP)
querying 5-93

pseudoinverse
of matrix 1-27

Q
QR factorization 1-34 6-31
quad, quadl functions

differ from ODE solvers 5-45
quadrature. See numerical integration

R
rand

sparse matrices 6-23
rank deficiency

detecting 1-36
rectangular matrices 1-23
sparse matrices 6-32

Index-6

Index

rectangular matrices
identity 1-12
overdetermined systems 1-21
pseudoinverse 1-27
QR factorization 1-34
rank deficient 1-23
singular value decomposition 1-47
underdetermined systems 1-24

reorderings 6-23
for sparser factorizations 6-26
LU factorization 6-27
minimum degree ordering 6-26
reducing bandwidth 6-26

representing
mathematical functions 4-4

rigid body (ODE example) 5-21
rigidode demo 5-21
Robertson problem

DAE example 5-36
ODE example 5-44

roots
polynomial 2-3

S
sampled data

with ODE solvers 5-50
save 6-17
scalar

as a matrix 1-7
scalar product 1-10
scattered data

multidimensional interpolation 2-35
multidimensional tessellation 2-27
triangulation and interpolation 2-19

Schur decomposition 1-46
seamount data set 2-20
second difference operator

example 6-14
shockbvp demo 5-77

singular value matrix decomposition 1-47
size

sparse matrices 6-22
solution changes, rapid

making initial guess 5-77
verifying consistent behavior 5-80

solving linear systems of equations
full 1-16
sparse 6-34

sort 6-26
sparse function

converting full to sparse 6-12
sparse matrix

advantages 6-10
Cholesky factorization 6-30
computational considerations 6-22
contents 6-18
conversion from full 6-12
creating 6-12

directly 6-13
from diagonal elements 6-15

density 6-12
eigenvalues 6-37
importing 6-17
linear systems of equations 6-34
LU factorization 6-27

and reordering 6-27
mathematical operations 6-22
nonzero elements 6-18

maximum number 6-14
specifying when creating matrix 6-13
storage 6-18
values 6-18

nonzero elements of sparse matrix
number of 6-18

operations 6-22
permutation 6-23
preconditioner 6-33
propagation through computations 6-22
QR factorization 6-31

Index-7

Index

reordering 6-23
storage 6-10

for various permutations 6-25
viewing 6-18

triangular factorization 6-27
viewing contents graphically 6-20
viewing storage 6-18

sparse ODE examples
Brusselator system (brussode) 5-27

spconvert 6-17
spdiags 6-15
speye 6-23
spones 6-26
spparms 6-35
sprand 6-23
spy 6-20
startup cost

minimizing for ODE solvers 5-46
stiff ODE examples

Brusselator system (brussode) 5-27
differential-algebraic problem (hb1dae) 5-36
finite element discretization (fem1ode) 5-24
van der Pol (vdpode) 5-22

stiffness (ODE), defined 5-14
storage

minimizing for ODE problems 5-46
permutations of sparse matrices 6-25
sparse and full, comparison 6-11
sparse matrix 6-10
viewing for sparse matrix 6-18

sum
counting nonzeros in sparse matrix 6-26
sparse matrices 6-23

sunspot periodicity
calculating using Fourier transforms 3-3

symamd
minimum degree ordering 6-27

symmetric matrix
transpose 1-9

symrcm

column permutation 6-29
reducing sparse matrix bandwidth 6-26

systems of equations.. See linear systems of
equations

T
tessellations, multidimensional

Delaunay 2-30
Voronoi diagrams 2-32

three-dimensional interpolation 2-16
threebvp demo 5-66
transfer functions

using partial fraction expansion 2-7
transpose

complex conjugate 1-10
unconjugated complex 1-10

triangular factorization
sparse matrices 6-27

triangular matrix 1-31
triangulation

closest point searches 2-25
Delaunay 2-21
scattered data 2-19
See also tessellation 2-27
Voronoi diagrams 2-26

tricubic interpolation 2-17
trilinear interpolation 2-16
troubleshooting (ODE) 5-44
two-dimensional interpolation 2-12

comparing methods graphically 2-13
twobvp demo 5-66

U
underdetermined

rectangular matrices 1-24
unitary matrices

QR factorization 1-34
unknown parameters (BVP) 5-75

Index-8

Index

example 5-72

V
van der Pol example 5-22

simple, nonstiff 5-11
simple, stiff 5-14

vdpode demo 5-22
vector products

dot or scalar 1-10
outer and inner 1-8

vectors
column and row 1-7
multiplication 1-8

visualizing solver results
BVP 5-74
DDE 5-58
ODE 5-13
PDE 5-102

Voronoi diagrams
multidimensional 2-32
two-dimensional 2-26

Z
zeros

of mathematical functions 4-23
sparse matrices 6-23

Index-9

ISSN 1360-1725

UMIST

The Test Matrix Toolbox for Matlab (Version 3.0)

N. J. Higham

Numerical Analysis Report No. 276

September 1995

Manchester Centre for Computational Mathematics

Numerical Analysis Reports

DEPARTMENTS OF MATHEMATICS

Reports available from:

Department of Mathematics

University of Manchester

Manchester M13 9PL

England

And over the World-Wide Web from URLs

http://www.ma.man.ac.uk/MCCM/MCCM.html

ftp://ftp.ma.man.ac.uk/pub/narep

The Test Matrix Toolbox for Matlab (Version 3.0)

Nicholas J. Higham�

September 22, 1995

Abstract

We describe version 3.0 of the Test Matrix Toolbox for Matlab 4.2. The toolbox con-
tains a collection of test matrices, routines for visualizing matrices, routines for direct search
optimization, and miscellaneous routines that provide useful additions to Matlab's exist-
ing set of functions. There are 58 parametrized test matrices, which are mostly square,
dense, nonrandom, and of arbitrary dimension. The test matrices include ones with known
inverses or known eigenvalues; ill-conditioned or rank de�cient matrices; and symmetric,
positive de�nite, orthogonal, defective, involutary, and totally positive matrices. The vi-
sualization routines display surface plots of a matrix and its (pseudo-) inverse, the �eld
of values, Gershgorin disks, and two- and three-dimensional views of pseudospectra. The
direct search optimization routines implement the alternating directions method, the multi-
directional search method and the Nelder{Mead simplex method. We explain the need for
collections of test matrices and summarize the features of the collection in the toolbox. We
give examples of the use of the toolbox and explain some of the interesting properties of the
Frank matrix and magic square matrices. The leading comment lines from all the toolbox
routines are listed.

Key words. test matrix, Matlab, pseudospectrum, visualization, Frank matrix,
magic square matrix, random matrix, direct search optimization.

AMS subject classi�cations. primary 65F05

Contents

1 Distribution 2

2 Installation 2

3 Release History 2

4 Quick Reference Tables 3

5 Test Matrices 7

6 Visualization 12

7 Direct Search Optimization 15

8 Miscellaneous Routines 21

�Department of Mathematics, University of Manchester, Manchester, M13 9PL, England
(na.nhigham@na-net.ornl.gov). This work was supported by Science and Engineering Research Council
grant GR/H52139.

1

9 Examples 23

9.1 Magic Squares . 23

9.2 The Frank Matrix . 25
9.3 Numerical Linear Algebra . 28

10 M-File Leading Comment Lines 33

1 Distribution

If you wish to distribute the toolbox please give exact copies of it, not selected routines.

2 Installation

The Test Matrix Toolbox is available by anonymous ftp from The MathWorks with URL

ftp://ftp.mathworks.com/pub/contrib/linalg/testmatrix

This document is testmatrix.ps in the same location. The MathWorks ftp server provides
information on how to download a complete directory as one �le.

The toolbox is also available from the URL

ftp://ftp.ma.man.ac.uk/pub/higham/testmatrix.tar.Z

This document is narep276.ps.Z in the same location. To install the toolbox from this location,
download the tar �le (in binary mode) into a testmatrix directory (matlab/testmatrix is
recommended). Then uncompress the tar �le and untar it:

uncompress testmatrix.tar.Z

tar xvf testmatrix

To try the toolbox from within Matlab, change to the testmatrix directory and run the
demonstration script by typing tmtdemo. For serious use it is best to put the testmatrix

directory on the Matlab path before the matlab/toolbox entries|this is because several
toolbox routines have the same name as Matlab routines and are intended to replace them
(namely, compan, cond, hadamard, hilb, and pascal).

This document describes version 3.0 of the toolbox, dated September 19, 1995.

3 Release History

The �rst release of this toolbox (version 1.0, July 4 1989) was described in a technical report [19].
The collection was subsequently published as ACM Algorithm 694 [21]. Prior to the current
version, version 3.0, the most recent release was version 2.0 (November 14 1993) [24]. Version
2.0 incorporated many additions and improvements over version 1.3 and took full advantage of
the features of Matlab 4.

The major changes in version 3.0 are as follows.

� New routines: cgs (classical Gram{Schmidt), mgs (modi�ed Gram{Schmidt), gj (Gauss{
Jordan elimination), diagpiv (diagonal pivoting factorization with partial pivoting for a
symmetric matrix); adsmax, mdsmax and nmsmax for direct search optimization.

� Bug in eigsens corrected. Minor bugs in other routines corrected.

2

Version 3.0 of the toolbox was developed in conjunction with the book Accuracy and Stability
of Numerical Algorithms [26]. The book contains a chapter A Gallery of Test Matrices which
has sections

� The Hilbert and Cauchy Matrices

� Random Matrices

� \Randsvd" Matrices

� The Pascal Matrix

� Tridiagonal Toeplitz Matrices

� Companion Matrices

� Notes and References

� LAPACK

� Problems

Users of the toolbox should consult [26] for further information not contained in this document.

4 Quick Reference Tables

This section contains quick reference tables for the Test Matrix Toolbox. All the M-�les in the
toolbox are listed by category, with a short description. More detailed documentation is given
in Section 10, or can be obtained on-line by typing help M-file_name.

3

Demonstration

tmtdemo Demonstration of Test Matrix Toolbox.

Test Matrices, A{K

augment Augmented system matrix.
cauchy Cauchy matrix.
chebspecChebyshev spectral di�erentiation matrix.
chebvandVandermonde-like matrix for the Chebyshev polynomials.
chow Chow matrix|a singular Toeplitz lower Hessenberg matrix.
circul Circulant matrix.
clement Clement matrix|tridiagonal with zero diagonal entries.
compan Companion matrix.
condex \Counterexamples" to matrix condition number estimators.
cycol Matrix whose columns repeat cyclically.
dingdongDingdong matrix|a symmetric Hankel matrix.
dorr Dorr matrix|diagonally dominant, ill conditioned,

tridiagonal.
dramadahA (0; 1) matrix whose inverse has large integer entries.
fiedler Fiedler matrix|symmetric.
forsytheForsythe matrix|a perturbed Jordan block.
frank Frank matrix|ill conditioned eigenvalues.
gallery Famous, and not so famous, test matrices.
gearm Gear matrix.
gfpp Matrix giving maximal growth factor for Gaussian elimination

with partial pivoting.
grcar Grcar matrix|a Toeplitz matrix with sensitive eigenvalues.
hadamardHadamard matrix.
hanowa A matrix whose eigenvalues lie on a vertical line in the complex

plane.
hilb Hilbert matrix.
invhess Inverse of an upper Hessenberg matrix.
invol An involutory matrix.
ipjfact A Hankel matrix with factorial elements.
jordblocJordan block.
kahan Kahan matrix|upper trapezoidal.
kms Kac{Murdock{Szeg�o Toeplitz matrix.
krylov Krylov matrix.

4

Test Matrices, L{Z

lauchli Lauchli matrix|rectangular.
lehmer Lehmer matrix|symmetric positive de�nite.
lesp A tridiagonal matrix with real, sensitive eigenvalues.
lotkin Lotkin matrix.
makejcf A matrix with given Jordan canonical form.
minij Symmetric positive de�nite matrix min(i; j).
moler Moler matrix|symmetric positive de�nite.
neumann Singular matrix from the discrete Neumann problem (sparse).
ohess Random, orthogonal upper Hessenberg matrix.
orthog Orthogonal and nearly orthogonal matrices.
parter Parter matrix|a Toeplitz matrix with singular values near �.
pascal Pascal matrix.
pdtoep Symmetric positive de�nite Toeplitz matrix.
pei Pei matrix.
pentoep Pentadiagonal Toeplitz matrix (sparse).
poisson Block tridiagonal matrix from Poisson's equation (sparse).
prolate Prolate matrix|symmetric, ill-conditioned Toeplitz matrix.
rando Random matrix with elements �1, 0 or 1.
randsvd Random matrix with pre-assigned singular values.
redheff A (0,1) matrix of Redhe�er associated with the Riemann

hypothesis.
riemann A matrix associated with the Riemann hypothesis.
rschur An upper quasi-triangular matrix.
smoke Smoke matrix|complex, with a \smoke ring"

pseudospectrum.
tridiag Tridiagonal matrix (sparse).
triw Upper triangular matrix discussed by Wilkinson and others.
vand Vandermonde matrix.
wathen Wathen matrix|a �nite element matrix (sparse, random entries).
wilk Various speci�c matrices devised/discussed by Wilkinson.

Visualization

fv Field of values (or numerical range).
gersh Gershgorin disks.
ps Dot plot of a pseudospectrum.
pscont Contours and colour pictures of pseudospectra.
see Pictures of a matrix and its (pseudo-) inverse.

Decompositions and Factorizations

cgs Classical Gram{Schmidt QR factorization.
cholp Cholesky factorization with pivoting of a positive semide�nite

matrix.
cod Complete orthogonal decomposition.
diagpiv Diagonal pivoting factorization with partial pivoting.
ge Gaussian elimination without pivoting.
gecp Gaussian elimination with complete pivoting.
gj Gauss{Jordan elimination to solve Ax = b.
mgs Modi�ed Gram{Schmidt QR factorization.
poldec Polar decomposition.
signm Matrix sign decomposition.

5

Direct Search Optimization

adsmax Alternating directions direct search method.
mdsmax Multidirectional search method for direct search optimization.
mmsmax Nelder{Mead simplex method for direct search optimization.

Miscellaneous

bandred Band reduction by two-sided unitary transformations.
chop Round matrix elements.
comp Comparison matrices.
cond Matrix condition number in 1, 2, Frobenius, or 1-norm.
cpltaxesDetermine suitable axis for plot of complex vector.
dual Dual vector with respect to H�older p-norm.
eigsens Eigenvalue condition numbers.
house Householder matrix.
matrix Test Matrix Toolbox information and matrix access by number.
matsigntMatrix sign function of a triangular matrix.
pnorm Estimate of matrix p-norm (1 � p � 1).
qmult Pre-multiply by random orthogonal matrix.
rq Rayleigh quotient.
seqa Additive sequence.
seqcheb Sequence of points related to Chebyshev polynomials.
seqm Multiplicative sequence.
show Display signs of matrix elements.
skewpartSkew-symmetric (skew-Hermitian) part.
sparsifyRandomly sets matrix elements to zero.
sub Principal submatrix.
symmpartSymmetric (Hermitian) part.
trap2triUnitary reduction of trapezoidal matrix to triangular form.

6

5 Test Matrices

Numerical experiments are an indispensable part of research in numerical analysis. We do them
for several reasons:

� To gain insight and understanding into an algorithm that is only partially understood
theoretically.

� To verify the correctness of a theoretical analysis and to see if the analysis completely
explains the practical behaviour.

� To compare rival methods with regard to accuracy, speed, reliability, and so on.

� To tune parameters in algorithms and codes, and to test heuristics.

One of the di�culties in designing experiments is �nding good test problems|ones that
reveal extremes of behaviour, cover a wide range of di�culty, are representative of practical
problems, and (ideally) have known solutions. In many areas of numerical analysis good test
problems have been identi�ed, and several collections of such problems have been published. For
example, collections are available in the areas of nonlinear optimization [33], linear programming
[13], [31], ordinary di�erential equations [10], and partial di�erential equations [34].

Probably the most proli�c devisers of test problems have been workers in matrix compu-
tations. Indeed, in the 1950s and 1960s it was common for a whole paper to be devoted to a
particular test matrix: typically its inverse or eigenvalues would be obtained in closed form. An
early survey of test matrices was given by Rutishauser [36]; most of the matrices he discusses
come from continued fractions or moment problems. Two well-known books present collections
of test matrices. Gregory and Karney [15] deal exclusively with the topic, while Westlake [43]
gives an appendix of test matrices. In the 24 years since these books appeared several interest-
ing matrices have been discovered (and in fact both books omit some worthy test matrices that
were known at the time).

The Test Matrix Toolbox contains an up-to-date, well documented and readily accessible
collection of test matrices. The matrices are given in the form of self-documenting Matlab

M-�les. For some of the matrices we give mathematical formulas for the matrix elements in
comment lines; in other cases the formulas can be reconstructed from the Matlab code. We
do not give exhaustive descriptions of matrix properties, or proofs of these properties; instead,
in the comment lines we list a few key properties and give references where further details can
be found.

With a few exceptions each of the 58 matrices satis�es the following requirements:

� It is a square matrix with one or more variable parameters, one of which is the dimension.
Thus it is actually a parametrized family of matrices of arbitrary dimension.

� It is dense.

� It has some property that makes it of interest as a test matrix.

The �rst criterion is enforced because it is often desirable to explore the behaviour of a
numerical method as parameters such as the matrix dimension vary. The third criterion is
somewhat subjective, and the matrices presented here represent the author's personal choice.
Note that we have omitted plausible matrices that we thought not \su�ciently di�erent" from
others in the collection. Although all but two of our test matrices are usually real, those with
an arbitrary parameter can be made complex by choosing a non-real value for the parameter.

7

As well as their obvious application to research in matrix computations we hope that the
matrices presented here will be useful for constructing test problems in other areas, such as
optimization (see, for example, [3]) and ordinary di�erential equations.

We mention some other collections of test matrices that complement ours. The Harwell-
Boeing collection of sparse matrices, largely drawn from practical problems, is presented by Du�,
Grimes and Lewis [8], [9]. Bai [2] is building a collection of test matrices for the large-scale
nonsymmetric eigenvalue problem. Zielke [46] gives various parametrized rectangular matrices
of �xed dimension with known generalized inverses. Demmel and McKenney [7] present a suite
of Fortran 77 codes for generating random square and rectangular matrices with prescribed
singular values, eigenvalues, band structure, and other properties. This suite is part of the
testing code for LAPACK [1]. Our focus is primarily on non-random matrices but we include a
class of random matrices randsvd that has some of the features of the Demmel and McKenney
test set.

Where possible, we have chosen the names of the test matrices eponymously, since it is easier
to remember, for example, \the Kahan matrix", than \Example 3.8". For portability reasons
we restrict all M-�le names in the toolbox to eight characters (since this is the limit in the
MSDOS operating system, under which the Microsoft Windows version of Matlab runs). We
have written a routine matrix that accesses the matrices by number rather than by name; this
makes it easy to run experiments on the whole collection of matrices (with parameters other
than the matrix dimension set to their default values.)

The matrices described here can be modi�ed in various ways while still retaining some or all
of their interesting properties. Among the many ways of constructing new test matrices from
old are:

� Similarity transformations A X�1AX .

� Unitary transformations A UAV , where U�U = V �V = I .

� Kronecker products A A
 B or B
 A (for which Matlab has a routine kron).

� Powers A Ak .

For a discussion of these techniques, and others, see [15, Chapter 2]. Techniques for obtaining
a triangular, orthogonal, or symmetric positive de�nite matrix that is related to a given matrix
include

� Bandwidth reduction using unitary transformations (see toolbox routine bandred).

� LU, Cholesky, QR and polar decompositions (see lu, chol, qr and, from the toolbox,
cholp, ge, gecp and poldec.)

See [14] for details of these techniques.
Another way to generate a new matrix is to perturb an existing one. One approach is to

add a random perturbation. Another is to round the matrix elements to a certain number of
binary places; this can be done using the toolbox routine chop.

Our programming style is as follows. Each M-�le foo begins with comment lines that are
displayed when the user types help foo. The �rst comment line, the H1 line, is a self-contained
statement of the purpose of the routine; the H1 lines are searched and displayed by Matlab's
lookfor command (e.g., lookfor toeplitz). Any further comments and references follow a
blank line and so are not displayed by help. As far as possible, every routine sets default values
for any arguments that are not speci�ed. In particular, for most test matrix routines testmat,
A = testmat(n) is a valid way to generate an n � n matrix. In general we have strived for

8

conciseness, modularity, speed, and minimal use of temporary storage in our Matlab codes.
Hence, where possible, we used matrix or vector constructs instead of for loops and have used
calls to existing M-�les.

Some of those matrices that are banded with a small bandwidth are given the sparse storage
format, to allow large matrices to be generated. The full function can be used to convert to
non-sparse storage (e.g., A = full(tridiag(32))). We check for errors in parameters in some,
but not all, cases. A few of the test matrix routines do not properly handle the dimension n = 1
(for example, they halt with an error, or return an empty matrix). We decided not to add extra
code for this case, since the routines are unlikely to be called with n = 1.

Tables 5.1 and 5.2 provide a summary of the properties of the test matrices. The column
headings have the following meanings:

Inverse: the inverse of the matrix is known explicitly.

Ill-cond: the matrix is ill-conditioned for some values of the parameters.

Rank: the matrix is rank-de�cient for some values of the parameters (we exclude \trivial"
examples such as vand, which is singular if its vector argument contains repeated points).
Note that there are some matrices that are mathematically rank-de�cient but behave as
ill-conditioned full rank matrices in the presence of rounding errors; these are listed only
as rank-de�cient (for example, chebspec).

Symm: the matrix is symmetric for some values of the parameters.

Pos Def: the matrix is symmetric positive de�nite for some values of the parameters.

Orth: the matrix is orthogonal, or a diagonal scaling of an orthogonal matrix, for some values
of the parameters.

Eig: something is known about the eigensystem (or the singular values), ranging from bounds
or qualitative knowledge of the eigenvalues to explicit formulas for some or all eigenvalues
and eigenvectors.

We summarise further interesting properties possessed by some of the matrices. Recall that
A is a Hankel matrix if the anti-diagonals are constant (aij = ri+j), idempotent if A2 = A,
normal if A�A = AA� (or, equivalently, A is unitarily diagonalizable), nilpotent if Ak = 0 for
some k, involutary if A2 = I , totally positive (nonnegative) if the determinant of every submatrix
is positive (nonnegative), and a Toeplitz matrix if the diagonals are constant (aij = rj�i).
A totally positive matrix has distinct, real and positive eigenvalues and its ith eigenvector
(corresponding to the ith largest eigenvalue) has exactly i � 1 sign changes [12, Theorem 13,
p. 105]; this property is important in testing regularization algorithms [16], [17]. See [28] for
further details of these matrix properties.

defective: chebspec, gallery, gear, jordbloc, triw

Hankel: dingdong, hilb, ipjfact

Hessenberg: chow, frank, grcar, ohess, randsvd

idempotent: invol

involutary: invol, orthog, pascal

normal (but not symmetric or orthogonal): circul

9

Matrix Inverse Ill-cond Rank Symm Pos Def Orth Eig

augment
p p

cauchy
p p p p

chebspec
p p

chebvand
p p

chow
p p

circul
p p p

clement
p p p p

compan
p p p

condex
p

cycol
p

dingdong
p p

dorr
p

dramadah
p

�edler
p p p

forsythe
p p p

frank
p p

gallery
p p p p p p

gearm
p p

gfpp
p p

grcar
p

hadamard
p p p

hanowa
p

hilb
p p p p

invhess
p p p p p

invol
p p p

ipjfact
p p

jordbloc
p p p p

kahan
p p p

kms
p p p p

krylov
p

Table 5.1: Properties of the test matrices, A{K.

10

Matrix Inverse Ill-cond Rank Symm Pos Def Orth Eig

lauchli
p

lehmer
p p p

lesp
p

lotkin
p p p

minij
p p p p

moler
p p p p

neumann
p p

ohess
p p p

orthog
p p p

parter
p

pascal
p p p p p

pdtoep
p p p p p

pei
p p p p p

pentoep
p p p p

poisson
p p p p

prolate
p p p p

rando
randsvd

p p p p p
redhe�

p
riemann

p
rschur

p p
smoke

p p
tridiag

p p p p p p
triw

p p
vand

p p
wathen

p p p
wilk

p p p p

Table 5.2: Properties of the test matrices, L{Z.

11

nilpotent: chebspec, gallery

rectangular: chebvand, cycol, kahan, krylov, lauchli, rando, randsvd, triw,
vand

Toeplitz: chow, dramadah, grcar, kms, parter, pentoep, prolate

totally positive or totally nonnegative: cauchy1, hilb, lehmer, pascal, vand2

tridiagonal: clement, dorr, gallery, lesp, randsvd, tridiag, wilk

inverse of a tridiagonal matrix: kms, lehmer, minij

triangular: dramadah, jordbloc, kahan, pascal, triw

Finally, we note that several of the test matrices are related to those supplied with Mat-

lab. The functions hadamard and pascal were in the �rst release of the toolbox and were
subsequently included by The MathWorks in the Matlab distribution. The toolbox version of
hadamard is the same as the one in Matlab 4.2 except for the addition of an H1 line, whereas
the toolbox version of pascal contains more informative comment lines than the Matlab 4.2
version and produces a di�erent pascal(n,2) matrix3 (but one that is still a cube root of the
identity). The toolbox routine compan is more versatile than theMatlab 4.2 version. Similarly,
the toolbox routine vand is more versatile than Matlab 4.2's vander. The toolbox version of
hilb is coded di�erently and contains more informative comments than the one inMatlab 4.2.
The toolbox routine augment is similar toMatlab 4.2's spaugment, but produces a non-sparse
matrix instead of a sparse one. The toolbox function cond supports the 1, 2, 1 and Frobenius
norms, whereas Matlab 4.2's cond supports only the 2-norm.

6 Visualization

The toolbox contains �ve routines for visualizing matrices. The routines can give insight into
the properties of a matrix that is not easy to obtain by looking at the numerical entries. They
also provide an easy way to generate pretty pictures!

The routine see displays a �gure with four subplots (strictly speaking four \axes", in Mat-

lab terminology) in the format

mesh(A) mesh(pinv(A))

semilogy(svd(A)) fv(A)

An example for the chebvand matrix is given in Figure 6.1. Matlab's mesh command plots a
three-dimensional, coloured, wire-frame surface, by regarding the entries of a matrix as spec-
ifying heights above a plane. We use axis('ij'), so that the coordinate system for the plot
matches the (i; j) matrix element numbering. pinv(A) is the Moore{Penrose pseudo-inverse A+

of A, which is the usual inverse when A is square and nonsingular. semilogy(svd(A)) plots the
singular values of A (ordered in decreasing size) on a logarithmic scale; the singular values are
denoted by circles, which are joined by a solid line to emphasise the shape of the distribution.
From Figure 6.1 we can see that chebvand(8) has a 2-norm condition number of about 105 and
that the largest elements of its inverse are in the lower triangle. For a sparse Matlab matrix,
see simply displays a spy plot, which shows the sparsity pattern of the matrix. The user could,

1cauchy(x,y) is totally positive if 0 < x1 < � � � < xn and 0 < y1 < � � � < yn [39, p. 295].
2vand(p) is totally positive if the pi satisfy 0 < p1 < � � � < pn [12, p. 99].
3The new pascal(n,2) is generated by a call to rot90 and is \reverse upper triangular" instead of \reverse

lower triangular" as in the Matlab 4.2 version.

12

0
5

10
0

5
10

-1

0

1

0
5

10
0

5
10

-5

0

5

x 10
4

0 2 4 6 8
10

-6

10
-4

10
-2

10
0

10
2

-2 0 2

-2

0

2

Figure 6.1: see(chebvand(8)).

of course, try see(full(A)) for a sparse matrix, but for large dimensions the storage and time
required would be prohibitive. Figure 6.2 displays the result of applying see to the Wathen
matrix|a symmetric positive de�nite sparse matrix that comes from a �nite element problem.

The routine fv plots the �eld of values of a square matrix A 2 Cn�n (also called the
numerical range), which is the set of all Rayleigh quotients,

�
x�Ax

x�x
: 0 6= x 2 Cn

�
;

the eigenvalues of A are plotted as crosses. The �eld of values is a convex set that contains
the eigenvalues. It is the convex hull of the eigenvalues when A is a normal matrix. If A is
Hermitian, the �eld of values is just a segment of the real line. For non-Hermitian A the �eld
of values is usually two-dimensional and its shape and size gives some feel for the behaviour of
the matrix. Trefethen [41] notes that the �eld of values is the largest reasonable answer to the
question \Where in C does a matrix A `live' ?" and the spectrum is the smallest reasonable
answer.

Some examples of �eld of values plots are given in Figure 6.3. The circul matrix is normal,
hence its �eld of values is the convex hull of the eigenvalues. For an example of how the �eld of
values gives insight into the problem of �nding a nearest normal matrix see [35]. An excellent
reference for the theory of the �eld of values is [29, Chapter 1].

The routine gersh plots the Gershgorin disks for an A 2 Cn�n, which are the n disks

Di = f z 2 C : jz � aiij �
nX

j=1
j 6=i

jaij j g

in the complex plane. Gershgorin's theorem tells us that the eigenvalues of A lie in the union of
the disks, and an extension of the theorem states that if k disks form a connected region that
is isolated from the other disks, then there are precisely k eigenvalues in this region. Thus the
size of the disks gives a feel for how nearly diagonal A is, and their locations give information

13

0 20 40 60 80 100 120 140 160

0

20

40

60

80

100

120

140

160

nz = 2416

Figure 6.2: see(wathen(7,7)).

on where the eigenvalues lie in the complex plane. Four examples of Gershgorin disk plots are
given in Figure 6.4; Gershgorin's theorem provides nontrivial information only for the third
matrix, ipjfact(8,1).

The last two routines, ps and pscont, are concerned with pseudospectra. The �-pseudospectrum
of a matrix A 2 Cn�n is de�ned, for a given � > 0, to be the set

��(A) = f z : z is an eigenvalue of A +E for some E with kEk2 � � g:

In other words, it is the set of all complex numbers that are eigenvalues of A + E for some
perturbation E of 2-norm at most �. For a normal matrix A the �-pseudospectrum is the
union of the balls of radius � around the eigenvalues of A. For nonnormal matrices the �-
pseudospectrum can take a wide variety of shapes and sizes, depending on the matrix and how
nonnormal it is. Pseudospectra play an important role in many numerical problems. For full
details see the work of Trefethen|in particular, [40] and [41].

The routine ps plots an approximation to the �-pseudospectrum ��(A), which it obtains by
computing the eigenvalues of a given number of random perturbations of A. The eigenvalues
are plotted as crosses and the pseudo-eigenvalues as dots. Arguments to ps control the number
and type of perturbations. Figure 6.5 gives four examples of 10�3-pseudospectra, all of which
involve the pentadiagonal Toeplitz matrix pentoep.

Another characterization of ��(A), in terms of the resolvent (zI � A)�1, is

��(A) = f z : k(zI � A)�1k2 � ��1 g:

An alternative way of viewing the pseudospectrum is to plot the function

f(z) = k(zI �A)�1k�12 = �min(zI � A)

over the complex plane, where �min denotes the smallest singular value [41]. The routine pscont
plots log10 f(z)

�1 and o�ers several ways to view the surface: by its contour lines alone, or as

14

-2 0 2 4

-2

0

2

grcar(20)

-10 -5 0 5
-10

-5

0

5

10
compan(8)

0 20 40

-20

-10

0

10

20

circul(8)

-20 -15 -10 -5
-10

-5

0

5

10

lesp(8)

Figure 6.3: Fields of values (fv).

a coloured surface plot in two or three dimensions, with or without contour lines. (The two-
dimensional plot is the view from directly above the surface.) Two di�erent pscont views of
the pseudospectra of the triangular matrix triw(11) are given in Figures 6.6 and 6.7. Since
all the eigenvalues of this matrix are equal to 1, there is a single point where the resolvent
is unbounded in norm|this is the \bottomless pit" in the pictures. The spike in Figure 6.7
should be in�nitely deep; since pscont evaluates f(z) on a �nite grid, the spike has a �nite
depth dependent on the grid spacing. Also because of the grid spacing chosen, the contours are
a little jagged. Various aspects of the plots can be changed from the Matlab command line
upon return from pscont; for example, the colour map (colormap), the shading (shading), and
the viewing angle (view). For Figure 6.6 we set shading interp and colormap copper.

Both pseudospectrum routines are computationally intensive, so the defaults for the argu-
ments are chosen to produce a result in a reasonable time (under 20 seconds on a SPARC-2
processor or equivalent); for plots that reveal reasonable detail it is usually necessary to override
the defaults.

7 Direct Search Optimization

The toolbox contains three multivariate direct search maximization routines mdsmax, adsmax
and nmsmax, together with a demonstration function fdemo on which to try them. The routines
are competitors to fmins, which is supplied with Matlab (but fmins minimizes rather than
maximizes). nmsmax is actually a modi�ed version of fmins with the same interface as mdsmax
and adsmax.

mdsmax, adsmax and nmsmax are direct search methods (as is fmins), that is, they attempt to
maximize a real function f of a vector argument x using function values only. mdsmax uses the
multidirectional search method, adsmax uses the method of alternating directions, and nmsmax

uses the Nelder{Mead simplex method. In general, mdsmax and nmsmax can be expected to
perform better than adsmax since they use a more sophisticated method.

These routines were developed during the work described in [23].

15

-40 -20 0
-20

-10

0

10

20
lesp(12)

-5 0 5

-5

0

5

hanowa(10)

-0.2 0 0.2 0.4 0.6 0.8
-0.5

0

0.5
ipjfact(8,1)

-2 0 2

-2

-1

0

1

2

smoke(16,1)

Figure 6.4: Gershgorin disks (gersh).

Note: These routines, like fmins, are not competitive with more sophisticated methods
such as (quasi-)Newton methods when applied to smooth problems. They are at their best
when applied to non-smooth problems such as the one in the example below.

The routines are fully documented in their leading comment lines, but it is appropriate to
add here a few comments about the format of the output and the use of the savit argument.

mdsmax produces output to the screen (this can be suppressed by setting the input argument
stopit(5) = 0). The output is illustrated by

Iter. 10, inner = 2, size = -4, nf = 401, f = 4.7183e+001 (51.0%)

The means that on the tenth iteration, two inner iterations were required, and at the end of the
iteration the simplex edges were 2�4 times the length of those of the initial simplex. Further,
nf is the total number of function evaluations so far, f is the current highest function value,
and the percentage increase in function value over the tenth iteration is 51%.

The output produced by adsmax is similar to that of mdsmax and is illustrated by the
following extract from the start of the second outer iteration:

Iter 2 (nf = 146)

Comp. = 1, steps = 12, f = 1.5607e+000 (0.4%)

Comp denotes the component of x being varied on the current stage and steps is the number of
steps in the crude line search for this stage.

The output from nmsmax is also similar to that from mdsmax, but only iterations on which
an increase in the function value is achieved are reported.

In all three routines, if a non-empty fourth input argument string savit is present then at
the end of each iteration the following \snapshot" is written to the �le speci�ed by savit: the
largest function value found so far, fmax, the point at which it is achieved, x, and the total
number of function evaluations, nf. This option enables the user to abort an optimization, load
and examine x, fmax and nf using Matlab's load command, and then possibly restart the
optimization at x.

16

-1 0 1

-1

-0.5

0

0.5

1

pentoep(32,0,1/2,0,0,1)

0 1 2
-1

-0.5

0

0.5

1

inv(pentoep(32,0,1,1,0,.25))

0 1 2 3

-1

0

1

pentoep(32,0,1/2,1,1,1)

-0.5 0 0.5 1 1.5

-1

-0.5

0

0.5

1

pentoep(32,0,1,0,0,1/4)

Figure 6.5: Pseudospectra (ps).

One further point worth mentioning is that mdsmax, adsmax and nmsmax always call the
function f to be maximized with an argument of the same dimensions (or shape) as the starting
value x0. Similarly, the output argument x and the variable x in savit saves have the same
shape as x0. This feature is very convenient when f is a function of a matrix, as in the example
below.

To facilitate a quick test of the routines the toolbox includes a function fdemo, which takes
a square matrix argument A and evaluates the ratio of rcond(A) to the exact 1-norm condition
number of the matrix A. (rcond isMatlab's built-in condition estimator.) Making fdemo large
corresponds to �nding a matrix where rcond returns a poor condition number estimate.

Here is an extract from output produced by Matlab 4.2b on a 486DX PC; similar output
should be obtained on other machines (a machine that uses IEEE arithmetic will probably
produce identical results). In this example MDSMAX rapidly achieves a function value of over
100, but ADSMAX and NMSMAX make only slow progress and terminate when the default
convergence tests are satis�ed.

>> A = hilb(5); % Starting matrix.

>> B = mdsmax('fdemo', A);

f(x0) = 1.3596e+000

Iter. 1, inner = 0, size = 0, nf = 26, f = 1.3648e+000 (0.4%)

Iter. 2, inner = 1, size = 1, nf = 76, f = 1.4493e+000 (6.2%)

Iter. 3, inner = 1, size = 1, nf = 126, f = 1.4954e+000 (3.2%)

Iter. 4, inner = 1, size = 2, nf = 176, f = 1.5935e+000 (6.6%)

Iter. 5, inner = 1, size = 2, nf = 226, f = 1.7589e+000 (10.4%)

Iter. 6, inner = 1, size = 2, nf = 276, f = 3.7883e+000 (115.4%)

Iter. 7, inner = 1, size = 3, nf = 326, f = 3.1601e+001 (734.2%)

Iter. 8, inner = 1, size = 4, nf = 376, f = 5.3514e+001 (69.3%)

Iter. 9, inner = 2, size = 3, nf = 476, f = 5.3888e+001 (0.7%)

17

-0.5 0 0.5 1 1.5
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 6.6: pscont(triw(11), 0, 30, [-0.5 1.5 -1 1]).

-2
-1

0
1

2

-2

-1

0

1

2
-10

-8

-6

-4

-2

0

Figure 6.7: pscont(triw(11), 2, 15, [-2 2 -2 2]).

18

Iter. 10, inner = 1, size = 3, nf = 526, f = 9.9432e+001 (84.5%)

Iter. 11, inner = 3, size = 1, nf = 676, f = 1.0414e+002 (4.7%)

Iter. 12, inner = 1, size = 0, nf = 726, f = 1.0462e+002 (0.5%)

Iter. 13, inner = 1, size = -1, nf = 776, f = 1.0579e+002 (1.1%)

Iter. 14, inner = 1, size = 0, nf = 826, f = 1.0872e+002 (2.8%)

Iter. 15, inner = 1, size = 0, nf = 876, f = 1.0981e+002 (1.0%)

Iter. 16, inner = 1, size = -1, nf = 926, f = 1.1082e+002 (0.9%)

Iter. 17, inner = 1, size = -1, nf = 976, f = 1.1238e+002 (1.4%)

Iter. 18, inner = 1, size = -1, nf = 1026, f = 1.1334e+002 (0.9%)

Iter. 19, inner = 1, size = -1, nf = 1076, f = 1.1389e+002 (0.5%)

Iter. 20, inner = 1, size = -1, nf = 1126, f = 1.1470e+002 (0.7%)

Iter. 21, inner = 1, size = -1, nf = 1176, f = 1.1773e+002 (2.6%)

Iter. 22, inner = 1, size = 0, nf = 1226, f = 1.2174e+002 (3.4%)

Iter. 23, inner = 1, size = -1, nf = 1276, f = 1.2317e+002 (1.2%)

Iter. 24, inner = 1, size = 0, nf = 1326, f = 1.2682e+002 (3.0%)

Iter. 25, inner = 2, size = -1, nf = 1426, f = 1.2794e+002 (0.9%)

Iter. 26, inner = 1, size = -2, nf = 1476, f = 1.2830e+002 (0.3%)

Iter. 27, inner = 1, size = -1, nf = 1526, f = 1.3185e+002 (2.8%)

Iter. 28, inner = 1, size = -1, nf = 1576, f = 1.3553e+002 (2.8%)

Iter. 29, inner = 2, size = -3, nf = 1676, f = 1.3665e+002 (0.8%)

Iter. 30, inner = 2, size = -4, nf = 1776, f = 1.3749e+002 (0.6%)

Iter. 31, inner = 1, size = -5, nf = 1826, f = 1.3761e+002 (0.1%)

Iter. 32, inner = 1, size = -4, nf = 1876, f = 1.3833e+002 (0.5%)

Iter. 33, inner = 1, size = -5, nf = 1926, f = 1.3852e+002 (0.1%)

Simplex size 5.7156e-004 <= 1.0000e-003...quitting

>> format short e, format compact

>> B

B =

3.4019e+000 2.0181e+000 7.5303e+000 1.7681e+000 -3.5852e+000

-6.8208e+000 1.8514e+000 1.7681e+000 1.7181e+000 1.6847e+000

-6.2348e-001 1.7681e+000 1.6960e+000 1.6847e+000 -1.1421e+001

3.2707e+000 1.7181e+000 1.6847e+000 1.6609e+000 1.6431e+000

3.2477e+001 1.6847e+000 1.8156e+000 1.6431e+000 1.6292e+000

>> % Confirm that the returned B defines a matrix where RCOND does badly.

>> [1/rcond(B) cond(B,1) rcond(B)*cond(B,1)]

ans =

1.4329e+001 1.9849e+003 1.3852e+002

>> B = adsmax('fdemo', A);

f(x0) = 1.3596e+000

Iter 1 (nf = 1)

Comp. = 1, steps = 10, f = 1.3609e+000 (0.1%)

Comp. = 2, steps = 2, f = 1.3609e+000 (0.0%)

Comp. = 3, steps = 0, f = 1.3609e+000 (0.0%)

Comp. = 4, steps = 0, f = 1.3609e+000 (0.0%)

19

Comp. = 5, steps = 0, f = 1.3609e+000 (0.0%)

Comp. = 6, steps = 8, f = 1.3617e+000 (0.1%)

Comp. = 7, steps = 1, f = 1.3617e+000 (0.0%)

Comp. = 8, steps = 0, f = 1.3617e+000 (0.0%)

Comp. = 9, steps = 0, f = 1.3617e+000 (0.0%)

Comp. = 10, steps = 0, f = 1.3617e+000 (0.0%)

Comp. = 11, steps = 7, f = 1.3618e+000 (0.0%)

Comp. = 12, steps = 2, f = 1.3618e+000 (0.0%)

Comp. = 13, steps = 0, f = 1.3618e+000 (0.0%)

Comp. = 14, steps = 0, f = 1.3618e+000 (0.0%)

Comp. = 15, steps = 0, f = 1.3618e+000 (0.0%)

Comp. = 16, steps = 10, f = 1.3944e+000 (2.4%)

Comp. = 17, steps = 5, f = 1.4223e+000 (2.0%)

Comp. = 18, steps = 2, f = 1.4395e+000 (1.2%)

Comp. = 19, steps = 7, f = 2.2811e+000 (58.5%)

Comp. = 20, steps = 2, f = 2.3077e+000 (1.2%)

Comp. = 21, steps = 4, f = 2.3166e+000 (0.4%)

Comp. = 22, steps = 0, f = 2.3166e+000 (0.0%)

Comp. = 23, steps = 0, f = 2.3166e+000 (0.0%)

Comp. = 24, steps = 5, f = 2.5066e+000 (8.2%)

Comp. = 25, steps = 0, f = 2.5066e+000 (0.0%)

Iter 2 (nf = 108)

...

Iter 7 (nf = 394)

Comp. = 1, steps = 0, f = 4.5918e+000 (0.0%)

Comp. = 2, steps = 0, f = 4.5918e+000 (0.0%)

Comp. = 3, steps = 0, f = 4.5918e+000 (0.0%)

Comp. = 4, steps = 1, f = 4.5936e+000 (0.0%)

Comp. = 5, steps = 0, f = 4.5936e+000 (0.0%)

Comp. = 6, steps = 0, f = 4.5936e+000 (0.0%)

Comp. = 7, steps = 0, f = 4.5936e+000 (0.0%)

Comp. = 8, steps = 0, f = 4.5936e+000 (0.0%)

Comp. = 9, steps = 0, f = 4.5936e+000 (0.0%)

Comp. = 10, steps = 0, f = 4.5936e+000 (0.0%)

Comp. = 11, steps = 0, f = 4.5936e+000 (0.0%)

Comp. = 12, steps = 0, f = 4.5936e+000 (0.0%)

Comp. = 13, steps = 0, f = 4.5936e+000 (0.0%)

Comp. = 14, steps = 0, f = 4.5936e+000 (0.0%)

Comp. = 15, steps = 0, f = 4.5936e+000 (0.0%)

Comp. = 16, steps = 0, f = 4.5936e+000 (0.0%)

Comp. = 17, steps = 0, f = 4.5936e+000 (0.0%)

Comp. = 18, steps = 0, f = 4.5936e+000 (0.0%)

Comp. = 19, steps = 0, f = 4.5936e+000 (0.0%)

Comp. = 20, steps = 0, f = 4.5936e+000 (0.0%)

Comp. = 21, steps = 0, f = 4.5936e+000 (0.0%)

Comp. = 22, steps = 0, f = 4.5936e+000 (0.0%)

Comp. = 23, steps = 0, f = 4.5936e+000 (0.0%)

Comp. = 24, steps = 0, f = 4.5936e+000 (0.0%)

Comp. = 25, steps = 0, f = 4.5936e+000 (0.0%)

Function values 'converged'...quitting

20

>> B = nmsmax('fdemo', A);

f(x0) = 1.3596e+000

Iter. 1, how = initial nf = 26, f = 1.3648e+000 (0.4%)

Iter. 2, how = shrink, nf = 53, f = 1.4331e+000 (5.0%)

Iter. 10, how = shrink, nf = 141, f = 1.4421e+000 (0.6%)

Iter. 11, how = shrink, nf = 168, f = 1.5257e+000 (5.8%)

Iter. 12, how = shrink, nf = 195, f = 1.6796e+000 (10.1%)

Iter. 16, how = contract, nf = 200, f = 1.7651e+000 (5.1%)

Iter. 20, how = contract, nf = 205, f = 1.8961e+000 (7.4%)

Iter. 35, how = shrink, nf = 277, f = 1.9934e+000 (5.1%)

Iter. 36, how = reflect, nf = 279, f = 2.0306e+000 (1.9%)

Iter. 37, how = reflect, nf = 281, f = 2.0734e+000 (2.1%)

Iter. 56, how = shrink, nf = 331, f = 2.1540e+000 (3.9%)

Simplex size 6.5338e-004 <= 1.0000e-003...quitting

For more on the use of direct search in \automatic error analyis" see [23] or [26, Ch. 24].

8 Miscellaneous Routines

In addition to the test matrices and visualization routines, the Test Matrix Toolbox provides
several routines that can be used to manipulate matrices or compute matrix functions or de-
compositions.

The decomposition functions o�ered are as follows.
� cgs and mgs apply the classical and modi�ed Gram{Schmidt methods, respectively, to a

matrix A 2 Cm�n of full rank n, to produce the factorization A = QR, where Q 2 Cm�n has
orthonormal columns and R 2 Cn�n is upper triangular. The methods are identical in exact
arithmetic but produce di�erent results in the presence of rounding errors [26].
� cholp computes the Cholesky factorization with pivoting �TA� = R�R of a Hermitian

positive semi-de�nite matrix A 2 Cn�n. Here, R is upper triangular with nonnegative diagonal
elements and � is a permutation matrix chosen to permute the largest diagonal element to the
pivot position at each stage of the reduction (see [14, Section 4.2.9]). For the usual Cholesky
factorization, as computed by chol, � is the identity. Whereas chol can break down when
presented with a Hermitian positive semi-de�nite matrix that is singular, cholp will always
succeed.
� cod computes the complete orthogonal decomposition of a rank r matrix A 2 Cm�n,

A = U

�
R 0
0 0

�
V;

where R 2 Cr�r is upper triangular and U 2 Cm�m and V 2 Cn�n are unitary. The criterion
used to de�ne the numerical rank is a simple one based on the diagonal elements of the upper
triangular matrix from the QR factorization with column pivoting. The complete orthogonal
decomposition is an important tool in rank-de�cient least squares problems [14, Sec. 5.5.2], [37].
� diagpiv implements the diagonal pivoting factorization with partial pivoting of a sym-

metric matrix A. It produces the factorization PAPT = LDLT , where P is a permutation, L
is unit lower triangular, and D is block diagonal with 1 � 1 and 2 � 2 diagonal blocks. The
Bunch{Kaufman partial pivoting strategy is used [4].
� ge implements Gaussian elimination without pivoting. This routine is similar to lu, except

that no row interchanges are done. Thus the routine computes, if possible, the LU factorization

21

A = LU of A 2 Cn�n. The routine is of pedagogical interest, but also of practical interest
because there are certain classes of Ax = b problem where a more accurate solution is obtained
from LU factorization when there are no row or column interchanges [20], [26].

� gecp implements Gaussian elimination with complete pivoting. Thus it computes the
factorization PAQ = LU of A 2 Cn�n, where P and Q are permutation matrices and L and U
are lower and upper triangular, respectively. At the kth stage of the reduction of A to triangular
form, row and column interchanges are used to bring the element of largest absolute value in
the active submatrix to the pivot position (k; k) [14, Sec. 3.4.8].

� gj implements Gauss{Jordan elimination for solving a nonsingular linear system Ax = b.

� poldec computes the polar decomposition A = UH 2 Cm�n, where H 2 Cn�n is Her-
mitian positive semi-de�nite and U 2 Cm�n has orthonormal columns or rows, according as
m � n or m � n. The polar decomposition is a generalization of the polar representation
z = rei� for complex numbers. The factor U has the property that when m � n it is the nearest
matrix with orthonormal columns to A for both the 2-norm and the Frobenius norm:

kA� Uk = minf kA�Qk : Q�Q = I; Q 2 Cm�n g:

For more details see [18] or [28].

� signm computes the matrix sign decomposition A = SN 2 Cn�n, where S = sign(A) is
the matrix sign function [25]. If A has the Jordan canonical form

A = XJX�1 = X

�
J1 0
0 J2

�
X�1;

where the eigenvalues of J1 lie in the open left half-plane and those of J2 lie in the open right
half-plane, then

sign(A) = X

��I 0
0 I

�
X�1:

(The sign function is not de�ned if A has any pure imaginary eigenvalues). The matrix sign
function has several applications and is the subject of much recent research; see [25] for details
and further references. Since sign(A)2 = I , signm provides one way to generate involutary
matrices.

The toolbox contains further miscellaneous routines, including the following ones.

bandred: bandwidth reduction by unitary transformation (called by randsvd).

comp: forms comparison matrices.

cond: generalizes the cond function supplied with Matlab 4.0 to work with the 1, 1 and
Frobenius norms (for square matrices) as well as the 2-norm.

qmult: Premultiplies a matrix by a random real orthogonal matrix from the Haar distribution
(called by randsvd).

seqa, seqm: form additive or multiplicative sequences.

sparsify: randomly sets elements of a matrix to zero.

pnorm: estimates the p-norm of a matrix for 1 � p � 1 (Matlab's norm works only for
p = 1; 2;1;'fro').

eigsens: evaluates the Wilkinson condition numbers for the eigenvalues of a matrix.

22

-300 -200 -100 0 100 200 300
-300

-200

-100

0

100

200

300

Figure 9.1: Gershgorin disks for magic(8).

9 Examples

In this section we give examples of the use of the toolbox and explain some of the interesting
properties of magic squares and the Frank matrix.

9.1 Magic Squares

In the winter 1993 MathWorks Newsletter, Moler described some of the fascinating properties of
magic squares, as embodied in Matlab's magic function [32]. Some further properties can be
illustrated with the aid of the toolbox. Recall that a magic square is an n�n matrix containing
the integers from 1 to n2 whose row and column sums are all the same. Let �n denote the
magic sum of magic(n) (thus, �n = n(n2 + 1)=2).

Moler pointed out that the largest singular value of A = magic(n) (namely max(svd(A)))
is �n, but left the proof as an exercise. The largest singular value of A is its 2-norm, so the
problem is to prove that kAk2 = �n. This leads naturally to the question of what is the p-norm
of a magic square, for any p between 1 and 1. The H�older p-norm of an m � n matrix A is
de�ned by

kAkp = max
x6=0

kAxkp
kxkp ; (9.1)

where p � 1 and kxkp = (
Pn

i=1 jxijp)1=p. We can investigate the p-norm of a magic square using
the toolbox function pnorm, which computes an estimate of kAkp using a generalization of the
power method.

for p = [1 1.5 2 exp(1) pi 10 inf]

fprintf(' %9.4f %9.4f\n', p, pnorm(magic(10),p))

end

1.0000 505.0000

1.5000 504.9968

2.0000 504.9968

23

0 200 400

-200

-100

0

100

200

n = 9

-200 0 200 400

-200

0

200

n = 10

-200 0 200 400 600
-500

0

500

n = 11

-200 0 200400600800

-500

0

500

n = 12

Figure 9.2: Field of values for magic(n).

2.7183 504.9971

3.1416 504.9997

10.0000 504.9988

Inf 505.0000

All the p-norms in this example are very close to �10 = 505. Since the default convergence
tolerance for pnorm is 10�4, the exact p-norms could all be 505, as far as we can tell from the
estimates. In fact, kAkp � �n for all 1 � p � 1. The proof relies on the convexity of the
p-norm, which yields the inequality (see, [22], for example)

kAkp � kAk1=p1 kAk1�1=p1 :

(This inequality is well-known for p = 2.) For a magic square, kAk1 = kAk1 = �n, so the
inequality gives kAkp � �n. But by taking x in (9.1) to be the vector of all ones, we see
that kAkp � �n, and so it follows that kAkp = �n. This result is actually a special case of
an apparently little-known 1962 result of Stoer and Witzgall, which says that the norm of a
doubly stochastic matrix is 1 for any norm subordinate to a permutation-invariant absolute
vector norm [38].

To estimate the eigenvalues of magic(n) we can apply Gershgorin's theorem. Unfortunately,
the results are not very informative because the Gershgorin disks are all approximately the same,
as is clear from the structure of the matrix; see Figure 9.1.

In his article, Moler pointed out that the function magic uses di�erent algorithms for odd
n, even n divisible by 4, and even n not divisible by 4. He gave four mesh plots to illustrate
the di�erence. Another approach is to look at the �elds of values|see Figure 9.2. The plot
for n = 10 reects the fact that magic(n) has rank n=2 + 2 when n is even and not divisible
by 4|there are only 6 eigenvalues away from the origin (magic(10) is diagonalizable). For n
divisible by 4 the rank is only 3.

24

9.2 The Frank Matrix

A famous test matrix for eigensolvers is the n � n upper Hessenberg matrix Fn introduced by
Frank in 1958 [11], illustrated for n = 8 by

F = frank(8)

F =

8 7 6 5 4 3 2 1

7 7 6 5 4 3 2 1

0 6 6 5 4 3 2 1

0 0 5 5 4 3 2 1

0 0 0 4 4 3 2 1

0 0 0 0 3 3 2 1

0 0 0 0 0 2 2 1

0 0 0 0 0 0 1 1

In evaluating three eigenvalue algorithms Frank found that this matrix \gives our selected
procedures di�culties", and that \accuracy was lost in the smaller roots". The di�culties
encountered by Frank's codes were shown by Wilkinson [44, Section 8], [45, pp. 92{93] to be
caused by the inherent sensitivity of the eigenvalues to perturbations in the matrix.

The Frank matrix is interesting to analyze using Matlab. The toolbox function eigsens

evaluates the Wilkinson eigenvalue condition numbers, which are the reciprocals of the cosines
of the angles between the left and right eigenvectors:

F = frank(10);

[V, D, s] = eigsens(F); d = diag(D); [x, k] = sort(d);

[d(k) s(k)] % Eigenvalue followed by its condition number.

ans =

3.9100e-002 1.4082e+005

6.7743e-002 2.5897e+005

1.2426e-001 1.4103e+005

2.5692e-001 2.4028e+004

6.1859e-001 1.1837e+003

1.6166e+000 3.1920e+001

3.8922e+000 2.2871e+000

8.0476e+000 1.8287e+000

1.4762e+001 3.0303e+000

2.5575e+001 2.3393e+000

The output shows that the condition numbers grow, almost monotonically, as the eigenvalues
decrease in size|in other words, the smallest eigenvalues are the most sensitive to perturbations
in the matrix. The varying eigenvalue sensitivities can also be seen from pseudospectral plots.
Figure 9.3 shows the 0:1-pseudospectrum, which shows that perturbations to F10 of 2-norm
at most 0:1 have the greatest e�ect on the smallest eigenvalues. Another view is provided by
Figure 9.4, for which we set colormap hot.

Further insight into the eigenvalues of Fn can be obtained by looking at its characteristic
polynomial:

poly(F)

25

0 5 10 15 20 25

-15

-10

-5

0

5

10

15

Figure 9.3: ps(frank(10), 50, 1e-1, 0, 1).

ans =

1.0e+004 *

Columns 1 through 7

0.0001 -0.0055 0.1035 -0.8310 2.9505 -4.5297 2.9505

Columns 8 through 11

-0.8310 0.1035 -0.0055 0.0001

The coe�cients seem to be palindromic! As a check we use the function charpoly fromMatlab

4's Maple Symbolic Toolbox [5] to compute the characteristic polynomial exactly:

charpoly(F)

ans =

1-55*x+1035*x^2-8310*x^3+29505*x^4-45297*x^5+29505*x^6-8310*x^7+1035*x^8-55*x^9+x^10

Any matrix whose characteristic polynomial �n has a palindromic coe�cient vector has eigen-
values occurring in reciprocal pairs, since �n(�) = �n�n(1=�). In particular, it has determinant
1, and 1 is an eigenvalue when n is odd. We can check the determinant property numerically:

F = frank(20); [det(F) det(F')]

ans =

26

-20

0

20

40

-20

-10

0

10

20
-4

-3

-2

-1

0

1

2

Figure 9.4: pscont(frank(10), 2, 25, [-7 33 -20 20]).

1 -14

F = frank(25); [det(F) det(F')]

ans =

1 -48886168

Since det(A) = det(AT) for any matrix A, the output is mathematically incorrect. The reason is
that rounding errors inuenceMatlab's evaluation of det(FT

n) much more than its evaluation of
det(Fn); an illuminating discussion of this phenomenon is given by Frank [11] and Wilkinson [44,
Section 8], [45, pp. 92{93]. The extreme sensitivity of det(Fn) to perturbations in Fn is easy
to see: if we change the (1; n) element from 1 to 1 + �, then det(Fn) changes from 1 to 1 +
(�1)n(n� 1)!�.

The inverse of Fn is lower Hessenberg. This can be seen using the following representation
of Fn noted by Rutishauser [36, Sec. 9]:

Fn = PCnP;

where P is the identity with the order of its columns reversed (I = eye(n); P = I(:, n:-1:1)

in Matlab notation) and

Cn =

2
666664

1
�1 1

�1 1
. ..

. . .

�1 1

3
777775

�1 2
666664

1 1
1 2

1
. . .
. . . n � 1

1

3
777775
:

(By manipulating the identity det(Fn � �I) = det(Cn� �I) the reciprocal pair property of the
eigenvalues can be proved; cf. [42].) As an illustration, here is the exact inverse as returned

27

by the Maple Symbolic Toolbox (the Matlab function inv produces nonzero, but tiny, upper
triangular elements because of rounding errors):

inverse(frank(8))

ans =

[1, -1, 0, 0, 0, 0, 0, 0]

[-7, 8, -1, 0, 0, 0, 0, 0]

[42, -48, 7, -1, 0, 0, 0, 0]

[-210, 240, -35, 6, -1, 0, 0, 0]

[840, -960, 140, -24, 5, -1, 0, 0]

[-2520, 2880, -420, 72, -15, 4, -1, 0]

[5040, -5760, 840, -144, 30, -8, 3, -1]

[-5040, 5760, -840, 144, -30, 8, -3, 2]

In his 1958 paper, Frank commented

\At the moment, the largest matrices resolved on the [Univac] 1103A are two 20-
order matrices, one real symmetric and one complex. In both cases computing time
was approximately one hour, and 6{8 places of accuracy were obtained."

The complete eigensystem of a complex 20 � 20 matrix A is found in under a second by the
Matlab command eig(A) on the workstation used for the examples reported here! This
improvement over Frank's timing is attributable not only to hardware advances but also to an
algorithmic breakthrough: eig uses the QR algorithm, which was not available to Frank.

9.3 Numerical Linear Algebra

The Test Matrix Toolbox M-�les embody some well-known and other not so well-known results
from numerical linear algebra.

The function gfpp generates n � n matrices that produce the maximum growth of 2n�1

for Gaussian elimination with partial pivoting; these include Wilkinson's classic example [45,
p. 212]

gfpp(7)

ans =

1 0 0 0 0 0 1

-1 1 0 0 0 0 1

-1 -1 1 0 0 0 1

-1 -1 -1 1 0 0 1

-1 -1 -1 -1 1 0 1

-1 -1 -1 -1 -1 1 1

-1 -1 -1 -1 -1 -1 1

as well as all members of the \2n�1 class" described by Higham and Higham [27]. The following
extract uses the toolbox routine gecp to evaluate the growth factor for complete pivoting on
the Wilkinson matrix.

28

n = 20; A = gfpp(n);

[L, U] = lu(A); % Partial pivoting.

[max(max(abs(U))) / max(max(abs(A))) 2^(n-1)] % Approximation to growth factor.

ans =

524288 524288

% Complete pivoting using toolbox routine GECP.

[L, U, P, Q, rho] = gecp(A); rho

rho =

2

As the output shows, complete pivoting is perfectly stable for these matrices. However, several
of the matrices produced by orthog yield relatively large growth for complete pivoting: growth
of order n=2 for real data, or n for a particular complex matrix [27].

n = 50;

for k = [-2 -1 1 2 3]

A = orthog(n, k);

[L, U, P, Q, rho] = gecp(A);

fprintf(' %g\n', rho)

end

25.3116

24.7028

25.6214

25.3296

50

A = hadamard(64);

[L, U, P, Q, rho] = gecp(A); rho

rho =

64

It is easy to show that complete pivoting su�ers growth of at least n for an n � n Hadamard
matrix. However, Hadamard matrices do not exist for all n.

The Matlab function rcond computes an upper bound for �1(A)
�1 = (kAk1kA�1k1)�1

using the LINPACK condition estimation algorithm. Although this algorithm is very reliable in
general, parametrized matrices are known for which it can perform arbitrarily badly [6]. Here
are two examples, from the toolbox routine condex. The underestimation ratio is approximately
the same in both examples, but the second is probably the more serious because rcond does
not detect any ill-conditioning whatsoever.

A = condex(4, 1, 1e8); format short e

% True estimate true/estimate

[cond(A,1) 1/rcond(A) cond(A,1)*rcond(A)]

ans =

29

8.0000e+016 5.6000e+008 1.4286e+008

A = condex(3, 2, 1e8);

[cond(A,1) 1/rcond(A) cond(A,1)*rcond(A)]

ans =

6.0000e+008 7.5000e+000 8.0000e+007

The QR decomposition with column pivoting of A 2 Cm�n (m � n) is a decomposition

A� = Q
h
R
0

i
where � is a permutation matrix chosen according to a certain pivoting strategy,

Q is orthogonal, and R is upper triangular [14, Section 5.4.1]. This decomposition is often used
to estimate the rank of A; in particular, jrnnj provides an upper bound for the smallest singular
value �min(A) of A that is usually at most a factor of 10 too big. Kahan [30] designed a matrix
for which jrnnj can be approximately 2n�1 times bigger than �min(A), and which thus shows
the fallibility of the QR decomposition with column pivoting for revealing rank. The toolbox
function kahan generates Kahan's matrix:

n = 25;

A = kahan(n, 0.6);

[Q, R, Pi] = qr(A);

norm(Pi-eye(n),1), R(n,n)/min(svd(A))

ans =

0

ans =

1.0638e+006

Kahan's matrix A(�) is upper triangular and is designed so that � is the identity in the QR
decomposition with column pivoting. In practice, rounding errors can cause � to di�er from
the identity for the Kahan matrix, thus nullifying the example (the test on � � I in the
above example con�rms that � is indeed the identity here). The toolbox routine adds a small
perturbation to the diagonal elements of A(�) so that � = I for a range of choices of n and �.
If we set the perturbation in the above example to zero, this is what happens:

A = kahan(n, 0.6, 0); % Third parameter is the diagonal perturbation.

[Q, R, Pi] = qr(A);

norm(Pi-eye(n),1), R(n,n)/min(svd(A))

ans =

2

ans =

1.1953

30

The toolbox contains two matrices, one a Toeplitz matrix and the other a Hankel matrix,
whose eigenvalues or singular values are related to �:

A = parter(10); format long

e = svd(A); [e e-pi]

ans =

3.14159265358968 -0.00000000000011

3.14159265356666 -0.00000000002313

3.14159265139317 -0.00000000219663

3.14159252749873 -0.00000012609106

3.14158778157056 -0.00000487201924

3.14145930586226 -0.00013334772753

3.13895248060091 -0.00264017298888

3.10410768313639 -0.03748497045341

2.78691548240413 -0.35467717118566

1.30096907002970 -1.84062358356009

A = dingdong(10);

e = eig(A); [e abs(e)-pi/2]

ans =

-1.57079632679484 -0.00000000000006

-1.57079632569658 -0.00000000109831

-1.57079389078528 -0.00000243600962

1.57079632678333 -0.00000000001157

1.57079626374937 -0.00000006304553

1.57072965293113 -0.00006667386377

-1.56947624030045 -0.00132008649444

1.55205384156819 -0.01874248522670

-1.39345774120206 -0.17733858559283

0.65048453501485 -0.92031179178005

Finally, here is an example of the use of the function matrix to access the test matrices
sequentially, by number. The following piece of code steps through all the square matrices
of arbitrary dimension, setting A to each 10 � 10 matrix in turn (any matrix parameters are
at their default values). It evaluates the 2-norm condition number and the ratio �(A) =
maxi j�i(A)j=mini j�i(A)j of the largest to smallest eigenvalue in absolute value.

c = []; e = [];

j = 1;

for i=1:matrix(0)

A = full(matrix(i, 10));

if norm(skewpart(A),1) % If not Hermitian...

c1 = cond(A);

eg = eig(A);

e1 = max(abs(eg)) / min(abs(eg));

% Filter out extremely ill-conditioned matrices.

31

0 5 10 15 20 25 30
10

0

10
2

10
4

10
6

10
8

cond: x, eig_ratio: o

0 5 10 15 20 25 30
10

0

10
2

10
4

10
6

10
8

cond/eig_ratio

Figure 9.5: Comparison of condition number with extremal eigenvalue ratio.

if c1 <= 1e10, c(j) = c1; e(j) = e1; j = j + 1; end

end

end

As is well known, �2(A) can be arbitrarily larger than �(A). The plots in Figure 9.5, produced
from the vectors c and e from the above code, con�rm that �2(A)=�(A) can be large.

32

10 M-File Leading Comment Lines

The demonstration �le tmtdemo is not listed here.

function [x, fmax, nf] = adsmax(f, x, stopit, savit, P)

%ADSMAX Alternating directions direct search method.

% [x, fmax, nf] = ADSMAX(f, x0, STOPIT, SAVIT, P) attempts to

% maximize the function specified by the string f, using the starting

% vector x0. The alternating directions direct search method is used.

% Output arguments:

% x = vector yielding largest function value found,

% fmax = function value at x,

% nf = number of function evaluations.

% The iteration is terminated when either

% - the relative increase in function value between successive

% iterations is <= STOPIT(1) (default 1e-3),

% - STOPIT(2) function evaluations have been performed

% (default inf, i.e., no limit), or

% - a function value equals or exceeds STOPIT(3)

% (default inf, i.e., no test on function values).

% Progress of the iteration is not shown if STOPIT(5) = 0 (default 1).

% If a non-empty fourth parameter string SAVIT is present, then

% `SAVE SAVIT x fmax nf' is executed after each inner iteration.

% By default, the search directions are the co-ordinate directions.

% The columns of a fifth parameter matrix P specify alternative search

% directions (P = EYE is the default).

% NB: x0 can be a matrix. In the output argument, in SAVIT saves,

% and in function calls, x has the same shape as x0.

% Reference:

% N.J. Higham, Optimization by direct search in matrix computations,

% SIAM J. Matrix Anal. Appl, 14(2): 317-333, April 1993.

function C = augment(A, alpha)

%AUGMENT Augmented system matrix.

% AUGMENT(A, ALPHA) is the square matrix

% [ALPHA*EYE(m) A; A' ZEROS(n)] of dimension m+n, where A is m-by-n.

% It is the symmetric and indefinite coefficient matrix of the

% augmented system associated with a least squares problem

% minimize NORM(A*x-b). ALPHA defaults to 1.

% Special case: if A is a scalar, n say, then AUGMENT(A) is the

% same as AUGMENT(RANDN(p,q)) where n = p+q and

% p = ROUND(n/2), that is, a random augmented matrix

% of dimension n is produced.

% The eigenvalues of AUGMENT(A) are given in terms of the singular

% values s(i) of A (where m>n) by

% 1/2 +/- SQRT(s(i)^2 + 1/4), i=1:n (2n eigenvalues),

% 1, (m-n eigenvalues).

% If m < n then the first expression provides 2m eigenvalues and the

33

% remaining n-m eigenvalues are zero.

%

% See also SPAUGMENT.

% Reference:

% G.H. Golub and C.F. Van Loan, Matrix Computations, Second

% Edition, Johns Hopkins University Press, Baltimore, Maryland,

% 1989, sec. 5.6.4.

function A = bandred(A, kl, ku)

%BANDRED Band reduction by two-sided unitary transformations.

% B = BANDRED(A, KL, KU) is a matrix unitarily equivalent to A

% with lower bandwidth KL and upper bandwidth KU

% (i.e. B(i,j) = 0 if i > j+KL or j > i+KU).

% The reduction is performed using Householder transformations.

% If KU is omitted it defaults to KL.

% Called by RANDSVD.

% This is a `standard' reduction. Cf. reduction to bidiagonal form

% prior to computing the SVD. This code is a little wasteful in that

% it computes certain elements which are immediately set to zero!

%

% Reference:

% G.H. Golub and C.F. Van Loan, Matrix Computations, second edition,

% Johns Hopkins University Press, Baltimore, Maryland, 1989.

% Section 5.4.3.

function C = cauchy(x, y)

%CAUCHY Cauchy matrix.

% C = CAUCHY(X, Y), where X, Y are N-vectors, is the N-by-N matrix

% with C(i,j) = 1/(X(i)+Y(j)). By default, Y = X.

% Special case: if X is a scalar CAUCHY(X) is the same as CAUCHY(1:X).

% Explicit formulas are known for DET(C) (which is nonzero if X and Y

% both have distinct elements) and the elements of INV(C).

% C is totally positive if 0 < X(1) < ... < X(N) and

% 0 < Y(1) < ... < Y(N).

% References:

% N.J. Higham, Accuracy and Stability of Numerical Algorithms,

% Society for Industrial and Applied Mathematics, Philadelphia, PA,

% USA, 1996; sec. 26.1.

% D.E. Knuth, The Art of Computer Programming, Volume 1,

% Fundamental Algorithms, second edition, Addison-Wesley, Reading,

% Massachusetts, 1973, p. 36.

% E.E. Tyrtyshnikov, Cauchy-Toeplitz matrices and some applications,

% Linear Algebra and Appl., 149 (1991), pp. 1-18.

% O. Taussky and M. Marcus, Eigenvalues of finite matrices, in

% Survey of Numerical Analysis, J. Todd, ed., McGraw-Hill, New York,

% pp. 279-313, 1962. (States the totally positive property on p. 295.)

34

function [Q, R] = cgs(A)

%CGS Classical Gram-Schmidt QR factorization.

% [Q, R] = cgs(A) uses the classical Gram-Schmidt method to compute the

% factorization A = Q*R for m-by-n A of full rank,

% where Q is m-by-n with orthonormal columns and R is n-by-n.

function C = chebspec(n, k)

%CHEBSPEC Chebyshev spectral differentiation matrix.

% C = CHEBSPEC(N, K) is a Chebyshev spectral differentiation

% matrix of order N. K = 0 (the default) or 1.

% For K = 0 (`no boundary conditions'), C is nilpotent, with

% C^N = 0 and it has the null vector ONES(N,1).

% C is similar to a Jordan block of size N with eigenvalue zero.

% For K = 1, C is nonsingular and well-conditioned, and its eigenvalues

% have negative real parts.

% For both K, the computed eigenvector matrix X from EIG is

% ill-conditioned (MESH(REAL(X)) is interesting).

% References:

% C. Canuto, M.Y. Hussaini, A. Quarteroni and T.A. Zang, Spectral

% Methods in Fluid Dynamics, Springer-Verlag, Berlin, 1988; p. 69.

% L.N. Trefethen and M.R. Trummer, An instability phenomenon in

% spectral methods, SIAM J. Numer. Anal., 24 (1987), pp. 1008-1023.

% D. Funaro, Computing the inverse of the Chebyshev collocation

% derivative, SIAM J. Sci. Stat. Comput., 9 (1988), pp. 1050-1057.

function C = chebvand(m,p)

%CHEBVAND Vandermonde-like matrix for the Chebyshev polynomials.

% C = CHEBVAND(P), where P is a vector, produces the (primal)

% Chebyshev Vandermonde matrix based on the points P,

% i.e., C(i,j) = T_{i-1}(P(j)), where T_{i-1} is the Chebyshev

% polynomial of degree i-1.

% CHEBVAND(M,P) is a rectangular version of CHEBVAND(P) with M rows.

% Special case: If P is a scalar then P equally spaced points on

% [0,1] are used.

% Reference:

% N.J. Higham, Stability analysis of algorithms for solving confluent

% Vandermonde-like systems, SIAM J. Matrix Anal. Appl., 11 (1990),

% pp. 23-41.

function [R, P, I] = cholp(A, pivot)

%CHOLP Cholesky factorization with pivoting of a pos. semidefinite matrix.

% [R, P] = CHOLP(A) returns R and a permutation matrix P such that

% R'*R = P'*A*P. Only the upper triangular part of A is used.

% [R, P, I] = CHOLP(A) returns in addition the index I of the last

% positive diagonal element of R. The first I rows of R contain

% the Cholesky factor of A.

35

% [R, I] = CHOLP(A, 0) forces P = EYE(SIZE(A)), and therefore produces

% the same output as R = CHOL(A) when A is positive definite (to

% within roundoff).

% This routine is based on the LINPACK routine CCHDC. It works

% for both real and complex matrices.

%

% Reference:

% G.H. Golub and C.F. Van Loan, Matrix Computations, Second

% Edition, Johns Hopkins University Press, Baltimore, Maryland,

% 1989, sec. 4.2.9.

function c = chop(x, t)

%CHOP Round matrix elements.

% CHOP(X, t) is the matrix obtained by rounding the elements of X

% to t significant binary places.

% Default is t = 24, corresponding to IEEE single precision.

function A = chow(n, alpha, delta)

%CHOW Chow matrix - a singular Toeplitz lower Hessenberg matrix.

% A = CHOW(N, ALPHA, DELTA) is a Toeplitz lower Hessenberg matrix

% A = H(ALPHA) + DELTA*EYE, where H(i,j) = ALPHA^(i-j+1).

% H(ALPHA) has p = FLOOR(N/2) zero eigenvalues, the rest being

% 4*ALPHA*COS(k*PI/(N+2))^2, k=1:N-p.

% Defaults: ALPHA = 1, DELTA = 0.

% References:

% T.S. Chow, A class of Hessenberg matrices with known

% eigenvalues and inverses, SIAM Review, 11 (1969), pp. 391-395.

% G. Fairweather, On the eigenvalues and eigenvectors of a class of

% Hessenberg matrices, SIAM Review, 13 (1971), pp. 220-221.

function C = circul(v)

%CIRCUL Circulant matrix.

% C = CIRCUL(V) is the circulant matrix whose first row is V.

% (A circulant matrix has the property that each row is obtained

% from the previous one by cyclically permuting the entries one step

% forward; it is a special Toeplitz matrix in which the diagonals

% `wrap round'.)

% Special case: if V is a scalar then C = CIRCUL(1:V).

% The eigensystem of C (N-by-N) is known explicitly. If t is an Nth

% root of unity, then the inner product of V with W = [1 t t^2 ... t^N]

% is an eigenvalue of C, and W(N:-1:1) is an eigenvector of C.

% Reference:

% P.J. Davis, Circulant Matrices, John Wiley, 1977.

36

function A = clement(n, k)

%CLEMENT Clement matrix - tridiagonal with zero diagonal entries.

% CLEMENT(N, K) is a tridiagonal matrix with zero diagonal entries

% and known eigenvalues. It is singular if N is odd. About 64

% percent of the entries of the inverse are zero. The eigenvalues

% are plus and minus the numbers N-1, N-3, N-5, ..., (1 or 0).

% For K = 0 (the default) the matrix is unsymmetric, while for

% K = 1 it is symmetric.

% CLEMENT(N, 1) is diagonally similar to CLEMENT(N).

% Similar properties hold for TRIDIAG(X,Y,Z) where Y = ZEROS(N,1).

% The eigenvalues still come in plus/minus pairs but they are not

% known explicitly.

%

% References:

% P.A. Clement, A class of triple-diagonal matrices for test

% purposes, SIAM Review, 1 (1959), pp. 50-52.

% A. Edelman and E. Kostlan, The road from Kac's matrix to Kac's

% random polynomials. In John~G. Lewis, editor, Proceedings of

% the Fifth SIAM Conference on Applied Linear Algebra Society

% for Industrial and Applied Mathematics, Philadelphia, 1994,

% pp. 503-507.

% O. Taussky and J. Todd, Another look at a matrix of Mark Kac,

% Linear Algebra and Appl., 150 (1991), pp. 341-360.

function [U, R, V] = cod(A, tol)

%COD Complete orthogonal decomposition.

% [U, R, V] = COD(A, TOL) computes a decomposition A = U*T*V,

% where U and V are unitary, T = [R 0; 0 0] has the same dimensions as

% A, and R is upper triangular and nonsingular of dimension rank(A).

% Rank decisions are made using TOL, which defaults to approximately

% MAX(SIZE(A))*NORM(A)*EPS.

% By itself, COD(A, TOL) returns R.

% Reference:

% G.H. Golub and C.F. Van Loan, Matrix Computations, Second

% Edition, Johns Hopkins University Press, Baltimore, Maryland,

% 1989, sec. 5.4.2.

function C = comp(A, k)

%COMP Comparison matrices.

% COMP(A) is DIAG(B) - TRIL(B,-1) - TRIU(B,1), where B = ABS(A).

% COMP(A, 1) is A with each diagonal element replaced by its

% absolute value, and each off-diagonal element replaced by minus

% the absolute value of the largest element in absolute value in

% its row. However, if A is triangular COMP(A, 1) is too.

% COMP(A, 0) is the same as COMP(A).

% COMP(A) is often denoted by M(A) in the literature.

37

% Reference (e.g.):

% N.J. Higham, A survey of condition number estimation for

% triangular matrices, SIAM Review, 29 (1987), pp. 575-596.

function A = compan(p)

%COMPAN Companion matrix.

% COMPAN(P) is a companion matrix. There are three cases.

% If P is a scalar then COMPAN(P) is the P-by-P matrix COMPAN(1:P+1).

% If P is an (n+1)-vector, COMPAN(P) is the n-by-n companion matrix

% whose first row is -P(2:n+1)/P(1).

% If P is a square matrix, COMPAN(P) is the companion matrix

% of the characteristic polynomial of P, computed as

% COMPAN(POLY(P)).

% References:

% J.H. Wilkinson, The Algebraic Eigenvalue Problem,

% Oxford University Press, 1965, p. 12.

% G.H. Golub and C.F. Van Loan, Matrix Computations, second edition,

% Johns Hopkins University Press, Baltimore, Maryland, 1989,

% sec 7.4.6.

% C. Kenney and A.J. Laub, Controllability and stability radii for

% companion form systems, Math. Control Signals Systems, 1 (1988),

% pp. 239-256. (Gives explicit formulas for the singular values of

% COMPAN(P).)

function y = cond(A, p)

%COND Matrix condition number in 1, 2, Frobenius, or infinity norm.

% For p = 1, 2, 'fro', inf, COND(A,p) = NORM(A,p) * NORM(INV(A),p).

% If p is omitted then p = 2 is used.

% A may be a rectangular matrix if p = 2; in this case COND(A)

% is the ratio of the largest singular value of A to the smallest

% (and hence is infinite if A is rank deficient).

function A = condex(n, k, theta)

%CONDEX `Counterexamples' to matrix condition number estimators.

% CONDEX(N, K, THETA) is a `counterexample' matrix to a condition

% estimator. It has order N and scalar parameter THETA (default 100).

% If N is not equal to the `natural' size of the matrix then

% the matrix is padded out with an identity matrix to order N.

% The matrix, its natural size, and the estimator to which it applies

% are specified by K (default K = 4) as follows:

% K = 1: 4-by-4, LINPACK (RCOND)

% K = 2: 3-by-3, LINPACK (RCOND)

% K = 3: arbitrary, LINPACK (RCOND) (independent of THETA)

% K = 4: N >= 4, SONEST (Higham 1988)

% (Note that in practice the K = 4 matrix is not usually a

% counterexample because of the rounding errors in forming it.)

38

% References:

% A.K. Cline and R.K. Rew, A set of counter-examples to three

% condition number estimators, SIAM J. Sci. Stat. Comput.,

% 4 (1983), pp. 602-611.

% N.J. Higham, FORTRAN codes for estimating the one-norm of a real or

% complex matrix, with applications to condition estimation

% (Algorithm 674), ACM Trans. Math. Soft., 14 (1988), pp. 381-396.

function x = cpltaxes(z)

%CPLTAXES Determine suitable AXIS for plot of complex vector.

% X = CPLTAXES(Z), where Z is a complex vector,

% determines a 4-vector X such that AXIS(X) sets axes for a plot

% of Z that has axes of equal length and leaves a reasonable amount

% of space around the edge of the plot.

% Called by FV, GERSH, PS and PSCONT.

function A = cycol(n, k)

%CYCOL Matrix whose columns repeat cyclically.

% A = CYCOL([M N], K) is an M-by-N matrix of the form A = B(1:M,1:N)

% where B = [C C C...] and C = RANDN(M, K). Thus A's columns repeat

% cyclically, and A has rank at most K. K need not divide N.

% K defaults to ROUND(N/4).

% CYCOL(N, K), where N is a scalar, is the same as CYCOL([N N], K).

%

% This type of matrix can lead to underflow problems for Gaussian

% elimination: see NA Digest Volume 89, Issue 3 (January 22, 1989).

function [L, D, P, rho] = diagpiv(A)

%DIAGPIV Diagonal pivoting factorization with partial pivoting.

% Given a symmetric matrix A,

% [L, D, P, rho] = diagpiv(A) computes a permutation P,

% a unit lower triangular L, and a block diagonal D

% with 1x1 and 2x2 diagonal blocks, such that

% P*A*P' = L*D*L'.

% The Bunch-Kaufman partial pivoting strategy is used.

% Rho is the growth factor.

% Reference:

% J.R. Bunch and L. Kaufman, Some stable methods for calculating

% inertia and solving symmetric linear systems, Math. Comp.,

% 31(137):163-179, 1977.

function A = dingdong(n)

%DINGDONG Dingdong matrix - a symmetric Hankel matrix.

% A = DINGDONG(N) is the symmetric N-by-N Hankel matrix with

% A(i,j) = 0.5/(N-i-j+1.5).

39

% The eigenvalues of A cluster around PI/2 and -PI/2.

% Invented by F.N. Ris.

%

% Reference:

% J.C. Nash, Compact Numerical Methods for Computers: Linear

% Algebra and Function Minimisation, second edition, Adam Hilger,

% Bristol, 1990 (Appendix 1).

function [c, d, e] = dorr(n, theta)

%DORR Dorr matrix - diagonally dominant, ill conditioned, tridiagonal.

% [C, D, E] = DORR(N, THETA) returns the vectors defining a row diagonally

% dominant, tridiagonal M-matrix that is ill conditioned for small

% values of the parameter THETA >= 0.

% If only one output parameter is supplied then

% C = FULL(TRIDIAG(C,D,E)), i.e., the matrix iself is returned.

% The columns of INV(C) vary greatly in norm. THETA defaults to 0.01.

% The amount of diagonal dominance is given by (ignoring rounding errors):

% COMP(C)*ONES(N,1) = THETA*(N+1)^2 * [1 0 0 ... 0 1]'.

% Reference:

% F.W. Dorr, An example of ill-conditioning in the numerical

% solution of singular perturbation problems, Math. Comp., 25 (1971),

% pp. 271-283.

function A = dramadah(n, k)

%DRAMADAH A (0,1) matrix whose inverse has large integer entries.

% An anti-Hadamard matrix A is a matrix with elements 0 or 1 for

% which MU(A) := NORM(INV(A),'FRO') is maximal.

% A = DRAMADAH(N, K) is an N-by-N (0,1) matrix for which MU(A) is

% relatively large, although not necessarily maximal.

% Available types (the default is K = 1):

% K = 1: A is Toeplitz, with ABS(DET(A)) = 1, and MU(A) > c(1.75)^N,

% where c is a constant.

% K = 2: A is upper triangular and Toeplitz.

% The inverses of both types have integer entries.

%

% Another interesting (0,1) matrix:

% K = 3: A has maximal determinant among (0,1) lower Hessenberg

% matrices: det(A) = the n'th Fibonacci number. A is Toeplitz.

% The eigenvalues have an interesting distribution in the complex

% plane.

% References:

% R.L. Graham and N.J.A. Sloane, Anti-Hadamard matrices,

% Linear Algebra and Appl., 62 (1984), pp. 113-137.

% L. Ching, The maximum determinant of an nxn lower Hessenberg

% (0,1) matrix, Linear Algebra and Appl., 183 (1993), pp. 147-153.

40

function y = dual(x, p)

%DUAL Dual vector with respect to Holder p-norm.

% Y = DUAL(X, p), where 1 <= p <= inf, is a vector of unit q-norm

% that is dual to X with respect to the p-norm, that is,

% norm(Y, q) = 1 where 1/p + 1/q = 1 and there is

% equality in the Holder inequality: X'*Y = norm(X, p)*norm(Y, q).

% Special case: DUAL(X), where X >= 1 is a scalar, returns Y such

% that 1/X + 1/Y = 1.

% Called by PNORM.

function [X, D, s] = eigsens(A)

%EIGSENS Eigenvalue condition numbers.

% EIGSENS(A) is a vector of condition numbers for the eigenvalues

% of A (reciprocals of the Wilkinson s(lambda) numbers).

% These condition numbers are the reciprocals of the cosines of the

% angles between the left and right eigenvectors.

% [V, D, s] = EIGSENS(A) is equivalent to

% [V, D] = EIG(A); s = EIGSENS(A);

% Reference:

% G.H. Golub and C.F. Van Loan, Matrix Computations, Second

% Edition, Johns Hopkins University Press, Baltimore, Maryland,

% 1989, sec. 7.2.2.

function f = fdemo(A)

%FDEMO Demonstration function for direct search maximizers.

% FDEMO(A) is the reciprocal of the underestimation ratio for RCOND

% applied to the square matrix A.

% Demonstration function for ADSMAX, MDSMAX and NMSMAX.

function A = fiedler(c)

%FIEDLER Fiedler matrix - symmetric.

% A = FIEDLER(C), where C is an n-vector, is the n-by-n symmetric

% matrix with elements ABS(C(i)-C(j)).

% Special case: if C is a scalar, then A = FIEDLER(1:C)

% (i.e. A(i,j) = ABS(i-j)).

% Properties:

% FIEDLER(N) has a dominant positive eigenvalue and all the other

% eigenvalues are negative (Szego, 1936).

% Explicit formulas for INV(A) and DET(A) are given by Todd (1977)

% and attributed to Fiedler. These indicate that INV(A) is

% tridiagonal except for nonzero (1,n) and (n,1) elements.

% [I think these formulas are valid only if the elements of

% C are in increasing or decreasing order---NJH.]

% References:

% G. Szego, Solution to problem 3705, Amer. Math. Monthly,

41

% 43 (1936), pp. 246-259.

% J. Todd, Basic Numerical Mathematics, Vol. 2: Numerical Algebra,

% Birkhauser, Basel, and Academic Press, New York, 1977, p. 159.

function A = forsythe(n, alpha, lambda)

%FORSYTHE Forsythe matrix - a perturbed Jordan block.

% FORSYTHE(N, ALPHA, LAMBDA) is the N-by-N matrix equal to

% JORDBLOC(N, LAMBDA) except it has an ALPHA in the (N,1) position.

% It has the characteristic polynomial

% DET(A-t*EYE) = (LAMBDA-t)^N - (-1)^N ALPHA.

% ALPHA defaults to SQRT(EPS) and LAMBDA to 0.

function F = frank(n, k)

%FRANK Frank matrix---ill conditioned eigenvalues.

% F = FRANK(N, K) is the Frank matrix of order N. It is upper

% Hessenberg with determinant 1. K = 0 is the default; if K = 1 the

% elements are reflected about the anti-diagonal (1,N)--(N,1).

% F has all positive eigenvalues and they occur in reciprocal pairs

% (so that 1 is an eigenvalue if N is odd).

% The eigenvalues of F may be obtained in terms of the zeros of the

% Hermite polynomials.

% The FLOOR(N/2) smallest eigenvalues of F are ill conditioned,

% the more so for bigger N.

% DET(FRANK(N)') comes out far from 1 for large N---see Frank (1958)

% and Wilkinson (1960) for discussions.

%

% This version incorporates improvements suggested by W. Kahan.

%

% References:

% W.L. Frank, Computing eigenvalues of complex matrices by determinant

% evaluation and by methods of Danilewski and Wielandt, J. Soc.

% Indust. Appl. Math., 6 (1958), pp. 378-392 (see pp. 385, 388).

% G.H. Golub and J.H. Wilkinson, Ill-conditioned eigensystems and the

% computation of the Jordan canonical form, SIAM Review, 18 (1976),

% pp. 578-619 (Section 13).

% H. Rutishauser, On test matrices, Programmation en Mathematiques

% Numeriques, Editions Centre Nat. Recherche Sci., Paris, 165,

% 1966, pp. 349-365. Section 9.

% J.H. Wilkinson, Error analysis of floating-point computation,

% Numer. Math., 2 (1960), pp. 319-340 (Section 8).

% J.H. Wilkinson, The Algebraic Eigenvalue Problem, Oxford University

% Press, 1965 (pp. 92-93).

% The next two references give details of the eigensystem, as does

% Rutishauser (see above).

% P.J. Eberlein, A note on the matrices denoted by B_n, SIAM J. Appl.

% Math., 20 (1971), pp. 87-92.

% J.M. Varah, A generalization of the Frank matrix, SIAM J. Sci. Stat.

% Comput., 7 (1986), pp. 835-839.

42

function [f, e] = fv(B, nk, thmax, noplot)

%FV Field of values (or numerical range).

% FV(A, NK, THMAX) evaluates and plots the field of values of the

% NK largest leading principal submatrices of A, using THMAX

% equally spaced angles in the complex plane.

% The defaults are NK = 1 and THMAX = 16.

% (For a `publication quality' picture, set THMAX higher, say 32.)

% The eigenvalues of A are displayed as `x'.

% Alternative usage: [F, E] = FV(A, NK, THMAX, 1) suppresses the

% plot and returns the field of values plot data in F, with A's

% eigenvalues in E. Note that NORM(F,INF) approximates the

% numerical radius,

% max {abs(z): z is in the field of values of A}.

% Theory:

% Field of values FV(A) = set of all Rayleigh quotients. FV(A) is a

% convex set containing the eigenvalues of A. When A is normal FV(A) is

% the convex hull of the eigenvalues of A (but not vice versa).

% z = x'Ax/(x'x), z' = x'A'x/(x'x)

% => REAL(z) = x'Hx/(x'x), H = (A+A')/2

% so MIN(EIG(H)) <= REAL(z) <= MAX(EIG(H))

% with equality for x = corresponding eigenvectors of H. For these x,

% RQ(A,x) is on the boundary of FV(A).

%

% Based on an original routine by A. Ruhe.

%

% References:

% R.A. Horn and C.R. Johnson, Topics in Matrix Analysis, Cambridge

% University Press, 1991, Section 1.5.

% A.S. Householder, The Theory of Matrices in Numerical Analysis,

% Blaisdell, New York, 1964, Section 3.3.

% C.R. Johnson, Numerical determination of the field of values of a

% general complex matrix, SIAM J. Numer. Anal., 15 (1978),

% pp. 595-602.

function [A, e] = gallery(n)

%GALLERY Famous, and not so famous, test matrices.

% A = GALLERY(N) is an N-by-N matrix with some special property.

% The following values of N are currently available:

% N = 3 is badly conditioned.

% N = 4 is the Wilson matrix. Symmetric pos def, integer inverse.

% N = 5 is an interesting eigenvalue problem: defective, nilpotent.

% N = 8 is the Rosser matrix, a classic symmetric eigenvalue problem.

% [A, e] = GALLERY(8) returns the exact eigenvalues in e.

% N = 21 is Wilkinson's tridiagonal W21+, another eigenvalue problem.

% Original version supplied with MATLAB. Modified by N.J. Higham.

%

% References:

43

% J.R. Westlake, A Handbook of Numerical Matrix Inversion and Solution

% of Linear Equations, John Wiley, New York, 1968.

% J.H. Wilkinson, The Algebraic Eigenvalue Problem, Oxford University

% Press, 1965.

function [L, U, rho] = ge(A)

%GE Gaussian elimination without pivoting.

% [L, U, RHO] = GE(A) computes the factorization A = L*U,

% where L is unit lower triangular and U is upper triangular.

% RHO is the growth factor.

% By itself, GE(A) returns the final reduced matrix from the

% elimination containing both L and U.

function A = gearm(n, i, j)

%GEARM Gear matrix.

% A = GEARM(N,I,J) is the N-by-N matrix with ones on the sub- and

% super-diagonals, SIGN(I) in the (1,ABS(I)) position, SIGN(J)

% in the (N,N+1-ABS(J)) position, and zeros everywhere else.

% Defaults: I = N, j = -N.

% All eigenvalues are of the form 2*COS(a) and the eigenvectors

% are of the form [SIN(w+a), SIN(w+2a), ..., SIN(w+Na)].

% The values of a and w are given in the reference below.

% A can have double and triple eigenvalues and can be defective.

% GEARM(N) is singular.

% (GEAR is a Simulink function, hence GEARM for Gear matrix.)

% Reference:

% C.W. Gear, A simple set of test matrices for eigenvalue programs,

% Math. Comp., 23 (1969), pp. 119-125.

function [L, U, P, Q, rho] = gecp(A)

%GECP Gaussian elimination with complete pivoting.

% [L, U, P, Q, RHO] = GECP(A) computes the factorization P*A*Q = L*U,

% where L is unit lower triangular, U is upper triangular,

% and P and Q are permutation matrices. RHO is the growth factor.

% By itself, GECP(A) returns the final reduced matrix from the

% elimination containing both L and U.

function [G, e] = gersh(A, noplot)

%GERSH Gershgorin disks.

% GERSH(A) draws the Gershgorin disks for the matrix A.

% The eigenvalues are plotted as crosses `x'.

% Alternative usage: [G, E] = GERSH(A, 1) suppresses the plot

% and returns the data in G, with A's eigenvalues in E.

%

% Try GERSH(LESP(N)) and GERSH(SMOKE(N,1)).

44

function A = gfpp(T, c)

%GFPP Matrix giving maximal growth factor for Gaussian elim. with pivoting.

% GFPP(T) is a matrix of order N for which Gaussian elimination

% with partial pivoting yields a growth factor 2^(N-1).

% T is an arbitrary nonsingular upper triangular matrix of order N-1.

% GFPP(T, C) sets all the multipliers to C (0 <= C <= 1)

% and gives growth factor (1+C)^(N-1).

% GFPP(N, C) (a special case) is the same as GFPP(EYE(N-1), C) and

% generates the well-known example of Wilkinson.

% Reference:

% N.J. Higham and D.J. Higham, Large growth factors in

% Gaussian elimination with pivoting, SIAM J. Matrix Analysis and

% Appl., 10 (1989), pp. 155-164.

function x = gj(A, b, piv)

%GJ Gauss-Jordan elimination to solve Ax = b.

% x = GJ(A, b, PIV) solves Ax = b by Gauss-Jordan elimination,

% where A is a square, nonsingular matrix.

% PIV determines the form of pivoting:

% PIV = 0: no pivoting,

% PIV = 1 (default): partial pivoting.

function G = grcar(n, k)

%GRCAR Grcar matrix - a Toeplitz matrix with sensitive eigenvalues.

% GRCAR(N, K) is an N-by-N matrix with -1s on the

% subdiagonal, 1s on the diagonal, and K superdiagonals of 1s.

% The default is K = 3. The eigenvalues of this matrix form an

% interesting pattern in the complex plane (try PS(GRCAR(32))).

% References:

% J.F. Grcar, Operator coefficient methods for linear equations,

% Report SAND89-8691, Sandia National Laboratories, Albuquerque,

% New Mexico, 1989 (Appendix 2).

% N.M. Nachtigal, L. Reichel and L.N. Trefethen, A hybrid GMRES

% algorithm for nonsymmetric linear systems, SIAM J. Matrix Anal.

% Appl., 13 (1992), pp. 796-825.

function H = hadamard(n)

%HADAMARD Hadamard matrix.

% HADAMARD(N) is a Hadamard matrix of order N, that is,

% a matrix H with elements 1 or -1 such that H*H' = N*EYE(N).

% An N-by-N Hadamard matrix with N>2 exists only if REM(N,4) = 0.

% This function handles only the cases where N, N/12 or N/20

% is a power of 2.

% Reference:

% S.W. Golomb and L.D. Baumert, The search for Hadamard matrices,

% Amer. Math. Monthly, 70 (1963) pp. 12-17.

45

function A = hanowa(n, d)

%HANOWA A matrix whose eigenvalues lie on a vertical line in the complex plane.

% HANOWA(N, d) is the N-by-N block 2x2 matrix (thus N = 2M must be even)

% [d*EYE(M) -DIAG(1:M)

% DIAG(1:M) d*EYE(M)]

% It has complex eigenvalues lambda(k) = d +/- k*i (1 <= k <= M).

% Parameter d defaults to -1.

% Reference:

% E. Hairer, S.P. Norsett and G. Wanner, Solving Ordinary

% Differential Equations I: Nonstiff Problems, Springer-Verlag,

% Berlin, 1987. (pp. 86-87)

function H = hilb(n)

%HILB Hilbert matrix.

% HILB(N) is the N-by-N matrix with elements 1/(i+j-1).

% It is a famous example of a badly conditioned matrix.

% COND(HILB(N)) grows like EXP(3.5*N).

% See INVHILB (standard MATLAB routine) for the exact inverse, which

% has integer entries.

% HILB(N) is symmetric positive definite, totally positive, and a

% Hankel matrix.

% References:

% M.-D. Choi, Tricks or treats with the Hilbert matrix, Amer. Math.

% Monthly, 90 (1983), pp. 301-312.

% N.J. Higham, Accuracy and Stability of Numerical Algorithms,

% Society for Industrial and Applied Mathematics, Philadelphia, PA,

% USA, 1996; sec. 26.1.

% M. Newman and J. Todd, The evaluation of matrix inversion

% programs, J. Soc. Indust. Appl. Math., 6 (1958), pp. 466-476.

% D.E. Knuth, The Art of Computer Programming,

% Volume 1, Fundamental Algorithms, second edition, Addison-Wesley,

% Reading, Massachusetts, 1973, p. 37.

function [v, beta] = house(x)

%HOUSE Householder matrix.

% If [v, beta] = HOUSE(x) then H = EYE - beta*v*v' is a Householder

% matrix such that Hx = -sign(x(1))*norm(x)*e_1.

% NB: If x = 0 then v = 0, beta = 1 is returned.

% x can be real or complex.

% sign(x) := exp(i*arg(x)) (= x./abs(x) when x ~= 0).

% Theory: (textbook references Golub & Van Loan 1989, 38-43;

% Stewart 1973, 231-234, 262; Wilkinson 1965, 48-50).

% Hx = y: (I - beta*v*v')x = -s*e_1.

% Must have |s| = norm(x), v = x+s*e_1, and

% x'y = x'Hx =(x'Hx)' real => arg(s) = arg(x(1)).

% So take s = sign(x(1))*norm(x) (which avoids cancellation).

46

% v'v = (x(1)+s)^2 + x(2)^2 + ... + x(n)^2

% = 2*norm(x)*(norm(x) + |x(1)|).

%

% References:

% G.H. Golub and C.F. Van Loan, Matrix Computations, second edition,

% Johns Hopkins University Press, Baltimore, Maryland, 1989.

% G.W. Stewart, Introduction to Matrix Computations, Academic Press,

% New York, 1973,

% J.H. Wilkinson, The Algebraic Eigenvalue Problem, Oxford University

% Press, 1965.

function A = invhess(x, y)

%INVHESS Inverse of an upper Hessenberg matrix.

% INVHESS(X, Y), where X is an N-vector and Y an N-1 vector,

% is the matrix whose lower triangle agrees with that of

% ONES(N,1)*X' and whose strict upper triangle agrees with

% that of [1 Y]*ONES(1,N).

% The matrix is nonsingular if X(1) ~= 0 and X(i+1) ~= Y(i)

% for all i, and its inverse is an upper Hessenberg matrix.

% If Y is omitted it defaults to -X(1:N-1).

% Special case: if X is a scalar INVHESS(X) is the same as

% INVHESS(1:X).

% References:

% F.N. Valvi and V.S. Geroyannis, Analytic inverses and

% determinants for a class of matrices, IMA Journal of Numerical

% Analysis, 7 (1987), pp. 123-128.

% W.-L. Cao and W.J. Stewart, A note on inverses of Hessenberg-like

% matrices, Linear Algebra and Appl., 76 (1986), pp. 233-240.

% Y. Ikebe, On inverses of Hessenberg matrices, Linear Algebra and

% Appl., 24 (1979), pp. 93-97.

% P. Rozsa, On the inverse of band matrices, Integral Equations and

% Operator Theory, 10 (1987), pp. 82-95.

function A = invol(n)

%INVOL An involutory matrix.

% A = INVOL(N) is an N-by-N involutory (A*A = EYE(N)) and

% ill-conditioned matrix.

% It is a diagonally scaled version of HILB(N).

% NB: B = (EYE(N)-A)/2 and B = (EYE(N)+A)/2 are idempotent (B*B = B).

% Reference:

% A.S. Householder and J.A. Carpenter, The singular values

% of involutory and of idempotent matrices, Numer. Math. 5 (1963),

% pp. 234-237.

function [A, detA] = ipjfact(n, k)

%IPJFACT A Hankel matrix with factorial elements.

47

% A = IPJFACT(N, K) is the matrix with

% A(i,j) = (i+j)! (K = 0, default)

% A(i,j) = 1/(i+j)! (K = 1)

% Both are Hankel matrices.

% The determinant and inverse are known explicitly.

% If a second output argument is present, d = DET(A) is returned:

% [A, d] = IPJFACT(N, K);

% Suggested by P. R. Graves-Morris.

%

% Reference:

% M.J.C. Gover, The explicit inverse of factorial Hankel matrices,

% Dept. of Mathematics, University of Bradford, 1993.

function J = jordbloc(n, lambda)

%JORDBLOC Jordan block.

% JORDBLOC(N, LAMBDA) is the N-by-N Jordan block with eigenvalue

% LAMBDA. LAMBDA = 1 is the default.

function U = kahan(n, theta, pert)

%KAHAN Kahan matrix - upper trapezoidal.

% KAHAN(N, THETA) is an upper trapezoidal matrix

% that has some interesting properties regarding estimation of

% condition and rank.

% The matrix is N-by-N unless N is a 2-vector, in which case it

% is N(1)-by-N(2).

% The parameter THETA defaults to 1.2.

% The useful range of THETA is 0 < THETA < PI.

%

% To ensure that the QR factorization with column pivoting does not

% interchange columns in the presence of rounding errors, the diagonal

% is perturbed by PERT*EPS*diag([N:-1:1]).

% The default is PERT = 25, which ensures no interchanges for KAHAN(N)

% up to at least N = 90 in IEEE arithmetic.

% KAHAN(N, THETA, PERT) uses the given value of PERT.

% The inverse of KAHAN(N, THETA) is known explicitly: see

% Higham (1987, p. 588), for example.

% The diagonal perturbation was suggested by Christian Bischof.

%

% References:

% W. Kahan, Numerical linear algebra, Canadian Math. Bulletin,

% 9 (1966), pp. 757-801.

% N.J. Higham, A survey of condition number estimation for

% triangular matrices, SIAM Review, 29 (1987), pp. 575-596.

function A = kms(n, rho)

%KMS Kac-Murdock-Szego Toeplitz matrix.

48

% A = KMS(N, RHO) is the N-by-N Kac-Murdock-Szego Toeplitz matrix with

% A(i,j) = RHO^(ABS((i-j))) (for real RHO).

% If RHO is complex, then the same formula holds except that elements

% below the diagonal are conjugated.

% RHO defaults to 0.5.

% Properties:

% A has an LDL' factorization with

% L = INV(TRIW(N,-RHO,1)'),

% D(i,i) = (1-ABS(RHO)^2)*EYE(N) except D(1,1) = 1.

% A is positive definite if and only if 0 < ABS(RHO) < 1.

% INV(A) is tridiagonal.

% Reference:

% W.F. Trench, Numerical solution of the eigenvalue problem

% for Hermitian Toeplitz matrices, SIAM J. Matrix Analysis and Appl.,

% 10 (1989), pp. 135-146 (and see the references therein).

function B = krylov(A, x, j)

%KRYLOV Krylov matrix.

% KRYLOV(A, x, j) is the Krylov matrix

% [x, Ax, A^2x, ..., A^(j-1)x],

% where A is an n-by-n matrix and x is an n-vector.

% Defaults: x = ONES(n,1), j = n.

% KRYLOV(n) is the same as KRYLOV(RANDN(n)).

% Reference:

% G.H. Golub and C.F. Van Loan, Matrix Computations, second edition,

% Johns Hopkins University Press, Baltimore, Maryland, 1989, p. 369.

function A = lauchli(n, mu)

%LAUCHLI Lauchli matrix - rectangular.

% LAUCHLI(N, MU) is the (N+1)-by-N matrix [ONES(1,N); MU*EYE(N))].

% It is a well-known example in least squares and other problems

% that indicates the dangers of forming A'*A.

% MU defaults to SQRT(EPS).

% Reference:

% P. Lauchli, Jordan-Elimination und Ausgleichung nach

% kleinsten Quadraten, Numer. Math, 3 (1961), pp. 226-240.

function A = lehmer(n)

%LEHMER Lehmer matrix - symmetric positive definite.

% A = LEHMER(N) is the symmetric positive definite N-by-N matrix with

% A(i,j) = i/j for j >= i.

% A is totally nonnegative. INV(A) is tridiagonal, and explicit

% formulas are known for its entries.

% N <= COND(A) <= 4*N*N.

49

% References:

% M. Newman and J. Todd, The evaluation of matrix inversion

% programs, J. Soc. Indust. Appl. Math., 6 (1958), pp. 466-476.

% Solutions to problem E710 (proposed by D.H. Lehmer): The inverse

% of a matrix, Amer. Math. Monthly, 53 (1946), pp. 534-535.

% J. Todd, Basic Numerical Mathematics, Vol. 2: Numerical Algebra,

% Birkhauser, Basel, and Academic Press, New York, 1977, p. 154.

function T = lesp(n)

%LESP A tridiagonal matrix with real, sensitive eigenvalues.

% LESP(N) is an N-by-N matrix whose eigenvalues are real and smoothly

% distributed in the interval approximately [-2*N-3.5, -4.5].

% The sensitivities of the eigenvalues increase exponentially as

% the eigenvalues grow more negative.

% The matrix is similar to the symmetric tridiagonal matrix with

% the same diagonal entries and with off-diagonal entries 1,

% via a similarity transformation with D = diag(1!,2!,...,N!).

% References:

% H.W.J. Lenferink and M.N. Spijker, On the use of stability regions in

% the numerical analysis of initial value problems,

% Math. Comp., 57 (1991), pp. 221-237.

% L.N. Trefethen, Pseudospectra of matrices, in Numerical Analysis 1991,

% Proceedings of the 14th Dundee Conference,

% D.F. Griffiths and G.A. Watson, eds, Pitman Research Notes in

% Mathematics, volume 260, Longman Scientific and Technical, Essex,

% UK, 1992, pp. 234-266.

function A = lotkin(n)

%LOTKIN Lotkin matrix.

% A = LOTKIN(N) is the Hilbert matrix with its first row altered to

% all ones. A is unsymmetric, ill-conditioned, and has many negative

% eigenvalues of small magnitude.

% The inverse has integer entries and is known explicitly.

% Reference:

% M. Lotkin, A set of test matrices, MTAC, 9 (1955), pp. 153-161.

function A = makejcf(n, e, m, X)

%MAKEJCF A matrix with given Jordan canonical form.

% MAKEJCF(N, E, M) is a matrix having the Jordan canonical form

% whose i'th Jordan block is of dimension M(i) with eigenvalue E(i),

% and where N = SUM(M).

% Defaults: E = 1:N, M = ONES(SIZE(E)) with M(1) so that SUM(M) = N.

% The matrix is constructed by applying a random similarity

% transformation to the Jordan form.

% Alternatively, the matrix used in the similarity transformation

% can be specified as a fifth parameter.

50

% In particular, MAKEJCF(N, E, M, EYE(N)) returns the Jordan form

% itself.

% NB: The JCF is very sensitive to rounding errors.

function A = matrix(k, n)

%MATRIX Test Matrix Toolbox information and matrix access by number.

% MATRIX(K, N) is the N-by-N instance of the matrix number K in

% the Test Matrix Toolbox (including some of the matrices provided

% with MATLAB), with all other parameters set to their default.

% N.B. Only those matrices which take an arbitrary dimension N

% are included (thus GALLERY is omitted, for example).

% MATRIX(K) is a string containing the name of the K'th matrix.

% MATRIX(0) is the number of matrices, i.e. the upper limit for K.

% Thus to set A to each N-by-N test matrix in turn use a loop like

% for k=1:matrix(0)

% A = matrix(k, N);

% Aname = matrix(k); % The name of the matrix

% end

% MATRIX(-1) returns the version number and date of the toolbox.

% MATRIX with no arguments lists the names of the M-files in the

% collection.

% References:

% N.J. Higham. The Test Matrix Toolbox for Matlab (version 3.0),

% Numerical Analysis Report No. 276, Manchester Centre for

% Computational Mathematics, Manchester, England, September 1995.

% N.J. Higham, Algorithm 694: A collection of test matrices in

% MATLAB, ACM Trans. Math. Soft., 17 (1991), pp. 289-305.

%

% Matrices omitted are: gallery, hadamard, hanowa, lauchli,

% neumann, wathen, wilk.

% Matrices provided with MATLAB that are included here: invhilb,

% magic.

function S = matsignt(T)

%MATSIGNT Matrix sign function of a triangular matrix.

% S = MATSIGN(T) computes the matrix sign function S of the

% upper triangular matrix T using a recurrence.

% Adapted from FUNM. Called by SIGNM.

function [x, fmax, nf] = mdsmax(fun, x, stopit, savit)

%MDSMAX Multidirectional search method for direct search optimization.

% [x, fmax, nf] = MDSMAX(fun, x0, STOPIT, SAVIT) attempts to

% maximize the function specified by the string fun, using the

% starting vector x0. The method of multidirectional search is used.

% Output arguments:

% x = vector yielding largest function value found,

51

% fmax = function value at x,

% nf = number of function evaluations.

% The iteration is terminated when either

% - the relative size of the simplex is <= STOPIT(1)

% (default 1e-3),

% - STOPIT(2) function evaluations have been performed

% (default inf, i.e., no limit), or

% - a function value equals or exceeds STOPIT(3)

% (default inf, i.e., no test on function values).

% The form of the initial simplex is determined by STOPIT(4):

% STOPIT(4) = 0: regular simplex (sides of equal length, the default)

% STOPIT(4) = 1: right-angled simplex.

% Progress of the iteration is not shown if STOPIT(5) = 0 (default 1).

% If a non-empty fourth parameter string SAVIT is present, then

% `SAVE SAVIT x fmax nf' is executed after each inner iteration.

% NB: x0 can be a matrix. In the output argument, in SAVIT saves,

% and in function calls, x has the same shape as x0.

% References:

% [1] V.J. Torczon, Multi-directional search: A direct search algorithm for

% parallel machines, Ph.D. Thesis, Rice University, Houston, Texas, 1989.

% [2] V.J. Torczon, On the convergence of the multidirectional search

% algorithm, SIAM J. Optimization, 1 (1991), pp. 123-145.

% [3] N.J. Higham, Optimization by direct search in matrix computations,

% SIAM J. Matrix Anal. Appl, 14(2): 317-333, April 1993.

function [Q, R] = mgs(A)

%MGS Modified Gram-Schmidt QR factorization.

% [Q, R] = mgs(A) uses the modified Gram-Schmidt method to compute the

% factorization A = Q*R for m-by-n A of full rank,

% where Q is m-by-n with orthonormal columns and R is n-by-n.

function A = minij(n)

%MINIJ Symmetric positive definite matrix MIN(i,j).

% A = MINIJ(N) is the N-by-N symmetric positive definite matrix with

% A(i,j) = MIN(i,j).

% Properties, variations:

% INV(A) is tridiagonal: it is minus the second difference matrix

% except its (N,N) element is 1.

% 2*A-ONES(N) (Givens' matrix) has tridiagonal inverse and

% eigenvalues .5*sec^2([2r-1)PI/4N], r=1:N.

% (N+1)*ONES(N)-A also has a tridiagonal inverse.

% References:

% J. Todd, Basic Numerical Mathematics, Vol. 2: Numerical Algebra,

% Birkhauser, Basel, and Academic Press, New York, 1977, p. 158.

% D.E. Rutherford, Some continuant determinants arising in physics and

% chemistry---II, Proc. Royal Soc. Edin., 63, A (1952), pp. 232-241.

% (For the eigenvalues of Givens' matrix.)

52

function A = moler(n, alpha)

%MOLER Moler matrix - symmetric positive definite.

% A = MOLER(N, ALPHA) is the symmetric positive definite N-by-N matrix

% U'*U where U = TRIW(N, ALPHA).

% For ALPHA = -1 (the default) A(i,j) = MIN(i,j)-2, A(i,i) = i.

% A has one small eigenvalue.

% Nash (1990) attributes the ALPHA = -1 matrix to Moler.

%

% Reference:

% J.C. Nash, Compact Numerical Methods for Computers: Linear

% Algebra and Function Minimisation, second edition, Adam Hilger,

% Bristol, 1990 (Appendix 1).

function [A, T] = neumann(n)

%NEUMANN Singular matrix from the discrete Neumann problem (sparse).

% NEUMANN(N) is the singular, row diagonally dominant matrix resulting

% from discretizing the Neumann problem with the usual five point

% operator on a regular mesh.

% It has a one-dimensional null space with null vector ONES(N,1).

% The dimension N should be a perfect square, or else a 2-vector,

% in which case the dimension of the matrix is N(1)*N(2).

% Reference:

% R.J. Plemmons, Regular splittings and the discrete Neumann

% problem, Numer. Math., 25 (1976), pp. 153-161.

function [x, fmax, nf] = nmsmax(fun, x, stopit, savit)

%NMSMAX Nelder-Mead simplex method for direct search optimization.

% [x, fmax, nf] = NMSMAX(fun, x0, STOPIT, SAVIT) attempts to

% maximize the function specified by the string fun, using the

% starting vector x0. The Nelder-Mead direct search method is used.

% Output arguments:

% x = vector yielding largest function value found,

% fmax = function value at x,

% nf = number of function evaluations.

% The iteration is terminated when either

% - the relative size of the simplex is <= STOPIT(1)

% (default 1e-3),

% - STOPIT(2) function evaluations have been performed

% (default inf, i.e., no limit), or

% - a function value equals or exceeds STOPIT(3)

% (default inf, i.e., no test on function values).

% The form of the initial simplex is determined by STOPIT(4):

% STOPIT(4) = 0: regular simplex (sides of equal length, the default)

% STOPIT(4) = 1: right-angled simplex.

% Progress of the iteration is not shown if STOPIT(5) = 0 (default 1).

% If a non-empty fourth parameter string SAVIT is present, then

% `SAVE SAVIT x fmax nf' is executed after each inner iteration.

53

% NB: x0 can be a matrix. In the output argument, in SAVIT saves,

% and in function calls, x has the same shape as x0.

% References:

% J.E. Dennis, Jr., and D.J. Woods, Optimization on microcomputers:

% The Nelder-Mead simplex algorithm, in New Computing Environments:

% Microcomputers in Large-Scale Computing, A. Wouk, ed., Society for

% Industrial and Applied Mathematics, Philadelphia, 1987, pp. 116-122.

% N.J. Higham, Optimization by direct search in matrix computations,

% SIAM J. Matrix Anal. Appl, 14(2): 317-333, April 1993.

function H = ohess(x)

%OHESS Random, orthogonal upper Hessenberg matrix.

% H = OHESS(N) is an N-by-N real, random, orthogonal

% upper Hessenberg matrix.

% Alternatively, H = OHESS(X), where X is an arbitrary real

% N-vector (N > 1) constructs H non-randomly using the elements

% of X as parameters.

% In both cases H is constructed via a product of N-1 Givens rotations.

% Note: See Gragg (1986) for how to represent an N-by-N (complex)

% unitary Hessenberg matrix with positive subdiagonal elements in terms

% of 2N-1 real parameters (the Schur parametrization).

% This M-file handles the real case only and is intended simply as a

% convenient way to generate random or non-random orthogonal Hessenberg

% matrices.

%

% Reference:

% W.B. Gragg, The QR algorithm for unitary Hessenberg matrices,

% J. Comp. Appl. Math., 16 (1986), pp. 1-8.

function Q = orthog(n, k)

%ORTHOG Orthogonal and nearly orthogonal matrices.

% Q = ORTHOG(N, K) selects the K'th type of matrix of order N.

% K > 0 for exactly orthogonal matrices, K < 0 for diagonal scalings of

% orthogonal matrices.

% Available types: (K = 1 is the default)

% K = 1: Q(i,j) = SQRT(2/(n+1)) * SIN(i*j*PI/(n+1))

% Symmetric eigenvector matrix for second difference matrix.

% K = 2: Q(i,j) = 2/SQRT(2*n+1)) * SIN(2*i*j*PI/(2*n+1))

% Symmetric.

% K = 3: Q(r,s) = EXP(2*PI*i*(r-1)*(s-1)/n) / SQRT(n) (i=SQRT(-1))

% Unitary, the Fourier matrix. Q^4 is the identity.

% This is essentially the same matrix as FFT(EYE(N))/SQRT(N)!

% K = 4: Helmert matrix: a permutation of a lower Hessenberg matrix,

% whose first row is ONES(1:N)/SQRT(N).

% K = 5: Q(i,j) = SIN(2*PI*(i-1)*(j-1)/n) + COS(2*PI*(i-1)*(j-1)/n).

% Symmetric matrix arising in the Hartley transform.

% K = -1: Q(i,j) = COS((i-1)*(j-1)*PI/(n-1))

54

% Chebyshev Vandermonde-like matrix, based on extrema of T(n-1).

% K = -2: Q(i,j) = COS((i-1)*(j-1/2)*PI/n))

% Chebyshev Vandermonde-like matrix, based on zeros of T(n).

% References:

% N.J. Higham and D.J. Higham, Large growth factors in Gaussian

% elimination with pivoting, SIAM J. Matrix Analysis and Appl.,

% 10 (1989), pp. 155-164.

% P. Morton, On the eigenvectors of Schur's matrix, J. Number Theory,

% 12 (1980), pp. 122-127. (Re. ORTHOG(N, 3))

% H.O. Lancaster, The Helmert Matrices, Amer. Math. Monthly, 72 (1965),

% pp. 4-12.

% D. Bini and P. Favati, On a matrix algebra related to the discrete

% Hartley transform, SIAM J. Matrix Anal. Appl., 14 (1993),

% pp. 500-507.

function A = parter(n)

%PARTER Parter matrix - a Toeplitz matrix with singular values near PI.

% PARTER(N) is the matrix with (i,j) element 1/(i-j+0.5).

% It is a Cauchy matrix and a Toeplitz matrix.

% At the Second SIAM Conference on Linear Algebra, Raleigh, N.C.,

% 1985, Cleve Moler noted that most of the singular values of

% PARTER(N) are very close to PI. An explanation of the phenomenon

% was given by Parter; see also the paper by Tyrtyshnikov.

%

% References:

% The MathWorks Newsletter, Volume 1, Issue 1, March 1986, page 2.

% S.V. Parter, On the distribution of the singular values of Toeplitz

% matrices, Linear Algebra and Appl., 80 (1986), pp. 115-130.

% E.E. Tyrtyshnikov, Cauchy-Toeplitz matrices and some applications,

% Linear Algebra and Appl., 149 (1991), pp. 1-18.

function P = pascal(n, k)

%PASCAL Pascal matrix.

% P = PASCAL(N) is the Pascal matrix of order N: a symmetric positive

% definite matrix with integer entries taken from Pascal's

% triangle.

% The Pascal matrix is totally positive and its inverse has

% integer entries. Its eigenvalues occur in reciprocal pairs.

% COND(P) is approximately 16^N/(N*PI) for large N.

% PASCAL(N,1) is the lower triangular Cholesky factor (up to signs

% of columns) of the Pascal matrix. It is involutary (is its own

% inverse).

% PASCAL(N,2) is a transposed and permuted version of PASCAL(N,1)

% which is a cube root of the identity.

% References:

% R. Brawer and M. Pirovino, The linear algebra of the Pascal matrix,

55

% Linear Algebra and Appl., 174 (1992), pp. 13-23 (this paper

% gives a factorization of L = PASCAL(N,1) and a formula for the

% elements of L^k).

% N.J. Higham, Accuracy and Stability of Numerical Algorithms,

% Society for Industrial and Applied Mathematics, Philadelphia, PA,

% USA, 1996; sec. 26.4.

% S. Karlin, Total Positivity, Volume 1, Stanford University Press,

% 1968. (Page 137: shows i+j-1 choose j is TP (i,j=0,1,...).

% PASCAL(N) is a submatrix of this matrix.)

% M. Newman and J. Todd, The evaluation of matrix inversion programs,

% J. Soc. Indust. Appl. Math., 6(4):466--476, 1958.

% H. Rutishauser, On test matrices, Programmation en Mathematiques

% Numeriques, Editions Centre Nat. Recherche Sci., Paris, 165,

% 1966, pp. 349-365. (Gives an integral formula for the

% elements of PASCAL(N).)

% J. Todd, Basic Numerical Mathematics, Vol. 2: Numerical Algebra,

% Birkhauser, Basel, and Academic Press, New York, 1977, p. 172.

% H.W. Turnbull, The Theory of Determinants, Matrices, and Invariants,

% Blackie, London and Glasgow, 1929. (PASCAL(N,2) on page 332.)

function T = pdtoep(n, m, w, theta)

%PDTOEP Symmetric positive definite Toeplitz matrix.

% PDTOEP(N, M, W, THETA) is an N-by-N symmetric positive (semi-)

% definite (SPD) Toeplitz matrix, comprised of the sum of M rank 2

% (or, for certain THETA, rank 1) SPD Toeplitz matrices.

% Specifically,

% T = W(1)*T(THETA(1)) + ... + W(M)*T(THETA(M)),

% where T(THETA(k)) has (i,j) element COS(2*PI*THETA(k)*(i-j)).

% Defaults: M = N, W = RAND(M,1), THETA = RAND(M,1).

% Reference:

% G. Cybenko and C.F. Van Loan, Computing the minimum eigenvalue of

% a symmetric positive definite Toeplitz matrix, SIAM J. Sci. Stat.

% Comput., 7 (1986), pp. 123-131.

function P = pei(n, alpha)

%PEI Pei matrix.

% PEI(N, ALPHA), where ALPHA is a scalar, is the symmetric matrix

% ALPHA*EYE(N) + ONES(N).

% If ALPHA is omitted then ALPHA = 1 is used.

% The matrix is singular for ALPHA = 0, -N.

% Reference:

% M.L. Pei, A test matrix for inversion procedures,

% Comm. ACM, 5 (1962), p. 508.

function P = pentoep(n, a, b, c, d, e)

%PENTOEP Pentadiagonal Toeplitz matrix (sparse).

56

% P = PENTOEP(N, A, B, C, D, E) is the N-by-N pentadiagonal

% Toeplitz matrix with diagonals composed of the numbers

% A =: P(3,1), B =: P(2,1), C =: P(1,1), D =: P(1,2), E =: P(1,3).

% Default: (A,B,C,D,E) = (1,-10,0,10,1) (a matrix of Rutishauser).

% This matrix has eigenvalues lying approximately on

% the line segment 2*cos(2*t) + 20*i*sin(t).

%

% Interesting plots are

% PS(FULL(PENTOEP(32,0,1,0,0,1/4))) - `triangle'

% PS(FULL(PENTOEP(32,0,1/2,0,0,1))) - `propeller'

% PS(FULL(PENTOEP(32,0,1/2,1,1,1))) - `fish'

% References:

% R.M. Beam and R.F. Warming, The asymptotic spectra of

% banded Toeplitz and quasi-Toeplitz matrices, SIAM J. Sci.

% Comput. 14 (4), 1993, pp. 971-1006.

% H. Rutishauser, On test matrices, Programmation en Mathematiques

% Numeriques, Editions Centre Nat. Recherche Sci., Paris, 165,

% 1966, pp. 349-365.

function [est, x, k] = pnorm(A, p, tol, noprint)

%PNORM Estimate of matrix p-norm (1 <= p <= inf).

% [EST, x, k] = PNORM(A, p, TOL) estimates the Holder p-norm of a

% matrix A, using the p-norm power method with a specially

% chosen starting vector.

% TOL is a relative convergence tolerance (default 1E-4).

% Returned are the norm estimate EST (which is a lower bound for the

% exact p-norm), the corresponding approximate maximizing vector x,

% and the number of power method iterations k.

% A nonzero fourth argument causes trace output to the screen.

% If A is a vector, this routine simply returns NORM(A, p).

%

% See also NORM, NORMEST.

% Note: The estimate is exact for p = 1, but is not always exact for

% p = 2 or p = inf. Code could be added to treat p = 2 and p = inf

% separately.

%

% Calls DUAL and SEQA.

%

% Reference:

% N.J. Higham, Estimating the matrix p-norm,

% Numer. Math., 62 (1992), pp. 539-555.

function A = poisson(n)

%POISSON Block tridiagonal matrix from Poisson's equation (sparse).

% POISSON(N) is the block tridiagonal matrix of order N^2

% resulting from discretizing Poisson's equation with the

% 5-point operator on an N-by-N mesh.

57

% Reference:

% G.H. Golub and C.F. Van Loan, Matrix Computations, second edition,

% Johns Hopkins University Press, Baltimore, Maryland, 1989

% (Section 4.5.4).

function [U, H] = poldec(A)

%POLDEC Polar decomposition.

% [U, H] = POLDEC(A) computes a matrix U of the same dimension

% as A, and a Hermitian positive semi-definite matrix H,

% such that A = U*H.

% U has orthonormal columns if m>=n, and orthonormal rows if m<=n.

% U and H are computed via an SVD of A.

% U is a nearest unitary matrix to A in both the 2-norm and the

% Frobenius norm.

% Reference:

% N.J. Higham, Computing the polar decomposition---with applications,

% SIAM J. Sci. Stat. Comput., 7(4):1160--1174, 1986.

%

% (The name `polar' is reserved for a graphics routine.)

function A = prolate(n, w)

%PROLATE Prolate matrix - symmetric, ill-conditioned Toeplitz matrix.

% A = PROLATE(N, W) is the N-by-N prolate matrix with parameter W.

% It is a symmetric Toeplitz matrix.

% If 0 < W < 0.5 then

% - A is positive definite

% - the eigenvalues of A are distinct, lie in (0, 1), and

% tend to cluster around 0 and 1.

% W defaults to 0.25.

% Reference:

% J.M. Varah. The Prolate matrix. Linear Algebra and Appl.,

% 187:269--278, 1993.

function y = ps(A, m, tol, rl, marksize)

%PS Dot plot of a pseudospectrum.

% PS(A, M, TOL, RL) plots an approximation to a pseudospectrum

% of the square matrix A, using M random perturbations of size TOL.

% M defaults to a SIZE(A)-dependent value and TOL to 1E-3.

% RL defines the type of perturbation:

% RL = 0 (default): absolute complex perturbations of 2-norm TOL.

% RL = 1: absolute real perturbations of 2-norm TOL.

% RL = -1: componentwise real perturbations of size TOL.

% The eigenvalues of A are plotted as crosses `x'.

% PS(A, M, TOL, RL, MARKSIZE) uses the specified marker size instead

% of a size that depends on the figure size, the matrix order, and M.

58

% If MARKSIZE < 0, the plot is suppressed and the plot data is returned

% as an output argument.

% PS(A, 0) plots just the eigenvalues of A.

% For a given TOL, the pseudospectrum of A is the set of

% pseudo-eigenvalues of A, that is, the set

% { e : e is an eigenvalue of A+E, for some E with NORM(E) <= TOL }.

%

% Reference:

% L.N. Trefethen, Pseudospectra of matrices, in D.F. Griffiths and

% G.A. Watson, eds, Numerical Analysis 1991, Proceedings of the 14th

% Dundee Conference, vol. 260, Pitman Research Notes in Mathematics,

% Longman Scientific and Technical, Essex, UK, 1992, pp. 234-266.

function [x, y, z, m] = pscont(A, k, npts, ax, levels)

%PSCONT Contours and colour pictures of pseudospectra.

% PSCONT(A, K, NPTS, AX, LEVELS) plots LOG10(1/NORM(R(z))),

% where R(z) = INV(z*I-A) is the resolvent of the square matrix A,

% over an NPTS-by-NPTS grid.

% NPTS defaults to a SIZE(A)-dependent value.

% The limits are AX(1) and AX(2) on the x-axis and

% AX(3) and AX(4) on the y-axis.

% If AX is omitted, suitable limits are guessed based on the

% eigenvalues of A.

% The eigenvalues of A are plotted as crosses `x'.

% K determines the type of plot:

% K = 0 (default) PCOLOR and CONTOUR

% K = 1 PCOLOR only

% K = 2 SURFC (SURF and CONTOUR)

% K = 3 SURF only

% K = 4 CONTOUR only

% The contours levels are specified by the vector LEVELS, which

% defaults to -10:-1 (recall we are plotting log10 of the data).

% Thus, by default, the contour lines trace out the boundaries of

% the epsilon pseudospectra for epsilon = 1e-10, ..., 1e-1.

% [X, Y, Z, NPTS] = PSCONT(A, ...) returns the plot data X, Y, Z

% and the value of NPTS used.

%

% After calling this function you may want to change the

% color map (e.g., type COLORMAP HOT - see HELP COLOR) and the

% shading (e.g., type SHADING INTERP - see HELP INTERP).

% For an explanation of the term `pseudospectra' see PS.M.

% When A is real and the grid is symmetric about the x-axis, this

% routine exploits symmetry to halve the computational work.

% Colour pseduospectral pictures of this type are referred to as

% `spectral portraits' by Godunov, Kostin, and colleagues.

% References:

% V. I. Kostin, Linear algebra algorithms with guaranteed accuracy,

59

% Technical Report TR/PA/93/05, CERFACS, Toulouse, France, 1993.

% L.N. Trefethen, Pseudospectra of matrices, in D.F. Griffiths and

% G.A. Watson, eds, Numerical Analysis 1991, Proceedings of the 14th

% Dundee Conference, vol. 260, Pitman Research Notes in Mathematics,

% Longman Scientific and Technical, Essex, UK, 1992, pp. 234-266.

function B = qmult(A)

%QMULT Pre-multiply by random orthogonal matrix.

% QMULT(A) is Q*A where Q is a random real orthogonal matrix from

% the Haar distribution, of dimension the number of rows in A.

% Special case: if A is a scalar then QMULT(A) is the same as

% QMULT(EYE(A)).

% Called by RANDSVD.

%

% Reference:

% G.W. Stewart, The efficient generation of random

% orthogonal matrices with an application to condition estimators,

% SIAM J. Numer. Anal., 17 (1980), 403-409.

function A = rando(n, k)

%RANDO Random matrix with elements -1, 0 or 1.

% A = RANDO(N, K) is a random N-by-N matrix with elements from

% one of the following discrete distributions (default K = 1):

% K = 1: A(i,j) = 0 or 1 with equal probability,

% K = 2: A(i,j) = -1 or 1 with equal probability,

% K = 3: A(i,j) = -1, 0 or 1 with equal probability.

% N may be a 2-vector, in which case the matrix is N(1)-by-N(2).

function A = randsvd(n, kappa, mode, kl, ku)

%RANDSVD Random matrix with pre-assigned singular values.

% RANDSVD(N, KAPPA, MODE, KL, KU) is a (banded) random matrix of order N

% with COND(A) = KAPPA and singular values from the distribution MODE.

% N may be a 2-vector, in which case the matrix is N(1)-by-N(2).

% Available types:

% MODE = 1: one large singular value,

% MODE = 2: one small singular value,

% MODE = 3: geometrically distributed singular values,

% MODE = 4: arithmetically distributed singular values,

% MODE = 5: random singular values with unif. dist. logarithm.

% If omitted, MODE defaults to 3, and KAPPA defaults to SQRT(1/EPS).

% If MODE < 0 then the effect is as for ABS(MODE) except that in the

% original matrix of singular values the order of the diagonal entries

% is reversed: small to large instead of large to small.

% KL and KU are the lower and upper bandwidths respectively; if they

% are omitted a full matrix is produced.

% If only KL is present, KU defaults to KL.

% Special case: if KAPPA < 0 then a random full symmetric positive

60

% definite matrix is produced with COND(A) = -KAPPA and

% eigenvalues distributed according to MODE.

% KL and KU, if present, are ignored.

% Reference:

% N.J. Higham, Accuracy and Stability of Numerical Algorithms,

% Society for Industrial and Applied Mathematics, Philadelphia, PA,

% USA, 1996; sec. 26.3.

function A = redheff(n)

%REDHEFF A (0,1) matrix of Redheffer associated with the Riemann hypothesis.

% A = REDHEFF(N) is an N-by-N matrix of 0s and 1s defined by

% A(i,j) = 1 if j = 1 or if i divides j,

% A(i,j) = 0 otherwise.

% It has N - FLOOR(LOG2(N)) - 1 eigenvalues equal to 1,

% a real eigenvalue (the spectral radius) approximately SQRT(N),

% a negative eigenvalue approximately -SQRT(N),

% and the remaining eigenvalues are provably ``small''.

% Barrett and Jarvis (1992) conjecture that

% ``the small eigenvalues all lie inside the unit circle

% ABS(Z) = 1'',

% and a proof of this conjecture, together with a proof that some

% eigenvalue tends to zero as N tends to infinity, would yield

% a new proof of the prime number theorem.

% The Riemann hypothesis is true if and only if

% DET(A) = O(N^(1/2+epsilon)) for every epsilon > 0

% (`!' denotes factorial).

% See also RIEMANN.

% Reference:

% W.W. Barrett and T.J. Jarvis,

% Spectral Properties of a Matrix of Redheffer,

% Linear Algebra and Appl., 162 (1992), pp. 673-683.

function A = riemann(n)

%RIEMANN A matrix associated with the Riemann hypothesis.

% A = RIEMANN(N) is an N-by-N matrix for which the

% Riemann hypothesis is true if and only if

% DET(A) = O(N! N^(-1/2+epsilon)) for every epsilon > 0

% (`!' denotes factorial).

% A = B(2:N+1, 2:N+1), where

% B(i,j) = i-1 if i divides j and -1 otherwise.

% Properties include, with M = N+1:

% Each eigenvalue E(i) satisfies ABS(E(i)) <= M - 1/M.

% i <= E(i) <= i+1 with at most M-SQRT(M) exceptions.

% All integers in the interval (M/3, M/2] are eigenvalues.

%

% See also REDHEFF.

61

% Reference:

% F. Roesler, Riemann's hypothesis as an eigenvalue problem,

% Linear Algebra and Appl., 81 (1986), pp. 153-198.

function z = rq(A,x)

%RQ Rayleigh quotient.

% RQ(A,x) is the Rayleigh quotient of A and x, x'*A*x/(x'*x).

% Called by FV.

function A = rschur(n, mu, x, y)

%RSCHUR An upper quasi-triangular matrix.

% A = RSCHUR(N, MU, X, Y) is an N-by-N matrix in real Schur form.

% All the diagonal blocks are 2-by-2 (except for the last one, if N

% is odd) and the k'th has the form [x(k) y(k); -y(k) x(k)].

% Thus the eigenvalues of A are x(k) +/- i*y(k).

% MU (default 1) controls the departure from normality.

% Defaults: X(k) = -k^2/10, Y(k) = -k, i.e., the eigenvalues

% lie on the parabola x = -y^2/10.

% References:

% F. Chatelin, Eigenvalues of Matrices, John Wiley, Chichester, 1993;

% Section 4.2.7.

% F. Chatelin and V. Fraysse, Qualitative computing: Elements

% of a theory for finite precision computation, Lecture notes,

% CERFACS, Toulouse, France and THOMSON-CSF, Orsay, France,

% June 1993.

function see(A, k)

%SEE Pictures of a matrix and its (pseudo-) inverse.

% SEE(A) displays MESH(A), MESH(PINV(A)), SEMILOGY(SVD(A),'o'),

% and (if A is square) FV(A) in four subplot windows.

% SEE(A, 1) plots an approximation to the pseudospectrum in the

% third window instead of the singular values.

% SEE(A, -1) plots only the eigenvalues in the fourth window,

% which is much quicker than plotting the field of values.

% If A is complex, only real parts are used for the mesh plots.

% If A is sparse, just SPY(A) is shown.

function y = seqa(a, b, n)

%SEQA Additive sequence.

% Y = SEQA(A, B, N) produces a row vector comprising N equally

% spaced numbers starting at A and finishing at B.

% If N is omitted then 10 points are generated.

62

function x = seqcheb(n, k)

%SEQCHEB Sequence of points related to Chebyshev polynomials.

% X = SEQCHEB(N, K) produces a row vector of length N.

% There are two choices:

% K = 1: zeros of T_N, (the default)

% K = 2: extrema of T_{N-1},

% where T_k is the Chebsyhev polynomial of degree k.

function y = seqm(a, b, n)

%SEQM Multiplicative sequence.

% Y = SEQM(A, B, N) produces a row vector comprising N

% logarithmically equally spaced numbers, starting at A ~= 0

% and finishing at B ~= 0.

% If A*B < 0 and N > 2 then complex results are produced.

% If N is omitted then 10 points are generated.

function show(x)

%SHOW Display signs of matrix elements.

% SHOW(X) displays X in `FORMAT +' form, that is,

% with `+', `-' and blank representing positive, negative

% and zero elements respectively.

function [S, N] = signm(A)

%SIGNM Matrix sign decomposition.

% [S, N] = SIGNM(A) is the matrix sign decomposition A = S*N,

% computed via the Schur decomposition.

% S is the matrix sign function, sign(A).

% Reference:

% N.J. Higham, The matrix sign decomposition and its relation to the

% polar decomposition, Linear Algebra and Appl., 212/213:3-20, 1994.

function S = skewpart(A)

%SKEWPART Skew-symmetric (skew-Hermitian) part.

% SKEWPART(A) is the skew-symmetric (skew-Hermitian) part of A,

% (A - A')/2.

% It is the nearest skew-symmetric (skew-Hermitian) matrix to A in

% both the 2- and the Frobenius norms.

function A = smoke(n, k)

%SMOKE Smoke matrix - complex, with a `smoke ring' pseudospectrum.

% SMOKE(N) is an N-by-N matrix with 1s on the

% superdiagonal, 1 in the (N,1) position, and powers of

% roots of unity along the diagonal.

% SMOKE(N, 1) is the same except for a zero (N,1) element.

% The eigenvalues of SMOKE(N, 1) are the N'th roots of unity;

63

% those of SMOKE(N) are the N'th roots of unity times 2^(1/N).

%

% Try PS(SMOKE(32)). For SMOKE(N, 1) the pseudospectrum looks

% like a sausage folded back on itself.

% GERSH(SMOKE(N, 1)) is interesting.

% Reference:

% L. Reichel and L.N. Trefethen, Eigenvalues and pseudo-eigenvalues of

% Toeplitz matrices, Linear Algebra and Appl., 162-164:153-185, 1992.

function A = sparsify(A, p)

%SPARSIFY Randomly sets matrix elements to zero.

% S = SPARSIFY(A, P) is A with elements randomly set to zero

% (S = S' if A is square and A = A', i.e. symmetry is preserved).

% Each element has probability P of being zeroed.

% Thus on average 100*P percent of the elements of A will be zeroed.

% Default: P = 0.25.

function S = sub(A, i, j)

%SUB Principal submatrix.

% SUB(A,i,j) is A(i:j,i:j).

% SUB(A,i) is the leading principal submatrix of order i,

% A(1:i,1:i), if i>0, and the trailing principal submatrix

% of order ABS(i) if i<0.

function S = symmpart(A)

%SYMMPART Symmetric (Hermitian) part.

% SYMMPART(A) is the symmetric (Hermitian) part of A, (A + A')/2.

% It is the nearest symmetric (Hermitian) matrix to A in both the

% 2- and the Frobenius norms.

function [Q, T] = trap2tri(L)

%TRAP2TRI Unitary reduction of trapezoidal matrix to triangular form.

% [Q, T] = TRAP2TRI(L), where L is an m-by-n lower trapezoidal

% matrix with m >= n, produces a unitary Q such that QL = [T; 0],

% where T is n-by-n and lower triangular.

% Q is a product of Householder transformations.

% Called by RANDSVD.

%

% Reference:

% G.H. Golub and C.F. Van Loan, Matrix Computations, second edition,

% Johns Hopkins University Press, Baltimore, Maryland, 1989.

% P5.2.5, p. 220.

64

function T = tridiag(n, x, y, z)

%TRIDIAG Tridiagonal matrix (sparse).

% TRIDIAG(X, Y, Z) is the tridiagonal matrix with subdiagonal X,

% diagonal Y, and superdiagonal Z.

% X and Z must be vectors of dimension one less than Y.

% Alternatively TRIDIAG(N, C, D, E), where C, D, and E are all

% scalars, yields the Toeplitz tridiagonal matrix of order N

% with subdiagonal elements C, diagonal elements D, and superdiagonal

% elements E. This matrix has eigenvalues (Todd 1977)

% D + 2*SQRT(C*E)*COS(k*PI/(N+1)), k=1:N.

% TRIDIAG(N) is the same as TRIDIAG(N,-1,2,-1), which is

% a symmetric positive definite M-matrix (the negative of the

% second difference matrix).

% References:

% J. Todd, Basic Numerical Mathematics, Vol. 2: Numerical Algebra,

% Birkhauser, Basel, and Academic Press, New York, 1977, p. 155.

% D.E. Rutherford, Some continuant determinants arising in physics and

% chemistry---II, Proc. Royal Soc. Edin., 63, A (1952), pp. 232-241.

function t = triw(n, alpha, k)

%TRIW Upper triangular matrix discussed by Wilkinson and others.

% TRIW(N, ALPHA, K) is the upper triangular matrix with ones on

% the diagonal and ALPHAs on the first K >= 0 superdiagonals.

% N may be a 2-vector, in which case the matrix is N(1)-by-N(2) and

% upper trapezoidal.

% Defaults: ALPHA = -1,

% K = N - 1 (full upper triangle).

% TRIW(N) is a matrix discussed by Kahan, Golub and Wilkinson.

%

% Ostrowski (1954) shows that

% COND(TRIW(N,2)) = COT(PI/(4*N))^2,

% and for large ABS(ALPHA),

% COND(TRIW(N,ALPHA)) is approximately ABS(ALPHA)^N*SIN(PI/(4*N-2)).

%

% Adding -2^(2-N) to the (N,1) element makes TRIW(N) singular,

% as does adding -2^(1-N) to all elements in the first column.

% References:

% G.H. Golub and J.H. Wilkinson, Ill-conditioned eigensystems and the

% computation of the Jordan canonical form, SIAM Review,

% 18(4), 1976, pp. 578-619.

% W. Kahan, Numerical linear algebra, Canadian Math. Bulletin,

% 9 (1966), pp. 757-801.

% A.M. Ostrowski, On the spectrum of a one-parametric family of

% matrices, J. Reine Angew. Math., 193 (3/4), 1954, pp. 143-160.

% J.H. Wilkinson, Singular-value decomposition---basic aspects,

% in D.A.H. Jacobs, ed., Numerical Software---Needs and Availability,

% Academic Press, London, 1978, pp. 109-135.

65

function V = vand(m, p)

%VAND Vandermonde matrix.

% V = VAND(P), where P is a vector, produces the (primal)

% Vandermonde matrix based on the points P, i.e. V(i,j) = P(j)^(i-1).

% VAND(M,P) is a rectangular version of VAND(P) with M rows.

% Special case: If P is a scalar then P equally spaced points on [0,1]

% are used.

% Reference:

% N.J. Higham, Stability analysis of algorithms for solving

% confluent Vandermonde-like systems, SIAM J. Matrix Anal. Appl.,

% 11 (1990), pp. 23-41.

function A = wathen(nx, ny, k)

%WATHEN Wathen matrix - a finite element matrix (sparse, random entries).

% A = WATHEN(NX,NY) is a sparse random N-by-N finite element matrix

% where N = 3*NX*NY + 2*NX + 2*NY + 1.

% A is precisely the `consistent mass matrix' for a regular NX-by-NY

% grid of 8-node (serendipity) elements in 2 space dimensions.

% A is symmetric positive definite for any (positive) values of

% the `density', RHO(NX,NY), which is chosen randomly in this routine.

% In particular, if D = DIAG(DIAG(A)), then

% 0.25 <= EIG(INV(D)*A) <= 4.5

% for any positive integers NX and NY and any densities RHO(NX,NY).

% This diagonally scaled matrix is returned by WATHEN(NX,NY,1).

% Reference:

% A.J. Wathen, Realistic eigenvalue bounds for the Galerkin

% mass matrix, IMA J. Numer. Anal., 7 (1987), pp. 449-457.

function [A, b] = wilk(n)

%WILK Various specific matrices devised/discussed by Wilkinson.

% [A, b] = WILK(N) is the matrix or system of order N.

% N = 3: upper triangular system Ux=b illustrating inaccurate solution.

% N = 4: lower triangular system Lx=b, ill-conditioned.

% N = 5: HILB(6)(1:5,2:6)*1.8144. Symmetric positive definite.

% N = 21: W21+, tridiagonal. Eigenvalue problem.

% References:

% J.H. Wilkinson, Error analysis of direct methods of matrix inversion,

% J. Assoc. Comput. Mach., 8 (1961), pp. 281-330.

% J.H. Wilkinson, Rounding Errors in Algebraic Processes, Notes on Applied

% Science No. 32, Her Majesty's Stationery Office, London, 1963.

% J.H. Wilkinson, The Algebraic Eigenvalue Problem, Oxford University

% Press, 1965.

66

Acknowledgements

In preparing the earlier test matrix collections I bene�ted from the helpful suggestions of people
too numerous to mention. While working on version 2.0 of the toolbox I received valuable advice
from Cleve Moler and Nick Trefethen, and Per Christian Hansen o�ered helpful comments on
a draft version of the manual accompanying version 2.0.

67

References

[1] E. Anderson, Z. Bai, C. H. Bischof, J. W. Demmel, J. J. Dongarra, J. J. Du Croz, A. Green-
baum, S. J. Hammarling, A. McKenney, S. Ostrouchov, and D. C. Sorensen. LAPACK
Users' Guide. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA,
1992. ISBN 0-89871-294-7. xv+118+listings pp.

[2] Zhaojun Bai. A collection of test matrices for large scale nonsymmetric eigenvalue problems
(version 1.0). Manuscript, July 1994.

[3] Richard Bartels and Barry Joe. On generating discrete linear l1 test problems. SIAM J.
Sci. Stat. Comput., 10(3):550{561, 1989.

[4] James R. Bunch and Linda Kaufman. Some stable methods for calculating inertia and
solving symmetric linear systems. Math. Comp., 31(137):163{179, 1977.

[5] Denise Chen and Cleve Moler. Symbolic Math Toolbox: User's Guide. The MathWorks,
Inc., Natick, MA, USA, 1993.

[6] A. K. Cline and R. K. Rew. A set of counter-examples to three condition number estimators.
SIAM J. Sci. Stat. Comput., 4(4):602{611, 1983.

[7] James W. Demmel and A. McKenney. A test matrix generation suite. Preprint MCS-
P69-0389, Mathematics and Computer Science Division, Argonne National Laboratory,
IL, USA, March 1989. 16 pp. LAPACK Working Note 9.

[8] Iain S. Du�, Roger G. Grimes, and John G. Lewis. Sparse matrix test problems. ACM
Trans. Math. Software, 15(1):1{14, 1989.

[9] Iain S. Du�, Roger G. Grimes, and John G. Lewis. Users' guide for the Harwell{Boeing
sparse matrix collection (release 1). Report RAL-92-086, Atlas Centre, Rutherford Apple-
ton Laboratory, Didcot, Oxon, UK, December 1992. 84 pp.

[10] W. H. Enright and J. D. Pryce. Two FORTRAN packages for assessing initial value
methods. ACM Trans. Math. Soft., 13(1):1{27, 1987.

[11] Werner L. Frank. Computing eigenvalues of complex matrices by determinant evaluation
and by methods of Danilewski and Wielandt. J. Soc. Indust. Appl. Math., 6:378{392, 1958.

[12] F. R. Gantmacher. The Theory of Matrices, volume two. Chelsea, New York, 1959. ISBN
0-8284-0133-0. ix+276 pp.

[13] David M. Gay. Electronic mail distribution of linear programming test problems. Mathe-
matical Programming Society COAL Newsletter, December:10{12, 1985.

[14] Gene H. Golub and Charles F. Van Loan. Matrix Computations. Johns Hopkins University
Press, Baltimore, MD, USA, second edition, 1989. ISBN 0-8018-3772-3 (hardback), 0-8018-
3739-1 (paperback). xix+642 pp.

[15] Robert T. Gregory and David L. Karney. A Collection of Matrices for Testing Computa-
tional Algorithms. Wiley, New York, 1969. ISBN 0-88275-649-4. ix+154 pp. Reprinted
with corrections by Robert E. Krieger, Huntington, New York, 1978.

[16] Per Christian Hansen. Regularization tools. A Matlab package for analysis and solution of
discrete ill-posed problems. Report UNIC-92-03, UNI�C, Technical University of Denmark,
DK-2800 Lyngby, Denmark, June 1992.

68

[17] Per Christian Hansen. Test matrices for regularization methods. SIAM J. Sci. Comput.,
16(2):506{512, 1995.

[18] Nicholas J. Higham. Computing the polar decomposition|with applications. SIAM J.
Sci. Stat. Comput., 7(4):1160{1174, October 1986.

[19] Nicholas J. Higham. A collection of test matrices in MATLAB. Numerical Analysis Report
No. 172, University of Manchester, Manchester, England, July 1989.

[20] Nicholas J. Higham. How accurate is Gaussian elimination? In D. F. Gri�ths and G. A.
Watson, editors, Numerical Analysis 1989, Proceedings of the 13th Dundee Conference,
volume 228 of Pitman Research Notes in Mathematics, pages 137{154. Longman Scienti�c
and Technical, Essex, UK, 1990.

[21] Nicholas J. Higham. Algorithm 694: A collection of test matrices in MATLAB. ACM
Trans. Math. Software, 17(3):289{305, September 1991.

[22] Nicholas J. Higham. Estimating the matrix p-norm. Numer. Math., 62:539{555, 1992.

[23] Nicholas J. Higham. Optimization by direct search in matrix computations. SIAM J.
Matrix Anal. Appl., 14(2):317{333, April 1993.

[24] Nicholas J. Higham. The Test Matrix Toolbox for Matlab. Numerical Analysis Report No.
237, Manchester Centre for Computational Mathematics, Manchester, England, December
1993. 76 pp.

[25] Nicholas J. Higham. The matrix sign decomposition and its relation to the polar decom-
position. Linear Algebra and Appl., 212/213:3{20, 1994.

[26] Nicholas J. Higham. Accuracy and Stability of Numerical Algorithms. Society for Industrial
and Applied Mathematics, Philadelphia, PA, USA, 1996. ISBN 0-89871-355-2. Approx
xxiv+690 pp. In press.

[27] Nicholas J. Higham and Desmond J. Higham. Large growth factors in Gaussian elimination
with pivoting. SIAM J. Matrix Anal. Appl., 10(2):155{164, April 1989.

[28] Roger A. Horn and Charles R. Johnson. Matrix Analysis. Cambridge University Press,
1985. ISBN 0-521-30586-1. xiii+561 pp.

[29] Roger A. Horn and Charles R. Johnson. Topics in Matrix Analysis. Cambridge University
Press, 1991. ISBN 0-521-30587-X. viii+607 pp.

[30] W. Kahan. Numerical linear algebra. Canadian Math. Bulletin, 9:757{801, 1966.

[31] I. J. Lustig. An analysis of an available set of linear programming test problems. Computers
and Operations Research, 16:173{184, 1989.

[32] Cleve B. Moler. MATLAB's magical mystery tour. The MathWorks Newsletter, 7(1):8{9,
1993.

[33] J. J. Mor�e, B. S. Garbow, and K. E. Hillstrom. Testing unconstrained optimization soft-
ware. ACM Trans. Math. Software, 7:17{41, 1981.

[34] John R. Rice and R. E. Boisvert. Solving Elliptic Problems using ELLPACK. Springer-
Verlag, New York, 1985.

[35] A. Ruhe. Closest normal matrix �nally found! BIT, 27:585{598, 1987.

69

[36] H. Rutishauser. On test matrices. In Programmation en Math�ematiques Num�eriques,
Besan�con, 1966, volume 7 (no. 165) of �Editions Centre Nat. Recherche Sci., Paris, pages
349{365, 1968.

[37] G. W. Stewart. Updating a rank-revealing ULV decomposition. SIAM J. Matrix Anal.
Appl., 14(2):494{499, 1993.

[38] J. Stoer and C. Witzgall. Transformations by diagonal matrices in a normed space. Numer.
Math., 4:158{171, 1962.

[39] Olga Taussky and Marvin Marcus. Eigenvalues of �nite matrices. In John Todd, editor,
Survey of Numerical Analysis, pages 279{313. McGraw-Hill, New York, 1962.

[40] Lloyd N. Trefethen. Pseudospectra of matrices. In D. F. Gri�ths and G. A. Watson,
editors, Numerical Analysis 1991, Proceedings of the 14th Dundee Conference, volume
260 of Pitman Research Notes in Mathematics, pages 234{266. Longman Scienti�c and
Technical, Essex, UK, 1992.

[41] Lloyd N. Trefethen. Spectra and Pseudospectra: The Behavior of Non-Normal Matrices
and Operators. Book in preparation.

[42] J. M. Varah. A generalization of the Frank matrix. SIAM J. Sci. Stat. Comput., 7(3):
835{839, 1986.

[43] Joan R. Westlake. A Handbook of Numerical Matrix Inversion and Solution of Linear
Equations. Wiley, New York, 1968.

[44] J. H. Wilkinson. Error analysis of oating-point computation. Numer. Math., 2:319{340,
1960.

[45] J. H. Wilkinson. The Algebraic Eigenvalue Problem. Oxford University Press, 1965. ISBN
0-19-853403-5 (hardback), 0-19-853418-3 (paperback). xviii+662 pp.

[46] G. Zielke. Report on test matrices for generalized inverses. Computing, 36:105{162, 1986.

70

IMPLICITLY RESTARTED ARNOLDI/LANCZOS

METHODS FOR

LARGE SCALE EIGENVALUE CALCULATIONS

D. C. Sorensen�

Department of Computational and Applied Mathematics

Rice University

Houston, Texas 77251-1829

October 25, 1995

Abstract

This report provides an introductory overview of the numerical so-
lution of large scale algebraic eigenvalue problems. The main focus
is on a class of methods called Krylov subspace projection methods.
The Lanczos method is the premier member of this class and the
Arnoldi method is a generalization to the nonsymmetric case. A re-
cently developed and very promising variant of the Arnoldi/Lanczos
scheme called the Implicitly Restarted Arnoldi Method is presented
here in detail. This method is highlighted because of its suitability
as a basis for software development. It may be viewed as a truncated
form of the implicitly shifted QR-algorithm that is appropriate for
very large problems. Based on this technique, a public domain soft-
ware package called ARPACK has been developed in Fortran 77 for
�nding a few eigenvalues and eigenvectors of large scale symmetric,
nonsymmetric, standard or generalized problems. This package has
performed well on workstations, parallel-vector supercomputers, dis-
tributed memory parallel systems and clusters of workstations. The
important features of this package are presented along with a discus-
sion some applications and performance indicators.

AMS classi�cation: Primary 65F15; Secondary 65G05

Key words and phrases: Large scale eigenvalue problems,

Arnoldi methods, Lanczos methods, Krylov subspace pro-

jection, Implicit restarting,

�This work was supported in part by the National Science Foundation contract ASC-9408795, National
Science Foundation cooperative agreement CCR-9120008 and by DARPA through U.S. Army ORA7453.01.

IMPLICITLY RESTARTED ARNOLDI/LANCZOS METHODS FOR
LARGE SCALE EIGENVALUE CALCULATIONS

D.C. SORENSEN
Department of Computational and Applied Mathematics

Rice University
P.O. Box 1892

Houston, TX 77251
sorensen@rice.edu

1 Introduction

Eigenvalues and eigenfunctions of linear operators are important to many areas of applied
mathematics. The ability to approximate these quantities numerically is becoming increas-
ingly important in a wide variety of applications. This increasing demand has fueled interest
in the development of new methods and software for the numerical solution of large scale
algebraic eigenvalue problems. In turn, the existence of these new methods and software,
along with the dramatically increased computational capabilities now available, has enabled
the solution of problems that would not have even been posed �ve or ten years ago. Until
very recently, software for large scale nonsymmetric problems was virtually non-existent.
Fortunately, the situation is improving rapidly.

The purpose of this article is to provide an overview of the numerical solution of large
scale algebraic eigenvalue problems. The focus will be on a class of methods called Krylov
subspace projection methods. The well known Lanczos method is the premier member of
this class. The Arnoldi method generalizes the Lanczos method to the non-symmetric case.
A recently developed variant of the Arnoldi/Lanczos scheme called the Implicitly Restarted
Arnoldi Method [44] is presented here in some depth. This method is highlighted because
of its suitability as a basis for software development.

The discussion begins with a brief synopsis of the theory and the basic iterations suit-
able for large scale problems to motivate the introduction of Krylov subspaces. Then the
Lanczos/Arnoldi factorization is introduced along with a discussion of its important approx-
imation properties. Spectral transformations are presented as a means to improve these
approximation properties and to enhance convergence of the basic methods. Restarting is
introduced as a way to overcome intractable storage and computational requirements in the

1

original Arnoldi method. Implicit restarting is a new sophisticated variant of restarting.
This new technique may be viewed as a truncated form of the powerful implicitly shifted
QR technique that is suitable for large scale problems. Implicit restarting provides a means
to approximate a few eigenvalues with user speci�ed properties in space proportional to nk
where k is the number of eigenvalues sought.

Generalized eigenvalue problems are discussed in some detail. They arise naturally in
PDE applications and they have a number of subtleties with respect to numerically stable
implementation of spectral transformations.

Software issues and considerations for implementation on vector and parallel computers
are introduced in the later sections. Implicit restarting has provided a means to develop
very robust and e�cient software for a wide variety of large scale eigen-problems. A public
domain software package called ARPACK has been developed in Fortran 77. This package
has performed well on workstations, parallel-vector supercomputers, distributed memory
parallel systems and clusters of workstations. The features of this package along with some
applications and performance indicators occupy the �nal section of this paper.

2 Eigenvalues, Power Iterations, and Spectral Transformations

A brief discussion of the mathematical structure of the eigenvalue problem is necessary to
�x notation and introduce ideas that lead to an understanding of the behavior, strengths
and limitations of the algorithms. In this discussion, the real and complex number �elds are
denoted by R and C respectively. The standard n-dimensional real and complex vectors
are denoted by Rn and Cn and the symbols Rm�n and Cm�n will denote the real and
complex matrices m rows and n columns. Scalars are denoted by lower case Greek letters,
vectors are denoted by lower case Latin letters and matrices by capital Latin letters. The
transpose of a matrix A is denoted by AT and the conjugate-transpose by AH . The symbol,
k � k will denote the Euclidean or 2-norm of a vector. The standard basis of Cn is denoted
by the set fejgnj=1.

The set of numbers �(A) � f� 2 C : rank(A��I) < n)g is called the spectrum of A. The
elements of this discrete set are the eigenvalues of A and they may be characterized as the n
roots of the characteristic polynomial pA(�) � det(�I �A). Corresponding to each distinct
eigenvalue � 2 �(A) is at least one nonzero vector x such that Ax = x�. This vector is
called a right eigenvector of A corresponding to the eigenvalue �. The pair (x; �) is called
an eigenpair. A nonzero vector y such that yHA = �yH is called a left eigenvector. The
multiplicity na(�) of � as a root of the characteristic polynomial is the algebraic multiplicity
and the dimension ng(�) of Null(�I � A) is the geometric multiplicity of �. A matrix is
defective if ng(�) < na(�) and otherwise A is non-defective. The eigenvalue � is simple if
na(�) = 1.

A subspace S ofCn�n is called an invariant subspace of A if AS � S. It is straightforward
to show if A 2 Cn�n , X 2 Cn�k and B 2 Ck�k satisfy

AX = XB; (1)

2

then S � Range(X) is an invariant subspace of A. Moreover, if X has full column rank
k then the columns of X form a basis for this subspace and �(B) � �(A). If k = n then
�(B) = �(A) and A is said to be similar to B under the similarity transformation X .
A is diagonalizable if it is similar to a diagonal matrix and this property is equivalent to
A being non-defective.

An extremely important theorem to the study of numerical algorithms for eigenproblems
is the Schur decomposition. It states that every square matrix is unitarily similar to an
upper triangular matrix. In other words, for any linear operator on Cn, there is a unitary
basis in which the operator has an upper triangular matrix representation.

Theorem 2.1 (Schur Decomposition). Let A 2 Cn�n. Then there is a unitary matrix Q
and an upper triangular matrix R such that

AQ = QR: (2)
The diagonal elements of R are the eigenvalues of A.

From the Schur decomposition, the fundamental structure of Hermitian and normal matrices
is easily exposed:

Lemma 2.2 A matrix A 2 Cn�n is normal (AAH = AHA) if and only if A = Q�QH

with Q 2 Cn�n unitary and � 2 Cn�n diagonal. A matrix A 2 Cn�n is Hermitian (
A = AH) if and only if A = Q�QH with Q 2 Cn�n unitary and � 2 Rn�n diagonal. In
either case, the diagonal entries of � are the eigenvalues of A and the columns of Q are the
corresponding eigenvectors.

The proof follows easily through substitution of the Schur decomposition in place of A in
each of the de�ning relationships. The columns of Q are called Schur vectors in general
and these are eigenvectors of A if and only if A is normal.

For purposes of algorithmic development this structure is fundamental. In fact, the well
known Implicitly Shifted QR-Algorithm [16] is designed to produce a sequence of unitary
similarity transformations Qj that iteratively reduce A to upper triangular form. This
algorithm begins with an initial unitary similarity transformation V of A to the condensed
form AV = V H where H is upper Hessenberg (tridiagonal in case A = AH). Then the
following iteration is performed:

Algorithm 1: Implicitly Shifted QR-iteration

Input: (A;V;H) with AV = V H;V HV = I , H upper Hessenberg;

For j = 1; 2; 3; ::: until convergence,

(a1.1) Select a shift � �j

(a1.2) Factor [Q;R] = qr(H � �I) ;

(a1.3) H QHHQ ; V V Q;

End For

where Q is unitary and R is upper triangular (i.e. the QR factorization of H � �I). It is
easy to see that H is unitarily similar to A throughout the course of this iteration. The

3

iteration is continued until the subdiagonal elements of H converge to zero, i.e. until a
Schur decomposition has been (approximately) obtained. In the standard implicitly shifted
QR-iteration, the unitary matrix Q is never actually formed. it is computed indirectly as
a product of 2 � 2 Givens or 3 � 3 Householder transformations through a \bulge chase"
process. The elegant details of an e�cient and stable implementation would be too much
of a digression here. They may be found in [18]. The convergence behavior of this iteration
is fascinating. The columns of V converge to Schur vectors at various rates. These rates
are fundamentally linked to the simple power method and its rapidly convergent variant,
inverse iteration (see [51]).

Despite the extremely fast rate of convergence and the e�cient use of storage, the im-
plicitly shifted QR method is not suitable for large scale problems and it has proved to be
extremely di�cult to parallelize. Large scale problems are typically sparse or structured so
that a matrix-vector product w Av may be computed with time and storage proportional
to n rather than n2 . A method based upon full similarity transformations quickly destroys
this structure. Storage and operation counts become order n2. Hence, there is considerable
motivation for methods that only require matrix-vector products with the original A.

2.1 SINGLE VECTOR POWER ITERATIONS

Probably the oldest algorithm for approximating eigenvalues and corresponding eigenvec-
tors of a matrix is the power method. This method is an important tool in its own right
when conditions are appropriate. It is very simple and only requires matrix-vector products
along with two vectors of storage. In addition to its role as an algorithm, the method is
central to the development, understanding, and convergence analysis of all of the iterative
methods discussed here.

Algorithm 2: The Power Method

Input: (A; vo)

Put v = vo=kvok1;

For j = 1; 2; 3; ::: until convergence,

(a2.1) w Av;

(a2.2) � = vHw

vHv
;

(a2.3) i = i max (w);

(a2.4) v v=(eTi w) ;

End For

At Step (a2.3), i is the index of the element of w with largest absolute value. It is easily
seen that the contents of v after k-steps of this iteration will be the vector

vk = (
1

eTi A
kvo

)Akvo = (
�k

eTi A
kvo

)(
1

�k
Akvo)

for any nonzero scalar �k. In particular, this iteration may be analyzed as if the vectors had
been scaled by �k = �k1 at each step, with �1 an eigenvalue of A with largest magnitude.

4

If A is diagonalizable with eigenpairs f(xj; �j); 1 � j � ng and vo has the expansion
vo =

Pn
j=1 xjj in this basis then

1

�k1
Akvo =

1

�k1

nX
j=1

Akxjj =
nX

j=1

xj(�j=�1)
kj : (3)

If �1 is a simple eigenvalue then�
�j
�1

�k
! 0; 2 � j � n:

It follows that vk ! x1=(e
T
i x1), where i = i max (x1), at a linear rate with a convergence

factor of j�2�1 j .

While the power method is useful, it has two obvious drawbacks. Convergence may be
arbitrarily slow or may not happen at all. Only one eigenvalue and corresponding vector
can be found.

2.2 SPECTRAL TRANSFORMATIONS

The basic power iteration may be modi�ed to overcome these di�culties. The most fun-
damental modi�cation is to employ a spectral transformation. Spectral transformations
are generally based upon the following:

Let A 2 Cn�n have an eigenvalue � with corresponding eigenvector x.

1. Let p(�) = 0 + 1� + 2�
2 + : : :+ k�

k . Then p(�) is an eigenvalue of the matrix
p(A) = 0I+1A+2A2+ : : :+kAk with corresponding eigenvector x (i.e. p(A)x =
xp(�)).

2. If r(�) = p(�)
q(�) where p and q are polynomials with q(A) nonsingular, de�ne r(A) =

[q(A)]�1p(A). Then r(�) is an eigenvalue of r(A) with corresponding eigenvector x.

It is often possible to construct a polynomial or rational function �(�) such that

j�(�i)j � j�(�j)j for 1 � j � n; j 6= i;

where �i is an eigenvalue of particular interest. This is called a spectral transformation since
the eigenvectors of the transformed matrix �(A) remain the same, but the corresponding
eigenvalues �j are transformed to �(�j). Applying the power method with �(A) in place
of A will then produce the eigenvector q � xi corresponding to �i at a linear a convergence

rate with a convergence factor of j�(�j)
�(�i)
j << 1. Once the eigenvector has been found, the

eigenvalue � � �i may be calculated directly from a Rayleigh quotient � = qHAq=qHq.

2.3 INVERSE ITERATION

Spectral transformation can lead to dramatic enhancement of the convergence of the power
method. Polynomial transformations may be applied using only matrix-vector products.

5

Rational transformations require the solution of linear systems with the transformed matrix
as the coe�cient matrix. The simplest rational transformation turns out to be very powerful
and is almost exclusively used for this purpose. If � =2 �(A) then A � �I is invertible and
�([A � �I]�1) = f1=(� � �) : � 2 �(A)g . This transformation is very successful since
eigenvalues near the shift � are transformed to extremal eigenvalues which are well separated
from the other ones while the original extremal eigenvalues are transformed near the origin.
Hence under this transformation the eigenvector q corresponding to the eigenvalue of A that
is closest to � may be readily found and the corresponding eigenvalue may obtained either
through the formula � = � + 1=�, where � is the eigenvalue of the transformed matrix, or
it may be calculated directly from a Rayleigh quotient.

Algorithm 3: The Inverse Power Method

Input: (A; vo; �)

Put v = vo=kvok1;

For j = 1; 2; 3; ::: until convergence,

(a3.1) Solve (A� �I)w = v;

(a3.2) � = �+ vHw

wHw
;

(a3.3) i = i max (w);

(a3.4) v v=(eTi w) ;

End For

Observe that the formula for � at Step (a3.2) is equivalent to forming � = (wHAw)=(wHw)
so an additional matrix vector product is not necessary to obtain the Rayleigh quotient es-
timate. The analysis of convergence remains entirely in tact. This iteration converges
linearly with the convergence factor

j�1 � �j

j�2 � �j

where the eigenvalues of A have been re-indexed so that j�1 � �j < j�2 � �j � j�3 � �j �
::: � j�n � �j. Hence, the convergence becomes faster as � gets closer to �1.

This result is encouraging but still leaves us wondering how to select the shift � to be
close to the unknown eigenvalue we are trying to compute. In many applications the choice
is apparent from the requirements of the problem. It is also possible to change the shift at
each iteration at the expense of a new matrix factorization at each step. An obvious choice
would be to replace the shift with the current Rayleigh quotient estimate. This method,
called Rayleigh Quotient Iteration, has very impressive convergence rates indeed. Rayleigh
Quotient Iteration converges at a quadratic rate in general and at a cubic rate on Hermitian
problems. For a more detailed discussion of the eigenvalue problem and basic algorithms
see [52, 46, 18].

6

3 Krylov Subspaces and Projection Methods

Although the rate of convergence can be improved to an acceptable level through spectral
transformations, power iterations are only able to �nd one eigenvector at a time. If more
vectors are sought, then various deation techniques (such as orthogonalizing against pre-
viously converged eigenvectors) and shift strategies must be introduced. One alternative
is to introduce a block form of the simple power method which is often called subspace
iteration. This important class of algorithms has been developed and investigated in [46].
Several software e�orts have been based upon this approach [3, 47, 12]. However, there is
another class of algorithms called Krylov subspace projection methods that are based upon
the intricate structure of the sequence of vectors naturally produced by the power method.

An examination of the behavior of the power sequence as exposed in equation (3) hints
that the successive vectors produced by a power iteration may contain considerable infor-
mation along eigenvector directions corresponding to eigenvalues other than the one with
largest magnitude. The expansion coe�cients of the vectors in the power sequence evolve
in a very structured way. Therefore, linear combinations of the these vectors might well be
devised to expose additional eigenvectors. A single vector power iteration simply ignores
this additional information, but more sophisticated techniques may be employed to extract
it.

If one hopes to obtain additional information through various linear combinations of the
power sequence, it is natural to formally consider the Krylov subspace

Kk(A; v1) = Span fv1; Av1; A
2v1; : : : ; A

k�1v1g

and to attempt to formulate the best possible approximations to eigenvectors from this
subspace.

It is reasonable to construct approximate eigenpairs from this subspace by imposing a
Galerkin condition: A vector x 2 Kk(A; v1) is called a Ritz vector with corresponding Ritz
value � if the Galerkin condition

< w;Ax� x� >= 0 ; for all w 2 Kk(A; v1)

is satis�ed. There are some immediate consequences of this de�nition: Let W be a matrix
whose columns form an orthonormal basis for Kk � Kk(A; v1). Let P = WWH denote the
related orthogonal projector onto Kk and de�ne Â � PAP = WBWH where B � WHAW .
It can be shown that

Lemma 3.1 For the quantities de�ned above:

1. (x; �) is a Ritz-pair if and only if x = Wy with By = y� .

2. k(I �P)AWk = k(A� Â)Wk � k(A�M)Wk
for all M 2 Cn�n such that MKk � Kk.

3. The Ritz-pairs (x; �) and the minimum value k(I � P)AWk are independent of the
choice of orthonormal basis W .

Item (1) follows immediately from the Galerkin condition since it implies that 0 = WH(AWy�

7

Wy�) = By � y�. Item (2) is easily shown using invariance of k � k under unitary transfor-
mations. Item (3) follows from the fact that V is an orthonormal basis for Kk if and only if
V = WQ for some k � k unitary matrix Q. With this change of basis Â = V HV H , where
H = V HAV = QHBQ. Since H is unitarily similar to B, the Ritz-values remain the same
and the Ritz-vectors are of the form x = Wy = V ŷ where ŷ = QHy.

These facts are actually valid for any k dimensional subspace S in place of Kk. The
following properties are consequences of the fact that every w 2 Kk is of the form w =
�(A)v1 for some polynomial � of degree less than k.

Lemma 3.2 For the quantities de�ned above:

1. If q is a polynomial of degree less than k then

q(A)v1 = q(Â)v1 = Wq(B)z1

where v1 = Wz1, and if degree of q is k then

Pq(A)v1 = q(Â)v1:

2. If p̂(�) � det(�I � B) is the characteristic polynomial of B then p̂(Â) = 0 and
kp̂(A)v1k � kq(A)v1k for all monic polynomials of degree k.

3. If y is any vector in Ck then AWy �WBy = p̂(A)v1 for some scalar .

4. If (x; �) is any Ritz-pair for A with respect to Kk then

Ax� x� = p̂(A)v1

for some scalar .

This discussion follows the treatment given by Saad in [40] and in his earlier papers.
While these facts may seem esoteric, they have important algorithmic consequences. First,
it should be noted that Kk is an invariant subspace for A if and only if v1 = V y, where
AV = VR with V HV = Ik and R is k � k upper triangular. Also, Kk is an invariant
subspace for A if v1 = Xy, where X 2 Cn�k and AX = X� with � diagonal . This follows
from items (2) and (3) since there is a k degree monic polynomial q such that q(R) = 0 and
hence kp̂(A)v1k � kq(A)v1k = kV q(R)yk = 0 (A similar argument holds when v1 = Xy).

Secondly, there is some algorithmic motivation to seek a convenient orthonormal basis
V = WQ that will provide a means to successively construct these basis vectors. It is pos-
sible to construct a k� k unitary Q using standard Householder transformations such that
v1 = V e1 and H = QHBQ is upper Hessenberg with non-negative subdiagonal elements.
It is also possible to show using item (3) that in this basis,

AV = V H + feTk ; where f = p̂(A)v1

and V Hf = 0 follows from the Galerkin condition.

8

The �rst observation shows that if it is possible to obtain a v1 as a linear combination of
k eigenvectors of A then f = 0 and V is an orthonormal basis for an invariant subspace of
A and that the Ritz values �(H) � �(A) and corresponding Ritz vectors are eigenpairs for
A. The second observation leads to the Lanczos/Arnoldi process [23, 1].

4 The Arnoldi Factorization

De�nition : If A 2 Cn�n then a relation of the form

AVk = VkHk + fke
T
k

where Vk 2 C
n�k has orthonormal columns, V H

k fk = 0 and Hk 2 C
k�k is upper Hessenberg

with non-negative subdiagonal elements is called a k � step Arnoldi Factorization of A.
If A is Hermitian then Hk is real, symmetric and tridiagonal and the relation is called a
k � step Lanczos Factorization of A. The columns of Vk are referred to as the Arnoldi
vectors or Lanczos vectors respectively.

The development of this factorization has been purely through the consequences of the
orthogonal projection imposed by the Galerkin conditions. A more straightforward but less
illuminating derivation is to simply truncate the reduction of A to Hessenberg form that
precedes the implicitly shifted QR-iteration by equating the �rst k columns on both sides
of the complete reduction AV = V H . An alternative way to write this factorization is

AVk = (Vk; vk+1)

Hk

�ke
T
k

!
where �k = kfkk and vk+1 =

1

�k
fk :

This factorization may be used to obtain approximate solutions to a linear system Ax = b
if b = v1�o and this underlies the GMRES method [41]. However, the purpose here is to
investigate the use of this factorization to obtain approximate eigenvalues and eigenvec-
tors. The discussion of the previous section implies that Ritz pairs satisfying the Galerkin
condition are immediately available from the eigenpairs of the small projected matrix H .

If Hky = y� then the vector x = Vky satis�es

kAx� x�k = k(AVk � VkHk)yk = j�ke
T
k yj:

The number j�ke
T
k yj is called the Ritz estimate for this the Ritz pair (x; �) as an approxi-

mate eigenpair for A. Observe that if (x; �) is a Ritz pair then

� = yHHky = (Vky)
HA(Vky) = xHAx

is a Rayleigh Quotient (assuming kyk = 1) and the associated Rayleigh Quotient residual
r(x) = Ax� x� satis�es

kr(x)k = j�ke
T
k yj:

When A is Hermitian, this relation may be used to provide computable rigorous bounds
on the accuracy of the eigenvalues of H as approximations to eigenvalues of A (see [34]).
When A is non-Hermitian the possibility of non-normality precludes such bounds and one
can only say that the RQ-residual is small if j�ke

T
k yj is small. However, in either case, if

9

fk = 0 these the Ritz pairs become exact eigenpairs of A.

This factorization may be advanced one step at the cost of a (sparse) matrix-vector
product involving A and two dense matrix vector products involving V T

k and Vk.

The explicit steps needed to form a k-Step Arnoldi Factorization are:

Algorithm 4: The k-Step Arnoldi Factorization

Input: (A; v)

Put v1 = v=kvk; w = Av1;�1 = vH1 w;

Put f1 w � v1�1 ; V (v1); H (�1);

For j = 1; 2; 3; :::k-1,

(a4.1) �j = kfjk; vj+1 fj=�j;

(a4.2) Vj+1 (Vj; vj+1); Ĥj

Hj

�je
T
j

!
;

(a4.3) z Avj+1;

(a4.4) h V T
j+1z; fj+1 z � Vj+1h;

(a4.5) Hj+1 (Ĥj; h);

End For

In exact arithmetic, the columns of V form an orthonormal basis for the Krylov subspace
and H is the orthogonal projection of A onto this space. In �nite precision arithmetic, care
must be taken to assure that the computed vectors are orthogonal to working precision.
The method proposed by Daniel, Gragg, Kaufman and Stewart (DGKS) in [9] provides an
excellent way to construct a vector fj+1 that is numerically orthogonal to Vj+1. It amounts
to computing a correction

s = V T
j+1fj+1; fj+1 fj+1 � Vj+1s; h h+ s;

just after Step (a4.4) if necessary. A simple test can be devised to avoid this DGKS
correction if it is not needed.

The dense matrix-vector products at Step (a4.4) and also the correction may be ac-
complished using Level 2 BLAS. This is quite important for performance on vector, and
parallel-vector supercomputers. The BLAS operation GEMV is easily parallelized and
vectorized and has a much better ratio of oating point computation to data movement
[10, 11]. The Modi�ed Gram-Schmidt Process (MGS) is often used in the construction of
Arnoldi factorizations. However, MGS will de�nitely not produce numerically orthogonal
basis vectors in practice. Moreover, MGS cannot be formulated in terms of Level 2 BLAS
unless all of the vectors to be orthogonalized are known in advance and this is not the case
in the Arnoldi process. For these reasons, classical Gram-Schmidt orthogonalization with
the DGKS correction step is highly recommended.

The information obtained through this process is completely determined by the choice of
the starting vector. Eigen-information of interest may not appear until k gets very large.

10

In this case it becomes intractable to maintain numerical orthogonality of the basis vectors
Vk. Moreover, extensive storage will be required and repeatedly �nding the eigensystem of
H will become prohibitive at a cost of O(k3) ops.

Failure to maintain orthogonality leads to several numerical di�culties. In a certain
sense, the computation (or approximation) of the projection indicated at Step (a4.4) in
a way that overcomes these di�culties has been the main source of research activity in
these Krylov subspace projection methods. The computational di�culty stems from the
fact that kfkk = 0 if and only if the columns of Vk span an invariant subspace of A. When
Vk \nearly" spans such a subspace kfkk will be small. Typically, in this situation, a loss of
signi�cant digits will take place at Step (a4.4) through numerical cancellation unless special
care is taken (i.e. use of the DGKS correction).

It is desirable for kfkk to become small because this indicates that the eigenvalues of
H are accurate approximations to the eigenvalues of A. However, this \convergence" will
indicate a probable loss of numerical orthogonality in V . Moreover, if subsequent Arnoldi
vectors are not forced to be orthogonal to the converged ones then components along these
directions re-enter the basis via round-o� e�ects and quickly cause a spurious copy of the
previously computed eigenvalue to appear repeatedly in the spectrum of the projected ma-
trix H . The identi�cation of this phenomenon in the symmetric case and the �rst rigorous
numerical treatment is due to Paige [31]. There have been several approaches to over-
come this problem in the symmetric case. They include: (1) complete re-orthogonalization,
which may be accomplished through maintaining V in product Householder form [50, 17]
or through the Modi�ed Gram-Schmidt processes with re-orthogonalization [9]. (2) Se-
lective re-orthogonalization, which has been proposed by Parlett and has been heavily
researched by him and his students. Most notably, the theses and subsequent papers and
computer codes of Scott and of Simon have developed this idea [34, 33, 43]. (3) No re-
orthogonalization, which has been developed by Cullum and her colleagues. This last op-
tion introduces the almost certain possibility of introducing spurious eigenvalues. Various
techniques have been developed to detect and deal with the presence of spurious eigenvalues
[6, 8].

The appearance of spurious eigenvalues may be avoided through complete orthogonal-
ization of the Arnoldi (or Lanczos) vectors using the DGKS correction. Computational
cost has been cited as the reason for not employing this option . However, the cost will
be reasonable if one is able to �x k at a modest size and then update the starting vec-
tor v1 = Vke1 while repeatedly doing k-Arnoldi steps. This approach was introduced in
[21] and developed further by [7] for the symmetric case. Saad [38, 39, 40] has developed
explicit restarting for the nonsymmetric case. Restarting has proven to have important
consequences for the development of numerical software based upon Arnoldi's method and
this will be explored in the following section.

5 Restarting the Arnoldi Method

An unfortunate aspect of the Lanczos/Arnoldi process is that one cannot know in advance
how many steps will be required before eigenvalues of interest are well approximated by Ritz

11

values. This is particularly true when the problem has a wide range of eigenvalues but the
eigenvalues of interest are clustered. For example, in computational chemistry, problems
are usually symmetric and positive de�nite and there is a wide range of eigenvalues varying
over many orders of magnitude. Only the smallest eigenvalues are physically interesting
and they are typically clustered at the low end of the spectrum. Shift and invert is usually
not an option because of �ll in from the factorizations. Without a spectral transformation,
many Lanczos steps are required to obtain the smallest eigenvalues. In order to recover
eigenvectors, one is obliged to store all of the Lanczos basis vectors (usually on a peripheral
device) and to solve very large tridiagonal eigenvalue subproblems at each step. In the
Arnoldi process that is used in the non-Hermitian case, not only do the basis vectors have
to be stored, but the cost of the Hessenberg eigenvalue subproblem is O(k3) at the k-th
step.

5.1 EXPLICIT RESTARTING

An alternative has been proposed by Saad based upon the polynomial acceleration scheme
developed by Manteu�el [28] for the iterative solution of linear systems. Saad [39] proposed
to restart the iteration with a vector that has been preconditioned so that it is more nearly
in a k-dimensional invariant subspace of interest. This preconditioning takes the form of a
polynomial applied to the starting vector that is constructed to damp unwanted components
from the eigenvector expansion. The resulting algorithm takes the form:

Algorithm 5: An Explicitly Restarted Arnoldi Method

Input: (A; v)

Put v1 = v=kvk;

For j = 1; 2; 3; ::: until convergence

(a5.1) Compute an m-step Arnoldi factorization

AVm = VmHm + fme
T
m with Vme1 = v1 ;

(a5.2) Compute �(Hm) and corresponding Ritz estimates

and halt if desired eigenvalues are well approximated.

(a5.3) Construct a polynomial based upon �(Hm) to damp unwanted components.

(a5.4) v1 (A)v1; v1 v1=kv1k ;

End For

The construction of the polynomial at Step (a5.3) may be guided by a priori information
about the spectrum of A or solely by information gleaned from �(Hm). A typical scheme is
to sort the spectrum of Hm into two disjoint sets
w and
u, with �(Hm) =
w [
u. The
Ritz values in the set
w are to be regarded as approximations to the \wanted" eigenvalues
of A and an open convex set Cu containing
u with
w\Cu = ; is to be regarded as a region
that approximately encloses the \unwanted" portion of the spectrum of A. The polynomial
 is then constructed to be as small in magnitude as possible on Cu when normalized, for
example, to take the value 1 at an element of
w closest to @Cu. Chebyshev polynomials

12

are appropriate when Cu is taken to be an ellipse and this was the original proposal of
Saad when he adapted the Manteu�el idea to eigenvalue calculations. Another possibility
explored by Saad has been to take Cu to be the convex hull of
u and to construct the
polynomial that best approximates 0 on this set in the least squares sense. Both of
these are based upon well known theory of polynomial approximation. The problem of
constructing an optimal ellipse for this problem has been studied by Chatelin and Ho. The
reader is referred to [5] for details of constructing these polynomials.

The reasoning behind this type of algorithm is that that if v1 is a linear combination of
precisely k eigenvectors of A then Arnoldi factorization terminates in k steps (i.e. fk = 0).
The columns of Vk will form an orthonormal basis for the invariant subspace spanned by
those eigenvectors, and the Ritz values �(Hk) will be the corresponding eigenvalues of A.
The update of the starting vector v1 is designed to enhance the components of this vector
in the directions of the wanted eigenvectors and damp its components in the unwanted
directions. This e�ect is achieved at Step (a5.4) since

v1 =
nX

j=1

xjj) (A)v1 =
nX

j=1

xj (�j)j :

If the same polynomial were applied each time, then after M iterations, the j-th original
expansion coe�cient would be essentially attenuated by a factor�

 (�j)

 (�1)

�M
;

where the eigenvalues have been ordered according decreasing values j (�j))j. The eigen-
values inside the region Cu become less and less signi�cant as the iteration proceeds. Hence,
the wanted eigenvalues are approximated increasingly well as the iteration proceeds.

Another restarting strategy proposed by Saad is to replace the starting vector with a
linear combination of Ritz vectors corresponding to wanted Ritz values. If the eigenvalues
and corresponding vectors are re-indexed so that the �rst k are wanted and (x̂j ; �j) is the
the Ritz pair approximating the eigenpair (xj ; �j) then

v+1
kX

j=1

x̂jj (4)

is taken as the new starting vector. Again, the motivation here is that the Arnoldi residual
fk would vanish if these k Ritz vectors were actually eigenvectors of A and the Ritz vectors
are the best available approximations to these eigenvectors. A heuristic choice for the
coe�cients j has also been suggested by Saad [38]. It is to weight the j-th Ritz vector
with the value of its Ritz estimate and then normalize so that the new starting vector
has norm 1. This has the e�ect of favoring the Ritz vectors that have least converged.
Additional aspects of explicit restarting are developed thoroughly in Chapter VII of [40].
In any case, this restarting mechanism is actually polynomial restarting in disguise. Since
x̂j 2 Km(A; v1) implies x̂j = �j(A)v1 for some polynomial �j the formula for v

+
1 in (4) is

13

of the form

v+1 �(A)v1 �
kX

j=1

j�j(A)v1: (5)

The technique just described is referred to as explicit (polynomial) restarting. When
Chebyshev polynomials are used it is called an Arnoldi-Chebyshev method. The cost in
terms of matrix-vector products w Av is M � (m+ deg()) for M major iterations. The
cost of the arithmetic in the Arnoldi factorization is M � (2n �m2+O(m3)) Flops (oating
point operations). Tradeo�s must be made in terms of cost of the Arnoldi factorization vs.
cost of the matrix-vector products Av and also in terms of storage (nm+ O(m2)).

5.2 IMPLICIT RESTARTING

There is another approach to restarting that o�ers a more e�cient and numerically stable
formulation. This approach called implicit restarting is a technique for combining the
implicitly shifted QR mechanism with a k-step Arnoldi or Lanczos factorization to obtain
a truncated form of the implicitly shifted QR-iteration. The numerical di�culties and
storage problems normally associated with Arnoldi and Lanczos processes are avoided. The
algorithm is capable of computing a few (k) eigenvalues with user speci�ed features such
as largest real part or largest magnitude using 2nk+O(k2)storage. No auxiliary storage is
required. The computed Schur basis vectors for the desired k-dimensional eigen-space are
numerically orthogonal to working precision. This method is well suited to the development
of mathematical software and this will be discussed in Section 7.

Implicit restarting provides a means to extract interesting information from very large
Krylov subspaces while avoiding the storage and numerical di�culties associated with the
standard approach. It does this by continually compressing the interesting information into
a �xed size k-dimensional subspace. This is accomplished through the implicitly shifted QR
mechanism. An Arnoldi factorization of length m = k + p

AVm = VmHm + fme
T
m; (6)

is compressed to a factorization of length k that retains the eigen-information of interest.
This is accomplished using QR steps to apply p shifts implicitly. The �rst stage of this shift
process results in

AV +
m = V +

mH
+
m + fme

T
mQ; (7)

where V +
m = VmQ, H

+
m = QTHmQ, and Q = Q1Q2 � � �Qp, with Qj the orthogonal matrix

associated with the shift �j . It may be shown that the �rst k� 1 entries of the vector eTmQ
are zero (i.e. eTmQ = (�eTk ; q̂

T)). Equating the �rst k columns on both sides yields an
updated k�step Arnoldi factorization

AV +
k = V +

k H
+
k + f+k e

T
k ; (8)

with an updated residual of the form f+k = V +
k+pek+1�̂k + fk+p�. Using this as a starting

point it is possible to apply p additional steps of the Arnoldi process to return to the original
m-step form.

14

Each of these shift cycles results in the implicit application of a polynomial in A of degree
p to the starting vector.

v1 (A)v1 with (�) =
pY
1

(�� �j):

The roots of this polynomial are the shifts used in the QR process and these may be selected
to �lter unwanted information from the starting vector and hence from the Arnoldi factor-
ization. Full details may be found in [44]. The basic iteration is given here in Algorithm
6 and the diagrams in Figures 1-3 describe how this iteration proceeds schematically. In
Algorithm 6 and in the discussion below, the notation M(1:n;1:k) denotes the leading n � k
submatrix of M .

Algorithm 6: An Implicitly Restarted Arnoldi Method

Input: (A;V;H;f) with AVm = VmHm + fme
T
m, an m-Step Arnoldi Factorization;

For ` = 1; 2; 3; ::: until convergence

(a6.2) Compute �(Hm) and select set of p shifts �1; �2; :::�p

based upon �(Hm) or perhaps other information;

(a6.3) qT eTm;

(a6.4) For j = 1; 2; :::; p,

Factor [Qj;Rj] = qr(Hm � �jI);

Hm QH
j HmQj ; Vm VmQj;

q qHQj ;

End For

(a6.5) fk vk+1�̂k + fm�k;Vk Vm(1:n;1:k);Hk Hm(1:k;1:k);

(a6.6) Beginning with the k-step Arnoldi factorization

AVk = VkHk + fke
T
k ,

apply p additional steps of the Arnoldi process

to obtain a new m-step Arnoldi factorization

AVm = VmHm + fme
T
m .

End For

The diagrams in Figures 1-3 indicate how this iteration proceeds schematically.

Observe that ifm = n then f = 0 and this iteration is precisely the same as the Implicitly
Shifted QR iteration. Even for m < n, the �rst k columns of V and the Hessenberg
submatrix H(1:k;1:k) are mathematically equivalent to the matrices that would appear in the
full Implicitly Shifted QR iteration using the same shifts �j . In this sense, the Implicitly
Restarted Arnoldi method may be viewed as a truncation of the Implicitly Shifted QR
iteration. The fundamental di�erence is that the standard Implicitly Shifted QR iteration
selects shifts to drive subdiagonal elements of H to zero from the bottom up while the
shift selection in the Implicitly Restarted Arnoldi method is made to drive subdiagonal

15

+

p

k

p

pkk + p

Figure 1: Representation of Vk+pHk+p + fk+pe
T
k+p. Shaded regions denote nonzeros.

+

k

p

pkk + p

Figure 2: Vk+pQQTHk+pQ+ fk+pe
T
k+pQ after p implicitly shifted qr steps.

k

k

+

k

Figure 3: Leading k columns VkHk + fke
T
k form a length k Arnoldi factorization after

discarding the last p columns.

16

elements of H to zero from the top down. Important implementation details concerning
the deation (setting to zero) of subdiagonal elements of H and the purging of unwanted
but converged Ritz values are beyond the scope of this discussion. However, these details
are extremely important to the success of this iteration in di�cult cases. Complete details
of these numerical re�nements may be found in [26, 24]

The above iteration can be used to apply any known polynomial restart. If the roots
of the polynomial are not known there is an alternative implementation that only requires
one to compute q1 = (H)e1 where is the desired degree p polynomial. A sequence of
Householder transformations may developed to form a unitary matrix Q such that Qe1 = q1
and H QHHQ is upper Hessenberg. The details which follow standard developments
for the Implicitly Shifted QR iteration will be omitted here.

A shift selection strategy that has proved successful in practice is called the \Exact Shift
Strategy". In this strategy, one computes �(H) and sorts this into two disjoint sets
w

and
u. The k Ritz values in the set
w are regarded as approximations to the \wanted"
eigenvalues of A , and the p Ritz values in the set
u are taken as the shifts �j . An
interesting consequence (in exact arithmetic) is that after Step (a6.4) above, the spectrum
of Hk in Step (a6.5) is �(Hk) =
w and the updated starting vector v1 is a particular linear
combination of the k Ritz vectors associated with these Ritz values. In other words, the
implicit restarting scheme with exact shifts provides a speci�c selection of the coe�cients
j in the formula (4) and this implicit scheme costs p rather than the k+ p matrix-vector
products the explicit scheme would require. Thus the exact shift strategy can be viewed
both as a means to damp unwanted components from the starting vector and also as directly
forcing the starting vector to be a linear combination of wanted eigenvectors. The exact
shift strategy has two additional interesting theoretical properties.

Lemma 5.1 If H is unreduced and diagonalizable then:

1. The polynomial � in (5) satis�es �(�) = (�)�(�),

where is the exact shift polynomial and � is some
polynomial of degree at most k � 1.

2. The updated Krylov subspace generated by the new
starting vector satis�es

Km(A; v
+
1) = Spanfx̂1; x̂2; � � � ; x̂k; Ax̂j ; A

2x̂j ; � � � ; A
px̂jg

for j = 1; 2; � � � ; k.

The �rst property �(�) = (�)�(�) indicates that the linear combination selected by
the exact shift scheme is somehow minimal while the second property indicates that each
of the subspaces Kp(A; x̂j) � Km(A; v

+
1) so that each sequence of \wanted" Ritz vectors

is represented equally in the updated subspace. The �rst property was established in [24]
along with an extensive analysis of the numerical properties of implicit restarting. The
surprising second property was established by Morgan in [30] along with some compelling
numerical results indicating superior performance of implicit over explicit restarting.

17

6 The Generalized Eigenvalue Problem

A typical source of large scale eigenproblems is through a discrete form of a continuous prob-
lem. The resulting �nite dimensional problems become large due to accuracy requirements
and spatial dimensionality. Typically this takes the form

Lu = u� in
; (9)

u satis�es B on @
;

where L is some linear di�erential operator. A number of techniques may be used to
discretize L. The �nite element method provides an elegant discretization. If W is a space
of functions in which the solution to (9) may be found and Wn � W is an n-dimensional
subspace with basis functions f�jg then an approximate solution un is expanded in the
form

un =
nX
j=1

�j�j :

A variational or a Galerkin principle is applied depending on whether or not L is self-adjoint,
leading to a weak form of (9)

A(v; u) = � < v; u >; (10)

where A(v; u) is a bilinear form. Substituting the expanded form of u = un and requiring
(10) to hold for each trial function v = �i gives a set of algebraic equations

A(�i;
nX

j=1

�j�j) = � < �i;
nX

j=1

�j�j >;

where < �; � > is an inner product in Wn. This leads to the following systems of equations
nX

j=1

A(�i; �j)�j = �
nX

j=1

< �i; �j > �j ; (11)

for 1 � i � n. We may rewrite (11) and obtain the matrix equation
Ax = �Mx;

where

Ai;j = A(�i; �j); Mi;j =< �i; �j >; xT = [�1; : : : ; �n]
T ;

for 1 � i; j � n. Typically the basis functions are chosen so that few entries in a row of
A or M are nonzero. In structures problems A is called the \sti�ness" matrix and M is
called the \mass" matrix. In chemistry and physics M is often referred to as the \overlap"
matrix. A nice feature of this approach to discretization is that boundary conditions are
naturally incorporated into the discrete problem. Moreover, in the self-adjoint case, the
Rayleigh principle is preserved from the continuous to the discrete problem. In particular,
since Ritz values are Rayleigh quotients, this assures the smallest Ritz value is greater than
the smallest eigenvalue of the original problem.

Thus, it is natural for large scale eigenproblems to arise as generalized rather than stan-
dard problems. If L is self-adjoint the discrete problems are symmetric or Hermitian and
if not the matrix A is nonsymmetric but the matrix M is symmetric and at least positive

18

semi-de�nite. There are a number of ways to convert the generalized problem to standard
form. There is always motivation to preserve symmetry when it is present.

If M is positive de�nite then factorM = LLT and the eigenvalues of Â � L�1AL�T are
the eigenvalues of (A;M) and the eigenvectors are obtained by solving LTx = x̂ where x̂
is an eigenvector of Â. This standard transformation is �ne if one wants the eigenvalues of
largest magnitude and it preserves symmetry if A is symmetric. However, when M is ill-
conditioned this can be a dangerous transformation leading to numerical di�culties. Since
a matrix factorization will have to be done anyway, one may as well formulate a spectral
transformation.

6.1 STRUCTURE OF THE SPECTRAL TRANSFORMATION

A convenient way to provide a spectral transformation is to note that

Ax = �Mx () (A� �M)x = (�� �)Mx

Thus

(A� �M)�1Mx = x�; where � =
1

�� �
:

If A is symmetric then one can maintain symmetry in the Arnoldi/Lanczos process by
taking the inner product to be

< x; y >= xTMy:

It is easy to verify that the operator (A��M)�1M is symmetric with respect to this inner
product if A is symmetric. In the Arnoldi/Lanczos process the matrix-vector product w
Av is replaced by w (A��M)�1Mv and the step h V Tf is replaced by h V T (Mf).
If A is symmetric then the matrix H is symmetric and tridiagonal. Moreover, this process
is well de�ned even when M is singular and this can have important consequences even if
A is nonsymmetric. We shall refer to this process as the M -Arnoldi process.

IfM is singular then the operator S � (A��M)�1M has a non-trivial null space and the
bilinear function < x; y >= xTMy is a semi-inner product and kxkM �< x; y >1=2 is a semi-
norm. Since (A � �M) is assumed to be nonsingular, N � Null(S) = Null(M). Vectors
in N are generalized eigenvectors corresponding to in�nite eigenvalues. Typically, one is
only interested in the �nite eigenvalues of (A;M) and these will correspond to the non-zero
eigenvalues of S. The invariant subspace corresponding to these non-zero eigenvalues is
easily corrupted by components of vectors from N during the Arnoldi process. However,
using the M -Arnoldi process with some re�nements can provide a solution.

In order to better understand the situation, it is convenient to note that since M is
positive semi-de�nite, there is an orthogonal matrix Q such that

M = Q

"
D 0
0 0

#
QT

19

where D is a positive de�nite diagonal matrix of order n, say. Thus

Ŝ � QTSQ =

"
S1 0
S2 0

#
;

where S1 is a square matrix of order n and S2 is an m � n matrix with the original A;M
being of order m + n. Observe now that a non-zero eigenvalue � of Ŝ satis�es Ŝx = x� ,
i.e. "

S1x1
S2x1

#
=

"
x1�
x2�

#

so that x2 = 1
�S2x1 must hold. Note also that for any eigenvector xH = (xH1 ; x

H
2), the

leading vector x1 must be an eigenvector of S1. Since Ŝ is block triangular, �(Ŝ) = �(S1)[
�(0m). Assuming S2 has full rank, it follows that if S1 has a zero eigenvalue then there
is no corresponding eigenvector (since S2x1 = 0 would be implied). Thus if zero is an
eigenvalue of S1 with algebraic multiplicity mo then zero is an eigenvalue of Ŝ of algebraic
multiplicity m+mo and with geometric multiplicity m. Of course, since, S is similar to Ŝ
all of these statements hold for S as well.

6.2 EIGENVECTOR/NULL-SPACE PURIFICATION

With these observations in hand, it is possible to see the virtue of using M -Arnoldi on S.
After k-steps of M -Arnoldi,

SV = V H + feTk with V TMV = Ik ; V
TMf = 0:

Introducing the similarity transformation Q gives

ŜV̂ = V̂ H + f̂ eTk with V̂ TQTMQV̂ = Ik; V
TQTMQf̂ = 0;

where V̂ = QTV and f̂ = QTf . Partitioning V̂ T = (V T
1 V

T
2) and f̂T = (fT1 ; f

T
2) consistent

with the blocking of Ŝ gives

S1V1 = V1H + f1e
T
k with V T

1 DV1 = Ik; V
T
1 Df1 = 0:

Moreover, the side condition S2V1 = V2H + f2e
T
k holds, so that in exact arithmetic a zero

eigenvalue should not appear as a converged Ritz value of H . This argument shows that
M -Arnoldi on S is at the same time doing D-Arnoldi on S1 while avoiding convergence to
zero eigenvalues.

Round-o� error due to �nite precision arithmetic will cloud the situation, as usual. It
is clear that the goal is to prevent components in N from corrupting the vectors V Thus
to begin, the starting vector v1 should be of the form v1 = Sv. If a �nal approximate
eigenvector x has components in N they may be purged by replacing x Sx and then

normalizing. To see the e�ect of this, note that if x = Q

"
x1
x2

#

Sx = Q

"
S1x1
S2x1

#

20

and all components in N which are of the form Q

"
0
p

#
will have been purged. This �nal

application of S may be done implicitly in two ways. One is to note that if x = V y with
Hy = y� then Sx = VHy+ feTk y = x�+ feTk y and this is the correction suggested by [32].
Another recent suggestion due to Meerbergen and Spence is to use implicit restarting with
a zero shift [29]. Recall that implicit restarting with ` zero shifts is equivalent to starting
the M -Arnoldi process with a starting vector of S`v1 and all the resulting Ritz vectors will
be multiplied by S` as well. After applying the implicit shifts to H , the leading submatrix
of order k � ` will provide the updated Ritz values. No additional explicit matrix-vector
products with S are required.

The ability to apply ` zero shifts (i.e. to multiply by S` implicitly) is very important
when S1 has zero eigenvalues. If S1x1 = 0 then"

S1 0
S2 0

"
x1
x2

#
=

"
0

S2x1

#
2 N :

Thus to completely eradicate components from N one must multiply by S` where ` is equal
to the dimension of the largest Jordan block corresponding to a zero eigenvalue of S1.

Spectral transformations were studied extensively by Ericsson and Ruhe [14] and the
�rst eigenvector puri�cation strategy was developed in [32]. Shift and invert techniques
play an essential role in the block Lanczos code developed by Grimes, Lewis, and Simon.
The many nuances of this technique in practical applications is discussed thoroughly in
[19]. The development presented here and the eigenvector puri�cation through implicit
restarting is due to Meerbergen and Spence [29].

6.3 AN EXAMPLE

This discussion is illustrated with the following example.

A =

"
K C

CT 0

#
and M =

"
I 0
0 0

#
;

with A an order 225 matrix approximation to a convection-di�usion operator and C a
structured random matrix. This example was chosen because it has the block structure
of a typical steady-state Navier-Stokes linear stability analysis (see [29]). The following
MATLAB code was used to generate the example:

rand('seed',0);

n = 225;m=100;

K = lapc(n,100);

C = [rand(m,m) ; zeros(n-m,m)];

M = [eye(n) zeros(n,m) ; zeros(m,n) zeros(m,m)];

A = [K C ; C' zeros(m,m)];

mu = 7.0;

S = (A - mu*M)\M;

21

kPNV k kPNV
+k kPGV k kPGV

+k
3.70 1.48(-11) 1.32(-11) 2.85(-12)

Table 1: Projection of V onto N and G

j kAxj �Mxj�jk k(Axj �Mxj�j)
+k

1 1.50(-03) 9.93(-06)
2 1.11(-02) 6.77(-05)

Table 2: Residuals before and after purging components from N and G

The matrices K, C, M, A correspond to the matrices in the equations above. The funcion
lapc computes a �nite di�erence approximation to �u+ �ux on a 15� 15 regular grid in
the unit square with � = 100. Any matrix pencil (A;M) with this block structure (assuming
C full rank and A� � �M nonsingular) will produce an S of the form

S =

2
64 0 0 0

0 S22 0
S31 S32 0

3
75 ;

with S22 nonsingular and order n �m. From the above discussion one may conclude that
S has an eigenvalue 0 with algebraic multiplicity 2m and geometric multiplicity m. There
are three important subspaces associated with S. They are N , G and R and these spaces
satisfy

SN = f0g ; SG � N ; SR � R:

All ofCn may be represented as a direct sum of these three spaces. The (oblique) projectors
associated with these spaces shall be denoted by PN , PG , and PR respectively. Explicit
formulas are:

PN =

2
64 0 0 0
0 0 0
0 �S32S

�1
22 I

3
75 PG =

2
64 I 0 0
0 0 0
0 0 0

3
75 PR =

2
64 0 0 0

0 S22
S31 S32 0

3
75

The following table shows the norms of the projections of the basis vectors V onto the
spaces N and G where V was computed with 20 steps of M -Arnoldi starting with a vector
v1 = Sv (v a vector with all entries equal to 1) . The norms of the projections are taken
before and after purging by applying two zero shifts using implicit restarting. The + symbol
denotes the updated basis after purging.

The next table shows the residual norms for the two approximate eigenvalues that are
closest to the shift � before and after purging.

Clearly, there is considerable merit to doing this purging. This generalizes the purging
proposed by [32] and seems to be quite promising. Further testing is needed but some
form of this process is essential to the construction of numerical software to implement
shift-invert strategies.

22

7 SOFTWARE, PERFORMANCE, and PARALLEL COMPUTATION

The Implicitly Restarted Arnoldi Method has been implemented and a package of Fortran
77 subroutines has been developed. This software, called ARPACK [27], provides several
features which are not present in other codes based upon a single-vector Arnoldi process.
One of the most important features from the software standpoint is the reverse commu-
nication interface. This feature provides a convenient way to interface with application
codes without imposing a structure on the users matrix or the way a matrix-vector prod-
uct is accomplished. In the parallel setting, this reverse communication interface enables
e�cient memory and communication management for massively parallel MIMD and SIMD
machines. The important features of ARPACK are:

� A reverse communication interface.

� Ability to return k eigenvalues which satisfy a user speci�ed criterion such as largest
real part, largest absolute value, largest algebraic value (symmetric case), etc.

� A �xed pre-determined storage requirement su�ces throughout the computation.
Usually this is n�O(2k)+O(k2) where k is the number of eigenvalues to be computed
and n is the order of the matrix. No auxiliary storage or interaction with such devices
is required during the course of the computation.

� Eigenvectors may be computed on request. The Arnoldi basis of dimension k is always
computed. The Arnoldi basis consists of vectors which are numerically orthogonal to
working accuracy. Computed eigenvectors of symmetric matrices are also numerically
orthogonal.

� The numerical accuracy of the computed eigenvalues and vectors is user speci�ed.
Residual tolerances may be set to the level of working precision. At working precision,
the accuracy of the computed eigenvalues and vectors is consistent with the accuracy
expected of a dense method such as the implicitly shifted QR iteration.

� Multiple eigenvalues o�er no theoretical or computational di�culty other than addi-
tional matrix-vector products required to expose the multiple instances. This is made
possible through the implementation of deation techniques similar to those employed
to make the implicitly shifted QR-algorithm robust and practical. A block method is
not required and hence one does not need to \guess" the correct blocksize that would
be needed to capture multiple eigenvalues.

7.1 REVERSE COMMUNICATION INTERFACE

As mentioned above, the reverse communication interface is one of the most important
aspects of the design of ARPACK. In the serial code, a typical usage of this interface is
illustrated with the following example:

10 continue

call snaupd (ido, bmat, n, which,...,V,...,lworkl, info)

23

if (ido .eq. newprod) then

call matvec ('A', n, workd(ipntr(1)), workd(ipntr(2)))

else

return

endif

go to 10

As usual, with reverse communication, control is returned to the calling program when
interaction with the matrix A is required. The action requested of the calling program is
to simply perform the action indicated by the reverse communication parameter ido (in
this case multiply the vector held in the array workd beginning at location ipntr(1) and
put the result in the array workd beginning at location ipntr(2)). Note that call to the
subroutine matvec in this code segment is simply meant to indicate that this matrix-vector
operation is taking place. The user is free to use any available mechanism or subroutine
to accomplish this task. In particular, no speci�c data structure is imposed and indeed, no
explicit representation of the matrix is even required. One only needs to supply the action
of the matrix on the speci�ed vector.

There are several reasons for supplying this interface. It is more convenient to use with
large application codes. The alternative is to put the user supplied matrix-vector product
in a subroutine with a pre-speci�ed calling sequence. This may be quite cumbersome and
is especially so in those cases where the action of the matrix on a vector is known only
through a lengthy computation that doesn't involve the matrix A explicitly. Typically,
if the matrix-vector product must be provided in the form of a subroutine with a �xed
calling sequence, then named common or some other means must be used to pass data to
the routine. This is incompatible with e�cient memory management for massively parallel
MIMD and SIMD machines.

This has been implemented on a number of parallel machines including the CRAY-C90,
Thinking Machines CM-200 and CM-5, Intel Delta, and CRAY T3D. Parallel performance
on the C90 is obtained through the BLAS operations without any modi�cation to the
serial code. SIMD performance on the CM-200 is also relatively straightforward. All
of the BLAS operations were expressed using Fortran 90 array constructs and hence were
automatically compiled for execution on the SIMD array instead of the frontend. Operations
on the projected matrix H were not encoded with these array constructs and hence were
automatically scheduled for the frontend. The only additional complication was to de�ne
the data layouts of the V array and the work arrays for e�cient execution. In the distributed
memory implementations, the reverse communication interface provided a natural way to
parallelize the ARPACK codes internally without imposing a �xed parallel decomposition
on the user supplied matrix-vector product.

7.2 DATA DISTRIBUTION AND GLOBAL OPERATIONS

The parallelization strategy for distributed memory machines consists of providing the
user with an Single Program Multiple Data (SPMD) template. The array V is blocked
and distributed across the processors. The projected matrix H is replicated. The SPMD

24

program looks essentially like the serial code except that the local block Vloc is passed in
place of V . The work space is partitioned consistently with the partition of V and each
section of the work space is distributed to the node processors. Thus the SPMD parallel
code looks very similar to that of the serial code. Assuming a parallel version of the
subroutine matvec, an example of the application of the distributed interface is illustrated
as the follows:

10 continue

call snaupd (ido, bmat, nloc, which, ...,

* Vloc , ... lworkl, info)

if (ido .eq. newprod) then

call matvec ('A', nloc,workd(ipntr(1)), workd(ipntr(2)))

else

return

endif

go to 10

Where, nloc is the number of rows in the block Vloc of V that has been assigned to this
node process.

Typically, the blocking of V is commensurate with the parallel decomposition of the
matrix A as well as with the con�guration of the distributed memory and interconnection
network. Logically, the V matrix be partitioned by blocks

V T = (V (1)T ; V (2)T ; ::::; V (nproc)T)

with one block per processor and with H replicated on each processor.

The explicit steps of the process responsible for the j block are:

1. �k = gnorm(f
(�)
k); v

(j)
k+1 f

(j)
k =�;

2. V
(j)
k+1 (Vk; vk+1)

(j); Ĥk

Hk

�ke
T
k

!
:

3. z (Aloc)vk+1;

4. h(j) V
(j)
k

T
z; h gsum(h(�)) fk+1 z � Vk+1h;

5. Hk+1 (Ĥk; h);

Note that the function gnorm at Step 1 is meant to represent the global reduction operation
of computing the norm of the distributed vector fk from the norms of the local segments

f
(j)
k and the function gsum at Step 4 is meant to represent the global sum of the local
vectors h(j) so that the quantity h =

Pnproc
j=1 h(j) is available to each process on completion.

These are the only two communication points within this algorithm. The remainder is
perfectly parallel. Additional communication will typically occur at Step 3. Here the
operation (Aloc)v is meant to indicate that the user supplied matrix-vector product is able
to compute the local segment of the matrix-vector product Av that is consistent with the

25

partition of V . Ideally, this would only involve nearest neighbor communication among the
processes.

Since H is replicated on each processor, the parallelization of the implicit restart mech-
anism described by Algorithm(6) remains untouched. The only di�erence is that the local
block V (j) is in place of the full matrix V . All operations on the matrix H are replicated on
each processor. Thus there is no communication overhead but there is a \serial bottleneck"
here due to the redundant work. If k is small relative to n this bottleneck is insigni�cant.
However, it becomes a very important latency issue as k grows and will prevent scalabilty
if k grows with n as the problem size increases.

The main bene�t of this approach is that the changes to the serial version of ARPACK
are very minimal. Since the change of dimension from matrix order n to its local distributed
blocksize nloc is invoked through the calling sequence of the subroutine snaupd, there is
no essential change to the code. Only six routines were e�ected in a minimal way. These
routines either required a change in norm calculation for distributed vectors (Step 1) or
for the distributed dense matrix-vector product (Step 4). Since the vectors are distributed,
norms had to be done via partial (scaled) dot products for the local vector segments and
then a global sum operation was used to complete the sum of the squared norms of these
segments on all processors. More speci�cally, the commands are changed from

rnorm = sdot (n, resid, 1, workd, 1)

rnorm = sqrt(abs(rnorm))

to

rnorm0 = sdot (n, resid, 1, workd, 1)

call gssum(rnorm0,1,tmp)

rnorm0 = sqrt(abs(rnorm0))

rnorm = rnorm0

Similarly, the computation of the matrix-vector product operation h V Tw requires a
change from

call sgemv ('T', n, j, one, v, ldv, workd(ipj), 1,

* zero, h(1,j), 1)

to

call sgemv ('T', n, j, one, v, ldv, workd(ipj), 1,

* zero, h(1,j), 1)

call gssum(h(1,j),j,h(1,j+1))

so the global sum operation gssum was su�cient to implement all of the global operations.

7.3 DISTRIBUTED MEMORY PARALLEL PERFORMANCE

To get an idea of the potential performance of ARPACK on distributed memory machines
some examples have been run on the Intel Touchstone DELTA. The examples involved
have been designed to test the performance of the software, the matrix structure and the

26

Touchstone DELTA machine architecture, and the speedup behavior of the software on
DELTA.

The user's implementation of the matrix-vector product w Av can have considerable
e�ect upon the parallel performance. Moreover, there is a fundamental di�culty in testing
how the performance scales as the problem size increases. The di�culty is that the prob-
lem often becomes increasingly di�cult to solve as the size increases due to clustering of
eigenvalues. The tests reported here attempt to isolate and measure the performance of
the parallelization of the ARPACK routines independently of the matrix-vector product.

In order to isolate the performance of the ARPACK routines from the performance of the
user's matrix-vector product and also to isolate e�ects of a changing problem characteristics
as the size increases, a test was comprised of replicating the same matrix repeatedly to
obtain a block diagonal matrix. Each diagonal block corresponded to a corresponding
block of the partitioned and distributed matrix V . This is, of course, a completely contrived
situation that allows the workload to increase linearly with the number of processors. Since
the each diagonal block of the matrix is identical the algorithm should behave as if nproc
identical problems are being solved simultaneously as long as the initial distributed segments
of v1 are generated the same. Thus, the only things that could prevent ideal speedup are
the communication involved in the global operations and the \serial bottleneck" associated
with the replicated operations on the projected matrix H . If neither of these were present
then one would expect the execution time to remain constant as the problem size and the
number of processors increase.

In this �rst example, each diagonal block is of order 3,000 which is identical to the vector

segment size on each node. The matrix-vector product operation z(j) (Aloc)v
(j)
k+1 is

executed locally on each node processor upon the distributed vector segments v
(j)
k+1, and

there is no communication among processors involved in this operation. As described above,
the problem size in increased linearly with the the number of processors by adjoining an
additional identical diagonal block to the Amatrix for each additional processor. The global
sum operation gssum is essentially a ring algorithm and thus has a linear dependence with
respect to the number of nodes. Since the diagonal blocks are identical, the replicated
operations on H should remain the same as the problem size increases and hence linear
speed up is expected, i.e. as the problem size increases the execution time should remain
constant. This ideal speedup is very nearly achieved as is clearly reected in Table 3.

The second example is obtained from the similar numerical model of the eigenproblem
of the Laplacian operator de�ned on the unit square with square with Dirichlet boundary
conditions on three sides and a Neuman boundary condition on the fourth side. This leads
to a mildly nonsymmetric matrix with the same 5-diagonal structure as the standard 2-D
discrete Laplacian on a 5 point stencil. The unit square f(x; y)j0� x; y � 1g was discretized
with x-direction mesh size and y-direction mesh size 1=(n+1) and 1=(m+1), respectively.
Thus the matrix A is block tridiagonal and of order N = nm . The order of each diagonal
block is n, and the number of diagonal blocks is m.

A natural way to carry out the matrix-vector product operation w Av is described
as the follows. A standard domain decomposition partitioning of the unit square into sub-

27

Problem size Number of nodes Total Time (s)

3000*1 1 22.96
3000*2 2 23.22
3000*4 4 23.98
3000*8 8 24.08
3000*16 16 24.39
3000*32 32 24.95
3000*64 64 25.50
3000*128 128 27.13
3000*256 256 28.65

Table 3: Parallel ARPACK test on DELTA, matrix order 3,000 on each node

Problem size Number of nodes Total Time (s)

2500*1 1 19.63
2500*2 2 20.71
2500*4 4 21.97
2500*8 8 22.47
2500*16 16 22.50
2500*32 32 23.13
2500*64 64 23.68
2500*128 128 24.78
2500*256 256 28.16

Table 4: Parallel ARPACK test on DELTA, matrix order 2,500 on each node

rectangles leads to a parallel matrix-vector product that only exchanges boundary data
across the boundaries of the sub-domains and hence only needs nearest neighbor connec-
tions. The subdomains are naturally chosen so that the blocking of the matrix is com-
mensurate with the blocking and distribution of the V array. The reverse communication
interface allows the user supplied matrix-vector product to take advantage of the matrix
structure. Simple send and receive operations using the native Intel isend and irecv were
used to carry out the nearest neighbor communication operation.

The results of these tests are given in Table 4 and demonstrate nearly the same speedup
as to Table 3. The relatively minor communication to receive boundary data from nearest
neighbors e�ected the speedup properties somewhat.

The �nal example shows how dramatically an ine�cient matrix-vector product operation
w Av and also how problem size can e�ect performance. A naive way to perform the
matrix-vector product would be to collect the segments of the vector v from all nodes before
the operation, and then distribute the segments of the result vector w to each node after the
operation. The performance of this scheme is shown in Table 5. No advantage of the matrix
structure was taken in computing the matrix-vector product. The matrix size was �xed at

28

Nodes Time (s) Iters. Ave. T ime
Iter

OP�x T ime
Total T ime

1 1809.07 173 10.46 0.84 %
2 1073.36 189 5.679 1.48 %
4 732.72 213 3.440 2.65 %
8 449.95 225 2.000 5.24 %
16 201.27 192 1.048 8.90 %
32 114.98 154 0.747 13.3 %
64 161.24 260 0.620 18.0 %
128 128.28 210 0.611 25.9 %

Table 5: Parallel ARPACK test run, matrix order 3,200

n = 3,200. The parallel ARPACK software was then used to compute the eigenvalues and
eigenvectors. A residual tolerance of (10�8) was imposed.

Table 5 shows the total time and the number of iterations required to solve this �xed
problem with a di�erent number of processors. The number of iterations varied with dif-
ferent processor con�gurations and this was attributed to di�erent initial random vectors
being generated as the number of processors changed. However, the corresponding result
eigenvalues and eigenvectors are identical for all of the runs.

The speedup caused by increasing the number of processors can be observed by checking
the average run time per iterate for each individual test. The third column in Table 5,
demonstrates deteriorated speedup after the number of processors exceeds 32. Column four
shows that the reason for this deterioration lies with the ine�cient matrix-vector product.

7.4 GENERAL APPLICATIONS OF ARPACK

ARPACK has been used in a variety of challenging applications, and has proven to be useful
both in symmetric and nonsymmetric problems. It is of particular interest when there is
no opportunity to factor the matrix and employ a \shift and invert" form of spectral
transformation,

Â (A� �I)�1 : (12)

Existing codes often rely upon this transformation to enhance convergence. Extreme eigen-
values f�g of the matrix Â are found very rapidly with the Arnoldi/Lanczos process and
the corresponding eigenvalues f�g of the original matrix A are recovered from the relation
� = 1=�+ �. Implementation of this transformation generally requires a matrix factoriza-
tion. In many important applications this is not possible due to storage requirements and
computational costs. The implicit restarting technique used in ARPACK is often successful
without this spectral transformation.

One of the most important classes of application arise in computational uid dynamics.
Here the matrices are obtained through discretization of the Navier-Stokes equations. A
typical application involves linear stability analysis of steady state solutions. Here one lin-

29

earizes the nonlinear equation about a steady state and studies the stability of this state
through the examination of the spectrum. Usually this amounts to determining if the eigen-
values of the discrete operator lie in the left halfplane. Typically these are parametrically
dependent problems and the analysis consists of determining phenomena such as simple
bifurcation, Hopf bifurcation (an imaginary complex pair of eigenvalues cross the imagi-
nary axis), turbulence, and vortex shedding as this parameter is varied. ARPACK is well
suited to this setting as it is able to track a speci�ed set of eigenvalues while they vary as
functions of the parameter. Our software has been used to �nd the leading eigenvalues in
a Couette-Taylor wavy vortex instability problem involving matrices of order 4000. One
interesting facet of this application is that the matrices are not available explicitly and
are logically dense. The particular discretization provides e�cient matrix-vector products
through Fourier transform. Details may be found in [13].

Very large symmetric generalized eigenproblems arise in structural analysis. One example
that we have worked with at Cray Research through the courtesy of Ford Motor Company
involves an automobile engine model constructed from 3D solid elements. Here the interest
is in a set of modes to allow solution of a forced frequency response problem (K��M)x =
f(t), where f(t) is a cyclic forcing function which is used to simulate expanding gas loads in
the engine cylinder as well as bearing loads from the piston connecting rods. This model has
over 250,000 degrees of freedom. The smallest eigenvalues are of interest and the ARPACK
code appears to be very competitive with the best commercially available codes on problems
of this size. For details see [45].

The Singular Value Decomposition (SVD) may also be computed using ARPACK and the
SVD has a many large scale applications. Two SVD applications occur in computational
biology. The �rst of these is the 3-D image reconstruction of biological macromolecules
from 2-D projections obtained through electron micrographs. The second is an application
to molecular dynamical simulation of the motions of proteins. The SVD may be used to
compress the data required to represent the simulation and more importantly to provide
an analytical tool to help in understanding the function of the protean. See [35] for further
details of the molecular dynamics application. The underlying algorithm for reconstructing
3-D image reconstruction of biological macromolecules from 2-D projections [48] is based
upon the statistical technique of principal component analysis [49]. In this algorithm, a
singular value decomposition (SVD) of the data set is performed to extract the largest
singular vectors which are then used in a classi�cation procedure. Our initial e�ort has
been to replace the existing algorithm for computing the SVD with ARPACK which has
increased the speed of the analysis by a factor of 7 on an Iris workstation. The accuracy of
the results were also increased dramatically. Details are reported in [15].

Computational chemistry provides a rich source of problems. ARPACK is being used in
two applications currently and holds promise for a variety of challenging problems in this
area. We are collaborating with researchers at Ohio State on large scale three-dimensional
reactive scattering problems. The governing equation is the Schroedinger equation and
the computational technique for studying the physical phenomena relies upon repeated
eigenanalysis of a Hamiltonian operator consisting of a Laplacian operator discretized in
spherical co-ordinates plus a surface potential. The discrete operator has a tensor product

30

Nprocs MFLOPS

2 172.50
4 322.03
8 586.29
16 1006.60
32 1412.73

Table 6: Parallel ARPACK on T3D Shared Memory

structure from the discrete Laplacian plus a diagonal matrix from the potential. The
resulting matrix has a block structure consisting of m�m blocks of order n . The diagonal
blocks are dense and the o� diagonal blocks are scalar multiples of the order n identity
matrix. It is virtually impossible to factor this matrix directly because the factors are
dense in any ordering. We are using a distributed memory parallel version of ARPACK
together with some preconditioning ideas to solve these problems on distributed memory
machines. Encouraging computational results have been obtained on Cray Y-MP machines
and also on the Intel Delta and the CM-5. The code has recently been ported to the CRAY
T3D with very promising results. On a matrix of order 12800 computing the smallest eight
eigenvalues using a Chebyshev polynomial preconditioner of degree eight the CRAY YMP
executed at a rate of 290.66 Mops while the T3D using the distributed-shared memory
model executed at a peak rate of 1412 Mops (See Table 6). For details about the method
and experimental results, see [20], [45].

Nonsymmetric problems also arise in quantum chemistry. Researchers at University of
Washington have used the code to investigate the e�ects of the electric �eld on InAs/GaSb
and GaAs/AlxGa1�x as quantum wells. ARPACK was used to �nd highly accurate solu-
tions to these nonsymmetric problems which couldn't be solved by other means. See [25]
for details. Researchers at U. Massachusetts have used ARPACK to solve the eignvalue
problems arising in their FEM quantum well Kp model for strained layer superlattices [4].

A �nal example of non-symmetric eigenproblems to be discussed here arises in magneto-
hydrodynamics (MHD) involving the study of the interaction of a plasma and a magnetic
�eld. The MHD equations describe the macroscopic behavior of the plasma in the magnetic
�eld. These equations form a system of coupled nonlinear PDE. Linear stability analysis
of the linearized MHD equations leads to a complex eigenvalue problem. Researchers at
the Institute for Plasma Physics and Utrecht University in the Netherlands have modi�ed
the codes in ARPACK to work in complex arithmetic and are using the resulting code to
obtain very accurate approximations to the eigenvalues lying on the Alfven curve. The code
is not only computes extremely accurate solutions, it does so very e�ciently in comparison
to other methods that have been tried. See [22] for details.

There are many other applications. It is hoped that the examples that have been briey
discussed here will provide an indication of the versatility of the ARPACK software as well
a the wide variety of eigenvalue problems that arise.

31

8 Conclusions

This paper has attempted to give an overview of the numerical solution of large scale
eigenvalue problems. Basic theory and algorithms were introduced to motivate Krylov
subspace projection methods. The focus has been on a particular variant, the Implicitly
Restarted Arnoldi Method which has been developed into a substantial software package
ARPACK.

There are a number of competing methods that have not been discussed here in any detail.
Two notable methods that have not been discussed are methods based on the nonsymmetric
two-sided Lanczos process and methods based upon subspace iteration. At this point, no
single method appears to be viable for all problems. Certainly in the nonsymmetric case
there is no \black box" technique and it is questionable that there is one in the symmetric
case either. A block method called ABLE based upon two-sided nonsymmetric Lanczos
is being developed by Bai, Day and Ye [2]. Software based upon subspace iteration with
Chbeychev acceleration has been developed by Du� and Scott [12]. Jennifer Scott has
also developed software based upon an explicitly restarted Chebyshev-Arnoldi method [42].
Finally, the Rational Krylov method being developed by Ruhe [36, 37] is very promising
for the nonsymmetric problem when a factorization of the matrix is possible.

9 Acknowledgements

The computational results presented in Section 7 are due to Zdenko Tomasic and Dan Hu. I
would like to thank Rich Lehoucq for producing Figures 1-3 and for constructive comments
and discussions about this work.

Financial support for this work was provided in part by the National Science Founda-
tion cooperative agreement CCR-912008, by ARPA contract number DAAL03-91-C-0047
(administered by the U.S. Army Research O�ce), and by the National Science Foundation
project ASC-9408795.

References

[1] W.E. Arnoldi, The principle of minimized iterations in the solution of the matrix
eigenvalue problem, Quart. Appl. Math. 9 , 17{29 (1951) .

[2] Z. Bai, D. Day and Q. Ye, ABLE: an Adaptive Block Lanczos Method for Non-
Hermitian Eigenvalue Problems, Tech. Rept. 95-04, U. Kentucky, Lexington (1995).

[3] Z.Bai and G.W. Stewart, SRRIT - A FORTRAN subroutine to calculate the dominant
invariant subspace of a nonsymmetric matrix, Tech. Rept. 2908, Dept of Computer
Science, U. Maryland (1992).

[4] A. Baliga, D. Trifedi, N.G. Anderson, Tensile-strain e�ects in quantum-well and su-
perlattice band structures Phys. Rev. B (1994).

[5] F. Chatelin and D. Ho, Arnoldi-Tchebychev procedure for large scale nonsymmetric
matrices, Math. Modeling and Num. Analysis , 24,53{65 (1990).

32

[6] J. Cullum, The simultaneous computation of a few of the algebraically largest and
smallest eigenvalues of a large, symmetric, sparse matrix, BIT 18, 265{275 (1978).

[7] J. Cullum and W.E. Donath, A block Lanczos algorithm for computing the q alge-
braically largest eigenvalues and a corresponding eigenspace for large, sparse symmet-
ric matrices, in Proc. 1974 IEEE Conference on Decision and Control, IEEE Press,
New York, 505{509 (1974).

[8] J. Cullum and R.A. Willoughby, Computing eigenvalues of very large symmetric ma-
trices - an implementation of a Lanczos algorithm with no reorthogonalization, J.
Comput. Phys. 434, 329{358 (1981).

[9] J. Daniel, W.B. Gragg, L. Kaufman, G.W. Stewart, Reorthogonalization and stable
algorithms for updating the Gram-Schmidt QR factorization, Math. Comp.,30, 772{
795 (1976).

[10] J.J. Dongarra, J. Du Croz, S. Hammarling, and R.J. Hanson, Algorithm 656 An ex-
tended set of fortran basic linear algebra subprograms: Model implementation and test
programs, ACM Trans. Math. Soft. 14, 18{32 (1988).

[11] J.J. Dongarra, I.S. Du�, D.C. Sorensen and H.A. van der Vorst, Solving Linear Systems
on Vector and Shared Memory Computers, SIAM Publications, Philadelphia (1991).

[12] I.S. Du� and J Scott, Computing selected eigenvalues of large sparse unsymmetric
matrices using subspace iteration, ACM Transactions on Mathematical Software, 19,
137{159 (1993).

[13] W.S. Edwards, L.S. Tuckerman, R.A. Friesner and D.C. Sorensen, Krylov Methods
for the Incompressible Navier-Stokes Equations, Journal of Computational Physics,
110,82{102 (1994).

[14] T. Ericsson and A. Ruhe, The spectral transformation Lanczos method for the numer-
ical solution of large sparse generalized symmetric eigenvalue problems, Math. Comp.
35, 1251{1268 (1980).

[15] L. Feinswog, M. Sherman, W. Chiu, D.C. Sorensen, Improved Computational Meth-
ods for 3-Dimensional Image Reconstruction, CRPC Tech. Rept., Rice University (in
preparation).

[16] J.G.F. Francis, The QR transformation: A unitary analogue to the LR transformation,
Parts I and II, Comp. J. 4, 265{272, 332{345 (1961).

[17] G.H. Golub, R. Underwood, and J.H. Wilkinson, The Lanczos algorithm for the sym-
metric Ax = �Bx problem, Report STAN-CS-72-270, Department of Computer Sci-
ence, Stanford U. Stanford, California ,(1972).

[18] G.H. Golub and C.F. Van Loan, Matrix Computations, The Johns Hopkins University
Press, Baltimore, Maryland (1983).

33

[19] R.G. Grimes, J.G. Lewis and H.D. Simon, A shifted block Lanczos algorithm for solving
sparse symmetric generalized eigenproblems, SIAM J. Matrix Anal. Appl. 15, 228{272
(1994).

[20] P. Pendergast. Z. Darakjian, E. F. Hayes, D.C. Sorensen, Scalable Algorithms for
Three-dimensional Reactive Scattering: Evaluation of a New Algorithm for Obtaining
Surface Functions, J. Comp. Phys. , 113,201{214 (1994).

[21] W. Karush, An iterative method for �nding characteristic vectors of a symmetric
matrix, Paci�c J. Math. 1, 233{248 (1951).

[22] M.N. Kooper, H.A. van der Vorst, S. Poedts, and J.P. Goedbloed, Application of
the Implicitly Updated Arnoldi Method with a Complex Shift and Invert Strategy
in MHD, Tech. Rept., Institute for Plasmaphysics, FOM Rijnhuizen, Nieuwegin, The
Netherlands (Sep. 1993) (submitted to Journal of Computational Physics).

[23] C. Lanczos, An iteration method for the solution of the eigenvalue problem of linear
di�erential and integral operators, J. Res. Nat. Bur. Stand. , 45, 255{282 (1950).

[24] R.B. Lehoucq, Analysis and Implementation of an Implicitly Restarted Arnoldi Itera-
tion Ph.D. Thesis, Rice U. (1995) (Available as CAAM Tech. Rept. TR95-13, Rice U.,
Houston)

[25] T.L. Li, K.J. Kuhn FEM solution to quantum wells by irreducible formulation Dept.
Elec. Eng. Tech. Rept. U. Wash. (1993).

[26] R.B. Lehoucq and D.C. Sorensen, Deation Techniques for an Implicitly Re-started
Arnoldi Iteration, CAAM-TR 94-13, Rice U. , Houston (1994).

[27] R. Lehoucq, D.C. Sorensen, P.A. Vu, ARPACK: Fortran subroutines for solving
large scale eigenvalue problems, Release 2.1, available from netlib@ornl.gov in the
scalapack directory (1994).

[28] T.A. Manteu�el, Adaptive procedure for estimating parameters for the nonsymmetric
Tchebychev iteration, Numer. Math. 31, 183{208 (1978).

[29] K. Meerbergen and A. Spence, Implicitly restarted Arnoldi with puri�cation for the
shift-invert transformation, Tech. Rept. TW225, Katholieke Universitet Leuven, Bel-
gium (1995).

[30] R.B. Morgan, On restarting the Arnoldi method for large scale eigenvalue problems,
Math. of Comp. (to appear).

[31] C.C. Paige, The Computation of Eigenvalues and Eigenvectors of Very Large Sparse
Matrices, Ph.D. thesis, Univ. of London (1971).

[32] B. Nour-Omid, B.N. Parlett, T. Ericsson, and P.S. Jensen, How to implement the
spectral transformation, Math. of Comp., 48, 663{673 (1987).

34

[33] B.N. Parlett and D. S. Scott, The Lanczos algorithm with selective orthogonalization,
Math. Comp. 33, 311{328 (1979).

[34] B.N. Parlett, The Symmetric Eigenvalue Problem , Prentice-Hall, Englewood Cli�s,
NJ. (1980).

[35] T.D. Romo, J.B. Clarage, D.C. Sorensen, and G.N. Phillips, Jr., Automatic Identi-
�cation of Discrete Substates in Proteins: Singular Value Decomposition Analysis of
Time Averaged Crystallographic Re�nements, CRPC-TR 94481, Rice University (Oct.
1994).

[36] A. Ruhe, Rational Krylov sequence methods for eigenvalue computation, Linear Alge-
bra Apps., 58, 391{405 (1984).

[37] A. Ruhe, Rational Krylov sequence methods for eigenvalue computation II, Linear
Algebra Apps., 197,198, 283{295 (1994).

[38] Y. Saad, Variations on Arnoldi's method for computing eigenelements of large unsym-
metric matrices, Linear Algebra Apps., 34, 269{295 (1980).

[39] Y. Saad, Chebyshev acceleration techniques for solving nonsymmetric eigenvalue prob-
lems, Math. Comp., 42, 567{588 (1984).

[40] Y. Saad, Numerical Methods for Large Eigenvalue Problems, Halsted Press-John Wiley
& Sons Inc., New York (1992).

[41] Y. Saad and M. Schultz, GMRES: A generalized minimum residual algorithm for solv-
ing nonsymmetric linear systems, SIAM J. Scienti�c and Stat. Comp., 7, 856{869
(1986).

[42] J.A. Scott. An Arnoldi code for computing selected eigenvalues of sparse real unsym-
metric matrices, Tech. Rept. RAL-93-097, Rutherford Appleton Laboratory (1993).

[43] H. Simon, Analysis of the symmeteric Lanczos algorithm with reorthogonalization
methods, Linear Algebra and Its Applications 61, 101{131 (1984).

[44] D. C. Sorensen, Implicit application of polynomial �lters in a k-step Arnoldi method,
SIAM J. Matrix Anal. Appl., 13, pp. 357{385, 1992.

[45] D.C. Sorensen, P.A. Vu, Z. Tomasic, Algorithms and Software for Large Scale Eigen-
problems on High Performance Computers, High Performance Computing 1993 -
Grand Challenges in Computer Simulation,Adrian Tentner ed. , Proceedings 1993 Sim-
ulation Multiconference, Society for Computer Simulation, 149{154 (1993).

[46] G.W. Stewart, Introduction to Matrix Computations, Academic Press, New York, 1973.

[47] W.J. Stewart and A. Jennings, ALGORITHM 570: LOPSI a simultaneous iteratin
method for real matrices [F2], ACM Transactions on Mathematical Software, 7, 184{
198 (1981).

35

[48] M. Van Heel, J. Frank, Use of Multivariate Statistics in Analysing the Images of
Biological Macromolecules, Ultramicroscopy, 6 187{194 (1981).

[49] S. Van Hu�el and J. Vandewalle, The Total Least Squares Provblem: Computational
Aspects and Analysis , Frontiers in Applied Mathematics 9, SIAM Press, Philadelphia
(1991).

[50] H.F. Walker, Implementation of the GMRES method using Householder transforma-
tions, SIAM J. Scienti�c and Stat. Comp. 9,152{163 (1988).

[51] D.S. Watkins and L. Elsner, Convergence of algorithms of decomposition type for the
eigenvalue problem, Linear Algebra and Its Applications, 143, 19{47 (1991).

[52] J.H. Wilkinson, The Algebraic Eigenvalue Problem, Claredon Press, Oxford, England
(1965).

36

SPARSE MATRICES IN MATLAB: DESIGN

AND IMPLEMENTATION

JOHN R. GILBERT�, CLEVE MOLERy , AND ROBERT SCHREIBERz

Dedicated to Gene Golub on the occasion of his 60th birthday.

Abstract. We have extended the matrix computation language and environment Matlab to
include sparse matrix storage and operations. The only change to the outward appearance of the
Matlab language is a pair of commands to create full or sparse matrices. Nearly all the operations
of Matlab now apply equally to full or sparse matrices, without any explicit action by the user. The
sparse data structure represents a matrix in space proportional to the number of nonzero entries,
and most of the operations compute sparse results in time proportional to the number of arithmetic
operations on nonzeros.

Key words. Matlab, mathematical software, matrix computation, sparse matrix algorithms.

AMS subject classi�cations. 65{04, 65F05, 65F20, 65F50, 68N15, 68R10.

1. Introduction. Matlab is an interactive environment and programming lan-
guage for numeric scienti�c computation [18]. One of its distinguishing features is the
use of matrices as the only data type. In Matlab, a matrix is a rectangular array
of real or complex numbers. All quantities, even loop variables and character strings,
are represented as matrices, although matrices with only one row, or one column, or
one element are sometimes treated specially.

The part of Matlab that involves computational linear algebra on dense matri-
ces is based on direct adaptations of subroutines from Linpack and Eispack [5, 23].
An m � n real matrix is stored as a full array of mn oating point numbers. The
computational complexity of basic operations such as addition or transposition is pro-
portional to mn. The complexity of more complicated operations such as triangular
factorization is proportional to mn2. This has limited the applicability of Matlab

to problems involving matrices of order a few hundred on contemporary workstations
and perhaps a few thousand on contemporary supercomputers.

We have now added sparse matrix storage and operations toMatlab. This report
describes our design and implementation.

Sparse matrices are widely used in scienti�c computation, especially in large-
scale optimization, structural and circuit analysis, computational uid dynamics, and,
generally, the numerical solution of partial di�erential equations. Several e�ective
Fortran subroutine packages for solving sparse linear systems are available, including
Sparspak [11], the Yale Sparse Matrix Package [9], and some of the routines in the
Harwell Subroutine Library [25].

Our work was facilitated by our knowledge of the techniques used in the Fortran
sparse matrix packages, but we have not directly adapted any of their code. Matlab

� Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, California 94304.
y The MathWorks, 325 Lin�eld Place, Menlo Park, California 94025.
z Research Institute for Advanced Computer Science, MS T045-1, NASA Ames Research Center,

Mo�ett Field, CA 94035. This author's work was supported by the NAS Systems Division and
DARPA via Cooperative Agreement NCC 2-387 between NASA and the University Space Research
Association (USRA). Copyright c 1991 by Xerox Corporation, Research Institute for Advanced
Computer Science, and The MathWorks Incorporated. All rights reserved.

1

Table 1

Operations with the 4096 by 4096 discrete Laplacian.

Sparse Full
Memory 0.25 megabyte 128 megabytes
Compute Dx 0.2 seconds 30 seconds
Solve Dx = b 10 seconds > 12 hours

is written in C and we wished to take advantage of the data structures and other
programming features of C that would not be used in a simple translation of Fortran
code. We also wanted to implement the full range of matrix operations thatMatlab

provides; the Fortran packages do not generally have routines for simply adding or
transposing sparse matrices, for example. And, �nally, we wanted to incorporate some
recent algorithmic ideas that are not used in the Fortran packages.

J. H. Wilkinson's informal working de�nition of a sparse matrix was \any matrix
with enough zeros that it pays to take advantage of them." So sparsity is an economic
issue. By avoiding arithmetic operations on zero elements, sparse matrix algorithms
require less computer time. And, perhaps more importantly, by not storing many zero
elements, sparse matrix data structures require less computer memory. In a sense, we
have not added any new functionality to Matlab; we've merely made some existing
functionality more e�cient in terms of both time and storage.

An important descriptive parameter of a sparse matrix S is nnz(S), the number
of nonzero elements in S. Computer storage requirements are proportional to nnz.
The computational complexity of simple array operations should also be should be
proportional to nnz, and perhaps also depend linearly on m or n, but be independent
of the product mn. The complexity of more complicated operations involves such
factors as ordering and �ll-in, but an objective of a good sparse matrix algorithm
should be:

The time required for a sparse matrix operation should be propor-
tional to number of arithmetic operations on nonzero quantities.

We call this the \time is proportional to ops" rule; it is a fundamental tenet of our
design.

With sparse techniques, it is practical to handle matrices involving tens of thou-
sands of nonzero elements on contemporary workstations. As one example, let D be
the matrix representation of the discrete 5-point Laplacian on a square 64� 64 grid
with a nested dissection ordering. This is a 4096� 4096 matrix with 20224 nonzeros.
Table 1 gives the memory requirements for storing D as aMatlab sparse matrix and
as a traditional Fortran or Matlab full matrix, as well as the execution time on a
Sun sparcstation-1 workstation for computing a matrix-vector product and solving
a linear system of equations by elimination.

Band matrices are special cases of sparse matrices whose nonzero elements all
happen to be near the diagonal. It would be somewhat more e�cient, in both time
and storage, to provide a third data structure and collection of operations for band
matrices. We have decided against doing this because of the added complexity, par-
ticular in cases involving mixtures of full, sparse and band matrices. We suspect that
solving linear systems with matrices which are dense within a narrow band might
be twice as fast with band storage as it is with sparse matrix storage, but that lin-
ear systems with matrices that are sparse within the band (such as those obtained

2

from two-dimensional grids) are more e�ciently solved with general sparse matrix
technology. However, we have not investigated these tradeo�s in any detail.

In this paper, we concentrate on elementary sparse matrix operations, such as
addition and multiplication, and on direct methods for solving sparse linear systems
of equations. These operations are now included in the \core" of Matlab. Except
for a few short examples, we will not discuss higher level sparse matrix operations,
such as iterative methods for linear systems. We intend to implement such operations
as interpreted programs in the Matlab language, so-called \m-�les," outside the
Matlab core.

2. The user's view of sparse Matlab.

2.1. Sparse matrix storage. We wish to emphasize the distinction between a
matrix and what we call its storage class. A given matrix can conceivably be stored
in many di�erent ways|�xed point or oating point, by rows or by columns, real or
complex, full or sparse|but all the di�erent ways represent the same matrix. We
now have two matrix storage classes in Matlab, full and sparse.

Two Matlab variables, A and B, can have di�erent storage classes but still rep-
resent the same matrix. They occupy di�erent amounts of computer memory, but in
most other respects they are the same. Their elements are equal, their determinants
and their eigenvalues are equal, and so on. The crucial question of which storage class
to choose for a given matrix is the topic of Section 2.5.

Even though Matlab is written in C, it follows its Linpack and Fortran prede-
cessors and stores full matrices by columns [5, 19]. This organization has been carried
over to sparse matrices. A sparse matrix is stored as the concatenation of the sparse
vectors representing its columns. Each sparse vector consists of a oating point array
of nonzero entries (or two such arrays for complex matrices), together with an integer
array of row indices. A second integer array gives the locations in the other arrays
of the �rst element in each column. Consequently, the storage requirement for an
m� n real sparse matrix with nnz nonzero entries is nnz reals and nnz + n integers.
On typical machines with 8-byte reals and 4-byte integers, this is 12nnz + 4n bytes.
Complex matrices use a second array of nnz reals. Notice that m, the number of
rows, is almost irrelevant. It is not involved in the storage requirements, nor in the
operation counts for most operations. Its primary use is in error checks for subscript
ranges. Similar storage schemes, with either row or column orientation, are used in
the Fortran sparse packages.

2.2. Converting between full and sparse storage. Initially, we contem-
plated schemes for automatic conversion between sparse and full storage. There is
a Matlab precedent for such an approach. Matrices are either real or complex and
the conversion between the two is automatic. Computations such as square roots and
logarithms of negative numbers and eigenvalues of nonsymmetric matrices generate
complex results from real data. Matlab automatically expands the data structure
by adding an array for the imaginary parts.

Moreover, several of Matlab's functions for building matrices produce results
that might e�ectively be stored in the sparse organization. The function zeros(m,n),
which generates an m � n matrix of all zeros, is the most obvious candidate. The
functions eye(n) and diag(v), which generate the n�n identity matrix and a diagonal
matrix with the entries of vector v on the main diagonal, are also possibilities. Even
tril(A) and triu(A), which take the lower and upper triangular parts of a matrix A,
might be considered. But this short list begins to demonstrate a di�culty|how far

3

0

100

200

300

400

500

0 100 200 300 400 500

..

.

.

...

..

...

..

...

..

...

.

.

...

..

...

..

.

...

.

.

...

.

.

...

..

.

...

.

.

...

.

.

...

..

.

...

..

...

.

.

...

.

.

...

..

...

..

...

.

.

...

.

.

...

..
...
..
.

...

..
...
.
.

...

.

.

...

..

...

.

.

..

.

.

..

...

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

...

.

..

...

.

..

...

.

..

..

...

..

..

.

..

..

..

.

..

..

..

.

..

..

..

.

..

..

..

.

..

.

..

.

..

.

.

..

.

..

.

.

..

.

..

.

.

..

.

..

.

..

.

...

.

..

.

.

..

.

..

.

.

...

..

.

.

...

..

.

.

.

.

..

..

.

.

.

..

...

..

..

...

.

..

.

...

.

.

...

..

...

.

..

..

.

..

.

..

..

...

.

..

..

.

..

.

..

..

...

...

..

..

.

.

.

..

.

.

..

.

..

.

..

..

...

..

..

.

..

.

..

.

.

...

.

...

..

..

.

...

..

..

.

.

.

...

.

..

.

...

..

..

.

..

..

...

.

.

..

.

..

.

.

..

.

...

.

..

.

...

.

..

.

.

.

.

.

.

..

.

..

.

.

..

.

..

.

.

..

.

..

.

.

.

.

.

.

.

..

.

..

.

..

.

..

..

..

.

.

.

..

...

.

.

..

...

.

.

..

..

...

..

..

...

..

.

...

..

.

.

..

..

.

...

..

.

.

..

..

.

...

..

.

..

.

..

.

..

.

..

.

..

.

..

..

..

.

.

.

..

...

.

.

.

.

...

.

.

.

.

...

.

.

..

...

..

.

..

...

...

..

...

..

..

...

..

.

..

...

...

..

...

.

.

..

...

.

.

.

..

...

..

.

.

.

...

.

.

.

.

...

.

.

.

.

...

.

.

..

...

..

..

...

..

.

.

...

.

.

.

.

...

.

.

.

.

...

..

.

..

...

..

.

.

.

...

..

.

.

...

.

.

..

...

.

.

..

...

..

.

.

.

..

.

..

.

.

.

.

.

.

.

..

.

..

.

..

..

..

..

.

..

.

..

.

..

.

..

..

..

..

..

.

.

..

...

..

..

...

.

..

...

.

..

.

.

.

..

..

..

...

..

..

.

..

..

..

.

..

.

...

..

.

..

...

..

.

.

...

..

.

.

..

.

..

.

.

.

.

..

..

.

...

.

..

.

..

.

.

.

..

...

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

...

..

.

.

.

.

..

...

..

..

..

..

..

...

..

.

...

..

.

.

..

..

..

...

..

...

.

..

.

...

.

..

.

..

..

.

.

..

.

..

..

.

..

.

..

..

.

..

.

..

..

...

.

.

....

..

.

...

..

..

...

..

..

.

..

.

..

..

.

..

.

..

..

...

..

.

..

.

..

.

.

..

..

.

....

..

.

.

.

.

...

.

..

...

.

.

..

.

...

.

..

.

..

.

...

...

.

...

..

.

.

..

...

.

.

.....

..

..

.

..

..

..

...

..

..

...

..

.

.

.

..

..

..

.....

.

..

..

.

.

.

..

..

.

.

.

...

..

.

.

....

.

.

..

..

.

.

.

...

..

.

.

.

...

..

.

..

..

.

...

...

.

.

..

.

.

.

...

.

..

.

.

....

.

..

.....

..

.....

..

.

..

...

...

..

...

..

..

...

..

..

...

.

.

..

...

..

..

...

..

.

.

...

.

.

...

...

.

.

.

...

.

.

..

...

.

.

..

...

.

.

.

.

..

.

.

..

..

.

..

.

..

..

.

..

.

..

...

..

.

..

...

..

.

..

....

.

..

....

.

..

....

..

...

.

..

...

..

..

..

.

.

.

..

.....

..

.....

.

..

.

.

.

...

..

.

.

..

.

..

.

.

.....

.

..

....

.

..

....

.

..

.

..

.

..

..

.

.

.

.

.

.

..

..

.

.

..

..

..

....

.

.

.....

...

...

..

...

....

.

.

..

.

..

.

..

..

...

..

..

.

..

.

..

.

..

.

...

.

...

...

.

...

..

...

.

..

..

...

.

..

.

..

.

..

.

..

...

.

.

..

...

.

.

..

..

.

.

..

.

..

..

.

...

.

.

.

.

.

.

..

...

.

.

.

.

.

...

..

.

.

..

.

...

.

...

.

.

...

.

..

.....

...

...

.

.

.....

.

...

..

...

....

..

.

..

..

..

.

..

..

.

.....

.

...

..

.

...

..

....

..

.....

..

.....

..

......

...

.....

..

.

....

.

.

.

.

...

.

.

.

.

...

.

.

.

..

...

..

.

.

.

...

.

.

.

.

...

.

.

.

.

...

.

.

..

...

..

...

...

...

..

...

..

.

.

...

.

.

.

.

...

.

.

..

...

..

..

.

..

.

..

.

..

..

.

.

.

..

..

.

.

.

..

..

.

.

.

..

..

.

.

.

...

..

.

...

..

..

...

.

..

...

.

..

...

.

..

...

.

..

...

.

..

...

..

..

...

..

..

...

..

.

..

.

.

..

...

...

.

...

..

.

..

.

.

..

.

..

.

.

..

.

.

...

..

.

..

.

.

..

.

.

..

.

..

.

.

..

.

..

.

.

.

.

.

.

..

.

.

.

.

..

.

.

.

.

..

..

..

...

..

..

...

..

..

..

..

..

..

..

..

...

..

..

...

...

.

...

...

.

..

..

.

...

..

..

.

...

..

.

..

.

..

..

...

..

.

...

..

.

.

..

..

..

.

..

.

.

..

.

..

.

.

..

.

..

.

.

..

.

..

.

.

.

.

.

..

.

..

....

.

..

.

...

.

..

...

.

..

...

.

.

.

..

..

.

.

.

..

..

.

.

..

...

.

.

..

...

.

.

.

..

..

.

.

...

...

.

...

...

.

.

.

.

...

..

.

.

.

...

..

.

..

.

.

....

..

.

.

...

..

.

.

...

...

.

...

...

...

.

...

.

.

...

.

.

..

...

..

..

...

.

.

.

..

..

.

.

.

.

..

.

..

.

.

.

.

.

.

....

.

.

.

.

..

..

.

..

.

..

..

....

..

..

..

.

.

..

..

...

..

...

..

..

...

..

..

.....

.

...

...

.

...

.

.

.

..

..

.

.

..

..

..

.

.

.

.

..

...

.

.

..

.

.

..

.

..

.

..

..

.

.....

..

..

..

.

..

..

.....

..

....

..

....

..

.....

....

..

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

..

.

......

.

.....

.

.....

..

.

..

.

.

.

.

..

.

.

...

.......

.......

......
....
..

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

...

.

.

.

.

...

.

.

.

.

...

.

.

.....

..

.....

..

...

...

...

.....

..

..

.....

.

.

...

.

.

..

...

..

.

.

.

..

..

...

..

.

..

.

.

...

.

.

.

.

...

..

.

.

..

..

..

....
..
....

..

.....

..

.....

.

...

.

..

.

.

.

..

..

.

..

.

..

.....

.

.....

.

......

.

.

.

.

.

..

.

.

.

.

.

.

.....

..

....

..

......

.....

..

..

.

.

...

..

..

....

..

.

..

...

..

...

..

.

.

.

..

..

...

..

..

.

.

..

..

...

....

.

.

.

.

.

.

.

......

.

..

....

.

......

.

...

...

.

.

.

.

...

..

.

..

...

..

.

..

..

.

...

...

....

...

....

...

.

...

.

.

.

..

...

..

..

...

..

.

..

...

..

.

..

...

..

.

.

...

.

.

..

...

.

.

..

...

..

.

.

.

..

..

....

....

....

..

.

.

..

.....

..

.....

..

...

..

..

.....

.

..

.

.

.

...

...

.

...

.

.

.

.....

.

..

..

.

.

..

..

.

.

..

..

.

.

.

.....

..

..

...

..

..

..

.

..

....

...

.......

..

...

.

..

.....

....

..

.

......

....

...

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

.

.

...

...

.....
.
.....
......
...
....

..

.

.

...

......

..

.

.

.

.

.

....

.

.

.....

..

.....

..

......

...

.....

..

.

....

..

.

.

...

..

..

...

..

.

.

...

..

..

.

..

.

..

..

.

..

.

..

..

.

..

.

..

.

.

..

.

.

..

.

...

..

..

...

..

.

.

.

..

..

..

....

..

....

..

....

..

.....

..

.....

.

...

.

..

.

.....

.

.

.

.

.

..

.

.

..

.

..

.

.

.

..

.

..

.....

.....

...

.....

...

.....

...

....

..

..

....

..

..

...

..

.

.

.

..

..

..

...

..

..

.

..

..

.

.

..

..

.

.

..

..

.

.

..

..

.....

..

..

...

...

....
..
.....

..

.....

.

.....
.
.....
.
.....
..............
......
.....
..
...

..

...

..

...

..

...

.

..

...

..

...

..

...

.

..

...

..

...

.

.

...

..

...

..

...

..

...

.

.

..

nz = 3679

0

100

200

300

400

500

600

700

800

0 100 200 300 400 500 600 700 800

Fig. 1. The Eppstein mesh as plotted by spy(A) and gplot(A,xy).

should \automatic sparsi�cation" be carried? Is there some threshold value of sparsity
where the conversion should be done? Should the user provide the value for such a
sparsi�cation parameter? We don't know the answers to these questions, so we decided
to take another approach, which we have since found to be quite satisfactory.

No sparse matrices are created without some overt direction from the user. Thus,
the changes we have made to Matlab do not a�ect the user who has no need for
sparsity. Operations on full matrices continue to produce full matrices. But once
initiated, sparsity propagates. Operations on sparse matrices produce sparse matrices.
And an operation on a mixture of sparse and full matrices produces a sparse result
unless the operator ordinarily destroys sparsity. (Matrix addition is an example; more
on this later.)

There are two new built-in functions, full and sparse. For any matrix A,
full(A) returns A stored as a full matrix. If A is already full, then A is returned
unchanged. If A is sparse, then zeros are inserted at the appropriate locations to �ll
out the storage. Conversely, sparse(A) removes any zero elements and returns A
stored as a sparse matrix, regardless of how sparse A actually is.

2.3. Displaying sparse matrices. Sparse and full matrices print di�erently.
The statement

A = [0 0 11; 22 0 0; 0 33 0]

produces a conventional Matlab full matrix that prints as

A =

0 0 11

22 0 0

0 33 0

The statement S = sparse(A) converts A to sparse storage, and prints

S =

(2,1) 22

(3,2) 33

(1,3) 11

4

0

10

20

30

40

50

60
0 10 20 30 40 50 60

+

+
+

+
+

+

+
+

+

+
+

+

+

+

+

+

+

+

+
+

+

+
+

+

+
+

+

+

+

+

+

+

+

+
+
+

+
+

+

+
+

+

+

+

+

+

+

+

+
+
+

+
+

+

+
+

+

+

+

+

+

+

+

+
+
+

+
+

+

+
+

+

+

+

+

+

+

+

+
+
+

+
+

+

+
+

+

+

+

+

+

+

+

+

+
+

+

+
+

+
+
+

+

+

+

+

+

+

+

+
+

+

+
+

+
+
+

+

+

+

+

+

+

+

+
+

+

+
+

+
+
+

+

+

+

+

+

+

+

+
+

+

+
+

+
+
+

+

+

+

+

+

+

+

+
+

+

+
+

+

+
+

+

+

+

+

+

+

+

+
+

+

+
+

+

+
+

+
+

+

nz = 180

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1

1

2
3

4
5

6

7
8

9
10

11 12

13
14

15

16

1718

19

20

21

22

23

24 25
26

27
28

29

30

31 32
33

34

35

36

37

38
39

40

41
42

43

44
45

46
47

4849

50

51

52

53

54

55

56

57

58

59

60

Fig. 2. The buckyball as rendered by spy and gplot.

As this illustrates, sparse matrices are printed as a list of their nonzero elements (with
indices), in column major order.

The function nnz(A) returns the number of nonzero elements of A. It is imple-
mented by scanning full matrices, and by access to the internal data structure for
sparse matrices. The function nzmax(A) returns the number of storage locations for
nonzeros allocated for A.

Graphic visualization of the structure of a sparse matrix is often a useful tool. The
function spy(A) plots a silhouette of the nonzero structure of A. Figure 1 illustrates
such a plot for a matrix that comes from a �nite element mesh due to David Eppstein.
A picture of the graph of a matrix is another way to visualize its structure. Laying out
an arbitrary graph for display is a hard problem that we do not address. However,
some sparse matrices (from �nite element applications, for example) have spatial
coordinates associated with their rows or columns. If xy contains such coordinates
for matrix A, the function gplot(A,xy) draws its graph. The second plot in Figure 1
shows the graph of the sample matrix, which in this case is just the same as the �nite
element mesh. Figure 2 is another example: The spy plot is the 60 � 60 adjacency
matrix of the graph of a Buckminster Fuller geodesic dome, a soccer ball, and a C60
molecule, and the gplot shows the graph itself.

Section 3.3.4 describes another function for visualizing the elimination tree of a
matrix.

2.4. Creating sparse matrices. Usually one wants to create a sparse ma-
trix directly, without �rst having a full matrix A and then converting it with S =

sparse(A). One way to do this is by simply supplying a list of nonzero entries and
their indices. Several alternate forms of sparse (with more than one argument) allow
this. The most general is

S = sparse(i,j,s,m,n,nzmax)

Ordinarily, i and j are vectors of integer indices, s is a vector of real or complex entries,
and m, n, and nzmax are integer scalars. This call generates an m�n sparse matrix,
having one nonzero for each entry in the vectors i, j, and s, with S(i(k); j(k)) = s(k),
and with enough space allocated for S to have nzmax nonzeros. The indices in i and
j need not be given in any particular order.

5

If a pair of indices occurs more than once in i and j, sparse adds the correspond-
ing values of s together. Then the sparse matrix S is created with one nonzero for each
nonzero in this modi�ed vector s. The argument s and one of the arguments i and j
may be scalars, in which case they are expanded so that the �rst three arguments all
have the same length.

There are several simpli�cations of the full six-argument call to sparse.
S = sparse(i,j,s,m,n) uses nzmax = length(s).
S = sparse(i,j,s) uses m = max(i) and n = max(j).
S = sparse(m,n) is the same as S = sparse([],[],[],m,n), where [] is

Matlab's empty matrix. It produces the ultimate sparse matrix, an m � n matrix
of all zeros.

Thus for example

S = sparse([1 2 3], [3 1 2], [11 22 33])

produces the sparse matrix S from the example in Section 2.3, but does not generate
any full 3 by 3 matrix during the process.

Matlab's function k = find(A) returns a list of the positions of the nonzeros
of A, counting in column-major order. For sparse Matlab we extended the de�nition
of find to extract the nonzero elements together with their indices. For any matrixA,
full or sparse, [i,j,s] = find(A) returns the indices and values of the nonzeros.
(The square bracket notation on the left side of an assignment indicates that the
function being called can return more than one value. In this case, find returns three
values, which are assigned to the three separate variables i, j, and s.) For example,
this dissects and then reassembles a sparse matrix:

[i,j,s] = find(S);

[m,n] = size(S);

S = sparse(i,j,s,m,n);

So does this, if the last row and column have nonzero entries:

[i,j,s] = find(S);

S = sparse(i,j,s);

Another common way to create a sparse matrix, particularly for �nite di�erence
computations, is to give the values of some of its diagonals. Two functions diags

and blockdiags can create sparse matrices with speci�ed diagonal or block diagonal
structure.

There are several ways to read and write sparse matrices. The Matlab save

and load commands, which save the current workspace or load a saved workspace,
have been extended to accept sparse matrices and save them e�ciently. We have
written a Fortran utility routine that converts a �le containing a sparse matrix in the
Harwell-Boeing format [6] into a �le that Matlab can load.

2.5. The results of sparse operations. What is the result of a Matlab

operation on sparse matrices? This is really two fundamental questions: what is the
value of the result, and what is its storage class? In this section we discuss the answers
that we settled on for those questions.

A function or subroutine written inMatlab is called an m-�le. We want it to be
possible to write m-�les that produce the same results for sparse and for full inputs.
Of course, one could ensure this by converting all inputs to full, but that would defeat
the goal of e�ciency. A better idea, we decided, is to postulate that

6

The value of the result of an operation does not depend on the storage
class of the operands, although the storage class of the result may.

The only exception is a function to inquire about the storage class of an object:
issparse(A) returns 1 if A is sparse, 0 otherwise.

Some intriguing notions were ruled out by our postulate. We thought, for a while,
that in cases such as A ./ S (which denotes the pointwise quotient of A and S) we
ought not to divide by zero where S is zero, since that would not produce anything
useful; instead we thought to implement this as if it returned A(i; j)=S(i; j) wherever
S(i; j) 6= 0, leaving A unchanged elsewhere. All such ideas, however, were dropped in
the interest of observing the rule that the result does not depend on storage class.

The second fundamental question is how to determine the storage class of the
result of an operation. Our decision here is based on three ideas. First, the storage
class of the result of an operation should depend only on the storage classes of the
operands, not on their values or sizes. (Reason: it's too risky to make a heuristic de-
cision about when to sparsify a matrix without knowing how it will be used.) Second,
sparsity should not be introduced into a computation unless the user explicitly asks
for it. (Reason: the full matrix user shouldn't have sparsity appear unexpectedly,
because of the performance penalty in doing sparse operations on mostly nonzero
matrices.) Third, once a sparse matrix is created, sparsity should propagate through
matrix and vector operations, concatenation, and so forth. (Reason: most m-�les
should be able to do sparse operations for sparse input or full operations for full input
without modi�cation.)

Thus full inputs always give full outputs, except for functions like sparse whose
purpose is to create sparse matrices. Sparse inputs, or mixed sparse and full inputs,
follow these rules (where S is sparse and F is full):

� Functions from matrices to scalars or �xed-size vectors, like size or nnz,
always return full results.

� Functions from scalars or �xed-size vectors to matrices, like zeros, ones,
and eye, generally return full results. Having zeros(m,n) and eye(m,n)

return full results is necessary to avoid introducing sparsity into a full user's
computation; there are also functions spzeros and speye that return sparse
zero and identity matrices.

� The remaining unary functions frommatrices to matrices or vectors generally
return a result of the same storage class as the operand (the main exceptions
are sparse and full). Thus, chol(S) returns a sparse Cholesky factor, and
diag(S) returns a sparse vector (a sparse m�1 matrix). The vectors returned
by max(S), sum(S), and their relatives (that is, the vectors of columnmaxima
and column sums respectively) are sparse, even though they may well be all
nonzero.

� Binary operators yield sparse results if both operands are sparse, and full
results if both are full. In the mixed case, the result's storage class depends
on the operator. For example, S + F and F \ S (which solves the linear
system SX = F) are full; S .* F (the pointwise product) and S & F are
sparse.

� A block matrix formed by concatenating smaller matrices, like

�
A B
C D

�
;

7

is written as [A B ; C D] in Matlab. If all the inputs are full, the result is
full, but a concatenation that contains any sparse matrix is sparse. Submatrix
indexing on the right counts as a unary operator; A = S(i,j) produces a
sparse result (for sparse S) whether i and j are scalars or vectors. Submatrix
indexing on the left, as in A(i,j) = S, does not change the storage class of
the matrix being modi�ed.

These decisions gave us some di�culty. Cases like ~S and S >= T, where the result has
many ones when the operands are sparse, made us consider adding more exceptions
to the rules. We discussed the possibility of \sparse" matrices in which all the values
not explicitly stored would be some scalar (like 1) rather than zero. We rejected these
ideas in the interest of simplicity.

3. Implementation. This section describes the algorithms for the sparse oper-
ations in Matlab in some detail. We begin with a discussion of fundamental data
structures and design decisions.

3.1. Fundamentals.

3.1.1. Data structure. Amost important implementationdecision is the choice
of a data structure. The internal representation of a sparse matrix must be exible
enough to implement all the Matlab operations. For simplicity, we ruled out the
use of di�erent data structures for di�erent operations. The data structure should
be compact, storing only nonzero elements, with a minimum of overhead storage for
integers or pointers. Wherever possible, it should support matrix operations in time
proportional to ops. Since Matlab is an interpreted, high-level matrix language,
e�ciency is more important in matrix arithmetic and matrix-vector operations than
in accessing single elements of matrices.

These goals are met by a simple column-oriented scheme that has been widely
used in sparse matrix computation. A sparse matrix is a C record structure with
the following constituents. The nonzero elements are stored in a one-dimensional
array of double-precision reals, in column major order. (If the matrix is complex, the
imaginary parts are stored in another such array.) A second array of integers stores
the row indices. A third array of n + 1 integers stores the index into the �rst two
arrays of the leading entry in each of the n columns, and a terminating index whose
value is nnz. Thus a real m� n sparse matrix with nnz nonzeros uses nnz reals and
nnz + n+ 1 integers.

This scheme is not e�cient for manipulating matrices one element at a time:
access to a single element takes time at least proportional to the logarithm of the
length of its column; inserting or removing a nonzero may require extensive data
movement. However, element-by-element manipulation is rare in Matlab (and is
expensive even in full Matlab). Its most common application would be to create
a sparse matrix, but this is more e�ciently done by building a list [i; j; s] of matrix
elements in arbitrary order and then using sparse(i,j,s) to create the matrix.

The sparse data structure is allowed to have unused elements after the end of the
last column of the matrix. Thus an algorithm that builds up a matrix one column at
a time can be implemented e�ciently by allocating enough space for all the expected
nonzeros at the outset.

3.1.2. Storage allocation. Storage allocation is one of the thorniest parts of
building portable systems. Matlab handles storage allocation for the user, invisibly
allocating and deallocating storage as matrices appear, disappear, and change size.

8

Sometimes the user can gain e�ciency by preallocating storage for the result of a
computation. One does this in fullMatlab by allocating a matrix of zeros and �lling
it in incrementally. Similarly, in sparse Matlab one can preallocate a matrix (using
sparse) with room for a speci�ed number of nonzeros. Filling in the sparse matrix a
column at a time requires no copying or reallocation.

Within Matlab, simple \allocate" and \free" procedures handle storage alloca-
tion. (We will not discuss how Matlab handles its free storage and interfaces to
the operating system to provide these procedures.) There is no provision for doing
storage allocation within a single matrix; a matrix is allocated as a single block of
storage, and if it must expand beyond that block it is copied into a newly allocated
larger block.

Matlab must allocate space to hold the results of operations. For a full re-
sult, Matlab allocates mn elements at the start of the computation. This strategy
could be disastrous for sparse matrices. Thus, sparse Matlab attempts to make a
reasonable choice of how much space to allocate for a sparse result.

Some sparse matrix operations, like Cholesky factorization, can predict in ad-
vance the exact amount of storage the result will require. These operations simply
allocate a block of the right size before the computation begins. Other operations,
like matrix multiplication and LU factorization, have results of unpredictable size.
These operations are all implemented by algorithms that compute one column at a
time. Such an algorithm �rst makes a guess at the size of the result. If more space
is needed at some point, it allocates a new block that is larger by a constant factor
(typically 1.5) than the current block, copies the columns already computed into the
new block, and frees the old block.

Most of the other operations compute a simple upper bound on the storage re-
quired by the result to decide how much space to allocate|for example, the pointwise
product S .* T uses the smaller of nnz(S) and nnz(T), and S + T uses the smaller
of nnz(S) + nnz(T) and mn.

3.1.3. The sparse accumulator. Many sparse matrix algorithms use a dense
working vector to allow random access to the currently \active" column or row of
a matrix. The sparse Matlab implementation formalizes this idea by de�ning an
abstract data type called the sparse accumulator, or spa. The spa consists of a dense
vector of real (or complex) values, a dense vector of true/false \occupied" ags, and
an unordered list of the indices whose occupied ags are true.

The spa represents a column vector whose \unoccupied" positions are zero and
whose \occupied" positions have values (zero or nonzero) speci�ed by the dense real
or complex vector. It allows random access to a single element in constant time, as
well as sequencing through the occupied positions in constant time per element. Most
matrix operations allocate the spa (with appropriate dimension) at their beginning
and free it at their end. Allocating the spa takes time proportional to its dimension
(to turn o� all the occupied ags), but subsequent operations take only constant time
per nonzero.

In a sense the spa is a register and an instruction set in an abstract machine
architecture for sparse matrix computation. Matlab manipulates the spa through
some thirty-odd access procedures. About half of these are operations between the
spa and a sparse or dense vector, from a \spaxpy" that implements spa := spa+ax
(where a is a scalar and x is a column of a sparse matrix) to a \spaeq" that tests
elementwise equality. Other routines load and store the spa, permute it, and access
individual elements. The most complicated spa operation is a depth-�rst search on

9

an acyclic graph, which marks as \occupied" a topologically ordered list of reachable
vertices; this is used in the sparse triangular solve described in Section 3.4.2.

The spa simpli�es data structure manipulation, because all �ll occurs in the spa;
that is, only in the spa can a zero become nonzero. The \spastore" routine does not
store exact zeros, and in fact the sparse matrix data structure never contains any
explicit zeros. Almost all real arithmetic operations occur in spa routines, too, which
simpli�esMatlab's tally of ops. (The main exceptions are in certain scalar-matrix
operations like 2*A, which are implemented without the spa for e�ciency.)

3.1.4. Asymptotic complexity analysis. A strong philosophical principle in
the sparse Matlab implementation is that it should be possible to analyze the com-
plexity of the various operations, and that they should be e�cient in the asymptotic
sense as well as in practice. This section discusses this principle, in terms of both
theoretical ideals and engineering compromises.

Ideally all the matrix operations would use time proportional to ops, that is,
their running time would be proportional to the number of nonzero real arithmetic
operations performed. This goal cannot always be met: for example, [0 1] + [1 0]

does no nonzero arithmetic. A more accurate statement is that time should be pro-
portional to ops or data size, whichever is larger. Here \data size" means the size of
the output and that part of the input that is used nontrivially; for example, in A*b

only those columns of A corresponding to nonzeros in b participate nontrivially.
This more accurate ideal can be realized in almost all of Matlab. The excep-

tions are some operations that do no arithmetic and cannot be implemented in time
proportional to data size. The algorithms to compute most of the reordering permu-
tations described in Section 3.3 are e�cient in practice but not linear in the worst
case. Submatrix indexing is another example: if i and j are vectors of row and column
indices, B = A(i,j) may examine all the nonzeros in the columns A(:; j), and B(i,j)

= A can at worst take time linear in the total size of B.
The Matlab implementation actually violates the \time proportional to ops"

philosophy in one systematic way. The list of occupied row indices in the spa is not
maintained in numerical order, but the sparse matrix data structure does require row
indices to be ordered. Sorting the row indices when storing the spa would theoretically
imply an extra factor of O(logn) in the worst-case running times of many of the matrix
operations. All our algorithms could avoid this factor|usually by storing the matrix
with unordered row indices, then using a linear-time transposition sort to reorder all
the rows of the �nal result at once|but for simplicity of programming we included
the sort in \spastore".

The idea that running time should be susceptible to analysis helps the user who
writes programs in Matlab to choose among alternative algorithms, gives guidance
in scaling up running times from small examples to larger problems, and, in a general-
purpose system likeMatlab, gives some insurance against an unexpected worst-case
instance arising in practice. Of course complete a priori analysis is impossible|
the work in sparse LU factorization depends on numerical pivoting choices, and the
e�cacy of a heuristic reordering such as minimum degree is unpredictable|but we
feel it is worthwhile to stay as close to the principle as we can.

In a technical report [14] we present some experimental evidence that sparse
Matlab operations require time proportional to ops and data size in practice.

3.2. Factorizations. The LU and Cholesky factorizations of a sparse matrix
yield sparse results. Matlab does not yet have a sparse QR factorization. Section 3.6
includes some remarks on sparse eigenvalue computation in Matlab.

10

3.2.1. LU Factorization. If A is a sparse matrix, [L,U,P] = lu(A) returns
three sparse matrices such that PA = LU , as obtained by Gaussian elimination with
partial pivoting. The permutation matrix P uses only O(n) storage in sparse format.
As in dense Matlab, [L,U] = lu(A) returns a permuted unit lower triangular and
an upper triangular matrix whose product is A.

Since sparse LU must behave likeMatlab's full LU , it does not pivot for sparsity.
A user who happens to know a good column permutationQ for sparsity can, of course,
ask for lu(A*Q'), or lu(A(:,q))where q is an integer permutation vector. Section 3.3
describes a few ways to �nd such a permutation. The matrix division operators \ and /
do pivot for sparsity by default; see Section 3.4.

We use a version of the GPLU algorithm [15] to compute the LU factorization.
This computes one column of L and U at a time by solving a sparse triangular system
with the already-�nished columns of L. Section 3.4.2 describes the sparse triangular
solver that does most of the work. The total time for the factorization is proportional
to the number of nonzero arithmetic operations (plus the size of the result), as desired.

The column-oriented data structure for the factors is created as the factorization
progresses, never using any more storage for a column than it requires. However, the
total size of L or U cannot be predicted in advance. Thus the factorization routine
makes an initial guess at the required storage, and expands that storage (by a factor
of 1:5) whenever necessary.

3.2.2. Cholesky factorization. As in full Matlab, R = chol(A) returns the
upper triangular Cholesky factor of a Hermitian positive de�nite matrix A. Pivoting
for sparsity is not automatic, but minimum degree and pro�le-limiting permutations
can be computed as described in Section 3.3.

Our current implementation of Cholesky factorization emphasizes simplicity and
compatibility with the rest of sparse Matlab; thus it does not use some of the more
sophisticated techniques such as the compressed index storage scheme [11, Sec. 5.4.2],
or supernodal methods to take advantage of the clique structure of the chordal graph
of the factor [2]. It does, however, run in time proportional to arithmetic operations
with little overhead for data structure manipulation.

We use a slightly simpli�ed version of an algorithm from the Yale Sparse Matrix
Package [9], which is described in detail by George and Liu [11]. We begin with a
combinatorial step that determines the number of nonzeros in the Cholesky factor
(assuming no exact cancellation) and allocates a large enough block of storage. We
then compute the lower triangular factor RT one column at a time. Unlike YSMP
and Sparspak, we do not begin with a symbolic factorization; instead, we create the
sparse data structure column by column as we compute the factor. The only reason
for the initial combinatorial step is to determine how much storage to allocate for the
result.

3.3. Permutations. A permutation of the rows or columns of a sparse matrix
A can be represented in two ways. A permutation matrix P acts on the rows of A
as P*A or on the columns as A*P'. A permutation vector p, which is a full vector of
length n containing a permutation of 1:n, acts on the rows of A as A(p,:) or on the
columns as A(:,p). Here p could be either a row vector or a column vector.

Both representations use O(n) storage, and both can be applied to A in time pro-
portional to nnz(A). The vector representation is slightly more compact and e�cient,
so the various sparse matrix permutation routines all return vectors|full row vectors,
to be precise|with the exception of the pivoting permutation in LU factorization.

11

Converting between the representations is almost never necessary, but it is simple.
If I is a sparse identity matrix of the appropriate size, then P is I(p,:) and PT is
I(:,p). Also p is (P*(1:n)')' or (1:n)*P'. (We leave to the reader the puzzle of
using find to obtain p from P without doing any arithmetic.) The inverse of P is P';
the inverse r of p can be computed by the \vectorized" statement r(p) = 1:n.

3.3.1. Permutations for sparsity: Asymmetric matrices. Reordering the
columns of a matrix can often make its LU or QR factors sparser. The simplest such
reordering is to sort the columns by increasing nonzero count. This is sometimes a
good reordering for matrices with very irregular structures, especially if there is great
variation in the nonzero counts of rows or columns.

The Matlab function p = colperm(A) computes this column-count permuta-
tion. It is implemented as a two-line m-�le:

[i,j] = find(A);

[ignore,p] = sort(diff(find(diff([0 j' inf]))));

The vector j is the column indices of all the nonzeros in A, in column major order.
The inner diff computes �rst di�erences of j to give a vector with ones at the starts
of columns and zeros elsewhere; the find converts this to a vector of column-start
indices; the outer diff gives the vector of column lengths; and the second output
argument from sort is the permutation that sorts this vector.

The symmetric reverse Cuthill-McKee ordering described in Section 3.3.2 can be
used for asymmetric matrices as well; the function symrcm(A) actually operates on
the nonzero structure of A+AT . This is sometimes a good ordering for matrices that
come from one-dimensional problems or problems that are in some sense long and
thin.

Minimum degree is an ordering that often performs better than colperm or
symrcm. The sparse Matlab function p = colmmd(A) computes a minimum degree
ordering for the columns of A. This column ordering is the same as a symmetric
minimum degree ordering for the matrix ATA, though we do not actually form ATA
to compute it.

George and Liu [10] survey the extensive development of e�cient and e�ective
versions of symmetric minimum degree, most of which is reected in the symmetric
minimum degree codes in Sparspak, YSMP, and the Harwell Subroutine Library.
The Matlab version of minimum degree uses many of these ideas, as well as some
ideas from a parallel symmetric minimum degree algorithm by Gilbert, Lewis, and
Schreiber [13]. We sketch the algorithm briey to show how these ideas are expressed
in the framework of column minimum degree. The reader who is not interested in all
the details can skip to Section 3.3.2.

Although most column minimumdegree codes for asymmetric matrices are based
on a symmetric minimum degree code, our organization is the other way around:
Matlab's symmetric minimum degree code (described in Section 3.3.2) is based on
its column minimum degree code. This is because the best way to represent a sym-
metric matrix (for the purposes of minimum degree) is as a union of cliques, or full
submatrices. When we begin with an asymmetric matrix A, we wish to reorder its
columns by using a minimum degree order on the symmetric matrix ATA|but each
row of A induces a clique in ATA, so we can simply use A itself to represent ATA
instead of forming the product explictly. Speelpenning [24] called such a clique repre-
sentation of a symmetric graph the \generalized element" representation; George and

12

Liu [10] call it the \quotient graph model." Ours is the �rst column minimumdegree
implementation that we know of whose data structures are based directly on A, and
which does not need to spend the time and storage to form the structure of ATA.
The idea for such a code is not new, however|George and Liu [10] suggest it, and our
implementation owes a great deal to discussions between the �rst author and Esmond
Ng and Barry Peyton of Oak Ridge National Laboratories.

We simulate symmetric Gaussian elimination on ATA, using a data structure that
represents A as a set of vertices and a set of cliques whose union is the graph of ATA.
Initially, each column of A is a vertex and each row is a clique. Elimination of a
vertex j induces �ll among all the (so far uneliminated) vertices adjacent to j. This
means that all the vertices in cliques containing j become adjacent to one another.
Thus all the cliques containing vertex j merge into one clique. In other words, all the
rows of A with nonzeros in column j disappear, to be replaced by a single row whose
nonzero structure is their union. Even though �ll is implicitly being added to ATA,
the data structure for A gets smaller as the rows merge, so no extra storage is required
during the elimination.

Minimumdegree chooses a vertex of lowest degree (the sparsest remaining column
of ATA, or the column of A having nonzero rows in common with the fewest other
columns), eliminates that vertex, and updates the remainder of A by adding �ll (i.e.
merging rows). This whole process is called a \stage"; after n stages the columns
are all eliminated and the permutation is complete. In practice, updating the data
structure after each elimination is too slow, so several devices are used to perform
many eliminations in a single stage before doing the update for the stage.

First, instead of �nding a single minimum-degree vertex, we �nd an entire \inde-
pendent set" of minimum-degree vertices with no common nonzero rows. Eliminating
one such vertex has no e�ect on the others, so we can eliminate them all at the same
stage and do a single update. George and Liu call this strategy \multiple elimina-
tion". (They point out that the resulting permutation may not be a strict minimum
degree order, but the di�erence is generally insigni�cant.)

Second, we use what George and Liu call \mass elimination": After a vertex j
is eliminated, its neighbors in ATA form a clique (a single row in A). Any of those
neighbors whose own neighbors all lie within that same clique will be a candidate for
elimination at the next stage. Thus, we may as well eliminate such a neighbor during
the same stage as j, immediately after j, delaying the update until afterward. This
often saves a tremendous number of stages because of the large cliques that form late
in the elimination. (The number of stages is reduced from the height of the elimination
tree to approximately the height of the clique tree; for many two-dimensional �nite
element problems, for example, this reduces the number of stages from about

p
n

to about logn.) Mass elimination is particularly simple to implement in the column
data structure: after all rows with nonzeros in column j are merged into one row, the
columns to be eliminated with j are those whose only remaining nonzero is in that
new row.

Third, we note that any two columns with the same nonzero structure will be
eliminated in the same stage by mass elimination. Thus we allow the option of com-
bining such columns into \supernodes" (or, as George and Liu call them, \indistin-
guishable nodes"). This speeds up the ordering by making the data structure for A
smaller. The degree computation must account for the sizes of supernodes, but this
turns out to be an advantage for two reasons. The quality of the ordering actually
improves slightly if the degree computation does not count neighbors within the same

13

supernode. (George and Liu observe this phenomenon and call the number of neigh-
bors outside a vertex's supernode its \external degree.") Also, supernodes improve
the approximate degree computation described below. Amalgamating columns into
supernodes is fairly slow (though it takes time only proportional to the size of A).
Supernodes can be amalgamated at every stage, periodically, or never; the current
default is every third stage.

Fourth, we note that the structure of ATA is not changed by dropping any row
of A whose nonzero structure is a subset of that of another row. This row reduction
speeds up the ordering by making the data structure smaller. More signi�cantly, it
allows mass elimination to recognize larger cliques, which decreases the number of
stages dramatically. Du� and Reid [8] call this strategy \element absorption." Row
reduction takes time proportional to multiplying AAT in the worst case (though the
worst case is rarely realized and the constant of proportionality is very small). By
default, we reduce at every third stage; again the user can change this.

Fifth, to achieve larger independent sets and hence fewer stages, we relax the
minimum degree requirement and allow elimination of any vertex of degree at most
�d+�, where d is the minimumdegree at this stage and � and � are parameters. The
choice of threshold can be used to trade o� ordering time for quality of the resulting
ordering. For problems that are very large, have many right-hand sides, or factor
many matrices with the same nonzero structure, ordering time is insigni�cant and
the tightest threshold is appropriate. For one-o� problems of moderate size, looser
thresholds like 1:5d+2 or even 2d+10 may be appropriate. The threshold can be set
by the user; its default is 1:2d+ 1.

Sixth and last, our code has the option of using an \approximate degree" instead
of computing the actual vertex degrees. Recall that a vertex is a column of A, and its
degree is the number of other columns with which it shares some nonzero row. Com-
puting all the vertex degrees in ATA takes time proportional to actually computing
ATA, though the constant is quite small and no extra space is needed. Still, the exact
degree computation can be the slowest part of a stage. If column j is a supernode
containing n(j) original columns, we de�ne its approximate degree as

d(j) =
X
aij 6=0

(nnz(A(i; :))� n(j)):

This can be interpreted as the sum of the sizes of the cliques containing j, except
that j and the other columns in its supernode are not counted. This is a fairly good
approximation in practice; it errs only by overcounting vertices that are members of
at least three cliques containing j. George and Liu call such vertices \outmatched
nodes," and observe that they tend to be rare in the symmetric algorithm. Computing
approximate degrees takes only time proportional to the size of A.

Column minimum degree sometimes performs poorly if the matrix A has a few
very dense rows, because then the structure of ATA consists mostly of the cliques
induced by those rows. Thus colmmd will withhold from consideration any row con-
taining more than a �xed proportion (by default, 50%) of nonzeros.

All these options for minimum degree are under the user's control, though the
casual user of Matlab never needs to change the defaults. The default settings use
approximate degrees, row reduction and supernode amalgamation every third stage,
and a degree threshold of 1:2d+ 1, and withhold rows that are at least 50% dense.

3.3.2. Permutations for sparsity: Symmetric matrices. Preorderings for
Cholesky factorization apply symmetrically to the rows and columns of a symmetric

14

positive de�nite matrix. Sparse Matlab includes two symmetric preordering permu-
tation functions. The colperm permutation can also be used as a symmetric ordering,
but it is usually not the best choice.

Bandwidth-limiting and pro�le-limiting orderings are useful for matrices whose
structure is \one-dimensional" in a sense that is hard to make precise. The reverse
Cuthill-McKee ordering is an e�ective and inexpensive pro�le-limiting permutation.
Matlab function p = symrcm(A) returns a reverse Cuthill-McKee permutation for
symmetric matrix A. The algorithm �rst �nds a \pseudo-peripheral" vertex of the
graph of A, then generates a level structure by breadth-�rst search and orders the
vertices by decreasing distance from the pseudo-peripheral vertex. Our implementa-
tion is based closely on the Sparspak implementation as described in the book by
George and Liu [11].

Pro�le methods like reverse Cuthill-McKee are not the best choice for most large
matrices arising from problems with two or more dimensions, or problems without
much geometric structure, because such matrices typically do not have reorderings
with low pro�le. The most generally useful symmetric preordering in Matlab is
minimumdegree, obtained by the function p = symmmd(A). Our symmetric minimum
degree implementation is based on the column minimum degree described in Sec-
tion 3.3.1. In fact, symmmd just creates a nonzero structure K with a column for each
column of A and a row for each above-diagonal nonzero in A, such that KTK has the
same nonzero structure as A; it then calls the column minimum degree code on K.

3.3.3. Nonzero diagonals and block triangular form. A square nonsingular
matrix A always has a row permutation p such that A(p; :) has nonzeros on its main
diagonal. TheMatlab function p = dmperm(A) computes such a permutation. With
two output arguments, the function [p,q] = dmperm(A) gives both row and column
permutations that put A into block upper triangular form; that is, A(p; q) has a
nonzero main diagonal and a block triangular structure with the largest possible
number of blocks. Notice that the permutations p returned by these two calls are
likely to be di�erent.

The most common application of block triangular form is to solve a reducible
system of linear equations by block back substitution, factoring only the diagonal
blocks of the matrix. Figure 9 is an m-�le that implements this algorithm. The m-�le
illustrates the call [p,q,r] = dmperm(A), which returns p and q as before, and also
a vector r giving the boundaries of the blocks of the block upper triangular form. To
be precise, if there are b blocks in each direction, then r has length b+1, and the i-th
diagonal block of A(p; q) consists of rows and columns with indices from r(i) through
r(i + 1)� 1.

Any matrix, whether square or not, has a form called the \Dulmage-Mendelsohn
decomposition" [4, 20], which is the same as ordinary block upper triangular form if
the matrix is square and nonsingular. The most general form of the decomposition,
for arbitrary rectangular A, is [p,q,r,s] = dmperm(A). The �rst two outputs are
permutations that put A(p; q) into block form. Then r describes the row boundaries
of the blocks and s the column boundaries: the i-th diagonal block of A(p; q) has rows
r(i) through r(i + 1) � 1 and columns s(i) through s(i + 1) � 1. The �rst diagonal
block may have more columns than rows, the last diagonal block may have more rows
than columns, and all the other diagonal blocks are square. The subdiagonal blocks
are all zero. The square diagonal blocks have nonzero diagonal elements. All the
diagonal blocks are irreducible; for the non-square blocks, this means that they have
the \strong Hall property" [4]. This block form can be used to solve least squares

15

0

10

20

30

40

50

60

0 10 20 30 40 50 60

++
+

++
+

+
+
+

++
+

+
+
+

+
+
+
+

+
+

+
+
+

+
+
+
+

+
+
+
+
+

+
+
+
+
+
+
+
+
+

+

+
+
+
+
+
+

+
+
+

+
+
+
+
+
+
+

+

+
+
+

+
+

+
+
+

+
+
+
+

+
+
+
+

+

+
+

+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+

+
+
+
+
+
+
+
+
+
+
+
+

+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+

+
+

+

+
+
+
+
+

+
+
+
+
+

+
+
+

+
+
+
+
+
+

+
++

+
+
+
+

+

+
+

+
+
+
+
+
+

+
+

+
+
+

+
+
+
+

++
+

+
+
+

+
+
+
+

+
+
+

+
+

+
+
+
+
+
+
+
+
+

+
+
+

+
+
+
+

+
+
+
+
+

+
+
+
+
+
+
+
+

+
+

+
+
+

+
+
+
+

+
+
+
+

+
+
+

+
+
+
+

+
+

+
+
+

+
+
+
+
+
+
+
+
+
+

+
+

+

+
+
+
+
+
+
+

+
+
+
+
+
+
+
+

+

+
+
+

+
+

+
+

+
+
+
+

+
+

+
+
+

+
+

+
+

+
+
+
+
+

+

+
+

+
+
+
+
+
+
+

+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
+

+

+
+
+

+
+
+
+
+
+
+

+
+
+
+
+

+
+
+
+
+
+
+
+
+
+

nz = 373

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

o

o

o

o

o

o

o

o

o

o o

o

o

o

o

o

o

o

o o

o

o

o

o

o

o

o

o

o

o o

o

o

o

o

o o

o

o

o

o

o

o

o

o

o

o

o o

o

o

o

o

o

o

o

o

o

o

o

o

height = 21

Fig. 3. The Cholesky factor of a matrix and its elimination tree.

problems by a method analogous to block back-substitution; see the references for
more details.

3.3.4. Elimination trees. The elimination tree [21] of a symmetric positive
de�nite matrix describes the dependences among rows or columns in Cholesky factor-
ization. Liu [16] surveys applications of the elimination tree in sparse factorization.
The nodes of the tree are the integers 1 through n, representing the rows of the matrix
and of its upper triangular Cholesky factor. The parent of row i is the smallest j > i
such that the (i; j) element of the upper triangular Cholesky factor of the matrix is
nonzero; if row i of the factor is zero after the diagonal, then i is a root. If the matrix
is irreducible then its only root is node n.

Liu describes an algorithm to �nd the elimination tree without forming the
Cholesky factorization, in time almost linear in the size of the matrix. That algo-
rithm is implemented as theMatlab function [t,q] = etree(A). The resulting tree
is represented by a row vector t of parent pointers: t(i) is the parent of node i, or
zero if i is a root.

The optional second output q is a permutation vector which gives a postorder
permutation of the tree, or of the rows and columns of A. This permutation reorders
the tree vertices so that every subtree is numbered consecutively, with the subtree's
root last. This is an \equivalent reordering" of A, to use Liu's terminology: the
Cholesky factorization of A(q; q) has the same �ll, operation count, and elimination
tree as that of A. The permutation brings together the \fundamental supernodes"
of A, which are full blocks in the Cholesky factor whose structure can be exploited in
vectorized or parallel supernodal factorization [2, 17].

The postorder permutation can also be used to lay out the vertices for a picture
of the elimination tree. The function tspy(A) plots a picture of the elimination tree
of A, as shown in Figure 3.

3.4. Matrix division. The usual way to solve systems of linear equations in
Matlab is not by calling lu or chol, but with the matrix division operators = and n.
If A is square, the result of X = AnB is the solution to the linear system AX = B;
if A is not square then a least squares solution is computed. The result of X = A/B

is the solution to A = XB, which is (B'nA')'. Full Matlab computes AnB by LU

16

factorization with partial pivoting if A is square, or by QR factorization with column
pivoting if not.

3.4.1. The sparse linear equation solver. Like fullMatlab, sparseMatlab

uses direct factorization methods to solve linear systems. The philosophy behind this
is that iterative linear system solvers are best implemented asMatlab m-�les, which
can use the sparse matrix data structures and operations in the core of Matlab.

If A is sparse, Matlab chooses among a sparse triangular solve, sparse Cholesky
factorization, and sparse LU factorization, with optional preordering by minimum
degree in the last two cases. The result returned has the same storage class as B.
The outline of sparse AnB is as follows.

� If A is not square, solve the least squares problem.
� Otherwise, ifA is triangular, perform a sparse triangular solve for each column
of B.

� Otherwise, if A is a permutation of a triangular matrix, permute it and then
perform a sparse triangular solve for each column of B.

� Otherwise, if A is Hermitian and has positive real diagonal elements, �nd a
symmetric minimum degree order p and attempt to compute the Cholesky
factorization of A(p; p). If successful, �nish with two sparse triangular solves
for each column of B.

� Otherwise (if A is not Hermitian with positive diagonal or if Cholesky fac-
torization fails), �nd a column minimum degree order p, compute the LU
factorization with partial pivoting of A(:; p), and perform two sparse triangu-
lar solves for each column of B.

Section 3.5 describes the sparse least squares method we currently use.
For a square matrix, the four possibilities are tried in order of increasing cost.

Thus, the cost of checking alternatives is a small fraction of the total cost. The test
for triangular A takes only O(n) time if A is n by n; it just examines the �rst and
last row indices in each column. (Notice that a test for triangularity would take
O(n2) time for a full matrix.) The test for a \morally triangular" matrix, which
is a row and column permutation of a nonsingular triangular matrix, takes time
proportional to the number of nonzeros in the matrix and is in practice very fast. (A
Dulmage-Mendelsohn decomposition would also detect moral triangularity, but would
be slower.) These tests mean that, for example, the Matlab sequence

[L,U] = lu(A);

y = L\b;

x = U\y;

will use triangular solves for both matrix divisions, since L is morally triangular and
U is triangular.

The test for Hermitian positive diagonal is an inexpensive guess at when to use
Cholesky factorization. Cholesky is quite a bit faster than LU , both because it does
half as many operations and because storage management is simpler. (The time to
look at every element of A in the test is insigni�cant.) Of course it is possible to
construct examples in which Cholesky fails only at the last column of the reordered
matrix, wasting signi�cant time, but we have not seen this happen in practice.

The function spparms can be used to turn the minimum degree preordering o� if
the user knows how to compute a better preorder for the particular matrix in question.

17

Matlab's matrix division does not have a block-triangular preordering built in,
unlike (for example) the Harwell MA28 code. Block triangular preordering and solution
can be implemented easily as an m-�le using the dmperm function; see Section 4.3.

Full Matlab uses the Linpack condition estimator and gives a warning if the
denominator in matrix division is nearly singular. Sparse Matlab should do the
same, but the current version does not yet implement it.

3.4.2. Sparse triangular systems. The triangular linear system solver, which
is also the main step of LU factorization, is based on an algorithm of Gilbert and
Peierls [15]. When A is triangular and b is a sparse vector, x = Anb is computed in
two steps. First, the nonzero structures of A and b are used (as described below) to
make a list of the nonzero indices of x. This list is also the list of columns of A that
participate nontrivially in the triangular solution. Second, the actual values of x are
computed by using each column on the list to update the sparse accumulator with
a \spaxpy" operation (Section 3.1.3). The list is generated in a \topological" order,
which is one that guarantees that xi is computed before column i of A is used in a
spaxpy. Increasing order is one topological order of a lower triangular matrix, but
any topological order will serve.

It remains to describe how to generate the topologically ordered list of indices
e�ciently. Consider the directed graph whose vertices are the columns of A, with
an edge from j to i if aij 6= 0. (No extra data structure is needed to represent this
graph|it is just an interpretation of the standard column data structure for A.) Each
nonzero index of b corresponds to a vertex of the graph. The set of nonzero indices
of x corresponds to the set of all vertices of b, plus all vertices that can be reached
from vertices of b via directed paths in the graph of A. (This is true even if A is
not triangular [12].) Any graph-searching algorithm could be used to identify those
vertices and �nd the nonzero indices of x. A depth-�rst search has the advantage
that a topological order for the list can be generated during the search. We add each
vertex to the list at the time the depth-�rst search backtracks from that vertex. This
creates the list in the reverse of a topological order; the numerical solution step then
processes the list backwards, in topological order.

The reason to use this \reverse postorder" as the topological order is that there
seems to be no way to generate the list in increasing or decreasing order, and the time
wasted in sorting it would often be more than the number of arithmetic operations.
However, the depth-�rst search examines just once each nonzero of A that participates
nontrivially in the solve. Thus generating the list takes time proportional to the
number of nonzero arithmetic operations in the numerical solve. This means that LU
factorization can run in time proportional to arithmetic operations.

3.5. Least squares and the augmented system. We have not yet written a
sparse QR factorization for the core ofMatlab. Instead, linear least squares problems
of the form

minkb� Axk

are solved via the augmented system of equations

r + Ax = b

AT r = 0:

18

Introducing a residual scaling parameter � this can be written

�
�I A
AT 0

��
r=�
x

�
=

�
b
0

�
:

The augmented matrix, which inherits any sparsity in A, is symmetric, but clearly
not positive de�nite. We ignore the symmetry and solve the linear system with a
general sparse LU factorization, although a symmetric, inde�nite factorization might
be twice as fast.

A recent note by Bj�orck [3] analyzes the choice of the parameter � by bounding
the e�ect of roundo� errors on the error in the computed solution x. The value of �
which minimizes the bound involves two quantities, krk and the smallest singular value
of A, which are too expensive to compute. Instead, we use an apparently satisfactory
substitute,

� = max jaijj=1000:

This approach has been used by several other authors, including Arioli et al. [1], who
do use a symmetric factorization and a similar heuristic for choosing �.

It is not clear whether augmented matrices, orthogonal factorizations, or iterative
methods are preferable for least squares problems, from either an e�ciency or an
accuracy point of view. We have chosen the augmented matrix approach because it
is competitive with the other approaches, and because we could use exisiting code.

3.6. Eigenvalues of sparse matrices. We expect that most eigenvalue com-
putations involving sparse matrices will be done with iterative methods of Lanczos
and Arnoldi type, implemented outside the core of Matlab as m-�les. The most
time-consuming portion will be the computation of Ax for sparse A and dense x,
which can be done e�ciently using our core operations.

However, we do provide one almost-direct technique for computing all the eigen-
values (but not the eigenvectors) of a real symmetric or complex Hermitian sparse
matrix. The reverse Cuthill-McKee algorithm is �rst used to provide a permutation
which reduces the bandwidth. Then an algorithmof Schwartz [22] provides a sequence
of plane rotations which further reduces the bandwidth to tridiagonal. Finally, the
symmetric tridiagonal QR algorithm from dense Matlab yields all the eigenvalues.

4. Examples. This section gives the avor of sparse Matlab by presenting
several examples. First, we show the e�ect of reorderings for sparse factorization by
illustrating a Cholesky factorization with several di�erent permutations. Then we
give two examples of m-�les, which are programs written in the Matlab language
to provide functionality that is not implemented in the \core" of Matlab. These
sample m-�les are simpli�ed somewhat for the purposes of presentation. They omit
some of the error-checking that would be present in real implementations, and they
could be written to contain more exible options than they do.

4.1. E�ect of permutations on Cholesky factors. This sequence of exam-
ples illustrates the e�ect of reorderings on the computation of the Cholesky factor-
ization of one symmetric test matrix. The matrix is S = WWT where W is the
Harwell-Boeing matrix WEST0479 [6], a model due to Westerberg of an eight-stage
chemical distillation column.

There are four �gures. Each �gure shows two spy plots, �rst a particular sym-
metric permutation of S and then the Cholesky factor of the permuted matrix. The

19

0

50

100

150

200

250

300

350

400

450

0 100 200 300 400

.

..

..

.

.

...
...
...
.........
.....
.

.....
.....
.....
.....
...........
..........
......

.

.

.............

.

...

.

.

......

.

....

.
....
..

.....

..

......

...
..

.

..

.

.

.

..

.

.....
...........
..

...

.

........

.

...

..

.

.

...

.

.

.

.

.

.

.

..

..

.

.

.

.........

.

.....

.

.....

.

..

...

......

...

.....

....

...

.

..

..........

...

.

.

..

..

.

.

...
...
...
.........
.....
.....
.....
.....
.....
...........
..........
.....

.

.

.............

.

...

.

.

......

.

....

.
....
..

.....

..

......

...
..

.

..

.

..

.

.....
...........
..
...

.

........

.

...

..

.

.

...

.

.

.

.

.

.

.

..

..

.

.

.

.........

.

.....

.

.....

.

..

...

......

...

.....

....

...

.

..

..........

...

.

...

....

...

....

...

........

...

....

...

....

...

...

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.....

...

...

...

.

.

.

.

.

.

.

.

.................

.....

.....

...

...

...

.

.

.

.

.

.

.

.

.................

.....

.....

...

...

...

.

.

.

.

.

.

.

.

.................

.....

...

....

...

....

...

........

...

....

...

....

...

...

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.....

...

.

.

.

.

.

.

.

..................

.....

.....

...

.

.

.

.

.

.

.

..................

.....

.....

...

.

.

.

.

.

.

.

..................

.....

.....

....

.....

....

.....

........

.....

....

.....

....

.....

...

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

...

.....

...

...

.

.

.

.

.

.

.

.

.................

.....

...

.....

...

...

.

.

.

.

.

.

.

.

.................

.....

...

.....

...

...

.

.

.

.

.

.

.

.

.................

.....

.....

....

.....

....

.....

........

.....

....

.....

....

.....

...

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

...

.....

.

.

.

.

.

.

.

..................

.....

...

.....

.

.

.

.

.

.

.

..................

.....

...

.....

.

.

.

.

.

.

.

..................

.....

.....

...

...

.

.

.

.

.

.

.....

...

...

.

.

.

.

.

.

.....

...

...

.

.

.

.

.

.

..

.

.

..

.

.

..

.

.

...

...

.....

...

.

.

.

.

.

.

.

.................

.....

...

...

.....

...

.

.

.

.

.

.

.

.................

.....

...

...

.....

...

.

.

.

.

.

.

.

.................

.....

..

.

.

..

.

.

..

.

.

.

......

...........

.

....

.

.

.

.

.

....

.

.

.

.

.

....

.

.

..

...

....

...

...

....

...

...

....

...

...............

......

..

......

..

.

..........

......

......

....

.

....

......

.

.....

....

.

....

......

.

.....

....

.

........

..........

..

........

..........

..

........

..........

..

.

..
.
..
.
..

.

.......

...........

.

.......

...........

.

.......

...........

...............

.

..........

...........

.

..........

...........

.

..........

...........

.

..

.

..

.

...
...

..

...

........

.

....

.

.

.

.

...

.

.

....

.

.

.

.

...

.

.

....

.

.

..

...

.

...

...

...

....

.

.................

.....

...

...

...

....

.

.................

.....

...

...

...

....

.

.................

.....

...............

.....

......

..

......
.
....

.....

...

........

.

....

.....

...

........

.

....

.....

...

........

........

.........

........

.........

........

.........

.

..
.
..
.
.........

......

.

..

....

.

.......

......

.

..

....

.

.......

......

.

..

....

.

...............
..........

......

.

..

....

.

..........

......

.

..

....

.

..........

......

.

..

....

.

.

..

.

..

.

.................

...

...............

...

...............

...

...............

...

...............

...

...............

...

.

.....

.

.....

.

.....

.

.....

.

.....

.

.....

..

..............

...

..

..............

...

..

..............

...

.

......

.........

...

........

.

.......

........

...

........

...

...............

..

....

....

................

..

....

....

....

.....

...............

..

....

....

...............

...

....

.....

.

..

.........

.....

.

..

..

.

.

..

.........

.....

.

..

..

.

...

.........

.....

.

..

..

.

.

.........

...............

.

..

..

.

.

.........

...............

.

..

..

.

.

..

..

.

.

.........

...............

.

..

..

.

.

.........

.

.

...

......

...

...

.................

.....

..

.

...

.

...

..

.

......

...

....

......

...............

.

.

.

.

.

......

...

....

......

............

.

.

.

.

.

.

.

..........

.

..........

.

..........

.

......

..........................

.

......

..................

........

.

......

..................

........

...........

....

.

........

..

..

.

..

.

.........

...

............

......

....................

.

.

.

.

......

.................

.

.

.

.

.

......

...............

.

.

.

.

.

.

......

.............

.

.

.

.

.

.

..

.......

.

.

.

.

.

..

.......

.

.

.

.

.

..

.......

.

.

.

.

.

.

..
.
..
.
..
.
..........

.

..........

.

..........

........

...................

........

...........

........

........

...........

........

.....

......

....

.

........

..

..

.

..

.

.........

...

...

.........

......

.

.

...................

.

.

.

......

.

.

................

.

.

.

.

......

....

.

...........

.

.

.

.

.

......

...

...........

.

.

.

.

.

..

.

.......

.

.

.

.

..

.

.......

.

.

.

.

..

.

.......

.

.

.

.

.

..
.
..
.
..
.
..........

.

..........

.

..........

........

...................

........

...........

........

........

...........

........

.....

......

....

.

........

..

..

.

..

.

.........

...

...

.........

......

.

.

.

...................

.

.

......

.

.

.

................

.

.

.

......

.

....

.

...........

.

.

.

.

......

.

...

...........

.

.

.

.

..

.

.

.......

.

.

.

..

.

.

.......

.

.

.

..

.

.

.......

.

.

.

.

..
.
..
.
..
.
..........

.

..........

.

..........

........

...................

........

...........

........

........

...........

........

.....

......

....

.

........

..

..

.

..

.

.........

...

...

.........

......

.

.

.

.

...................

.

......

.

.

.

.

................

.

.

......

.

.

....

.

...........

.

.

.

......

.

.

...

...........

.

.

.

..

.

.

.

.......

.

.

..

.

.

.

.......

.

.

..

.

.

.

.......

.

.

.

..
.
..
.
..
.
..........

.

..........

.

..........

........

...................

........

...........

........

........

...........

........

.....

......

....

.

........

..

..

.

..

.

.........

...

...

.........

......

.

.

.

.

.

...................

......

.

.

.

.

.

................

.

......

.

.

.

....

.

...........

.

.

......

.

.

.

...

...........

.

.

..

.

.

.

.

.......

.

..

.

.

.

.

.......

.

..

.

.

.

.

.......

.

.

..
.
..
.
..
.
..........

.

..........

.

..........

.

...

..

........

..................

.

...

..

........

...........

.......

.

...

..

........

...........

.......

.....

......

.....

........

...

..

..

.

...

..

.

.........

...

...

.........

......

.

.

.

.

.

.

..................

......

.

.

.

.

.

.

................

......

.

.

.

.

....

.

...........

.

......

.

.

.

.

...

...........

.

..

.

.

.

.

.

.......

..

.

.

.

.

.

.......

..

.

.

.

.

.

.......

.

..
.
..
.
..

.

..

.........

..

.

....

.

..

..

.

.

..

.........

..

.

....

.

..

..

.

.

..

.........

..

.

....

.

..

..

.

.

.........

..

........

.......

.

..

..

.

.

.........

..

........

.......

.

..

..

.

.

..

..

.

.

.........

..

........

.......

.

..

..

.

.

.....

.....

.

...

...

...

...

.............

...

.................

.....

...

..

.

...

.

...

.

......

.

...

...............

.

.

.

.

.

....

.

..........

......

.

...

...............

.

.

.

.

.

...

..........

...

......

.

..

....

.

...

...

.

...................

.....

...

...

.

...................

.....

...

...

.

...................

.....

...

...

.

...................

.....

...

...

.

...................

.....

...

...

.

...................

.....

.

.....

.

.....

.

....

.

.....

.

.....

.

.....

...

...

..

.

..................

.....

...

...

..

.

..................

.....

...

...

..

.

..................

.....

......

......

.........

.......

.......

......

.

...............

...

...

...

..

...........................

...

...

....

..

............................

....

....

.

...

...

.....

..

...........................

...

...

....

.

...........................

....

......

...

....

...

.

.......................

....

...

.

.......................

....

...

.

.......................

...

...

.

.......................
...

...

.....

...........

..

...

...

.......

.

..........

.

...

.

...

.

.

.

...

..

.

..

..

.

.

...

..

.

..

..

.

.

...

..

.

..

..

.

...

...

.

.................

.....

...

....

.

.................

......

...

....

.

.................

......

...

....

.

.................

......

...

...

.

.

..................

.......

....

......

...

...

...

.....

....

...

...

......

.

..

..........

......

......

.

..

....

.

...

...

...

...

.

...................

.....

...

...

...

...

.

...................

.....

...

...

...

...

.

...................

.....

...

...

...

...

.

...................

.....

...

...

...

...

.

...................

.....

...

...

...

...

.

...................

.....

.....
.....
.....
.....
.....
.....

...

...

...

...

.

..................

.....

...

...

...

...

.

..................

.....

...

...

...

...

.

..................

.....

......

......

..........

.......

......

......

.

...............

...

...

...

......

..

...........................

...

...

...

......

..

............................

....

.

...

...

...

......

..

...........................

...

...

...

...

.

...........................

......

...

....

...

...

...

.

.......................

....

...

...

...

.

.......................

....

...

...

...

.

.......................

...

...

...

...

.

.......................
...

...

...........

..

...

......

.......

.

..........

.

...

...

.

...

.

.

.

......

..

.

..

..

.

.

......

..

.

..

..

.

.

......

..

.

..

..

.

...

...

...

...

.

.................

.....

...

....

...

...

.

.................

......

...

....

...

...

.

.................

......

...

....

...

...

.

.................

......

...

...

...

...

.

..................

.......

......

...

...

.....

....

...

......

......

.

..

..........

nz = 7551

0

50

100

150

200

250

300

350

400

450

0 100 200 300 400

................
...
....
.......
..........
.
.........................

.

....
..........

.

........

.

..........
....
.

.....

..

........

...

.

.........................
....
....
.......
...........
.
........................

.........

.

........

.

........
.
..
.

...

.

........

...

.

.........

...

....

.

...

....

..

...

....

.......................................

...

...

.

...

...

..

...

...

.......................................

.......

.........

.

.....

.........

..

.....

.........

.....................

...

..........

...

..........

...

..........

.....

.........

.

.....

.........

..

.....

.........

.....................

...

..........

...

..........

...

............................

...

.........

.......

...

.........

.......

...

.........

....................
..........
..........
..........
................
.................
..

.............
........
....
.......
....

.

.

.

..

.

...............

.

.......

.

........

.

.........

.........

.......

........

...

....

.......

...

.....

............

...

....

...........

...

.....

..........

...

......

...

.........

...............

...

.......

...

.........

...............

...

........

...

.........

...............

...

....................................
.
.
.
..
.
........................
.............
........
....
.......
..

.........

.......

........

...

....

.......

...

.........................

.........

..........

........

..........

.......

..........

......

.............

.....

.............

....

.............

.........

................

.........

.................

........

..................

.

.........

.............

.

............

..............

......

.....................

.........

......................

........

.................

.........

........................

.........

.........................

.........

....................

...

...

.....................

..

...

......................

...

...

.......................

.

..............................

...

........................

.

..............................

...

.........................

.

.

..............................

...

..........................

.

....

.........

.........

...............

...

............

...

...........................

...

..............................

...

............

...

.............................

.........

...

............

...

..............................

......

.........

......................

........................

...

..............................

......

......................

........................

...

...............................
.........
.........
.........

.

.....................

...

...................................

.

.....................

...

....................................

.

.....................

...

.....................................
................
..............
..........
...................

......

.........

...............

...

............

...

..

......

...............

...

............

...

...

......

.........

.......................

......

........................

.....................

...

............

...

..

....................

...

............

...

...

...................

...

............

...

..
...................
...................
...................
...................
...................
...................

.........................

.........................

.........................

..........................

........................
..........

.............................

......

.........

...............

...

............

...

...

......

...............

...

............

...

..

......

.........

..

......

...

.....................

...

............

...

...

....................

...

............

...

..

...................

...

............

...

...
...................
...................
...................
...................
...................
...................

.........................

.........................

.........................

..........................

........................
..........

.............................

......

.........

...............

...

............

...

..

......

...............

...

............

...

...

......

.........

...

......

..

.....................

...

............

...

..

....................

...

............

...

...

...................

...

............

...

..
...................
...................
...................
...................
...................
...................

.........................

.........................

.........................

..........................

........................
..........

.............................

......

.........

...............

...

............

...

...

......

...............

...

............

...

..

......

.........

..

......

...

.....................

...

............

...

...

....................

...

............

...

..

...................

...

............

...

...
...................
...................
...................
...................
...................
...................

.........................

.........................

.........................

..........................

........................
..........

.............................

......

.........

...............

...

............

...

..

......

...............

...

............

...

...

......

.........

...

......

..

.....................

...

............

...

..

....................

...

............

...

...

...................

...

............

...

..
...................
...................
...................
...................
...................
...................

.

.........

..

.

.........

...

.

.........

..

..........................

..

...
..........

.............................

......

.........

...............

...

............

...

...

......

...............

...

............

...

..

......

.........

..

......

...

.....................

...

............

...

...

....................

...

............

...

..

...................

...

............

...

...
...................
...................
...................

............

...

...

...........

...

..

..........

...

...

.

...

.

..

.

.

...

.

...

.........

.........

...

...

.........

...............

...

............

...

...

..

.........

...

...

......

.........

.

.........

..

......

.

.........

...

.........

............

...

..

...

.........

..

...

.........

...

...

.........

..

...

.........

...

...

.........

..

...

.........

...

.........

............

...

...

........

............

...

..

.......

............

...

...

......

............

...

..

.....

............

...

...

....

............

...

..

...

.........

.........

............

...

...

...

.........

.........

............

...

..

...

.........

........

............

...

...

.........

............

...

..

............

............

...

...

...

.........

......

............

...

...

...

.........

.........

............

...

..

........

............

...

..

...

.........

.........

............

...

..

...

.........

.........

............

...

..

.........

............

...

...

......

.........

...

.....

.........

..

....

.........

...

...

.........

..

......

.........

.........

............

...

...

......

.........

.........

............

...

..

......

...

......

.........

............

...

..

.....

.........

............

...

...

....

.........

............

...

..

...

.........

..

...

............

...

...

...........

..

...

..........

...

...

.........

.........

............

...

...

.........

............

...

..

......

......

............

...

...

......

.........

............

...

..

..

...

.........

...............

...

............

...

..

...

.........

...............

...

............

...

...

...

.........

...............

...

............

...

..

...

.........

...............

...

............

...

...

...

.........

...............

...

............

...

..

...

.........

...............

...

............

...

..
..........
..........
..........

...

.........

...............

...

............

...

..

...

.........

...............

...

............

...

...

...

.........

...............

...

............

...

..

..

...

...

.........

...............

...

............

...

...

...

.........

...............

...

............

...

...

...

.........

...............

...

............

...

..

...

.........

...............

...

............

...

..

......

.........

...............

...

............

...

...

.....

.........

...............

...

............

...

..

....

.........

...............

...

............

...

...

...

.........

...............

...

............

...

..

......

.........

...............

...

............

...

..

......

.........

...............

...

............

...

......

...............

...

............

...

..

......

...............

...

............

...

.....

...............

...

............

..

....

...............

...

............

...

...

.........

...............

...

............

...

..

...

............

...............

...

............

...

...

...

...........

...............

...

............

...

..

...

..........

...............

...

............

...

...

...

.........

...............

...

............

...

..

........................

......

...............

...

............

...

..

......

...............

...

............

...

nz = 30141

Fig. 4. The structure of S and its Cholesky factor.

0

50

100

150

200

250

300

350

400

450

0 100 200 300 400

....................
.
....
.
..
.
....
.
..
.
.

...

..

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

..

.

..

.

.

.

.

.

.

..

....

..

.

..

...

....

.

..

...

...

..

...

...

...

...

...

...

.

.

.

.

.

.

.

.

.

.

...

.

.

.

...

.

.

.

...

.

.

.

...

.

.

.

.

.

.

.

.

.....

.

...

..

.

..

.

.

..

.

.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

....

.

.

..

.

....

.

.

.

....

.

.

.

....

.

.

..

.

.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

....

.

....

.

....

...

......

.

...

..

.

.

.

.

.

.

.

.

.

.

..

.....

...

.

.....

...

.

...

..

.

...

..

.

...

..

.

....

......

....

...

..

..

..

....

......

....

...

..

..

..

....

......

....

...

..

..

..

..

...

.

.

..

...

.

.

..

...

.

.

.

..

.

.

.

.

...

...

..

.

....

...

.

.

....

...

.

.

.

.

.

.

..

..

.

.

..

.

.

.

..

.

.

.

.

...

...

.

.

.

...

..

.

...

.

.

.

....

.....

.............

.

.

.

.

.....

.....

.............

.

.

.

....

...

.............

.

.

.

.

.....

.............

.

.

.

.

.............

...

.

.

.

.............

...

.

.

.

.............

...

.

.

.

..

.............

.

.

.

..

.............

.

.

.

..

.............

.

.

.

..

.............

.

.

.

..

.............

.

.

.

..

.............

.

.

.

.

.

......

.

.

...

.

.

......

.

.

...

.

.

......

.

.

...

.....

...

.

...

.....

...

.

.

...

..

.

.

..

.

.

.

.

.

.

......

.

..

...

...

.

.

....

...

.

.

....

.....

..

..

.....

..

.

.

.....

.

.

.

.

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

.

.

.

..

.

.

.

.

.

.

.

....

..

..

.

......

.

.

..

..........

.........

.......

....

......

.

..........

.........

.......

...

...

.

..........

.......

......

...

....

.

..........

.......

......

...

....

.

..........

.......

......

...

....

.

..........

.......

......

...

....

.

..........

.......

......

...

....

.

..........

.......

......

...

....

.

.

..........

......

......

...

...

.

..........

......

......

...

...

.

..

....

..

.

..

....

..

.

..

..

..

..

.

.

.

..

.

..

.

.......

...

.....

.

.

........

.

.....

.

.

.

.............

.

........

.....

.

.

.

.....

.

.

.....

.

.

.

.............

.

.....

.................

.

...

...

.....

.................

...

...

......

.................

.

.

...

....

.................

...

....

.................

...

....

.................

...

.

.................

...

.

.................

...

.

.................

...

.................

...

.

............

.

.

.

.................

..

...

.

....

....

...

.....

.

..

.

..

.

..

.

..

..

...................

.

.

.

.

.

.

...................

.

.

.

.

........

..

.........

.

.

...

...

......

....

.........

.

.

...

...

..

...................

.

.

.

.

..

..

.........

.

.

...

...

..

..

.........

.

.

...

...

..

..

.........

.

.

...

...

.........

.

.

...

...

.

..

.

..

.

..

.

.

.

......

...

.

..

.

..

.

..

.

.

.

......

...

.

..

.

..

.

..

.

.

.

......

...

.

..

.

..

.

..

.

.

.

......

...

.

..

.

..

.

.

.

......

...

.

.

..........

.........

.......

....

......

.

.

..........

.........

.......

....

......

.

.

..

..

.....

.

...

.

..

.....

.

.

...

.

..

.....

.

.

...

.

..

.

..

.

..

.

..

.

..

.

..

.

.

.

..........

......

........

....

......

.

.

.............

.........

...........

.

..

........

.

..........

..................

....

...

.

.

.

..........

..................

....

...

.

.

.

..........

..................

....

...

.

.

.

.

...........

.

.

........

....

.

.

...........

.

.

........

....

.

.

...........

.

.

........

....

.

.

...........

.

.

........

....

.

.

.......

.

.

.

.......

.

.

.

.......

.

.

..........

......

.......

...

...

.

.

..........

......

......

...

...

.

.

.

..........

......

.......

...

...

.

.

.

....

...

.

...

.

..

.

.

.

.

...

.

.

......

..

.

......

..

.

.............

.........

.

............

.

...

...

.

..........

......

.................

...

.

.

..........

......

.................

...

.

.

..........

......

................

...

.

.

.

.

.

............

.......

...

.

.

.

............

.......

...

.

.

.

............

.......

...

.

.

.

............

.......

...

.

.

............

.

.......

....

.

........

.

.

........

.

.

........

.

..........

......

......

....

...

.

.

..........

......

......

....

...

.

.

..........

......

......

....

...

.

.

...

.

......

.

.......

...

.

.....

.

.

.....

.

.

.....

.

..

...

...

.

..

.

.

..

.

.

.

.

.

.

.

....

.

.......

.

.

...

..

.

..

.

.

.

..........

......

......

...

...

.

.

..

....

.

.......

.

.

...

..

.

..

.

.

.

.

..........

......

......

...

...

.

.

..

..........

......

......

...

...

.

.

..

....

.

.......

.

.

...

..

.

..

.

.

.

.

.

....

.

....

.

....

.

.

.

.........

.

.

.

.........

.

...........

.

.

........

....

.

......

.

.

.

.

.

.

.

...

.

.

..

.

.

.

.

.

..

.

.

.

.............

.

.

................................

...

........

.

.

................................

...

.

................................

.

.

.

.

.

.

.

....

........

.

................................

...

.......

.

.

................................

...

.

................................

.

.

.

.

.

.

.

....

.

................................

.

.

.

.

.

.

.

.

...

.

.................................

.

.

.

.

.

.

...

.

.................................

.

.

.

.

.

.

...

.

.................................

.

.

.

.

.

.

...

...

.

.

................................

...

...

................................

...

.

.

................................

...

.

.

................................

...

.

.

................................

...

..

................................

...

.

.................................

...

.

.................................

...

..

................................

...

.

.................................

...

..

................................

...

..

................................

...

..

................................

...

..

................................

...

.

................................

...

.

................................

...

.

................................

...

.

................................

...

.

................................

...

.

................................

...

.

................................

...

................................

...

.

.

..

.

.

.

..........

......

......

...

...

.......

.

.

..

.

.

..................

.

..

.

.

..................

.

.

.

........

.

.

.

.

..

.

.

.

........

.

.

.

.

..

.

.

.

........

.

.

.

.

..

.

.

.......

.

.

.

.......

.

.

.

.......

.

.

.........................

.

.

...........

.

...................

.

.

...........

.

...................

.

.

...........

.

...

................

.

.

.

.

.

...

.

.

.

.......

.

.

.

.

.

.

.

.

......

.

.

.

.

.

.

.

.

.....

.

.

.

.

.

.

..

.

........

.

...........

.

.

.

.

.

.....

.

.

.

.

.

.

.....

.

.

.

.

.

.

.....

.

.

.

.

.....

.

........

..

..

..................

..

........

..

..

..................

..

........

..

..

..................

..

...

.

................

.

.

.

.

...

.

..

........

....

..

.

.

.

.

......

.

.

.

.

.

.

.

.

......

.

.

.

.

.

.

.

.

.....

.

.

.

.

.

...........

.

..

.

.

.....

.

.

..

.

.

.....

.

.

..

.

.

.....

.

.

.

.

.....

.

...

.

.

................

.

.

.

...

.

..

..

..

...................

..

..

..

..

...................

..

..

..

..

...................

..

..

....

....

....

..

.

.

.

.

.

......

.

.

.

.

.

.

.

.......

.

.

.

.

.

.

.

......

.

.

.

.

...........

.

..

.

.

.....

.

.

..

.

.

.....

.

.

..

.

.

.....

.

.

.

.

.....

.

...

.

.

.

................

.

.

...

.

..

..

..

...................

..

..

..

..

...................

..

..

..

..

...................

..

..

....

....

....

..

.

.

.

.

.

.

......

.

.

.

.

.

.

.

.......

.

.

.

.

.

.

.

......

.

.

.

...........

.

..

.

.

.....

.

.

..

.

.

.....

.

.

..

.

.

.....

.

.

.

.

.....

.

...

.

.

.

.

................

.

...

.

..

..

..

...................

..

..

..

..

...................

..

..

..

..

...................

..

..

....

....

....

..

.

.

.

.

.

.

.

......

.

.

.

.

.

.

.

.......

.

.

.

.

.

.

.

......

.

.

...........

.

..

.

.

.....

.

.

..

.

.

.....

.

.

..

.

.

.....

.

.

.

.

.....

.

...

.

.

.

.

.

...............

....

.

..

.

..

.

.................

..

..

..

.

..

.

..................

.

..

..

.

..

.

..................

.

..

.

.

....

....

...

.

..

.

.

.

.

.

.

.

.

.....

.

.

.

.

.

.

.

.

......

.

.

.

.

.

.

.

.

......

.

..........

.

.

.

........

.

.

.

........

.

.

.....

..

.

...

..........

.

.

.

.

.

..............

....

.

.

.

.

..........................

....

.

.

.

.

.........................

....

.

.

.

.

.........................

....

.

.

..........................

.

..

.

.

..........................

.

..

........

.

.....

..

............

.

.

.

.

..........

..

............

.

...........

.

..........

...

..

.......

...

..

............

.

............

..........

..

.

.......

..

..

............

..

..

...................

.

.

.

...

..

..............

.

.

.

...

..

..............

.

.

.

...

..

..............

.

.

......

..

............

.

......

..

............

.

......

..

............

.

.

..

..............

.

.

.

..

..............

.

.

.

..

..............

.

.

..

..............

.

.

..

..

............

.

.

....

......

.

....

.

..........

.

.........

..

.

.

......

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

..

.

.

.

.

.

.

.

.

.

.

.

...

..

.

..

.

.

.

.

.

.

.

.

.

.

.

...

..

.

....

.

..

.................................

..........

.

.................................

..........

.

.................................

..........

.

.........

...............

............

...

.................

..........

...

.................

..........

...

.................

..........

...

.................

..........

...

.................

..........

...

...............

..

..........

...

..

.

...

..

.

.

.

..

.

.

.

.

.

.

.
.
.

.......

.

.

..

.

............................

.

.....

...
.....
...
....
...

..

.

.

.

..

.

.

.

..

.

.

.

......

.......

....

...

.....

.

....

....

.

....

....

.

........

.

.

.

....

........

.

.
...

........

.

.
...
.....

...............

..

...............

.......

........

............
.........
.........

.......
.......
.......
.......
.......
...........
..
...
.....................

nz = 7551

0

50

100

150

200

250

300

350

400

450

0 100 200 300 400

......................................
.
..
....
.....
..
..........

.

.

.

.

.

....

...

.
.
..

..

.

..

.

..

....

...

...

...

....
.....

.

......

..

.

..

.

.

..

.

.......

...

......

....

...

......

....

.......

....

.........

....

...........
..
.
..
..
..
...

....

.

........

.

....

.........

.

.....

.........

.

.......

....

.........

...

...........

....

............

...

.............

........

......................

.......

........

.....

.........

...

..........

.......

...........

.....

............

...

.............

.

.

......

..............

.

.

..

...............

.

.

....

..
.........
..........
....................

............

.............

............
............

.

...

.

.........
..........

...

..

............

.

......

.

...............

......

..

........................

........

......

...

...

.........

........................

................................

..................................

....................................

....

.....................................

....

.....................................

....

.....................................

.

.........

.

..........

.

...........
............

..................................

...............................

....

......

.....

....

..

...

...........

...

......

..

...

......

..

....

...

..

..

.

..

.

.......................................

..

..

.......................................

...

.......................................

....

.......................................

.....

...................................

......

..................................

.......

.....................................

........

.

..

.........

...

..........

.......................................

...........

.......................................

............

.......................................

.............

.

.....

.

......

.

.......
.
........

......

.....

.

.........

.....

.....

.

..........

....

.....

.

...........

.......................................

.....................

.......................................

......................

.......................................

.......................

......................................

........................

.

............................

.............................

...................................

...

............................

.......................................

.............................

.......................................

..............................

.......................................

...............................

.

...................

.

...................

.

...................

.

...................

.

.........

...

.....

.

....................

..

.....

.

.....................

.

.....

.

......................

.......................................

..

.......................................

...

.......................................

..

....

.......................................

...

................................

...................................

...................................

...

..

..........................

..

..........................

...

....

.......................................

..

...................................

...

.......................................

..

....

.......................................

...

.....................................

..

.......................................

...

.......................................

..

....

.......................................

...

..................................

...

....................................

....................................

.

..

...

..

...

..

..

...

...

...

..

..

...

...

..

..

...

...

..

..

...

...

..

..

...

...

..

...

...

...

..

..

...

...

..

..

...

..

.....................

..

..........

...

..........

..

..

.....................

...

..........

..

..

.....................

...

..

.....................

..

..

.....................

...

..

.....................

..

...

...

...

..

.....................

...

.....................

..

.....................

...

..

..

...

...

................................

..

...

.......................................

..

..........................

...

..........................

..

..

.........................

..

.........................

...

.

..

........................

...

........................

..

.............................

...

......................

..

.....................

...

..

.

.......................................

.

.......................................

.

..

...........

...

.

.

...

.

.

..

.

.

...

..

..........

..

.........

...

........

..

...

...

.

..

.

..

.

...

..

...

..

..

..

...

..

...

..

...

..

..

..

...

..

.

...

.

...

.

..

..

...

..

..

..

...

..

..

..

...

..

..

..

...

..

.

..

.

..

.

...

..

...

..

..

..

...

..

...

..

...

..

..

..

...

..

.

...

.

...

.

..

..

...

..

..

..

...

..

..

..

...

..

..

..

...

..

.

..

.

..

.

...

.

..........

.

...........
............

..

.

..

.

...

.

..

..

..

..

...

...

...

...

..

..

..

..

..

...

..

..

.

...

.

..

.

...

..

...

..

..

..............................

.

..

..

.

.

..

.

..

..

.

.....

...

...

...

...

...

...

...

...

...

...

..

.

..

.

..

....

...

..

..

.

.

..

.

..

.

......

....

......................

.......................

......................

...................
.
.

....................

.....................

..................
................
................
.....................
...........
...........
............................
.............
..............
...................

nz = 23866

Fig. 5. Matrix S and its Cholesky factor after reverse Cuthill-McKee reordering.

0

50

100

150

200

250

300

350

400

450

0 100 200 300 400

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

..

.

..

.

..

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..

.

..

..

.

..

.

.

.

..

..

.

..

..

.

..

.

.

.

..

.

.

.

.

.

.

.

.

.

...

.

.

.

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

.

..

..

.

.

.

.

...

.

.

.

..

.

.

.

...

.

.

...

.

.

...

.

.

...

.

.

...

.

.

...

.

..

.

.

..

...

..

...

..

...

..

..

.

.

.

.

..

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

.

.

...

..

..

.

.

..

.

..

.

.

...

.

.

.

...

.

.

.

...

.

.

..

.

..

.

.

...

.

.

.

...

.

.

.

...

.

.

.

.

.

...

.

.

.

...

..

..

.

.

..

..

.

.

..

..

.

.

..

...

.

..

...

.

..

...

.

.

.

.

...

..

.

.

..

..

.

.

..

..

.

.

..

..

.

.

..

..

.

.

..

..

.

.

..

.

.

.

.

..

.

.

..

..

.

.

..

..

.

.

..

..

.

.

.

.

.

...

.

.

.

..

..

.

.

..

..

.

.

.

.

...

.

..

.

...

.

..

.

...

.

..

...

.

.

.

.

...

.

.

.

.

...

.

.

.

.

.

...

.

..

.

...

.

..

.

...

.

..

...

.

.

.

.

...

.

.

.

.

...

.

.

.

.

.

.

.

.

...

.

.

.

..

..

.

.

.

.

...

.

.

.

..

.

...

.

..

...

.

..

.

...

.

.

.

.

.

...

.

.

.

.

.

...

.

.

.

.

.

...

.

.

.

.

.

...

.

..

.

.

...

.

..

.

.

.

..

.

.

..

.

....

...

.

.

..

..

.

.

.

.

.

..

..

.

.

.

.

.

..

..

.

.

.

.

.

..

..

.

.

.

.

.

.

...

.

.

.

.

.

.

...

.

.

.

.

.

.

...

.

.

.

...

..

.

.

.

.

...

..

.

.

.

.

...

..

.

.

.

.

.

.

.

...

.

.

.

.

.

.

...

.

.

.

.

.

.

...

.

.

.

....

.

.

.

.

.

....

.

.

.

.

.

....

.

.

.

.

.

...

.

.

...

.

...

.

.

...

.

...

.

.

...

.

.

..

.

...

.

.

.

.

...

.

...

..

...

.

...

.

....

.

...

..

.

.

.

..

..

..

.

.

.

..

..

.

.

......

.

.

.

.

......

.

.

.

.

......

.

.

.

.

......

.

.

.

.

......

.

.

.

.

......

.

.

.

.

......

.

.

.

.

......

.

.

.

.

......

.

.

.

.

......

.

.

.

.

......

.

.

.

.

......

.

.

.

...

...

..

.

.

...

...

..

.

.

...

...

..

.

.

.

.

.

...

.

...

.

.

..

.

..

.

..

.

.

.

..

.

..

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

..

.

...

.

.

.

.

.

..

.

...

.

.

.

.

.

..

.

...

.

.

.

.

.

..

.

....

.

.

.

.

..

.

....

.

.

.

.

..

.

....

.

.

.

.

..

.

....

.

.

.

.

..

.

.....

.

.

.

..

.

.....

.

.

.

..

.

....

.

.

.

.

..

.

....

.

.

.

.

..

.

....

.

.

.

.

..

.

...

.

.

.

.

.

..

.

...

.

.

.

.

.

..

.

...

.

.

.

..

.

.....

.

.

..

..

.

.....

.

..

.

.

.

.

..

..

...

.

.

...

.

...

.

.

...

...

.

.

.

..

...

.

...

.

......

.

.

...

.

.

....

...

...

.

......

.

.

...

.

.

.......

...

.

.......

.

...

.

.

.......

...

.

....

.

...

...

.

.

.......

...

.

.

.

.....

.

...

.

.

....

...

.

.

.

.

.

.....

.

.

.

.

.

...

.

..

..

.

.

.

.

...

.

..

..

.

.

.

.

...

.

..

..

.

.

...

....

.

...

...

..

.

.

..

..

.

...

.

.

....

.

...

...

.

.

....

.

...

...

.

.

....

.

...

...

.

...

.

.

.

...

...

.

...

.

.

.

...

.

.

...

...

.

.

.

...

.

.

........

.

.

.

.

.

.

........

.

.

.

.

.

.

........

.

.

.

.

.

.

........

.

.

.

.

.

.

........

.

.

.

.

.

.

........

.

.

.

.

.

.

........

.

.

.

.

.

.

........

.

.

.

.

.

.

........

.

.

.

.

.

.

........

.

.

.

.

.

.

........

.

.

.

.

.

.

........

.

.

.

.

.

.

........

.

.

.

.

.

.

........

.

.

.

.

.

.

........

.

.

.

.

.

.

........

.

.

.

.

.

.

........

.

.

.

.

.

.

........

.

.

.

.

...

...

.

..

...

..

.

..

.

....

.

.

...

..

.

...

...

.

..

....

.

.

...

.

....

.

....

.

.

...

..

.

...

.

.

.

.

..

.

.

....

...

.

....

.

.

.

....

...

.

....

.

.

.

....

...

.

....

.

.

..

.

.....

..

.

...

.

...

....

.

.

.

....

.

.

.

..

.

.....

..

.

....

.

..

.....

...

...

.

.

...

........

..

...

...

...........

..

...

...........

..

...

........

..

...

.

..

....

..

.....

.

.

.

.

...

..

.

.

...

.

...

...

....

.

.

.

.

...

..

.

..

.

...

.

.

...

.

..

..

.

..

.

...

.

.

...

.

...

.

.

.

...

......

...

..

..

.

...

......

...

..

..

.

...

......

...

..

..

.

...

.....

.....

..

.

.

..

..

.

.

...

.

..

....

.

..

..

.

.

...

.

..

....

.

..

..

.

.

...

.

..

....

...

.

...

...

..

..

..

.

....

......

..

...

..

.

..

.........

..

..

.

..

..

.........

..

..

.

..

..

.........

..

..

.

..

..

.........

..

..

.

..

..

.........

..

..

.

..

..

.........

..

..

.

..

.

....

......

..

...

..

.

.

....

......

..

...

..

.

.

....

......

..

...

..

.

.........

..

..

...

.

..

.........

..

..

...

.

..

.........

..

..

...

.

..

.

.

.

..

...

.

....

.

..

....

.

.

.

..

...

.

....

.

..

....

.

.

.

..

...

.

.....

..

....

...

....

...

...

....

..

.

.

...

.

....

...

..

..

..

..

.

.

...

.

....

...

..

..

..

..

.

.

...

.

....

...

..

..

..

..

.

.

..

..

...

.....

.....

..

.

.

..

..

...

.....

.....

..

.

.

..

..

...

.....

.....

..

.

.

...

....

...

...

....

..

.

.

...

....

...

...

....

..

.

.

...

....

...

...

....

..

.

.

...

..

...

.

...

.

.

..

....

.

...

....

......

..

...

..

.

.

...

....

......

..

...

..

.

.

...

....

......

..

...

..

.

.

.

............

..

...

.

..

.

.

.

.....

...

....

..

..

.

.

.

.

.

.

.

.....

...

....

..

..

.

.

.

.

.

.

.

.....

...

....

..

..

.

..

.

.

...

...

....

...

...

....

..

.

.

...

...

....

...

...

....

..

.

.

...

...

....

...

...

....

..

.

..

..

............

..

...

.

..

.

......

.

......

.

..

...

.

...

.

.

...

...

.

......

....

...

...

.

.

...

...

.

......

.......

...

.

.

...

...

.

......

.......

...

.

.

...

...

.

......

.......

...

.

.

...

...

.

......

....

...

...

.

.

.

.

.

.......

...

...

....

.

.

.

.

.

.

.

.

.......

...

...

....

.

.

.

.

.

.

.

.

.......

...

...

....

.

..

.

...

.

...

.

.......

..

..

.....

.

....

...

.

.

...

...

..

..

..

...

.

..

..

.

.

............

..

...

.

..

..

...

.

.

............

..

..

.

..

...

....

...

...

......

.....

..

.

...

.

.

....

...

.

......

.....

..

.

.

...

...

..

.

.

......

..

...

.

...

.

...

....

...

..

........

..

..

...

...

....

...

..

........

..

..

...

...

....

...

..

........

..

..

...

.

...

...

.

..

.

.........

...

...

.

...

....

...

..

.............

..

...

....

...

..

.............

..

...

....

...

..

.............

..

.

...

...

.

..

.

............

...

.

...

....

...

..

.............

..

...

....

...

..

.............

..

...

....

...

..

.............

..

.

...

...

.

..

.

............

...

.

...

....

...

..

..........

..

...

...

....

...

..

..........

..

...

...

....

...

..

..........

..

...

.

...

...

.

..

.

............

...

.

.

...

...

.

..

.

.........

...

...

.

.

...

...

.

...

...

......

.

...

.

...

.

...

...

.

...

......

......

.

.

...

.

...

...

.

...

............

.

.

...

.

...

...

.

...

............

.

.

...

.

...

...

.

...

.........

.

...

.

...

.

...

...

.

...

......

.

.....

.

.

...

..

...

.

.

..........

..

..

..

...

.

.

...

..

...

.

....

...

...

....

..

..

.

...

.

...

.

....

...

...

....

..

...

.

...

..

...

....

...

...

....

..

...

.

...

......

.

..........

..

..

..

.

..

.

.................

.

..........

...

.

...

.

....

...

...

....

.....

.

.

.

...

...

.

...

..

...

.

......

...

.

...

.

...

...

.

...

..

......

.

......

.

...

.

...

...

.

...

..

......

.

......

.

...

.

...

...

.

...

..

.......

......

.

...

.

...

...

.

...

..

....

......

...

.

...

.

...

...

..

...

.

.

......

.....

..

...

.

.

.................

.

..........

.

..

.

.

.....

...

.....

...

..

..

...

..

.

.

..

.

.

.....

...

.....

...

..

..

...

..

.

..

.

.................

.

..........

..

.

.................

.

..........

.

.

.

.................

.

..........

..

.

.................

.

..........

..

.

.................

.

..........

.

.

.

.................

.

..........

.

.

.

.................

.

..........

.

.

.

.................

.

..........

.

.

.

.................

.

..........

.

.

.

.................

.

..........

.

.

.

.................

.

..........

.

.

.

.................

.

..........

..

....

..

.

...

....

......

..

.....

..

.

..

....

..

.

...

....

......

..

.....

..

.

..

....

..

.

...

....

......

..

.....

..

.

..

..

.................

.

..........

..

..

.................

.

..........

..

..

.................

.

..........

..

....

..

....

......

.....

.

...

...

..

.

..

....

..

....

......

.....

.

...

...

..

.

..

....

..

....

......

.....

.

...

...

..

.

.

..

.

.

.

.......

...

...

......

.....

..

.

.

..

.

.

.

.......

...

...

......

.....

..

.

...

.

.

.................

.

..........

....................

...............

.

....................

...............

.

....................

...............

.

....................

...............

.

....................

...............

.

....................

...............

.

....................

...............

.

....................

...............

.

.

.

..

.

..

...

.....

...

.....

...

..

..

...

..

.

...

...

.

.................

..

...........

......

.......

......

......

..

...

...

.

...

..

....................

...............

..

....................

...............

..

....................

...............

..

....................

...............

..

....................

...............

..

....................

...............

.

.

....................

...............

.

.

....................

...............

.

.

....................

...............

.

.

....................

...............

.

.

....................

...............

.

.

....................

...............

.

.

......

.

.................

.

..........

.

.

.

......

.

.................

.

..........

.

.

.

......

.

.................

.

..........

.

.

.

......

.

.................

.

...........

.

.

......

.

.................

.

...........

.

.

......

.

.................

.

...........

.

..

.

...

.

..

.................

.

..........

...

.

...

.

..

.................

.

..........

..

.

....................

...............

...

...

.

.

.......

......

........

...

...

.

...

.

.

.

..

.......

.......

...

...

......

.....

..

.

.

..

...

...

.

..

.................

.

..........

.

...

...

...

.

.

.................

.

..........

..

.

.

.

....................

...............

.

......

.

....................

...............

.

......

.

....................

...............

.

......

.

....................

...............

...

..........

...

...............

.....

.....

..

.

.

......

....................

................

.

.

......

....................

................

.

.

......

....................

................

.

.

......

.....................

...............

.

.

......

.....................

...............

.

.

......

.....................

...............

.

.

.....

.

.

....................

...............

.

.

..

....

.

....................

...............

...

.

.

..........

...

...............

.....

...

..

..

.

.

..

....

.

.

....................

...............

.........

..

..

....................

.................

nz = 7551

0

50

100

150

200

250

300

350

400

450

0 100 200 300 400

................
.
............

.

..

..

.

..

.

..

.

..

..

..

........

..

.

..

.

..

.

..

..

..

..

..

.............

.

.

..

..

..

..

..

..

..

.............

..

.

.

..

.

.

.

.

..

.

..

..

.

.

.

.

.

.

............

.....

..........

.

..

.

.

....

.

.

...

.

.

.

..

.

.

.........

.

.

.

..

.

.........

.....

.

.
.
.
.
.

.

.........

.

.

...

.

..

.

.

..

.

.

.

..

..

.

.

..

.

.

.

..

..

.

.

...

.

.

.

.

..

.

.

.

.........

.

.

.

.

.

.

.

..

.

.

.

.........

...

.

.

.

.

.

...

.

.

.

.

..

...

.

.

.

.

...

.

....

.

.

..........

...

.

..

..

.

...

...

.

..

..

.

...

...

.

..

..

.

...

...

.

..

..

.

...

.

....

.

.

...

..

.

..

...

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

..

.....

...

.

...

.

..

.....

...

..

...

.

...

..
...
.

...

..
...
.
...
..
...
.
...
..
...
.
...
..
...
.
...
...

....

...

.

...

...

..

..

...

...

.

...

.

...

..

..

...

.

.

.

...

.

.

.

...

.

.

....

.

..

...

.

.

.

..

.

.

.

.

..

..

.

.

.

..

...

.

.

.

..

....

.

.

.

..

....

.

.

.

..

....

.

.

.

..

.......

.

.

.

..

.......

.

.

.

..

.......

.

.

.

..

..........

.

.

.

..

..........

.

.

.

..

..........

.

.

.

..

.............

.

.

.

..

.............

.

.

.

..

.............

.

.

.

..

................

.

.

.

..

................

.

.

.

..

................

...

...

..

.

.

..

.

.

....

...

.

.

...

...

..

.

.

...

.

...

...

.

.

....

...

......

.

...

..

.

..

..

..

.

..

...

.

..

.

.....

..

...

.

...

...

........

.

...

..

.

..

.

..

.

.....

..

...

.

....

.

...........

.

....

.

.

...

..

.

...

.

...

.......

..

....

..

...

.

..........

..

.

...

.

.

...

...

.

.

.........

..

.

...

.

.

...

...

.

.......

.

....

...

...

...................

.

.

...

...

...

..................

..

.

..

...

...

.................

....

.

..

..

.

.

.

.

.

..

..

.

.

.

..

.

..

..

.

.

.

...

...

.

.....

..

....

..

....

..

....

..

.......

..

.......

..

.......

.

..

.

...

.

....
.......
........
.........

.

.

.

......

...

......

.

....

.

.

.

.

.....

...

......

.

....

..

.

.

.

....

...

......

.

....

...

...

.

.

..

...

.

....

....

..

...

.

....

.....

.

.

...

.

....

......

..

.............

.

..

............

..

..

...........

...

.

...

.

..

.

...

.

...

.

...

.

...

.

...

..

...

.

....

.......

.

...

....

...

...

.

................

.

...

...

...

...

.

.................

.

...

..

...

...

.

..................

.

.

............

...

.

.

....

...

...

.

...................

.

...

...

...

.

....................

.

..

...

...

.

.....................

.

...

.

...

.

.....................

.

...

.

...

.

.....................

.

...

.

...

.

.....................

..

.

.

............

...

.....

.

......

...

.............................

..............

.

...

...

...

..........................

...............

.

...

...

...

.......................

................

.

...

...

.

..

....................

.................

.

...

....

..

.................

..................

.

...

....

..

..............

...................

.

.

...

..........................

.

.

..

...........................

.

.

.

..........................

...

.

...

................

....................

....

...

...

.

....

.....................

..

.

.

.

............

...

.........

..

..

.

.

............

...

..........

......

.............

...

...........

...

.

.

.............

...

............

.

...

...

...

...................................

......................

...

......

..................

.............

.......................

...

......

..................

.............

........................

...

......

..................

.............

.........................

.

...

...

..

..............................

..........................

...

......

...............

............

...........................

...

......

...............

............

............................

...

......

...............

............

.............................

.

...

...

..

..........................

..............................

...

......

............

...........

...............................

...

......

............

...........

................................

...

......

............

...........

.................................

.

...

...

..

......................

..................................

...

......

.........

..........

...................................

...

......

.........

..........

....................................

...

......

.........

..........

.....................................

.

...

...

..

..................

......................................

.

...

...

..

..............

.......................................

.

...

...

...

...................

..............

..

.

...

...

...

................

..............

...

.

...

...

...

.............

..............

..

.

...

....

..

..........

..............

...

.

...

....

..

.......

..............

..

.

...

....

..

....

..............

...

....

...

.

....

..

...

..

.

...

.

....

...........

.

...

.

..........

...

..

...

..

...

.

...

.........

...

...

......

.

....

..

......

.

...

.

...

.........

.....

.

...

...

..

.................................

...

.

...

...

..

..............................

..

.

...

...

..

...........................

...

.

...

...

..

........................

..

.

...

...

..

.....................

...

.

...

...

...

....................

..

.

..

.

...

...

..

.

...

..

...

..

...

..

...

.

.

...

..

..

..

..

.

.

..

...

...

..

..

.

...

....

...

...

.

....

..

...

...

...

.

....

...

..

...

...

.

....

..

..

.....

..................

..

..

.....

..................

...

..

.....

..................

..

...

..

..

..

.....

...

..

.....

..

..

.....

...

.

...

..................

..

.

...

.................

..

...

.

....

...

.

.

............

...

............

..

.

.

...........

...

............

...

.

.

..........

...

............

..

.......................................

..

...

.

.

....

...........

..

.

.

...

.

...

...

...

.

....

...

......

.

...

...

..

..

..

...

..

..

..

...

..

..

..

...

...

.

.

.......

..

..

.

....

...........

...

.

.

....

...........

..

...

..

...

.

....

...........

...

..

..

...

.

....

...........

..

.

..

...

.

...

.........

...

...

...

......

...

..

..

......

..

.

.

......

...

....

......

.

...

............

..

...

.....

.

...

............

...

..

....

.

...

............

..

.

.

.....

...

...

.

.

....

...

...

.

....

..

..

.

...

.

....

...........

..

...

...

.

...

...

.

.

...

................

...

.

.

.....

...

......

.

....

..

.

.

......

...

......

.

....

...

..

.

...

.

.

.

..........

...

.

...................

...

.

..................

...

.

.................

...

...

.

.................

...

...

...

...

............

.

..

..

..

............

.

...

.

.

............

.

..

...

...

.

..

...............

....

...

..

..

.

..

...............

...

..

.

.

.

..

...............

...

...

.

.

.

...

.

...

.........

..

.

.

..

.

...

.

.

.......

...

...

.

................

...

..

.

.

..

.

...

.

.

.......

...

.........

...

............

..

nz = 12675

Fig. 6. Matrix S and its Cholesky factor after column count reordering.

20

Table 2

E�ect of permutations on Cholesky factorization.

nnz time
Original order 30141 5.64
Reverse Cuthill-McKee 23866 4.26
Column count 12675 1.91
Minimum degree 12064 1.75

0

50

100

150

200

250

300

350

400

450

0 100 200 300 400

.

.

.

...

..

..

.

....

.

......

..

.

....

.

......

..

.
....

.

......

....

.

.......

....

........

..

.

....

.

....

.

.

..

.

....

.

....

.

.

..

.

...

..

.......

.

....

.

.

....

.

.

.

..

..

...

....

.

....

...

....

..

......

..

..

.

..

..

..

.

..

..

..

.....

.......

...

.

............

..

.

..........

...

...

.

.........

...

.

..

.

........

.

.

.

.

.

.

..........

.

....

.

..........

.

....

.

.

.

.

.

..

...

.

...
..........
.....

.

....

.

......

.

..

......
......

.

..

....

...

.

...........

....

.

.

....
.
...........
.
....
.
...
..
..
.
..
.
....
...
....
...

....

...
.....
...........
..............
.........
.........
.....
.
...............

......

.....

.....

.

...

...

........

.

...

........

.

.

.

........

....

.

.

...

.

..

.

..

.

...

.

..

.

..

.

...

.

..

.

..

..

.

.

............

........

.....

.....

..

...

.......

.....

...

.....

..........

...

..

..

.

.

.

...

..

..

.

....

.

.

....

.

..

.

....

.

.

....

.

..

.

....

.

.

....

.

....

.

....

...

....

.

.......

.

.

.

...

..

.

..

.

..

.

.

..

..

.

.....

.

....

.

..

.

.....

.

....

.

..

.

.....

.

....

.

.....

.......

....

.

....

...

........

.

............

...

..

..

......

..

.

...

......

...

..

.....

.

..

...

..

..

.

....

..

...

..

..

.

....

..

...

..

..

.

....

..

...

..

....

.

.

......

....

.

....

...

.

.

.

..

.

.........

.

.....

.

....

.

......

...

.....

.

.......

..

.......

..

..

...

.

.

.

.

.

..

...

.

.

.

.

.

..

...

.

.

.

.

.

....

.

..

.

..

.

..

.

....

...

....

...

....

...

.

.
.
.
.
.
.
.
...

..........
.
....
.
...........
....
.
................
......

.

...............

.

......
....
.
..............
.........
.........

..............

.

.

....

.....

.............

..

.......

.

......

........

.

.

.

......

.

.

.

......

.

...

.

........

.........

.......

.

.

.

......

.

.

.

.

......

.

.

.....

...

...

.

.....

...

.

....

.....

...

...

......

...

....

.

.....

...

...

.........

...

.

.

.

.......

.

...

.

..

...

..

........

.

.

.

...

.

..

.

...

.

..

.

...

.

..

.

.

.

.

...

.

..

..

.

...

..

...

.

.

......

....

...

.......

.

......

....

..

.

..

..

..

...

...

.....

.

.......

.

.

.....

.

...

........

...

.

..

.............

..

.

....

......

...

.

...

......

...

.

...

..........

.

......

....

.............

..

.

....

..............

.

.......

......

....

.........

..

.

.

....

.........
.

.

.....................

...

.

......

.....................

...

.

......

...................

...

.

......

..

.......

.

.......

....

..

...................

...

.

......

..

...................

...

.

......

..

...................

...

.

......

..

...................

...

.

......

.

.....................

...

.

......

......................

...

.

......

.

.....................

...

.

......

..............

..

.

.......

.....

..........................

.....

.......

.

...................

.

...

.

......

.

...................

.

...

.

......

.

...................

.

...

.

......

.

...................

...

.

......

......................

...

.

.......

.

.

........................

...

.

.

.......

.

.

........................

...

.

.

.......

.

.

........................

...

.

.

.......

......

.

.

.

.

..

.

..

.

.

..

.

..

.

..

.

.

..

......

.

.

..

.

.......

...

.......

......

.

...

.........

.......

.

.....

...

...

..

.

...

.......

.

.......

.

....

.

...........

...

.......

.

....

.

...........

...

.......

.

....

.

...........

...

..

.....

......

..........

...

..

..

..

.....

....

...........

....

.

..

...

..

..

..

...

...

...

......

.

..............

...

...

......

.

..............

...

...

...

...

.

..............

.....

.

.

.

..

.

...

.......

...

..

..

.....

..

...

...............

.

.

.....

...

...

.........

...

.

.

..

..

....

...

..

...........

...

..

..

....

...

..

...........

...

..

..

....

...

..

...........

...

.

..........

.

.

.......

...

..

.....

..

.....

....

..............

.

.

..

..

.

.

...

..

.

..

.

.

.......

.......

.....

.....

.

.

.

....

...

..

........

.

.....

....

............

.

....

..

..

.

.

...

..

.

..

.

.....

....

....

.

......

....

...

.

.....

...

.

.....

...

.

.....

..

.

..

...

....

.

.

.

....

.

.

.

....

.

.

.

....

....

.

....

....

.

.........

......

.

.......

...

..

...

...

..

....

..

.......

........

...

..........

........

...

.

.

....

...

.

.

....

...

.

.

....

.

.

.

.

.

.

.

.

.

.

.

..

..

.

...

..

.

...

.

...

..

.

..
......
.....................
.....
.....
.
..
.

...

...

..

...

.....

.

...

.

.

.

.

.

.

.....
.................

...........

........

...........

........

...........

........

...........

...........

...........

...........

...........

.

..........

...........

...

.

.

...

.

..

.

..

..

.......

..

.
..
..

.......

.

.

..

..

..

..

.

..

.

......

.

...

......

.

...

.......

.

.

...

.....

...

.....

.......

.......

.....

.

........

.......

.

.

...

.....

.

....

.

........

..

..

........

..

..

........

.

.....

.

...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
..

.

.

..

.

..

.

..

.
..

.

.

...

.

....

.......

.

.....

.......

.

.....

.

.

.

.....
..................

.....

....

...

.

........

.....

....

...

.

........

.....

....

...

.

.......

.....

....

...

.

...........

.....

....

...

.

...........

.....

....

...

.

.

..........

.....

....

...

.

.

.

.
..
..

..

.....

.

....

.

.

.....

.

..

...

.

....

...

..

....

.....

..

....

........

..

.......

....

..

.....

.

........

........

..

........

........

..

......

...........

..

..

......

........

..

..

......

........

..

..........

..........

..

..

....

.

.

.....

.

.........

.......

..

..

.

..

..

.

....

.

....

.

....

.

....

.

................

...................

..................

...................

..................

...................

..................

...................

..................

...................

..................

...................

..................

...................

................

....................

................

....................

................

....................

.

................

...................

.

................

...................

.

................

...................

......

.......................

...................

..

..

.

................

...................

.....

..

.

................

...................

.....

..

.

.........

..........

..

..

.

...........

..........

..

..

.

............

.........

..

..

...

........

........

..

...

........

........

..

.

......

..

......

..

......

........

..

..

......

........

..

.

......

..........

..

.

......

..........

..

...

.....

...........

........

...

.......

.........

........

..

.........

.......

..

....

.

..

.........

.......

..

....

.

..

.

.......

.

.......

..

....

.

..

.......

...

...

......

....

...

.

...

.......

...

...........

...

.

...

...

.

................

.....................

....

...

.

................

.....................

....

...

.

................

....................

....

................

....................

.

................

...................

.

.

................

...................

.

.

................

...................

.

.

................

...................

...

...

.

....

.

.

.......

...

..

.

.

.

.......

...

..

.

.

.

.......

...

..

.

.

.

................

....................

.

................

....................

.

................

....................

...

................

...................

...

.

.......

.....

........

...

.

...

.

..

.

................

...................

..

...

.

..

.

................

...................

..

...

.

..

.

................

...................

..

..

.

..

.

.

................

...................

..

.

..

.

.

.

.

................

...................

..

..

.

..

.

.

................

...................

..

.

...

....................

.

.

...

.

.

.......

.

...

....................

.

.

...

.

.

.......

.

...

....................

.

.

...

.

.

.......

..

.

..

.

.....

..

...

.

..

.

..

.

................

....................

.

.

.

..

..

...

.

.

..

..

...

............

..

.

.

....

..

...

.

.

........

......

..

..

...

.

.

........

......

..

..

...

.

.

.

........

.....

..

.

.

..

...

.

.

........

.

...........

..

.

.

..

...

.

.

.......

..

...........

..

.

.

..

....

..

...

.

.

........

.

...........

..

...................

.....

....

...

......

.

......

.

..

.......

.....

.................

.

..

.

...

.

.......

.....

.................

.

...

.

..

........

..

................

....

.

..

.......

...

................

....

.

..

........

..

................

.

......

.

..

..

.....

...

..........

.

..

.

...

.

..

.....

...

..........

.

.

...

........

..

...

........

.

...

...

.

.

..

...

...

........

.

..

.

..

.

...

..

...

.....

..

..

.

.......

.

.

........

.....

..

..

.

.......

..

........

.....

..

..

.

.......

.

.

........

...

.

.

..

.

......

...

.

.

..

.

......

..

.

..

..

.

......

...

..

..

.

......

..

.

.

.

..

.

......

..

.

.

.

..

.

......

..

.

..

..

.

......

..

.

..

..

.

......

.

..

....

.

..

.......

..

.....

........

.

..

....

.

..

.......

..

.....

........

.

..

....

.

..

.......

..

.....

........

..

.

..

..

.

......

..

.

..

..

.

......

..

.

.

..

..

.......

.......

..

........

.

..

.

.

..

..

.......

.......

..

........

.

..

........

..

..

.......

.......

..

........

.

....

.........

..

......

...............

.

........

...

...

.

.

..

......

...............

...

.

........

........................

.

.

.....

.......

...........................

.

.

.....

......

...........................

.

.

.....

......

..

...

.

.

.

..

..

..

...

.

.

.

..

..

..

...

.

.

.

..

..

...................

.

...

.

.......

...................

.

...

.

.......

...................

.

...

.

.......

......

..

...

.

.

..

..

...

.

.

...

.

......

........

.

....

.......

............

...

.

nz = 7551

0

50

100

150

200

250

300

350

400

450

0 100 200 300 400

..
.....
...

.....
...

.

............

........

.

....

...

.

........

.....

..........

.

.

......

.....
...
......
..
.......
.
........

...

.....

..........

.....

......

....

...
........
.......
..

...
.............................

..........

.

.........

.....

...........

......

.

...

...

...

.......

.

.

.......

.

............

............

.

...

..

......

.

.......

......

...

......

........

...

.......

......

.

...

........

.

........

...
........
............
............

....

.......................

..

..........
..............

...

..........

................

...

............

.

.............
..............

.

...............

.........................

.....................

...

...............

..

................

.

.................

.

..................

..........................

............

....................

........

.....................

......

......................

........

........

.

..

...

....

...

........

..

...

.....

.....

........

..

...

......

........

..

.

..

...

.......

..........

...

.........

........

........

..

...

.........

.........

...........

...

.....

...

..........

...........

...

.....

...

...........

............

...

.....

...

............

...

......

........

...

.............

..

...

........

.........

..............

....

..

.......

...

...............

...

....

...........

...

................

...

....

...........

...

.................

...

....

......

.....

...

..................

......

.

..

.

..

...

...................

......

....

...

.........

....................

......

.

..

...

.........

.....................

...

....

......

....

....

......................

...

....

......

....

....

.......................

...

....

......

....

....

........................

..

............

.

...

.........................

...

.........

.

.........

..........................

....

.......

.

...

...........................

..

...

...........

............................

......

......

...........

.............................

..

...

......

.........

..............................

....

..

.....

....

...............................

.

.......

.....

..
..

......
.
..
...
....
.....
...............................

..........

.

...........

...

...

.............................
......
.......
..
.....
..
......

.

.

..

.........................
................................

...........
.
...

.......
........
.........

..

..

....

.....

..

...
........
..........................
..........

..

..

.............

.

.

.

..............

.

...............

......................

......

..

..

.................

........

.

..................

..

...........

.......

..

............

........

..

.............

.........

..

..........

..........

..

.........

...........

..

.

.

............

............

...

........

.............

...

........

..............

.

........

...............

.

........

................

....

.............

.................

...

.............

..................

..

.........

..

...................

..

.........

..

....................

..

.

.......

..

.....................

..

.......

.......................................

....

.......

.....................................

...

.

..................................

.....

.

...................................

.....

.

....................................

....

.....................................

.....

......................................

....

.......................................

...

..

...

...

...

.

.

...........

...

.

.......

..

.................................

..

.

.......

..

..................................

.

.

.......

..

...................................

...

.

..

..

.

...

.

.

..

....

...

...

.

.......

..

..

......

..................................

...

.....

.................................

..

....

.............................

...

...

..

...

...................................

.

..

.

..

...

..................................

.

...

..

...

.................................

.

..

...

.........

..

...

.

.

...

..

.........

..

..

.

.

..

.

.........

..

.

.

.

...

....

..

.............................

.

.

..

........

..

....

..

.............................

.

...

...

.

.....

..............

..

.

..

.

.....

............

...

..

.

.

..

.

..

..

...

...............

...

..

...

.........

.....

..

..

...

.

.........

.

...

.

.......

..

...

.........

....

..

.

.......

..

...

........

.......

...

.

.

.......

..

...

.........

...

..

..

........

...

.

.......

.............................

........

........

..

.

..

...

................................

........

........

...

.......

.......

.............................

.........

....

..

.......

.......

.............................

........

.......

...

........

.......

.............................

.........

...

..

..

......

.............................

..

........

...

.

..

...

................................

..

........

..

.

.......

.........

................................

..

........

...

...

.........

................................

..

........

..

....

..

.............................

..

.......

...

......

...

.....

...

................................

.

....

..

......

...

.....

...

................................

.......

...

.......

...

.....

...

................................

.

...

..

.......

..

.............................

......

...

.......

..

.............................

......

..

.......

...

................................

......

...

.......

...

................................

......

..

.....

.

..

.............................

......

...

.....

.

..

.............................

......

..

.....

.

...

................................

......

...

.....

.

...

................................

......

..

..

......

....

...........

................................

..

..

..

......

....

...........

................................

..

...

..

......

....

...........

................................

..

..

.....

....

................................

......

..

.....

....

................................

......

...

...

...........

................................

..

.......

..

..

...

...........

................................

..

.......

..

...

...

.

...........

................................

..

.......

..

..

...........

................................

..

........

...

...

.........

................................

..

........

..

...

...

..

.

...

...

...

..

.

..

..

...

..

.

...

..

...

...

.

.

..

..

...

..

.

.

...

..

...

.

.

.

..

..

...

.

.

...

..

..

.

.

..

..

.

.

.

...

..

...

.

.

..

..

...

...

.

.

...

...........

.....................................

.......

..

..

nz = 12064

Fig. 7. Matrix S and its Cholesky factor after minimum degree reordering.

�rst �gure is the original ordering; the second uses symmetric reverse Cuthill-McKee,
symrcm; the third uses the column count permutation, colperm; the fourth uses sym-
metric minimum degree, symmmd. Each of the spy plots shows a matrix pro�le that
is typical for the underlying permutation: Cuthill-McKee shows an envelope; column
count shows all the mass in the later rows and columns; and minimum degree shows
a recursive pattern curiously similar to divide-and-conquer orderings like nested dis-
section.

The matrix S is of order 479 and has 7551 nonzeros. Table 2 shows the number
of nonzeros and the execution time in seconds (on a Sun sparcstation-1) required to
compute the Cholesky factors for each of the permutations. The behavior of symrcm
and symmmd is typical; both produce signi�cant reductions in nnz and in the execution
time. The behavior of colperm is less typical; its reductions are not usually this
signi�cant.

4.2. The conjugate gradient method. Iterative techniques like the conjugate
gradient method are often attractive for solving large sparse systems of linear equa-
tions. Figure 8 is an m-�le for a conjugate gradient method. The code is somewhat
simpli�ed|a real code might use a more complicated criterion for termination, might
compute Ap in a subroutine call in case A is not held explicitly, and might provide for
preconditioning|but it illustrates an important point. Sparsity is never mentioned
explicitly in the code. If the argument A is sparse then Ap = A*p will be computed
as a sparse operation; if A is full then all the operations will be full.

In contrast with sparse direct methods, most iterative methods operate on matri-

21

function x = cgsolve (A,b,tol)

% Solve A*x = b by the conjugate gradient method.

% Iterate until norm(A*x-b) / norm(b) <= tol.

x = zeros(size(b));

r = b;

rtr = r'*r;

p = zeros(size(b));

beta = 0;

while (norm(r) > tol * norm(b))

p = r + beta * p;

Ap = A * p;

alpha = rtr / (p' * Ap);

x = x + alpha * p;

r = r - alpha * Ap;

rtrold = rtr;

rtr = r'*r;

beta = rtr / rtrold;

end

Fig. 8. Solving Ax = b by conjugate gradients.

ces and vectors at a high level, typically using the coe�cient matrix only in matrix-
vector multiplications. This is the reason for our decision not to build an iterative
linear solver into the core of Matlab; such solvers can be more easily and exibly
written as m-�les that make use of the basic sparse operations.

4.3. Solving reducible systems. If A is a reducible matrix, the linear system
Ax = b can be solved by permuting A to block upper triangular form (with irreducible
diagonal blocks) and then performing block back-substitution. Only the diagonal
blocks of the permuted matrix need to be factored, saving �ll and arithmetic in the
above-diagonal blocks. This strategy is incorporated in some existing Fortran sparse
matrix packages, most notably Du� and Reid's code MA28 in the Harwell Subroutine
Library [7]. Figure 9 is an implementation as a Matlab m-�le. This function is a
good illustration of the use of permutation vectors.

The call [p,q,r] = dmperm(A) returns a row permutation p and a column per-
mutation q to put A in block triangular form. The third output argument r is an
integer vector describing the boundaries of the blocks: the k-th block of A(p; q) in-
cludes indices from r(k) to r(k+ 1)� 1. The loop has one iteration for each diagonal
block; note that i and j are vectors of indices. The code resembles an ordinary tri-
angular backsolve, but at each iteration the statement x(j) = A(j,j) n x(j) solves
for an entire block of x at once by sparse LU decomposition (with column minimum
degree ordering) of one of the irreducible diagonal blocks of A.

Again this code is simpli�ed a bit. A real code would merge every sequence of
adjacent 1�1 diagonal blocks into a single triangular block, thus reducing the number
of iterations of the main loop.

22

function x = dmsolve (A,b)

% Solve A*x = b by permuting A to block

% upper triangular form and then performing

% block back substitution.

% Permute A to block form.

[p,q,r] = dmperm(A);

nblocks = length(r)-1;

A = A(p,q);

x = b(p);

% Block backsolve.

for k = nblocks : -1 : 1

% Indices above the k-th block.

i = 1 : r(k)-1;

% Indices of the k-th block.

j = r(k) : r(k+1)-1;

x(j) = A(j,j) \ x(j);

x(i) = x(i) - A(i,j) * x(j);

end;

% Undo the permutation of x.

x(q) = x;

Fig. 9. Solving Ax = b by block triangular back-substitution.

REFERENCES

[1] M. Arioli, I. S. Duff, and P. P. M. de Rijk, On the augmented system approach to least-
squares problems, Numerische Mathematik, 55 (1989), pp. 667{684.

[2] C. Ashcraft, R. Grimes, J. Lewis, B. Peyton, and H. Simon, Recent progress in sparse
matrix methods for large linear systems, International Journal of Supercomputer Applica-
tions, (1987), pp. 10{30.

[3] �A. Bj�orck, A note on scaling in the augmented system methods (unpublished manuscript),
1991.

[4] T. F. Coleman, A. Edenbrandt, and J. R. Gilbert, Predicting �ll for sparse orthogonal
factorization, Journal of the Association for Computing Machinery, 33 (1986), pp. 517{
532.

[5] J. Dongarra, J. Bunch, C. Moler, and G. Stewart, LINPACK Users Guide, Philadelphia,
PA, 1978.

[6] I. S. Duff, R. G. Grimes, and J. G. Lewis, Sparse matrix test problems, ACM Transactions
on Mathematical Software, 15 (1989), pp. 1{14.

[7] I. S. Duff and J. K. Reid, Some design features of a sparse matrix code, ACM Transactions
on Mathematical Software, 5 (1979), pp. 18{35.

23

[8] , The multifrontal solution of inde�nite sparse symmetric linear equations, ACM Trans-
actions on Mathematical Software, 9 (1983), pp. 302{325.

[9] S. C. Eisenstat, M. H. Schultz, and A. H. Sherman, Algorithms and data structures for
sparse symmetric Gaussian elimination, SIAM Journal on Scienti�c and Statistical Com-
puting, 2 (1981), pp. 225{237.

[10] A. George and J. Liu, The evolution of the minimum degree ordering algorithm, SIAM Re-
view, 31 (1989), pp. 1{19.

[11] A. George and J. W. H. Liu, Computer Solution of Large Sparse Positive De�nite Systems,
Prentice-Hall, 1981.

[12] J. R. Gilbert, Predicting structure in sparse matrix computations, Tech. Report 86{750, Cor-
nell University, 1986. To appear in SIAM Journal on Matrix Analysis and Applications.

[13] J. R. Gilbert, C. Lewis, and R. Schreiber, Parallel preordering for sparse matrix factor-
ization. In preparation.

[14] J. R. Gilbert, C. Moler, and R. Schreiber, Sparse matrices in Matlab: Design and imple-
mentation, Tech. Report CSL 91{4, Xerox Palo Alto Research Center, 1991.

[15] J. R. Gilbert and T. Peierls, Sparse partial pivoting in time proportional to arithmetic
operations, SIAM Journal on Scienti�c and Statistical Computing, 9 (1988), pp. 862{874.

[16] J. W. H. Liu, The role of elimination trees in sparse factorization, SIAM Journal on Matrix
Analysis and Applications, 11 (1990), pp. 134{172.

[17] J. W. H. Liu, E. Ng, and B. W. Peyton, On �nding supernodes for sparse matrix computa-
tions, Tech. Report ORNL/TM-11563, Oak Ridge National Laboratory, 1990.

[18] The MathWorks, Pro-Matlab User's Guide, South Natick, MA, 1990.
[19] C. Moler, Matrix computations with Fortran and paging, Communications of the ACM, 15

(1972), pp. 268{270.
[20] A. Pothen and C.-J. Fan, Computing the block triangular form of a sparse matrix, ACM

Transactions on Mathematical Software, 16 (1990), pp. 303{324.
[21] R. Schreiber, A new implementation of sparse Gaussian elimination, ACM Transactions on

Mathematical Software, 8 (1982), pp. 256{276.
[22] H. Schwartz, Tridiagonalization of a symmetric band matrix, Numer. Math., 12 (1968),

pp. 231{241. Also in [26, pages 273{283].
[23] B. Smith, J. Boyle, Y. Ikebe, V. Klema, and C. Moler, Matrix Eigensystem Routines:

EISPACK Guide, Springer-Verlag, New York, NY, second ed., 1970.
[24] B. Speelpenning, The generalized element method, Tech. Report UIUCDCS{R{78{946, Uni-

versity of Illinois, 1978.
[25] United Kingdom Atomic Energy Authority, Harwell subroutine library: A catalogue of

subroutines, Tech. Report AERE R 9185, Harwell Laboratory, Oxfordshire OX11 0RA,
Great Britain, 1988.

[26] J. Wilkinson and C. Reinsch, eds., Linear Algebra, vol. 2 of Handbook for Automatic Com-
putation, Springer-Verlag, New York, NY, 1971.

24

THE MATLAB ODE SUITE

LAWRENCE F. SHAMPINE∗ AND MARK W. REICHELT†

Abstract. This paper describes mathematical and software developments for a suite of programs
for solving ordinary differential equations in Matlab.

Key words. ordinary differential equations, stiff systems, BDF, Gear method, Rosenbrock
method, non-stiff systems, Runge-Kutta method, Adams method, software

AMS subject classifications. 65L06, 65L05, 65Y99, 34A65

1. Introduction. This paper presents mathematical and software developments
that are the basis for a suite of programs for the solution of initial value problems

y′ = F (t, y)

on a time interval [t0, tf], given initial values y(t0) = y0. The solvers for stiff problems
allow the more general form

M(t) y′ = f(t, y)

with a mass matrixM(t) that is non-singular and (usually) sparse. The programs have
been developed for Matlab [29], a widely used environment for scientific computing.
This influenced the choice of methods and how they were implemented.

As in many environments, the typical problem in Matlab is solved interactively
and the results displayed graphically. Generally functions defining the differential
equations are not expensive to evaluate. The typical stiff problem is either of modest
size or has a highly structured Jacobian. In Matlab, linear algebra and the built-
in array operations are relatively fast, and the language provides for sparse arrays.
Matlab handles storage dynamically and retains copies of arrays.

A new family of formulas for the solution of stiff problems called the numerical
differentiation formulas, NDF’s, are devised in §2. They are more efficient than the
backward differentiation formulas, BDF’s, though a couple of the higher order for-
mulas are somewhat less stable. These formulas are conveniently implemented with
backward differences. A way of changing step size in this representation is developed
that is both compact and efficient in Matlab. In §3 we devise a new linearly implicit
one-step method for solving stiff systems, specifically a modified Rosenbrock method,
and also a continuous extension of the method. §4 describes briefly how to modify
these methods so as to solve conveniently and efficiently problems involving a mass
matrix. In §5, we discuss briefly three methods for non-stiff problems. The two based
on explicit Runge-Kutta methods are more efficient than those previously available
in Matlab and have free interpolants.

Matlab has features, some of which are available in C and FORTRAN 90, that
make possible an interesting and powerful user interface. §6 explains how the language
was exploited to devise an interface that is unobtrusive, powerful, and extendable.
Using the scheme of §7 for the numerical approximation of Jacobians, the design makes
it possible for all the codes of the suite to be used in exactly the same manner. Options

∗ Mathematics Department, Southern Methodist University, Dallas, TX 75275. (shampine@na-
net.ornl.gov)
† The MathWorks, Inc., 24 Prime Park Way, Natick, MA 01760. (mwr@mathworks.com)

1

2 L. F. SHAMPINE and M. W. REICHELT

allow users to supply more information that makes the solution of stiff problems more
reliable and/or efficient. In particular, it is easy to exploit sparse Jacobians.

Examples in §8 show the relative performance of codes in the suite and the value
of some of the options. The availability of the codes is described in §9.

2. Implicit Formulas for Stiff Systems. The BDF’s are very popular for
solving stiff problems. When the step size is a constant h and backward differences
are used, the formula of order k, BDFk, for a step from (tn, yn) to (tn+1, yn+1) is

k∑
m=1

1
m
∇myn+1 − hF (tn+1, yn+1) = 0(1)

The algebraic equation for yn+1 is solved with a simplified Newton (chord) iteration.
The iteration is started with the predicted value

y
(0)
n+1 =

k∑
m=0

∇myn(2)

The leading term of the BDFk truncation error can be conveniently approximated as

1
k + 1

hk+1y(k+1) ≈ 1
k + 1

∇k+1yn+1.(3)

The typical implementation of a general-purpose BDF code is quasi-constant step
size. This means that the formulas used are those for a constant step size and the
step size is held constant during an integration unless there is good reason to change
it. General-purpose BDF codes also vary the order during an integration.

2.1. The Numerical Differentiation Formulas. Noting that the predictor (2)
has a longer memory than (1), Klopfenstein [25] and Reiher [31] considered how to
exploit this to obtain better stability. Klopfenstein studied methods of the form

k∑
m=1

1
m
∇myn+1 − hF (tn+1, yn+1) − κγk

(
yn+1 − y(0)

n+1

)
= 0(4)

that he called numerical differentiation formulas, NDF’s. Here κ is a scalar parameter
and the coefficients γk are given by γk =

∑k
j=1

1
j . The role of the term added to BDFk

is illuminated by the identity

yn+1 − y(0)
n+1 = ∇k+1yn+1

and the approximation (3) to the truncation error of BDFk. It follows easily that for
any value of the parameter κ, the method is of order (at least) k and the leading term
of its truncation error is (

κγk +
1

k + 1

)
hk+1y(k+1)(5)

For orders 3-6, Klopfenstein and Reiher found numerically the κ that maximizes
the angle of A(α)-stability. Because BDF2 is already A-stable, Klopfenstein consid-
ered how to choose κ so as to reduce the truncation error as much as possible whilst
still retaining A-stability. The optimal choice is κ = −1/9, yielding a truncation error

THE MATLAB ODE SUITE 3

Table 1

The Klopfenstein-Shampine NDF’s and their efficiency and A(α)-stability relative to the BDF’s.

order NDF coeff step ratio stability angle percent
k κ percent BDF NDF change
1 -0.1850 26% 90◦ 90◦ 0%
2 -1/9 26% 90◦ 90◦ 0%
3 -0.0823 26% 86◦ 80◦ -7%
4 -0.0415 12% 73◦ 66◦ -10%
5 0 0% 51◦ 51◦ 0%

coefficient half that of BDF2. This implies that for sufficiently small step sizes, NDF2
can achieve the same accuracy as BDF2 with a step size about 26% bigger.

The formulas derived by Klopfenstein and Reiher at orders higher than 2 are less
successful because the price of improved stability is reduced efficiency. Taking the
opposite tack, we sought values of κ that would make the NDF’s more accurate than
the BDF’s and not much less stable. Of course the leading term of the truncation
error cannot be made too small, else it would not dominate and the formula would not
behave as expected at realistic step sizes. Because Klopfenstein’s second order formula
optimally improves accuracy while retaining L-stability, it serves as the order 2 method
of our NDF family. Correspondingly, we sought to obtain the same improvement in
efficiency (26%) at orders 3-5. This comes at the price of reduced stability and we were
not willing to reduce the stability angle by more than 10%. The search was carried
out numerically. Our choices and the compromises made in balancing efficiency and
stability are shown in Table 1. The stability of BDF5 is so poor that we were not
willing to reduce it at all.

The first-order formula NDF1 has the form

yn+1 − yn − κ (yn+1 − 2yn + yn−1) = hF (tn+1, yn+1)

The boundary of the stability region of a linear multistep method consists of those
points z for which the characteristic equation ρ(θ) − zσ(θ) = 0 has a root θ of mag-
nitude 1. The root-locus method obtains the boundary as a subset of z = ρ(θ)/σ(θ)
as θ = exp(iψ) ranges over all numbers of magnitude 1. For NDF1 it is found that

Re(z) = 1− (1− 2κ) cos(ψ) − 2κ cos2(ψ)

and that a sufficient condition for the formula to be A-stable is 1 − 2κ ≥ 0. As at
other orders, we chose an improvement in efficiency of 26%, leading to κ = −0.1850.

2.2. Changing the Step Size. Backward differences are very suitable for im-
plementing the NDF’s in Matlab because the basic algorithms can be coded com-
pactly and efficiently. We develop here a way of changing step size that is also well-
suited to the language.

When the integration reaches tn, there are available solution values y(tn−j) at
tn−j = tn − jh for j = 0, 1, ..., k . The interpolating polynomial is

P (t) = y(tn) +
k∑
j=1

∇jy(tn)
1
j!hj

j−1∏
m=0

(t− tn−m) .

4 L. F. SHAMPINE and M. W. REICHELT

By definition ∇jP (tn) = ∇jy(tn). In this representation the solution is held in the
form of the current value y(tn) and a table of backward differences

D =
[
∇P (tn),∇2P (tn), ...,∇kP (tn)

]
.

Changing to a new step size h∗ 6= h amounts to evaluating P (t) at t∗ = tn − jh∗ for
j = 0, 1, ..., k and then forming

D∗ =
[
∇∗P (tn),∇∗2P (tn), ...,∇∗kP (tn)

]
.

Here the asterisk on the backward difference ∇∗ indicates that it is for step size h∗.
Equating the two representations of P (t) leads to the identity

k∑
j=1

∇∗jP (tn)
1

j!h∗j

j−1∏
m=0

(
t− t∗n−m

)
=

k∑
j=1

∇jP (tn)
1
j!hj

j−1∏
m=0

(t− tn−m) .

Evaluating this identity at t = t∗n−r for r = 1, ..., k leads to the system of equations

k∑
j=1

∇∗jP (tn)Ujr =
k∑
j=1

∇jP (tn)Rjr

which is in matrix terms D∗U = DR. The entries of the k × k matrix U are

Ujr =
1

j!h∗j

j−1∏
m=0

(
t∗n−r − t∗n−m

)
=

1
j!

j−1∏
m=0

(m− r) .

Matrix U satisfies U2 = I. This implies that D∗ = D (RU), the scheme we use for
changing the step size. The entries of U are integers that do not depend on h nor on
k. In terms of ρ = h∗/h 6= 1, the entries of the k × k matrix R are

Rjr =
1
j!

j−1∏
m=0

(m− rρ)

R must be formed each time the step size is changed. This is done in a single line of
Matlab code using the cumprod function. Likewise, changing the representation by
means of matrix multiplication is done in a single line. Accordingly, in Matlab this
way of changing the step size is both compact and efficient.

2.3. The ode15s Program. The code ode15s is a quasi-constant step size im-
plementation of the NDF’s in terms of backward differences. Options allow integration
with the BDF’s and integration with a maximum order less than the default of 5.

The identity

k∑
m=1

1
m
∇myn+1 = γk

(
yn+1 − y(0)

n+1

)
+

k∑
m=1

γm∇myn

shows that equation (4) is equivalent to

(1− κ) γk
(
yn+1 − y(0)

n+1

)
+

k∑
m=1

γm∇myn − hF (tn+1, yn+1) = 0.

THE MATLAB ODE SUITE 5

In the simplified Newton iteration, the correction to the current iterate

y
(i+1)
n+1 = y

(i)
n+1 + ∆(i)

is obtained by solving(
I − h

(1− κ) γk
J

)
∆(i) =

h

(1− κ) γk
F (tn+1, y

(i)
n+1) −Ψ−

(
y

(i)
n+1 − y

(0)
n+1

)
.

Here J is an approximation to the Jacobian of F (t, y) and

Ψ =
1

(1− κ) γk

k∑
m=1

γm∇myn

is a quantity that is fixed during the computation of yn+1. Scaling the equation to
remove the scalar multiplying J offers some advantages [36]. It is much more accurate
to obtain the fundamental quantity ∇k+1yn+1 as the limit of

d(i) = y
(i)
n+1 − y

(0)
n+1

computed from

d(i+1) = d(i) + ∆(i)

y
(i+1)
n+1 = y

(0)
n+1 + d(i+1)

Many of the tactics adopted in the code resemble those found in the well-known
codes DIFSUB [17], DDRIV2 [24], LSODE [22], and VODE [7]. In particular, local
extrapolation is not done. The selection of the initial step size follows Curtis [10] who
observes that by forming partial derivatives of F (t, y) at t0, it is possible to estimate
the optimal initial step size.

In the context of Matlab it is natural to retain a copy of the Jacobian matrix.
Of the codes cited, only VODE exploits this possibility. It is also natural to form
and factor the iteration matrix every time the step size or order is changed. The
rate of convergence is monitored [34] and the iteration terminated if it is predicted
that convergence will not be achieved in four iterations. Should this happen and the
Jacobian not be current, a new Jacobian is formed. Otherwise the step size is reduced.

Our scheme for reusing Jacobians means that when the Jacobian is constant,
ode15s will normally form a Jacobian just once in the whole integration. Also, the
code will form very few Jacobians when applied to a problem that is not stiff. ode15s
competes rather well with the codes for non-stiff problems because of this and the
efficient linear algebra of Matlab.

3. Linearly Implicit Formulas for Stiff Systems. In this section it is con-
venient at first to consider differential equations in autonomous form, y′ = F (y).
Rosenbrock methods have the form

yn+1 = yn + h
s∑
i=1

biki,

where the ki are obtained for i = 1, 2, ..., s by solving

Wki = F

yn + h
i−1∑
j=1

aijkj

+ hJ
i−1∑
j=1

dijkj.

6 L. F. SHAMPINE and M. W. REICHELT

Here W = I−hdJ and J = ∂F (yn)/∂y. Such methods are said to be linearly implicit
because the computation of yn+1 requires the solution of systems of linear equations.

A number of authors have explored formulas of this form with J that only ap-
proximate ∂F (yn)/∂y. A second order formula due to Wolfbrandt [40] is

Wk1 = F (yn)

Wk2 = F

(
yn +

2
3
hk1

)
− 4

3
hdJk1

yn+1 = yn +
h

4
(k1 + 3k2)

Here the parameter d = 1/
(
2 +
√

2
)
. It is characteristic of such W-formulas that the

order of the formula does not depend on J . The stability does depend on J , and if
J = ∂F/∂y, the formula is L-stable.

One of the attractions of Rosenbrock and W methods is that they are one-step.
However, it is not easy to retain this property when estimating the error, and the
error estimate of [40] for Wolfbrandt’s formula gives it up. Scraton [33] achieved a
one-step error estimate without additional evaluations of F by assuming that

J =
∂F

∂y
(tn, yn) + hB + O

(
h2)

We must assume that J ≈ ∂F/∂y if we are to apply the usual linear stability theory
to conclude the good stability that leads us to consider such formulas in the first
place. We describe formulas based on Scraton’s assumption as modified Rosenbrock
formulas. Scraton’s error estimate is inefficient for very stiff problems because the
companion formula of order 3 is not stable at infinity. Zedan [43], [42] derived a
companion that is A-stable and also requires no additional evaluations of F .

3.1. A Modified Rosenbrock Triple. In a step from tn to tn+1 with Wolf-
brandt’s formula and any of the error estimates cited, F is evaluated only at tn and
tn + 2h/3. It is possible that if a solution component changes sharply somewhere in
(tn+ 2h/3, tn+h), a poor approximation to this component at tn+1 will be produced
and accepted. Very sharp changes in a solution component are common when solving
stiff problems and robust software ought to be able to deal with them. For this reason,
many authors attempt to derive pairs that evaluate at both ends of a step.

Wolfbrandt’s formula is a member of a family of second order, L-stable W methods
[40] that involve two evaluations of F . By making the first evaluation of F for the
next step the same as the last of the current step (FSAL), we have at our disposal a
function evaluation that is usually “free” because most steps are successful. Exploiting
this we derived a pair of formulas that we present in a form that avoids unnecessary
matrix multiplications [36]. When advancing a step from (tn, yn) to tn+1 = tn + h,
the modified Rosenbrock pair is

F0 = F (tn, yn)
k1 = W−1 (F0 + hdT)
F1 = F (tn + 0.5h, yn + 0.5hk1)
k2 = W−1 (F1 − k1) + k1

yn+1 = yn + hk2

F2 = F (tn+1, yn+1)

THE MATLAB ODE SUITE 7

k3 = W−1 [F2 − e32 (k2 − F1)− 2 (k1 − F0) + hdT]

error ≈ h

6
(k1 − 2k2 + k3)

Here W = I − hdJ with d = 1/
(
2 +
√

2
)

and e32 = 6 +
√

2,

J ≈ ∂F

∂y
(tn, yn) and T ≈ ∂F

∂t
(tn, yn) .

If the step is a success, the F2 of the current step is the F0 of the next. If J = ∂F/∂y,
the second order formula is L-stable. Because the pair samples at both ends of the
step, it has a chance of recognizing very sharp changes that occur within the span of
a step.

On p. 129 of his dissertation, Zedan describes briefly a scheme for interpolating
his modified Rosenbrock method. On [tn, tn + h] he approximates the solution with
the quadratic polynomial interpolating yn, yn+1, and F0 = F (tn, yn). Interpolating
F0 can be unsatisfactory when the problem is very stiff. A standard way to obtain
a continous extension to a one-step method is to derive a family of formulas, each
of which provides an approximation at tn + h∗ for a given h∗ = sh. For any s, it is
easy to derive a formula that has the same form as that of the basic step to tn+1;
the trick is to reuse the computations of the basic step as much as possible. In the
new formula the matrix W ∗ = I − h∗d∗J , so if we take the parameter d∗ = d/s,
then W ∗ = W . It is easily found that with similar definitions, it is possible to
obtain a second order W method for the intermediate value that requires no major
computations not already available from the basic step itself. Specifically, it is found
that a second order approximation to y (tn + sh) is provided by

yn+s = yn + h

[
s (1− s)
1− 2d

k1 +
s (s− 2d)

1− 2d
k2

]
.

Though derived as a family of formulas depending on a parameter s, the continuous
extension turns out to be a quadratic polynomial in s. It interpolates both yn and
yn+1, hence connects continuously with approximations on adjacent steps. This in-
terpolant behaves better for stiff problems than the one depending on F0, in essence
because of the W−1 implicit in the ki.

3.2. The ode23s Program. The code ode23s based on the scheme derived here
provides an alternative to ode15s for the solution of stiff problems. It is especially
effective at crude tolerances, when a one-step method has advantages over methods
with memory, and when Jacobians have eigenvalues near the imaginary axis. It is a
fixed order method of such simple structure that the overhead is low except for the
linear algebra, which is relatively fast in Matlab. The integration is advanced with
the lower order formula, so ode23s does not do local extrapolation. To achieve the
same L-stability in ode15s, the maximum order would have to be restricted to 2.

We have considered algorithms along the lines of [11] for recognizing when a new
Jacobian is needed and we have also considered tactics like those of [40] and [42] for
this purpose. This is promising and we may revisit the matter, but the current version
of ode23s forms a new Jacobian at every step for several reasons. A formula of order 2
is most appropriate at crude tolerances. At such tolerances solution components often
change significantly in the course of a single step, so it is often appropriate to form a
new Jacobian. In Matlab the Jacobian is typically of modest size or sparse and its

8 L. F. SHAMPINE and M. W. REICHELT

evaluation is not very expensive compared with evaluating F . Lastly, evaluating the
Jacobian at every step enhances the reliability and robustness of the code.

For non-autonomous problems ode23s requires an approximation to ∂F/∂t in
addition to the approximation to ∂F/∂y. For the convenience of the user and to
make the use of all the codes the same, we have chosen always to approximate this
partial derivative numerically.

4. Stiff Systems of More General Form. A stiff problem M(t) y′ = f(t, y)
with a non-singular mass matrix M(t) can always be solved by transforming the
equation to the equivalent form y′ = F (t, y) = M−1(t) f(t, y). Small modifications to
the methods avoid the inconvenience and expense of this transformation.

Because the modified Rosenbrock method was derived for autonomous systems,
it is awkward to accomodate matrices M that depend on t. Accordingly, we allow
only constant mass matrices in ode23s. The modification is derived by applying the
method to the transformed equation and then rewriting the computations in terms of
M and f(t, y). The first stage k1 is obtained from

Wk1 = (I − hdJ)k1 = F0 + hdT

Here F0 = M−1f(t0, y0) = M−1f0,

J ≈ ∂F

∂y
= M−1∂f

∂y
and T ≈ ∂F

∂t
= M−1∂f

∂t
.

Scaling the equation for k1 by M leads to(
M − hd∂f

∂y

)
k1 = f0 + hd

∂f

∂t

The remaining computations are treated similarly. The usual form of the method is
recovered when M = I. This modification of the method allows the user to pose the
problem in terms of M and f(t, y). It avoids the solution of linear equations that
arise when the equation is transformed.

The ode15s code allows the mass matrix to depend on t. This causes only one
difference in the modification of the methods of this code. The simplified Newton
method involves solution of linear systems with the iteration matrix

I − h

(1− κ)γk
J

and right hand sides involving

F (tn+1, y
(i)
n+1) = M−1(tn+1)f(tn+1, y

(i)
n+1)

Here

J ≈ ∂F

∂y
(tm, ym) = M−1(tm)

∂f

∂y
(tm, ym)

for some m ≤ n. Because M depends on t, it is not possible to remove all the inverses
simply by scaling with M(tn+1). We approximate the scaled iteration matrix by

M(tm)− h

(1− κ)γk
J where J ≈ ∂f

∂y
(tm, ym) .

With this approximation, the computations can be written in terms of M(t) and
f(t, y). The modified method reduces to the usual one when M(t) = I.

THE MATLAB ODE SUITE 9

5. Explicit Formulas for Non-Stiff Systems. The two explicit Runge-Kutta
codes, ode23 and ode45, in previous versions of Matlab have been replaced by codes
with the same names that remedy some deficiencies in design and take advantage
of developments in the theory and practice of Runge-Kutta methods. A new code,
ode113, is a PECE implementation of Adams-Bashforth-Moulton methods.

The new ode23 is based on the Bogacki-Shampine (2, 3) pair [3] (see also [37])
and the new ode45 is based on the Dormand-Prince (4, 5) pair [12]. Workers in
the field employ a number of quantitative measures for evaluating the quality of
a pair of formulas. In the standard measures these pairs are of high quality and
significantly more efficient than those used in the earlier codes. Both pairs are FSAL
and constructed for local extrapolation.

Because solution components can change substantially in the course of a single
step, the values computed at the end of each natural step may not provide adequate
resolution of the solution for plotting. This phenomenon is exacerbated when plotting
in the phase plane. A good way to deal with this is to form additional values by
means of a continuous extension (interpolant). A continuous extension also makes
possible event location, a valuable capability in ODE codes. We selected pairs for
which continuous extensions were available. In the case of the (2, 3) pair, accurate
solution values can be obtained for “free” (no additional evaluations of F) by cubic
Hermite interpolation to the values and slopes computed at the ends of the step.
Dormand and Prince obtained a number of inexpensive interpolants for their pair in
[13]; they communicated to us another interpolant of order 4 that is of high quality
and “free”. The default in ode45 is to use this interpolant to compute solution values
at four points spaced evenly within the span of each natural step. Figure 1 shows the
importance of this development. We return to this issue in §6.

0 2 4 6 8 10 12
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

time

y
so

lu
tio

n

Fig. 1. The rigid solution as computed by ode45. The continuous curves result from the
default output of ode45. The discrete values are the results at the end of each step. The dashed
curves show what happens when the new interpolation capability is disabled.

ode113 is a descendant of ODE/STEP, INTRP [39]. Though the code differs
considerably in detail, its basic algorithms follow closely those of STEP. In particular,
it does local extrapolation. The authors of ODE/STEP, INTRP tried to obtain as
cheaply and reliably as possible solutions of moderate to high accuracy to problems

10 L. F. SHAMPINE and M. W. REICHELT

involving functions F that are expensive to evaluate. This was accomplished by mon-
itoring the integration very closely and by providing formulas of quite high orders. In
the present context the overhead of this monitoring is comparatively expensive. Al-
though more than graphical accuracy is necessary for adequate resolution of solutions
of moderately unstable problems, the high order formulas available in ode113 are not
nearly as helpful in the present context as they are in general scientific computation.

6. User Interface. Every author of an ODE code wants to make it as easy as
possible to use. At the same time the code must be able to solve typical problems.
It is not easy to reconcile these goals. In the Matlab environment we considered it
essential that it be possible to use all the codes in exactly the same way. However,
we also considered it essential to provide codes for the solution of stiff problems.
Methods for stiff problems make use of Jacobians. If a code for solving stiff problems
is to “look” like a code for non-stiff problems, it is necessary to approximate these
Jacobians inside the code. Unfortunately, it is difficult to do this reliably. Moreover,
when it is not inconvenient to supply some information about the structure of the
Jacobian, it can be quite advantageous. Indeed, this information is crucial to the
solution of “large” systems. Clearly a user interface to a code for stiff problems must
allow for the provision of additional information and this without complication when
users do not have the additional information or do not think it worth the trouble of
supplying. The same is true of other optional information, so a key issue is how to
make options unobtrusive. Further, the design must be extendable. Indeed, we have
already extended the functionality of our original design three times.

It is possible to use all the codes in the suite in precisely the same manner, so in
the examples that follow ode15s is generic. An initial value problem can be solved by

[t,y] = ode15s(’ydot’,tspan,y0);

The results can then be displayed with the usual plotting tools of Matlab, e.g., by
plot(t,y). Here ydot is the name of a function that defines the differential equation.
Figure 2 shows an example of the van der Pol equation coded as function vdpnsode.
The interval of integration is tspan=[t0,tfinal] and the initial conditions are y0.
The code obtains the number of equations by measuring the length of the vector y0.

function dy = vdpnsode(t,y)
dy = zeros(2,1); % preallocate column vector dy
dy(1) = y(2);
dy(2) = (1-y(1)ˆ2)*y(2)-y(1);

Fig. 2. The matlab code for the initial value problem vdpnsode.

The suite exploits the possibility of a variable number of arguments. For instance,
the codes monitor several measures of cost, such as the number of steps and the
number of Jacobian evaluations, and return them in an optional output argument,
viz. [t,y,stats]. It also exploits the possibility of empty arrays. For example, it is
possible to define the initial value problem in one file. Figure 3 illustrates this for the
CHM6 [14] stiff test problem of [28]. With the function coded as shown, if ode15s is
invoked with empty or missing arguments for tspan and y0, it will call chm6ode with
an empty argument for t to obtain the information not supplied in the call list.

Returning the independent variable and approximate solution at each step in
arrays [t,y] is natural in Matlab because it facilitates plotting and the sizes of

THE MATLAB ODE SUITE 11

function [out1,out2,out3] = chm6ode(t,y)
if isempty(t) % return default tspan, y0, options
out1 = [0; 1000];
out2 = [761; 0; 600; 0.1];
out3 = odeset(’atol’,1e-13);
return;

end
dy = zeros(4,1); % preallocate column vector dy
K = exp(20.7 - 1500/y(1));
dy(1) = 1.3*(y(3) - y(1)) + 10400*K*y(2);
dy(2) = 1880 * (y(4) - y(2) * (1+K));
dy(3) = 1752 - 269*y(3) + 267*y(1);
dy(4) = 0.1 + 320*y(2) - 321*y(4);
out1 = dy;

Fig. 3. The matlab code for the initial value problem chm6ode.

output arrays do not have to be specified in advance. The steps chosen by a code
tend to cluster where solution components change rapidly, so this design generally
results in satisfactory plots. However, this is not always the case, a point made by
Polking [30] for the old ode45 and illustrated by Figure 1 for the new. All the methods
implemented in the suite have free interpolants that can be evaluated at additional
points to obtain a smooth plot. In our design there is an option refine for specifying
the number of answers to be computed at points equally spaced in the span of each
step. By increasing refine, it is always possible to get a smooth plot. The additional
output is obtained inexpensively via a continuous extension of the formula.

To deal with output at specific points, we overload the definition of tspan and
use the length of this vector to dictate how its values are to be interpreted. An input
tspan with two entries means that output at the natural steps is desired. If tspan
contains more than two entries, the code is to produce output at the values of the
independent variable specified in tspan and only these values. Because output is
obtained by evaluating a polynomial, the number and placement of specified output
points has little effect on the cost of the integration.

It is difficult to accomodate all the possibilities for optional input without com-
plicating the interface to the point that users despair. A traditional approach is to
use an options vector. We do this too, but with some innovations. The options vector
is optional. When it is employed, the syntax of a call to the solver is

[t,y] = ode15s(’ydot’,tspan,y0,options);

The vector options is built by means of the function odeset that accepts name-value
pairs. We make use of keywords and exploit the fact that in Matlab we can specify
values for the options that are of different data types. Indeed, an option can have
more than one data type as a value. odeset allows options to be set in any order and
default values are used for any quantity not explicitly set by the user. A number of
things are done to make the interface more convenient, e.g., the name alone instructs
odeset to assign the value “true” to a Boolean variable.

The most commonly used options are rtol and atol, tolerances associated with
the error control. Specification of the error control is a difficult matter discussed in

12 L. F. SHAMPINE and M. W. REICHELT

[37]. There it is explained how the simplifying assumptions made in the old ode23
and ode45 can lead to unsatisfactory results. Polking [30] makes the same point.
Unfortunately, there seems to be no way to provide automatically a default control
of the error that is completely satisfactory.

In the suite, the local error ei in yi is estimated in each step and made to satisfy

|ei| ≤ r |yi|+ ai

where r = rtol and ai = atol(i). The scalar relative error tolerance rtol has a
default value of 10−3. The vector of absolute error tolerances atol has by default
all its values equal to 10−6. If a scalar absolute error tolerance is input, the code
understands that the value is to be assigned to all entries of the atol vector.

As another example of setting options, suppose that we wish to solve a stiff
problem with a constant Jacobian, an absolute error tolerance of 10−20 is appropriate
for all components, and we wish to impose a maximum step size of 3500 to assure
that the code will recognize phenomena occurring on this time scale. This is done by

options = odeset(’constantJ’,’atol’,1e-20,’hmax’,3500);

An illuminating example is provided by the chm6ode function shown in Figure 3.
Its solution is discussed in [27]. Figure 5 is a log-log plot of y2(t). A fundamental
difficulty is that with an initial value of 0, there is no natural measure of scale for
y2(t). It turns out that the component never gets bigger than about 7×10−10, so the
default absolute error tolerance of 10−6 is inappropriate. After an integration that
revealed the general size of this solution component, we solved the problem again
with the default relative tolerance of 10−3 and an optional absolute error tolerance
of 10−13. This is accomplished by ode15s in only 139 steps. The step sizes ranged
from 5 × 10−14 to 102! This is mainly due to y2(t) changing rapidly on a very short
time scale. On plotting the output it is seen that a logarithmic scale in t would be
more appropriate. Because all the solution values are provided to users in our design
and they are retained in Matlab, they can be displayed in a more satisfactory way
without having to recompute them.

In order that all codes in the suite have the same appearance to the user, the
codes intended for stiff problems by default compute internally the necessary partial
derivatives by differences. Users are given the option of providing a function for the
analytical evaluation of the Jacobian. They are also given the option of specifying that
the Jacobian is constant, a special case that leads to significant savings in ode23s.
The default is to treat the Jacobian as a full matrix. To take advantage of a sparse
Jacobian, the code must be informed of the sparsity pattern. The distinction between
banded Jacobians and the much more complicated case of general sparse Jacobians
that is important in other codes is absent in the new suite. All that a user must do
is provide a (sparse) matrix S of zeros and ones that represents the sparsity pattern
of the Jacobian. There are a number of ways to create matrix S. If there are neq
equations, an neq× neq sparse matrix of zeros can be created by

S = sparse(neq,neq);

Then for each equation i in F (t, y), if yj appears in the equation, the (i, j) entry of S
is set to 1, i.e. S(i,j) = 1. These quantities can be set in any order. If the Jacobian
has a regular structure, it may be possible to define S more compactly. For example,
if the Jacobian is banded with bandwidth 2m+ 1, it can be defined in a single line

THE MATLAB ODE SUITE 13

S = spdiags(ones(neq,2m+1),-m:m,neq,neq)

After defining the sparsity pattern, the value S is assigned to the option sparseJ with
odeset. No further action is required of the user.

As discussed in §4, the two codes for stiff problems permit a more general form of
the differential equation, namely M(t) y′ = f(t, y), with a mass matrix M(t). In other
computing environments a mass matrix raises awkward questions about specification
of M and its structure and how its structure relates to that of the Jacobian of f(t, y).
In our interface, the codes are informed of the presence of a mass matrix by means of
the mass option. The value of this option is the name of a function that returns M(t).
Or, if the mass matrix is constant, the matrix itself can be provided as the value of
the option. The language deals automatically with the structures of the matrices that
arise in the specification and solution of the problem [19].

7. Numerical Partial Derivatives. Methods for the solution of stiff problems
involve partial derivatives of the function defining the differential equation. The popu-
lar codes allow users to provide a routine for evaluating these derivatives analytically.
However, this is so much trouble for users and so prone to error that the default is to
approximate them internally by numerical differentiation. The new suite follows this
approach, using a function numjac to compute the numerical approximation.

The scaling difficulties that are possible when approximating partial derivatives
by differences are well-known [37]. The numjac code implements a scheme of D.
E. Salane [32] that takes advantage of experience gained at one step to select good
increments for difference quotients at the next step. If it appears that a column might
consist mainly of roundoff, the increment is adjusted and the column recomputed.

The solvers invoke numjac by

[dFdy,fac,g] = numjac(’F’,t,y,Fty,thresh,fac,vectorized,S,g);

where the argument ’F’ is a string naming the function that defines the differential
equation and Fty is the result of ’F’ evaluated at the current point in the integration
(t,y). The vector thresh provides a threshold of significance for y, i.e. the exact
value of a component y(i) with magnitude less than thresh(i) is not important.

One aspect of the formation of partial derivatives special to the suite is the
Boolean option vectorized. It is generally easy to code ’F’ so that it can return an
array of function values. A vectorized version of the van der Pol example is shown
in Figure 4. If ’F’ is coded so that F(t,[y1 y2 ...]) returns [F(t,y1) F(t,y2)
...] and vectorized is set true, numjac will approximate all columns of the Ja-
cobian with a single call to ’F’. This avoids the overhead of repeatedly calling the
function and it may reduce the cost of the evaluations themselves.

function dy = vdpex(t,y)
dy = zeros(size(y)); % preallocate column vector dy
dy(1,:) = y(2,:);
dy(2,:) = 1000*(1 - y(1,:).ˆ2).*y(2,:) - y(1,:);

Fig. 4. The vectorized matlab code for the vdpex problem.

Another special aspect of numjac is that it computes sparse Jacobians as well as
full ones. The structure of the Jacobian is provided by means of a sparse matrix S of

14 L. F. SHAMPINE and M. W. REICHELT

zeros and ones. The first time that a solver calls numjac, the function finds groups
of columns of dFdy that can be approximated with a single call to ’F’. This is done
only once and the grouping is saved in g. Two schemes are tried (first-fit and first-fit
after reverse column minimum-degree ordering [19]) and the more efficient grouping
is adopted. This may not result in an optimal grouping because finding the smallest
packing is an NP-complete problem equivalent to K-coloring a graph [9].

The modified Rosenbrock code requires the partial derivative dFdt every time
it requires dFdy. On reaching t, the step size h provides a measure of scale for the
approximation of dFdt by a forward difference. The computation is so simple that it
is done in the solver itself.

8. Examples. The first question a user must ask is, which of the five codes in
the suite should I use and which, if any, of the options? By design it is very easy
simply to try the most promising codes, but it is useful to have some insight. The
method implemented suggests circumstances in which a code might be particularly
efficient or not. This section presents some experiments with test problems from
classic collections that illustrate the performance of the solvers and the effects of
using certain options. We report how much it costs to solve a problem for a given
tolerance, usually the default tolerance. This is ordinarily what users of Matlab want
to know. A discussion of some of the issues that arise in comparing solvers is found in
[37] where this approach is called the first measure of efficiency. Implicit in the use
of this measure is the assumption that for routine problems, the codes compared will
produce solutions with accuracy at least comparable to the tolerance. No credit is
given for producing solutions with much more accuracy than requested. Because the
solvers control local errors, the true, or global, error can be sensitive to the method
and the details of its implementation. We have tuned the step size selection algorithms
so that for a wide range of test problems, consistent global accuracies comparable to
the tolerance are delivered by the various solvers applied to the same problem.

From our experience with writing solvers in other computing environments, we
believe that our implementations of the methods are comparable in quality to popular
codes based on the same or related methods. Naturally we tested this by comparing
the new Runge-Kutta codes to the old Matlab ones. Also, we report here tests show-
ing that the NDF code is comparable to a popular BDF code written in FORTRAN.

The experiments reported here and others we have made suggest that except in
special circumstances, ode45 should be the code tried first. If there is reason to believe
the problem to be stiff, or if the problem turns out to be unexpectedly difficult for
ode45, the ode15s code should be tried. When solving stiff problems, it is important
to keep in mind the options that improve the efficiency of forming Jacobians.

8.1. Stiff Examples. In Matlab it is advantageous to vectorize computations
whenever possible. Accordingly, all stiff problems were coded to use the vectorized
option when computing numerical Jacobians. Also, the advantages of the constantJ
option are so obvious that we used it when solving the stiff problems with constant
Jacobians, namely a2ex, a3ex, b5ex, and hb3ex.

The ode15s code was developed for the NDF’s. It is such an easy matter to
provide for the BDF’s in this code that they were allowed as an option. Some ex-
periments show the consequences of exercising this option. Table 2 gives the number
of steps and the real time required for the two choices when applied to a set of 13
stiff problems. For all but one problem the default NDF’s result in fewer steps than
the BDF’s (an average of 10.9% fewer), and for all problems, the code is faster when
using the NDF’s (an average of 8.2% faster).

THE MATLAB ODE SUITE 15

Table 2

Comparison of the NDF’s and BDF’s in ode15s. Times are measured as seconds on a Sparc2.

BDF NDF percent BDF NDF percent
steps steps fewer time time faster

a2ex 118 101 14.4 3.60 3.14 12.8
a3ex 134 130 3.0 3.96 3.87 2.4
b5ex 1165 936 19.7 32.58 25.95 20.4
buiex 57 52 8.8 2.05 1.92 6.4
chm6ex 152 139 8.6 4.05 3.63 10.3
chm7ex 57 39 31.6 1.82 1.48 18.4
chm9ex 910 825 9.3 30.53 29.38 3.8
d1ex 67 62 7.5 2.35 2.29 2.5
gearex 20 19 5.0 1.12 1.08 3.5
hb1ex 197 179 9.1 5.57 5.09 8.5
hb2ex 555 577 -4.0 13.49 13.45 0.3
hb3ex 766 690 9.9 19.79 17.77 10.2
vdpex 708 573 19.1 20.75 19.33 6.9

To verify that the performance of ode15s is comparable to that of a modern
BDF code, we have compared ode15s using the NDF’s to DDRIV2 [24] on some
relatively difficult problems. DDRIV2 is an easy-to-use driver for a more complex
code with an appearance not too different from ode15s. It is a quasi-constant step
size implementation of the BDF’s of orders 1-5 that computes answers at specified
points by interpolation. It approximates Jacobians internally by differences with an
algorithm related to that of ode15s.

It is not possible to compare DDRIV2 and ode15s in detail because they cannot
be used to solve exactly the same computational problem. For one thing, the error
controls are different. DDRIV2 uses a root-mean-square norm to measure the error
in a solution component relative to the larger of the magnitude of the component and
a threshold. We made the controls roughly equivalent by taking the threshold to be
equal to the desired absolute error and dividing the tolerances given to DDRIV2 by
the square root of the number of equations. In addition the two codes handle output
differently. DDRIV2 provides answers wherever requested, but only at those points.
We asked the codes to produce 150 answers equally spaced within the interval of
integration. This is inadequate for some of the examples, but asking for more answers
could increase the cost in DDRIV2 because it has an internal maximum step size
that is twice the distance between output points. Accepting a possible reduction in
efficiency in ode15s, we used an option to impose the same maximum step size.

Table 3 compares DDRIV2 to ode15s using the NDF’s. We interpret these com-
parisons as showing that ode15s is an effective code for the solution of stiff problems.
DDRIV2 does not save Jacobians and the numerical results indicate that to a degree
ode15s is trading linear algebra for a smaller number of approximate Jacobians. This
is appropriate in Matlab, but because these examples involve just a few equations,
the benefits of reusing Jacobians are masked.

The chemical reaction problem chm6ex is given in §6. A plot of one component
is displayed in Figure 5. ode15s is able to solve the problem effectively using a
remarkably small number of Jacobians. Problem chm9ex is a scaled version of the
Belousov oscillating chemical reaction [14]. A discussion of this problem and plots are

16 L. F. SHAMPINE and M. W. REICHELT

Table 3

Comparison of DDRIV2 to ode15s using the NDF’s. The table shows the number of successful
steps, the number of failed steps, the number of function calls, the number of partial derivative
evaluations, the number of LU decompositions, and the number of linear system solutions. Note
that the integration parameters of ode15s were changed from their default values.

time failed f ∂f/∂y linear
example code steps steps evals evals LU’s solves
chm6ex DDRIV2 218 6 404 33 33 271

ode15s 177 4 224 2 29 213
chm9ex DDRIV2 1073 217 2470 220 220 1802

ode15s 750 227 2366 83 322 2033
hb2ex DDRIV2 1370 162 2675 176 176 2316

ode15s 939 70 1321 4 165 1308
vdpex DDRIV2 871 185 1836 167 167 1497

ode15s 724 197 1965 33 261 1865

found in [1], p. 49 ff. The limit solution is periodic and exhibits regions of very sharp
change. We chose the interval [0, 650] so as to include two complete periods and part
of another. ode15s is trading some linear algebra for a reduction in the number of
Jacobians. Because there are only three solution components, reducing the number
of Jacobians does not have much effect on the number of function evaluations.

10
−15

10
−10

10
−5

10
0

10
5

10
−12

10
−11

10
−10

10
−9

time

y(
:,2

)
so

lu
tio

n

Fig. 5. A log-log plot of the second component of the solution of chm6ex.

Hindmarsh and Byrne [23] present the non-autonomous problem coded in hb2ex
that arises in a diurnal kinetics model and they discuss its solution with EPISODE.
The scaling of one component is such that an absolute error tolerance of 10−20 is
needed. The problem is also discussed at length in [24] where it is solved with
DDRIV2. As the measures of cost given in Table 3 show, ode15s performs quite
well in comparison to a good BDF code. For this problem, reuse of Jacobians proved
to be quite advantageous. With only two equations, numerical evaluation of a Jaco-
bian is so cheap that the difference in cost cannot be due entirely to saving Jacobians.

Example vdpex is the van der Pol equation in relaxation oscillation in the form

THE MATLAB ODE SUITE 17

specified in [35]. The tradeoffs in the tuning of ode15s as compared to DDRIV2 are
clear. Because this problem involves only two solution components, forming Jacobians
more often would probably have been a bargain in ode15s.

Now we compare the modified Rosenbrock code ode23s to ode15s. Table 4 pro-
vides statistics for two stiff problems. Note that ode15s was run with both the NDF’s
and the BDF’s. The fact that NDF1 and NDF2 are more efficient than BDF1 and
BDF2 is evident for the b5ex experiments in which the maximum order was limited.

Table 4

Comparison of ode23s to ode15s. For vdpex, the relative accuracy was changed from the default
of 0.1% to 1%. Times are measured as seconds on a Sparc2.

time failed f ∂f/∂y linear
example code time steps steps evals evals LU’s solves
vdpex ode15s (BDF) 17.06 525 203 1594 45 266 1458

ode15s (NDF) 15.83 490 179 1514 46 249 1375
ode23s 14.21 302 96 1706 303 398 1194

b5ex ode15s (BDF) 32.58 1165 124 2586 1 319 2578
ode15s (NDF) 25.95 936 97 2074 1 263 2066
ode23s 15.38 549 17 1689 1 566 1698

As a first example we solved vdpex with a relative accuracy tolerance of 1.0%.
At this tolerance ode23s was faster than ode15s, even though it made many more
Jacobian evaluations, and the plot of y(t) in Figure 6 obtained with ode23s is notably
better than that of ode15s. However, when the tolerance is tightened to the default
of 0.1%, ode15s is faster than ode23s and the plot of y(t) is just as good.

ode23s, 1.0%

ode15s, 1.0%

ode15s, 0.1%

0 500 1000 1500 2000 2500 3000
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

time

y
so

lu
tio

n

Fig. 6. The vdpex solution computed by ode23s and ode15s at 1.0% accuracy, and by ode15s at
0.1% accuracy. The latter indicates that the 1.0% solution by ode15s is less accurate than ode23s.

Problem b5ex [15] has a Jacobian with eigenvalues near the imaginary axis. The
popular variable-order BDF codes do not deal with this well. Gaffney [16] compares
BDF and other kinds of codes on this and similar problems. ode15s recognizes auto-
matically that this problem has a constant Jacobian. For a fair comparison, we used

18 L. F. SHAMPINE and M. W. REICHELT

the option of telling both codes that the Jacobian is constant. We also restricted
the maximum order of the NDF’s used by ode15s to 2, so that both codes would be
L-stable. Evidently ode23s is to be preferred for the solution of this problem.

Supplying a function for evaluating the Jacobian can be quite advantageous, both
with respect to reliability and cost. Table 5 shows the effects of using the analyticJ
option for some of the most expensive of our examples. Because ode23s evaluates
the Jacobian at every step, reducing this cost by means of an analytical Jacobian has
an important effect on the overall cost. It is much less significant when using ode15s
because it makes comparatively few evaluations of the Jacobian.

Table 5

The solutions of four problems by ode23s and ode15s showing the effect of using the analyticJ
option to supply a function for evaluation of the Jacobian (time2). The brussex problem is 100×100
and its Jacobian function returns a sparse matrix. Times are measured as seconds on a Sparc2.

ode23s ode15s
problem time time2 time time2
brussex 80.00 13.82 23.37 9.70
chm9ex 47.12 27.32 29.38 25.86
hb2ex 140.78 87.29 13.45 13.40
vdpex 28.61 16.36 19.33 19.21

Next, we examine the role of Jacobian sparsity. The brussex example is the
classic “Brusselator” system modelling diffusion in a chemical reaction [21],

u′i = 1 + u2
i vi − 4ui + α(N + 1)2(ui−1 − 2ui + ui+1)

v′i = 3ui − u2
i vi + α(N + 1)2(vi−1 − 2vi + vi+1)

and is solved on the time interval [0, 10] with α = 1/50 and

ui(0) = 1 + sin(2πxi)
vi(0) = 3

}
with xi = i/(N + 1) for i = 1, . . . , N

There are 2N equations in this system, but the Jacobian is banded with a constant
width 5, if the equations are ordered as u1, v1, u2, v2,

For progressively larger values of N , Table 6 shows the number of steps taken
and compares the number of seconds required to solve the brussex problem by ode45,
ode23s and ode15s. The ode45 results indicate that the system becomes quite stiff for
the larger N . The first columns of the results for ode23s and ode15s were produced
using the default numerical approximation of Jacobians. As the second columns show,
the sparseJ option makes a tremendous difference. Until N becomes large, ode15s is
efficient even without the sparseJ option because it forms relatively few Jacobians.

The fem2ex example involves a mass matrix. The system of ODE’s, found in [41],
comes from a method of lines solution of the partial differential equation

e−t
∂u

∂t
=
∂2u

∂x2

with initial condition u(0, x) = sin(x) and boundary conditions u(t, 0) = u(t, π) = 0.
An integer N is chosen, h is defined as 1/(N + 1), and the solution of the partial
differential equation is approximated at xk = kπh for k = 0, 1, . . . , N + 1 by

u(t, xk) ≈
N∑
k=1

ck(t)φk(x)

THE MATLAB ODE SUITE 19

Table 6

The solutions of various size brussex problems by ode45, ode23s, ode23s using the sparseJ
option (time2), ode15s, and ode15s using the sparseJ option (time2). Times are measured as
seconds on a Sparc2.

ode45 ode23s ode15s
size steps time steps time time2 steps time time2
100 629 143.95 59 80.00 15.04 82 23.37 10.36
200 2458 4052.99 59 499.44 24.50 82 104.49 17.78
400 NA NA 59 3398.47 43.00 85 574.42 32.19
600 NA NA 59 NA 62.84 85 1703.68 49.21
800 NA NA 59 NA 83.91 85 NA 63.51
1000 NA NA 59 NA 105.93 85 NA 80.74

Here φk(x) is a piecewise linear function that is 1 at xk and 0 at all the other xj . The
Galerkin discretization leads to the system of ODE’s

A(t) c′ = Rc where c(t) =

 c1(t)
...

cN(t)

and the tridiagonal matrices A(t) and R are given by

Aij =

exp(−t)2h/3 if i = j
exp(−t)h/6 if i = j ± 1
0 otherwise

and Rij =

−2/h if i = j
1/h if i = j ± 1
0 otherwise

The initial values c(0) are taken from the initial condition for the partial differential
equation. The problem is solved on the time interval [0, π].

Because the mass matrix A depends on t, this equation cannot be solved directly
with ode23s. However, scaling by exp(t) results in an equivalent system with a
constant mass matrix that can be solved with both codes. As is typical of the method
of lines, the mass matrix is sparse, but in this instance we have followed [41] in taking
N = 9, which is too small to take advantage of the sparsity. The solution of fem2ex
is shown in Figure 7 and statistics are presented in Table 7.

Table 7

Comparison of ode23s to ode15s for a problem with a constant mass matrix, fem2ex with N = 9.
Times are measured as seconds on a Sparc2.

time failed f ∂f/∂y linear
example code time steps steps evals evals LU’s solves
fem2ex ode15s 4.71 46 14 175 5 21 124

ode23s 5.35 40 1 493 41 41 123

8.2. Non-stiff Examples. In this section we consider four non-stiff examples
drawn from the collections [15, 39]. vdpns is the van der Pol equation with µ = 1.
rigid is the Euler equations of a rigid body without external forces as proposed by
Krogh. The solution is displayed in Figure 1. twobody, D5 of [15], is the two body
problem with an elliptical orbit of eccentricity 0.9. r3body describes a periodic orbit
for a restricted three body problem [39]. Because the problems are non-stiff, they can
be solved with all the MATLAB ODE solvers. Table 8 compares the costs of solution.

20 L. F. SHAMPINE and M. W. REICHELT

0

1

2

3

4 0
2

4
6

8
10

0

0.5

1

time index

so
lu

tio
n

Fig. 7. The fem2ex solution with N = 9 as computed by ode15s.

9. Conclusion. Source code for the solvers and examples may be obtained gratis
by ftp on ftp.mathworks.com in the pub/mathworks/toolbox/matlab/funfun direc-
tory. The solvers require Matlab version 4.2 or later.

We have had the pleasure of correspondence and discussions with many experts
whose publications and advice have been crucial to a number of aspects of this project.
C. B. Moler helped us with just about every aspect. We have had the benefit of advice
from a number of leading experts in explicit Runge-Kutta methods, viz. J. Dormand
and P. Prince; M. Calvo, L. Randez, and J. Montijano; and P. Sharp and J. Verner. D.
Salane provided us with FORTRAN versions of his algorithm for computing numerical
partial derivatives along with helpful comments. T. Coleman provided advice about
column grouping strategies. I. Gladwell provided advice about mathematical software
for ordinary differential equations. H. Zedan provided copies of his publications that
were essential to the development of our modified Rosenbrock method. J. Polking’s
experience teaching the solution of ordinary differential equations using the previous
generation of codes in Matlab influenced the new generation in a number of ways.

REFERENCES

[1] R. C. Aiken, ed., Stiff Computation, Oxford Univ. Press, Oxford, 1985.
[2] G. Bader and P. Deulfhard, A semi-implicit mid-point rule for stiff systems of ordinary

differential equations, Tech. Report 114, Institut für Angewandte Mathematik, Universität
Heidelberg, Germany, 1981.

[3] P. Bogacki and L. F. Shampine, A 3(2) pair of Runge-Kutta formulas, Appl. Math. Letters,
2 (1989), pp. 1–9.

[4] R. W. Brankin, I. Gladwell, and L. F. Shampine, RKSUITE: A suite of Runge-Kutta
codes for the initial value problem for ODEs, Tech. Report 92-S1, Math. Dept., Southern
Methodist Univ., Dallas, 1992.

[5] R. K. Brayton, F. G. Gustavson, and G. D. Hachtel, A new efficient algorithm for solv-
ing differential-algebraic systems using implicit backward differentiation formulas, Proc.
IEEE, 60 (1972), pp. 98–108.

[6] K. E. Brenan, S. L. Campbell, and L. R. Petzold, Numerical Solution of Initial-Value
Problems in Differential-Algebraic Equations, Elsevier Science Publishing Co., New York,
1989.

THE MATLAB ODE SUITE 21

Table 8

Comparison of all five of the ODE solvers on a set of four non-stiff problems. Times are
measured as seconds on a Sparc2.

time failed f ∂f/∂y linear
example code time steps steps evals evals LU’s solves
rigid ode23s 2.76 58 10 373 59 68 204

ode15s 2.08 82 17 184 1 30 179
ode113 2.12 65 4 135 0 0 0
ode23 0.92 55 13 205 0 0 0
ode45 0.57 19 2 127 0 0 0

r3body ode23s 22.79 372 1 2612 373 373 1119
ode15s 8.74 321 48 575 1 87 569
ode113 10.72 237 20 495 0 0 0
ode23 6.19 301 4 916 0 0 0
ode45 3.84 73 27 601 0 0 0

twobody ode23s 44.45 871 1 6105 872 872 2616
ode15s 13.66 584 64 963 2 135 952
ode113 18.46 396 29 822 0 0 0
ode23 11.51 727 0 2182 0 0 0
ode45 4.98 133 35 1009 0 0 0

vdpns ode23s 6.65 158 21 836 159 179 537
ode15s 4.48 192 35 426 1 60 422
ode113 5.33 162 12 337 0 0 0
ode23 2.10 146 19 496 0 0 0
ode45 1.43 51 11 373 0 0 0

[7] P. N. Brown, G. D. Byrne, and A. C. Hindmarsh, VODE: a variable-coefficient ODE
solver, SIAM J. Sci. Comput., 10 (1989), pp. 1038–1051.

[8] G. D. Byrne and A. C. Hindmarsh, A polyalgorithm for the numerical solution of ordinary
differential equations, ACM Transactions on Mathematical Software, 1 (1975), pp. 71–96.

[9] T. F. Coleman, B. S. Garbow, and J. J. More, Software for estimating sparse Jacobian
matrices, ACM Transactions on Mathematical Software, 11 (1984), pp. 329–345.

[10] A. R. Curtis, The FACSIMILE numerical integrator for stiff initial value problems, in Com-
putational Techniques for Ordinary Differential Equations, I. Gladwell and D. K. Sayers,
eds., Academic, London, 1980, pp. 47–82.

[11] P. Deuflhard, Recent progress in extrapolation methods for ordinary differential equations,
SIAM Review, 27 (1985), pp. 505–535.

[12] J. R. Dormand and P. J. Prince, A family of embedded Runge-Kutta formulae, J. Comp.
Appl. Math., 6 (1980), pp. 19–26.

[13] , Runge-Kutta triples, Comp. & Maths. with Appls., 12A (1986), pp. 1007–1017.
[14] W. H. Enright and T. E. Hull, Comparing numerical methods for the solution of stiff

systems of ODE’s arising in chemistry, in Numerical Methods for Differential Systems,
L. Lapidus and W. Schiesser, eds., Academic, New York, 1976, pp. 45–66.

[15] W. H. Enright, T. E. Hull, and B. Lindberg, Comparing numerical methods for stiff
systems of ODE’s, BIT, 15 (1975), pp. 10–48.

[16] P. W. Gaffney, A performance evaluation of some FORTRAN subroutines for the solution
of stiff oscillatory ordinary differential equations, ACM Trans. Math. Software, 10 (1984),
pp. 58–72.

[17] C. W. Gear, Numerical Initial Value Problems in Ordinary Differential Equations, Automatic
Computation, Prentice-Hall, Englewood Cliffs, NJ, 1971.

[18] C. W. Gear and D. S. Watanabe, Stability and convergence of variable order multistep
methods, SIAM J. Numer. Anal., 11 (1974), pp. 1044–1058.

[19] J. R. Gilbert, C. Moler, and R. Schreiber, Sparse matrices in MATLAB: design and
implementation, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 333–356.

22 L. F. SHAMPINE and M. W. REICHELT

[20] H. Gollwitzer, Differential Systems User Manual, Dept. Math. & Comp. Sci., Drexel Univ.,
Philadelphia, 1991.

[21] E. Hairer and G. Wanner, Solving Ordinary Differential Equations II, Springer, 1991.
[22] A. C. Hindmarsh, LSODE and LSODI, two new initial value ordinary differential equation

solvers, ACM SIGNUM Newsletter, 15 (1980), pp. 10–11.
[23] A. C. Hindmarsh and G. D. Byrne, Applications of EPISODE: an experimental package

for the integration of systems of ordinary differential equations, in Numerical Methods
for Differential Systems, L. Lapidus and W. Schiesser, eds., Academic, New York, 1976,
pp. 147–166.

[24] D. Kahaner, C. Moler, and S. Nash, Numerical Methods and Software, Prentice-Hall,
Englewood Cliffs, NJ, 1989.

[25] R. W. Klopfenstein, Numerical differentiation formulas for stiff systems of ordinary differ-
ential equations, RCA Review, 32 (1971), pp. 447–462.

[26] F. T. Krogh, Algorithms for changing the step size, SIAM J. Numer. Anal., 10 (1973), pp. 949–
965.

[27] L. Lapidus, R. C. Aiken, and Y. A. Liu, The occurrence and numerical solution of physical
and chemical systems having widely varying time constants, in Stiff Differential Systems,
R. Willoughby, ed., Plenum Press, New York, 1974, pp. 187–200.

[28] D. Luss and N. R. Amundson, Stability of batch catalytic fluidized beds, AIChE J., 14 (1968),
pp. 211–221.

[29] The MathWorks, Inc., MATLAB 4.2, 24 Prime Park Way, Natick MA, 1994.
[30] J. C. Polking, MATLAB Manual for Ordinary Differential Equations, Prentice-Hall, Engle-

wood Cliffs, NJ, 1995.
[31] T. Reiher, Statilitätsuntersuchungen bei rückwärtigen Differentiationsformeln in Abhängig-

keit von einem Parameter, Tech. Report #11, Sektion Mathematik, Humboldt–Universität
zu Berlin, 1978.

[32] D. E. Salane, Adaptive routines for forming Jacobians numerically, Tech. Report SAND86–
1319, Sandia National Laboratories, Albuquerque, NM, 1986.

[33] R. E. Scraton, Some L-stable methods for stiff differential equations, Intern. J. Computer
Maths., 9 (1981), pp. 81–87.

[34] L. F. Shampine, Implementation of implicit formulas for the solution of ODE’s, SIAM J. Sci.
Statist. Comput., 1 (1980), pp. 103–118.

[35] , Evaluation of a test set for stiff ODE solvers, ACM Trans. Math. Software, 7 (1981),
pp. 409–420.

[36] , Implementation of Rosenbrock methods, ACM Trans. Math. Software, 8 (1982), pp. 93–
113.

[37] , Numerical Solution of Ordinary Differential Equations, Chapman & Hall, New York,
1994.

[38] L. F. Shampine and L. S. Baca, Error estimators for stiff differential equations, J. Comp.
Appl. Math., 11 (1984), pp. 197–207.

[39] L. F. Shampine and M. K. Gordon, Computer Solution of Ordinary Differential Equations:
the Initial Value Problem, W. H. Freeman, San Francisco, 1975.

[40] T. Steihaug and A. Wolfbrandt, An attempt to avoid exact Jacobian and non–linear
equations in the numerical solution of stiff differential equations, Math. Comp., 33 (1979),
pp. 521–534.

[41] Visual Numerics, Inc., IMSL MATH/LIBRARY. FORTRAN subroutines for mathematical
applications, Suite 440, 9990 Richmond, Houston, TX, 1994.

[42] H. Zedan, A variable order/variable-stepsize Rosenbrock-type algorithm for solving stiff sys-
tems of ODE’s, Tech. Report YCS114, Dept. Comp. Sci., Univ. of York, York, England,
1989. (to appear in ACM Trans. Math. Software).

[43] , Avoiding the exactness of the Jacobian matrix in Rosenbrock formulae, Computers
Math. Applic., 19 (1990), pp. 83–89.

	Getting Started
	toc
	Introduction
	What Is MATLAB?
	Overview of MATLAB
	The MATLAB System
	Desktop Tools and Development Environment
	The MATLAB Mathematical Function Library
	The MATLAB Language
	Graphics
	MATLAB External Interfaces

	MATLAB Documentation
	Starting and Quitting MATLAB
	Starting MATLAB
	MATLAB Desktop

	Quitting MATLAB
	Confirm Quitting

	Matrices and Arrays
	Matrices and Magic Squares
	About Matrices
	Entering Matrices
	sum, transpose, and diag
	Subscripts
	The Colon Operator
	The magic Function

	Expressions
	Variables
	Numbers
	Operators
	Functions
	Examples of Expressions

	Working with Matrices
	Generating Matrices
	The load Function
	M-Files
	Concatenation
	Deleting Rows and Columns

	More About Matrices and Arrays
	Linear Algebra
	Arrays
	Building Tables

	Multivariate Data
	Scalar Expansion
	Logical Subscripting
	The find Function

	Controlling Command Window Input and Output
	The format Function
	Suppressing Output
	Entering Long Statements
	Command Line Editing

	Graphics
	Overview of MATLAB Plotting
	Plotting Process
	Creating a Graph
	Exploring Data
	Editing the Graph Components
	Annotating Graphs
	Printing and Exporting Graphs
	Adding and Removing Figure Content
	Saving Graphs to Reload into MATLAB

	Graph Components
	Figure Tools
	Accessing the Tools
	Figure Toolbars
	Plotting Tools
	Using Plotting Tools and MATLAB Code

	Arranging Graphs Within a Figure
	Choosing a Type of Graph to Plot

	Editing Plots
	Plot Edit Mode
	Enabling Plot Edit Mode
	Setting Object Properties
	Using the Property Editor
	Accessing Properties with the Property Inspector

	Using Functions to Edit Graphs

	Some Ways to Use MATLAB Plotting Tools
	Plotting Two Variables with Plotting Tools
	Changing the Appearance of Lines and Markers
	Adding More Data to the Graph
	Changing the Type of Graph
	Modifying the Graph Data Source
	Providing New Values for the Data Source

	Preparing Graphs for Presentation
	Annotating Graphs for Presentation
	Printing the Graph
	Exporting the Graph
	Specifying the Size of the Graph
	Specifying the Font Size
	Selecting the File Format

	Using Basic Plotting Functions
	Creating a Plot
	Plotting Multiple Data Sets in One Graph
	Specifying Line Styles and Colors
	Plotting Lines and Markers
	Placing Markers at Every Tenth Data Point

	Graphing Imaginary and Complex Data
	Adding Plots to an Existing Graph
	Figure Windows
	Clearing the Figure for a New Plot

	Displaying Multiple Plots in One Figure
	Controlling the Axes
	Setting Axis Limits
	Setting the Axis Aspect Ratio
	Setting Axis Visibility
	Setting Grid Lines

	Adding Axis Labels and Titles
	Saving Figures
	Saving Workspace Data
	Generating M-Code to Recreate a Figure
	Saving Figures That Are Compatible with the Previous Version of

	Creating Mesh and Surface Plots
	About Mesh and Surface Plots
	Visualizing Functions of Two Variables
	Example — Graphing the sinc Function
	Example — Colored Surface Plots
	Making Surfaces Transparent
	Illuminating Surface Plots with Lights
	Manipulating the Surface

	Plotting Image Data
	About Plotting Image Data
	Reading and Writing Images

	Printing Graphics
	Overview of Printing
	Printing from the File Menu
	Exporting the Figure to a Graphics File
	Using the Print Command

	Handle Graphics
	Using the Handle
	Graphics Objects
	Key Graphics Objects
	Creating Objects
	Functions for Working with Objects

	Setting Object Properties
	Setting Properties from Plotting Commands
	Setting Properties of Existing Objects
	Setting Multiple Property Values

	Specifying the Axes or Figure
	Finding the Handles of Existing Objects
	Finding All Objects of a Certain Type
	Finding Objects with a Particular Property
	Limiting the Scope of the Search
	Using findobj as an Argument

	Programming
	Flow Control
	Conditional Control – if, else, switch
	if, else, and elseif
	switch and case

	Loop Control – for, while, continue, break
	for
	while
	continue
	break

	Error Control – try, catch
	try

	Program Termination – return
	return

	Other Data Structures
	Multidimensional Arrays
	Cell Arrays
	Characters and Text
	Structures
	Dynamic Field Names

	Scripts and Functions
	Overview
	Scripts
	Functions
	Types of Functions
	Anonymous Functions
	Primary and Subfunctions
	Private Functions
	Nested Functions
	Function Overloading

	Global Variables
	Passing String Arguments to Functions
	Constructing String Arguments in Code

	The eval Function
	Function Handles
	Function Functions
	Vectorization
	Preallocation

	Data Analysis
	Introduction
	Preprocessing Data
	Overview
	Loading the Data
	Missing Data
	Outliers
	Smoothing and Filtering

	Summarizing Data
	Overview
	Measures of Location
	Measures of Scale
	Shape of a Distribution

	Visualizing Data
	Overview
	2-D Scatter Plots
	3-D Scatter Plots
	Scatter Plot Arrays

	Modeling Data
	Overview
	Polynomial Regression
	General Linear Regression

	Creating Graphical User Interfaces
	What Is GUIDE?
	Laying Out a GUI
	Starting GUIDE
	The Layout Editor

	Programming a GUI

	Desktop Tools and Development Environment
	Desktop Overview
	Introduction to the Desktop
	Arranging the Desktop
	Start Button

	Command Window and Command History
	Command Window
	Command History

	Help
	Help Browser
	Other Forms of Help
	Typographical Conventions

	Current Directory Browser and Search Path
	Running Files
	Current Directory
	Search Path

	Workspace Browser and Array Editor
	Workspace Browser
	Array Editor

	Editor/Debugger
	M-Lint Code Check and Profiler Reports
	M-Lint Code Check Report
	Profiler

	Other Development Environment Features

	External Interfaces
	Programming Interfaces
	Call MATLAB from C and Fortran Programs
	Call C and Fortran Programs from MATLAB
	Call Java from MATLAB
	Call Functions in Shared Libraries
	Import and Export Data

	Component Object Model Interface
	Web Services
	Serial Port Interface

	Index

	Programming
	toc
	Data Structures
	Creating and Concatenating Matrices
	Overview
	Constructing a Simple Matrix
	Entering Signed Numbers

	Specialized Matrix Functions
	Examples

	Concatenating Matrices
	Keeping Matrices Rectangular

	Matrix Concatenation Functions
	Examples

	Generating a Numeric Sequence
	The Colon Operator
	Using the Colon Operator with a Step Value

	Combining Unlike Data Types
	Combining Unlike Integer Types
	Combining Integer and Noninteger Data
	Empty Matrices
	Concatenation Examples

	Matrix Indexing
	Accessing Single Elements
	Linear Indexing
	Functions That Control Indexing Style
	Accessing Multiple Elements
	Nonconsecutive Elements
	The end Keyword
	Specifying All Elements of a Row or Column

	Using Logicals in Array Indexing
	Logical Indexing – Example 1
	Logical Indexing – Example 2
	Logical Indexing with a Smaller Array

	Single-Colon Indexing with Different Array Types
	Indexing on Assignment

	Getting Information About a Matrix
	Dimensions of the Matrix
	Example Using numel
	Example Using ndims, numel, and size

	Data Types Used in the Matrix
	Example Using isnumeric and isreal

	Data Structures Used in the Matrix

	Resizing and Reshaping Matrices
	Expanding the Size of a Matrix
	Concatenating Onto the Matrix
	Adding Smaller Blocks to a Matrix

	Diminishing the Size of a Matrix
	Reshaping a Matrix
	Examples

	Preallocating Memory
	Building a Preallocated Array

	Shifting and Sorting Matrices
	Shift and Sort Functions
	Shifting the Location of Matrix Elements
	Sorting the Data in Each Column
	Sorting the Data in Each Row
	Sorting Row Vectors

	Operating on Diagonal Matrices
	Diagonal Matrix Functions
	Constructing a Matrix from a Diagonal Vector
	Returning a Triangular Portion of a Matrix
	Concatenating Matrices Diagonally

	Empty Matrices, Scalars, and Vectors
	Overview
	The Empty Matrix
	Operating on an Empty Matrix
	Using Empty Matrices in Relational Operations
	Using Empty Matrices in Logical Operations

	Scalars
	Vectors

	Full and Sparse Matrices
	Overview
	Sparse Matrix Functions

	Multidimensional Arrays
	Overview
	Creating Multidimensional Arrays
	Generating Arrays Using Indexing
	Extending Multidimensional Arrays
	Generating Arrays Using MATLAB Functions
	Building Multidimensional Arrays with the cat Function

	Accessing Multidimensional Array Properties
	Indexing Multidimensional Arrays
	The Colon and Multidimensional Array Indexing
	Linear Indexing with Multidimensional Arrays
	Avoiding Ambiguity in Multidimensional Indexing

	Reshaping Multidimensional Arrays
	Removing Singleton Dimensions

	Permuting Array Dimensions
	Inverse Permutation

	Computing with Multidimensional Arrays
	Operating on Vectors
	Operating Element-by-Element
	Operating on Planes and Matrices

	Organizing Data in Multidimensional Arrays
	Multidimensional Cell Arrays
	Multidimensional Structure Arrays
	Applying Functions to Multidimensional Structure Arrays

	Summary of Matrix and Array Functions

	Data Types
	Overview of MATLAB Data Types
	Fundamental Data Types
	How to Use the Different Types

	Numeric Types
	Overview
	Integers
	Creating Integer Data
	Arithmetic Operations on Integer Data Types
	Largest and Smallest Values for Integer Data Types
	Warnings for Integer Data Types
	Integer Functions

	Floating-Point Numbers
	Double-Precision Floating Point
	Single-Precision Floating Point
	Creating Floating-Point Data
	Arithmetic Operations on Floating-Point Numbers
	Largest and Smallest Values for Floating-Point Data Types
	Accuracy of Floating-Point Data
	Avoiding Common Problems with Floating-Point Arithmetic
	Floating-Point Functions
	References

	Complex Numbers
	Creating Complex Numbers
	Complex Number Functions

	Infinity and NaN
	Infinity
	NaN
	Infinity and NaN Functions

	Identifying Numeric Types
	Display Format for Numeric Values
	Display Format Examples
	Setting Numeric Format in a Program

	Function Summary

	Logical Types
	Overview
	Creating a Logical Array
	Logical Operations on an Array
	Sparse Logical Arrays

	How Logical Arrays Are Used
	Using Logicals in Conditional Statements
	Logical Indexing

	Identifying Logical Arrays

	Characters and Strings
	Overview
	Creating Character Arrays
	Creating Two-Dimensional Character Arrays
	Expanding Character Arrays

	Cell Arrays of Strings
	Converting to a Cell Array of Strings
	Functions for Cell Arrays of Strings

	Formatting Strings
	The Format String
	Input Value Arguments
	The Formatting Operator
	Constructing the Formatting Operator
	Setting Field Width and Precision
	Restrictions for Using Identifiers

	String Comparisons
	Comparing Strings for Equality
	Comparing for Equality Using Operators
	Categorizing Characters Within a String

	Searching and Replacing
	Converting from Numeric to String
	Converting to a Character Equivalent
	Converting to a String of Numbers
	Converting to a Specific Radix

	Converting from String to Numeric
	Converting from a Character Equivalent
	Converting from a Numeric String
	Converting from a Specific Radix

	Function Summary

	Dates and Times
	Overview
	Types of Date Formats
	Date Strings
	Serial Date Numbers
	Date Vectors

	Conversions Between Date Formats
	Date String Formats
	Output Formats
	Converting Output Format with datestr

	Current Date and Time
	Function Summary

	Structures
	Overview
	Building Structure Arrays
	Building Structure Arrays Using Assignment Statements
	Building Structure Arrays Using the struct Function
	Naming conventions for Structure Field Names
	Memory Requirements for Structures

	Accessing Data in Structure Arrays
	Using Dynamic Field Names
	Dynamic Field Names Example

	Finding the Size of Structure Arrays
	Adding Fields to Structures
	Adding or Modifying Fields With the setfield Function
	Adding New Fields Dynamically

	Deleting Fields from Structures
	Applying Functions and Operators
	Writing Functions to Operate on Structures
	Organizing Data in Structure Arrays
	Plane Organization
	Element-by-Element Organization
	Example — A Simple Database

	Nesting Structures
	Building Nested Structures with the struct Function
	Indexing Nested Structures

	Function Summary

	Cell Arrays
	Overview
	Cell Array Operators
	Creating a Cell Array
	Creating Cell Arrays Using Multiple Assignment Statements
	Building Cell Arrays with Concatenation
	Preallocating Cell Arrays with the cell Function
	Memory Requirements for Cell Arrays

	Referencing Cells of a Cell Array
	Manipulating Cells and the Contents of Cells
	Working With Arrays Within Cells
	Working With Structures Within Cells
	Working With Cell Arrays Within Cells
	Plotting the Cell Array

	Deleting Cells
	Reshaping Cell Arrays
	Replacing Lists of Variables with Cell Arrays
	Applying Functions and Operators
	Organizing Data in Cell Arrays
	Nesting Cell Arrays
	Building Nested Arrays with Nested Curly Braces
	Building Nested Arrays with the cell Function
	Indexing Nested Cell Arrays

	Converting Between Cell and Numeric Arrays
	Cell Arrays of Structures
	Function Summary

	Function Handles
	Overview
	Constructing and Invoking a Function Handle
	Handles to Anonymous Functions

	Calling a Function Using Its Handle
	Simple Function Handle Example

	MATLAB Classes
	Java Classes

	Basic Program Components
	Variables
	Types of Variables
	Local Variables
	Global Variables
	Persistent Variables

	Naming Variables
	Verifying a Variable Name
	Avoid Using Function Names for Variables
	Potential Conflict with Function Names

	Guidelines to Using Variables
	Scope of a Variable
	Extending Variable Scope
	Scope in Nested Functions

	Lifetime of a Variable

	Keywords
	Special Values
	Operators
	Arithmetic Operators
	Arithmetic Operators and Arrays

	Relational Operators
	Relational Operators and Arrays
	Relational Operators and Empty Arrays

	Logical Operators
	Element-Wise Operators and Functions
	Bit-Wise Functions
	Short-Circuit Operators

	Operator Precedence
	Precedence of AND and OR Operators
	Overriding Default Precedence

	MATLAB Expressions
	String Evaluation
	eval
	feval

	Shell Escape Functions

	Regular Expressions
	Overview
	MATLAB Regular Expression Functions
	Elements of an Expression
	Character Classes
	Any Character — .
	Selected Characters — [c1c2c3]
	Range of Characters — [c1 - c2]
	Word and White-Space Characters — \w, \s
	Numeric Digits — \d

	Character Representation
	Octal and Hexadecimal — \o, \x

	Grouping Operators
	Grouping and Capture — (expr)
	Grouping Only — (?:expr)
	Alternative Match — expr1|expr2

	Nonmatching Operators
	Including Comments — (?#expr)

	Positional Operators
	Start and End of String Match — ^expr, expr$
	Start and End of Word Match — \<expr, expr\>
	Exact Word Match — \<expr\>

	Lookaround Operators
	Lookahead — expr(?=test)
	Negative Lookahead — expr(?!test)
	Lookbehind — (?<=test)expr
	Negative Lookbehind — (?<!test)expr
	Using Lookaround as a Logical Operator

	Quantifiers
	Zero or One — expr?
	Zero or More — expr*
	One or More — expr+
	Exact, Minimum, and Maximum Quantities — {min,max}
	Lazy Quantifiers — expr*?

	Tokens
	Operators Used with Tokens
	Introduction to Using Tokens
	Using Tokens — Example 1
	Using Tokens — Example 2
	Tokens That Are Not Matched
	Using Tokens in a Replacement String

	Named Capture
	Labeling Your Output

	Conditional Expressions
	Conditions Based on Tokens
	Conditions Based on a Lookaround Match
	Conditions Based on Return Values

	Dynamic Regular Expressions
	Example of a Dynamic Expression
	Dynamic Operators for the Match Expression
	Dynamic Operators for the Replacement Expression

	String Replacement
	Handling Multiple Strings
	Finding a Single Pattern in Multiple Strings
	Finding Multiple Patterns in Multiple Strings
	Replacing Multiple Strings

	Operator Summary

	Comma-Separated Lists
	What Is a Comma-Separated List?
	Generating a Comma-Separated List
	Generating a List from a Cell Array
	Generating a List from a Structure

	Assigning Output from a Comma-Separated List
	Assigning to a Comma-Separated List
	How to Use the Comma-Separated Lists
	Constructing Arrays
	Displaying Arrays
	Concatenation
	Function Call Arguments
	Function Return Values

	Fast Fourier Transform Example

	Program Control Statements
	Conditional Control — if, switch
	if, else, and elseif
	switch, case, and otherwise

	Loop Control — for, while, continue, break
	for
	while
	continue
	break

	Error Control — try, catch
	try and catch

	Program Termination — return
	return

	Symbol Reference
	Asterisk — *
	Filename Wildcard

	At — @
	Function Handle Constructor
	Class Directory Designator

	Colon — :
	Numeric Sequence Range
	Numeric Sequence Step
	Indexing Range Specifier
	Conversion to Column Vector
	Preserving Array Shape on Assignment

	Comma — ,
	Row Element Separator
	Array Index Separator
	Function Input and Output Separator
	Command or Statement Separator

	Curly Braces — { }
	Cell Array Constructor
	Cell Array Indexing

	Dot — .
	Structure Field Definition
	Object Method Specifier

	Dot-Dot — ..
	Parent Directory

	Dot-Dot-Dot (Ellipsis) — ...
	Line Continuation

	Dot-Parentheses — .()
	Dynamic Structure Fields

	Exclamation Point — !
	Shell Escape

	Parentheses — ()
	Array Indexing
	Function Input Arguments

	Percent — %
	Single Line Comments
	Conversion Specifiers

	Percent-Brace — %{ %}
	Block Comments

	Semicolon — ;
	Array Row Separator
	Output Suppression
	Command or Statement Separator

	Single Quotes — ' '
	Character and String Constructor

	Space Character
	Row Element Separator
	Function Output Separator

	Slash and Backslash — / \
	Square Brackets — []
	Array Constructor
	Concatenation
	Function Declarations and Calls

	Internal MATLAB Functions
	Overview
	M-File Functions
	Identifying M-File Functions
	Viewing the Source Code

	Built-In Functions
	Identifying Built-In Functions
	Forcing a Built-In Call

	Overloaded MATLAB Functions

	M-File Programming
	Program Development
	Overview
	Creating a Program
	Saving the Program
	Running the Program

	Getting the Bugs Out
	The Debugging Process

	Cleaning Up the Program
	Improving Performance
	Summary Report
	Detail Report
	File Listing

	Checking It In

	Working with M-Files
	Overview
	Types of M-Files
	Basic Parts of an M-File
	Function Definition Line
	The H1 Line
	Help Text
	The Function or Script Body
	Comments

	Creating a Simple M-File
	Using Text Editors
	A Word of Caution on Saving M-Files

	Providing Help for Your Program
	Creating P-Code Files

	M-File Scripts and Functions
	M-File Scripts
	The Base Workspace
	Simple Script Example

	M-File Functions
	The Function Workspace
	Simple Function Example

	Types of Functions
	Identifying Dependencies
	Simple Display of M-File Dependencies
	Detailed Display of M-File Dependencies

	Function Handles
	Constructing a Function Handle
	Handles to Anonymous Functions
	Arrays of Function Handles
	Invalid or Obsolete Function Handles

	Calling a Function Using Its Handle
	Handling Return Values
	Simple Function Handle Example

	Functions That Operate on Function Handles
	Comparing Function Handles
	Handles Constructed from a Named Function
	Handles to Anonymous Functions
	Handles to Nested Functions
	Handles Saved to a MAT-File

	Additional Information on Function Handles
	Maximum Length of a Function Name
	How MATLAB Constructs a Function Handle
	Saving and Loading Function Handles

	Function Arguments
	Overview
	Checking the Number of Input Arguments
	Passing Variable Numbers of Arguments
	Unpacking varargin Contents
	Packing varargout Contents
	varargin and varargout in Argument Lists

	Parsing Inputs with inputParser
	Defining a Specification for Each Input Parameter
	Parsing Parameter Values on the Function Call
	Packaging Arguments in a Structure
	Arguments That Default
	Validating the Input Arguments
	Making a Copy of the Schema
	Summary of inputParser Methods
	Summary of inputParser Properties that Control Parsing
	Summary of inputParser Properties that Provide Information

	Passing Optional Arguments to Nested Functions
	Using varargin and varargout
	Using nargin and nargout
	Example of Passing Optional Arguments to Nested Functions

	Returning Modified Input Arguments

	Calling Functions
	What Happens When You Call a Function
	Clearing Functions from Memory

	Determining Which Function Is Called
	Function Scope
	Precedence Order
	Multiple Implementation Types
	Querying Which Function MATLAB Will Call

	MATLAB Calling Syntax
	MATLAB Command Syntax
	MATLAB Function Syntax
	Passing Arguments with Command and Function Syntax
	How MATLAB Recognizes Function Calls That Use Command Syntax

	Passing Certain Argument Types
	Passing Strings
	Passing Filenames
	Passing Function Handles

	Passing Arguments in Structures or Cell Arrays
	Passing Arguments in a Structure
	Passing Arguments in a Cell Array

	Assigning Output Arguments
	Assigning Optional Return Values

	Calling External Functions
	Running External Programs

	Types of Functions
	Overview of MATLAB Function Types
	Anonymous Functions
	Constructing an Anonymous Function
	Simple Example
	A Two-Input Example
	Evaluating With No Input Arguments

	Arrays of Anonymous Functions
	Space Characters in Anonymous Function Elements

	Outputs from Anonymous Functions
	Example

	Variables Used in the Expression
	Changing Variables Used in an Anonymous Function

	Examples of Anonymous Functions
	Example 1 — Passing a Function to quad
	Example 2 — Multiple Anonymous Functions

	Primary M-File Functions
	Nested Functions
	Writing Nested Functions
	Example — More Than One Nested Function
	Example — Multiply Nested Functions

	Calling Nested Functions
	Variable Scope in Nested Functions
	The Scope of Output Variables

	Using Function Handles with Nested Functions
	Function Handles and Nested Function Variables
	Example Using Externally Scoped Variables
	Separate Instances of Externally Scoped Variables

	Restrictions on Assigning to Variables
	Examples of Nested Functions
	Example 1 — Creating a Function Handle for a Nested Function
	Example 2 — Function-Generating Functions

	Subfunctions
	Overview
	Calling Subfunctions
	Accessing Help for a Subfunction

	Private Functions
	Overview
	Private Directories
	Accessing Help for a Private Function

	Overloaded Functions

	Data Import and Export
	Overview
	File Types Supported by MATLAB
	Binary Data from a MATLAB Session
	Text Data
	Graphics Files
	Audio and Audio/Video Data
	Spreadsheets
	Data from the System Clipboard
	Information from the Internet

	Other MATLAB I/O Capabilities
	Using the Import Wizard
	Mapping Files to Memory
	Reading Files with Large Data Sets
	Low-Level File I/O
	Importing Data with Toolboxes

	Functions Used in File Management

	Supported File Formats
	Using the Import Wizard
	Overview
	Starting the Import Wizard
	Importing from a File
	Importing from the Clipboard
	Importing to a Structure

	Previewing Contents of the File or Clipboard [Text only]
	Specifying Delimiters and Header Format [Text only]
	Delimiters
	Header Format
	Generate M-Code Checkbox

	Determining Assignment to Variables
	Structuring the Output Data
	Selecting Which Variables to Write to the Workspace

	Automated M-Code Generation
	Example of M-Code Generation

	Writing Data to the Workspace
	Examples

	Accessing Files with Memory-Mapping
	Overview of Memory-Mapping in MATLAB
	Benefits of Memory-Mapping
	Limitations of Memory-Mapping in MATLAB
	Byte Ordering
	When to Use Memory-Mapping

	The memmapfile Class
	Properties of the memmapfile Class

	Constructing a memmapfile Object
	Constructing the Object with Default Property Values
	Changing Property Values
	Selecting the File to Map
	Setting the Start of the Mapped Region
	Identifying the Contents of the Mapped Region
	Mapping of the Example File
	Repeating a Format Scheme
	Setting the Type of Access

	Reading a Mapped File
	Improving Performance
	Example 1 — Reading a Single Data Type
	Example 2 — Formatting File Data as a Matrix
	Example 3 — Reading Multiple Data Types
	Example 4 — Modifying Map Parameters

	Writing to a Mapped File
	Dimensions of the Data Field
	Writing Matrices to a Mapped File
	Selecting Appropriate Data Types
	Working with Copies of the Mapped Data
	Invalid Syntax for Writing to Mapped Memory

	Methods of the memmapfile Class
	Using the disp Method
	Using the get Method

	Deleting a Memory Map
	The Effect of Shared Data Copies On Performance

	Memory-Mapping Demo
	The send Function
	The answer Function
	Running the Demo

	Exporting Data to MAT-Files
	MAT-Files
	Using the save Function
	Saving Structures
	Appending to an Existing File
	Data Compression
	Evaluating When to Compress

	Unicode Character Encoding
	Optional Output Formats
	Saving in ASCII Format
	Saving in Version 4 Format

	Storage Requirements
	Saving From External Programs

	Importing Data From MAT-Files
	Using the load Function
	Previewing MAT-File Contents
	Loading Into a Structure
	Loading Binary Data
	Loading ASCII Data

	Importing Text Data
	The MATLAB Import Wizard
	Using Import Functions with Text Data
	Importing Numeric Text Data
	Importing Delimited ASCII Data Files
	Importing Numeric Data with Text Headers
	Importing Mixed Alphabetic and Numeric Data
	Importing from XML Documents

	Exporting Text Data
	Overview
	Exporting Delimited ASCII Data Files
	Using the save Function
	Using the dlmwrite Function

	Using the diary Function to Export Data
	Exporting to XML Documents

	Working with Graphics Files
	Getting Information About Graphics Files
	Importing Graphics Data
	Exporting Graphics Data

	Working with Audio and Video Data
	Getting Information About Audio/Video Files
	Format-Specific Functions
	Using the General Multimedia Information Function

	Importing Audio/Video Data
	Reading Audio and Video Data from a File
	Recording Audio Data

	Exporting Audio/Video Data
	Exporting Audio Data
	Exporting Video Data in AVI Format
	Example: Creating an AVI file

	Working with Spreadsheets
	Microsoft Excel Spreadsheets
	Getting Information About the File
	Exporting to the File
	Importing from the File

	Lotus 123 Spreadsheets
	Getting Information About the File
	Exporting to the File
	Importing from the File

	Using Low-Level File I/O Functions
	Overview
	Opening Files
	Specifying the Permission String
	Using the Returned File Identifier (fid)
	Opening Temporary Files and Directories

	Reading Binary Data
	Controlling the Number of Values Read
	Controlling the Data Type of Each Value

	Writing Binary Data
	Controlling Position in a File
	Setting and Querying the File Position
	Example of Using fseek And ftell

	Reading Strings Line by Line from Text Files
	Reading Formatted ASCII Data
	Differences Between the MATLAB fscanf and the C fscanf

	Writing Formatted Text Files
	Closing a File

	Exchanging Files over the Internet
	Overview
	Downloading Web Content and Files
	Example — Using the urlread Function
	Example — Using the urlwrite Function

	Creating and Decompressing Zip Archives
	Example — Using the zip Function

	Sending E-Mail
	Example — Using the sendmail Function

	Performing FTP File Operations
	Example — Retrieving a File from an FTP Server
	Summary of FTP Functions

	Working with Scientific Data Formats
	Common Data Format (CDF) Files
	Getting Information About CDF Files
	Importing Data from a CDF File
	Speeding Up Read Operations
	Representing CDF Time Values

	Exporting Data to a CDF File

	Flexible Image Transport System (FITS) Files
	Getting Information About FITS Files
	Importing Data from a FITS File

	Hierarchical Data Format (HDF5) Files
	Using the MATLAB High-Level HDF5 Functions
	Determining the Contents of an HDF5 File
	Importing Data from an HDF5 File
	Exporting Data to HDF5 Files
	Mapping HDF5 Data Types to MATLAB Data Types

	Using the MATLAB Low-Level HDF5 Functions
	Mapping HDF5 Function Syntax to MATLAB Function Syntax
	Mapping Between HDF5 Data Types and MATLAB Data Types
	Example: Using the MATLAB HDF5 Low-level Functions

	Hierarchical Data Format (HDF4) Files
	Using the HDF Import Tool
	Step 1: Opening an HDF4 File in the HDF Import Tool
	Step 2: Selecting a Data Set in an HDF File
	Step 3: Specifying a Subset of the Data (Optional)
	Step 4: Importing Data and Metadata
	Step 5: Closing HDF Files and the HDF Import Tool

	Using the HDF Import Tool Subsetting Options
	HDF Scientific Data Sets (SD)
	HDF Vdata
	HDF-EOS Grid Data
	Pixels . You can import a subset of the pixels in a Grid data se

	HDF-EOS Point Data
	HDF-EOS Swath Data
	User-Defined . You can optionally also subset a swath data set b

	HDF Raster Image Data

	Using the MATLAB HDF4 High-Level Functions
	Using hdfinfo to Get Information About an HDF4 File
	Using hdfread to Import Data from an HDF4 File

	Using the HDF4 Low-Level Functions
	Understanding the HDF4 to MATLAB Syntax Mapping
	Example: Importing Data Using the HDF4 SD API Functions
	Example: Exporting Data Using the HDF4 SD API Functions
	Using the MATLAB HDF4 Utility API

	Error Handling
	Error Reporting in MATLAB
	Overview
	Getting an Exception at the Command Line
	Determine the Fault from the Error Message
	Review the Failing Code
	Step Through the Code in the Debugger

	Getting an Exception in Your Program Code
	Generating a New Exception

	Capturing Information About the Error
	Overview
	The MException Class
	Object Constructor

	Properties of the MException Class
	Message Identifiers
	Text of the Error Message
	The Call Stack
	The Cause Array

	Methods of the MException Class

	Throwing an Exception
	Responding to an Exception
	Overview
	The try-catch Statement
	The Try Block
	The Catch Block

	Suggestions on How to Handle an Exception

	Warnings
	Reporting a Warning
	Formatted Message Strings
	Message Identifiers

	Identifying the Cause

	Warning Control
	Overview
	Warning Statements
	Attaching an Identifier to the Warning Statement

	Warning Control Statements
	Warning States
	Message Identifiers
	Example 1 — Enabling a Selected Warning
	Example 2 — Disabling the Most Recent Warning

	Output from Control Statements
	Output Structure Array

	Saving and Restoring State
	Example 1 — Performing an Explicit Query
	Example 2 — Performing an Implicit Query

	Backtrace and Verbose Modes
	Example 1 — Displaying a Stack Trace on a Specific Warning
	Example 2 — Enabling Verbose Warnings

	Debugging Errors and Warnings

	Classes and Objects
	Classes and Objects: An Overview
	Overview
	Features of Object-Oriented Programming
	MATLAB Data Class Hierarchy
	Creating Objects
	Invoking Methods on Objects
	Private Methods
	Helper Functions
	Debugging Class Methods
	Changing Class Definition

	Setting Up Class Directories
	Adding the Class Directory to the MATLAB Path
	Using Multiple Class Directories

	Data Structure
	Tips for C++ and Java Programmers

	Designing User Classes in MATLAB
	The MATLAB Canonical Class
	The Class Constructor Method
	Guidelines for Writing a Constructor
	Using the class Function in Constructors

	Examples of Constructor Methods
	Identifying Objects Outside the Class Directory
	The display Method
	Examples of display Methods

	Accessing Object Data
	The set and get Methods
	Examples of set and get Methods
	Property Name Methods

	Indexed Reference Using subsref and subsasgn
	Behavior Within Class Methods

	Handling Subscripted Reference
	How to Write subsref
	Examples of the subsref Method

	Handling Subscripted Assignment
	Examples of the subsasgn Method

	Object Indexing Within Methods
	Defining end Indexing for an Object
	Indexing an Object with Another Object
	Converter Methods
	Examples of Converter Methods

	Overloading Operators and Functions
	Overloading Operators
	Examples of Overloaded Operators

	Overloading Functions
	Examples of Overloaded Functions

	Example — A Polynomial Class
	Polynom Data Structure
	Polynom Methods
	The Polynom Constructor Method
	Constructor Calling Syntax

	Converter Methods for the Polynom Class
	The Polynom to Double Converter
	The Polynom to Char Converter
	Evaluating the Output

	The Polynom display Method
	The Polynom subsref Method
	subsref Implementation Details

	Overloading Arithmetic Operators for polynom
	Overloading the + Operator
	Overloading the - Operator
	Overloading the * Operator
	Using the Overloaded Operators

	Overloading Functions for the Polynom Class
	Overloading roots for the Polynom Class
	Overloading polyval for the Polynom Class
	Overloading plot for the Polynom Class
	Overloading diff for the Polynom Class

	Listing Class Methods

	Building on Other Classes
	Overview
	Simple Inheritance
	Derived Class Constructor
	Visibility of Class Properties and Methods

	Multiple Inheritance
	Nonunique Method Names in Base Classes

	Aggregation

	Example — Assets and Asset Subclasses
	Inheritance Model for the Asset Class
	Asset Class Design
	Other Asset Methods
	The Asset Constructor Method
	The Asset get Method
	The Asset set Method
	The Asset subsref Method
	The Asset subsasgn Method
	The Asset display Method
	The Asset fieldcount Method
	Designing the Stock Class
	Stock Class Methods

	The Stock Constructor Method
	Constructor Calling Syntax

	The Stock get Method
	The Stock set Method
	The Stock subsref Method
	The Stock subsasgn Method
	The Stock display Method

	Example — The Portfolio Container
	Overview
	Designing the Portfolio Class
	Required Portfolio Methods

	The Portfolio Constructor Method
	Constructor Calling Syntax

	The Portfolio display Method
	The Portfolio pie3 Method
	Creating a Portfolio

	Saving and Loading Objects
	Example — Defining saveobj and loadobj for Portfolio
	Methods Executed by Save and Load
	Summary of Code Changes
	New Portfolio Class Behavior

	The saveobj Method
	The loadobj Method
	Changing the Portfolio Constructor
	The getAccountNumber Function

	The Portfolio subsref Method

	Object Precedence
	How MATLAB Determines Precedence
	Specifying Precedence of User-Defined Classes
	Location in the Hierarchy

	How MATLAB Determines Which Method to Call
	Overview
	Selecting a Method
	Determining the Dispatch Type
	Function Precedence Order
	Selecting Methods from Multiple Directories
	Selecting Methods from Multiple Implementation Types

	Querying Which Method MATLAB Will Call

	Scheduling Program Execution with Timers
	Using a MATLAB Timer Object
	Overview
	Example: Displaying a Message

	Creating Timer Objects
	Creating the Object
	Naming the Object

	Working with Timer Object Properties
	Retrieving the Value of Timer Object Properties
	Setting the Value of Timer Object Properties
	Viewing a List of All Settable Properties

	Starting and Stopping Timers
	Starting a Timer
	Starting a Timer at a Specified Time
	Stopping Timer Objects
	Blocking the MATLAB Command Line

	Creating and Executing Callback Functions
	Associating Commands with Timer Object Events
	Creating Callback Functions
	Specifying Callback Functions Directly
	Putting Commands in a Callback Function
	Example: Writing a Callback Function

	Specifying the Value of Callback Function Properties

	Timer Object Execution Modes
	Executing a Timer Callback Function Once
	Executing a Timer Callback Function Multiple Times
	Handling Callback Function Queuing Conflicts

	Deleting Timer Objects from Memory
	Deleting One or More Timer Objects
	Testing the Validity of a Timer Object

	Finding Timer Objects in Memory
	Finding All Timer Objects
	Finding Invisible Timer Objects

	Improving Performance and Memory Usage
	Analyzing Your Program's Performance
	Overview
	The M-File Profiler Utility
	Stopwatch Timer Functions
	Measuring Smaller Programs
	Using tic and toc Versus the cputime Function

	Techniques for Improving Performance
	Vectorizing Loops
	Simple Example of Vectorizing
	Advanced Example of Vectorizing
	Functions Used in Vectorizing

	Preallocating Arrays
	Preallocation Functions
	Preallocating a Nondouble Matrix

	Use Distributed Arrays for Large Datasets
	When Possible, Replace for with parfor (Parallel for)
	Multithreading Capabilities in MATLAB
	Limiting M-File Size and Complexity
	Coding Loops in a MEX-File
	Assigning to Variables
	Changing a Variable's Data Type or Dimension
	Assigning Real and Complex Numbers

	Operating on Real Data
	Using Appropriate Logical Operators
	Overloading Built-In Functions
	Functions Are Generally Faster Than Scripts
	Load and Save Are Faster Than File I/O Functions
	Avoid Large Background Processes

	Multiprocessing in MATLAB
	Overview
	Implicit Multiprocessing
	Explicit Multiprocessing

	Implicit Multiprocessing
	Platform Differences and Multithreaded Computation
	Enabling Multithreaded Computation
	Setting the Number of Threads Programmatically
	Crash Recovery and Multithreading

	Explicit Multiprocessing

	Memory Allocation in MATLAB
	Memory Allocation for Arrays
	Creating and Modifying Arrays
	Copying Arrays
	Array Headers
	Function Arguments

	Data Structures and Memory
	Numeric Arrays
	Complex Arrays
	Sparse Matrices

	Memory Management Functions
	Strategies for Efficient Use of Memory
	Preallocating Arrays to Reduce Fragmentation
	Allocating Large Matrices Earlier
	Working with Large Amounts of Data

	Resolving “Out of Memory” Errors
	General Suggestions for Reclaiming Memory
	Compressing Data in Memory
	Increasing System Swap Space
	UNIX
	Linux
	Windows 2000
	Windows XP

	Freeing Up System Resources on Windows Systems
	Reloading Variables on UNIX Systems

	Programming Tips
	Introduction
	Command and Function Syntax
	Syntax Help
	Command and Function Syntaxes
	Command Line Continuation
	Completing Commands Using the Tab Key
	Recalling Commands
	Clearing Commands
	Suppressing Output to the Screen

	Help
	Using the Help Browser
	Help on Functions from the Help Browser
	Help on Functions from the Command Window
	Topical Help
	Paged Output
	Writing Your Own Help
	Help for Subfunctions and Private Functions
	Help for Methods and Overloaded Functions

	Development Environment
	Workspace Browser
	Using the Find and Replace Utility
	Commenting Out a Block of Code
	Creating M-Files from Command History
	Editing M-Files in EMACS

	M-File Functions
	M-File Structure
	Using Lowercase for Function Names
	Getting a Function's Name and Path
	What M-Files Does a Function Use?
	Dependent Functions, Built-Ins, Classes

	Function Arguments
	Getting the Input and Output Arguments
	Variable Numbers of Arguments
	String or Numeric Arguments
	Passing Arguments in a Structure
	Passing Arguments in a Cell Array

	Program Development
	Planning the Program
	Using Pseudo-Code
	Selecting the Right Data Structures
	General Coding Practices
	Naming a Function Uniquely
	The Importance of Comments
	Coding in Steps
	Making Modifications in Steps
	Functions with One Calling Function
	Testing the Final Program

	Debugging
	The MATLAB Debug Functions
	More Debug Functions
	The MATLAB Graphical Debugger
	A Quick Way to Examine Variables
	Setting Breakpoints from the Command Line
	Finding Line Numbers to Set Breakpoints
	Stopping Execution on an Error or Warning
	Locating an Error from the Error Message
	Using Warnings to Help Debug
	Making Code Execution Visible
	Debugging Scripts

	Variables
	Rules for Variable Names
	Making Sure Variable Names Are Valid
	Do Not Use Function Names for Variables
	Checking for Reserved Keywords
	Avoid Using i and j for Variables
	Avoid Overwriting Variables in Scripts
	Persistent Variables
	Protecting Persistent Variables
	Global Variables

	Strings
	Creating Strings with Concatenation
	Comparing Methods of Concatenation
	Store Arrays of Strings in a Cell Array
	Converting Between Strings and Cell Arrays
	Search and Replace Using Regular Expressions

	Evaluating Expressions
	Find Alternatives to Using eval
	Assigning to a Series of Variables
	Short-Circuit Logical Operators
	Changing the Counter Variable within a for Loop

	MATLAB Path
	Precedence Rules
	File Precedence
	Adding a Directory to the Search Path
	Handles to Functions Not on the Path
	Making Toolbox File Changes Visible to MATLAB
	Making Nontoolbox File Changes Visible to MATLAB
	Change Notification on Windows

	Program Control
	Using break, continue, and return
	Using switch Versus if
	MATLAB case Evaluates Strings
	Multiple Conditions in a case Statement
	Implicit Break in switch-case
	Variable Scope in a switch
	Catching Errors with try-catch
	Nested try-catch Blocks
	Forcing an Early Return from a Function

	Save and Load
	Saving Data from the Workspace
	Loading Data into the Workspace
	Viewing Variables in a MAT-File
	Appending to a MAT-File
	Save and Load on Startup or Quit
	Saving to an ASCII File

	Files and Filenames
	Naming M-files
	Naming Other Files
	Passing Filenames as Arguments
	Passing Filenames to ASCII Files
	Determining Filenames at Run-Time
	Returning the Size of a File

	Input/Output
	File I/O Function Overview
	Common I/O Functions
	Readable File Formats
	Using the Import Wizard
	Loading Mixed Format Data
	Reading Files with Different Formats
	Reading ASCII Data into a Cell Array
	Interactive Input into Your Program

	Starting MATLAB
	Getting MATLAB to Start Up Faster

	Operating System Compatibility
	Executing O/S Commands from MATLAB
	Searching Text with grep
	Constructing Paths and Filenames
	Finding the MATLAB Root Directory
	Temporary Directories and Filenames

	Demos
	Demos Available with MATLAB

	For More Information
	Current CSSM
	Archived CSSM
	MATLAB Technical Support
	Tech Notes
	MATLAB Central
	MATLAB Newsletters (Digest, News & Notes)
	MATLAB Documentation
	MATLAB Index of Examples

	Index

	tables
	Functions to Create a Matrix
	Functions to Modify the Shape of a Matrix
	Functions to Find the Structure or Shape of a Matrix
	Functions to Determine Data Type
	Functions to Sort and Shift Matrix Elements
	Functions That Work on Diagonals of a Matrix
	Functions to Change the Indexing Style
	Functions for Working with Multidimensional Arrays
	Integer Functions
	Floating-Point Functions
	Complex Number Functions
	Infinity and NaN Functions
	Type Identification Functions
	Output Formatting Functions
	Functions to Create Character Arrays
	Functions to Modify Character Arrays
	Functions to Read and Operate on Character Arrays
	Functions to Search or Compare Character Arrays
	Functions to Determine Data Type or Content
	Functions to Convert Between Numeric and String Data Types
	Functions to Work with Cell Arrays of Strings as Sets
	Current Date and Time Functions
	Conversion Functions
	Utility Functions
	Timing Measurement Functions
	Character Classes
	Character Representation
	Grouping Operators
	Nonmatching Operators
	Positional Operators
	Lookaround Operators
	Quantifiers
	Ordinal Token Operators
	Named Token Operators
	Conditional Expression Operators
	Dynamic Expression Operators
	Replacement String Operators
	Table 6-1 ASCII Data File Formats
	Table 6-2 ASCII Data Import Function Features
	Table 6-3 ASCII Data File Formats
	Table 6-4 ASCII Data Export Function Features
	Mapping Between HDF5 Atomic Data Types and MATLAB Data Types
	Mapping Between HDF5 Composite Data Types and MATLAB Data Types

	Programming Tips
	toc
	Programming Tips
	Introduction
	Command and Function Syntax
	Syntax Help
	Command and Function Syntaxes
	Command Line Continuation
	Completing Commands Using the Tab Key
	Recalling Commands
	Clearing Commands
	Suppressing Output to the Screen

	Help
	Using the Help Browser
	Help on Functions from the Help Browser
	Help on Functions from the Command Window
	Topical Help
	Paged Output
	Writing Your Own Help
	Help for Subfunctions and Private Functions
	Help for Methods and Overloaded Functions

	Development Environment
	Workspace Browser
	Using the Find and Replace Utility
	Commenting Out a Block of Code
	Creating M-Files from Command History
	Editing M-Files in EMACS

	M-File Functions
	M-File Structure
	Using Lowercase for Function Names
	Getting a Function's Name and Path
	What M-Files Does a Function Use?
	Dependent Functions, Built-Ins, Classes

	Function Arguments
	Getting the Input and Output Arguments
	Variable Numbers of Arguments
	String or Numeric Arguments
	Passing Arguments in a Structure
	Passing Arguments in a Cell Array

	Program Development
	Planning the Program
	Using Pseudo-Code
	Selecting the Right Data Structures
	General Coding Practices
	Naming a Function Uniquely
	The Importance of Comments
	Coding in Steps
	Making Modifications in Steps
	Functions with One Calling Function
	Testing the Final Program

	Debugging
	The MATLAB Debug Functions
	More Debug Functions
	The MATLAB Graphical Debugger
	A Quick Way to Examine Variables
	Setting Breakpoints from the Command Line
	Finding Line Numbers to Set Breakpoints
	Stopping Execution on an Error or Warning
	Locating an Error from the Error Message
	Using Warnings to Help Debug
	Making Code Execution Visible
	Debugging Scripts

	Variables
	Rules for Variable Names
	Making Sure Variable Names Are Valid
	Do Not Use Function Names for Variables
	Checking for Reserved Keywords
	Avoid Using i and j for Variables
	Avoid Overwriting Variables in Scripts
	Persistent Variables
	Protecting Persistent Variables
	Global Variables

	Strings
	Creating Strings with Concatenation
	Comparing Methods of Concatenation
	Store Arrays of Strings in a Cell Array
	Converting Between Strings and Cell Arrays
	Search and Replace Using Regular Expressions

	Evaluating Expressions
	Find Alternatives to Using eval
	Assigning to a Series of Variables
	Short-Circuit Logical Operators
	Changing the Counter Variable within a for Loop

	MATLAB Path
	Precedence Rules
	File Precedence
	Adding a Directory to the Search Path
	Handles to Functions Not on the Path
	Making Toolbox File Changes Visible to MATLAB
	Making Nontoolbox File Changes Visible to MATLAB
	Change Notification on Windows

	Program Control
	Using break, continue, and return
	Using switch Versus if
	MATLAB case Evaluates Strings
	Multiple Conditions in a case Statement
	Implicit Break in switch-case
	Variable Scope in a switch
	Catching Errors with try-catch
	Nested try-catch Blocks
	Forcing an Early Return from a Function

	Save and Load
	Saving Data from the Workspace
	Loading Data into the Workspace
	Viewing Variables in a MAT-File
	Appending to a MAT-File
	Save and Load on Startup or Quit
	Saving to an ASCII File

	Files and Filenames
	Naming M-files
	Naming Other Files
	Passing Filenames as Arguments
	Passing Filenames to ASCII Files
	Determining Filenames at Run-Time
	Returning the Size of a File

	Input/Output
	File I/O Function Overview
	Common I/O Functions
	Readable File Formats
	Using the Import Wizard
	Loading Mixed Format Data
	Reading Files with Different Formats
	Reading ASCII Data into a Cell Array
	Interactive Input into Your Program

	Starting MATLAB
	Getting MATLAB to Start Up Faster

	Operating System Compatibility
	Executing O/S Commands from MATLAB
	Searching Text with grep
	Constructing Paths and Filenames
	Finding the MATLAB Root Directory
	Temporary Directories and Filenames

	Demos
	Demos Available with MATLAB

	For More Information
	Current CSSM
	Archived CSSM
	MATLAB Technical Support
	Tech Notes
	MATLAB Central
	MATLAB Newsletters (Digest, News & Notes)
	MATLAB Documentation
	MATLAB Index of Examples

	3-D Visualization
	toc
	Creating 3-D Graphs
	A Typical 3-D Graph
	Line Plots of 3-D Data
	Basic 3-D Plotting: The plot3 function
	Plotting Matrix Data

	Representing a Matrix as a Surface
	Functions for Plotting Data Grids
	Mesh and Surface Plots
	Visualizing Functions of Two Variables
	Emphasizing Surface Shape

	Surface Plots of Nonuniformly Sampled Data
	Example — Displaying Nonuniform Data on a Surface

	Parametric Surfaces
	Hidden Line Removal

	Coloring Mesh and Surface Plots
	Coloring Techniques
	Types of Color Data
	Colormaps
	RGB Color Components
	Displaying Colormaps

	Indexed Color Surfaces — Direct and Scaled Color Mapping
	Direct Mapping
	Scaled Mapping
	Specifying Indexed Colors

	Example — Mapping Surface Curvature to Color
	Altering Colormaps
	NTSC Color Encoding

	Truecolor Surfaces
	Rendering Methods for Truecolor

	Texture Mapping
	Example — Texture Mapping a Surface

	Defining the View
	Viewing Overview
	Viewing 3-D Graphs and Scenes
	Positioning the Viewpoint
	Setting the Aspect Ratio
	Default Views

	Setting the Viewpoint with Azimuth and Elevation
	Azimuth and Elevation
	Default 2-D and 3-D Views
	Examples of Views Specified with Azimuth and Elevation
	Limitations of Azimuth and Elevation

	Defining Scenes with Camera Graphics
	View Control with the Camera Toolbar
	Camera Toolbar
	Principal Axes
	Optimizing for 3-D Camera Motion

	Camera Motion Controls
	Orbit Camera
	Graphics Properties

	Orbit Scene Light
	Graphics Properties

	Pan/Tilt Camera
	Graphics Properties

	Move Camera Horizontally/Vertically
	Graphics Properties

	Move Camera Forward and Backward
	Graphics Properties

	Zoom Camera
	Graphics Properties

	Camera Roll
	Graphics Properties

	Camera Graphics Functions
	Example — Dollying the Camera
	Summary of Techniques
	Implementation

	Example — Moving the Camera Through a Scene
	Summary of Techniques
	Graphing the Volume Data
	Setting Up the View
	Specifying the Light Source
	Selecting a Renderer
	Defining the Camera Path as a Stream Line
	Implementing the Fly-Through

	Low-Level Camera Properties
	Camera Properties You Can Set
	Default Viewpoint Selection
	Moving In and Out on the Scene
	Moving Through a Scene
	Example — Moving Toward or Away from the Target

	Making the Scene Larger or Smaller
	Revolving Around the Scene
	Rotation Without Resizing of Graphics Objects
	Rotation About the Viewing Axis
	Example — Calculating a Camera Up Vector

	Understanding View Projections
	The Two Types of Projections
	Projection Types and Camera Location
	Printing 3-D Scenes
	Additional Information

	Understanding Axes Aspect Ratio
	Stretch-to-Fill
	Specifying Axis Scaling
	Specifying Aspect Ratio
	Example — axis Command Options
	Additional Commands for Setting Aspect Ratio

	Manipulating Axes Aspect Ratio
	Axes Aspect Ratio Properties
	Default Aspect Ratio Selection
	Example — MATLAB Defaults

	Overriding Stretch-to-Fill
	Effects of Setting Aspect Ratio Properties
	Data Aspect Ratio
	Plot Box Aspect Ratio
	Adjusting Axis Limits

	Example — Displaying Cross-Sections of Surfaces
	Example — Displaying Real Objects

	Lighting as a Visualization Tool
	Lighting Overview
	Lighting Commands
	Light Objects
	Properties That Affect Lighting
	Examples of Lighting Control
	Example — Adding Lights to a Scene
	Example — Illuminating Mathematical Functions

	Selecting a Lighting Method
	Face and Edge Lighting Methods

	Reflectance Characteristics of Graphics Objects
	Specular and Diffuse Reflection
	Ambient Light
	Specular Exponent
	Specular Color Reflectance
	Back Face Lighting
	Positioning Lights in Data Space

	Transparency
	Making Objects Transparent
	About Transparency
	Specifying Transparency
	Transparency Properties
	Transparency Functions

	Example — A Transparent Isosurface
	Setting a Single Transparency Value for Images

	Mapping Data to Transparency — Alpha Data
	What Is Alpha Data?
	Size of the Alpha Data Array
	Mapping Alpha Data to the Alphamap
	Example — Mapping Data to Color or Transparency

	Selecting an Alphamap
	What Is an Alphamap?
	Example — Modifying the Alphamap

	Creating 3-D Models with Patches
	Introduction to Patch Objects
	What Are Patch Objects?
	Behavior of the patch Function
	High-Level Syntax
	Low-Level Syntax
	Interpreting the Color Argument

	Creating a Single Polygon
	Interpolated Face Colors

	Multifaceted Patches
	Example — Defining a Cube
	Specifying X, Y, and Z Coordinates
	Specifying Faces and Vertices
	Flat Face Color
	Interpolated Face Color

	Modifying Data on Existing Patch Objects
	Specifying Patch Data
	Handling Mixed Data Specification

	Specifying Patch Coloring
	Patch Color Properties
	Patch Edge Coloring
	Example — Specifying Flat Edge and Face Coloring

	Coloring Edges with Shared Vertices

	Interpreting Indexed and Truecolor Data
	Introduction
	Indexed Color Data
	Scaled Color
	Direct Color

	Truecolor Patches
	Interpolating in Indexed Color Versus Truecolor

	Volume Visualization Techniques
	Overview of Volume Visualization
	Examples of Volume Data
	Selecting Visualization Techniques
	Steps to Create a Volume Visualization
	Volume Visualization Functions
	Functions for Scalar Data
	Functions for Vector Data

	Techniques for Visualizing Scalar Volume Data
	What Is Scalar Volume Data?
	Example — Ways to Display MRI Data
	Changing the Data Format
	Displaying Images of MRI Data
	Displaying a 2-D Contour Slice
	Displaying 3-D Contour Slices
	Displaying an Isosurface
	Adding an Isocap to Show a Cutaway Surface
	Defining the View
	Add Lighting

	Exploring Volumes with Slice Planes
	Example — Slicing Fluid Flow Data
	1. Investigate the Data
	2. Create a Slice Plane at an Angle to the X-Axes
	3. Draw the Slice Planes
	4. Define the View
	5. Add Lighting and Specify Colors

	Modifying the Color Mapping
	Customizing the Colormap
	Adjusting the Color Limits

	Connecting Equal Values with Isosurfaces
	Example — Isosurfaces in Fluid Flow Data

	Isocaps Add Context to Visualizations
	What Are Isocaps?
	Other Isocap Applications
	Defining Isocaps
	Example — Adding Isocaps to an Isosurface
	1. Prepare the Data
	2. Create the Isosurface and Set Properties
	3. Create the Isocaps and Set Properties
	4. Define the View
	5. Add Lighting

	Visualizing Vector Volume Data
	Lines, Particles, Ribbons, Streams, Tubes, and Cones
	Using Scalar Techniques with Vector Data
	Specifying Starting Points for Stream Plots
	Determining the Starting Points
	Specifying Arrays of Starting-Point Coordinates

	Accessing Subregions of Volume Data
	Indexing with the Colon Operator
	Using the subvolume Function

	Example — Stream Line Plots of Vector Data
	Wind Mapping Data
	1. Determine the Range of the Coordinates
	2. Add Slice Planes for Visual Context
	3. Add Contour Lines to the Slice Planes
	4. Define the Starting Points for the Stream Lines
	5. Define the View

	Example — Displaying Curl with Stream Ribbons
	What Stream Ribbons Can Show
	1. Select a Subset of Data to Plot
	2. Calculate Curl Angular Velocity and Wind Speed
	3. Create the Stream Ribbons
	4. Define the View and Add Lighting

	Example — Displaying Divergence with Stream Tubes
	What Stream Tubes Can Show
	1. Load Data and Calculate Required Values
	2. Draw the Slice Planes
	3. Add Contour Lines to Slice Planes
	4. Create the Stream Tubes
	5. Define the View

	Example — Creating Stream Particle Animations
	What Particle Animations Can Show
	1. Specify the Starting Points of the Data Range to Plot
	2. Create Stream Lines to Indicate the Particle Paths
	3. Define the View
	4. Calculate the Stream Particle Vertices

	Example — Vector Field Displayed with Cone Plots
	What Cone Plots Can Show
	1. Create an Isosurface
	2. Add Isocaps to the Isosurface
	3. Create First Set of Cones
	4. Create Second Set of Cones
	5. Define the View
	6. Add Lighting

	Index

	C and Fortran API Reference
	toc
	API — By Category
	MAT-File Access
	MX Array Manipulation
	MEX-Files
	MATLAB Engine

	API — Alphabetical List
	Index

	Creating Graphical User Interfaces
	toc
	Introduction to Creating GUIs
	About GUIs in MATLAB
	What Is a GUI?
	How Does a GUI Work?
	Where Do I Start?

	Creating a Simple GUI with GUIDE
	GUIDE: A Brief Introduction
	Laying Out a GUI
	Programming a GUI

	Example: Simple GUI
	Simple GUI Overview
	View Completed Layout and Its GUI M-File

	Laying Out a Simple GUI
	Opening a New GUI in the Layout Editor
	Setting the GUI Figure Size
	Adding the Components
	Aligning the Components
	Adding Text to the Components
	Labeling the Push Buttons
	Entering Pop-Up Menu Items
	Modifying the Static Text

	Completed Layout

	Saving the GUI Layout
	Programming a Simple GUI
	Adding Code to the M-file
	Generating Data to Plot
	Programming the Pop-Up Menu
	Programming the Push Buttons

	Running the GUI

	Creating a Simple GUI Programmatically
	Example: Simple GUI
	Simple GUI Overview
	View Completed Example

	Function Summary
	Creating a GUI M-File
	Laying Out a Simple GUI
	Creating the Figure
	Adding the Components

	Initializing the GUI
	Programming the GUI
	Programming the Pop-Up Menu
	Programming the Push Buttons
	Associating Callbacks with Their Components

	Running the Final GUI
	Final M-File
	Running the GUI

	Creating GUIs with GUIDE
	What Is GUIDE?
	GUIDE: An Overview
	GUI Layout
	GUI Programming

	GUIDE Tools Summary

	GUIDE Preferences and Options
	GUIDE Preferences
	Setting Prefernces
	Confirmation Preferences
	Prompt to Save on Activate
	Prompt to Save on Export

	Backward Compatibility Preference
	Ensure Backward Compatibility (-v6)

	All Other Preferences
	Show Toolbar
	Show Names in Component Palette
	Show File Extension in Window Title
	Show File Path in Window Title
	Add Comments for Newly Generated Callback Functions

	GUI Options
	The GUI Options Dialog Box
	Resize Behavior
	Command-Line Accessibility
	Generate FIG-File and M-File
	Generate Callback Function Prototypes
	GUI Allows Only One Instance to Run (Singleton)
	Use System Color Scheme for Background

	Generate FIG-File Only

	Laying Out a GUIDE GUI
	Designing a GUI
	Starting GUIDE
	Selecting a GUI Template
	Accessing the Templates
	Template Descriptions
	Blank GUI
	GUI with Uicontrols
	GUI with Axes and Menu
	Modal Question Dialog

	Setting the GUI Size
	Adding Components to the GUI
	Available Components
	Adding Components to the GUIDE Layout Area
	Using Coordinates to Place Components
	Adding a Component to a Panel or Button Group
	Assigning an Identifier to Each Component

	Defining User Interface Controls
	Commonly Used Properties
	Push Button
	Slider
	Radio Button
	Check Box
	Edit Text
	Static Text
	Pop-Up Menu
	List Box
	Toggle Button

	Defining Panels and Button Groups
	Commonly Used Properties
	Panel
	Button Group

	Defining Axes
	Commonly Used Properties
	Axes

	Adding ActiveX Controls
	Working with Components in the Layout Area
	Selecting Components
	Copying, Cutting, and Clearing Components
	Pasting and Duplicating Components
	Front-to-Back Positioning

	Locating and Moving Components
	Using Coordinate Readouts
	Dragging Components
	Using Arrow Keys to Move Components
	Setting the Component's Position Property

	Resizing Components
	Dragging a Corner of the Component
	Setting the Component's Position Property

	Aligning Components
	Alignment Tool
	Align Options
	Distribute Options

	Property Inspector
	Grid and Rulers
	Guide Lines
	Creating Guide Lines

	Setting Tab Order
	Creating Menus
	Menus for the Menu Bar
	Adding Standard Menus to the Menu Bar
	Creating a Menu
	Adding Items to a Menu
	Additional Drop-Down Menus
	Cascading Menus
	Laying Out Three Menus

	Context Menus
	Creating the Parent Menu
	Adding Items to the Context Menu
	Associating the Context Menu with an Object

	Creating Toolbars
	Creating Toolbars with GUIDE
	Using the Toolbar Editor
	Adding Tools
	Predefined and Custom Tools
	Adding and Removing Separators
	Moving Tools
	Removing Tools
	Editing a Tool's Properties
	Editing Tool Icons
	Editing Toolbar Properties
	Testing Your Toolbar
	Removing a Toolbar
	Closing the Toolbar Editor

	Editing Tool Icons
	Using the Icon Editor

	Creating Toolbars Programmatically

	Viewing the Object Hierarchy
	Designing for Cross-Platform Compatibility
	Default System Font
	Specifying a Fixed-Width Font
	Using a Specific Font Name

	Standard Background Color
	Cross-Platform Compatible Units
	System-Dependent Units
	Units and Resize Behavior

	Saving and Running a GUIDE GUI
	Naming a GUI and Its Files
	The GUI Files
	File and GUI Names
	Renaming GUIs and GUI Files

	Saving a GUI
	Ways to Save a GUI
	Saving a New GUI
	Saving an Existing GUI

	Running a GUI
	Executing the M-file
	From the GUIDE Layout Editor
	From the Command Line
	From an M-file

	Programming a GUIDE GUI
	Callbacks: An Overview
	Programming of GUIs Created Using GUIDE
	What Is a Callback?
	Kinds of Callbacks

	GUI Files: An Overview
	M-Files and FIG-Files
	GUI M-File Structure
	Adding Callback Templates to an Existing GUI M-File

	Associating Callbacks with Components
	GUI Components
	Setting Callback Properties Automatically
	Deleting Callbacks from a GUI M-File

	Callback Syntax and Arguments
	Callback Templates
	Naming of Callback Functions
	Changing Callback Names Assigned by GUIDE
	Changing the Tag Property
	Changing the Callback Property

	Input Arguments
	handles Structure

	Initialization Callbacks
	Opening Function
	Function Naming and Template
	Input Arguments
	Initial Template Code

	Output Function
	Function Naming and Template
	Input Arguments
	Output Arguments

	Examples: Programming GUIDE GUI Components
	Push Button
	Adding an Image to a Push Button or Toggle Button

	Toggle Button
	Radio Button
	Check Box
	Edit Text
	Retrieving Numeric Data from an Edit Text Component
	Triggering Callback Execution
	Available Keyboard Accelerators

	Slider
	List Box
	Triggering Callback Execution
	List Box Examples

	Pop-Up Menu
	Using Only the Index of the Selected Menu Item
	Using the Index to Determine the Selected String

	Panel
	Button Group
	Axes
	Plotting to an Axes
	Creating Subplots

	ActiveX Control
	Programming an ActiveX Control
	Programming a User Interface Control to Update an ActiveX Contro
	Viewing the Methods for an ActiveX Control
	Saving a GUI That Contains an ActiveX Control
	Compiling a GUI That Contains an ActiveX Control

	Menu Item
	Programming a Menu Title
	Opening a Dialog Box from a Menu Callback
	Updating a Menu Item Check

	Managing and Sharing Application Data in GUIDE
	Mechanisms for Managing Data
	Overview
	GUI Data
	About GUI Data
	GUI Data in GUIDE
	Adding Fields to the handles Structure
	Changing GUI Data in an M-File Generated by GUIDE

	Application Data
	Creating Application Data in GUIDE
	Adding Fields to an Application Data Structure in GUIDE

	UserData Property

	Sharing Data Among a GUI's Callbacks
	GUI Data
	GUI Data Example: Passing Data Between Components

	Application Data
	Application Data Example: Passing Data Between Components

	UserData Property
	UserData Property Example: Passing Data Between Components

	Making Multiple GUIs Work Together
	Overview of Data Sharing Techniques
	Example — A GUIDE GUI with a Modal Dialog for User Input
	Opening the Text Change Dialog
	Managing the Text Change Dialog
	Protecting the Text Change Dialog
	Positioning the Text Change Dialog
	Initializing the Text Change Dialog's Text
	Canceling the Text Change Dialog
	Applying the Text Change

	Example — Individual GUIDE GUIs that Work Together as an Applica
	Requirements for the GUIs
	M-file Implementations
	1. When Icon Editor launches, create the Tool Palette and Color
	2. Set the initial color on the Color Palette when the Icon Edit
	3. Give the Icon Editor access to the Color Palette's current co
	4. When clicking in the editing area, apply the currently select
	5. When mouse pointer is in the edit area, display the current t
	6. Close all windows only when the Icon Editor completes

	Examples of GUIDE GUIs
	GUI with Multiple Axes
	Multiple Axes Example Outcome
	Techniques Used in the Example
	View Completed Layout and Its GUI M-File
	Design of the GUI
	Specifying Default Values for the Inputs
	Identifying the Axes
	GUI Option Settings

	Plot Push Button Callback
	Getting User Input
	Calculating Data
	Targeting Specific Axes
	Plot Button Code Listing

	List Box Directory Reader
	List Box Example Outcome
	View Layout and GUI M-File
	Implementing the GUI
	Specifying the Directory to List
	Loading the List Box
	The List Box Callback
	Defining How to Open File Types
	Determining Which Item the User Selected
	Determining if the Selected Item is a File or Directory
	Opening Unknown File Types

	Accessing Workspace Variables from a List Box
	Workspace Variable Example Outcome
	Techniques Used in This Example
	View Completed Layout and Its GUI M-File
	Reading Workspace Variables
	Reading the Selections from the List Box
	Enabling Multiple Selection
	How Users Select Multiple Items
	Returning Variable Names for the Plotting Functions
	Callbacks for the Plotting Buttons

	A GUI to Set Simulink Model Parameters
	Set Simulink Model Parameters Example Outcome
	Techniques Used in This Example
	View Completed Layout and Its GUI M-File
	How to Use the GUI (Text of GUI Help)
	Changing the Controller Gains
	Running the Simulation
	Plotting the Results
	Removing Results

	Running the GUI
	GUI Options Settings
	Opening the Simulink Block Diagrams

	Programming the Slider and Edit Text Components
	Slider Callback
	Current Value Edit Text Callback

	Running the Simulation from the GUI
	Removing Results from the List Box
	Plotting the Results Data
	Plotting Into the Hidden Figure
	Plot Button Callback Listing

	The GUI Help Button
	Closing the GUI
	The List Box Callback and Create Function
	Setting the Background to White

	An Address Book Reader
	Address Book Reader Example Outcome
	Techniques Used in This Example
	Managing Shared Data
	View Completed Layout and Its GUI M-File
	Running the GUI
	GUI Option Settings
	Calling the GUI

	Loading an Address Book Into the Reader
	Validating the MAT-file
	Check_And_Load Code Listing
	The Open Menu Callback
	Open_Callback Code Listing

	The Contact Name Callback
	Storing and Retrieving Data
	Contact Name Callback

	The Contact Phone Number Callback
	Code Listing

	Paging Through the Address Book — Prev/Next
	Determining Which Button Is Clicked
	Paging Forward or Backward
	Code Listing

	Saving Changes to the Address Book from the Menu
	Saving the Addresses Structure
	Saving the MAT-File
	Save_Callback Code Listing

	The Create New Menu
	The Address Book Resize Function
	Behavior of the Resize Function
	Changing the Width
	Changing the Height
	Ensuring the Resized Figure Is On Screen
	Code Listing

	Using a Modal Dialog to Confirm an Operation
	Modal Dialog Example Outcome
	View Completed Layouts and Their GUI M-Files
	Setting Up the Close Confirmation Dialog
	Setting Up the GUI with the Close Button
	Running the GUI with the Close Button
	How the GUI and Dialog Work

	Creating GUIs Programmatically
	Laying Out a GUI
	Designing a GUI
	Creating and Running the GUI M-File
	File Organization
	File Template
	Running the GUI

	Creating the GUI Figure
	Adding Components to the GUI
	Available Components
	Adding User Interface Controls
	Commonly Used Properties
	Check Box
	Edit Text
	List Box
	Pop-Up Menu
	Push Button
	Radio Button
	Slider
	Static Text
	Toggle Button

	Adding Panels and Button Groups
	Commonly Used Properties
	Panel
	Button Group

	Adding Axes
	Commonly Used Properties
	Axes

	Adding ActiveX Controls

	Aligning Components
	Using the Align Function
	Examples
	Aligning Components Horizontally
	Aligning Components Horizontally While Distributing Them Vertica
	Aligning Components Vertically While Distributing Them Horizonta

	Setting Tab Order
	How Tabbing Works
	Default Tab Order
	Changing the Tab Order

	Creating Menus
	Adding Menu Bar Menus
	Displaying Standard Menu Bar Menus
	Commonly Used Properties
	Menu Bar Menu

	Adding Context Menus
	Commonly Used Properties
	Creating the Context Menu Object
	Adding Menu Items to the Context Menu
	Associating the Context Menu with Graphics Objects
	Forcing Display of the Context Menu

	Creating Toolbars
	Using the uitoolbar Function
	Commonly Used Properties
	Toolbars
	Displaying and Modifying the Standard Toolbar
	Displaying the Standard Toolbar
	Modifying the Standard Toolbar

	Designing for Cross-Platform Compatibility
	Default System Font
	Specifying a Fixed-Width Font
	Using a Specific Font Name

	Standard Background Color
	Cross-Platform Compatible Units
	Units and Resize Behavior
	About Some Units Settings

	Programming the GUI
	Introduction
	Initializing the GUI
	Examples
	Declaring Variables for Input and Output Arguments
	Defining Custom Property/Value Pairs
	Making the Figure Invisible
	Returning Output to the User

	Callbacks: An Overview
	What Is a Callback?
	Kinds of Callbacks
	Associating Callbacks with Components

	Examples: Programming GUI Components
	Programming User Interface Controls
	Check Box
	Edit Text
	List Box
	Pop-Up Menu
	Push Button
	Radio Button
	Slider
	Toggle Button

	Programming Panels and Button Groups
	Panel
	Button Group

	Programming Axes
	Programming ActiveX Controls
	Programming Menu Items
	Programming a Menu Title
	Opening a Dialog Box from a Menu Callback
	Updating a Menu Item Check

	Programming Toolbar Tools
	Push Tool
	Toggle Tool

	Managing Application-Defined Data
	Mechanisms for Managing Data
	Nested Functions
	GUI Data
	About GUI Data
	Creating and Updating GUI Data
	Adding Fields to a GUI Data Structure

	Application Data
	Creating Application Data
	Adding Fields to an Application Data Structure

	UserData Property

	Sharing Data Among a GUI's Callbacks
	Nested Functions
	Nested Functions Example: Passing Data Between Components

	GUI Data
	GUI Data Example: Passing Data Between Components

	Application Data
	Application Data Example: Passing Data Between Components

	UserData Property
	UserData Property Example: Passing Data Between Components

	Managing Callback Execution
	Callback Interruption
	Callback Execution
	How the Interruptible Property Works
	How the Busy Action Property Works
	Example
	Using the Example GUIs
	View the Complete GUI M-File

	Examples of GUIs Created Programmatically
	Introduction
	GUI with Axes, Menu, and Toolbar
	The Example
	Techniques Used in the Example
	View and Run the Completed GUI M-Files
	Creating the Data
	Creating the GUI and Its Components
	The Main Figure
	The Axes
	The Pop-Up Menu
	The Update Push Button
	The File Menu and Its Menu Items
	The Toolbar and Its Tools

	Initializing the GUI
	Defining the Callbacks
	Update Button Callback
	Open Menu Item Callback
	Print Menu Item Callback
	Close Menu Item Callback

	Helper Function: Plotting the Plot Types

	Color Palette
	The Example
	The Components
	Using the Color Palette
	Calling the colorPalette Function

	Techniques Used in the Example
	View and Run the Completed GUI M-File
	Subfunction Summary
	M-File Structure
	GUI Programming Techniques
	Passing Input Arguments to a GUI
	Passing Output to a Caller on Returning
	Sharing Data Between Two GUIs

	Icon Editor
	The Example
	The Components
	Using the Icon Editor

	Techniques Used in the Example
	View and Run the Completed GUI M-Files
	Subfunction Summary
	M-File Structure
	GUI Programming Techniques
	Returning Only After the User Makes a Choice
	Passing Input Arguments to a GUI
	Retrieving Output on Return from a GUI
	Protecting a GUI from Inadvertent Access
	Running a GUI on Multiple Platforms
	Making a GUI Modal
	Sharing Data Between Two GUIs
	Achieving Proper Resize Behavior

	Examples
	Simple Examples (GUIDE)
	Simple Examples (Programmatic)
	Programming GUI Components (GUIDE)
	Application-Defined Data (GUIDE)
	Application Examples (GUIDE)
	GUI Layout (Programmatic)
	Programming GUI Components (Programmatic)
	Application-Defined Data (Programmatic)
	Application Examples (Programmatic)

	Index

	tables
	Functions Used to Create the Simple GUI
	Other MATLAB Functions Used to Program the GUI
	Functions for Managing Application Data
	Functions for Managing Application Data

	Data Analysis
	toc
	Preparing Data for Analysis
	MATLAB for Data Analysis
	Introduction
	Calculations on Vectors and Matrices
	MATLAB GUIs for Data Analysis
	Related Toolboxes

	Importing and Exporting Data
	Plotting Data
	Introduction
	Example — Loading and Plotting Data
	Loading the Data
	Plotting the Data

	Removing and Interpolating Missing Values
	Representing Missing Data Values
	Calculating with NaNs
	Removing NaNs from the Data
	Interpolating Missing Data

	Removing Outliers
	Filtering Data
	Introduction
	Filter Function
	Example 1 — Moving Average Filter
	Example 2 — Discrete Filter

	Detrending Data
	Introduction
	Example — Removing Linear Trends from Data
	Loading and Plotting Data
	Detrending Data and Plotting Results

	Finite Differences
	Descriptive Statistics
	Functions for Calculating Descriptive Statistics
	Example 1 — Calculating Maximum, Mean, and Standard Deviation
	Example 2 — Subtracting the Mean

	Example — Using MATLAB Data Statistics
	Calculating and Plotting Descriptive Statistics
	Formatting Data Statistics on Plots
	Saving Statistics to the MATLAB Workspace
	Generating an M-file

	Linear Regression Analysis
	Linear Regression
	Introduction
	Residuals and Goodness of Fit
	When to Use the Curve Fitting Toolbox

	Correlation Analysis
	Introduction
	Covariance
	Correlation Coefficients

	Interactive Fitting
	The Basic Fitting GUI
	Preparing for Basic Fitting
	Opening the Basic Fitting GUI
	Example — Using Basic Fitting GUI
	Loading and Plotting Data
	Fitting Data
	Viewing and Saving Fit Parameters
	Interpolating and Extrapolating Values
	Generating an M-file

	Programmatic Fitting
	MATLAB Functions for Polynomial Models
	Linear Model with Nonpolynomial Terms
	Multiple Regression
	Example — Data Fitting Using MATLAB Functions
	Calculating Correlation Coefficients
	Fitting a Polynomial to the Data
	Plot and Calculate Confidence Bounds

	Fourier Analysis
	Introduction
	Function Summary
	Calculating Fourier Transforms
	Introduction
	Example — FFT of a Column Vector

	Example — Sunspot Periodicity
	Magnitude and Phase of Transformed Data
	FFT Length Versus Performance

	Time Series Objects and Methods
	Introduction
	Time Series Data Sample
	Example — Time Series Objects and Methods
	Creating Time Series Objects
	Viewing Time Series Objects
	Modifying Time Series Units and Interpolation Method
	Defining Events
	Creating Time Series Collection Objects
	Resampling a Time Series Collection Object
	Adding a Data Sample to a Time Series Collection Object
	Removing and Interpolating Missing Data
	Removing Missing Data
	Interpolating Missing Data

	Removing a Time Series from a Time Series Collection
	Changing a Numerical Time Vector to Date Strings
	Plotting Time Series Collection Members

	Time Series Constructor
	Time Vector Format
	Time Series Constructor Syntax
	Time Series Properties

	Time Series Methods
	General Methods
	Data and Time Manipulation Methods
	Event Methods
	Arithmetic Operation Methods
	Statistical Methods

	Time Series Collection Constructor
	Introduction
	Time Series Collection Constructor Syntax
	Time Series Collection Properties

	Time Series Collection Methods
	General Time Series Collection Methods
	Data and Time Manipulation Methods

	Time Series Tools
	Introduction
	Opening Time Series Tools
	Getting Help
	Time Series Tools Window
	Time Series Tools Workflow
	Generating Reusable M-Code

	Importing and Exporting Data
	Types of Data You Can Import
	How to Import Data
	Importing Time Series and Time Series Collection Objects
	Importing Data from External Files
	Using the Import Wizard

	Changes to Data Representation During Import
	Importing Multivariate Data
	Choosing How to Represent Multivariate Data
	Creating a Time Series Collection

	Importing Data with Missing Values
	Exporting Data from Time Series Tools

	Plotting Time Series
	Types of Plots in Time Series Tools
	Creating a Plot
	Customizing Line and Marker Styles
	Editing Plot Appearance
	Time Plots
	Spectral Plots
	Filtering the Data

	Histograms
	Selecting Data
	Removing or Replacing Data with NaNs

	Correlation Plots
	Autocorrelation of a Time Series
	Cross-Correlation of Time Series
	Interpreting Correlation Plots
	Cross-Correlation Algorithm

	XY Plots

	Selecting Data for Analysis
	Selecting Data Using Rules
	Selecting Data Graphically
	Selecting Data in a Rectangular Region
	Selecting Data in a Time Interval

	Excluding Data from Analysis

	Editing Data, Time, Attributes, and Events
	Displaying the Data Table
	Editing Data and Time
	Edit Time or Data Values
	Define a Uniform Time Vector
	Add Data Samples
	Delete Data Samples

	Defining Data Attributes
	Units and Interpolation Method
	Quality Codes

	Assigning Quality Codes to Data
	Defining Events

	Processing and Manipulating Time Series
	Example — Time Series Tools
	Loading Data into the MATLAB Workspace
	Starting Time Series Tools
	Enabling M-Code Generation
	Importing Data into Time Series Tools
	Creating a Time Plot
	Resampling Time Series
	Resampling on a Uniform Time Vector
	Resampling by Finding a Common Time Vector

	Comparing Data on an XY Plot
	Viewing Generated M-Code
	Exporting Time Series to the Workspace

	tables
	MATLAB GUIs for Data Analysis
	Toolboxes That Extend MATLAB Data Analysis
	Statistics Function Summary
	Polynomial Fit Functions
	FFT Function Summary
	tsc1 Data from 2.0 to 3.5 Hours
	New tsc1 Data from 2.0 to 3.5 Hours
	Time Series Syntax Descriptions
	Time Series Property Descriptions
	Methods for Querying Properties
	Methods for Manipulating Data and Time
	Methods That Define and Use Events
	Methods to Arithmetically Combine Time Series
	Methods for Calculating Descriptive Statistics
	Time Series Collection Syntax Descriptions
	Time Series Collection Property Descriptions
	Methods for Querying Properties
	Methods for Manipulating Data and Time
	Syntax for Loading Data from the MATLAB Workspace
	Time Plot Commands
	Data Analysis Commands

	Desktop Tools and Development Environment
	toc
	Startup and Shutdown
	Starting MATLAB on Windows Platforms
	Starting MATLAB from the Windows Desktop or a DOS Window
	Starting MATLAB from an M-File or Other File Type in Windows
	Utility to Change Windows File Associations
	Changing File Associations for MATLAB from Windows

	Starting MATLAB on UNIX Platforms
	Starting MATLAB on Macintosh Platforms
	Starting MATLAB from the Macintosh Desktop
	Starting MATLAB from an M-File or Other File Type on Macintosh P

	Startup Directory for MATLAB
	What Is the Startup Directory?
	Startup Directory (Folder) on Windows Platforms
	Startup Directory on UNIX Platforms
	Changing the Startup Directory
	For Windows Platforms Only
	For All Platforms

	Startup Options
	About Startup Options
	Using the Startup File for MATLAB, startup.m
	Location of startup.m

	Adding Startup Options for Windows Platforms
	Startup Options in Windows Shortcut
	Startup Options in DOS Window

	Adding Startup Options for UNIX Platforms
	Commonly Used Startup Options

	Toolbox Path Caching in MATLAB
	About Toolbox Path Caching
	Using the Cache File Upon Startup
	Updating the Cache and Cache File
	How the Toolbox Path Cache Works
	When to Update the Cache
	Steps to Update the Cache
	Function Alternative

	Additional Diagnostics with Toolbox Path Caching

	Other Startup Topics
	Error Log Reporter
	Passing Perl Variables on Startup
	Startup and Calling Java from MATLAB

	Quitting MATLAB
	Ways to Quit MATLAB
	Confirm Quitting MATLAB
	Running a Script When Quitting MATLAB
	Abnormal Termination
	Crash Recovery and Multithreading

	Desktop
	Overview of the Desktop
	About the Desktop
	Summary of Desktop Tools

	Arranging the Desktop
	Modifying the Desktop Configuration
	Opening and Arranging Tools
	Opening and Arranging Documents
	Example of Documents in the Desktop
	Summary of Actions for Arranging Documents

	Saving Desktop Layouts

	Examples of Desktop Arrangements
	About These Examples
	Tool Outside of Desktop and Other Tools Grouped Inside Desktop E
	Maximized Tool in Desktop Example
	Minimized Tools in Desktop Example
	Tiled Documents in Desktop Example
	No Empty Document Tiles Example
	Maximized Documents Outside of the Desktop Example
	Floating (Cascaded) Figures in Desktop Example
	Undocked Tools and Documents Example

	Shortcuts for MATLAB — Easily Run a Group of Statements
	What Is a Shortcut?
	Differences Between Shortcuts and M-Files

	Examples of Useful Shortcuts
	Creating Shortcuts
	Additional Ways to Create Shortcuts

	Running Shortcuts
	Shortcuts Toolbar
	How to Add and What's New Shortcuts
	Shortcut Labels on Toolbar

	Organizing and Editing Shortcuts

	Keyboard Shortcuts
	Keyboard Shortcuts (Accelerators or Hot Keys) and Mnemonics
	Go To First Letter (Type Ahead) Feature in Desktop Tool Lists
	Default Button and Active Button (Button with Focus)

	Other Desktop Features
	Start Button for Accessing Tools
	Using the Start Button
	Customizing the Start Button

	Menus and Context Menus
	Merged Menus
	Context Menus

	Toolbars
	Current Directory Field

	Status Bar
	Sizing, Arranging, and Sorting Columns in Tools
	Selecting Multiple Items
	Cut, Copy, Paste, and Move
	Drag and Drop

	Macintosh Differences in the Desktop
	Printing and Page Setup Options for Desktop Tools
	Specifying Page Setup Options
	Layout Options for Page Setup
	Header Options for Page Setup
	Fonts Options for Page Setup

	Web Browser
	Internet Connection and Fonts for Web Browser — Web Preferences

	Accessing The MathWorks on the Web
	Check for Updates
	Terms of Use and Patents

	Preferences
	Setting Preferences
	Function Alternative

	Summary of Preferences
	Preferences File — matlab.prf

	Fonts Preferences for Desktop Tools
	Setting Desktop Fonts
	Desktop Code Font and Desktop Text Font
	Default Font Settings
	See Also

	Custom Fonts Preferences
	Changing the Font — Example
	See Also

	Antialiasing for Desktop Fonts on Linux/UNIX
	Making Fonts Available to MATLAB

	Colors Preferences for Desktop Tools
	Setting Colors Used in Desktop Tools
	Desktop Tool Colors
	Gray Background Color

	Syntax Highlighting Colors
	Other Colors
	See Also

	General Preferences for MATLAB
	Setting General Preferences for MATLAB
	Default Behavior of the Delete Function
	Function Alternative

	MAT-Files Preferences
	Function Alternative

	Confirmation Dialogs Preferences
	Multithreading Preferences

	Accessibility
	Software Accessibility Support
	Documentation Accessibility Support
	Accessing the Documentation
	Navigating the Documentation
	Products
	Documentation Modifications
	Equations

	Assistive Technologies
	Tested Assistive Technologies
	Use of Other Assistive Technologies

	Installation Notes for Accessibility Support
	Setting Up JAWS
	Testing

	Troubleshooting
	JAWS Does Not Detect When the MATLAB Installation Has Started
	JAWS Stops Speaking
	Command Output Not Read
	Some GUI Menus Are Treated as Check Boxes
	Text Ignored in Some GUIs

	Running Functions — Command Window and History
	The Command Window
	About the Command Window
	Opening the Command Window
	Command Window Prompt
	Getting Started Message Bar in the Command Window

	Running Functions and Programs, and Entering Variables
	Running Statements at the Command Line Prompt
	Entering Variables and Running Functions
	Running M-Files
	Examining Errors
	Processing Order
	Interrupting a Running Program

	Running External Programs
	UNIX System Path and Running UNIX Programs from MATLAB

	Evaluating or Opening a Selection
	Function Alternative

	Displaying Hyperlinks in the Command Window
	Hyperlinks to Web Pages
	Transferring Files via FTP
	Running MATLAB Functions by Hyperlink

	Controlling Input
	Case and Space Sensitivity
	Uppercase and Lowercase for Variables
	Uppercase and Lowercase for Files and Functions
	Spaces in Expressions

	Syntax Highlighting
	Matching Delimiters (Parentheses)
	Cut, Copy, Paste, and Undo Features
	Enter Multiple Lines Without Running Them
	Entering Multiple Functions in a Line
	Entering Long Statements (Line Continuation)
	Recalling Previous Lines
	Tab Completion in the Command Window
	Basic Example — Unique Completion
	Multiple Possible Completions
	Tab Completion for Directories and Filenames
	Tab Completion for Structures
	Tab Completion for Properties

	Keyboard Shortcuts in the Command Window
	Navigating Above the Command Line

	Controlling Output
	Echoing Execution
	Suppressing Output
	Paging of Output in the Command Window
	Formatting and Spacing Numeric Output
	Function Alternative
	Examples of Formats
	Controlling Spacing

	Clearing the Command Window
	Function Alternative

	Printing Command Window Contents
	Keeping a Session Log
	The diary Function
	Other Session Logs

	Searching in the Command Window
	Introduction
	Find Dialog Box
	Incremental Search
	Case Sensitivity in Incremental Search

	Preferences for the Command Window
	Text, Display, Accessibility, and Tab Size Preferences
	Text Display
	Display
	Accessibility
	Tab key

	Keyboard Preferences
	Command Window Key Bindings
	Editor/Debugger Key Bindings
	Tab Completion
	Tabs and Indents
	Delimiter Matching

	Command History Window
	Overview
	Viewing Statements in the Command History Window
	Using Statements from the Command History Window
	Searching in the Command History Window
	Finding Next Entry By Letter
	Finding Text

	Printing the Command History Window
	Deleting Entries from the Command History Window

	Preferences for Command History
	Introduction
	Settings
	Save Exit/Quit Commands
	Save Consecutive Duplicate Commands

	Saving
	Save History File On Quit
	Save After n Commands
	Don't Save History File

	See Also

	Help for Using MATLAB
	Help Browser Overview
	About the Help Browser
	Opening the Help Browser
	Resizing the Help Browser
	Types of Documentation
	Accessing Documentation on the Web
	Adding Help Files
	Documentation in Other Languages

	Finding Information with the Help Browser
	Help Navigator
	Contents in the Help Browser
	Product Roadmap
	Navigate the Contents Listing
	Icons in the Contents Listing
	Synchronize the Contents Listing and Demos Listing with the Disp

	Index for the Help Browser
	Tips for Using the Index

	Search Documentation and Demos with the Help Browser
	Searching in the Help Browser
	Wildcards in Search (Partial Word)
	Exact Phrases in Search
	Boolean Operators in Search
	More About Search
	Get Fewer Results
	Get More Results

	Favorites
	Add Favorites
	Go to Favorites
	Organize Favorites

	Viewing Documentation in the Help Browser
	About the Display Pane
	Browse to Other Pages
	Links
	Find Text in Displayed Pages
	Copy Information
	Evaluate a Selection
	Open a Selection
	Help on Selection
	View the Page Source (HTML)
	View the Page Location

	Demos in the Help Browser
	About Demos
	Using Demos
	Searching for Demos
	Running Demos and Base Workspace Variables
	Function Alternative

	Adding Your Own Demos

	Preferences for the Help Browser
	Product Filter
	Example Using the Product Filter

	PDF Reader — Specifying Its Location
	General — Keep Contents Synchronized
	Help Fonts and Colors Preferences
	Specifying Font Name, Style, and Size
	Specifying Colors for the Help Browser

	Printed Documentation
	About Printed Manuals
	Printing a Page from the Help Browser
	Printing the PDF Version of Documentation

	Help Functions
	About Help Functions
	Summary Table of Help Functions
	View Function Reference Pages — the doc Function
	Overloaded Functions with the doc Function

	Getting Help in the Command Window — the help Function
	Overloaded Functions with the help Function
	Creating M-File Help for Your Own M-Files
	Help in the Current Directory Browser
	Help for Model Files

	Getting Pop-Up Help for Functions
	Other Forms of Help
	Documentation for Other Products
	Product-Specific Help Features
	User-Contributed M-Files
	Technical Support
	Newsgroup for MathWorks Products
	Other Resources for MATLAB Information
	Version and License Information
	Provide Feedback

	Workspace, Search Path, and File Operations
	MATLAB Workspace
	About the MATLAB Workspace
	Opening the Workspace Browser
	Viewing and Editing Values in the Current Workspace
	Function Alternative

	Saving the Current Workspace
	Saving All Variables
	Saving Selected Variables
	Function Alternative

	Loading a Saved Workspace and Importing Data
	Function Alternative
	Importing Data
	Viewing Variables in MAT-Files

	Changing and Copying Variable Names
	Deleting Workspace Variables
	Function Alternative

	Viewing Base and Function Workspaces Using the Stack
	Creating Plots from the Workspace Browser
	Opening Variables and Objects for Viewing and Editing
	Preferences for the Workspace Browser
	Specify Maximum Array Size on Which to Compute Statistics
	Handling NaN Values in Calculations

	Viewing and Editing Workspace Variables with the Array Editor
	About the Array Editor
	Opening the Array Editor
	Function Alternatives

	Viewing and Editing Cell Arrays, Structures, and Multidimensiona
	Cell Arrays and Structures in the Array Editor
	Multidimensional Arrays in the Array Editor

	Navigating and Editing Shortcut Keys for the Array Editor
	Changing Array Size, Content, and Format of Elements in the Arra
	Cut, Copy, Paste, and Clear Contents in the Array Editor
	Example Copying and Pasting Array Elements
	Example Cutting and Pasting Array Elements

	Insert and Delete in the Array Editor
	Undo and Redo in the Array Editor
	Exchanging Data with the Command Window
	Exchanging Data with Excel
	Creating Graphs and Variables from the Current Selection
	Preferences for the Array Editor
	Format
	Editing
	International Number Handling

	Search Path
	About the Search Path
	How the Search Path Determines Which Function to Use
	How MATLAB Finds the Search Path, pathdef.m
	Viewing and Setting the Search Path
	Viewing the Search Path
	Adding Directories to the Search Path
	Moving Directories Within the Search Path
	Removing Directories from the Search Path
	Restoring the Default Search Path
	Reverting to the Previous Path
	Saving Settings to the Path

	Using the Path in Future Sessions
	Modifying the Path in a startup.m File
	Saving the Path in the MATLAB Startup Directory
	Saving the Path in matlabroot/toolbox/local

	Recovering from Problems with the Search Path

	File Management Operations
	About MATLAB File Operations
	Current Directory Field
	Current Directory Browser
	Viewing and Making Changes to Directories
	Changing the Current Working Directory and Viewing Its Contents
	Searching in the Current Directory Browser
	Changing the Display
	Adding Directories to the MATLAB Search Path

	Creating, Renaming, Copying, and Removing Directories and Files
	General Notes
	Creating New Files
	Creating New Directories
	Renaming Files and Directories
	Cutting or Deleting Files and Directories
	Copying and Pasting Files and Directories

	Opening and Running Files
	Opening Files
	Running M-Files

	Finding Files and Content Within Files
	Opening Files from Find Files
	Previous Results of Find Files
	Skip File Types in Find Files
	Function Alternative

	Comparing Files
	Accessing Source Control Features
	Preferences for the Current Directory Browser
	History
	Browser Display Options
	Auto-Refresh

	Editing and Debugging M-Files
	Begin with Existing Code
	Create M-Files from Command Window and History
	Use Existing M-Files and Examples
	MATLAB and Toolbox M-Files
	Demos and Examples
	File Exchange

	Ways to Edit, Evaluate, and Debug M-Files
	Starting, Customizing, and Closing the Editor/Debugger
	Starting the Editor/Debugger
	Creating a New File in the Editor/Debugger
	Function Alternative

	Opening Existing Files in the Editor/Debugger
	M-File Cells
	Other Methods for Opening Files in the Editor/Debugger

	Arranging Editor/Debugger Documents
	Preferences for the Editor/Debugger
	Creating and Editing Other Text File Types
	Closing the Editor/Debugger

	Entering Statements in the Editor/Debugger
	Use Command Window Features in the Editor/Debugger
	Changing the Case of Selected Text
	Undo and Redo
	Adding Comments
	Commenting in M-Files Using the MATLAB Editor/Debugger
	Commenting in Java and C/C++ Files Using the MATLAB Editor/Debug
	Commenting in M-File Using Any Text Editor
	Commenting Out Part of a Statement
	Formatting Comments in M-Files

	Tab Completion in the Editor/Debugger
	Basic Example — Unique Completion
	Multiple Possible Completions
	Narrowing Completions Shown
	Tab Completion for Structures
	Tab Completion for Properties
	Using Tab for Spacing

	Appearance of an M-File — Making Files More Readable
	Syntax Highlighting
	Indenting
	Automatic Indenting
	Manual Indenting

	Function Indenting
	Line and Column Numbers
	Highlight Current Line
	Right-Hand Text Limit
	View Function or Subfunction
	Code Folding—Expanding and Collapsing M-File Constructs
	Viewing Folded Code in a Tooltip
	Code Folding Behavior and Preferences

	Split Screen Display

	Navigating in an M-File
	Going to a Line Number
	Going to a Function (Subfunctions and Nested Functions)
	Going to a Cell

	Going to a Bookmark
	Navigating Back and Forward in Files
	Lines Navigated to Using Go Back
	Interrupting the Sequence of Go Back and Forward
	Closed Files and Behavior of Go Back and Forward
	Split Screen and Behavior of Go Back and Forward

	Opening a Selection in an M-File

	Finding Text in Files
	Finding Text in the Current File
	Finding and Replacing Text in the Current File
	Finding Text
	Replacing Text
	Function Alternative for Finding Text

	Finding Files or Text in Multiple Files
	Incremental Search

	Comparing Files — File Comparison Tool
	What Is the File Comparison Tool?
	Running the File Comparison Tool
	Increase or Decrease Line Lengths Shown
	Exchange Positions
	Show Updated Files
	Find Text in Files
	Compare to Other Files
	Perform New and View Previous Comparisons
	Alternative Ways to Access the Tool

	Keyboard Shortcuts in the Editor/Debugger
	Saving, Printing, and Closing Files in the Editor/Debugger
	Saving Files
	Autosave
	Accessing Your Source Control System

	Printing M-Files
	Closing M-Files

	Running M-Files in the Editor/Debugger
	Running M-Files with No Input Arguments in the Editor/Debugger
	Using Configurations — Running M-Files with Input Arguments in t
	Create and Run a Configuration for an M-file
	Create and Run Multiple Configurations for an M-File
	Find Configurations
	Remove Configurations
	Reassociate and Rename Configurations
	See Also — Other Ways to Run M-Files from the Editor/Debugger

	Finding Errors, Debugging, and Correcting M-Files
	M-Lint Code Analyzer
	What Is M-Lint?
	Ways to Use M-Lint
	M-Lint Automatic Code Analyzer in the Editor/Debugger
	Suppressing M-Lint Indicators and Messages
	Ignore Only a Specific Instance
	Disable All Instances in All Files
	Disable Specified Messages or in Selected Files as Needed

	Debugging Process and Features
	Ways to Debug M-Files
	Preparing for Debugging
	Debugging Example — The Collatz Problem

	Setting Breakpoints
	Setting Standard Breakpoints
	Function Alternative for Setting Breakpoints

	Running an M-File with Breakpoints
	Running the Example
	Results of Running an M-File Containing Breakpoints

	Stepping Through an M-File
	Continue Running in the Example
	Stepping In to Called Function in the Example

	Examining Values
	Selecting the Workspace
	Viewing Values as Datatips in the Editor/Debugger
	Viewing Values in the Command Window
	Viewing Values in the Workspace Browser and Array Editor
	Evaluating a Selection
	Examining Values in the Example

	Correcting Problems and Ending Debugging
	Changing Values and Checking Results
	Ending Debugging
	Disabling and Clearing Breakpoints
	Saving Breakpoints
	Correcting an M-File
	Completing the Example
	Running Sections in M-Files That Have Unsaved Changes

	Conditional Breakpoints
	Setting Conditional Breakpoints
	Copying, Modifying, Disabling, and Clearing Conditional Breakpoi
	Function Alternative for Conditional Breakpoints

	Breakpoints in Anonymous Functions
	Error Breakpoints
	Setting Error Breakpoints
	Error Breakpoint Types and Options
	Function Alternative for Error Breakpoints

	Using Cells for Rapid Code Iteration and Publishing Results
	What Are Cells?
	Rapid Code Iteration Overview
	Defining Cells
	Cell Titles and Highlighting
	Example — Define Cells
	Removing Cells

	Navigating and Evaluating with Cells
	Navigating Among Cells in an M-File
	Evaluating Cells in an M-File
	Modifying Values in a Cell
	Example — Evaluate Cells

	Using Cells in Function M-Files

	Tuning and Managing M-Files
	Directory Reports in Current Directory Browser
	Accessing and Using Directory Reports
	TODO/FIXME Report
	Help Report
	Show Subfunctions
	Description
	Examples
	Show All Help
	See Also
	Copyright

	Contents Report
	Messages in the Contents File Report

	Dependency Report
	Coverage Report

	M-Lint Code Check Report
	Running the M-Lint Code Check Directory Report
	Making Changes Based on M-Lint Messages
	Example Using M-Lint Messages to Improve Code

	Other Ways to Access M-Lint

	Profiling for Improving Performance
	What Is Profiling?
	Profiling Process and Guidelines
	Using Profiling as a Debugging Tool
	Using Profiling for Understanding an M-File

	Using the Profiler
	Opening the Profiler
	Running the Profiler
	Profiling a Graphical User Interface
	Profiling Statements from the Command Window
	Changing Fonts for the Profiler

	Profile Summary Report
	Profile Detail Report
	Controlling the Contents of the Detail Report Display
	Profile Detail Report Header
	Parent Functions
	Busy Lines
	Child Functions
	M-Lint Results
	File Coverage
	Function Listing

	The profile Function
	profile Function Syntax Summary
	Example: Using the profile Function
	Accessing Profiler Results
	Saving Profile Reports

	Publishing Results
	Publishing to HTML, XML, LaTeX, Word, and PowerPoint Using Cells
	About Publishing M-Files
	Publishing Scripts and Functions—Differences
	Example of Publishing Without Text Markup
	Example of Publishing with Text Markup

	Marking Up Text in Cells for Publishing
	Overview of Text Markup
	Text Markup for Cell Breaks, Headings, and Formatted Comments
	Text Markup for Indented Text, Lists, and Graphics
	Text Markup for HTML, LaTeX, and TeX Equation Output Types
	Text Markup for Bold, Italic, and Monospaced Text Formats
	Text Markup for Inline Links

	Publishing M-Files Using Cells
	How to Publish an M-File
	Function Alternative

	About Published M-Files
	Published Filenames and Locations
	Publishing Code that Displays Hyperlinks in Command Window

	Modifying Published Output Using Preferences

	Notebook for Publishing to Word
	Using Notebook to Create an M-book
	See Also Publishing Using Cells
	Creating or Opening an M-Book
	Creating an M-Book from MATLAB
	Creating an M-Book While Running Notebook
	Opening an Existing M-Book
	Converting a Word Document to an M-Book

	Entering MATLAB Commands in an M-Book
	Protecting the Integrity of Your Workspace in M-Books
	Ensuring Data Consistency in M-Books
	Debugging and Notebook

	Defining MATLAB Commands as Input Cells for Notebook
	Defining Commands as Input Cells for Notebook
	Defining Cell Groups for Notebook
	Creating a Cell Group for Notebook

	Defining Autoinit Input Cells for Notebook
	Creating an Autoinit Cell for Notebook

	Defining Calc Zones for Notebook
	Creating a Calc Zone

	Converting an Input Cell to Text with Notebook

	Evaluating MATLAB Commands with Notebook
	Evaluating Input Commands with Notebook
	Evaluating Cell Groups with Notebook
	Evaluating a Range of Input Cells with Notebook
	Evaluating a Calc Zone with Notebook
	Evaluating an Entire M-Book
	Controlling Execution of Multiple Commands

	Using a Loop to Evaluate Input Cells Repeatedly with Notebook
	Converting Output Cells to Text with Notebook
	Deleting Output Cells with Notebook

	Printing and Formatting an M-Book
	Printing an M-Book
	Modifying Styles in the M-Book Template
	Choosing Loose or Compact Format for Notebook
	Controlling Numeric Output Format for Notebook
	Controlling Graphic Output for Notebook
	Embedding Graphic Output in the M-Book
	Suppressing Graphic Output for Individual Input Cells in Noteboo
	Sizing Graphic Output in Notebook
	Cropping Graphic Output in Notebook
	Adding White Space Around Graphic Output in Notebook

	Configuring Notebook
	Notebook Feature Reference
	Bring MATLAB to Front
	Define Autoinit Cell
	Result
	Format
	See Also

	Define Calc Zone
	Result
	See Also

	Define Input Cell
	Result
	Format
	See Also

	Evaluate Calc Zone
	Result
	See Also

	Evaluate Cell
	Result
	See Also

	Evaluate Loop
	Evaluate M-Book
	Result
	See Also

	Group Cells
	Result
	See Also

	Hide Cell Markers
	Notebook Options
	See Also

	Purge Selected Output Cells
	See Also

	Toggle Graph Output for Cell
	See Also

	Undefine Cells
	See Also

	Ungroup Cells
	See Also

	Source Control Interface
	Source Control Interface on Windows
	Setting Up the Source Control Interface on Windows
	Create Projects in Source Control System
	Example of Creating Source Control Project

	Specify Source Control System in MATLAB
	Function Alternative

	Register Source Control Project with MATLAB
	Add Files to Source Control
	Function Alternative

	Checking Files Into and Out of Source Control from MATLAB on Win
	Check Files Into Source Control
	Function Alternative

	Check Files Out of Source Control
	Function Alternative

	Undoing the Checkout
	Function Alternative

	Additional Source Control Actions on Windows
	Getting the Latest Version of Files for Viewing or Compiling
	Function Alternative

	Removing Files from the Source Control System
	Function Alternative

	Showing File History
	Function Alternative

	Comparing the Working Copy of a File to the Latest Version in So
	Function Alternative

	Viewing Source Control Properties of a File
	Function Alternative

	Starting the Source Control System
	Function Alternative

	Performing Source Control Actions from the Editor/Debugger, Simu
	Troubleshooting Source Control Problems on Windows
	Source Control Error: Provider Not Present or Not Installed Prop
	Restriction Against @ Character
	Add to Source Control Is the Only Action Available
	More Solutions for Source Control Problems

	Source Control Interface on UNIX
	Specifying the Source Control System on UNIX
	MATLAB Alternative
	Function Alternative
	Setting a View and Checking Out a Directory with ClearCase on UN

	Checking Files Into the Source Control System on UNIX
	Checking In One or More Files Using the Current Directory Browse
	Checking In One File Using the Editor/Debugger, Simulink, or Sta
	Function Alternative
	Example Using checkin Function

	Checking Files Out of the Source Control System on UNIX
	Checking Out One or More Files Using the Current Directory Brows
	Checking Out a Single File Using the Editor/Debugger, Simulink,
	Function Alternative
	Example Using checkout Function—Check Out a Specific Version of

	Undoing the Checkout on UNIX
	Impact of Undoing a File Checkout
	Undoing the Checkout for One or More Files Using the Current Dir
	Undoing the Checkout for a Single File Using the Editor/Debugger
	Function Alternative

	Index

	tables
	File Type and Resulting Action

	External Interfaces
	toc
	Importing and Exporting Data
	Using MAT-Files
	Introduction
	Importing Data to MATLAB
	Exporting Data from MATLAB
	Exchanging Data Files Between Platforms
	Reading and Writing MAT-Files
	MAT-File Interface Library

	Writing Character Data
	ASCII Data Formats
	Converting Character Data

	Finding Associated Files
	Include Files
	Libraries
	Example Files

	Examples of MAT-Files
	Creating a MAT-File in C
	Reading a MAT-File in C
	Creating a MAT-File in Fortran
	Reading a MAT-File in Fortran

	Compiling and Linking MAT-File Programs
	Masking Floating Point Exceptions
	Borland C++ Compiler on Windows

	Compiling and Linking on UNIX
	Setting Run-Time Library Path
	Using the Options File

	Compiling and Linking on Windows
	Required Files from Third-Party Sources
	Third-Party Data Files
	Third-Party Libraries
	On Linux or Solaris Systems
	On Macintosh Systems
	On Windows Systems

	Working Directly with Unicode

	MATLAB Interface to Generic DLLs
	Overview
	Loading and Unloading the Library
	Using a Shared Library
	Loading the Library
	Unloading the Library

	Getting Information About the Library
	Introduction
	Listing Functions
	Viewing Functions in a GUI Interface

	Invoking Library Functions
	Passing Arguments
	Displaying MATLAB Syntax for Library Functions
	General Rules for Passing Arguments
	General Guidelines for Passing Arguments

	Passing References
	Passing a NULL Pointer
	Using C++ Libraries

	Data Conversion
	When to Convert Manually
	Primitive Types
	Converting to Other Primitive Types
	Converting to a Reference
	Strings

	Enumerated Types
	Structures
	Finding Field Names From MATLAB
	Specifying Structure Field Names
	Passing a MATLAB Structure
	Passing a libstruct Object
	Using the Structure as an Object
	Determining the Size of a lib.c_struct Object . You can use the

	Example of Passing a libstruct Object

	Creating References
	Constructing a Reference with the libpointer Function
	Creating a Reference to a Primitive Type
	Creating a Structure Reference
	Passing a Pointer to the First Element of an Array
	Creating a Void Pointer to a String
	Memory Allocation for an External Library

	Reference Pointers

	Calling C and Fortran Programs from MATLAB
	Introducing MEX-Files
	What are MEX-Files
	Using MEX-Files
	MEX-File Placement
	The Distinction Between mx and mex Prefixes
	mx Routines
	mex Routines

	MATLAB Data
	The MATLAB Array
	Data Storage
	Data Types in MATLAB
	Complex Double-Precision Matrices
	Numeric Matrices
	Logical Matrices
	MATLAB Strings
	Cell Arrays
	Structures
	Objects
	Multidimensional Arrays
	Empty Arrays

	Sparse Matrices
	Using Data Types
	The explore Example

	Building MEX-Files
	Compiler Requirements
	Testing Your Configuration on UNIX
	Selecting a Compiler

	Testing Your Configuration on Windows
	Lcc Compiler
	Selecting a Compiler
	Building the MEX-File on Windows

	Specifying an Options File
	Preconfigured Options Files

	Custom Building MEX-Files
	Who Should Read this Chapter
	MEX Script Switches
	Default Options File on UNIX
	Default Options File on Windows
	The User Profile Directory

	Custom Building on UNIX
	Compile Stage
	Link Stage
	Build Options

	Custom Building on Windows
	Compile Stage
	Prelink Stage
	Link Stage
	Linking DLL Files to MEX-Files
	Versioning MEX-Files
	Compiling MEX-Files with the Microsoft Visual C++ IDE

	Troubleshooting
	Configuration Issues
	Search Path Problem on Windows
	MATLAB Path Names Containing Spaces on Windows
	DLL Files Not on Path on Windows
	Internal Error When Using mex -setup (PC)
	General Configuration Problem

	Understanding MEX-File Problems
	Problem 1 — Compiling a MathWorks Program Fails
	Problem 2 — Compiling Your Own Program Fails
	Problem 3 — MEX-File Load Errors
	Problem 4 — Segmentation Fault or Bus Error
	Problem 5 - Program Generates Incorrect Results

	Compiler and Platform-Specific Issues
	Using MEX-Files from Other Sources
	Linux gcc Compiler Version Error
	Fortran MEX-Files Compiler Errors
	MEX-Files Created in Watcom IDE

	Memory Management Compatibility Issues
	Improperly Destroying an mxArray
	Incorrectly Constructing a Cell or Structure mxArray
	Solution . Make a copy of the right-hand side argument with mxDu

	Creating a Temporary mxArray with Improper Data
	Solution . Rather than use mxSetPr to set the data pointer, inst

	Potential Memory Leaks
	MEX-Files Should Destroy Their Own Temporary Arrays

	Additional Information
	Files and Directories - UNIX Systems
	matlabroot/bin
	matlabroot/bin/$ARCH
	matlabroot/extern/include
	matlabroot/extern/src

	Files and Directories — Windows Systems
	matlabroot\bin
	matlabroot\bin\win32\mexopts or matlabroot\bin\win64\mexopts
	matlabroot\extern\include
	matlabroot\extern\src

	Examples
	Examples from the Text
	MEX Reference Examples
	MX Examples
	Engine and MAT Examples

	Technical Support

	Creating C Language MEX-Files
	C MEX-Files
	The Components of a C MEX-File
	Gateway Routine
	Naming the Gateway Routine
	Required Parameters
	Creating and Using Source Files
	Using MATLAB Libraries
	Required Header Files
	Naming the MEX-File

	Computational Routine
	Preprocessor Macros
	Data Flow in MEX-Files
	Showing Data Input and Output
	Gateway Routine Data Flow Diagram
	MATLAB Example yprime.c

	Creating C++ MEX-Files
	Creating Your C++ Source File
	Compiling and Linking
	Examples

	Examples of C MEX-Files
	Introduction
	A First Example — Passing a Scalar
	Passing Strings
	Passing Two or More Inputs or Outputs
	Passing Structures and Cell Arrays
	Prompting User for Input
	Handling Complex Data
	Handling 8-,16-, and 32-Bit Data
	Manipulating Multidimensional Numerical Arrays
	Handling Sparse Arrays
	Calling Functions from C MEX-Files
	Using C++ Features in MEX-Files
	File Handling with C++
	C Example
	C++ Example

	Advanced Topics
	Help Files
	Linking Multiple Files
	Workspace for MEX-File Functions
	Handling Large mxArrays
	Using the 64-Bit API
	Building the MEX-File
	Example
	Caution Using Negative Values
	Building Cross-Platform Applications

	Memory Management
	Automatic Cleanup of Temporary Arrays
	Persistent Arrays
	Hybrid Arrays

	Large File I/O
	Prerequisites to Using 64-Bit I/O
	Specifying Constant Literal Values
	Opening a File
	Printing Formatted Messages
	Replacing fseek and ftell with 64-Bit Functions
	Determining the Size of an Open File
	Determining the Size of a Closed File

	Using LAPACK and BLAS Functions
	Specifying the Function Name
	Calling LAPACK and BLAS Functions from C
	Handling Complex Numbers
	Preserving Input Values from Modification
	Building the C MEX-File
	Example — Symmetric Indefinite Factorization Using LAPACK
	Calling LAPACK and BLAS Functions from Fortran
	Building the Fortran MEX-File
	Building on the PC . On the PC, using Visual Fortran, link again

	Debugging C Language MEX-Files
	Notes on Debugging
	Debugging on Windows
	Microsoft Visual Studio 2005

	Debugging on Linux
	GNU Debugger gdb

	Creating Fortran MEX-Files
	Fortran MEX-Files
	The Components of a Fortran MEX-File
	Gateway Routine
	Naming the Gateway Routine
	Required Parameters
	Creating and Using Source Files
	Using MATLAB Libraries
	Required Header Files
	Naming the MEX-File

	Computational Routine
	Preprocessor Macros
	Using the Fortran %val Construct
	A %val Construct Example

	Data Flow in MEX-Files
	Showing Data Input and Output
	Gateway Routine Data Flow Diagram
	MATLAB Example yprime.F

	Examples of Fortran MEX-Files
	Introduction
	A First Example — Passing a Scalar
	Passing Strings
	Passing Arrays of Strings
	Passing Matrices
	Passing Two or More Inputs or Outputs
	Handling Complex Data
	Dynamically Allocating Memory
	Handling Sparse Matrices
	Calling Functions from Fortran MEX-Files

	Advanced Topics
	Help Files
	Linking Multiple Files
	Workspace for MEX-File Functions
	Handling Large mxArrays
	Using the 64-Bit API
	Building the MEX-File
	Caution Using Negative Values
	Building Cross-Platform Applications

	Memory Management

	Debugging Fortran Language MEX-Files
	Notes on Debugging
	Debugging on Windows
	Debugging on Linux
	GNU Debugger gdb

	Calling MATLAB from C and Fortran Programs
	Using the MATLAB Engine
	Introduction
	The Engine Library
	Communicating with MATLAB

	GUI-Intensive Applications

	Examples of Calling Engine Functions
	Overview
	Calling MATLAB from a C Application
	Calling MATLAB from a Fortran Application
	Attaching to an Existing MATLAB Session

	Compiling and Linking MATLAB Engine Programs
	Step 1 — Write Your Application
	Step 2 — Check Required Libraries and Files
	Third-Party Libraries
	Library Files Required by libeng
	Unicode Data Files

	Step 3 — Build the Application
	MEX Options File
	Build the Application

	Step 4 — Set Run-Time Library Path
	On UNIX Systems
	On Windows Systems

	Step 5 — (Windows Only) Register MATLAB as a COM Server
	Step 6 — Test the Program
	Example — Building an Engine Application on Windows
	Borland Compilers on Windows

	Example — Building an Engine Application on UNIX
	Masking Floating-Point Exceptions
	Borland C++ Compiler on Windows

	Calling Java from MATLAB
	Using Java from MATLAB: An Overview
	Java Interface Is Integral to MATLAB
	Benefits of the MATLAB Java Interface
	Who Should Use the MATLAB Java Interface
	To Learn More About Java Programming
	Platform Support for the Java Virtual Machine
	Using a Different Version of the Java JVM
	Download the JVM Version You Want to Use
	Locate the Root of the Run-time Path for this Version
	Set the MATLAB_JAVA Environment Variable to this Path

	Bringing Java Classes and Methods into MATLAB
	Introduction
	Sources of Java Classes
	Defining New Java Classes
	The Java Class Path
	The Static Path
	The Dynamic Path

	Making Java Classes Available to MATLAB
	Making Individual (Unpackaged) Classes Available
	Making Entire Packages Available
	Making Classes in a JAR File Available

	Loading Java Class Definitions
	Determining Which Classes Are Loaded

	Simplifying Java Class Names
	Locating Native Method Libraries
	Java Classes Contained in a JAR File

	Creating and Using Java Objects
	Overview
	Constructing Java Objects
	Using the javaObject Function
	Java Objects Are References in MATLAB

	Concatenating Java Objects
	Concatenating Objects of the Same Class
	Concatenating Objects of Unlike Classes

	Saving and Loading Java Objects to MAT-Files
	Finding the Public Data Fields of an Object
	Accessing Private and Public Data
	Examples
	Accessing Data from a Static Field
	Assigning to a Static Field

	Determining the Class of an Object

	Invoking Methods on Java Objects
	Using Java and MATLAB Calling Syntax
	Using the javaMethod Function on Nonstatic Methods

	Invoking Static Methods on Java Classes
	Using the javaMethod Function on Static Methods

	Obtaining Information About Methods
	Methodsview: Displaying a Listing of Java Methods
	Using the Methods Function on Java Classes
	Determining What Classes Define a Method

	Java Methods That Affect MATLAB Commands
	Changing the Effect of disp and display
	Changing the Effect of isequal
	Changing the Effect of double and char

	How MATLAB Handles Undefined Methods
	How MATLAB Handles Java Exceptions
	Method Execution in MATLAB

	Working with Java Arrays
	Introduction
	How MATLAB Represents the Java Array
	Representing More Than One Dimension
	Array Indexing
	The Shape of the Java Array
	Interpreting the Size of a Java Array
	Interpreting the Number of Dimensions of a Java Arrays

	Creating an Array of Objects Within MATLAB
	Using the javaArray Function
	Another Way to Create a Java Array

	Accessing Elements of a Java Array
	Using Single Subscript Indexing to Access Arrays
	Using the Colon Operator
	Using END in a Subscript

	Assigning to a Java Array
	Using Single Subscript Indexing for Array Assignment
	Assigning to a Linear Array
	Assigning the Empty Matrix
	Subscripted Deletion

	Concatenating Java Arrays
	Creating a New Array Reference
	Creating a Copy of a Java Array

	Passing Data to a Java Method
	Introduction
	Conversion of MATLAB Argument Data
	Passing Built-In Data Types
	Passing Built-In Types in an Array
	MATLAB Arrays Are Passed by Value

	Passing String Arguments
	Passing Strings in an Array

	Passing Java Objects
	Handling Objects of Class java.lang.Object
	Passing Objects in an Array
	Handling a Cell Array of Java Objects

	Other Data Conversion Topics
	How Array Dimensions Affect Conversion
	Empty Matrices and Nulls

	Passing Data to Overloaded Methods
	How MATLAB Determines the Method to Call
	Example — Calling an Overloaded Method

	Handling Data Returned from a Java Method
	Introduction
	Conversion of Java Return Data
	Built-In Data Types
	Java Objects
	Converting Objects to MATLAB Data Types
	Converting to the MATLAB double Data Type
	Converting to the MATLAB char Data Type
	Converting to a MATLAB Structure
	Converting to a MATLAB Cell Array

	Introduction to Programming Examples
	Example — Reading a URL
	Overview
	Description of URLdemo
	Running the Example

	Example — Finding an Internet Protocol Address
	Overview
	Description of resolveip
	Running the Example

	Example — Communicating Through a Serial Port
	Overview
	Setting Up the Java Environment
	Description of Serial Example
	Running the serialexample Program

	Example — Creating and Using a Phone Book
	Overview
	Description of Function phonebook
	Description of Function pb_lookup
	Description of Function pb_add
	Description of Function pb_remove
	Description of Function pb_change
	Description of Function pb_listall
	Description of Function pb_display
	Description of Function pb_keyfilter
	Running the phonebook Program

	COM Support in MATLAB (Windows Only)
	Introducing MATLAB COM Integration
	What is COM?
	Concepts and Terminology
	COM Objects, Clients, and Servers
	Interfaces
	COM Server Types
	Programmatic Identifiers
	In-Process and Out-of-Process Servers

	The MATLAB COM Client
	The MATLAB COM Automation Server
	Registering Controls and Servers
	Verifying the Registration

	Getting Started with COM
	Introduction
	Basic COM Functions
	Creating an Instance of a COM Object
	Getting Information About a Particular COM Control
	Getting an Object's ProgID
	Registering a Custom Control

	Overview of MATLAB COM Client Examples
	Example — Using Internet Explorer in a MATLAB Figure
	Techniques Demonstrated
	Using the Figure to Access Properties
	Complete Code Listing
	Creating the Figure
	Calculating the ActiveX Object Container Size
	Automatic Resize
	Selecting Graphics Objects
	Closing the Figure

	Example — Grid ActiveX Control in a Figure
	Techniques Demonstrated
	Using the Control
	Complete Code Listing
	Preparing to Use the Control
	Finding the Control's ProgID . Once you have installed and regis

	Creating a Figure to Contain the Control
	Creating an Instance of the Control
	Using Mouse-Click Event to Plot Data
	Managing Figure Resize
	Closing the Figure

	Example — Reading Data from Excel
	Techniques Demonstrated
	Using the GUI
	Complete Code Listing
	Excel Spreadsheet Format
	Excel Automation Server
	Manipulating the Data in MATLAB
	The Plotter GUI
	Inserting MATLAB Graphs Into Excel

	Supported Client/Server Configurations
	Introduction
	MATLAB Client and In-Process Server
	ActiveX Controls
	DLL Servers
	For More Information

	MATLAB Client and Out-of-Process Server
	For More Information

	COM Implementations Supported by MATLAB
	Client Application and MATLAB Automation Server
	For More Information

	Client Application and MATLAB Engine Server
	For More Information

	MATLAB COM Client Support
	Creating the Server Process — An Overview
	Creating an ActiveX Control
	Finding Out What Controls Are Installed
	Finding a Particular Control
	Creating Control Objects Using a Graphical Interface
	Creating Control Objects from the Command Line
	Repositioning the Control in a Figure Window
	Using Microsoft Forms 2.0 Controls

	Deploying ActiveX Controls Requiring Run-Time Licenses
	Create an M-File to Build the Control
	Build the Control and the License M-File
	Build the Executable
	Deploy the Files

	Instantiating a DLL Component
	Instantiating an EXE Component
	Getting Interfaces to the Object
	IUnknown and IDispatch
	Custom Interfaces

	Invoking Commands on a COM Object
	Dot Syntax
	An Example of Calling Syntax
	Specifying Property, Method, and Event Names
	Implicit Syntax for Calling get, set, and invoke
	Exceptions to Using Implicit Syntax

	Identifying Objects and Interfaces
	Invoking Methods
	Functions for Working with Methods
	Listing the Methods of a Class or Object
	Using methodsview . The methodsview function opens a new window

	Invoking Methods on an Object
	Specifying Enumerated Parameters
	Optional Input Arguments
	Returning Multiple Output Arguments
	Argument Callouts in Error Messages

	Object Properties
	Functions for Working with Object Properties
	Getting the Value of a Property
	Setting the Value of a Property
	Properties That Take Arguments
	Get and Set on a Vector of Objects
	Using Enumerated Values for Properties
	Using the Property Inspector
	Custom Properties

	Control and Server Events
	Functions for Working with Events
	Examples of Event Handlers
	Responding to Events from a COM Server
	Responding to Events from an ActiveX Control
	Responding to Events from an Automation Server
	Responding to Interface Events from an Automation Server

	Writing Event Handlers
	Overview of Event Handling
	Arguments Passed to Event Handlers
	Event Structure
	Sample Event Handlers
	Writing Event Handlers Using M-File Subfunctions

	Saving Your Work
	Releasing COM Interfaces and Objects
	Identifying Objects
	Handling COM Data in MATLAB
	Passing Data to a COM Object
	Handling Data from a COM Object
	Unsupported Data Types
	Passing Data from MATLAB to ActiveX Objects
	Passing SAFEARRAY from MATLAB to COM Object
	Reading SAFEARRAY from a COM Object in MATLAB
	Displaying MATLAB Syntax for COM Objects

	Examples of MATLAB as an Automation Client
	MATLAB Sample Control
	Using MATLAB as an Automation Client
	Connecting to an Existing Excel Application
	Running a Macro in an Excel Server Application

	MATLAB COM Client Demo

	Additional COM Client Information
	Using COM Collections
	Using MATLAB as a DCOM Client
	MATLAB COM Support Limitations

	MATLAB COM Automation Server Support
	Introduction
	Creating the MATLAB Server
	Shared and Dedicated Servers
	Startup Directory
	Get the Status of a MATLAB Automation Server
	Creating a MATLAB Automation Server from Visual Basic .NET

	Connecting to an Existing MATLAB Server
	Using Visual Basic .NET

	MATLAB Automation Server Functions and Properties
	Introduction
	Executing Commands in the MATLAB Server
	Using Execute
	Using Feval

	Date Data Type
	Exchanging Data with the Server
	Controlling the Server Window
	Terminating the Server Process
	Client-Specific Information
	For MATLAB Clients
	For Visual Basic .NET Clients

	Using the Visible Property

	Additional Automation Server Information
	Creating the Server Manually
	Specifying a Shared or Dedicated Server
	Starting a Shared Server
	Starting a Dedicated Server

	Using MATLAB as a DCOM Server

	Examples of a MATLAB Automation Server
	Example — Running an M-File from Visual Basic .NET
	Example — Viewing Methods from a Visual Basic .NET Client
	Example — Calling MATLAB from a Web Application
	Example — Calling MATLAB from a C# Client

	Web Services in MATLAB
	What Are Web Services in MATLAB?
	Introduction
	Web Service Examples
	Understanding Data Type Conversions
	Finding More Information About Web Services

	Using Web Services in MATLAB
	Getting Started
	Building a Simple Web Service

	Building MATLAB Applications with Web Services
	Understanding Web Service Limitations
	Programming with Web Services
	Simple M-File Example

	Serial Port I/O
	Introduction
	What Is the MATLAB Serial Port Interface?
	Supported Serial Port Interface Standards
	Supported Platforms
	Using the Examples with Your Device

	Overview of the Serial Port
	Introduction
	What Is Serial Communication?
	The Serial Port Interface Standard
	Connecting Two Devices with a Serial Cable
	Serial Port Signals and Pin Assignments
	Signal States
	The Data Pins
	The Control Pins

	Serial Data Format
	Bytes Versus Values
	Synchronous and Asynchronous Communication
	How Are the Bits Transmitted?
	Start and Stop Bits
	Data Bits
	The Parity Bit

	Finding Serial Port Information for Your Platform
	Windows Platform
	UNIX Platform

	Selected Bibliography

	Getting Started with Serial I/O
	Example: Getting Started
	The Serial Port Session
	Configuring and Returning Properties
	Displaying Property Names and Property Values
	Configuring Property Values
	Specifying Property Names
	Default Property Values

	Creating a Serial Port Object
	Overview of a Serial Port Object
	Configuring Properties During Object Creation
	The Serial Port Object Display
	Creating an Array of Serial Port Objects

	Connecting to the Device
	Configuring Communication Settings
	Writing and Reading Data
	Before You Begin
	Example — Introduction to Writing and Reading Data
	Controlling Access to the MATLAB Command Line
	Writing Data
	The Output Buffer and Data Flow
	Writing Text Data
	Writing Binary Data

	Reading Data
	The Input Buffer and Data Flow
	Reading Text Data
	Reading Binary Data

	Example — Writing and Reading Text Data
	Example — Parsing Input Data Using strread
	Example — Reading Binary Data
	Viewing the Bitmap Data

	Events and Callbacks
	Introduction
	Example — Introduction to Events and Callbacks
	Event Types and Callback Properties
	Break-Interrupt Event
	Bytes-Available Event
	Error Event
	Output-Empty Event
	Pin Status Event
	Timer Event

	Storing Event Information
	The AbsTime Field
	The Pin Field
	The PinValue Field
	The Message Field

	Creating and Executing Callback Functions
	Enabling Callback Functions After They Error
	Example — Using Events and Callbacks

	Using Control Pins
	Properties of Serial Port Control Pins
	Signaling the Presence of Connected Devices
	Example — Connecting Two Modems

	Controlling the Flow of Data: Handshaking
	Hardware Handshaking
	Software Handshaking
	Example: Using Software Handshaking

	Debugging: Recording Information to Disk
	Introduction
	Recording Properties
	Example: Introduction to Recording Information
	Creating Multiple Record Files
	Specifying a Filename
	The Record File Format
	Example: Recording Information to Disk
	The Record File Contents

	Saving and Loading
	Using save and load
	Using Serial Port Objects on Different Platforms

	Disconnecting and Cleaning Up
	Disconnecting a Serial Port Object
	Cleaning Up the MATLAB Environment

	Property Reference
	The Property Reference Page Format
	Serial Port Object Properties

	Properties — Alphabetical List

	Examples
	Importing and Exporting Data
	MATLAB Interface to Generic DLLs
	Calling C and Fortran Programs from MATLAB
	Creating C Language MEX-Files
	Creating Fortran MEX-Files
	Calling MATLAB from C and Fortran Programs
	Calling Java from MATLAB
	COM Support
	Serial Port I/O

	Index

	tables
	C MAT-File Routines
	Fortran MAT-File Routines
	MAT-Function Subdirectories
	C and Fortran Examples
	MATLAB Primitive Types
	MATLAB Extended Types
	MEX-File Extensions
	MEX Script Switches
	C Engine Routines
	Fortran Engine Routines
	Fields Displayed in the Methodsview Window
	Conversion of MATLAB Types to Java Types
	Conversion of Java Types to MATLAB Types
	Arguments Passed by MATLAB
	Fields of the Event Structure
	Serial Port Pin and Signal Assignments
	Parity Types
	Descriptive General Purpose Properties
	Communication Properties
	Functions Associated with Writing Data
	Properties Associated with Writing Data
	Functions Associated with Reading Data
	Properties Associated with Reading Data
	Event Types and Callback Properties
	Event Information
	Control Pin Properties
	Software Handshaking Characters
	Recording Properties

	Graphics
	toc
	Plots and Plotting Tools
	Figures, Plots, and Graphs
	Graphing In MATLAB
	Anatomy of a Graph
	Figure Toolbars
	Types of Plots Available in MATLAB
	Two-Dimensional Plotting Functions
	Three-Dimensional Plotting Functions
	Choosing a Plot Type with the Plot Catalog

	Plotting Tools — Interactive Plotting
	What Are Plotting Tools?
	Plotting Tools Interface Overview
	Activating Plotting Tools
	Managing Plotting Tools

	The Figure Palette
	Adding Subplot Axes
	Plotting Workspace Variables
	Drag and Drop Plotting
	The Plot Catalog Tool
	Adding Annotations to Graphs

	The Plot Browser
	Controlling Object Visibility
	Deleting Objects
	Adding Data to Axes

	The Property Editor
	Ways to Display the Property Editor
	Changing Plot Types

	Accessing Object Properties with the Property Inspector
	Getting Help for Object Properties
	Accessing Objects You Cannot Click

	Example — Working with Plotting Tools
	Identifying Workspace Data to Plot
	Adding a Subplot
	Setting Axis Limits
	Adding Titles and Labels

	Example — Plotting from the Figure Palette
	Using the Plot Catalog
	Plotting Expressions

	Example — Specifying a Data Source
	Creating the Graph
	Varying the Data Source
	Data Sources for Multiobject Graphs

	Example — Generating M-Code to Reproduce a Graph
	Create a Stem Plot and Generate Code for It
	Data Arguments
	Limitations

	Editing Plots
	Why Edit Plots?
	Interactive Plot Editing
	Using Functions to Edit Graphs

	Working in Plot Edit Mode
	Figure Windows in Plot Edit Mode
	Starting Plot Edit Mode
	Exiting Plot Edit Mode
	Selecting Objects in a Graph
	Selecting Multiple Objects
	Deselecting Objects

	Cutting, Copying, and Pasting Plot Objects
	Copying and Pasting Multiple Objects
	Copying and Pasting Annotation Objects

	Moving and Resizing Objects
	Setting Object Properties
	Undo/Redo — Eliminating Mistakes

	Saving Your Work
	Saving a Graph in MAT-File Format
	Opening a Figure File

	Saving to a Different Format — Exporting Figures
	Copying a Figure to the Clipboard

	Printing Figures
	Generating an M-File to Recreate a Graph
	Running the Saved M-File

	Data Exploration Tools
	Ways to Explore Graphical Data
	Introduction
	Types of Tools

	Data Cursor — Displaying Data Values Interactively
	What Is a Data Cursor?
	Enabling Data Cursor Mode
	Moving the Marker
	Positioning the Datatip Text Box
	Dragging the Datatip to Different Locations
	Datatips on Image Objects
	Datatips on 3-D Objects
	Creating Multiple Data Tips
	Customizing Data Cursor Text
	Deleting Datatips

	Display Style — Datatip or Cursor Window
	Selection Style — Select Data Points or Interpolate Points on Gr
	Enabling Interpolation Mode

	Exporting Data Value to Workspace Variable

	Enlarging the View
	Zooming in 2-D and 3-D
	Zooming in 2-D Views
	Undoing Zoom Actions
	Zoom Constrained to Horizontal or Vertical
	Zooming in 3-D Views

	Panning — Shifting Your View of the Graph
	Rotate 3D — Interactive Rotation of 3-D Views
	Enabling 3-D Rotation
	Selecting Predefined Views
	Rotation Style for Complex Graphs
	Axes Behavior During Rotation

	Undo/Redo — Eliminating Mistakes

	Annotating Graphs
	How to Annotate Graphs
	Graph Annotation Features
	Annotation Tools on the Plot Edit Toolbar
	Annotation Tools on the Figure Palette
	Adding Annotations from the Insert Menu
	Command Interface
	Removing Annotations

	Enclosing Regions of a Graph in a Rectangle or an Ellipse
	Pinning Rectangles and Ellipses
	Modifying the Rectangle or Ellipse from the Context Menu
	Setting Rectangle and Ellipse Properties

	Textbox Annotations
	Selecting Textbox Objects
	Pinning the Textbox
	Modifying the Textbox from the Context Menu
	Setting Textbox Properties

	Annotation Lines and Arrows
	Inserting a Text Arrow
	Pinning the Arrowhead End
	Modifying the Text Arrow from the Context Menu
	Setting Line and Arrow Properties

	Adding a Colorbar to a Graph
	Positioning Options for Colorbars
	Labeling Colorbar Ticks
	Selecting a Different Colormap
	Modifying the Colormap

	Adding a Legend to a Graph
	Specifying the Text
	Positioning the Legend
	Changing the Appearance of the Legend
	Controlling the Appearance of Grouped Objects on a Legend

	Pinning — Attaching to a Point in the Graph
	Pinning Objects

	Alignment Tool — Aligning and Distributing Objects
	Alignment Tool Functionality
	Example — Vertical Distribute, Horizontal Align
	Align/Distribute Menu Options
	Snap to Grid — Aligning Objects on a Grid

	Adding Titles to Graphs
	What Is a Title?
	Using the Title Option on the Insert Menu
	Using the Property Editor to Add a Title
	Using the title Function

	Adding Axis Labels to Graphs
	What Are Axis Labels?
	Using the Label Options on the Insert Menu
	Using the Property Editor to Add Axis Labels
	Rotating Axis Labels

	Using Axis-Label Commands
	Rotating Axis Labels Using Commands
	Repositioning Axis Labels

	Adding Text Annotations to Graphs
	What Are Text Annotations?
	Creating Text Annotations with the text or gtext Function
	Calculating the Positions of Text Annotations

	Text Alignment
	Example — Aligning Text
	Editing Text Objects
	Mathematical Symbols, Greek Letters, and TEX Characters
	Two Levels of TEX Support
	Available Symbols and Greek Letters
	Example — Using a Mathematical Expression to Title a Graph
	Controlling the Interpretation of TEX Characters

	Using Character and Numeric Variables in Text
	Character Variables
	Cell Arrays
	Numeric Variables

	Example — Multiline Text
	Example — Using LaTeX to Format Math Equations
	Drawing Text in a Box

	Adding Arrows and Lines to Graphs
	Creating Arrows and Lines in Plot Editing Mode
	Editing Arrows and Line Annotations

	Positioning Annotations in Data Space
	Example — Pinning Textarrows and Ellipses

	Basic Plotting Commands
	Setting Up Figures
	Creating Figure Windows
	Displaying Multiple Plots per Figure
	Specifying the Target Axes
	Default Color Scheme

	Using High-Level Plotting Functions
	Functions for Plotting Line Graphs
	Programmatic Plotting
	Creating Line Plots
	Specifying Line Style
	Colors, Line Styles, and Markers
	Specifying the Color and Size of Lines
	Adding Plots to an Existing Graph
	Plotting Only the Data Points
	Plotting Markers and Lines
	Line Styles for Black and White Output
	Setting Default Line Styles

	Line Plots of Matrix Data
	Plotting Imaginary and Complex Data
	Plotting with Two Y-Axes
	Introduction
	Combining Linear and Logarithmic Axes

	Setting Axis Parameters
	Axis Scaling and Ticks
	Axis Limits and Ticks
	Semiautomatic Limits
	Axis Tick Marks

	Example — Specifying Ticks and Tick Labels
	Setting Line Properties on an Existing Plot

	Setting Aspect Ratio

	Creating Specialized Plots
	Bar and Area Graphs
	Types of Bar Graphs
	Grouped Bar Graph
	Detached 3-D Bars
	Grouped 3-D Bars

	Coloring 2-D Bars According to Height
	Coloring 3-D Bars According to Height
	Stacked Bar Graphs to Show Contributing Amounts
	Redefining Y
	Horizontal Bar Graphs

	Specifying X-Axis Data
	Setting Y-Axis Limits

	Overlaying Bar Graphs
	Overlaying Other Plots on Bar Graphs
	Overlaying a Line Plot on the Bar Graph

	Area Graphs
	Area Graphs Showing Contributing Amounts

	Comparing Data Sets with Area Graphs

	Pie Charts
	Creating a Pie Chart
	Labeling the Pie Chart
	Removing a Piece from a Pie Chart

	Histograms
	Functions for Creating Histograms
	Histograms in Cartesian Coordinates
	Matrix Input Argument

	Histograms in Polar Coordinates
	Specifying Number of Bins

	Discrete Data Graphs
	Functions for Creating Graphs of Discrete Data
	Two-Dimensional Stem Plots
	Customizing the Graph

	Combining Stem Plots with Line Plots
	Three-Dimensional Stem Plots
	Example – 3-D Stem Plot of an FFT
	Label the Graph
	Example — Combining Stem and Line Plots
	Label the Graph

	Stairstep Plots
	Example — Stairstep Plot of a Function

	Direction and Velocity Vector Graphs
	Functions for Graphing Vector Quantities
	Compass Plots
	Example — Compass Plot of Wind Direction and Speed

	Feather Plots
	Plotting Complex Numbers
	Printing the Graph

	Two-Dimensional Quiver Plots
	Three-Dimensional Quiver Plots

	Contour Plots
	Functions for Creating Contour Displays
	Creating Simple Contour Plots
	Contour Plot of the Peaks Function

	Labeling Contours
	Filled Contours
	Drawing a Single Contour Line at a Desired Level
	Example — Visualizing Contour Construction

	Index Contours
	Example — Specifying Index Contours

	The Contouring Algorithm
	Changing the Offset of a Contour
	Displaying Contours in Polar Coordinates
	Labeling the Graph
	Contours in Cartesian Coordinates
	Contours on a Polar Axis

	Preparing Data for Contouring
	Example — Smoothing a Matrix for Plotting Contours

	Interactive Plotting
	Example — Selecting Plotting Points from the Screen

	Animation
	Ways to Animate Plots
	Movies
	Example — Visualizing an FFT as a Movie
	Creating the Movie
	Running the Movie
	Movies that Include the Entire Figure

	Erase Modes
	Example — Animating with Erase Modes
	Additional Examples

	Displaying Bit-Mapped Images
	Images in MATLAB
	What Is Image Data?
	Data Types
	Bit Depth

	Supported Image Formats
	Functions for Reading, Writing and Displaying Images

	Image Types
	Indexed Images
	Intensity Images
	RGB (Truecolor) Images

	Working with 8-Bit and 16-Bit Images
	8-Bit and 16-Bit Indexed Images
	8-Bit and 16-Bit Intensity Images
	8-Bit and 16-Bit RGB Images
	Mathematical Operations Support for uint8 and uint16
	Integer Mathematics in MATLAB

	Other 8-Bit and 16-Bit Array Support
	Converting an 8-Bit RGB Image to Grayscale
	Related Information

	Summary of Image Types and Numeric Classes

	Reading, Writing, and Querying Graphics Image Files
	Working with Image Formats
	Reading a Graphics Image
	Writing a Graphics Image
	Subsetting a Graphics Image (Cropping)
	Obtaining Information About Graphics Files

	Displaying Graphics Images
	Summary of Image Types and Display Methods
	Controlling Aspect Ratio and Display Size

	The Image Object and Its Properties
	Image CData
	Image CDataMapping
	XData and YData
	EraseMode
	Adding Text to Images
	Additional Techniques for Fast Image Updating

	Printing Images
	Converting the Data or Graphic Type of Images

	Printing and Exporting
	Overview of Printing and Exporting
	Print and Export Operations
	Graphical User Interfaces
	Command Line Interface
	Modifying Properties with set
	Examining Properties with get
	Printing and Exporting with print
	Printing on UNIX without a Display

	Specifying Parameters and Options
	Default Settings and How to Change Them
	Setting Defaults for a Figure
	Setting Defaults for the Session
	Setting Defaults Across Sessions

	How to Print or Export
	Using Print Preview
	Adding a Header to the Printed Page

	Printing a Figure
	Printing with the Print GUI on Windows
	Printing with the Print GUI on UNIX
	Printing Using MATLAB Commands

	Printing to a File
	Printing to a File with the Print GUI on Windows
	Printing to a File with the Print GUI on UNIX
	Printing to a File Using MATLAB Commands

	Exporting to a File
	Using the Export Setup GUI
	Adjusting the Figure Size
	Changing the Rendering
	Changing Font Characteristics
	Changing Line Characteristics
	Saving and Loading Settings
	Exporting the Figure
	Exporting Using MATLAB Commands
	Exporting with getframe
	Saving Multiple Figures to an AVI File
	Importing MATLAB Graphics into Other Applications

	Exporting to the Windows or Macintosh Clipboard
	Windows Clipboard Format
	Macintosh Clipboard Format
	Exporting to the Clipboard Using GUIs
	Exporting to the Windows or Macintosh Clipboard Using MATLAB Com

	Examples of Printing and Exporting
	Printing a Figure at Screen Size
	Using the Graphical User Interface
	Using MATLAB Commands

	Printing with a Specific Paper Size
	Using the Graphical User Interface
	Using MATLAB Commands

	Printing a Centered Figure
	Using the Graphical User Interface
	Using MATLAB Commands

	Exporting in a Specific Graphics Format
	Using the Graphical User Interface
	Using MATLAB Commands

	Exporting in EPS Format with a TIFF Preview
	Exporting a Figure to the Clipboard
	Using the Graphical User Interface
	Using MATLAB Commands

	Changing a Figure's Settings
	Parameters that Affect Printing
	Selecting the Figure
	Using MATLAB Commands

	Selecting the Printer
	Using the Graphical User Interface
	Using MATLAB Commands

	Setting the Figure Size and Position
	Using the Graphical User Interface
	Using MATLAB Commands

	Setting the Paper Size or Type
	Using the Graphical User Interface
	Using MATLAB Commands

	Setting the Paper Orientation
	Using the Graphical User Interface
	Using MATLAB Commands

	Selecting a Renderer
	Renderers Supported by MATLAB
	The Default Renderer for MATLAB
	Reasons for Manually Setting the Renderer
	Using the Graphical User Interface
	Using MATLAB Commands

	Setting the Resolution
	Default Resolution and When You Can Change It
	Choosing a Setting
	Impact of Resolution on Size and Memory Needed
	Using the Graphical User Interface
	Using MATLAB Commands

	Setting the Axes Ticks and Limits
	Using the Graphical User Interface
	Using MATLAB Commands

	Setting the Background Color
	Using the Graphical User Interface
	Using MATLAB Commands

	Setting Line and Text Characteristics
	Using the Graphical User Interface
	Using MATLAB Commands

	Setting the Line and Text Color
	Using the Graphical User Interface
	Using MATLAB Commands

	Specifying a Colorspace for Printing and Exporting
	Using the Graphical User Interface on Windows
	Using the Graphical User Interface on UNIX
	Using MATLAB Commands

	Excluding User Interface Controls form Printed Output
	Using the Graphical User Interface
	Using MATLAB Commands

	Producing Uncropped Figures
	Using MATLAB Commands

	Choosing a Graphics Format
	What Are Graphic Formats?
	Frequently Used Graphics Formats
	Factors to Consider in Choosing a Format
	Built-In MATLAB or Ghostscript Formats
	Choosing Bitmap or Vector Graphic Output
	Bit Depth
	Color Support
	Exporting Simulink Models
	High Resolution or Web Publications

	Properties Affected by Choice of Format
	Font Support
	Resolution
	Importing into MATLAB
	Degree of Complexity
	Lighting and Transparency
	Lines and Text
	File Size
	Resizing After Import
	Color

	Impact of Rendering Method on the Output
	Description of Selected Graphics Formats
	Adobe Illustrator 88 Files
	EMF Files
	EPS Files
	TIFF Files
	JPEG Files

	How to Specify a Format for Exporting
	Using the Graphical User Interface
	Using MATLAB Commands

	Choosing a Printer Driver
	What Are Printer Drivers?
	Built-in MATLAB Drivers
	Ghostscript Drivers

	Factors to Consider in Choosing a Driver
	Platform Considerations
	Printer Type
	Color Model
	Font Support
	Settings That Are Driver Specific

	Driver-Specific Information
	Setting the Windows Driver
	Trouble with Native Drivers on Windows
	Level 1 or Level 2 PostScript Drivers
	Early PostScript 1 Printers
	Background Fills in HPGL Drivers
	Color Selection in HPGL Drivers
	Limitations of HPGL Drivers

	How to Specify the Printer Driver to Use
	Setting the Default Driver for All Figures
	Setting a Driver for the Current Figure Only

	Troubleshooting
	Introduction
	Common Problems
	Printing Problems
	Printer Drivers
	PostScript Output
	Default Settings
	Color vs. Black and White
	Printer Selection
	Rotated Text
	ResizeFcn Warning

	Exporting Problems
	Background Color
	Default Settings
	Microsoft Word
	File Format
	Size of Exported File
	Making Movies
	Extended Operations

	General Problems
	Background Color
	Default Settings
	Dimensions of Output
	Axis and Tick Labels
	UI Controls
	Cropping
	Text Object Font

	Handle Graphics Objects
	Organization of Graphics Objects
	Types of Graphics Objects
	Introduction
	Information on Specific Graphics Objects

	Graphics Windows — the Figure
	Introduction
	Figures Used for Graphing Data
	Figure Children for Graphs

	Figures Used for GUIs
	Root Object — the Figure Parent
	More Information on Figures

	Core Graphics Objects
	Introduction
	Description of Core Graphics Objects
	Axes
	Image
	Light
	Line
	Patch
	Rectangle
	Surface
	Text

	Example — Creating Core Graphics Objects
	Parenting
	High-Level Versus Low-Level
	Simplified Calling Syntax
	A Note About Property Names

	Plot Objects
	Introduction
	Creating a Plot Object
	Identifying Plot Objects Programmatically
	No User Default Values

	Plot Objects and Backward Compatibility
	Saving Figures That Are Compatible with Previous Version of MATL

	Linking Graphs to Variables — Data Source Properties
	Introduction
	Data Source Example
	Changing the Size of Data Variables

	Annotation Objects
	Introduction
	Annotation Object Properties
	Example — Enclosing Subplots with an Annotation Rectangle

	Group Objects
	Introduction
	Creating a Group
	Transforming Objects
	Creating a Transform Matrix
	Rotation
	Translation
	Scaling
	The Default Transform
	Absolute vs. Relative Transforms
	Combining Transforms into One Matrix
	Undoing Transform Operations
	Rotations Away From the Origin

	Example — Transforming a Hierarchy of Objects
	Object Properties
	Introduction
	Storing Object Information
	Changing Values
	Order Dependence of Setting Property Values
	Properties Are Interpreted from Left to Right

	Default Values
	Properties Common to All Objects

	Properties Common to All Objects
	Setting and Querying Property Values
	Using Set and Get
	Setting Property Values
	Listing Possible Values

	Querying Property Values
	Querying Individual Properties
	Returning a Structure
	Querying Groups of Properties

	Factory-Defined Property Values
	Setting Default Property Values
	Factory- and User-Defined Values
	How MATLAB Searches for Default Values
	Defining Default Values
	Setting Properties to the Default
	Removing Default Values
	Setting Properties to Factory-Defined Values
	Reserved Words

	Examples — Setting Default Line Styles
	First Example
	Second Example

	Accessing Object Handles
	Introduction
	Special Object Handles
	The Current Figure, Axes, and Object
	Searching for Objects by Property Values — findobj
	Example — Finding Objects
	Example — Using Logical Operators and Regular Expression

	Copying Objects
	Example — Copying Objects

	Deleting Objects

	Controlling Graphics Output
	Figure Targets
	Specifying the Target for Graphics Output
	Making a Figure and Axes Current

	Preparing Figures and Axes for Graphics
	Using NextPlot to Control Output Target

	Targeting Graphics Output with newplot
	MATLAB Default Behavior

	Example — Using newplot
	Basic Plotting M-File Structure
	Replacing Only the Child Objects — replacechildren

	Testing for Hold State
	Protecting Figures and Axes
	HandleVisibility Property
	Accessing Protected Objects

	Handle Validity Versus Handle Visibility

	The Figure Close Request Function
	Introduction
	Quitting MATLAB
	Errors in the Close Request Function
	Overriding the Close Request Function

	Saving Handles in M-Files
	About Saving Handles
	Save Information First

	Properties Changed by Built-In Functions
	Objects That Can Contain Other Objects
	Using Panel Containers in Figures — Uipanels
	Introduction
	Figure Resize Functions
	Example — Using Figure Panels
	Complete Example Code
	Creating the Uipanels
	Programming the Resize Functions

	Grouping Objects Within Axes — hgtransform
	Introduction
	Example — Translating Grouped Objects
	Set Up the Axes and Figure
	Define the Transform Matrices and Hgtransform Objects
	Create the Surface and Text Objects
	Generate Data and Plot a Line
	Translate the Cursor Along the Plotted Line

	Controlling Legends
	Legend Control Options
	Properties for Controlling Legend Content
	Accessing the Annotation Control Objects

	Updating a Legend
	Example — Excluding a Particular Object From a Legend
	Example — One Legend Entry for a Group of Objects
	Example — Showing Children of Group Objects in Legend
	Example — Grouping Objects to Reduce the Legend Entries

	Callback Properties for Graphics Objects
	What is a Callback?
	Graphics Object Callbacks
	User Interface Object Callbacks
	Figure Callbacks

	Function Handle Callbacks
	Introduction
	Function Handle Syntax
	Passing Additional Input Arguments
	Defining Callbacks as a Cell Array of Strings — Special Case

	Why Use Function Handle Callbacks
	Single File for All Code
	Keeping Variables in Scope
	Callback Object Handle and Event Data
	Function Handles Stay in Scope

	Example — Using Function Handles in GUIs
	Complete Example Code
	The GUI Layout
	Initialize the GUI
	The Callback Functions

	Optimizing Graphics Performance
	Introduction
	General Performance Guidelines
	Disable Automatic Modes
	Fixing Axis Limits
	Set All Modes to Manual

	Changing Graph Data Rapidly
	Low-Level Functions for Speed
	Avoid Creating Graphics Objects
	Update the Object's Data

	Specify Axes with Plotting Function for Better Performance
	Keeping Track of the Target Figure and Axes

	Performance of Bit-Mapped Images
	Direct Color Mapping
	Use Truecolor for Smaller Images
	Direct Mapping of Transparency Values

	Performance of Patch Objects
	Define Patch Faces as Triangles
	Use Data Thinning
	Direct Color Mapping
	Use Truecolor for Smaller Patches
	Direct Mapping of Transparency Values

	Performance of Surface Objects
	Direct Color Mapping
	Use Truecolor for Smaller Surfaces
	Mapping of Transparency Values
	Use Texture-Mapped Face Color

	Figure Properties
	Figure Objects
	Related Information About Figures

	Docking Figures in the Desktop
	Introduction
	Figure Properties That Affect Docking
	DockControls
	WindowStyle
	Docking Figures Automatically

	Creating a Nondockable Figure

	Positioning Figures
	Introduction
	The Position Vector
	Figure Position for Docked Figures
	Units
	Determining Screen Size

	Example — Specifying Figure Position

	Figure Colormaps — The Colormap Property
	Introduction
	Specifying the Figure Colormap

	Selecting Drawing Methods
	Double Buffering
	Overview
	More Details

	Selecting a Renderer
	Overview
	More Details
	Painters
	Z-Buffer
	OpenGL

	Specifying the Figure Pointer
	Predefined Figure Pointer Symbols
	Defining Custom Pointers
	Example — Two Custom Pointers

	Axes Properties
	Axes Objects — Defining Coordinate Systems for Graphs
	Labeling and Appearance Properties
	Introduction
	Creating Axes with Specific Characteristics
	Axis Labels
	Getting the Text Object Handle
	Specifying Axis Label Fonts
	Bitmapped Vs. Truetype Fonts — Text Does Not Rotate

	Positioning Axes
	Introduction
	The Position Vector
	Position Units

	Automatic Axes Resize
	Properties Controlling Axes Size
	Using OuterPosition as the ActivePositionProperty
	ActivePositionProperty = OuterPosition
	ActivePositionProperty = Position
	Axes Resizing in Subplots

	Multiple Axes per Figure
	Introduction
	Placing Text Outside the Axes
	Multiple Axes for Different Scaling

	Individual Axis Control
	Properties Controlling Axis Limits
	Setting Axis Limits
	Semiautomatic Limits

	Setting Tick Mark Locations
	Changing Axis Direction

	Using Multiple X- and Y-Axes
	Introduction
	Example — Double Axis Graphs
	Creating Coincident Grids

	Automatic-Mode Properties
	Colors Controlled by Axes
	Introduction
	Specifying Axes Colors
	Changing the Color Scheme

	Axes Color Limits — the CLim Property
	Introduction
	Simulating Multiple Colormaps in a Figure
	Complete Example Code
	Calculating Color Limits
	Defining a Function to Calculate CLim Values
	Using the Function
	How the Function Works

	Defining the Color of Lines for Plotting
	Introduction
	Defining Your Own ColorOrder
	Changing the Default ColorOrder
	Setting the NextPlot Property
	Using the line Function

	Line Styles Used for Plotting — LineStyleOrder

	Index

	tables
	MATLAB Functions for Creating Annotations
	Resolutions Used with Graphics Formats
	Resolutions Used with Printer Drivers
	Core Graphics Objects
	Plot Objects

	MAT-File Format
	MAT-File Format
	Introduction
	MAT-File Formats

	Level 5 MAT-File Format
	MAT-File Header Format
	Header Text Field
	Header Subsystem Data Offset Field
	Header Flag Fields

	Data Element Format
	The Tag Field
	Data Type
	Number of Bytes

	The Data Field
	Small Data Element Format
	Example Data Element

	Data Compression
	Storing Compressed Data

	Level 5 MATLAB Array Data Element Formats
	Numeric Array and Character Array Data Element Formats
	Array Flags Subelement
	Flags
	Class

	Dimensions Array Subelement
	Array Name Subelement
	Real Part (pr) Subelement
	Imaginary Part (pi) Subelement
	Automatic Compression of Numeric Data
	Examples of Numeric Array Data Elements
	Uncompressed Data Element
	Compressed Data Element

	Sparse Array Data Element Format
	Array Flags Subelement
	Flag
	Class

	Dimensions Array Subelement
	Array Name Subelement
	Row Index for Non-zero Values (ir) Subelement
	Column Index for Non-Zero Values (jc) Subelement
	Real Part (pr) Subelement
	Imaginary Part (pi) Subelement
	Example Sparse Array

	Cell Array Data Element Format
	Array Flags Subelement
	Flags
	Class

	Dimensions Array Subelement
	Array Name Subelement
	Cells Subelement
	Example Cell Array

	Structure MAT-File Data Element Format
	Array Flags Subelement
	Flags
	Class

	Dimensions Array Subelement
	Array Name Subelement
	Field Name Length Subelement
	Field Names Subelement
	Fields Subelement
	Example

	MATLAB Object MAT-File Data Element Format
	Array Flags Subelement
	Flags
	Class

	Dimensions Array Subelement
	Array Name Subelement
	Class Name Subelement
	Field Name Length Subelement
	Field Names Subelement
	Fields Subelement
	Example

	Level 4 MAT-File Format

	Index

	Mathematics
	toc
	Matrices and Linear Algebra
	Function Summary
	Matrices in MATLAB
	Creating Matrices
	Adding and Subtracting Matrices
	Vector Products and Transpose
	Multiplying Matrices
	The Identity Matrix
	The Kronecker Tensor Product
	Vector and Matrix Norms

	Solving Linear Systems of Equations
	Computational Considerations
	General Solution
	Square Systems
	Nonsingular Coefficient Matrix
	Singular Coefficient Matrix

	Overdetermined Systems
	Underdetermined Systems

	Inverses and Determinants
	Overview
	Pseudoinverses
	Solving a Rank-Deficient System

	Cholesky, LU, and QR Factorizations
	About Matrix Factorizations
	Cholesky Factorization
	LU Factorization
	QR Factorization

	Matrix Powers and Exponentials
	Positive Integer Powers
	Inverse and Fractional Powers
	Element-by-Element Powers
	Exponentials

	Eigenvalues
	Eigenvalue Decomposition
	Defective Matrices
	Schur Decomposition in MATLAB Matrix Computations

	Singular Value Decomposition

	Polynomials and Interpolation
	Polynomials
	Polynomial Function Summary
	Representing Polynomials
	Polynomial Roots
	Characteristic Polynomials
	Polynomial Evaluation
	Convolution and Deconvolution
	Polynomial Derivatives
	Polynomial Curve Fitting
	Partial Fraction Expansion

	Interpolation
	Interpolation Function Summary
	One-Dimensional Interpolation
	Polynomial Interpolation
	FFT-Based Interpolation

	Two-Dimensional Interpolation
	Comparing Interpolation Methods
	Interpolation and Multidimensional Arrays
	Interpolation of Three-Dimensional Data
	Interpolation of Higher Dimensional Data
	Multidimensional Data Gridding

	Triangulation and Interpolation of Scattered Data
	Convex Hulls
	Delaunay Triangulation
	Voronoi Diagrams

	Tessellation and Interpolation of Scattered Data in Higher Dimen
	Convex Hulls
	Delaunay Tessellations
	Voronoi Diagrams
	Interpolating N-Dimensional Data

	Selected Bibliography

	Fast Fourier Transform (FFT)
	Introduction
	Finding an FFT
	Example: Using FFT to Calculate Sunspot Periodicity

	Magnitude and Phase of Transformed Data
	FFT Length Versus Speed
	Function Summary

	Function Functions
	Function Summary
	Representing Functions in MATLAB
	MATLAB Functions
	Anonymous Functions

	Plotting Mathematical Functions
	Minimizing Functions and Finding Zeros
	MATLAB Optimization Functions
	Minimizing Functions of One Variable
	Minimizing Functions of Several Variables
	Fitting a Curve to Data
	Creating an M-file for the Example
	Running the Example
	Plotting the Results

	Setting Minimization Options
	Output Functions
	Creating and Using an Output Function
	Structure of the Output Function
	Example of a Nested Output Function
	Fields in optimValues
	States of the Algorithm
	Stop Flag

	Finding Zeros of Functions
	Using a Starting Interval
	Using a Starting Point

	Tips
	Troubleshooting

	Numerical Integration (Quadrature)
	The area beneath a section of a function F (x) can be determin
	Example: Computing the Length of a Curve
	Example: Double Integration

	Parameterizing Functions Called by Function Functions
	Providing Parameter Values Using Nested Functions
	Providing Parameter Values to Anonymous Functions

	Differential Equations
	Initial Value Problems for ODEs and DAEs
	ODE Function Summary
	ODE Initial Value Problem Solvers
	ODE Solution Evaluation and Extension
	ODE Solvers Properties Handling
	ODE Solver Output Functions

	Introduction to Initial Value ODE Problems
	What Is an Ordinary Differential Equation?
	Types of Problems Handled by the ODE Solvers
	Using Initial Conditions to Specify the Solution of Interest
	Working with Higher Order ODEs

	Solvers for Explicit and Linearly Implicit ODEs
	Solvers for Nonstiff Problems
	Solvers for Stiff Problems
	Basic ODE Solver Syntax

	Examples: Solving Explicit ODE Problems
	Example: Solving an IVP ODE (van der Pol Equation, Nonstiff)
	Example: The van der Pol Equation, µ = 1000 (Stiff)
	Parameterizing an ODE Function
	Evaluating the Solution at Specific Points

	Solver for Fully Implicit ODEs
	Example: Solving a Fully Implicit ODE Problem
	Changing ODE Integration Properties
	Examples: Applying the ODE Initial Value Problem Solvers
	Running the Examples
	Example: Simple Nonstiff Problem
	Example: Stiff Problem (van der Pol Equation)
	Example: Finite Element Discretization
	Example: Large, Stiff, Sparse Problem
	Example: Simple Event Location
	Example: Advanced Event Location
	Example: Differential-Algebraic Problem
	Example: Computing Nonnegative Solutions
	Summary of Code Examples

	Questions and Answers, and Troubleshooting

	Initial Value Problems for DDEs
	DDE Function Summary
	DDE Initial Value Problem Solvers
	DDE Helper Functions
	DDE Solver Properties Handling
	DDE Initial Value Problem Examples

	Introduction to Initial Value DDE Problems
	Using a History to Specify the Solution of Interest
	Propagation of Discontinuities with DDE Solvers

	DDE Solvers
	DDE Solver dde23
	DDE Solver ddesd

	Solving DDE Problems
	Example: A Straightforward Problem
	Evaluating the Solution at Specific Points

	Discontinuities
	Example: Cardiovascular Model

	Changing DDE Integration Properties
	Example of a State-Dependent Delay

	Boundary Value Problems for ODEs
	BVP Function Summary
	ODE Boundary Value Problem Solver
	BVP Helper Functions
	BVP Solver Properties Handling
	ODE Boundary Value Problem Examples

	Introduction to Boundary Value ODE Problems
	Using Boundary Conditions to Specify the Solution of Interest

	Boundary Value Problem Solver
	The BVP Solver
	BVP Solver Basic Syntax
	BVP Solver Options

	Changing BVP Integration Properties
	Solving BVP Problems
	Example: Mathieu's Equation
	Finding Unknown Parameters
	Evaluating the Solution at Specific Points

	Using Continuation to Make a Good Initial Guess
	Example: Using Continuation to Solve a Difficult BVP
	Example: Using Continuation to Verify a Solution's Consistent Be

	Solving Singular BVPs
	Example: Solving a BVP That Has a Singular Term

	Solving Multipoint BVPs

	Partial Differential Equations
	PDE Function Summary
	MATLAB PDE Solver
	PDE Helper Function
	PDE Examples

	Introduction to PDE Problems
	MATLAB Partial Differential Equation Solver
	The PDE Solver
	PDE Solver Basic Syntax
	Additional PDE Solver Arguments

	Solving PDE Problems
	Example: A Single PDE

	Evaluating the Solution at Specific Points
	Changing PDE Integration Properties
	Example: Electrodynamics Problem

	Selected Bibliography

	Sparse Matrices
	Function Summary
	Categories of Functions That Support Sparse Matrices
	Elementary Sparse Matrices
	Full to Sparse Conversion
	Working with Sparse Matrices
	Graph Theory
	Reordering Algorithms
	Linear Algebra
	Linear Equations (Iterative Methods)
	Other Miscellaneous Functions

	Categories of Functions That Do Not Support Sparse Matrices
	Elementary Matrices and Arrays
	Elementary Math Functions
	Bit-wise Functions
	Eigenvalue and Singular Value Functions
	Matrix Analysis Functions
	Factorization Functions
	Linear Equation Functions
	Specialized Math Functions
	Filtering and Convolution Functions
	Fourier Transform Functions
	Histogram Plotting Functions

	Sparse-Supported Replacement Functions

	Reducing Memory and Efficiency with Sparse Matrices
	Storing Sparse Matrices
	Comparing Storage for Sparse and Full Matrices

	Creating and Importing Sparse Matrices
	Creating Sparse Matrices
	Converting Full to Sparse
	Creating Sparse Matrices Directly
	Example: Generating a Second Difference Operator
	Creating Sparse Matrices from Their Diagonal Elements

	Importing Sparse Matrices from Outside MATLAB

	Viewing Sparse Matrices
	Obtaining Information About Nonzero Elements
	Viewing Sparse Matrices Graphically
	Finding Indices and Values of Sparse Matrices

	Operating on Sparse Matrices
	Considering Computational Complexity and Standard Mathematical O
	Computational Complexity
	Operating Principals for Sparse Matrices

	Performing Permutations and Reordering
	Reordering for Sparsity
	Reordering to Reduce Bandwidth
	Approximate Minimum Degree Ordering

	Factorizing
	LU Factorization
	Cholesky Factorization
	QR Factorization
	Incomplete Factorizations

	Solving Simultaneous Linear Equations
	Direct Methods
	Iterative Methods

	Solving Eigenvalues and Singular Values
	Identifying Performance Limitations
	Creating Sparse Matrices
	Manipulating Sparse Matrices

	Selected Bibliography

	Index

	tables
	Function Summary
	Polynomial Function Summary
	Interpolation Function Summary
	Interpolation Functions for Multidimensional Data
	Functions for Analysis of Closest-Point Problems and Geometric A
	Functions for Multidimensional Geometrical Analysis
	FFT Function Summary
	Function Summary
	General ODE Solver Questions
	Problem Size, Memory Use, and Computation Speed
	Time Steps for Integration
	Error Tolerance and Other Options
	Solving Different Kinds of Problems
	Troubleshooting
	PDE Property Categories
	Functions for Iterative Methods for Sparse Systems
	Functions to Compute a Few Eigenvalues or Singular Values

	Test Matrix Toolbox (Paper)
	Large Eigen Value Problems (Paper)
	Sparse matrices (Paper)
	ODE Suite (Paper)

